
)

Crop Rotation Economic and Environmental Impact
Decision Aid

(CREEDA): A COM-Based Application

A PROJECT REPORT

Submitted to

Oregon State University

Song Chang

In partial fulfillment of the requirement of

The requirements for

Degree of

Master of Science in Computer Science

Graduate Committee:

Dr. Walter Rudd, Major Advisor

Dr. Toshimi Minoura, Minor Advisor

Dr. Curtis Cook, Committee Member

Dr. Jeffrey Steiner, Committee Member

I

r

)

ACKNOWLEDGEMENT

My earnest thanks are given to Dr. Walter Rudd of Computer Science

Department, Oregon State University, my major advisor, who introduced me to this

project, and Dr. Toshinu Minoura of Computer Science Department, Oregon State

University who helped me generously on my paper and spent so much time with me to

discuss the interesting problems on COM. I would like to thank Dr. Jeffrey J. Steiner of

USDA-Agricultural Research Service, who initiated this project, skillfully managed the

whole project and supported me financially to work on this project. I would like to thank

Kevin Boyle of USDA-Natural Resources Conservation Service, who directed me to

solve the hardest problems, and inspired me with his enthusiasms on this project. I would

like to thank Hal Gordon, Thoms Gohlke and Steve Campbell of USDA-Natural

Resources Conservation Service for the rich information they provided generously.

Finally, my deepest love and all gratefulness go to my dear wife Lingzhi Xu for her help

and supports during the hardest times.

j

CONTENTS

1. Introduction l

2. System Overview 4

2.1 Functions of CREEDA 4

2.2 Hardware and Software Requirements 5

3. Architecture of CREEDA 8

3.1 Data Model of CREEDA 8

3.2 User Interfaces of CREEDAMain 10

3.3 The Architecture of CREEDAMain 13

4. Implementation of CREEDAMain 15

4 .1 Implementation of Data Access Layer 15

4 .2 Implementation of Business Logic Layer 15

4 .3 Implementation of Presentation Layer 19

4.4 Implementation of Database 21

4.5 Testing 22

) 4 .6 Implementation As a Distributed Application 22

5. Summary and Future Works 24

5.1 Summary 24

5.2 Future Works 24

Reference 25

Appendix A Introduction to COM 26

Appendix B The Typical Scenarios of CREEDA 30

r

)

ABSTRACT

CREEDA (Crop Rotation Economic and Environmental Impact Decision Aid)

is a Windows application for assessing economic and environmental impacts of

agricultural activities. In implementing it, we extended the ProCosts database and

incorporated the RUSLE (Revised Universal Soil-Loss Equation) application and

the SCI (Soil Conditioning Index) application as COM components. ProCosts,

developed by USDA-NRCS (Natural Resources Conservation Service), is used to

estimate profits and costs for a multi-year crop rotation. The core component of

CREEDA was implemented with MFC (Microsoft Foundation Classes) and ATL

(Active Template Library), and consists of the following layers: the Presentation

Layer (PL), the Business Logic Layer (BLL), and the Data Access Layer (DAL). We

built the Presentation Layer with MFC by using Visual C++ and other layers as

COM components by using ATL. The back-end database built with MS SQL Server

is accessed with Microsoft ActiveX Data Objects (ADOs).

f

r

)

1. Introduction

Environmental impacts of human endeavors can no longer be ignored. Some

researchers in the Integrated Cropping Systems Research Team at the USDA-Agricultural

Research Service (USDA-ARS) in Corvallis, OR and those in the USDA-Natural

Resources Conservatio~ (USDA-NRCS) Service Technology Team in Portland, OR

realized the necessity for a software tool that analyzes simultaneously both economic and

conservation impacts of multi-year crop rotations. They believe that such a software tool

will help economists, conservation planners, and farmers make management .decisions

based on scientific data.

The ProCosts program , which was developed by Kevin Boyle at USDA-NRCS,

calculates the profits and costs for multi-year crop rotations. A multi-year crop rotation is

a sequence of farming activities in which different crops are grown over a period of

multiple years. The ProCos ts program perfo1ms profit-and-cost analysis based on the

mathematical formulas described in the reference manual "Commodity Costs and Returns

Estimation Handbook". The operational data such as the amounts of seeds, fertilizers,

and labor hours consumed and the economic background data such as the prices of the

crops, fertilizers , machines, and labor hours are stored in a relational database. The

ProCos ts program, written in Visual Basic, provides a user interface for entering

operational and background data and generates a budget report for a crop rotation

selected. This program utilizes the Component Object Model (COM) technology.

The Soil Conditioning Index (SCI), which was developed with Microsoft Excel by

USDA-NRCS, can be used to evaluate the effect of a conservation practice on soil

organic-matter. It computes the amount of residue left, soil disturbance rate and soil

erosion. The SCI is a weighted-average of the three factors: Field Operation (FO),

Organic Matter (OM) and Erosion (ER), which are calculated from the amount of residue,

soil disturbance rate and soil erosion

RUSLE, which was developed by USDA-ARS, was used to predict soil-loss

caused by water erosion. It calculates six factors: R, C, K, P, L, and S. The result of

RUSLE is the product of these six factors . The factor R reflects the effect of local weather

r

.)

)

)

4. We defined three user levels: economist and researchers on the top,

conservation planners in field offices in the middle, and basic users at the

bottom, who performed different tasks with different user interfaces.

5. We used ADO (Active Data Object) objects - a set of COM components and

interfaces provided by Microsoft to access the database which was

implemented with MS SQL Server and can-y data among components.

6. We provided 600 pages of source codes and a comprehensive package which

include ProCosts, CREEDAMain , CREEDAinputEdi tor and

CREEDAL inker .

This system was tested by experienced agronomists. The test showed that users

could benefit from CREEDA in these aspects:

1. Users do not have to re-enter crop rotation data.

2. The users of three levels can perform their tasks cooperatively during the

decision-making process, which are important to find the most economically

feasible and environmental protective combinations of production practices

and technologies for a farm.

3. F1iendly GUis help users to learn the system quickly.

4. In addition to the economic report generated with Proco st s and those

generated with SCI and RUSLE, additional reports about crop management

can be generated (e.g. , the report about fertilizer applications in a rotation is

useful for water quality analysis).

Currently the integration for CREEDA implementation is not perfect, but the

value of such an integration prototype was valuable and we are going to develop a more

robust framework for integration in the future.

3

2. System Overview

The CREEDA application consists of the following four programs: ProCosts,

CREEDAMain, CREEDAinputEditor and CREEDALinker. ProCosts was developed by

USDA-NRCS independently; CREEDAinputEditor and CREEDALinker were auxiliary

tools written in Visual BASIC; CREEDAMain was the focus of our effort. All programs

use the same database. The architecture of CREEDA is given in Figure 1.

CREEDA
InputEditor

User Interface

CreedaLinker

User Interface

CREEDAMain ProCosts

User Interface I User Interface I

Components

MS SQL Server

Figure 1 Architecture of CREEDA

All functions were divided to three levels ve1tically: researcher and economist

level , conservation planner level and basic user level. In this chapter, we will introduce

these levels.

2.1 Functions of CREEDA

2.1.1 Functions of ProCosts, RUSLE and SCI

4

\)

ProCosts provides a user interface for users to enter data of farming activities,

the prices of materials and products, and generate budget reports in terms of costs and

returns.

RUSLE calculates and reports soil erosion result based on site-specific data, and

the information of crop rotating and other farming activities.

SCI (Soil Condition Index) calculates a composite index based on site-specific

data, the result of RUSLE application, and the information of crop rotating and other

farming activities. The index reflects the effect of the farming activities on soil organic

matter.

2.1.2 Additional Features of CREEDA

In addition to the functions above, CREEDA has :

(1) A unified data model

In this system, the database of ProCosts was extended to accommodate data for

RUSLE and SCI. The architecture of the new data model can be extended further easily.

) Detail of the data model is given in next chapter.

(2) Owner information management

New functions were provided for owner information management. An "owner" is

defined as a farmer or his representative, such as a conservation planner running the

application for the sake of the farmer. An owner may have multiple fields, for each of

them he may perform a rotation defined in ProCosts. A rotation can be applied to

multiple fields owned by various farmers. This system allows multiple owners to share

the rotation information, the programs and the database but still be able to enter and

manipulate their own data independently.

(3) More reports generated

In addition to reports generated by ProCosts, SCI and RUSLE, more reports

can be generated: Irrigation Management, Crop Residue Management, Crop Rotation and

j Crop Management, Tillage Equipment and Tillage Sequence , Pest Management Inputs

5

r

and Crop Nutrient Inputs. All reports were generated in a fotmat compatible with MS

Excel.

(4) User Groups on Different Levels

Three user levels were defined and users of these levels were assigned different

privileges. The users are: researchers and economists, conservation planners and basic

users . They perform different tasks on different levels when run the system. The user's

tasks and the data flow in CREEDA are shown in Figure 2.

Re searchers
and Economists

Con servation
Planners

,__B_a_si_c_U_s_er_s __ _,f

CREEDA

Background
Data

Rotation and
Field Data

Reports in MS
Excel form at

Figure 2 Users' Tasks and Data-Flow in CREEDA

Researchers and economists can modify the background data of budgets and

environmental impacts. The background data are read-only to other users.

Conservation planners build budgets, enter field data, link conservation impacts to

inputs and outputs of a rotation defined in a budget, and generate reports.

Basic users read or print the reports generated for them. In CREEDA, reports are

provided as MS Excel files .

All user interfaces are implemented as native Windows interfaces. Users use

Drag-and-Drop operations to manipulate the data. Four programs provided different

functions:

ProCos ts is used to enter the background data for economic analysis, generate

budgets and economic reports.

CREEDAMain is used to enter field data, and generate conservation impacts

reports.

6

)

)

_)

CREEDAinputEditor is used to enter background data for conservation impacts.

CREEDALinker is used to associate the inputs in ProCosts with conservation

impacts .

2.2 Hardware and software requirements

This application requires Windows operating systems (NT, 95, 98). For Windows

95, DCOM must be installed. MS SQL Server or its client version Microsoft Data Engine

(MSDE) must be installed.

7

3. The Architecture of CREEDA

In this chapter , we introduce the data model, then focus on the architecture of

CREEDAMain .

3.1 Data Model of CREEDA

In CREEDA application, ProCosts, CREEDAMain, CREEDAinputEditor and

CRREDALinker share the database that is an extension of the ProCosts database. The

most important classes in ProCosts database are ROTATION, BUDYEAR, INPUT,

OUTPUT, BUDOPERATION, BUDINPUT, and BUDOUTPUT. ROTATION is the plan for

rotating crops. BUDYEAR is the plan of farming activities in a rotation year.

BUDOUTPUTs are products of a rotation year. BUDINPUTs are ag1icultural operations or

materials applied in a rotation year. OUTPUTS are pre-defined products. INPUTs are pre­

defined agricultural operations or materials.

Their relationships are given in Figure 3.

BUDINPUT O .. * l INPUT

O .. *
l

l O .. * O .. * BUDYEAR BUDOPERATION ROTATION

BUDOUTPUT O .. * l OUTPUT

Figure 3 The Relationships among the Classes in ProCosts

INPUTS defined in ProCosts have only economic attributes, such as salvage

values, prices, etc. The following five classes were defined in CREEDA for various

conservation impacts (impact attribute groups) incurred by INPUTs : MACHINERY,

IRRIGATION, RESIDUE-MANAGEMENT, PESTICIDE, FERTILIZER. Class CROP

was defined for the conservation impacts incurred by OUTPUT. MACHINERY is used to

store the soil disturbance rate of an operation. IRRIGATION is used to store the amount

8

].

)

_)

)

of water applied and the irrigation times. RESIDUE-MANAGEMENT is used to store the

ratio of residue removed with an operation. FERTILIZER is used to store the depth to

which a fertilizer is applied . CROP is used to store the properties of a crop . Currently no

information is stored in PESTICIDE. These classes were simply denoted as

CREEDAINPUT or CREEDAOUTPUT in the following discussions. The relationships

between INPUT or OUTPUT classes and CREEDAINPUT or CREEDAOUTPUT classes

are given in Figure 4 .

INPUT O .. * O .. * CREEDAINPUT

OUTPUT O .. * 0 * CREEDAOUTPUT

Figure 4 Relationships Between INPUT or OUTPUT and CREEDAINPUT or CREEDAOUTPUT

The following two classes were defined in CREEDA for owner information

management and site info1mation:

FIELD : it refers to a site with hydrologic and geologic properties.

OWNER: it refers to the person who owns fields.

The relationships between ROTATION, FIELD and OWNER are given in Figure 5.

ROTAT ION 0 .. 1 O .. * F IELD O .. * I OWNER

Figure 5 Relationship Between ROTATI ON, FIEL and ROTATI ON

When a ROTATION is applied to a FIELD , all of its BUDINPUTs and

BUDOUTPUTs are appended with impact attribute groups according to the links between

BUDINPUT (or BUDOUTPUT) and CREEDAINPUT (or CREEDAOUTPUT) through

INPUT (or OUTPUT). The following classes were defined for these appended attribute

groups: BUDFD-MACHINERY, BUDFD-IRRIGATION / BUDFD-RESIDUE­

MANAGEMENT, BUDFD-PESTICIDE , BUDFD- FERTILIZER , and BUDFD-CROP.

J These classes are denoted as CREEDABUDINPUT and CREEDABUDOUTPUT in

9

I

following discussions. Relationships between CREEDABUDINPUT,

CREEDABUDOUTPUT and other classes are given in Figure 6:

CREEDABUDINPUT

1
O .. * O .. *

BUDINPUT
0 *

CREEDAINPUT

FIELD

O .. * 0 * 0 *
BUDOUTPUT CREED A OUTPUT

1

CREEDABUDOUTPUT

Figure 6 Relationships of Class CREEDABUDINPUT and CREEDABUDOUTPUT with

other classes.

The program CREEDAinputEditor is used to add, delete or modify INPUT and

OUTPUT objects. The program CREEDALinker is used to add or remove relationships

between INPUT (or OUTPUT) objects and BUDINPUT (or BUDOUTPUT) objects and. In

the rest part of this chapter, we focus on CREEDAMain .

3.2 User Interface of CREEDAMain

Layout of the user interface is given in Figure 7. Here we described the UI elements and

user's operations on them:

3.2.1 UI Elements

FrameWnd is the container of all the following windows :

Inpu tGroupWnd has six buttons each of which is linked to a window for an

impact attribute group. It has a SearchBoxWnd including SearchText and

SearchButton . InputListWnd is contained in InputGroupWnd and displays

CREEDAINPUT or CREEDAOUTPUT.

10

7

)

)

)

MENU

0000000
I I I I I I I :-I I

S_ear_c_bBm, I

I ~-D I I

c:==i i==:J I InputGroupWnd I
I I
I I
I I -D c:==i i==:J ~----------------------•

InputListWnd

H=J

I ~ H=J ~~
-D D

D PropertyWnd

RotationWnd D
D

Figure 7 Layout of the main window

Rota tionWnd displays fields and associated rotations as a tree. The structure of

the tree is:

FIELD

-ROT ATION

-OPERAT ION

-BUD INPUT

-CREEDABUD INPUT

or

-OUTPUTGROUP

-BUDOUTPUT

-CREEDABUDOUTPUT.

11

PropertyWnd displays attributes of a CREEDABUDINPUT or

CREEDABUDOUTPUT selected in Rota tionWnd and allows users to update the

attributes . It displays a button for editing a FIELD entity if a FIELD entity is selected in

Rota tionWnd. It displays nothing if other objects are chosen.

Two Spi 1 t terBar split the windows vertically and horizontally.

Too lBar has seven buttons for different functions, as shown as A through Gin

Figure 7. They are:

A: Exit B: Open a budget C: Current Report

D: New Report

G: List of Fields

E: Trash Can

User's operations on each window:

FrameWnd

Change size.

InputGroupWnd

F: List of Rotations

Select an impact attribute group by clicking the buttons.

SearchBoxWnd

(1) Enter search text.

(2) Click the SearchBu t ton, locate the CREEDAINPUT searched for in

InputListWnd.

InputListWnd

Select a CREEDAINPUT or CREEDAOUTPUT by clicking the mouse.

12

)

)

RotationWnd

(1) Expand an object by clicking it.

(2) Select an object by clicking it which attributes will be displayed on

PropertyWnd if available .

PropertyWnd

(1) Change and update the attributes of a CREEDABUDINPUT or CREEDABUD

objects .

(2) Go to a dialog box for displaying and editing FIELD attributes.

SplitterBar

Change its position by pressing down the left button of the mouse and dragging it.

User's operations between windows:

1. When the size of FrameWnd changes, the size of other windows in FrameWnd will

) change too.

)

2. In InputListWnd, drag a CREEDAINPUT or CREEDAOUTPUT entity by pressing

the left-button of mouse, and drop the entity to the Rota tionWnd by loosing the

pressed mouse button . A CREEDABUDINPUT or CREEDABUDOUTPUT will be

created and added to the Rota tionWnd.

3. In RotationWnd window, drag a CREEDABUDINPUT, CREEDABUDOUTPUT, or

ROTATION by pressing the left-button of mouse, and drop the item to Trashcan (E

on Figure 7) by loosing the pressed mouse button. The objects will be removed from

the RotationWnd.

3.3 The Architecture of CREEDAMain

CREEDAMain consists of the following three layers: the Data Access Layer

(DAL), the Business Logic Layer (BLL) and the Presentation Layer (PL).

Now we explain these layers.

3.3.1 Data Access Layer (DAL)

13

t

The functions of DAL are:

(1) Handle transactions for other layers. The boundary of a component in this

layer is also the boundary of any transaction involved in CREEDAMain and other

layers do not see any transaction.

(2) Prevents programmers of other layers if there is any from writing codes "on

the fly" by providing a unified interface for database access. For example, it hides

the process of making and releasing ODBC connections from components in other

layers, and thus prevents them from abusing the usage of ODBC connections,

which are often a limited resource.

3.3.2 Business Logic Layer (BLL)

Retrieving and updating data operations were implemented in this layer. So were

the R USLE and the SCI. The main tasks of this layer were:

(1) Retrieve BUDGET, ROTATION, YEAR, BUDINPUT, BUDOUTPUT, INPUT

and OUTPUT objects,

(2) Retrieve CREEDAINPUT and CREEDAOUTPUT objects,

(3) Retrieve CREEDABUDINPUT and CREEDABUDINPUT relationships,

(4) Remove CREEDABUDINPUT and CREEDABUDINPUT relationships,

(5) Calculate SCI and RUSLE,

(6) Generate reports.

3.3.3 Presentation Layer

The user interfaces define in 3.2 was implemented in this layer. Detailed of the

implementation of these layers is given in next chapter.

14

)

)

j

4. Implementation of CREEDAMain

In this chapter, we introduce how the three layers of CREEDAMain were implemented.

4.1 Implementation of the Data Access Layer

There was only one component in this layer: vbdal which CREEDAMain

shares with ProCosts. It had an interface _CDa taAccess with two methods:

GetRecordset and Ex ecQuery. GetRecordset returns query result as an object

with _Records et interface. ExecQuery does not return query result.

Active Data Object (ADO) was used to access the database and commute query

results . There are two ways of using ADO . One is to keep its connection to database all

the time. The other one is to disconnect the connection right after the query result is

returned. For system scalability, we adopted the disconnected one because we did not

want numerous users to connect to the database simultaneously which otherwise have to

maintain the same number of connections. Therefore a copy of the data is always stored

in the Presentation Layer, which can be updated on time, because each user need only

update the data which he owns exclusively . The background data and budget information

only need to be updated in occasions and we can avoid conflicting with other users by

choosing a proper time of updating. Strict concurrency control was implemented in MS

SQL server which we used for the back-end database.

4.2 Implementation of the Business Logic Layer

This layer was implemented as COM components. Each COM component has two

parts: interfaces and implementations.

4.2.1 Interfaces in BLL

ICREEDAinputs:

It is used to retrieve CREEDAINPUT objects from the database . It may retrieve an

object by its ID, or a list of objects in an attribute group.

ICREEDAOutputs :

15

It is used to retrieve CREEDAOUTPUTs from the database. It may retrieve an

object by its ID, or a list of objects in an attribute group.

IProcosts:

It is used to retrieve BUDGETS, ROTATIONS, BUDYEARs, BUDINPUTs,

BUDOUTPUTs, INPUTS and OUTPUTS.

IInputsForAProCosts:

It is used to retrieve BUDFDINPUTs. It takes two parameters: ID of FIELD and

ID of BUD INPUT.

ICropForAProCost:

It is used to retrieve CREEDABUDOUTPUTs.

IEditFdBudinfo:

It is used to edit, delete or modify BUDFDINPUT, BUDOUTPUT and FIELD.

ISCIModel:

It is used to calculate SCI.

ICornCalcLS:

It is used to calculate LS factor of RUSLE.

ICREEDAFields:

It is used to retrieve FIELD.

ICREEDARepoter:

It is used to generate reports .

IUserManager:

It is used to retrieve owner information.

16

)

J

These interfaces were defined in IDL (Interface Define Language). If a parameter of

any methods was an interface, a COM object was passed. It must be noted that MS IDL

usually does not allow a COM object to be passed by its value, therefore the COM objects

are usually passed by reference. In the case of DCOM, the marshaled interface is passed.

In this application, COM object Recordset defined in ADO was often passed as a

parameter.

4.2.2 COM components in BLL

Components in BLL implemented some of the interfaces given above .

CropForAProCost

It implemented these interfaces: IcropForAProCosts and

Iedi tFdBudinfo.

FertForAProCost , IrriForAProCost, MachForAProCost, ResForAProCost,

PestForAProCost

All of them implemented two interfaces: IinputsForAProCosts and

Iedi tFdBudinf o .

Fertinputs, Irriinputs, Machinputs, Resinputs, Pestinputs

All of them implemented an interface ICREEDAinpu ts.

Outputs

It implemented an interface: ICREEDAOutputs.

CREEDAFields

All of them implemented two interfaces: ICREEDAinputs,

IEditFdBudinfo andICREEDAFields.

CREEDACities

It implemented an interface ICREEDAinputs .

17

j

I_

t

ProCosts

It implemented an interface IProCosts.

SCIModel

It implemented an interface I SC IMode 1.

ComCalcLS

It implemented an interface IComCalcLS.

CREEDAReporter

It implemented an interface ICREEDARepoter.

UserManager

It implemented an interface IUserManager.

They were implemented as common in-process COM components and loaded to the

memory space of CREEDAMain. Error-handling codes contributed to a big part of their

codes. They exchanged Recordset with the DAL and the PL. Most of them

encapsulated calls to stored procedures defined in the back-end database.

4.2.3 DCOM implementation

The advantage with COM is that it hides the location information from common

users. Microsoft provided a facility DCOMCNFG that allowed you to configure the

system so that we could access a remote COM object without changing any code. Another

way without using DCOMCNFG was to modify the system registry. Since we did not

have privilege in the lab to run DCOMCNFG, we used the latter way. The detail was

given in the book written by Richard Grimes[2J.

Microsoft provided a DLL library ole32aut. dll. With this library, any COM

object that uses only so-called "OLE-compatible" parameters does not need to provide

stub\proxy codes if it implements I Dispatch interface, or its type library is registered.

IDi spa tch interface can help system get to information about the parameters without

18

)

)

)

type library. We used only OLE-compatible parameters , therefore, there was no explicit

stub\proxy code in CREEDAMain.

4.3 Implementation of the Presentation Layer

4.3.1 Classes

There are two kinds of classes: those representing user interface components and

those representing a data item . The latter are exchanged among UI components.

Two classes for data were defined as:

(1) Cinputitem : it stored IDs and type information of CREEDAINPUT or

CREEDA0UTPUT. It was also used to store FIELD dragged and dropped to the

RotationWnd .

(2) Rotationitem: it stored IDs and type information of the items listed m

RotationWnd .

Five main UI components were defined:

CMainFrame

It was a subclass of CFrameWnd in MFC and required for a MFC application . It

served as the main container of other components and coordinated the communication

between the tool bar, the view windows, and the menus.

CChildView

It was a subclass of CWnd and contained the rotation window, property window,

input group window and served as the main display area . It was responsible for

coordinating the communications between the child windows and the main frame

window. It also contained two splitter bars and was responsible for layout management.

This window is required by MFC architecture and has no direct correspondence in

requirement specification.

CRot ationWndandCRotationTree

19

CRotationWnd was a subclass of CRotationTree, which was a subclass of

CTreeCtr 1 of MFC. CRota tionWnd was responsible for constructing the hierarchic

structures of rotations linked to fields. CRota ti on Tree was responsible for not only

displaying the hierarchic structure, but also temporarily stored some information of the

items.

CPropertyWnd

It was a subclass of CWnd and contained sub-windows (CPropView) for

displaying properties of various kinds of rotation items and fields. It also responded to

user's changing window size operation.

CPropView

It was a subclass of CWnd and super class of several classes for displaying the

properties of various types of rotation items. It was an abstract class, therefore its

responsibilities were of its subclasses too. It managed the states of two buttons - "update"

and "reset".

CinputGroupWnd

It was a subclass of CWnd. It contained property-set-list windows

(CinputListWnd) for displaying various groups of property sets. It allowed user to

choose displayed groups and communicated with the view window to handle the drag­

drop operation between the window for any property set group and the rotation window.

It has a search box that handled searching operation on current displayed property-set-list

windows.

CinputListWndandCinputListCtrl

CinputListWnd was a subclass of CinputListCtrl. They list all items of

a kind of CREEDAINPUT or CREEDAOUTPUT. Users can drag an item from it and drop

the item to the Rotation window. It notified its parent window when a user started to drag

any of its items.

20

)

)

)

)

j

4.3.2 Mapping Classes to Elements in Design

Main classes in PL can be mapped to elements defined in 3.2.

Classes defined in PL Elements defined in the design

CmainFrame and CchildView FrameWnd

CrotationWnd and RotationWnd

CrotationTree

CPropertyWnd and CpropView PropertyWnd

CinputGroupWnd InputGroupWnd

CinputListWnd and InputListWnd

CinputListCtrl

4.4 Implementation of Database

The database was implemented on MS SQL server and could be distributed with

either MS SQL Server or Microsoft Data Engine (MSDE).

As we said, most of operations of BLL were actually implemented in the back-end

database as stored procedures. Stored procedures in MS SQL Server were written in T­

SQL (Transactional SQL). An example of stored procedures is given here:

CREATE PROCEDURE [CREEDA_calc_mach_per _yea r) (@fieldID as int)

AS

SELECT CREEDAFIELD.FieldID,

SUM(CREEDAMACHINERY.A_INVERT + CREEDAMACHINERY.A_MIX +

CREEDAMACHINERY.A_LIFT + CREEDAMACHINERY.A_SHATTER +

CREEDAMACHINERY.A_AERATE + CREEDAMACHINERY.A_COMPACT) AS SUMMACH,

BudSysToTime.TimeName as TimeNum,

BudSysToTime . TimeName

FROM BudSysToOperation INNER JOIN CREEDAFIELD

INNER JOIN CREEDACITY

ON CREEDAFIELD.CITYCODE = CREEDACITY.CITYCODEID

INNER JOIN CREEDABudSysEnttoField

ON CREEDAFIELD.FieldID = CREEDABudSysEnttoField.FieldID

INNER JOIN BudSysToEnt

ON CREEDABudSysEnttoField . BudSysToEntID = BudSysToEnt.PKid

21

INNER JOIN BudSysToTirne

ON BudSysToEnt.PKid = BudSysToTirne.CAREToEntPractid

ON BudSysToOperation.CAREToTirneid = BudSysToTirne.PKid

INNER JOIN Time

ON BudSysToTirne.Tirneid = Tirne.PKid

INNER JOIN CREEDAMACHINERY

INNER JOIN CREEDAFdBudMachinfo

ON CREEDAMACHINERY.OPERATIONID = CREEDAFdBudMachinfo.MACHID ON

CREEDAFIELD.FieldID = CREEDAFdBudMachinfo.CREEDAFieldID

INNER JOIN BudSysToinput

ON CREEDAFdBudMachinfo.BudSystoinputID = BudSysToinput.PKid AND

BudSysToOperation.PKid = BudSysToinput.CAREToOperationid

GROUP BY CREEDAFIELD.FieldID, BudSysToTirne.Tirneid,

BudSysToTirne.TirneNarne

HAVING (CREEDAFIELD.FieldID = @fieldID)

ORDER BY BudSysToTirne.TirneNarne

This stored procedure was used to calculate the sum of soil disturbance rates of all

operations in a rotation year.

4.5 Testing

Because of limitation on resources and time, we did only necessary tests. For unit

test, we tested components during the coding stage by debugging the codes.

For system test, we tested the typical scenarios. The typical scenarios were given

as our test report in Appendix B.

4.6 Implementation as a Distributed Application

COM components are location-transparent, and therefore we can deploy them on

different locations in a LAN or Internet (though it is hard to authenticate remote users

through Internet) without being noticed by clients. A typical deployment plan we had

tested with CREEDAMain is shown in Figure 8.

22

)

)

j

Presentation
Layer

Business
Logic
Layer

Internet
or LAN

Figure 8 A typical distribution schema for CREEDA.

23

Data
Access
Layer

Database

I •-

5. Summary and Future Work

5.1 Summary

The CREEDA application integrates the ProCosts application for profits and costs

analysis of farming activities, the application RUSLE for soil loss prediction and the SCI

application for evaluating the effect of framing activities on soil organic matter. The

CREEDAMain program, which has incorporated RUSLE and SCI as COM components,

was designed and implemented. We also extended the ProCosts database to accommodate

the data for SCI and RUSLE. CREEDAMain program and ProCosts program, which was

developed by USDA-NRCS independently, share the DAL layer. A new version of

ProCosts could be merged to the CREEDA application in two days. Visual BSAIC

program CREEDAinputEditor was implemented to enter conservation impacts data.

Visual BSAIC program CREEDALinker was implemented to link inputs and outputs to

their conservation impacts . Finally we explored the feasibility of deploying

CREEDAMain in a distributed computing environment, and of reusing COM components

in a web application.

In this project, however, we found that COM programmmg increased the

complexity of system testing . Since the COM components in CREEDAMain have to

interact with system services frequently , the number of "unexpected" system events was

increase, and thus more testing was needed than that for a program without COM

components.

5.2 Future Works

1. We currently provided only the batch files for installing the application. A

commercial installation software, such as InstallShield, can make an installation

easier.

2. In this application we did not use MTS. In fact, we dropped MTS objects to make an

installation easier for desktop users. MTS facilities the installation and management

of COM objects in a network environment. In Microsoft 's latest operating system

24

)

)

)

)

)

)

Windows 2000, MTS is a provided as a standard service. In the future , we can install

the components in BLL and DAL on MTS .

3. We can move on to develop a web application based on this application by replacing

the Presentation Layer with HTML and Active Server Page (ASP) files. Because

COM components can be created and called in ASP, the web application should be

able to reuse the components on the BLL and the DAL, both of which were designed

for multiple users and implemented as COM components .

4. This application provides a framework that allows us to extend it and incorporate

more conservation impact evaluation applications .

Reference

1. Grimes, Richard, Professional ATL COM Programming, 1998, Wrox Press Ltd.

2. Grimes, Richard, Professional Visual C++6 MTS programming, 1999, Wrox Press

Ltd.

3. Gunter, David, Client/Server Programming with RPC and DCE , 1995, Que

Corporation .

4. Pfleeger, Shaii Lawrance, Software Engineering -Theory and Practice , 1998, Prentice

Hall.

5. Rogerson, Dale, Inside COM, 1997, Microsoft Press.

6. Renard, K.G., Foster, G.R., Weesies , G.A., etc, Predicting Soil Erosion by Water : A

Guide to Conservation Planning With The Revised Universal Soil Loss Equation

(RUSLE), USDA-ARS, Agriculture Handbook Number 703, 1997.

7. Sinha, Pradeep K, Distributed Operating Systems -Concepts and Design, 1996, IEEE

press.

8. USDA Report , "Commodity Costs and Returns Estimation Handbook", 1998, Ames,

Iowa.

25

Appendix A Introduction to COM technology

COM is a binary standard about inte1faces, invented and promoted by Microsoft.

It is used mainly on Windows platform and neutral to programming languages. It can be

implemented or accessed with various programming tools, such as Visual C++, Dephi,

Visual BASIC, Java and ASP (Active Scripting Programming). A COM component has

two parts: its implementation and interfaces.

1. Interface

An interface is a pointer to an array which elements point to function entries.

Interfaces can be shared by components. Components that share an interface are binary­

substitutable.

Interfaces are defined in IDL (Interface Defining Language) and processed by IDL

compilers which generate stub\ proxy codes in C, C++, or Java. The codes generated for

the server side are called stub, and those for the client side are called proxy. Proxy codes

are responsible for encoding arguments to the input stream and decoding returned values

from the output stream for the client side. Similarly, stub codes are responsible decoding

arguments from the input stream and encoding returned values to the output stream for

the server side. Marshaled interfaces are used to access remote objects. The concept of

"remote object" changed with the development of COM technology. A "remote object"

meant an object on another memory space or a remote host initially. Later it meant an

object in a different apartment. The concept of "Apartment" will be introduced in the

implementation of COM.

The basic COM interface IUnknown was defined in C and C++:

• c++
class IUnknown {

virtual HRESULT
iid,

= O;
virtual ULONG
virtual ULONG

} ;

stdcall Queryinterface(REFIID

void** ppvObject)

stdcall AddRef() = O;
stdcall Release() = O;

26

)

)

)

J

• C
typedef struct IUnknown {

IUnknownVtbl *pVtbl;
} IUnknown;

typede f struct IUnknownVtbl IUnknownVtbl;
struct IUnknownVtbl {

HRESULT _stdcall (*Queryinterface) (IUnknown* this,
REFIID iid,

ULONG stdcall (*AddRef) (IUnknown* this);
ULONG stdcall (*Release) (IUnknown* this);

} ;

The memory layout of class IUnknown was given in Figure 1.

I vtbl at-) &Queryinterface

&AddRef

& Release

Figure 1 Memory Layout of class IUnknown Interface

Other interfaces must be derived from IUnknown. Therefore, all interfaces must

have the methods defined in IUnknown . AddRef () is usually called by a client to

signal the object that a client is using it. Release () is called by a client to signal the

object that the client is done with it. When all clients are done, the object may release

itself from the memory . It should be noted here that COM standard was actually made for

C++. The definition in C was mapped from that in C++ according to the standard

conventions of C and C++ .

2. Implementation of COM objects

Naming service of COM is provided by SCM (Service Control Manager). COM

run-time library is used to access the system service by client applications . A COM object

may be implemented as a DLL (Dynamic Linked Library) . The object in DLL can be used

as an in-process server when it is loaded to the client's memory space by COM run-time

library through SCM . A COM object can also be implemented in an executable file in

which the COM object can be created only in the memory space of a running instance of

that executable file. A COM object created in a running instance of an application is

27

r

called out-of-process server. In-process server can be accessed directly by calling from a

function entry in its interfaces. Out-of-process server can only be accessed through

stub\proxy codes, generated by an IDL compiler or the operating system.

Microsoft provided many COM components to facilitate accesses to a wide scope

of system services, such as transaction management and security management. ADO is

one of them. MTS (Microsoft Transaction Server) is another example, which provides

COM objects and interfaces that expose the distributed transaction management service

MS DTC (Microsoft Distributed Transaction Coordinator) to programmers.

The concept of "Apartment" was introduced to COM technology initially for

concurrency control. "Apartment" is a boundary for COM object with a certain

synchronization property. For example, all COM objects which invocations must be

synchronized should be put to the same apartment. All COM objects which do not have to

be synchronized should be put to another apaitment. An apartment is created when the

COM run-time library is initialized and can not be changed. This concept did not show up

explicitly in CREEDA project, since all COM objects developed in this project were in­

process servers. Concurrency control was performed by MS SQL server in current version

of CREEDA.

4. DCOM

DCOM object is an out-of-process server on another machine. A client locates or

creates DCOM objects through SCM (Service Control Management). At first, when the

client submits a request to an object on another machine, the client's COM run-time

routines contacts local SCM (SCM on the local machine), which then contacts targeted

remote SCM (SCM on the another machine). The latter creates or locates a COM object

and returns marshaled interface of the COM object to local SCM. They use ORPC

protocol to communicate.

5. Advantages with COM

Like COREA, COM technology allows software modules (COM objects) have an

independent life-cycle management. Around COM objects are numerous system services

provided by the operating system independent of any particular application. For example,

28

I

)

)

)

COM objects can be cached in a pool by system services and recycled among various

applications. They can have their own security properties and concmTency control

mechanisms.

A unique feature of COM is that it provides version service. Different version of

COM objects can co-exist in a system and clients can choose which version to load.

29

Appendix B The typical scenarios of CREEDA

This document is given as a test report.

Open CREEDAlnputEditor.exe
ODBCLogon/

ODBC Logan I ""-·"" aues C . VI

Q_SN:

UID:

;a ssword:

Data!lase:

Driyer:

i,~erver:

Figure 1
UID : sa

•a.•-

]__ProCosts

Isa
·~ - =
1·· .. ····1
l
I
1

QK

Password : ********
OK

-

·-

CREDDA Input Editor
Irrigation Methods
Fertili zers
Machinery Operations
Pesticides
Residue Management
Crops
City Database

Click Irrigation Methods

--·
Ell

~:
~I

,1
j I

iii. CREE DA Input Editor l!iliJ l£i

Fertilizer Properties

Machinery Properties

Pesticide Properties

Crop Properties

City Database ,,

Close

Figure 2

30

)

)

!
i

!

i

l

Name irrigation practice

iii. Irrigation !!Iii) 13

Operation ID(unique) 147

Name

Description

Amount of Water Each time (by default)

_ -·-. __ J inch

lrrig,'ltion·Times (by default)

,~-"':,!"~~-
! ''---"---' I.;;;,.:;,...=~====-=:;:;;:~~ ·---------'
!

Figure 3

Description
Amount of water per application [x inches]
Number of applications [x applications]
Click [new]
Save or Cancel
Click List to see the different irrigation methods are available (browse)

iii, Open a Component 13
I(List of Input Groups [Not Selec;tedYet)

l _;
1

::::Example· .
1
~~~:ndables 

MEA Example·.. Expendables 
NRCS Example-... Expendables 
Northwest-Expen... Expendables 
N orthwest-1 rrigati... Expendables 
Northwest-Fungi... Expendables 
Northwest-Herbi... Expendables 
Northwest-Insect... Expendables 
Northwest-Fertilizer Expendables 

- A6.EA Example· .. AgMachiner_y 
, '- _A_, C..A_J: ~ ...-.~ 1,... _____ A.-.U ""o L-.; .... ,~.,,,, , _ 

~ = 

(.1 Inputs 

l:1 ......... select ......... 11 

Figure 4 

Close 

Click Fertilizer 
Repeat as above 

Descri tion 
This example comes from Chapter 
None 
None 
insurance and taxes 
none 
none 
Weed control chemicals 
Agicultural chemicals used to c 
none 
None 
t.J~~ ~ - - lNNdii}~\',\'f 

N,'.fjJ}.!J§:!lf) 

C Outputs 

'r 
Cancel 

31 



Machinery 
Name of machinery 
Description 
SCI disturbance parameters (I, M, L, S, A, and C) 
Fraction of biomass Left on the field after this operation: [range is Oto l] 

Residue Management 
City Database 

CREEDALinker.exe 
Logon 
Same as above 

Select either [inputs or Output] 
Then select from list of Input/Output Group from Open a Component window [Northwest Agmachinery 
Tractor-Tl 

ProCosts-CREEDA Linker 

oc ........ 
p:i2D6 

; l:EI 
i .. l!Re1iclieM~ 

b~~ .~~ ~[:~_--' __ - -, _-£1 

Figure 5 
Left side shows ProCosts Inputs/Outputs 
Right is list of CREED A Properties 
Center of window, list of the links between CREED A properties ProCos ts Inputs and Outputs. 
Use the one or as many of the six CREEDA properties (Fertilizers, Irrigation, Machinery, 
Pesticides, Residue Management, & Crops) to link CREED A and ProCosts. 

CREEDAMain.exe 

32 

) 

.) 



) 

J 

Database Login li3 

1 If you do not want to change any database & its login 
information, do not enter anything below. 

, I Data Source ---~~~~=­
! I uid 

password 

k ........ Login ......... i! 
Figure 6 

Login/ 
User Name: demo 
Password : demo 
Click Login 

CREEDA 
Click Open Budget 
Dialogue Box : List of Budgets 

: CREEDA li!iliJ f3 
t f;dit Yiew fleport [ield flotation .fu,stem .Qption lfe!p 

,_ Budget Repott , 
l,istol :·~ 1 of ~a I l' elo 117, V bos f Rotation Field , ~_i,:iqr~ ~ e, e 

No budget is open 1[[[~ [Bi,oj7il1!J~CJ . 
ou can open a budget in the command ftf] ier 1 

~lte rt2 

ReadJ 

Figure 7 

Select a Budget 

33 



List of Budgets lf3 

Select a Budget: 

Group1 
~ Perennial Ryegrass Seed Budgets 

Figure 8 

Click List of Field 

List of Fields Ef 

Please drag the field icon you selected and drop it to the rotation window in the main window: 

.(;lose e,dd Bemove 

Figure 9 
Click Add to create a new field 

Create a New Field a 
Field Marne: 

CORVALLIS STATE UMI\/ 

.6,dd Cancel 

Figure 10 

I 

Fl 
~ ' 

Field name: [field name] 

34 

) 

) 



I 

) 

) 

Description: 
City Name : click the button 

Dialogue Box : List of Cities 
Click on a city 
Click Select 
Click Add 

Modify the soil data for the newly defined field/ 
Click Edit 
Look at map for RUSLE R 

Click Save 
Click Exit 

Place cursor on desired Field, press down on left click button of mouse and drag and drop the 
Field on the CREED A palette. 

Close List of Fields window 

List of Fields 113 

Please drag the field icon JOLI selected and drop it to the rotation window in the main window: 

f,dit 

Figure 11 

Click List of Rotations/select a rotation 

Lost of Rotations Ei 
Please drag the rntation icon you selected and drop it to the field icon 

P.o Pe,ennial Ryegrass Seed P1oduction 

Figure 12 

35 



if: d 1~el 
aF o s~e2 
1:-.f::f s~e 3 
3 ti de" 

·;., §!ll@Whmttffiffilitt!=Mtfl 

tg:::; 
3 ti s)e l 

~ 8 §3 Ptie!VQ Ryeg,m Seed Pr Odle lion 
a {x;]Ye.tr l 

a_j::L6ndPtep<1146onl 
s - :!:,Plolv, 10-18$ 

Drag and drop rotation on the Field in the CREED A palette . 
Click the rotation 

ox 

I lrn£!!l ru ~7~~1 _ 
?Bierl ~---= 
' Ble1t2 

II 

'!; 

j !NUMj ..._..~ 

Figure 13 
Click the Year in the rotation 
Click on the operation 

- □ X 

; fh M%ijjj:j'lffllMffittffej l! 
: :1:. T1.K\Of,Artic,J~!ed '300Hp 

·->:L¥ldPrep!llation2 
:. ~LandPlep111ationJ 
- ~PreplantHei~APr,ieal.ionl 

. -':; Plan!r,gO~dii:lnl 
:. ~ Pos:l.-pl6rll Httbicide 1 
: - ~ Poi.t,pln Hert.cide2 
~ :i::re1ti'ize1Appl.cationl 
.J: P01t-pi¥1.Hert:icid,,J 

-~ Fl.ojcide AppkalO'I 1 
~ F\rOCO,AopkalO'l2 

:- ~ Fm,jcideAppkali;in3 
. ·'"'! Swath 
:. '-':HaivestManfl!}ellll:nl 
:-o,: Posl-h!llvetlM~ 1 
· .:1,: PoM1!11vestM¥ll9~2 
· ~ Pod-t1!llve1t Mani,gemenl 3 
-"'!: Po1t-hwvut Marnig~nt4 

!f!____!l..,: OiJ:DUI Grovp 

Machinery Operalion: 
:; 1 •(Plow. mohl botird. conventlonalJ at 9/12/00 1 times 

"' Commenl 

genernte dfromProCo s ls 

Figure 14 

If the link is defined for the operation, there will be a 
CREEDA property attached to the operation . If not, you need 
to manually define the properties . 

Choose one of the six CREEDA properties, and drag 
and drop to the ProCost input in the ProCost tree that 
is shown in CREED A (harvest and residue operations 
should be in shown in a time sequence order because 
of the calculation of remaining residue dependent 
upon operation order). 

Attach a Crop property to the ProCost output 
Click the [Crop Button] 
Find the crop in the list view window 
Press on left mouse button and drag and drop Crop to 
ProCost output. 

36 

) 

) 



) 

Click the crop in the tree, 
Select the Planting Data 
Click Update button 

Click Residue Management property attached to the ProCost 
operation input. 
Click [Cale] 

Click Residue Management in the tree 

---.--c~ ~~~::::: ~ 
.:,,:Piepw,IHerbicideApplcaionl 

- "'=: Pl&rmg Optralion 1 
·-->:: Po1t,p!antHerbicide I 
· :i,: Po1t-pl&n1.Herbidde2 
:- ::i,: Feiti'iu:rAppkalion 1 
:· -'!Pos t-pl6rl.Herbii::ide3 
: ~ F...-qcidl!A;,pketiool 
:_z,,: FU'9{:ideAppkation2 

.J: FlrqCideAppketioo l 

.J! Swalh 
-:-. H111v~stM¥1~me<·t I 

13__,1:.,: PotHl!llve,t M~nt 1 
l ;, ;,R~e.Sm •delive1yl 2' 
' ;1;, TraclOfMtd35Hp 

13- ~ Postffl!ve$tMa~2 
&-~'I;, Balef.AOU'ld 

; fH 8elel.AOl.l1d 
. ~ a tfflt. •foMHMAD 
~ :?;, I 1actoi Mid l(Oip 

~ ~ Post~urve:t Man!J9ffllent 3 
· - "': PosH1,ive,t M~nt " 
i: ~ OU:put G1ouP 

-fi'.!]Yu2 
IIiJYei!!l3 

- m)Yur4 

Figure 15 

• □ X 

Then click [Cale] 

Biomass Removed l£i 

Now amount of biomass left for this year is: 

5400.00 lbs 

The ratio of biomass that is removed in this aper ation is: 

0.90 

8 iomass removed in this operation is: 

4859. 999871 

Click [New Report] 

Cancel 

Biomass Removed dialogue box shows the amount of residue 
remaining in the field 

Figure 16 

Click [save] 

Gray fields indicate that there has been no linkage between CREED A and ProCosts; 
Green colored fields can be used to generate reports. 
Choose from output selections to report CREED A effects . 

37 



List of Fields 13 

;1 Please choose the fields you want to 1epo1t 

descJiption 
site 1 
site 2 
site 3 

i 

~ RUSLE FIELD DATA 

~ SOIL CONDITION INDEX 

~: IRRIGATION 
MANAGEMENT 

~ CROP RESIDUE 
. MANAGEMENT 

pr CROP ROTATION AND 
' CROP MANAGEMENT 

r.-;: TILLAGE EQUIPMENT 
iv , AND TILLAGE SEQUENCE 

j r.7 ; PEST MAN.6.GEMENT 
if iv o; INPUTS 

~ • CROP NUTRIENT INPUTS 

Ml EC.ONot,IJl:.i>L8EPORTi 

jiREPOmj 

Figure 17 

Click [Report] 

G 

!crops & Inputs Report generated by Creeda; 
. : _._ ! i ; • 

- JF1eld1"fo1m.l~ -- -- +----+--;- ------
.Fitil1IN.1111e: jSite.:I 

--- ;~;:1¾~~~~ tco~ ;UNIV ' -•--
- _ _lt?il)'_Co1le: _ - ➔--~z 1~"~----e--

; 01her 111/orm;nion = NULL 
! Comment: 'NULL 

___ '.IJ.!s11/tof_(J!jg_E ,,.,~•=•/=•'---~--+a-c- C7 
;R(1C-Ooffl tonfin(-"K( tOtl.9C/ C ;P LS :1wSLE{IM{8<:r1?-y1)-l) 
. OW ; ~0~.39~~ 0~.00~lc---~O~.l~Ot-_ 0, .331 .JlOO_ 

\ Soif Comlit fo11 /ml ~ of ea ct/ R·ouu/011 !Year 
:Re-la/ion :Shet11&1 W~nd Unigorioni RUSLE(l, [OM FO 
·vea,I O 0 \ 0 1 □ .□ : -09 
!vea, 2 __ , ___ 9 Ol oi a.at 1.2 

- '.Ye313 . 0 O'. Oi 0.0 i . 1.i 
_:..'!'ea,~ _ l _Q__ 0 1 oi a.at oz. 
1~;:::~:i:~,'.;~e-t;:::1f~•:Vir>:J !1nigatktn \RUSLE()OM FO 
' _ ..!: __ a o: 01 o.o: _ _g_,s_ 

Figure 18 

Menu/Report Editor/Save As 

04 
I 0 
1.0 
03 

ER 

ER 
-Q3 . 

• Soft !.os.S '. soR-
1.0 1.0 · 
1.0 1.0 : 

:-g _:1;-§. 
Soil Loss ilYi>IO 

I 0 : _ 1.Q:........_~ 

'' 

Dialogue box allows you to name the CREED A output file in EXCEL format. 

After you are finished : 
Report Editor/Back to Main Window 

Conservation Effects windows: 
RUSLE dialogue windows 

38 

) 

) 



Sool Loss Data and Factors of Rusle Model Et 

r Faclo,s of AUSLE~M~od~e,i:1 :=:=:.=:--'-==~=--==-~-c-~l[ I · fl jo :, 100 of fl.lonl.in(acre.yr)·l 

I e lo 
l ~ ~lo=====, 
j ··--··r,:-····'·71 lo lon.acre.h.[100 of acre-ll.lonf.in)·1 

I 1s 11_0 ____ _ 

! Other Soil Loss Factors the, Information-
,,..----- -, 

Figure 19 

K Factor El 

Site ~Jame: site4 

Seasonal K jo.000000 ,1 E stimaled K • J0.000000 

) [~ ______ } Rock Soil ·series 
_Cover(%}' 

} 
Yrs lo 

10 ------ " i 
Surface 

consolidate" Texture 

ir Hiyxl1a;;lic i)lfr:<L!!l===-=-~=,s-===~= """t 
H!J ll!lHJl{O;H1HHllll<f!.;t.;111d 

•q·ll ·1ni;un,,1.i; i"'in• ·, \~'c;f,,. ~.;.... ' 
1110,:1,,;,_,'J:"1-' 

Cancel I 

Figure 20 

) 

39 



Nomograph K 

% of silt and very fine sand {e.g. 66): 

% clay {e.g. 17): 

% of organic matter {e.g. 2.8): 

% of coo1se frcigment 

, Soil Structure Code-=-.,,,,--,-,• 

I: rf. Very Fine G1adula1 < 1 mm~ ! 

C Fine G1anula1 1 mm ' 

C' Medium or Coaise G1anula., 2-5 m. m 

· C Blocky, Platy or Massive> 5mm 

Coarse Correctron Code±"=~"====7, 

e effect of fragments 1n soil profile on 
eabrlrty wrll be consrdered on Chapte1 3, 

I 

Figure 21 

, Soil Permeability Code-------, , 
i 

r,: Rapid 

C, Moderate To Rapid 

C• Moderate 

c~i Slow lo Mode1ate 

D. Slow 

C Very Slow 

NomographK 

question m 
The Pis rarely below 0.2. 
Do _1,10~1 want to go back to check the value? 

Figure 22 

40 

\ 

) 




