
AN ABSTRACT OF THE THESIS OF

Hans-Werner Schaal for the degree of Master of Science
in Electrical and Computer Engineering presented on
October 10, 1989
Title: TASKMASTER II, A Versatile Distributed System for

Control Redacted for PrivacyAbstract approved:
Jamas 4nmerzog

This thesis discusses a special type of a versatile,

distributed control system, the Taskmaster II. It includes

a detailed specification of a readily realizable

Taskmaster system utilizing a layered communication among

units, oriented on the ISO OSI seven layer model. The

specification was developed from the analysis of previous

research conducted at the Department of Electrical and

Computer Engineering at Oregon State University and a

survey of modern state-of-the-art hardware environments.

The Taskmaster is an open system and embodies hardware and

software components.

Based on the developed specification, a functional

analysis for the implementation of a revised Taskmaster

operating system on distributed hardware environments is

presented. It is intended to serve as a guideline for the

porting of the Taskmaster Operating system to hardware

components of any microprocessor.

Utilizing this analysis, the core of the Taskmaster

Operating system was implemented on a new hardware

environment, satisfying several system requirements. One

particular condition was to keep components of the new

Taskmaster system compatible to those of the old system.

This was realized by preserving the lower communication

layers and a particular communication protocol. In this

implementation, a Motorola MC68C11 microcontroller and a

Motorola evaluation board were selected and successfully

employed as hardware nodes of the distributed Taskmaster

System.

The performance of the implementation was tested and

discussed. It could be shown that the new system is a

truly open system and able to employ hardware units of

different vendors, utilizing the enhanced computational

capabilities of recently available hardware components.

cCopyright by Hans-Werner Schaal
October 10, 1989

All Rights Reserved

Taskmaster II,
A Versatile Distributed System for Control

by

Hans-Werner Schaal

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed October 10, 1989

Commencement June 1990

APPROVED:

Redacted for Privacy

Assolia#.e Profe4or,-.2Electrical and Computer Engineering
in chafige of major

Redacted for Privacy
Head of Department ofCtlectrical angetomputer Engineering

Redacted for Privacy

Dean of Gradua School (1

Date thesis is presented October 10, 1989

Typed by Hans-Werner Schaal for Hans-Werner Schaal

1

Acknowledgement

I wish to express my thanks to my major professor and

thesis advisor Dr. James H. Herzog for his encouragement

and guidance throughout this study.

I would also like to thank Motorola Inc. for the

donation of the 68HC11 Evaluation Board.

Last, but not least, I would like to thank my fellow

students Yong Thye and Andreas Weisshaar for their

frequent advice and encouragement throughout my studies.

ii

LIST OF ABBREVIATIONS

Page

A/D Analog-to-Digital 30

ACP Assembled Command Packet 45

ASCII American Standard Code for
Information Interchange 4

COLAN Local Area Network for Control Use 5

CPU Central Processing Unit 14

EITA Execute an Immediate Task! 25

EQTA Execute a Queued Task! 25

EVB Evaluation Board 35

FFE For Future Extension 41

FIFO First-in-First-Out 21

HCMOS High-Density Complementary Metal-Oxide
Semiconductor 30

HCP Host Command Packet 18

I/O Input/Output 28

ISO International Standards Organization 2

LAN Local Area Network 5

LSB Least Significant Bit 51

MCU Microcontroller Unit 27

NE Normal Extended 32

NIU Network Interface Unit 5

NSC Normal Single Chip 32

OSI Reference Model of Open Systems
Interconnection 2

iii

LIST OF ABBREVIATIONS cont.

PC Personal Computer 3

SBC Single Board Computer 14

SBCU Single Board Computer Unit 27

SCU Single-Chip Units 27

SS System Scheduler 3

SSIR Service the Serial Interrupt! 24

SSW1 System Statusword 1 46

SSW2 System Statusword 2 46

TIC Timer Input Compare 31

TOC Timer Output Compare 31

TOS Taskprocessor Operating System 3

TPU Taskprocessing Unit 2

TSW Task Statusword 45

iv

TABLE OF CONTENTS

Chapter Page

1. Introduction 1

1.1. Overview 1

1.2. Applications and Previous Research Efforts 5

2. Functional Analysis of the Taskmaster 8

2.1. Specifications of the Taskmaster System 8

2.1.1. Autonomy of each Unit 9

2.1.2. Communication among Units 10
2.1.3. Command Accumulation and Automatic

Recalling of Services 11
2.1.4. Interruption of Services upon Conditions 12

2.2. Conclusions from the Specifications 13

2.2.1. Conclusions from the Autonomy of
each Unit 13

2.2.2. Conclusions to ensure Communication
among Units 14

2.2.2.1. ISO OSI Reference Model 14

2.2.2.2. Definition of a Command Syntax 18

2.2.3. Conclusions from Command Accumulation
and Automatic Recalling of Services 18

2.2.3.1. The Task Structure 19
2.2.3.2. The Queue, a Special Buffer in a TPU 21

2.2.4. Conclusions from the Interruption
of Services 22

2.2.5. State Description 23

2.3. Design Considerations
2.3.1. Single-Chip Unit versus Single Board

Computer Unit
2.3.2. Topology

27

27
28

3. Implementation 29

3.1. Description of the Hardware Environment 29

3.1.1. The MCU68HC11 Microcontroller Unit 30

3.1.2. The Evaluation Board 35
3.1.3. The Evaluation Board as Taskprocessor Unit 36

TABLE OF CONTENTS cont.

Chapter Page

3.2. Software Description 39
3.2.1. Taskmaster Operating System 40
3.2.1.1. Realization of Special Software

Elements 40
3.2.1.2. Software Description of the Five

Basic States 50
3.2.2. Development Software Elements 54

4. Evaluation of the Taskmaster II 58

4.1. Conclusion 58

4.2. Advantages of this System over previous
Systems 62

4.2.1. Advantages due to the Selected MCU 62
4.2.2. Advantages due to the TPU

Implementation as EVB 62
4.2.3. Advantages due to an Improved TOS Core 64

4.3. Drawbacks of the System 68

5. Suggestions for Further Research 73

Bibliography 94

vi

LIST OF FIGURES

Figure

1-1

1-2

1-3

1-4

Distributed System

Taskmaster System

Taskmaster in a LAN Application

Taskmaster for Assembly Line Control

Page

78

79

80

81

2-1 Morphology of a Taskprocessing Unit (TPU) 82

2-2 State Description of the TOS 83

3-1 Evaluation Board 84

3-2 Schematic of the Evaluation Board 85

3-3 Linked Tree of Tasks 86

3-4 IDLE State 87

3-5 SSIR State 88

3-6 EQTA State 90

3-7 EITA State 91

3-8 TIME State 92

4-1 Layers and Levels of Abstraction 93

vii

LIST OF TABLES

Table Page

2-1 ISO OSI Reference Model 16

3-1 Hardware Mode Select Summary 33

3-2 Host Command Packet Format 43

3-3 Legal Prefixes 44

3-4 Legal Suffixes 44

3-5 Bit Description of SSW1 47

3-6 Bit Description of SSW2 48

3-7 Bit Description of the TSW 49

viii

PREFACE

The idea of the Taskmaster system as a specialized

example of a modern distributed control system has been

developed at Oregon State University during the last five

years based on design methodologies in real-time control

[1-7]. This work tries to briefly summarize this

development and to give a general guideline for the

implementation of a revised Taskmaster system on modern

hardware environments. In addition, the core of this

revised Taskmaster was implemented based on selected

hardware components.

Chapter 1 gives a general overview on the Taskmaster

system and discusses applications and previous research.

Chapter 2 is a detailed analysis of the revised Taskmaster

developed in this work. It specifies the desired

properties with respect to currently available hardware

components and gives a guideline for their implementation.

It is intended as an aid to efficiently port the revised

Taskmaster system to any appropriate hardware environment.

Chapter 3 describes the implementation of the revised

Taskmaster system on a selected, modern hardware

environment. The performance of the system is described

and discussed in Chapter 4. Finally, Chapter 5 gives

suggestions for future research projects.

TASKMASTER II, A Versatile Distributed System for Control

CHAPTER 1

1. INTRODUCTION

1.1. Overview

A natural evolution of real-time control demanded

system designs which employ several high performance

microprocessors and coprocessors, each specialized for

particular functions. Distributed systems are

arrangements of a variety of computing facilities which

are established at separate locations but are still able

to function in a cooperative manner [4-6]. These units

host the computing facilities of a distributed system and

perform communication functions. They are often referred

to as nodes. A general distributed system is depicted in

Figure 1-1.

In distributed control systems, complex control

activities are decomposed into several control assignments

and tailored to be performed by particular units [7]. The

resulting modularity implies the possibility of highly

specialized implementations of these units, which is

frequently desired in control applications. Modularity

also usually simplifies maintenance and troubleshooting.

2

Recently, a tendency has evolved to keep distributed

systems open [6]. An open distributed system allows the

utilization of components supplied by different vendors.

This usually simplifies the optimization of particular

units and often reduces system costs. Standards have been

developed for the implementation of open systems, one of

which is the Reference Model of Open Systems

Interconnection (OSI) which was developed by the

International Standards Organization (ISO). It is often

referred to as the ISO OSI Reference Model and will be

discussed later.

These standards are guidelines for establishing and

conducting communication among units of distributed

systems. The communication is necessary to render

coordinated activity of the system's units and is usually

a crucial issue in the system's performance. The ISO OSI

Reference Model arranges the functions and rules of

communication among units into a hierarchy of subsets,

called layers. The lowest subset in this hierarchy is the

Physical Layer which describes the physical connection

among units [6,7].

One example of a distributed control system, the

Taskmaster, has been developed at the department of

Electrical and Computer Engineering [2,3]. As depicted in

Figure 1-2, the Taskmaster System consists physically of

several hardware units, called the Taskprocessor Units

(TPUs), a communication network to provide physical

3

connection, and at least one system scheduler (SS). The

SS is usually implemented as a Personal Computer (PC) and

provides an intelligent interface between a human operator

and the network. Since the SS is connected to the network

it can communicate with specified TPUs utilizing a special

command format. Each TPU itself interfaces to the network

and to possible applications. It provides resources for

the control of applications and for communication through

the network.

Each TPU hosts a sophisticated Taskmaster operating

system (TOS) which enables the unit to perform in a semi

autonomous manner. If no commands are issued to the

network, each TPU performs autonomously without

interaction with the SS or any other unit. The schedule

describing the desired activity is installed in software

form in each TPU. Control of an application by a TPU can

be referred to as background activity.

In this configuration, the TPU resembles an

independent controller unit rather than an element of a

larger distributed system. Even when currently performing

according to the background schedule, the TPU is still

able to receive commands from the communication network in

a foreground activity. As depicted in Figure 1-2,

background activity is an interaction between the TPU and

its application. The foreground activity is the

interaction between the TPU and the communication network.

4

Special foreground commands are defined to control

the background activities. Highly efficient control of

the system's TPUs can be achieved by issuing a sequence of

particular foreground commands [3]. A human operator can

utilize these foreground commands to directly control the

TPUs. In a minimum configuration, the SS needs only to be

implemented as a dumb terminal. It is used to inject

foreground commands into the network.

If a SS with considerable computing power is

available, like a PC, a control program in a high level

language is suitable to control TPUs if it is designed to

issue foreground commands as output variables. Each TPU

is able to perform all application services like an

independent microprocessor based unit and in addition

interfaces this assembly level control to a high level

language. The only requirement for the high level

language is to be able to send and to receive characters

compatible to the American Standard Code for Information

Interchange (ASCII). With a fairly limited set of

foreground commands, complex control and monitoring

activities can be performed. It is interesting to note

that the effective application bandwidth of this setup is

considerably higher than the bandwidth requirements of the

communication network [3].

One particular property of the TOS is that in

addition to well-known software structures, like

subroutines, it also employs a task structure which was

5

specifically developed for the Taskmaster system. A task

is an independently scheduled event which requires and

services system resources [3]. In other words, a task is

a piece of code whose execution can be scheduled in a

particular unit by issuing a distinctive command to the

network.

1.2. Applications and Previous Research Efforts

Distributed systems like the Taskmaster find a wide

area of applications. Examples are Local Area Networks

(LANs) and LANs for control use (COLANs) [4,5,8-10]. In

LAN applications the TPU is employed as a network node and

its main occupation is to ensure

forwarding of data packages to a

Figure 1-3. In this configuration,

Host, a TPU, and possibly a network

proper reception and

Host as depicted in

each unit comprises a

interface unit (NIU).

A typical control oriented application is the

coordinated activity of several stepper motors in a

complex positioning mechanism like a robot arm. Each

stepper motor is controlled by its own TPU. The proper

addressing and scheduling of selected tasks allows the

coordinated action of the TPUs and their applications.

Another, more sophisticated example is the control of

an assembly line as depicted in Figure 1-4. Usually, an

assembly process involves the sequential processing of a

production unit through several stages. To control this

environment, one TPU is designated as a Master and is

6

interfaced to a Host Computer. This is usually a

dedicated personal computer or mini computer. Each stage

of the assembly process has an associated machine which is

controlled by a TPU.

A preprogrammed sequence of background commands to

control the associated machine is present in the TOS of

each TPU. Commands can be issued from the host node to

influence the performance of selected TPUs by modifying

their background activity. This as a consequence

regulates the action of the associated machine. The system

could be highly efficient if stage x sends a command to

its successor, stage x+1, upon completion of the

manufacturing step of its corresponding machine. This

allows an optimized takeover of the processing by the

successor machine (see Figure 1-4).

One objective of previous research was the

implementation of LANs and COLANs. LANs find a wide

application in modern offices where they interconnect

several Hosts (usually PCs). They provide resource

sharing of expensive equipment (e.g. printers) and special

services (e.g. mail and messages, similar to a UNIX

environment). Educational LANs are centralized LANs and

usually include a Master node (the teacher) which connects

to several slave nodes (the students) [12-13].

Initially, in 1984, emphasis was placed on

applications which showed the feasibility of the

Taskmaster System [2-3]. Some experimental LANs were

7

designed [14-16]. Then some efforts were made to

implement the idea of an open system in the Taskmaster

[17]. For the physical layer in the communication

network, a bus structure (RS-485) was used.

The operating system was first implemented on an

Intel 8048 CPU and then ported to the Intel 8051. Due to

upward compatibility, the core of the operating system was

only slightly modified. This simplified the porting but

did not fully exploit the enhanced computing power of the

new processor. Also, applications demanded utilization of

TPUs supplied by different microprocessor vendors. The

above encouraged a fresh approach on a new hardware

environment.

8

CHAPTER 2

2. FUNCTIONAL ANALYSIS OF THE TASKMASTER

In the following Chapter, a detailed conclusion of

considerations necessary for the implementation of a TOS

is presented. It is a general, hardware independent

reasoning, intended to serve as a guideline for the

implementation of a TOS on any given hardware environment.

In the first section, the specifications of the system are

discussed. In Section 2.2., conclusions are drawn from

these specifications. As a result, a general state

description of the system is

describes some available

implementation of the system.

presented. Section 2.3.

design options in the

2.1. Specifications of the Taskmaster System

The Taskmaster system consists of both hardware and

software. Physically it can be described as a distributed

system which comprises several nodes (see Figure 1-2).

These nodes are implemented as hardware units, called TPUs

and interface to a common communication network. TPUs are

usually similar to each other in morphology (see Figure 2-

1). Each node hosts a special operating system, the TOS

which has sufficient intelligence to control applications

9

of the TPUs and to communicate to the network through an

interface.

Another hardware element of the Taskmaster system is

the SS. It has two functions. First, it serves as an

interface between a human operator and the network. This

enables the operator to control background activities of

specified TPUs by issuing designated commands to the

network. Second, it can run a high level language program

which issues commands to the network autonomously. The SS

is interfaced to the network, either directly or through a

TPU.

Organizational requirements of the system include

autonomy, communication, automatic recalling of services,

and some means of interruption of services in each unit.

2.1.1. Autonomy of each Unit

Each TPU should be implemented as an autonomous

subsystem that is able to function independently without

connection to the network. Thus, if there is no action on

the network, each TPU concentrates on servicing

applications as a background activity. Thus, the TOS,

which is present in each TPU, needs to be able to organize

this background activity independently. The TOS

incorporates dedicated pieces of software and data to

assure the desired control activity.

The TPU needs to be capable of performing the same

control application services that an independently working

10

microcontroller system could provide. The TPU shields the

application environment from the communication network.

Thus, the application environment cannot detect whether it

is controlled by a TPU (which is connected to a

communication network) or a by an independent system.

2.1.2. Communication among Units

Besides performing application services as background

activity, each TPU also needs the ability to communicate

with the SS and possibly with other network nodes. This

requires the execution of a foreground activity that has

priority over the background activity and is exclusively

devoted to serve communication to the SS and other nodes.

The priority needs to be higher since each node must be

able to receive foreground commands issued by the host or

possibly other units at any time, regardless of the

current background activity. This is necessary to entitle

foreground commands to direct background activities.

If multiprocessing is available in the TPU, then

foreground and background activities can be realized as

separate processes, provided a clear line of authority is

established. If only single processing capabilities are

available, the desired line of authority can be

implemented by utilizing interrupts.

11

2.1.3. Command Accumulation and Automatic Recalling

of Services

Due to their complexity, it is often more efficient

to describe application services by a sequence of

foreground commands rather than by a single command.

This, however, requires collection and administration of

commands which were received previously by TPUs from the

network. A TPU should not be required to execute services

immediately upon reception of respective commands.

Instead, it should be able to accumulate several commands

and to delay their execution. This entitles each TPU to

initiate background mode operation at a specific time and

to direct it according to a batch of commands.

In addition, many control applications are of a

recursive nature and require the repetition of particular

activities by control units. An example is a particular

stage of an assembly process in a factory environment. In

this stage, a particular sequence of actions is performed,

say three holes are drilled in a cylinder head block. The

factory might produce 1000 engines a day, which requires

the repetition of the assignment "drill three holes" 1000

times a day.

All actions necessary to accomplish the drilling of

the three holes can be viewed as an application service.

It is then desired to recall this service automatically

upon the arrival of each new cylinder head block at the

discussed stage. This requires the storing of a sequence

12

of auxiliary actions in a special buffer located on the

TPU. Processed sequentially, these auxiliary actions

perform the application service.

In a predefined operating mode, the TPU can then

provide repetitive services by recursively accessing the

buffer. In the Taskmaster System, this operating mode can

be initiated by a specific command (by the SS or another

TPU). This command will be received through the network

by the appropriate TPU.

2.1.4. Interruption of Services upon Conditions

The control of a complex system by the taskmaster

usually follows a typical scenario. The whole control

assignment is distributed over several TPUs. Each TPU is

optimized for a particular subassignment in hardware and

software. Each TPU executes its background activity

independently. At times, the background activity is

postponed to conduct communication as a foreground

activity. However, operating time in the foreground mode

is usually at least two orders of magnitude shorter than

in the background.

Some incidents might require a background service to

be interrupted. In the drilling example which was

mentioned earlier, a drill might become damaged and the

assembly process might need to be stopped immediately. It

is important to note that this is a different interruption

13

than the ordinary interruption of background activities to

provide communication in the foreground.

In this unexpected case, the background activity

"drill three holes" needs to be stopped. It might then be

replaced by "change drill #2". As soon as the drill is

changed, the old background activity can be resumed.

The above example demonstrates that background

activities of two priorities are desired. The regular

ones, like "drilling three holes" and those of higher

priority, like "stop" and possibly "change the drill".

Background activities of higher priority should interrupt

the current activity and should be executed immediately.

2.2. Conclusions from the Specifications

The following section corresponds directly to section

2.1. and suggest a general, hardware independent setup.

As a conclusion, a fifth subsection presents a state

description.

2.2.1. Conclusions from the Autonomy of each Unit

Each TPU should comprise sufficient resources to

conduct application services. These resources have both

hardware and software components. Hardware components

include a CPU as computing facility, a program memory, a

data memory, an interface to the application, and an

internal bus. These hardware components are commercially

14

available as controller units and typically have the size

of a single board computer (SBC).

A TPU can be implemented with a commercially

available SBC. The general morphology of a typical TPU

is depicted in Figure 2-1. The Central Processing Unit

(CPU) fetches information from the program memory, data

memory, and from peripheral units via an internal bus.

This information is processed in the CPU and results in

data exchange with the peripheral units. The peripheral

units are connected to a special application interface to

provide the desired application service.

These components are available on many SBC systems.

However, in addition to the application interface, another

interface to the network needs to be provided. It is

crucial for the autonomy of the TPU to keep these two

interfaces physically and organizationally separate.

2.2.2. Conclusions to ensure Communication among Units

Establishing and conducting proper communication in

the sense of a modern, versatile, and distributed control

system involves two issues. A layered communication

approach and the definition of a particular command

syntax.

2.2.2.1. The ISO OSI Reference Model

ISO developed the OSI as a guideline for the design

of communication networks. The OSI model separates the

15

objective of ensuring communication between one or more

network nodes into seven logical functions, or layers.

Each layer functions independently and shields the layer

above it from implementation details mastered in lower

layers. As a result, the model is highly modular and

flexible and encourages open networks. Each layer enjoys

a great deal of independence concerning the implementation

of its function, which allows application of equipment

produced by various vendors [5,6,17-19]. The seven layers

are defined as follows, highest level first:

16

Name

Table 2-1

ISO OSI Reference Model

Layer Function

Application Layer 7 Application services

Presentation Layer 6 Code conversion and format

conversion

Session Layer 5 Establishment and

Termination

of logical connections

between

nodes

Transport Layer 4 Maintenance of data

integrity

between nodes

Network Layer 3 Information routing

Data Link Layer 2 Transfer of data packages

Physical Layer 1 Transfer or reception of a

bit stream

The IEEE 802 Standards for LANs adopted the ISO open

systems concept and explicitly defines the specifications

for the data link layer and the physical layer.

In the Taskmaster environment, only four of the seven

OSI layers need to be implemented. There is no need for a

17

network layer since all nodes are already physically

linked by the bus. A session layer is not necessary since

multi-session applications are not implemented. Lastly, a

presentation layer is not necessary because neither code

conversion nor data reformating need to be utilized in the

environment.

The remaining four layers, the Application Layer,

Transport Layer, Data Link Layer and Physical Layer have

the following characteristics. The Physical Layer

receives incoming data packets. The Data Link Layer

passes them over to the Transport Layer, which

disassembles and processes them in a form acceptable to

the Application Layer. Thus, the foreground activity of

the TPU concentrates on the implementation of the Data

Link Layer and the Transportation Layer. It provides an

intelligent interface between the issuing of commands to

the network (Physical Layer) of a particular format and

specified applications (Application Layer).

Compatibility of different TPUs can be achieved if

each TPU understands a common syntax of foreground

commands. Modularity can be accomplished if the developed

unit can replace system units which realized the two

layers in previous designs. This is desired in an effort

to keep the Taskmaster system updated with most recently

available hardware elements.

18

2.2.2.2. Definition of a Command Syntax

Another important issue to assure proper addressing

and activation of selected TPUs is the definition of a

particular command syntax, called a protocol. In earlier

versions of the Taskmaster System this protocol was called

Host Command Packet (HCP). Essential elements of this

protocol are delimiters (to embrace the command in an

effort to make it distinctive from perturbations), the

network address of the target node, and the command

itself. The command may initiate execution of designated

pieces of code, known as tasks, in addressed TPUs. It may

also contain additional information for storage in the TPU

memory for use at a later time.

2.2.3. Conclusion from Command Accumulation and Automatic

Recalling of Services

As specified above, recalling of services in

specified TPUs requires that a special buffer is

implemented on these units. All auxiliary actions

associated with the service that is to be recalled are

stored in this buffer. Two issues allow efficient access

to these auxiliary actions. The organization of these

auxiliary actions in a specially encoded task structure

and the implementation of the buffer as a queue.

19

2.2.3.1. The Task Structure

A typical control application service can be

subdivided into smaller subservices or auxiliary actions.

These auxiliary actions are called tasks. An efficient

way to specify tasks is a special task structure. A task

is defined as an independently scheduled and programmed

event which requires and services system resources [3].

In the Taskmaster System, these resources are the hardware

interfaces of the TPU. A task is a modular piece of

software, written in a language appropriate for the TPU

and the application. For time critical actions this is

usually an assembly language. Tasks are utilized to

accomplish control functions by employing TPU resources.

These tasks are similar to subroutines, but can be

used in a more flexible manner. Their main advantage is

that in contrast to subroutines, the time and mode of task

execution can be fully controlled. Tasks are represented

in two formats. The first format is the command syntax

described earlier. By using ASCII characters, it allows

foreground commands to be issued to addressed TPUs via a

communication network. These commands contain the task

name and some additional information regarding the mode of

task execution. The information is then compressed and

stored in a buffer in a format suitable for the addressed

TPU.

The main advantage tasks have over subroutines is

that the task structure allows a currently running job in

20

any TPU to be modified quickly and at any time. A great

deal of flexibility can be reached in controlling

applications by issuing an appropriate sequence of task

commands over the network to specified TPUs. Five pieces

of information are sufficient to define the execution of a

task: An address, a condition, a name, a dismissal, and

possible parameters.

1. Address: The address defines the TPU which is

intended to execute the task.

2. Condition: The Condition defines the circumstances

necessary to begin execution of the task.

3. Name: The name of the task identifies the

particular piece of code associated with the

execution of the task.

4. Dismissal: The dismissal specifies the destiny of

the task upon its completion.

5. Parameters: The Parameters can be used to provide

additional information concerning the mode of

execution or to provide data necessary to execute

the task.

21

Execution of a task will be initiated if two

conditions are satisfied. First, a complete task

specification is present in the TPU. Second, other

particular conditions necessary to start the task are

present. For example, some tasks may need a special

synchronizing command to initiate their execution.

Referring to its name, the desired task can be found in a

special task library. Some tasks may use parameters,

which can be part of the task specification. Upon

completion of the execution, some tasks may be left in the

buffer for later use.

2.2.3.2. The Oueue, a Special Buffer in a TPU

The buffer as a resource of each unit can be

implemented as a queue. A queue is a dynamic piece of

memory realizing a first-in-first-out (fifo)

organization. The queue is used to store tasks, which

were issued earlier as a foreground command for later use

in a background activity. They are stored in a form

acceptable for the TPU. The queue permits accumulation of

tasks and delayed execution. In the foreground activity,

command packets representing tasks are constantly stored

in the queue.

When system resources are available, the task which

was received first is executed. The other tasks are

executed in the same order in which they are received,

provided system resources are available and conditions of

22

execution are given. Because of the queue it is possible

to specify in a command that the corresponding task, upon

its completion, be placed on the queue again. Then, this

task will be recalled automatically as system resources

become available. Whether a task is to be requeued or not

is specified in the task structure format as the

"dismissal".

2.2.4. Conclusions from the Interruption of Services

The specifications discussed in subsection 2.1.4.,

lead to two levels of background activities. Subsection

2.2.2. describes how particular background activities can

be invoked by a specific command structure. Finally,

subsection 2.2.3. suggests how to classify these

background activities in the task structure.

Interruption of tasks in TPUs requires a command

hierarchy with at least a two-level priority. This allows

interruption of the current activity of a network node to

favor activities with a higher priority. The low-priority

task is interrupted until the completion of the high-

priority task. Then the previous task resumes.

The priority of a task needs to be issued as a part

of its corresponding command. Following the task

structure which was presented in subsection 2.2.3., the

priority can be defined as the "Condition" (see Section

2.2.3.). Possible conditions in a two-priority structure

are "Queue" and "Immediate". "Queue" means that the

23

corresponding task is of lower priority and should be

placed on the queue. It stays on the queue until system

resources become available. "Immediate" means that the

corresponding task is of higher priority and should be

executed immediately.

An Immediate task will interrupt a background

activity with priority "Queue". However, it will not

interrupt a background activity of priority "Immediate".

2.2.5. State Description

The conclusions of the above sections can be realized

with a correct software layout of the TOS. This section

presents a guideline for the realization of an effective

TOS utilizing a state description. A State is defined as

a condition or a set of conditions of a system. In the

context of the TOS these conditions refer to a particular

mode of operation. In each state a set of activities is

performed which distinguishes an individual mode from

others. Due to the nature of the taskmaster system, a

state description is appropriate. It breaks the system

specification into several subspecifications. These

subspecifications are more compact and easier to implement

by a particular piece of software.

The system needs to keep track of any changes of

these conditions in order to be able to define its state

at any time. The current system conditions should be

stored in a dedicated piece of memory, the system status

24

word. Specified incidents will change these status words

and thus redefine the system's state. A State Diagram

[20] symbolizes these states as circles and the state

transitions as arrows labeled with the respective incident

that caused the transition. The State Diagram of the TOS

is depicted in Figure 2-2. It comprises the following

five states.

The IDLE State

The IDLE ("IDLE!") state does not perform any

particular assignments. Its main purpose is to provide a

defined state for power up, reset, and the lack of

particular incidents which lead to other, more specialized

states. The system constantly checks for incidents that

require the state to change. In the IDLE state, two

incidents stipulate a change. The reception of a

character by the TPU or the fact that the queue is not

empty. This state may be implemented as a main loop,

constantly checking the status word.

The SSIR State

The SSIR ("Service the Serial InterRupt!") is defined

by the execution of a serial interrupt service routine.

This routine should be activated if elements of a

foreground command packet are present on the network.

This state comprises code to recognize, receive,

interpret, and to forward command packets.

25

Command packet recognition involves the recognition

that a character was issued to the network. Command

packet reception encompasses code to determine if a

particular received character obeys the given format and

was addressed to the unit (myaddress?). Command packet

interpretation includes the decoding of the command packet

and a subsequent modification of the status word. The

desired action can then be performed in specialized

states. The SSIR state can be entered from any state

except the TIME state. The SSIR is a temporary state.

The system resumes the previous state automatically upon

completion of the SSIR state.

The EQTA State

In the EQTA ("Execute a Queue TAsk!") state, the

first task in the queue is fetched, interpreted, and

executed. Upon completion, the task is either requeued or

discarded, depending on additional information associated

with the task. Provided no other special conditions are

present, the system then returns to IDLE.

The EITA State

In the EITA ("Execute an Immediate TAsk!") state,

high priority commands are interpreted and respective code

is executed. The EITA state is always entered from the

SSIR state. Upon completion of the high-priority task,

the system will resume the idle state or the EQTA state

26

depending on which state was abandoned in favor of the

EITA state. The EITA state enables the system to perform

high-priority tasks at any time, regardless of its current

state.

The TIME State

The TIME ("update the system TIME!") state assures

correct system time regardless of the current system

activity. It can be realized as a high-priority

interrupt service routine. The priority of the timer

interrupt needs to be higher than the priority of the

serial interrupt for two reasons.

First, the system time is very important for overall

system performance in a distributed environment,

particularly if synchronization is an issue. Second, the

system will assume the state TIME only for a very short

time period and then automatically return to the previous

state. This is possible, because the updating of the

system time does not involve lengthy computations.

Thus, the interruption will be almost not

recognizable for the overall system performance. The

State TIME will be assumed originating from any previous

state and, upon completion will return to the previous

state.

System time enhances the real time capabilities of

the system and is important for the coordinated action of

several TPUs. Utilizing the system time feature, tasks

27

can be started at a specific time. Furthermore, some

tasks might be implemented as endless loops and can be

aborted by a time-out condition. The time-out can then be

part of the task command.

2.3. Design Considerations

2.3.1. Single-Chip Unit versus Single Board Computer Unit

The advantage of distributed systems in control

applications is self-evident. However, there is still

some freedom in choosing the scale of the hardware units.

In microprocessor engineering two choices are apparent,

single chip units (SCUs) and single board computer units

(SBCUs).

SCUs accommodate CPU and the operating system as well

as possibly a serial communication interface on one single

chip [21-23]. In microprocessor control engineering the

CPU is often referred to as the microcontroller unit

(MCU). The advantage is that little space is required.

On the other hand, the communication interface might not

be suitable for long distances. Many microcontroller

chips provide a serial input/output (I/O) port but not

necessarily an RS-232C or RS-485 interface. Also, the

performance of the unit is confined to the capabilities of

the selected chip and modifications are limited.

SBCUs usually include a variety of chips, each

optimized for a particular purpose. The CPU or MCU is

implemented as one of these chips. All other chips

28

connect to the CPU through an internal bus. SBCUs require

more space than their SCU counterparts, however, they are

simpler to modify and to optimize.

A SCU approach would be preferred to control the

fingers of an robot arm, since distances are short, the

actions of each unit are simple, but space is scarce.

SBCUs would be utilized in complex applications like the

control of an assembly line since the units might be

modified from time to time but space is not critical.

2.3.2. Topology

In applications of low-cost distributed control

systems, bus topology is preferred because it does not

require a routing algorithm. Thus, the network layer of

the OSI model is not used. Physically, a bus topology can

operate without a master node. Each node is passive, but

listens constantly to the network, waiting to be

activated. Finally, nodes can be added or deleted easily

and the malfunction of one particular node does not

necessarily affect overall performance.

29

CHAPTER 3

3. IMPLEMENTATION

This chapter utilizes the functional description of

the Taskmaster as the basis for the implementation of a

revised Taskmaster system, the Taskmaster II, in a new

hardware environment. The Taskmaster II consists of both

hardware and software.

Section 3.1. describes the selected hardware on which

the TOS was implemented. Some special features that

suggested the selection of the Motorola 68C11 CPU and the

evaluation board (EVB) are discussed. Section 3.2. then

describes the actual implementation of the TOS in the

hardware environment of the 68HC11.

3.1. Description of the Hardware Environment

The following portrays the selected hardware

environment in three steps. First, some of the features

of the CPU are discussed briefly and illuminated in the

context of the Taskmaster system. Second, the EVB is

introduced and its original purpose is discussed. And

last, the utilization of the evaluation board as a TPU

hardware base is explained.

30

3.1.1. The MCU68HC11 Microcontroller Unit

Overview

The MCU68HC11 CPU is a recent 8-bit Microcontroller

Unit (MCU) which offers a variety of peripheral on-chip

capabilities. It is implemented in high-density

complementary metal-oxide semiconductor (HCMOS)

technology. This technology tries to combine the

advantages of high speed, small size, low power

consumption, and electrical noise tolerance.

Peripheral Functions

The chip offers, as peripheral functions, an 8-

channel 8-bit analog-to-digital (A/D) converter, and a

synchronous and asynchronous serial communications

interface. The asynchronous serial interface was utilized

as the network interface for the TPU. The serial

synchronous interface and the A/D converter are still

available for application services. The MCU includes

several I/O ports, one of which has parallel capabilities.

Special Features

The MCU contains a "watchdog system" that can be

utilized to monitor proper execution of user developed

software. A WAIT and STOP mode is available which can

send the MCU to sleep in order to reduce power consumption

31

when needed. This might be useful in battery driven

applications.

Registers

The MCU includes seven primary and 64 secondary

registers. The primary registers are two accumulators

called A and B, two index registers, called X and Y, a

stack pointer, a program counter, and a condition code

register. With the exception of the accumulators and the

condition code register, which are 8-bit, all primary

registers are 16-bit. The accumulators can be combined to

form a 16-bit accumulator D or can be addressed

separately.

The 8-bit secondary registers are dedicated to a

variety of different functions and are all bit

addressable. Some of the registers define the operation

mode of the MCU and are time-protected. They can only be

modified during the first 64 instruction cycles. This

prevents an unintentional change of the system setup

during program execution. Other secondary registers

control output pins or buffer incoming data.

Two useful groups of secondary registers are the

Timer Output Compare (TOC) and the Timer Input Capture

(TIC) registers. Both operate together with the 16-bit

on-chip counter. TOC registers can be utilized to program

an action to occur at a specific time (when the 16-bit

counter reaches a specific value). TIC registers can be

32

employed to record the exact time of external events. In

the Taskmaster II application, TOC4 was utilized to

provide the TPU system time. System time is defined as a

clock which counts hours, minutes, and seconds, and is

implemented on each TPU. The clock starts counting upon

reset.

On-Chip Memories

A whole family of MCUs is available, varying mainly

in type and size of available on-chip memory. Depending

on the specific part type, the MCU comprises at least two

of the following memory types: EPROM, ROM, EEPROM, and

RAM. In this work an XC68HC11A1 MCU was used. The size

of the memory varies with the part type. In the

Taskmaster application, the 512 byte on-chip EEPROM might

be useful to store the TPU address and possibly some

discriminator information to adjust TOS application to

special customer needs. The largest available ROM has

12K. This is sufficient to hold the TOS and a large

library of application tasks.

Operation modes

As depicted in Table 3-1., the MCU can operate in

four modes which are logically selected by the MODB and

the MODA pins of the MCU. However, only the Normal single

Chip mode (NSC) and Normal Extended (NE) mode are relevant

33

in the Taskmaster application. The other modes are mainly

designed for factory test.

Table 3-1

Hardware Mode Select Summary

Inputs Mode Description Abbreviation

MODB MODA

1 0 Normal Single-Chip NSC

O 1 Normal Expanded NE

O 0 Special Bootstrap

O 1 Special Test

In the NSC mode, the MCU operates as a single chip

controller. All ports are available for I/O functions

since no external address/data bus is needed. All

software essential to control the MCU is held in on-chip

memory. The NE mode utilizes two ports (port B and port

C) for address and data bus functions. Program

instructions are fetched by these interfaces through an

external bus from external memory (see Figure 3-2).

Interrupts

The MCU includes 18 separate interrupt sources [23].

These sources include two external interrupts and five TOC

interrupts. TOC interrupts can be activated if the free

34

running counter matches one of the five TOC register

values. A priority hierarchy of the maskable interrupts

can be defined during system setup by user code.

Instruction Set

The 6811 instruction set is compatible with the

instruction set of the 6800 but offers some additional

instructions. The TOS requires frequent transfer of data

sets. This can be accomplished efficiently by indexed

addressing, utilizing the two index registers. In

addition, a wide variety of branch instructions are

available. Especially useful are the two conditional

branch instructions BRCLR and BRSET. In BRCLR, a

specified memory byte is ANDed with a bit mask. A branch

is performed if the result is zero. Similarly, in BRSET

the inverse of the memory byte is ANded with the mask.

This allows program flow to be directed by the bit value

of specified bits in memory locations.

Although only an 8-bit internal bus is available, 16-

bit instructions are feasible by accessing two successive

memory bytes subsequently. A 16-bit accumulator is

available for 16-bit instructions. Arithmetic and logical

shift instructions are available for 8-bit and 16-bit.

Compare instruction are also usable both in 8-bit and 16-

bit. Finally, integer and fractional 16 by 16 division is

available and will certainly be useful in a variety of

user defined application services.

35

3.1.2. The Evaluation Board

The Evaluation Board (EVB) is a low cost tool for

debugging and evaluating of MCU68HC11 MCU-based

microcontroller systems. The EVB is depicted in Figure 3-

1 and its schematic is depicted in Figure 3-3. The EVB

emulates NSC operation of the MCU utilizing its NE mode.

This concept can be illustrated best in an example.

A typical application for operation in the NSC mode

is the control of a complex application environment. The

MCU then is plugged into a specific socket of the

application environment's control circuitry. Software

which is necessary to service the application is stored in

MCU on-chip memory.

For software development, the use of the EVB is

similar to the utilization of an emulation system. The

EVB then connects to the socket instead of the

microprocessor (or an emulation system). The EVB (similar

to an emulation system) simulates all I/O operations of

the microcontroller. The application environment cannot

detect whether it is controlled by a microcontroller or

the EVB (or an emulation system).

Software development on the EVB yields the advantage

that software is stored in external RAM of the EVB rather

than burned into on-chip ROM. This simplifies the

development, because software in a RAM can easily be

modified at any time. The layout of the EVB warrants that

36

if the code functions on the EVB, it will also function in

the NSC mode stored in on-chip MCU memory. The

applications engineer can modify code which is stored on

the EVB till satisfactory performance is achieved. Then

the software can be installed on-chip.

One RS232C interface is implemented on the chip to

connect to a PC as a development system. Development

software is provided by Motorola and discussed in Section

3.2.2. On the EVB, the MCU interfaces to an external

address/data bus to external memory through ports B and C

of the MCU. The MCU on the EVB operates in NE mode, but

the whole EVB emulates a single-chip mode operation of a

MCU68HC11 MCU. A MCU 68HC24 emulation chip is utilized on

the EVB to emulate the single chip operation of ports B

and C, since those ports are lost due to the NE mode

operation of the board.

3.1.3. The Evaluation Board as Taskprocessor Unit

The EVB was specifically designed as a NSC emulator

for the MCU68HC11. However, comparing the EVB description

in Section 3.1.2. with the specifications of a TPU, which

were presented in Section 2.1., it becomes evident that

the EVB includes all hardware elements of a TPU. From a

hardware point of view, the EVB is a SBC with additional

features.

Commercially available SBCs are tested and their

functioning is usually reliable. In addition, they are

37

produced in large enough quantities to offer a good price-

quality ratio. This makes it often more efficient to

modify such a board rather than to develop a new design

from scratch.

The EVB offers one possibility for the implementation

of an MCU68HC11 based SBC. The three interfaces of an EVB

based TPU depicted are depicted in Figure 3.-2. The EVB

Port P1 provides the interface to the MCU ports. It is

the main interface to application services. Port P3 is an

asynchronous RS232C interface to the MCU which provides

communication to the network. A NIU can be utilized to

connect the RS 232c Interface to a Bus Standard (e.g. RS

485). This has been shown already in other work [17].

Finally, Port 1 is still preserved as an interface to a

development system as described in Section 3.1.2.

It was the intention of this work to utilize the EVB

both as TPU and as low cost development tool. Both

capabilities are selectable separately by the switching of

jumper J4 on the EVB board. The EVB thus operates in two

modes. First, in a work mode, it is a fully qualified

TPU. In this setup the evaluation capabilities are of no

interest and relinquished. The EVB will typically operate

in this mode when all system code is developed and

optimized with respect to the needs of the application

services.

Second, in a development mode, each TPU is still a

fully qualified EVB and can be employed to develop user

38

code for the control of application services. In addition

to the possibility of network independent EVB operation,

this EVB can also stay connected to the network during the

evaluation. This yields the advantage that development

and optimization in TPUs can be pursued with respect to

incoming network commands.

This can be very useful in the previously introduced

assembly line example. The overall system might have been

designed, but during tests it turns out that one TPU's

control performance is too slow compared to incoming

network commands. It might not be efficient to change the

whole system setup. Instead, utilizing the EVB

capabilities with network connection, the code efficiency

on the particular TPU can be increased until hand-in-hand

operation with the network is reached.

In a proposed factory environment, a system engineer

would take his laptop computer to the location of the

respective TPU, plug it in, and choose development mode.

The laptop then functions as the development computer and

is connected to Port P2 of the EVB. Incoming commands are

provided by the network, or are simulated by the laptop

and submitted at Port P3. As soon as acceptable

performance is reached, the new code can be downloaded

into the TPU. The development mode is then switched to

working mode. Later, the code can be burned into a PROM

and plugged into the TPU to replace the old PROM. In

order to allow the above operation, Port P2 must be

39

grounded at line seven. This is not done on the factory

supplied board.

Using an EVB as a TPU yields another advantage. The

EVB was designed to develop code intended to run in NSC

mode. In this work, the EVB was then used as a TPU unit.

Each TPU thus has the size of a SBC. The evaluation

capabilities of the EVB were made available for

distributed system development as described above. If it

is desired to setup a distributed system with units of

single-chip size rather than SBC size, this system can be

achieved using the network and several EVBs. When the

final TOS version is developed, it can be installed on

each MCU to be run in NSC mode. Thus this system could be

utilized to develop a Taskmaster system based on units of

single-chip size.

3.2. Software Description

The software implementation of the revised taskmaster

system, the Taskmaster II, involves two separate pieces of

software. These are the TOS and the development software.

The TOS emerged entirely from this work. The development

software is a public domain software issued by Motorola

which was intended to serve as a low-cost development tool

for microcontroller applications. It was not intended to

support the development of distributed systems.

In addition to the Taskmaster implementation, this

work preserved the Motorola development aids and allowed

40

their use in the more complex environment of a distributed

system. Thus, these tools are still available to further

enhance the current version of the Taskmaster II.

3.2.1. Taskmaster Operating System

This subsection discusses the implementation of the

TOS on the Motorola 68C11 hardware environment which was

described previously. Even though this TOS was

specifically designed for the 68C11, some of the following

considerations might still be appropriate for the

implementation of a similar TOS on a different hardware

environment.

The following description should be accepted in the

context of the preceding functional analysis which was

presented in Chapter 2. It is grouped into two

subsections, the realization of special software elements

and the realization of the five described states.

3.2.1.1. Realization of Special Software Elements

Five software elements require further explanation.

These elements include the classification of tasks, the

calling of tasks, the implemented formats, bit controlled

program flow, and the realization of the queue.

Classification of Tasks

Figure 3-3 groups the spectrum of tasks distinguished

by this system together with corresponding priority levels

41

as a linked tree of tasks. Two main priority levels were

implemented by discriminating Queue tasks and Immediate

tasks. Queue tasks themselves can be further classified

as Ready tasks and Synchronized tasks. Ready tasks will

be executed as soon as they reach the head of the queue

and the system is ready to execute the queue. Synchronize

tasks must be invoked by a specific Immediate task and are

left for later implementations.

Among the Queue tasks, the system also differentiates

between Queue-Requeue and Queue-Non-Requeue tasks as tasks

to be rerun and tasks to be discarded subsequent to their

completion. An additional class of repeat tasks which are

rerun a specified number of times could be implemented

later.

Another class of tasks are Short tasks. These tasks

are a special class of Immediate tasks. Short tasks are

addressed to all TPUs and do not follow the common HCP

format. This implies that they are executed faster than

regular Immediate tasks. As a typical example for such a

task, an abort task was implemented to abort all current

activities in all units.

Calling of Tasks

Calling of tasks is realized in the states EQTA and

EITA separately according to their respective priorities.

This permits calling of a high-priority task even during

the execution of a low-priority task. The general

42

approach in calling a task, however, is the same. All

tasks have a hexadecimal number in the range of OOH to FFH

as a name. Thus, reference to a particular task can be

accomplished by a brief calculation in a specialized

vector routine. Upon completion of the task, program flow

continues at the location succeeding the call of the

vector routine, regardless of the executed task. All

information necessary to vector a task is gathered from

the current system status, represented by three status

words (see "bit controlled program flow" in this section).

Task Formats

Two formats are present in the Taskmaster. These are

the Host Command Packet (HCP) format and the Assembled

Command Packet (ACP) format. The HCP is the format of the

foreground commands which are issued by the Host computer

or possibly other units. The HCP format is present on the

physical layer, in other words, the network. The HCP

format corresponds to the task structure and its elements

which were described in Section 2.2.3.1. It embodies the

following ASCII characters, further specified in Table 3-

2.

(AA P NN S DD DD DD DD DD)

43

Table 3-2

Host Command Packet Format

Element Meaning Example

{ Begin delimiter

AA TPU hexaddress 01

P Prefix

NN Tasknumber C3

S Suffix

DD Data 3E

} End delimiter

The begin and end delimiters are necessary to envelop

the contents of the foreground command in order to

distinguish it from noise or other activities on the

network which are not related to a command.

The Prefix describes the conditions necessary to

execute a task. This includes the priority level of the

tasks. The legal prefixes are listed in Table 3.-3.

44

Table 3-3

Legal Prefixes

Prefix Meaning Priority Level

: Ready Queue task low

? Synchronized Queue task low

Immediate task high

The address, in hexadecimal, distinguishes the

particular TPU which was selected to run the task.

The Suffix corresponds to the dismissal which was

specified in Chapter 2. It defines the destiny of the

task after its execution. Table 3-4 lists the legal

suffixes.

Table 3-4

Legal Suffixes

Suffix Meaning

Discard upon completion

Requeue upon completion

Requeue a specified count of times

45

Discarding and requeuing is implemented in this work,

requeuing a specified number of times is only suggested.

Arguments can be sent as part of the command. This

is desired for some tasks. For example, to set the time,

variables representing hours, minutes, and seconds can be

included in the command as arguments. The current setup

allows 5 arguments. This can easily be extended to 7, 15

or any number compatible with the device's RAM storage.

Each TPU only accepts a proper HCP format addressed

to itself. The TPU/TOS converts the HCP format into an

Assembled Command Packet (ACP) format. The conversion

from HCP to ACP format is done because the HCP packet

consists of ASCII character elements. These are not

appropriate for efficient storage or processing.

Since the address is correct, it is no longer needed

and discarded. The ASCII task number is converted into a

hexadecimal format in order to save memory. The two ASCII

characters representing suffix and prefix are bundled in a

bit pattern as a Task Status Word (TSW). This TSW is

implemented as one byte. In addition to suffix and prefix

information, it contains the number of arguments which

were previously submitted in the HCP format. In other

words, the TSW contains sufficient information to entirely

define the operation mode of a task.

The arguments of the HCP format are also converted

from ASCII into hexadecimal format. In total, a five

46

argument task command requires 18 bytes in HCP format and

seven bytes in ACP format.

Bit Controlled Program Flow

The TOS activity can be grouped into five states.

Each state is implemented as a distinctive piece of code

and described in section 3.2.1.2. Operation in each state

varies according to the system status. The system status

can be viewed as a record that specifies what has been

accomplished by the TOS at any given time. These

accomplishments determine operation details in each state.

In addition, they might cause entry into a different

state.

The system status is defined by two system status

words, SSW1 and SSW2, each of which comprises 8 bits. The

relation between the bits of the status words and the five

states of the TOS is described in section 3.2.1.2. The

Tables 3-5, and 3-6 present a bit description of SSW1 and

SSW2. Column "Meaning" always refers to "bit set". Some

bits are still available for future implementation. They

are labeled as "f.f.e.", meaning "for future extension".

The tables also show the reset value of each bit in column

"Res".

The system status will be modified depending on the

nature of the currently processed task. These

specifications are stored as TSW. The TSW is part of the

ACP format and always attached to a task for internal

processing management.

description of the TSW.

47

Table 3-7 presents a bit

Table 3-5

Bit Description of SSW1

Bit Name Res

7 requeue 0

6 no-interrupt 0

5 time-out 0

4 synchronize 0

3 pause 0

2 Queue task 0

1 Immed task 0

0 queue empty 1

Meaning

Requeue task upon completion

execution of running task cannot

be interrupted

abort due to time-out allowed

task requires synchronization

current Queue task is paused

processing of a Queue task

processing of an immediate task

task queue is empty

Table 3-6

Bit Description of SSW2

Bit Name Res

7 error 0

6 f.f.e.

5 f.f.e.

4 f.f.e.

3 address check 0

2 HCP overflow 0

1 echo 0

0 HCP progress 0

Meaning

can provide error

for future extension

for future extension

for future extension

HCP address check in progress

HCP overflow occurred

echo previously received HCP

a HCP assembly is in progress

48

Table 3-7

Bit Description of the TSW

Bit Name Res

7 synchronize 0

6 Requeue task 0

5 Repeat task 0

4 no-interrupt 0

3 f.f.e. 0

2 arg c.2 0

1 arg.c.l 0

0 arg.c 0 0

49

Meaning

task requires synchronization

requeue task upon completion

requeue task as many times as

specified in first argument

execution of running task cannot

be interrupted

for future extension

argument count in binary digits,

position 2

argument count in binary digits,

position 1

argument count in binary digits,

position 0

Realization of the Task Queue

The task queue is realized as a memory page whose top

and bottom edges are cyclically linked by software.

Virtually, neither beginning nor end exists. Memory entry

of data is administered by an entry pointer and a length

count.

The length count keeps track of the amount of stored

memory. Data is stored in the location which is "pointed

to" by the entry pointer, provided that memory space is

50

available. The entry pointer is automatically advanced

with each entry. If it exceeds the lower margin of the

physical memory it is wrapped to the top of the assigned

memory space.

This setup allows a first-in-first-out (fifo) service

of tasks which are stored on the queue as data entities.

Tasks that came in first, will be serviced first as soon

as system resources become available. Entry pointer and

length count provide enough information to determine the

head and tail of the queue as well as the availability of

memory at any time.

3.2.1.2. Software Description of the Five Basic States

This section will present the realization of the five

basic states as separate software modules. The system

status words and the task status word (see 3.1. and

Tables 3-5, 3-6, and 3-7) define the execution details in

each module and also initiate switching of the program

flow among modules. This presentation is illustrated by

flowcharts. Since they are close to the state description

which was presented earlier, Flowcharts were selected for

program documentation.

The IDLE State

The IDLE state is entered following a reset and

system initialization. As depicted in Figure 3-4, the

IDLE state comprises an endless loop. For test purposes,

51

the least significant bit (LSB) of Port B outputs a square

wave with a period of 10 ms which can be observed by an

oscilloscope. The endless loop is executed as long as no

serial interrupt is furnished and the task queue is empty.

The endless loop also includes a window for a serial

interrupt. This serial interrupt is activated by the

reception of an ASCII character through the network.

Program flow then switches to the SSIR state temporarily

to service the interrupt (see "the SSIR state" in section

3.2.1.2.). If no serial interrupt occurs, but the task

queue has been filled, program flow switches to the EQTA

state (see "the EQTA state in section 3.2.1.2.).

The SSIR State

Figure 3-5 shows the rough features of the SSIR state

which provides the serial interrupt service. It is

important to note that state SSIR can only service one

character at a time because characters of the HCP format

are received sequentially and asynchronously. At the very

beginning additional serial interrupts are inhibited. The

TOS now fetches the received character from a buffer for

further examination.

If the received character is a "begin" delimiter, HCP

processing commences. If HCP processing has already

begun, the received character may represent a Short task

or special service. In that case, the respective Short

task or special service is executed immediately. Else, an

52

address check is performed if necessary. As soon as the

address has checked out successfully, subsequently

received characters are considered as elements of the HCP

packet and are stored in a buffer if they are legal. If

the address check was not successful, processing of the

HCP is discontinued.

As soon as the character of the task (Queue or

Immediate) becomes evident, further processing continues

separately. In both cases the HCP format is converted

into an ACP format. However, in the case of an immediate

task, program flow is directed to state EITA which

executes the task immediately. In the case of a Queue

task, the task is stored on the queue and program flow

exits state SSIR.

Finally, at all exits of SSIR, the serial interrupt

is enabled. The serial interrupt is restrained

temporarily in order to prevent stack overflow due to

subsequent serial interrupt service requests. Since state

SSIR, in comparison to other states, is assumed only for a

very short time period and since the 68C11 asynchronous

serial input port is double buffered, it is unlikely to

loose a character.

The EQTA State

Figure 3-6 presents the implementation of the EQTA

state. The first task in the queue is fetched and its ACP

format is interpreted. If this is a Synchronized task,

53

program flow is paused until a synchronize command is

furnished through a serial interrupt. When the task is

ready, program flow is directed to a particular piece of

code that represents the task. The task is then executed.

Upon completion of the task, the task is either

requeued or discarded, depending on the corresponding task

status word. Program flow then continues in state IDLE.

The EITA State

The EITA state operates similar to the EQTA state,

but it executes an Immediate task instead of a Queue task.

The corresponding piece of software is depicted in Figure

3-7. Since it is an immediate task, it is supposed to be

executed instantaneously. No further considerations as

for synchronization are necessary.

An Immediate task cannot be requeued or interrupted

by any other task. It is executed in the serial interrupt

service routine which is implemented by the SSIR state.

The EITA state can be considered as a substate of SSIR

state. Upon completion of an Immediate task, program flow

continues in the SSIR state.

The TIME State

System time is implemented by three dedicated memory

bytes which represent hours, minutes, and seconds. Every

25 ms an interrupt is generated which increments a

counter. This counter is utilized to update the "Seconds"

54

byte precisely every second. Similarly, "Seconds" are

updating "Minutes" and "Minutes" are updating "Hours" as

shown in Figure 3-8.

A special task can be written to set the system time.

In this implementation, the system time starts at zero

when a reset is furnished. It is important to note that

the TIME state is an interrupt service routine with the

highest priority. It is called automatically by the TOS

system every 25 ms, no matter in which state the TOS is

currently operating. Thus proper system time is always

secured.

If all TPUs are reset in a coordinated fashion, then

they all will have the same time reference. This can be

accomplished by issuing a short task "reset" over the

network. A common time reference for all TPUs is

important for coordinated action.

3.2.2. Development Software Elements

In this subsection, software to utilize the EVB as a

user code development system is described. This includes

possible modification of the TOS or addition of some user

designed tasks. Although employed for development

purposes, the corresponding software was not developed in

this work and shall therefore be discussed briefly.

Respective manuals offer further information [22,23].

55

A Communication Program

A communication program is utilized to establish and

maintain communication between the development system and

the TPU as target system through an RS232C interface.

This communication program is run on the development

system which is usually implemented as a PC. Two

commercially available programs can be

communication programs, PROCOMM and KERMIT.

description is available by the respective

used as

Detailed

software

distributors and in the user's manual of the EVB [22].

Utilizing the communication program, commands can be

issued from the PC to the TPU in order to control the

monitor program. Likewise, code which was developed on

the PC can be downloaded into TPU RAM.

The AS11 Cross-Assembler Program

The AS11 cross-assembler converts assembly code into

executable code in Motorola S19-format. It is provided by

Motorola together with the EVB for the use on IBM-

compatible PC/ATs. Using the MCU68HC11 instruction set

[23] and a texteditor, the user can write an assembly

program and have it compiled by the cross-assembler on the

PC. The cross-assembler provides a listing and possibly

error messages if compilation could not be accomplished

successfully.

56

The Buffalo Monitor Program

The Buffalo Monitor Program is intended as low-cost

tool for debugging and evaluation of MCU68HC11 MCU-based

target system equipment [22]. The monitor is an assembly

program, intended to be installed in a PROM on the EVB.

Provided that proper communication is established between

both systems, operation of the monitor can be directed

through commands issued by the development system. The

monitor operates in two different modes, a debugging mode

and an evaluation mode.

Debugging Mode of the Buffalo Monitor Program

In the debugging mode, the monitor can download

executable code which was assembled on the development

system and help debugging it. Some commands are available

to show or modify register or memory locations, and to

perform single-step execution of the downloaded code. In

this mode, the monitor can also download executable code

or assemble code to executable code line by line.

Evaluation Mode of the Buffalo Monitor Program

In the evaluation mode, downloaded code can be

executed. This allows the user to evaluate the

performance of developed code in a target system

environment because the EVB emulates NSC operation of the

MCU. Upon completion of some initialization procedures,

the monitor program relinquishes control in favor to the

57

user program. User code that performs satisfactory in the

evaluation mode will perform in the same manner when

implemented on the MCU provided proper MCU system

initialization is included in the NSC version of the code.

This can be accomplished in a short setup routine.

One property of the monitor is that it provides

system setup of the MCU. This has the advantage that code

run in an evaluation mode rather than without the monitor

at all is relieved from some system initialization

procedures. However, using the monitor does not allow

influence of a variety of system parameters since their

setup might be time-protected. Unfortunately, during

monitor execution, one output compare register (T005) and

a significant part of the on-chip RAM is not available for

user application [22,23]. Thus, these resources cannot be

used in the developing user program. However, still four

other output compare registers and 54 bytes of on-chip RAM

are left for the user's disposal.

58

CHAPTER 4

4. EVALUATION OF THE TASKMASTER II

This Chapter critically evaluates the accomplishments

of this work. Section 4.1. summarizes the system's

capabilities as an interface between human creativity and

bit level activities. Section 4.2. discusses to what

extend previously stated specifications were met and how

the performance of the TOS core was tested with a

selection of implemented tasks; it also mentions

advantages of the system over previous implementations.

Section 4.3. covers drawbacks.

4.1. Conclusion

General Discussion

From the user's point of view, Taskmaster II

efficiently interfaces human control desires to bit level

activities of distributed system resources. Physically,

control is performed as close to the application

environment as possible. Specialized units, the TPUs, are

implemented at the location of the application environment

and perform control in a background mode. In addition,

59

each TPU is able to communicate over a communication

network in a foreground mode.

The utilization of the task structure allows the

system to be controlled by issuing high level commands and

to schedule predefined activities, known as tasks. The

skeleton of each task is accessible in each TPU.

Operation details of tasks are issued in the high level

command. Scheduling of control activities can be

performed by a human operator or by a computing facility,

the SS. The SS is capable of administering a task

schedule, utilizing the task structure and the task

command format (HCP format).

Figure 4-1 illustrates the cooperation of elements

in a control environment utilizing a Taskmaster system.

Each element, the application, the TPUs, the SS, and the

human operator is symbolized as a shell with assigned

responsibilities. It is important to note that the

abstraction level performed in each layer increases from

the center (the bit level activities), up to the outmost

shell (human creativity).

In addition, the illustration shows how low level

activities performed by the application environment are

shielded from the human operator by the elements of the

Taskmaster system, SS and TPU. The human operator

formulates the control problem specification as a control

algorithm. This algorithm is implemented as a high level

language program and runs in the SS. The high level

60

program communicates to the TPUs via foreground commands,

utilizing the HCP format. The TPUs themselves control the

application via assembly code and background activities,

some of which include bit level activities. Furthermore,

the outmost shells, human operator and even SS can be

removed, and the system is still able to perform control

assignments autonomously.

Discussion of the Character Processing Time

Background activities are interrupted in favor to

process characters which have been received in the

foreground mode. In order to evaluate system performance,

the ratio of the time needed to process a character and

the time remaining to service background activities is

important. In this reasoning, a worst case is assumed in

which a constant stream of characters is sent.

The Baud rate determines the time period between two

subsequently received characters. The TOS needs to

operate fast enough so that the last received character

can be processed before the next character is received.

If upon completion of the character processing, time is

left until the arrival of the next character, this time

can be utilized for background activities. The length of

the processing time of a character depends on the software

design and the given oscillator frequency.

In this work, operation with a transmission rate of

9600 Baud was successfully tested. State SSIR represents

61

the service of a received character. The necessary

processing time varies with the received character. An

end delimiter ")" requires the longest processing time if

it represents the end of a Queue task command. State SSIR

then needs to assemble the ACP and to place it on the

queue. In the current setup this requires approximately

600 CPU cycles which equals 0.3 ms since the CPU is driven

by a 8 Mhz clock.

Since each ASCII character is sent as a stream of 10

Bits, with 9600 Baud, a character arrives every

milisecond. At 9600 Baud, even if every received

character was an end delimiter, 1/3 of the available time

is needed to process the character. The remaining 2/3 are

available for background activities.

Even more, this assumption is much too pessimistic.

Since a HCP representing a Queue task comprises at least

13 ASCII characters (including the delimiters), an end

delimiter "}" can occur only every other 13 characters.

The processing of other characters varies between 0.015 ms

(erroneous character) and 0.15 ms (average legal

character). The processing time for legal characters

varies between 0.11 and 0.2 ms. This is a little faster

than the old system where the average character processing

time was about 0.21 ms. Further improvements will most

likely require a second processor which is entirely

devoted to communication activities in the foreground.

62

Under the assumption that a constant stream of

commands is sent without pause and with a transmission

rate of 9600 Baud, it can be concluded that approximately

70 percent of TPU computing time is available for

background activities.

4.2. Advantages of this System over Previous Systems

The advantages of this system can be grouped in three

subsections. These are advantages due to the selected

MCU, advantages due to the implementation of the TPU as

EVB, and advantages due to the developed TOS.

4.2.1. Advantages due to the Selected MCU

The advantages of the chip resulting from the

properties of the MCU were described in section 3.1.1.

Many of those features were not needed in the Taskmaster

implementation. However, some may become very useful for

the utilization in TPU application tasks. Among these

features, the analog-to-digital converter system, the

parallel I/O port, and the synchronous and asynchronous

I/O ports are attractive for advanced control

applications.

4.2.2. Advantages due to the TPU Implementation as EVB

Chapters 2 and 3 deducted that TPUs can generally be

implemented as SBCs. The EVB is a SBC, specialized for

development and evaluation purposes. In other words, it

63

is a low-cost emulator. In spite of the specialization,

it still has the basic morphology of a SBC and thus can be

used as a TPU. Utilizing the EVB yields the advantage

that, on top of all TPU related functions, the emulation

feature could be preserved in this work.

The EVB was utilized in three modes. These modes are

regular TPU mode, regular EVB mode, and a combined mode.

The main achievement of this work was the implementation

of a versatile Taskmaster system, utilizing the EVB as a

TPU in the first mode. However, it still allows the

utilization of the EVB as emulator in a second mode. In

addition, in a third mode, the EVB allows the development

and evaluation of the TPU operation itself. This

transferred the evaluation idea from one SBC to a

distributed environment. This last mode allows the

decision to optimize TOS code located in particular TPUs

with respect to the reception of foreground commands from

the communication network.

As a result, this work presents a fully functional,

revised Taskmaster system with additional software

development capabilities. Implemented in distributed

control applications, this allows a quick and flexible

response to upcoming modification needs by adding,

deleting, or modifying tasks in the task library. These

modifications can be accomplished quickly and efficiently

since sufficient development aids are readily available on

each TPU.

64

A second advantage from the implementation of the TPU

as EVB is the emulation of SC operation of the MC68HC11

MCU. This supports the development of a SCU based

Taskmaster system. Code in each TPU thus can be optimized

until the whole system functions satisfactory. At this

point, the realization of a SC based Taskmaster system is

simple since downscaling of each TPU to single-chip size

is straight forward by utilizing the EVB's emulation

capabilities.

4.2.3. Advantages due to an Improved TOS Core

Advantages corresponding to this subsection are

grouped in Structuring, Documentation, and Performance

Structuring

Due to the preceding functional analysis, a highly

structured top-down approach could be pursued

successfully. A state description was derived and a

hierarchy of tasks was suggested. Both provided a clear

line of authority. The entire system administration is

concentrated on three 8-bit status words. These status

words clearly define operational details in each state and

serve as a basis for state transitions.

The previous Taskmaster design was reconsidered as a

result of the above reasoning and adopted to the new

hardware environment. The two index registers of the

68HC11 MCU allowed a pointer-based TOS design leading to

65

some simplifications in memory transfer and to enhanced

program readability.

Documentation

This work presents a functional analysis of the

Taskmaster and a general, hardware independent guideline

for the implementation of the most recent TOS version, the

Taskmaster II. Relevant Taskmaster features are described

in detail. In addition, the implemented TOS program is

documented by comments in order to enhance readability.

This supports improvements in two different levels.

In a first level, the Taskmaster system can be

improved by modifying or by adding tasks in the task

library. This requires some knowledge of assembly

programing but no deeper insight into the Taskmaster

system. Adding and optimization of particular tasks can

be appropriate projects of further work. In a second

level, the TOS core can be modified. This requires an in-

depth understanding of the TOS details.

Performance

This work concentrated on the implementation of the

TOS core as a distributed operating system. The task

structure was implemented to administer dedicated pieces

of code, known as tasks. Following the guidelines of the

functional analysis, all relevant features like a queue,

system time, and two priority levels of tasks were

66

implemented. The overall performance was tested with an

appropriate variety of tasks as follows.

Functioning of the Queue

Four tasks, each of which sends one single ASCII

character have been included in the task library of the

TOS in addition to an Endless task to produce a square

wave at an output pin. It could be shown that these tasks

can be placed on the queue with a "Reque" or "Discard"

option. When the ASCII tasks were loaded on the queue,

the system kept on sending the corresponding characters.

When the Endless task was called, queue processing stopped

since this task never ended.

Cooperation of Foreground and Background Activities

While processing the queue the system is either in

the EQTA state or the IDLE state. Thus, it is either

currently executing a Queued task or has just been

executing a Queued task. It could be shown that even

while currently executing a task in the background

activity, commands were accepted in a foreground activity

at any time. As an example, while executing the Endless

task, new commands were still accepted and corresponding

tasks could be queued.

67

Functioning of the Higher Immediate Task Priority

At any time, even when currently executing a Queue

task, Immediate tasks were accepted and executed

immediately, while an eventually running Queue task was

interrupted. Upon completion of the Immediate task,

execution of the Queue task resumed. As examples of

Immediate tasks, the contents of the queue and the current

system time were displayed while the ASCII tasks were

processed, or while the Endless task was running.

Functioning of the Short Task Feature

As an example of short tasks as Super Immediate

tasks, an Abort task was successfully tested. When the

Endless task was currently running and using system

resources, the Abort task could abort the Endless task and

allow queue processing to resume. If other tasks were

loaded in the queue, these were then called sequentially.

If the Endless task was queued as Queue-Reque task,

then of course, the system locked up again after having

processed all other tasks in the queue. However, the

Endless task could then be aborted again. The Abort task

would also be functional as an addressed Immediate task.

The above showed proper functioning of the entire TOS

system. All suggested tasks of the developed hierarchy

were implemented in at least one example. It could be

68

shown that the system is functioning in all states as

intended.

4.3. Drawbacks of the System

Two major drawbacks of the system need to be stated.

The set of tasks is not complete and the system is

currently not set up for running without the monitor chip

which is provided on the EVB by Motorola. The following

discusses these drawbacks and gives suggestions to fix

them.

Incomplete Set of Tasks

The TOS currently lacks three Short task features,

which were implemented on previous systems. These are the

"Pause" and the "Resume" tasks, and the synchronization

feature. The "Pause" task is similar to the "Abort" task.

However, instead of a final abort, the task is interrupted

and can be resumed with a "Resume" task. These tasks can

be easily written in a "copy-and-modify" approach using

the already provided "Abort" task.

Other important basic tasks that are not yet

implemented include a task to delete specific tasks on the

queue according to their name or their entry number. This

would further enhance the versatility of the Taskmaster

system. A task to set the system time is also currently

lacking and might be useful in some applications.

Finally, it might be desired to have endless tasks run a

69

prespecified amount of time and be terminated by a

"Timeout". This, as well is not implemented in the

current version.

A task to delete particular tasks on the queue is

relatively simple to write. Sufficient administration is

already provided to keep track of the "fingerprints" of

all queued tasks. At any given time, it is possible to

determine the name and status word information of each

queued tasks. Additional information is present about the

character of currently running tasks. A task to display

the queue is already implemented. This gives enough data

at any time for a particular Immediate task to delete a

selected Queued task referring to either its name or its

entry number. With similar background information this

has already been shown in other work.

Running a task a prespecified amount of times

requires the TOS to keep track how many times it has

already been requeuing a particular task. This can be

realized by setting a dedicated counter at each requeuing

event. When a particular count is reached, further

requeuing is inhibited. Setting of the system time is

simple since it only requires transfer of arguments from

the command to particular memory locations.

To have a task run to a prespecified "Timeout" is

only slightly more sophisticated. It requires the time-

out time to be specified by another task. Then, in

addition to performing the actual task, this task needs to

70

compute the absolute time-out time and constantly compare

it to the system time. This can most easily be realized

by using one of the remaining Timer Output Compare (TOC)

registers. Such a register can be set up to issue a

particular action when the register contents matches the

contents of the free running 16-bit counter. Auxiliary

registers can be employed to cover time periods exceeding

the time which corresponds to one 16-bit counter

revolution. This technique can be copied from the already

implemented approach to generate a system time, which

utilized the TOC register #4.

TPU operation currently requires plugged-in monitor PROM

The evaluation features of the EVB are handy during

development of a system. It is fully justified to

tolerate a particular PROM which is entirely dedicated to

the emulation and debugging on the TPU. However, when a

final version of the software is completed, this debugging

feature is no longer necessary. It may then be removed

completely from the board. This, however, is not possible

in the current setup.

It is possible to switch with jumper J4 between a

Development Mode and a Free Running Mode. In the Free

Running Mode, only a small portion of the monitor is

executed. Subsequent to some system setup, the monitor

detects the hardware condition determined by jumper J4 and

then relinquishes control in favor to the application

71

program, in this case the Taskmaster. Due to the current

hardware and software setup, it is necessary that this

small portion of the monitor program is executed.

However, with jumper J4 set up as "Free Running", the

Taskmaster can be started upon reset because it is burned

in a separate PROM. No interaction with the monitor is

necessary. The Taskmaster can be invoked upon reset. As

an actual drawback, memory space, which could be used for

applications, is unnecessarily blocked by an unneeded

monitor.

If desired, this can be fixed by simply extracting

the setup routines from the monitor and by adding them to

the Taskmaster code. In addition some parts of the setup

might be modified. On the other hand, memory space is not

scarce on the board since, in addition to the Taskmaster

PROM and the monitor PROM, there is still 8k of RAM left.

Only a fraction of this RAM space is used by the

taskmaster for the queue and some other temporary storage.

The major part is available for application use.

72

Advantages and drawbacks considered altogether, it

can be concluded that the new Taskmaster System represents

a successful implementation and updating of the Taskmaster

idea. Previous achievements were selected and included in

the context of a fresh approach and a new hardware

environment. A sound and versatile system emerged and was

tested successfully. Room is provided and incentive is

given for further enhancement of the Taskmaster II.

73

CHAPTER 5

5. SUGGESTIONS FOR FURTHER RESEARCH

This work is the first implementation of a Taskmaster

system based on a Motorola MCU. The main TOS was

successfully updated based on the MCU68HC11. However, as

presented in Section 4.3., some enhancements of the system

are still possible. This Chapter submits some suggestions

for possible improvements in a variety of areas.

Completion of Auxiliary Functions

Auxiliary functions which were already developed in

other Taskmaster systems might be included to further

broaden the versatility of the system. Examples are a

"pause" and a "resume" feature, to interrupt and restart

currently executed tasks. In addition, a "repeat" feature

as a variation of the "requeue" feature can be added.

"Repeating" would be defined as "Requeuing" a specified

amount of time.

Additional Priority Levels

In addition to the two main priority levels

"Immediate" and "Queue", the priority of some Queue tasks

74

could be elevated by inhibiting their interruption by

Immediate tasks.

Enhancement of the Task Library

Many tasks for system administration or applications

can be added to the task library. Tasks to modify the

TSWs of tasks on the queue or to rearrange the order of

their execution are most valuable. Other important

administration tasks can be devoted to provide assistance

in delaying of tasks or in coordinating their execution in

specified TPUs Some of these tasks proved to be feasible

on implementations developed in previous work.

Independence from the monitor

As discussed in Section 4.3., it might be desired to

remove the monitor PROM on the TPU in a final version of

the TOS. Relevant initialization procedures which are

provided by the monitor can be extracted and added to the

Taskmaster. It is desired to organize necessary software

and possible hardware modifications such that the monitor

PROM can be replaced with an application RAM if desired.

However, it should still be allowed to fully utilize the

monitor if the corresponding PROM is returned.

Including of Relevant Monitor Features in the Taskmaster

The capabilities of the monitor can be scrutinized

and those features which are useful for a Taskmaster

75

system can be extracted. These features include the

development, downloading, and some debugging capabilities.

Instead of utilizing two separate PROMs for the Taskmaster

system and evaluation tools, it should be determined if

both features can be implemented in one single PROM. This

should be definitely possible using a 12K PROM, and

eventually using a 8 K PROM.

The IDLE State and low-priority Background Activities

When the task queue is empty and the TPU does not

conduct communication, the TOS assumes the IDLE State and

does not perform any application service. It would be

interesting to examine to what extent low-priority

background activities can be performed in this state

instead of idling. Activities would qualify which are

less important than those performed by Queue tasks.

An example of such an activity is the positioning of

a complex robot arm. Hand and fingers of this robot arm

can be positioned utilizing Queue tasks. Meanwhile, in an

activity performed in the IDLE state, the whole arm is

moved by a stepper motor. The arm is advanced whenever

the attention of the system is not required for the queue

tasks or communication. Finally, a second low-priority

task queue might be implemented.

76

Medium Access Schemes

On a bus system, utilizing multiple units, data

communication needs to be organized. This can be realized

by specific medium-access schemes. Different schemes like

carrier sense multiple access with collision detection

(CSMA/CD) or Token-bus schemes can be examined [5,18].

Utilization of port P2 for a Terminal

Port P2 of the EVB which is exclusively used to

connect a development system could be utilized to hook up

a terminal. A setup should be developed which allows

either the connection of a development system or a dumb

terminal upon a particular hardware condition. This could

elevate the distributed control system to a COLAN with

some data exchange utility functions.

Setup of a Single-Chip Taskmaster System

The Taskmaster II system could be implemented as a

single-chip based distributed system. All Taskmaster code

could be burned on the MCU chip and a complete unit would

then only include the MCU chip, some communication chips,

and a RAM application memory.

Utilization of other other MCU68HC11 Family Members

Finally, capabilities of other MCUs of the MCU68HC11

Family could be examined and utilized. The on-chip EEPROM

could be employed to store the address or other private

77

data of TPUs. Furthermore, a table could be installed so

that operational details of the Taskmaster could still be

customized after a generic version of the TOS is provided.

A key, crucial for proper execution of the Taskmaster

could be programmed on EEPROM to limit access of the

system in single-chip mode only to eligible operators.

The security feature of the MCU68HC11 could be utilized to

protect software piracy in single-chip mode.

Unit 1

78

Unit 2 Unit n

Communication Network

Figure 1-1

Distributed System

Human
Operator

1

System
Scheduler

(SS)

1

Task-
processor
Unit 0

Network
Interface

Unit 0

79

Control
Application

I

Task-
processor

Unit 1

Network
Interface

Unit 1

Background
Activity

Foreground
Activity

Control
Application

n

Task-
processor

Unit n

Network
Interface

Unit n

Communication Network

Figure 1-2

Taskmaster System

80

Task-
processor

Unit 1

I

Network
Interface
Unit 1

Task-
processor
Unit 2

I

Network
Interface
Unit 2

Task-
processor

Unit 1

Network
Interface
Unit n

Communication Network

Figure 1-3

Taskmaster in a LAN Application

(Product)

Machine
n

Machine
x+ I

Task-
processor
Unit x+ 1

Task-
processor
Unit x+ 1

Network
Interface
Unit x+ I

Task-
processor

Unit x

Network
Interface
Unit x+ I

Task-
processor

Unit 1

Network
Interface

Unit x

Network
Interface

Unit 1

Communication Network

(System
Scheduler

/
Task-

processor
Unit 0

Figure 1-4

Network
Interface
Unit 0

Taskmaster for Assembly Line Control

81

82

Central Processing Unit

i

Internal Bus

Program
Memory

Data
Memory

Peripheral UnitsUnits
.11116

1

Application
Services

Interface

1 Communication
Network
Interface

Figure 2-1

Morphology of a Taskprocessing Unit (TPU)

83

HCP not complete,
previously has
been idling

Character.
received \

\o, Queue Task
\ done

r Queue

empty

Timer
Interrupt

SSIR State
(Servicing
a Serial
Interrupt)

CP not complete,
previously task has

been executed

Immediate
Task done

Immediate
HCP complete

EITA State
(Executing an
Immediate

Task)

/5
/ %Timer

Interrupt

State Transitions

Transitions with
automatic return

Figure 2-2

State Description of the TOS

84

-AMP 20e584-1

MC68650P

_ /1.:F___Jr.. in --V \ , 4

, kb a i a a la 1 ''''" tly i
7-74 i MG '489P t

UL.1. 8 Wala329 im"......... 1

277fZplvivoll
z- -- m., 1 7 -------)

,- -.,. 4. 0 \ S \ r... la FLIF ' 71

.-.\\ 141n
ir, IA ri a a a 41 , 1 vi f - ,PP-0 1 11

41.

-In :4,3333331. , % %-1_]'p, %

r.,
_...

4A444
,4s4P

""'W-32

-)14,12.8.1.11EM,
..." L

.01,
i i (Lt '1.-,

i f f1117111111
._i

. M
1 MC 7 4HC3 / 3

7T7.0 itt.ttrear 0,,...._1, 0,N;485.), ,, .,.z; h RafA 1

r ' T,111111+11 hiM ' ,30

--_,Lsitts*ir ic4.....--- .. .-._ :A. I'
rt-T----------- --- ! ,, : -11 . , Ll kJ

*6 mr- -.---9 jOr.-

01.-= .1......r 1\
4,

--7- iLt

.P--- g--

Figure 3-1

Evaluation Board

(reprinted with Permission from Motorola)

PART OF
AMU I/O

PORT
CONNECTOR

1.1

IS

<

51 <
52 (

34 <
33

32 <
31 (
30

21 4(
26 (
27
43 (
4S
47 <
49

44
46 4(
411 4(

SO <
25
24 <
23 4(
22 <
21 <

2

IV

R3
,OK

IRO"
liR0* la

vRL
v611.4

C13
0.1

PAO 34

U t0

SV MCIIHC1141
44CU1

f2" 10K
6

140 1°47004
X1140 AS

VRL PCO

VRM PC
PC2
PC3
PCI
PCS
PC6
PC7

PAO
PA1 13

PA I
PA2

PA2
PA3 31 PA3
PAA 30 P110

PA4
PAS POI

PAS
PAC P132

PAS
PA 7 Pe]

PA?
Pt 0 4 084

PIO

PEI

PE4
411 0E3

PEI

Pe)

PE 1 4 6965PEI
PE2

PE2

PE5 PES
PE6 41

PEI
PE 7

PET
POS OS R/W
PO4 24 rot
PO3 23 POO

P03
PO2 22 1402 RESET
POI 21 P01

14 008 2 64008
RI ^-1
10K

VSS
EXTAL XTAL1

1

I

5V J2 I ONE

<
I E TAL F,c4))1 - n

DO-07

U2
514 I/3 51/

MC 77]
2764

SE0001

O0 /AO
01/A1 4,"

1 02/42 4(
2 03/A3

" Le

3

04/44 13

4 05/4.5, 14

IS 06/AG
II 07/47

42 Al
II At
40 10

All
34 412 \

7 AA] N,
414 *4

as 415
1

00
01
02
03
13
OS

Di
07
OE

vCC

0140

01
02
03
01

OS
04
07

6

12

15

fk.

21127 11

VC0 10
AO1 Al2 I 42

43 43

N`

111

10

SV

R2
10K

44
AS

5 AS
44 46
Al

3 A?

Al 2524 AA

£10 221 A4011 3 A11:0

4:

4

Ea.

PP

11 DO A
DO

11_
02 ¶ O2

03 3A1,1{1:ILA

OS " 05
04 1 06/
07 is 07 /

22 E

CND

122

LI

GAS/EPROM
SOCKET

SSC301

40 IS I

/ Al 9 I 4042 0"
KA) 7 I "2

Ai 6 "
441

Aril 71 44"
(-4771
/474 2j 1

410 21e. AS " At
/-ATI73 £4:01
r A17 2 417

57

21L-17-1
vCC 2 I

DO

DI

02

03
04
DS

04
07

if"

11 00
12 01 /
13 02/4
is 03 /1

04
OS

04
11 07

/
/

72

27

20

vss
114

US SV

14C146164

SC00131

40 10

HI

41{ AA': :32

r/r/r/ ;4: 2 ;

46

4

A10 9

All 23 "(7.= A"

c ,dE2 00
000, 01 /
02 13 02

03 IS 03 /
04

111 04

OS /06
II 07 /

24

vss

17 OS /4

G
22

%To

ri2L.
14

t 2

vO

U124
04C14

UI SV
MCSI$C24

1PRU1
17

2

\DO 31

01 37

ks 02 34

0\._03 3

\01 33

DS 32

04 3

07
All II
All
13 S

414
A1S 3

R/Ve

20 SELECTED POO

TI

1 2 3

Cl
2400

ITAL

5(
20

17 (

IV
HC1311

145

13 vCC
40I4 2

13 3 £2
CSI

Cs2
3. C S.3

ONO

77

7$

74

10

NCIA

R/VI

3

1273 ,---

Sv

RS

104

yrs
NC 4046

511

113

U7C
s MC40164

O

C
II

U118
NC74

1140001

10

AO

1740 v 54001

AS P00
PI11

P02
P03

ADO

01 71134

P135402
PeiP
P404 e?

ADS
406 STRA
407 STIle
CS
412 PCO
413 PC1
414 PC2
A IS PC3

RESET
PC4
PCS
PCS

R* PC7
10 TEST

VSS

43

27 Pe0
PSI
P02
P03

72 PO4
21

20

13

Pe S

P134

Pe?

7 STRA

STRII

) 421
41

) 03
) 39

) 3?
) 30
) 3S

PCO
PC1
PC2
PC3
PC4

14 PCS
IS PCS

PC7

All

MC1141150P

.051 (ACIA)

12 1594001

413 10

0° 22
\ 0 1 21

\ 02 20

1/4,, 03

D4 IS

OS 1?

Os IS

I07 S

13

tI

POO

1

RESET'
.11

POI

PEO

1 2

c c,_cs.
-F CD-C I1

CND

P4

SV

POWER 12V

CONNECTOR -1211

ONO (
-I- C17

"

V 551

4 12V
12V c,.

..,

Ole
1011

IA0-I.NA/N. sv
IRS t 2 3

1014

SI

RESET

IV

RI4
1036 U120

PIC14

Figure 3-2

Schematic of the Evaluation Board

(reprinted with Permission from Motorola)

lot

sv

U74
1J I NC4066

C12
10

U13 s4.,
MC4040

lS

v cc
07
06

CI.K OS

04
03

RESET 02
CND

-11

JS

AS vCC TIO

CSO

CS I

01
02
03
04
OS
04
07

CS2

TIC

Xe
180

3 1200 S

S D6183 7

4800 O
MCC

2

12

0

R6

vss
RIC

U14C
MC1411SP U160

1

111C1441111
IC TOO 1

U4141 RIO

/44C144P 27K 1

.12v 1

RID 1

-12V

USA
MC 141141P

3

CND

51G-0740 I

TOO 1

85

PUTT OF
) I AICUL/0

) 6 PORT

CONNECTOR

)
) 12
) 13
) '4
) IS
) 16

11114
U140

274
1AC1441111

1

12

13 ROD 1
2

1

1

CTS I
)

014 I
4

OCO
7 4

251

23

re-
USC

U144
141C1474144

141PRI

) 1

) 7

) 3

1

3 t or*

-17V

R13
7714

411
274

I
NC

U14
S MC144111P

412
120

ONO

SIGGOID

1

1

CTS I

P3

1

7

)
)

121/

Das I

RI
1014

56

) 2

TERMINAL
L/0 PORT

CONNECTOR

NOSY
COMPUTER

1/0 PORT
CONNECTOR

Priority

Tasks

Immediate Short
Tasks Tasks

Queue
medlurn

Tasks

low

I
Requeue Non-Requeue Repeat

Tasks Tasks Tasks/
Ready
Tasks

Synchronize
Tasks

Figure 3-3

Linked Tree of Tasks

86

(Reset)

System
Initialization

yes

(IDLE)

Serial
Interrupt
Window

Output Square
Wave at LSB

of Port B

1

Task Queue empty?
(SSW2.1 = 1?)

no

(EQTA)

Figure 3-4

IDLE State

87

(SSIR

I

Disable Receive
Interrupt

I

Fetch received character I

I

Begin delimiter?

no

<HCP process begun?

yes

yes

no

1
Indicate HCP

process begun

V

special service?
Short Task or yes

no

Adress check?
yes

Check address

no

IPP

V

Do respective
Service

Figure 3-5

SSIR State

88

Address check
successful?

yes
T,41

yes

no
<HCP format correct?

yes

mmediate task?
Ino

Collect received
character for
HCP command

HCP complete? >

yes

no
V

Convert HCP format
into ACP format

Store the task at
the end of the queue

Enable Serial Interrupt

I

(Return)

1
Convert HCP format

into ACP format

(EITA)

Figure 3-5 cont.

89

90

(EQTA

I

Fetch first
Task in Queue

1

Synchronization
necessary?

I yes
Wait for

Synchronize
Command

Discard
the Task

Indicate Queue
Task running

1

Vector to appropriate
Code representing

the Task and execute
I

no Requeuing
desired?

I yes

Store the Task
at the End of

the Queue

1-
Indicate that
Task is done

(IDLE

Figure 3-6

EQTA State

91

(EITA

Convert HCP

to ACP format

I

Interpret

the Task

Vector to

the appropriate

Task and execute

I

(Return)

Figure 3-7

EITA State

92

(TIME

Disable Serial Interrupt

i
Wait 25 ms

Decrement 40th Count

no I

40th Count = 0?

iyes

Increment Seconds Count
1

Seconds Count = 60?

i yes
Increment Minutes Count

Reset Seconds Count
1

Minutes Count = 60?

iyes

Increment Hours Count
Reset Minutes Count

Hours Count =24?
t yes

Reset Hours Count

Enable Serial Interrupt

no

no

no

(Return)

Figure 3-8

TIME State

93

Human
Operator

System
Scheduler

TPU

TOS Appli-
cation

Assembly Code

Host Command Packet

High level Language

Abstraction
Level

Human Creativity
Control Problem Specification

Control Algorithm
High level Language Program

Foreground Activities
Background Activities

Assembly Language Program
Sit level Activities

Appli-
cation

TOS

TPU

System
Scheduler

Human
Operator

Figure 4-1

Layers and Levels of Abstraction

94

BIBLIOGRAPHY

[1] Brown, L. F., "A Role for Programmable Controlers in
Factory Distributed Control", IEEE Transactions on
Industry Applications, 1985

[2] Herzog, J. H., "A Design Perspective for Real-Time
Control in Distributed Systems", IEEE Transactions on
Industrial Electronics, February 1983

[3] Herzog, J. H., "A Design Methodology for Distributed
Microprocessors in Real-time Control Applications".
Paper presented at the Second International
Conference on Computers and Applications, Beijing,
People's Republic of China, June 1987.

[4] Hammer, M. "Distributed Systems, Past, Present, and
Future", Computer Bulletins, July/August 1985.

[5] Reiss, L., "Introduction to Local Area Networks with
Microcomputer Experiments", Prentice Hall Inc.,
Englewood Cliffs, NJ, 1987

[6] Tannenbaum, A. S., Computer Networks, Prentice Hall
Inc., Englewood Cliffs, NJ, 1981

[7] Georgopoulos, C. J., "Interface Fundamentals in
Microprocessor Controlled Systems", Reidel Publishing
Company, Dordrecht, Holland 1985

[8] Franta, W. R., "Local Area Networks", Lexington
Books, Heath and Company, Lexington, MA, 1981

[9] Derfler, F. J. Jr., "A Manager's Guide to Local Area
Networks", Prentice Hall, Inc., Englewood Cliffs, NJ,
1983

[10] National Computing Centre Limited, "Local Area
Networks", NCC Publications, Manchester, M1 7ED,
England, 1982

[11] Farowich, S. T., "Communication in the Technical
Office", Spectrum, IEEE Inc, April 1986.

[12] Yu, Hua, "EDLAN: An Educational Local Area Network",
unpublished Master's Thesis, Oregon State University,
Corvallis, Oregon, 'March 1989

95

BIBLIOGRAPHY cont.

[13] Zhou, Yaqin, "ClASSLAN: An Experimental Personal
Computer Network for Classroom Education",
unpublished Master's Thesis, Oregon State University,
Corvallis, Oregon, March 1989

[14] Zhen, Y., "A Simple Local Area Network, COLAN
(Control Oriented Local Area Network), unpublished
Master's Thesis, Oregon State University, Corvallis,
Oregon, December 1986.

[15] Kao, S., "Design of COLAN II, A Control Oriented
Local Area Network, unpublished Master's Thesis,
Oregon State University, Corvallis, Oregon, September
1987.

[16] Eum, D. COLAN III, "A Control-Oriented LAN Using
CSMA/CD Protocol", Unpublished Master's Thesis,
Oregon State University, Corvallis, Oregon, September
1987

[17] Thye, Y., "COLAN IV, A Local Area Network for
Communication and Control", unpublished Master's
Thesis, Oregon State University, Corvallis, Oregon,
February 1988

[18] IEEE Std. 802.3 Local Area Network Standard Carrier
Sense Multiple Access with Collision Detection, IEEE
Inc, 1985.

[19] IEEE Std. 802.4 Local Area Network Standard Token
Passing Bus Access Method, IEEE Inc, 1985.

[20] Kohavi, Zvi, "Switching and Finite Automata Theory",
McGraw-Hill Book Company, 1978

[21] Intel Corporation, 8031/8051 Microcontroller Handbook
1987.

[22] Motorola Corporation, "M68HC11 Evaluation Board
User's Manual",1986

[23] Motorola Corporation, "M68HC11 Reference Manual",
Prentice Hall, Englewood Cliffs, NJ, 1989

