A User's Guide for On-Site Determinations of Stand Density and Growth with a Programmable Calculator

J. C. Tappeiner
J. C. Gourley
W. H. Emmingham

The Forest Research Laboratory of Oregon State University was established by the Oregon Legislature to conduct research leading to expanded forest yields, increased use of forest products, and accelerated economic development of the State. Its scientists conduct this research in laboratories and forests administered by the University and cooperating agencies and industries throughout Oregon. Research results are made available to potential users through the University's educational programs and through Laboratory publications such as this, which are directed as appropriate to forest landowners and managers, manufacturers and users of forest products, leaders of government and industry, the scientific community, and the general public.

The Authors

The authors are members of the College of Forestry, Oregon State University, Corvallis. John C. Tappeiner is associate professor and Jonna C. Gourley is senior research assistant, Department of Forest Management. William H. Emmingham is extension specialist and associate professor of silviculture, Department of Forest Science.

Disclaimer

The mention of trade names or commercial products in this publications does not constitute endorsement or recommendation for use.

To Order Copies

Copies of this and other Forest Research Laboratory publications are available from:

Forestry Business Office College of Forestry
Oregon State Universily
Corvallis, Oregon 97331
Please include author(s), title, and publication number if known.

A User's Guide for On-Site Determinations of Stand Density and Growth with a Programmable Calculator

J. C. Tappeiner
J. C. Gourley
W. H. Emmingham

Contents

1 Introduction
1 How the Programs Work
1 Tarif-Tree Section
3 Stand-Table Section
3 Tree Volume
3 Basal-Area Growth
3 Volume Growth
3 Summation by Species or Sets
4 VARP / FIXP Flowchart
5 User's Guide for VARP / FIXP
5 Getting Started
6 Running Procedure
8 Sample Run: VARP
9 Sample Run: FIXP
10 Using Stand Estimates in Prescriptions for Silviculture
10 Contrasting Diameter, Basal-Area, and Cubic-Volume Growth
10 Determining When to Harvest
11 Evaluating the Effects of Cutting
11 Calibrating Growth Models
12 Literature Cited
13 Appendices
13 Tarif-Number (TN) Equation
13 Cubic-Volume Total-Stem (CVTS) Equation
13 How to Change Volume Equations
14 Species-Specific Equations
15 Data Register Assignments for VARP and FIXP
15 Program Listing: VARP
16 Program Listing: FIXP
18 Notation

Introduction

To help foresters quickly determine stand growth and density in the field, we have developed two programs, FIXP for fixed plots and VARP for variable-radius plots, to be run on a hand-held calculator convenient to use on site. We believe the programs will save both inventory and officecomputation time. The necessary field data are relatively easy to obtain. You supply tree height, diameter, radial growth, and a measure of stand density. The appropriate program quickly summarizes the data, providing estimates of the current growth in cubic volume, basal area, and diameter, and of number of trees, basal area, and cubic volume per acre. Because estimates can be calculated in the field, questions they may raise can be immediately resolved by observation or additional measurement.

The programs apply to any species for which you have volume equations. We provide equations from Brackett (1973) for Douglas-fir, Sitka spruce, ponderosa pine, alder, big-leaf maple, and aspen, and from Chambers and Foltz (1979) for western hemlock. The programs allow insertion of local volume equations or those with merchantability standards.

We emphasize that the programs are designed for stand examination and analysis in the field. They do not replace powerful, computer-based stand simulators that estimate and project stand growth under different densities and treatments. However, they can be used with such simulators and with site-specific information to verify growth estimates, test thinning strategies, and calibrate growth models to specific stands.

How the Programs Work

Both VARP and FIXP are constructed in two parts: a tarif-tree section and a stand-table section. We have used the tarif-volume system (Chambers and Foltz 1980, Cole 1965) because it provides a compact method for estimating volume and volume growth from individual tree measurements and volume equations. Two types of data are needed: tarif-tree measurements and a tally of trees by 2-inch diameter class. The kinds of information needed to run the programs are listed in Table 1.

Tarif-Tree Section

Tarif trees should be chosen to represent the stand as a whole or the set of components (species, crown class, tree class, diameter class) for which growth and volume are to be estimated. If there is more than one species, data for each are entered and computed separately. Tarif trees should be distributed throughout the population. In relatively uniform 40 - to 50 -year-old Douglas-fir stands, we have found that five to ten trees give consistent estimates of total stand growth. Chambers and Foltz (1980) recommend 20 tarif trees per species and provide a method for statistical checking of sample adequacy. If you are using the tarif system for the first time or in unfamiliar stands, we suggest that you make a "sensitivity analysis," varying the number of tarif trees by diameter or crown classes to determine how growth and volume estimates are affected. Measure the tarif trees carefully (see Table 1).

TABLE 1.
INFORMATION REQUIRED FOR THE PROGRAMS.

VARP FIXP

PLOT DATA

Basal-area factor of prism (1 to 100)	Plot area in acres $(0.01$ to $100+)$
Number of plots (prism points)	Species
Species	Number of years (rings) for which radial growth
Number of years (rings)	is measured

for which radial growth
is measured
TARIF-TREE DATA
DBH to the nearest DBH to the nearest
0.1 inch

Height to the nearest 2 feet

Radial growth as counted in $1 / 20$-inch increments 0.1 inch

Height to the nearest 2 feet
Radial growth as counted in $1 / 20$-inch increments

STAND DATA
DBH of each "in" tree DBH of each "in" tree to the nearest inch
to the nearest inch

Estimation of volume growth from a tarif number is made with the assumption that the number does not change as the diameter grows. The average tarif number for a given stand is used for all diameter classes. Like other volume-to-basal area ratios (VBAR's), a tarif number implies a relationship between diameter and height. When diameter increases, height must increase correspondingly to ensure that the ratio remains constant. Because tarif number may change with age, and because growth rate changes appreciably, especially in young stands, use caution when projecting volume.

The purpose of the tarif-tree section is to compute the average tarif number, $\mathrm{TN}_{\mathrm{av}}$, and the average annual diameter growth, $\mathrm{DG}_{\mathrm{av}}$, of a stand. If these values have been previously calculated, they may be entered directly. The calculator performs calculations with as many digits to the right of the decimal as you provide, but the resulting tarif numbers are printed to the nearest tenth and values for diameter growth to the nearest hundredth.

If $\mathrm{TN}_{\mathrm{av}}$ and $\mathrm{DG}_{\mathrm{av}}$ have not been previously calculated, individual tarif-tree numbers, TN_{t}, and annual diameter growth, $D G_{t}$, are determined from individual tarif-tree data by means of Equations [1], [2], and [3].
TN_{t} is calculated in two steps. The first step requires a species-specific equation by which total-stem cubic-foot volume for an individual tree, CVTS $_{t}$, is computed from values for diameter at breast height, DBH, and height, HT. Equation [1], from Brackett (1973), is for Douglas-fir, DF:

$$
\begin{aligned}
\mathrm{CVTS}_{\mathrm{DF}}= & \left(10^{\mathrm{B}_{1}}\right)\left(\mathrm{HT}^{\mathrm{B}_{2} \mathrm{LogDBH}^{2}}\right)\left(\mathrm{DBH}^{\mathrm{B}_{3} \mathrm{LOgDBH}}\right) \\
& \left(\mathrm{DBH}^{\mathrm{B}_{4}}\right)\left(\mathrm{HT}^{\left.\mathrm{B}_{5}\right)\left(\mathrm{HT}^{\mathrm{B}_{6} \mathrm{LogHT}^{2}}\right)}\right.
\end{aligned}
$$

where

$$
\begin{array}{ll}
\mathrm{B}_{1}=-3.21809 & \mathrm{~B}_{4}=2.02132 \\
\mathrm{~B}_{2}=0.04948 & \mathrm{~B}_{5}=1.63408 \\
\mathrm{~B}_{3}=-0.15664 & \mathrm{~B}_{6}=-0.16185
\end{array}
$$

Log is the logarithm to the base 10.
Six other species-specific equations are given in Table 2.

The second step for computing TN_{t} requires a general equation for all species (see Appendix, p. 13) and values for CVTS $_{t}$ and DBH:
[2]

where

$$
\begin{aligned}
\mathrm{B}_{1} & =0.912733 \mathrm{~B}_{4}=-4.015292 \\
\mathrm{~B}_{2} & =1.0330 \mathrm{~B}_{5}=0.087266 \\
\mathrm{~B}_{3} & =1.382937 \mathrm{~B}_{6}=0.174533 \\
\mathrm{e} & =2.71828
\end{aligned}
$$

$R G_{t}$ is the length of the increment core for the growth period measured in twentieths of an inch and entered in the calculator as a whole number. For example, if the increment core is $23 / 20$ inches long, 23 is entered. RGY is the number of years in the growth period (the number of annual rings on the increment core), usually 5 or 10.

$$
D G_{t}=\frac{R G_{t}}{10(R G Y)}
$$

[1]

TABLE 2.

SPECIES-SPECIFIC EQUATIONS FOR TOTAL-STEM CUBIC-FOOT VOLUME (CVTS) INCLUDING TOP AND STUMP.

Progra symbo	1 Species	Equation ${ }^{\text {a }}$
HM	Western hemlock (Tsuga heterophylla)	$\text { CVTS }=\left(10^{-2.72170}\right)\left(\mathrm{DBH}^{2.00857}\right)\left(\mathrm{HT}^{1.08620}\right)\left(10^{-.00568 \mathrm{DBH}}\right)$
ALD	Alder (Alnus rubra)	CVTS $=\left(10^{-2.672775}\right)\left(\mathrm{DBH}^{1.920617}\right)\left(\mathrm{HT}^{1.074024}\right)$
ASP	Aspen (Populus tremuloides)	CVTS $=\left(10^{-2.635360}\right)\left(\mathrm{DBH}^{1.946034}\right)\left(\mathrm{HT}^{1.024793}\right)$
MAP	Big-leaf maple (Acer macrophyllum)	CVTS $=\left(10^{-2.770324}\right)\left(\mathrm{DBH}^{1.885813}\right)\left(\mathrm{HT}^{1.119043}\right)$
PP	Ponderosa pine (Pinus ponderosa)	CVTS $=\left(10^{-2.729937}\right)\left(\mathrm{DBH}^{1.909478}\right)\left(\mathrm{HT}^{1.085681}\right)$
SS	Sitka spruce (${ }^{\text {Picea }}$ sitchensis) ${ }^{\text {b }}$	CVTS $=\left(10^{-2.550299}\right)\left(\mathrm{DBH}^{1.835678}\right)\left(\mathrm{HT}^{1.042599}\right)$

[^0]
Stand-Table Section

The purpose of the stand-table section is to calculate values per acre (number of trees, basal area, volume, basal-area growth, and volume growth) for each 2 -inch diameter class. VARP and FIXP differ chiefly in the way they compute number of trees per acre and basal area per acre for a class. In the VARP program, basal area per acre is computed by multiplying the total number of "in" trees by the basal area factor of the prism. The number of trees per acre in a diameter class is then computed by dividing basal area per acre by average basal area per tree of the class. Average basal area per tree corresponds to the basal area of a tree at the diameter-class midpoint. In the FIXP program, the number of trees per acre in a diameter class is computed by dividing the total number of "in" trees by the plot area. Basal area per acre of a diameter class is then computed by multiplying number of trees per acre by average basal area per tree of the diameter class.

The remaining calculations of diameter class are the same for VARP and FIXP. Volume per tree, basal area growth per tree, and volume growth per tree are computed for a tree at class midpoint. Diameter-class values are obtained by multiplying midpoint values by the number of trees in the class. The sum of diameter-class values comprises the totals per acre.

Tree Volume

Total-stem cubic-foot volume of a tree at the diameter-class midpoint, CVTS $_{\mathrm{d}}$, is computed by means of a species-independent equation (see Appendix, p. 13).
$\operatorname{CVTS}_{d}=\frac{\operatorname{TN}_{a v}\left\{\left.\left[B_{2}\left[1+B_{3} e^{\left(B_{4} \frac{D}{10}\right)}\right]\right]\left[B A_{d}+B_{5}\right]-B_{6} \right\rvert\,\right.}{B_{1}}$
where
B values are the same as in Equation [2],
D is the midpoint DBH of the class, and
BA_{d} is the basal area, $\mathrm{D}^{2} * 0.005454154$.

Basal-Area Growth

Basal-area growth of a tree at the diameter-class midpoint ($\mathrm{BAG}_{\mathrm{d}}$) is computed:
$B A G_{d}=\left[\left(D+D G_{a v}\right)^{2}-D^{2}\right] * 0.005454154$.
Computations are made for each diameter class with the same value for $\mathrm{DG}_{\mathrm{av}}$. Differences in
growth by diameter class depend on the diameter midpoint; that is, a larger starting diameter means a larger ring of growth, even though the ring width is constant.

Volume Growth

Volume growth per tree in a given diameter class is found by computing the rate of volume growth per unit of DBH growth for a 0.01 -inch increment on each side of the class midpoint diameter [Equation 6] and by multiplying that value, called the growth multiplier, GM $_{\mathrm{d}}$ (Brackett 1973), by the average diameter growth rate for the stand [Equation 7]:

$$
\begin{equation*}
\mathrm{GM}_{\mathrm{d}}=\frac{\left(\mathrm{CVTS}_{\mathrm{D}}+0.01\right)-\left(\mathrm{CVTS}_{\mathrm{D}}-0.01\right)}{0.02} \tag{6}
\end{equation*}
$$

where

$$
\operatorname{CVTS}_{D}+0.01
$$

is the cubic volume of a tree with a diameter 0.01 greater than the class midpoint diameter, and
CVTS $_{D}-0.01$ is the cubic volume of a tree with a diameter 0.01 less than the class midpoint diameter.

$$
\begin{equation*}
\operatorname{VOLGRO}_{\mathrm{d}}=\mathrm{GM}_{\mathrm{d}} * \mathrm{DG}_{\mathrm{d}} \tag{7}
\end{equation*}
$$

Summation by Species or Sets

The summation over diameter classes of values per acre for the number of trees, basal area, basalarea growth, volume, and volume growth gives totals per acre for species or other sets. VARP and FIXP will also sum values for several species or sets. For example, if a stand contains Douglas-fir and hemlock, the tarif-tree and plot data may be entered separately for each species, the average tarif number for Douglas-fir tarif trees applied to data for the Douglas-fir plot and the average tarif number for hemlock tarif trees to data for the hemlock plot. After completing both sets of calculations, the programs print a sum that represents full per-acre values for basal area and volume. Similarly, in thinning computations, "cut" trees and "leave" trees can be entered and computed separately, then summed; as can dominant, codominant, intermediate, and suppressed trees. The advantage of using an average tarif number is that it best represents the form of the trees of a particular species or diameter class.

VARP / FIXP Flowchart

User's Guide for VARP / FIXP

Getting Started

The
calculator
$\begin{array}{lll}\begin{array}{l}\text { Key } \\ \text { reference }\end{array} & f & \text { Gold shift key (selects alternate function) }\end{array}$
XEQ Execute key
LN Natural logarithm key
f ASN Shift and assign keys
S I Z E Function controlling size of data storage (spelled letter by letter in alpha mode)
f GTO Shift and go to keys
R/S Run/stop key
ALPHA Alpha mode toggle switch
PRGM Program mode toggle switch

Program The main programs, VARP or FIXP, perform most of the calculations. They require requirements 1) one or more species-specific volume equations; 2) the tarif program to compute the tarif number for each tarif tree; and 3) the cubic-volume program to compute

Loading the programs

The programmable calculator we used was a Hewlett-Packard 41-C with a quad memory module (equivalent to four standard memory modules). The newer HP-41CV has the same amount of memory built in. Three standard memory modules in an HP-41C can also be used.

A printer is helpful for changing programs or for extensive data sets. A card reader is generally used for program entry.

Both VARP and FIXP are video-enabled, providing correct flag settings for duplicating the calculator display on a television screen.

CAUTION: Do not connect or remove equipment from the calculator unless both pieces are turned off. Joining equipment that is turned on produces a current arc that may ruin both pieces.

Turn off the calculator. Attach the card reader. Turn on the calculator.
Adjust the data storage size to at least 26 data registers.
Key XEQ ALPHA S I Z E ALPHA. Key 026.

Be sure the calculator is not in program mode. If PRGM appears in the display, press the PRGM toggle switch. When PRGM disappears, the calculator is out of program mode.

Key f GTO.. (two periods) to place a termination mark after the last program in the calculator.

Repeat Repeat the two following steps for all programs:
procedure Put cards in the reader. (The calculator prompts for each side of the required cards.) Press f GTO.. after each program.

Practice The following example of data analysis is for a 42-year-old Douglas-fir stand. We
runs suggest that you follow each step in the running procedure and use the data in the sample runs to teach yourself how the programs work.

Running Procedure

When using a printer, turn off both calculator and printer, then connect them and turn the printer on. Put the printer in NORM mode. When not using a printer, R/S must be keyed after each line to program displays. Put the calculator in USER mode with or without the printer. VARP and FIXP run identically except where separate instructions are bracketed.

Display Response

Beginning Key XEQ ALPHA VARP (or FIXP) ALPHA, or key the assigned function.

Plot data	VAR PLOT
VARP	BAF?
	NO. OF PLOTS?
FIXP	FIX PLOT
	PLOT SIZE

RGY?
SPECIES? Key the alphabetic species code, then R/S. Note that the calculator is automatically in ALPHA mode for this entry.

DO YOU HAVE
With no printer, key R/S.
TARiF TREES? Key YES to enter tarif tree data or NO to enter average tarif number and average diameter growth, then R/S.

Tarif information	DBH NO. n?	Key diameter at breast height for tarif tree "n," then R/S.
	HT?	Key total height, then R/S.
	RG?	Key radial growth, then R/S.
	CVTS=	(Digits are displayed for total-stem cubic-foot volume for tarif tree "n.") With no printer, key R/S.
	TN=	(Digits are displayed for the tarif number of tarif tree " n. .") With no printer, key R/S.
	DBH FOR NO. n?	Key a zero, then R/S.
	AV. TARIF?	Key the average tarif number, then R / S.
	AV. DG?	Key average annual diameter growth, then R/S.
	AV. $\mathrm{TN}=$	(Digits are displayed for the average tarif number.) With no printer, key R/S.
	AV.DG=	(Digits are displayed for average annual diameter growth.) With no printer, key R/S.
Stand table	MIN. DBH CL.?	Key minimum diameter class, then R/S.
	MAX. DBH CL.?	Key maximum diameter class, then R/S.
	CL. n TREES?	Key number of "in" trees tallied for diameter class "n," then R/S.
Species/set results	$\mathrm{T} / \mathrm{A}=$ $\mathrm{BA} / \mathrm{A}=$	(The values displayed with the seven output items are available only once.) If you are not using a printer, record the values, then
	BAG/A= D GRO=	key R/S.
	$\begin{aligned} & \text { D GRO= } \\ & \text { VOL/A= } \end{aligned}$	
	VG/A $=$	
	VG\%=	
Repetition/ completion	ANOTHER SET?	(Select the appropriate response.)
		Key YES, then R/S. (The program will return to the plot data section that asks for species. The same species code can be used for more than one category; for example, "cut" and "leave" trees of the same species.)
		Key NO, then R/S.
	TOTALS	(The seven output items will be summed over species or sets. For VARP, the program will return to the plot-data section that asks for the basal area factor. For FIXP, the program will return to the plot-data section that asks for plot size.)

Sample Run: VARP

The sample run of VARP is for a 42-year-old Douglas-fir stand.

Sample Run: FIXP

The sample run of FIXP is for a 15-year-old thinned alder stand.

Using Stand Estimates in Prescriptions for Silviculture

Contrasting Diameter,
 Basal-Area, and
 Cubic-Volume Growth

Estimates of current stand diameter and diameter growth can be used to evaluate changes in merchantability and in logging costs and log value. For example, if the current average diameter is 14 inches and the average growth rate is 0.2 inches per year, the average diameter in 10 years (if we assume a constant growth rate) would be 16 inches; therefore log value would have increased and logging cost probably would have decreased.

Current basal area and basal-area growth are measures of stand density that can be used to evaluate the need for present or future thinning. Estimates of cubic volume and volume growth are important because they are direct measures of wood production. However, volume growth is not always directly related to diameter growth (Figure 1).

FIGURE 1.
TRENDS IN VOLUME GROWTH DO NOT CORRESPOND TO TRENDS IN DIAMETER GROWTH. (DOUGLAS-FIR DATA ARE FROM BERG AND BELL, 1979, PONDEROSA PINE DATA FROM OLIVER AND POWERS, 1978.)

Volume growth is a useful measure of stand performance because it integrates radial growth, change in stand density, and height growth; moreover, it is a measure of increase in merchantable material. Evert (1964) has shown that two stands with the same rate of basal-area growth may have very different rates of volume growth if they differ in basal area and in height growth. This was true in two young Douglas-fir stands (Tappeiner et al. 1982), both growing annually about $8 \mathrm{ft} 2 /$ acre in basal area but about $450 \mathrm{ft}^{3} /$ acre and $340 \mathrm{ft}^{3} /$ acre in volume.

Determining When to Harvest

Volume growth can be used to help select young stands for harvest. Among stands having similar sites and ages, those with high volume growth can be left to grow while poorer stands can be harvested and replaced with more vigorous ones. With estimates of current volume and volume increment, mean annual increment (MAI) and periodic annual increment (PAI) of each stand can also be compared. For example, PAI of the 50 -year-old stand in Table 3 is well above MAI, which has not yet culminated. By that criterion, the stand is still vigorous. However, PAI of the 55 -year-old stand is less than MAI, therefore MAI has probably culminated. Caution should be exercised in using these volume-growth estimates, as tree mortality or volume loss, due to pathogens, for example, is not part of growth calculations but can substantially affect values for net stand growth.

TABLE 3.
VALUES DERIVED FROM VARP ESTIMATES AND DFSIMa SIMULATIONS OF TWO DOUGLAS--FIR STANDS.

Variable	55-yr-old stand, site index 115/50, $125 \mathrm{ft}^{2}$ /acre		50-yr-old stand, site index 128/50 $161 \mathrm{ft}^{2}$ /acre	
	VARP	DFSIM	VARP	DFSIM
Total stem volume (ft ${ }^{3} / \mathrm{acre}$)	5580	4630	6695	6724
MAI ${ }^{\text {b }}$ ($\mathrm{ft}^{3} / \mathrm{acre}$)	101	84	134	134
PAI ${ }^{\text {c (}} \mathrm{ft}^{3} / \mathrm{acre}$)	80	209	259	234
Diameter growth (in/yr)	0.14	0.2	0.23	0.21

[^1]
Evaluating the Effects of Cutting

Stand examination may be made with the purpose of evaluating whether or not a particular treatment will be profitable. A proposed level of stocking or basal area can be tested, first, by tallying "cut" and "leave" trees on each plot and choosing tarif trees to represent each class. Entering the data for all trees in an untreated stand will give growth and volume estimates that can then be compared with estimates made with an assumed treatment. In the example in Table 4, almost $2,900 \mathrm{ft}^{3}$ /acre would be harvested. Basal area would be reduced from 266 to $190 \mathrm{ft} 2 /$ acre, and it is estimated that annual volume growth would be reduced 22% (from 317 to $250 \mathrm{ft} 3 /$ acre). If the remaining trees were vigorous and could respond to the thinning, the reduction might be only temporary.

VARP or FIXP may also analyze data plot by plot. Note that stocking in the Douglas-fir stand in Table 4 varies from 134 to 526 trees/acre and volume growth from 180 to $500 \mathrm{ft}^{3}$ /acre annually. Analysis of individual plots may be important in such stands where great variation in growth warrants different prescriptions. The basal area of this stand appears to be increasing rapidly-from 4.5 to more than $12.0 \mathrm{ft}^{2} /$ acre annually. In 10 years, if we assume no mortality, the basal area is expected to range from $225 \mathrm{ft}^{2}$ /acre (Plot 1) to more than $480 \mathrm{ft}^{2}$ /acre (Plot 2). If a thinning
prescription is being considered, marking guidelines might vary with stand density.

Calibrating Growth Models

Growth estimates made with VARP or FIXP can also be used in calibrating growth models to a particular stand. For example, comparison of results of an examination in 50-and 55-year-old Douglas-fir stands with estimates from a growth model (Table 3) show that, until about 50 years of age, the 55 -year-old stand produced somewhat more volume than that estimated by the stand simulator. However, in the last 5 to 10 years, diameter growth decreased sharply, and PAI and diameter growth are much less than that estimated by the simulator. Also, VARP indicates that MAI has culminated; the stand simulator indicates that it has not. The stand examination shows that estimates from the simulator should be adjusted to give more accurate projections of future stand volumes.

In the 50 -year-old stand (Table 3), total volume estimated by VARP agrees with the estimate of the stand simulator, and periodic volume and diameter growth are comparable. Thus stand growth projected by the simulator can be accepted with greater confidence. Because PAI may increase or decrease rapidly with stand age or other factors, VARP or FIXP growth estimates probably should not be projected beyond 10 years.

TABLE 4.
CURRENT VALUES AND ESTIMATES OF GROWTH ON SIX PLOTS IN A 45-YEAR-OLD DOUGLAS-FIR STAND.

Plot	Trees per acre	Annual diameter growth	Basal area	Annual basal-area growth	Volume	Annual volume growth	
		in.	$-\ldots-\mathrm{ft}^{2} /$ acre $-\ldots$	$\mathrm{ft}^{3} /$ acre	$\mathrm{ft}^{3} /$ acre	$\%$	
1	134	0.2	180	4.5	6,900	180	2.6
2	214	0.2	220	6.2	8,300	250	3.0
3	526	0.2	360	12.7	13,200	500	3.8
4	326	0.2	320	9.4	12,000	370	3.1
5	210	0.2	260	6.9	9,900	270	2.8
6	335	0.2	260	8.4	9,600	330	3.4
Average	290	0.2	266	8.0	9,983	317	3.1
Average after thinninga	160	0.25	190	6.3	7,100	250	3.5

[^2]
Literature Cited

BERG, A.B. and J.B. BELL. 1979. Levels-of-growing-stock cooperative study on Douglas-fir. Report No. 5--The Hoskins study 1963-1975. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. Research Paper PNW 257.

BRACKETT, M. 1973. Notes on tarif tree volume computation. State of Washington, Department of Natural Resources, Olympia. Resource Management Report 24.

CHAMBERS, C.J., and B.W. FOLTZ. 1979. The tarif system-revisions and additions. State of Washington, Department of Natural Resources, Olympia. DNR Note Number 27.

CHAMBERS, C.J., and B.W. FOLTZ. 1980. Comprehensive tree-volume tarif tables. 3rd edition, State of Washington, Department of Natural Resources, Olympia.

COLE, B.L. 1965. Construction and analysis of comprehensive tree-volume tarif tables. State of

Washington, Department of Natural Resources, Resource Management Report 8.

CURTIS, R.O., G.W. CLENDENEN and D.J. DeMARS. 1981. A new stand simulator for coast Douglas-fir: DFSIM users guide. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. General Technical Report PNW-128.

EVERT, F. 1964. Components of stand volume and its increment. Journal of Forestry 62:810-813.

OLIVER, W.W. and R.F. POWERS. 1978. Growth models for ponderosa pine: I. Yield of unthinned ponderosa pine plantations in northern California. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California. Research Paper PSW-133.

TAPPEINER, J.C., J.F. BELL and J.D. BRODIE. 1982. Response of young Douglas-fir to 16 years of intensive thinning. Forest Research Laboratory, Oregon State University, Corvallis. Research Bulletin 36.

Tarif－Number（TN）Equation

TN computes the tarif number for each tarif tree by means of Equation［2］，p．2．The program assumes that data register R_{16} contains tarif－tree diameter at breast height，DBH； R_{20} contains total－stem cubic－foot volume of the individual tarif tree， CVTS_{t} ；and R_{25} contains the basal－area constant（ 0.005454154 ）．Intermediate results are stored in R_{19} ．The X register contains the result．

G1＊LEL＂TH＂	17 RCL 25
92 RCL 16	18＊
8319	19．887266
84	$20+$
45－4．015292	21 RCL 19
日6＊	22＊
时 Ef菩	23.174533
日6 1． 382937	24－
的 4	25 STO 19
191	26 FCL 20
$11+$	27.912733
121.8330	23＊
13＊	29 RCL 19
1457019	30 \％
15 RCL 16	31 ETH
16842	32 EHD

Cubic－Volume Total－Stem （CVTS）Equation

CVTS computes the species－independent total stem cubic－foot volume by means of Equation［4］，p． 3. The program assumes that data register R_{21} contains diameter，D， R_{22} contains basal area，BA， and R_{11} contains the average tarif number， $\mathrm{TN}_{\mathrm{av}}$ ． D may be the midpoint diameter of the class or the midpoint diameter plus or minus a small increment．BA is the basal area corresponding to D．The X register contains the result．

B1＊LBL＊CUTS＂	14 RCL 22
02 RCL 21	15.987266
6310	$16+$
84 \％	17＊
95－4．015292	18.174537
66＊	$19-$
时 E $4 \times$	2 RCCL 11
881.382937	21＊
可＊	22.912733
101	23 \％
$11+$	24 RTH
121.0338	2.5 EHIJ
13 ＊	

How to Change Volume Equations

The programs were written in sections in order to facilitate independent checking and easy adapta－ tion，such as substitution of species－specific volume equations．You may wish to use local volume equations or equations that include merchantability standards．

To enter a species－specific volume equation，start by selecting an equation that uses diameter at breast height，DBH，and total tree height，HT，for calculating total－stem cubic－foot volume，CVTS． The example given here is for ponderosa pine （Brackett 1973）：

$$
\operatorname{CVTS}_{\mathrm{PP}}=\left(10^{-2.729937}\right)\left(\mathrm{DBH}^{1.909478}\right)\left(\mathrm{HT}^{1.085681}\right) .
$$

DBH for each tarif tree is stored in data register R_{16} ，and HT in R_{17} ．The main program，either VARP or FIXP，expects the answer CVTS to be stored in R_{20} ．The common species code for ponderosa pine is PP．The following is the HP－41C program for ponderosa pine volume．

Step Mo．	Instruction	Explanation
01	LBL＇PP＇	Links species code and program
02	－2．729937	Exponent of 10
03	$10 \uparrow$ X	Computes 10－2．729937
04	RCL 16	Recalls DBH
05	1.909478	Exponent of DBH
06	$\mathrm{Y} \uparrow \mathrm{X}$	Computes DBH 1.909478
07	＊	Multiplies DBH 1.909478 times 10－2．729937
08	RCL 17	Recalls HT
09	1.085681	Exponent of HT
10	$\mathrm{Y} \uparrow \mathrm{X}$	Computes HT 1.085681
11	＊	Multiplies $\mathrm{HT}^{1.085681}$ times（DBH1．090478） （10－2．729937）
12	STO 20	Stores result（CVTS）in register 20
13	RTN	Returns to main pro－ grams（VARP or FIXP）
14	END	Ends the program

Intermediate results in this program are stored in the＂stack＂，a series of registers used during computations．

Species－Specific Equations

Species codes and volume equations are listed in Table 2，p．2．The following programs assume that
data register R_{16} contains tarif－tree diameter at breast height，DBH，and that R_{17} contains tarif－tree height，HT． R_{19} is available for storing intermediate results if you wish． R_{20} contains the results．

Alder	Douglas－fir	Western Hemlock	Ponderosa Pine
014LBL＂flif			81＋LBL＂PF＂
62－2．672775	G2 RCL 16	$02-2.72178$	02－2．729937
031048	03 LOG	03104%	03184 X
04 RCL 16	4451019	04 RCL 16	04 RCL 16
0.51 .920617	$05-3.21889$	052.08857	851.989478
	$96107+7$	06 H 4 X	$06 \mathrm{Y4}$
07%	07 PCL 17	07 ＊	$97 *$
98 RCL 17	88.84943	88 RCL 17	68 RCL 17
891.874824	89 PCL 19	091.88620	091.685681
1071%	10＊	$19 \mathrm{Y} \ddagger \mathrm{X}$	10 Y 4 X
11＊	119	11 ＊	11＊
1251020	12＊	12 RCL 16	$12 \mathrm{ST0} 29$
13 RTH	13 RCL 16	13－．88566	13 RTH
14 ENI	14 RCL 19	14＊	14 EHI
	15－． 15664	15169%	
	16＊	16＊	
	$17 \mathrm{Y} 4 \times$	1755020	
	18 ＊	18 RTH	
	19 RCL 16	19 EHD	
Aspen	292.02132 2149	Big－leaf Maple	Sitka Spruce
	22 ＊		
	23 RCL 17	01＊LBL ${ }^{\text {MAP }}{ }^{\text {a }}$	－1＋LBL＂SS＂
02－2．635360	241.63468	02－2．770324	82－2．558299
03189%	25 Y 7%	83 104\％	03 169
日4 RCL 16	26＊	84 RCL 16	84 RCLL 16
051.946034	27 RCL 17	0.51 .885813	051.835678
66 Y 9 合	28 ENTER \uparrow	66 Y4\％	96 Y 48
67＊	29 LOG	07\％	日 ${ }^{*}$
日8 RCL 17	30－．16185	88 RCL 17	63 RCL 17
891.024793	31 ＊	991.119643	091.842595
$10 \mathrm{Y} 4 \times$	$32 \mathrm{Yt} \mathrm{\%}$	$10 Y 4 \%$	10 Yty
11 ＊	33 ＊	11＊	11＊
$12 \mathrm{ST0} 29$	3451020	12 STO 28	12 STO 2 O
13 RTH	35 RIH	13 RTH	13 ETH
14 END	36 END	14 END	14 ENI

Data Register Assignments for VARP and FIXP

R
00 Total weighted annual diameter growth
01 Total number of trees per acre
02 Total basal area per acre
03 Total basal area growth per acre
04 Total volume per acre
05 Total annual volume growth per acre
06 Species／set number of trees per acre
07 Species／set basal area per acre
08 Species／set annual basal－area growth per acre
09 Species／set volume per acre
10 Species／set annual volume growth per acre
11 Average tarif number

12 Average annual diameter growth
13 Basal area factor of prism
14 Years of radial growth measured
15 Species code name
16 Tarif－tree diameter
17 Tarif－tree height；current diameter class
18 Tarif－tree radial growth；maximum diameter class
19 Temporary storage
20 Tarif－tree volume；number of trees per acre in current diameter class
21 Tarif－tree count；D for CVTS
22 BA for CVTS
23 Volume for（D－．01）
24 Number of plots
25 Basal－area constant（0．005454154）

Program Listing：VARP

B1＊LBL $=$ YARP ${ }^{\text {a }}$	3985016
E2＂YAR PLOT＂	4451011
03 OYIEH	4151012
04 ＂COPYRIGHT 1984＊	4251021
95 ＂OREGOH STATE＂	43 ＂SPECIES？＊
86 －UHIHERSITY＇	44 AOH
日 ${ }^{\text {P }}$－FOREST RESEARCH＂	45 PROMFT
08 ＂LABORATORY＂	46．MOFF
日 9 CF 15	47 ASTO 15
10 SF 16	48 ＂ 10 YOU HHE＊
113 F 21	49 AYIEH
12 CF 29	54 －TARIF TrEES＊＊
13． 0965454154	51 MON
1451025	52 PFOMFT
154LEL 61	53 H0FF
16 回	54 AST0 P
17510 й	55 ＂N0＂
18510.61	56 ASTO X
19 ST0 02	57%
20510.3	5867085
21 ST0 64	$59+$ LBL 03
22 ST0 65	6 R RCL 21
23 FIY 8	611
24 ＂BAF？${ }^{\text {a }}$	$62+$
25 PROMPT	63 FI\％ 4
2651013	64 ＂IBH H0．
27 ＂N0．OF PLOTS？＂	$65 \operatorname{ARCL} 8$
28 PROMPT	66 ＂${ }^{\text {？}}$
29 STO 24	67 FI\％ 1
	68 PROMPT
31 PROMPT	6980
325 TO 14	769066
33 LEL 92	7151016
346	72 FIX 6
3551096	73 ＂HT？＂
3651087	74 PROMPT
3757088	7551017
$38 \mathrm{ST0} 09$	76 －RG？＊

77 PROMPT	115 ＊94． $\mathrm{TH=}$
7651018	116 ARCL 11
79 YEQ IND 15	117 OYIEN
80 FIM 1	
81 ＂CUSS＝＂	119 FIP 2
82 RRCL ${ }_{\text {P }}$	129 ARCL 12
83 RYIEH	121 RYIEH
84 YER＂Th＂	122 FIX
85 ＂TH＝＊	123 ＊IN．DBH CL．？${ }^{\text {a }}$
86 ARCL 8	124 PROMPT
87 AYIEN	$125 \mathrm{ST0} 17$
$80 \mathrm{ST}+11$	126 ＂HAX．IBH CL．？${ }^{\text {c }}$
$89+$ LEL 64	127 PROMPT
96 RCL 18	12851018
9116	123＊LEL 68
92%	138 RCL 17
93 RCL 14	13151021
94；	$132 \mathrm{x}+2$
$95 \mathrm{ST}+12$	133 RCL 25
961	134 ＊
$975 T+21$	1355702
98 GTO 43	136 ＂CL．＊
$99+L E L$ 85	137 ARCL 17
190＊AY．TARIF？＊	133 ＂TREES？＊
lй1 FIX 1	139 PROMPT
182 PROMPT	$148 \times=9$ ？
153 ST0 11	141 GTO 89
	142 RCL 13
105 FIV 2	143 ＊
166 PROMPT	144 RCL 24
0757012	145 \％
18867087	$146 \mathrm{ST}+87$
93＋LBL 96	147 RCL 22
1 BrCL 21	148 \％
$11 \mathrm{ST} / 11$	14951028
$12 \mathrm{ST} / 12$	$158 \mathrm{ST}+86$
134 LBL 67	151 Yeg＂CHTS＊
14 FIV 1	152 RCL 26

153＊	189 ：	$225 *{ }^{*} / \mathrm{H}=\cdots$	$261{ }^{*} \mathrm{~T} /$ 月 $=$＂
$1545 \mathrm{~T}+89$	190 FCL 25	226 ARCL 10	262 ARCL 91
155 RCL 17	191＊	227 AYIEH	263 PVIEH
156.01	192 RCL 2 d	226 FIX 1	$264{ }^{*}$ BR／A $=$－
$157-$	193 \％	229 RCL 10	265 ARCL 82
158 STO 21	194 ST＋ 88	$2385 \mathrm{~T}+85$	266 AYIEH
159 \％12	195＊LBL ${ }^{\text {¢ }} 9$	231 RCL 89	267 FIX 1
169 RCL 25	196 RCL 18	$2325 \mathrm{~T}+\mathrm{E4}$	268 ＂ $\mathrm{BAG} / \mathrm{A}=^{\text {\％}}$
161＊	197 RCL 17	233＊	269 RRCL 83
16257022	§1982	234106	279 AHEH
163 XE6＂CHTS＂	$199+$	235 ＊	271 FIX 2
164 STO 23	29851017	236－46\％$=$－	272 RCL 明
165 RCL 17		237 ARCL	273 RCL 1
166． 月1 1	29267080	236 AYIEN	274 ；
$167+$	203 －SPECIES＂	239 RCL 86	275 ＂1 GRO＝－
16851021	204 ARCL 15	$24 \mathrm{ST}+8 \mathrm{i}$	276 ARCL 8
169 等2	205 AYIEH	241 PCL 12	277 RYIEH
176 RCL 25	$286 \mathrm{FI} \mathrm{K}_{6} 6$	242＊	278 FI\％ 8
171＊		243 ST +60	279 － $70 \mathrm{~L} / \mathrm{A}=$－
1725102	2088 RRCL 66	244 RCL 87	288 ARCL 94
173 YEE＂CYTE＂	299 RYIEH	$24.597+62$	281 AYIEH
174 RCL 23	$210{ }^{\circ} \mathrm{BA} / \mathrm{A}={ }^{\text {a }}$	246 FCL 日	$262 \cdot 46 / 8=$－
175－	211 ARCL 87	247 ST＋ 83	283 ARCL 85
176．82	212 AVIEH	248 －RNOTHER SET？＂	294 AVIEW
177 \％	213 FIY 1	245 HON	285 FIX I
170 RCL 12	$214{ }^{-86 G / A}=\cdot$	250 PROMPT	236 RCL B5
179 ＊	215 ARCL 88	251 ADFF	287 RCL 84
189 RCL 26	216 AYIEH	252 ASTII Y	288 \％
181＊	217 FIX 2	25.3 ＂ $\mathrm{NO}^{\text {＂}}$	28916 B
$182 \mathrm{ST}+16$	218 －If GR0＝	254 A5T0	290 ：
183 RCL 12	219 ARCL 12	$255 \mathrm{x} \times \mathrm{Y}$	291 － $4 \mathrm{C} /=\times$
184 RCL 17	229 AYIEH	256 GTO 的	292 ARCL \％
1652	221 FI\％${ }^{\text {g }}$	257 LEL 10	293 AHIEH
186\％	222 － $\mathrm{HOL} / \mathrm{A}=\cdot$	25%－tatals＊	294 GT0 61
$187+$	223 ARCL 日	259 AYIEH	295 EHI
186 RCL 12	224 HYIEN	268 FIV ${ }^{6}$	

\S This program line determines 2 －inch diameter－classes．Change the digit＂ 2 ＂to＂ 1 ＂for 1 －inch diameter－classes．

Program Listing：FIXP

91＊LEL＂FIMF＂	18950
Q2＂FIX PLOT＂	1951042
B3 AYIEM	269508
64 －COFYRIGHT 1984＂	2157084
95 ＂OREGOH STATE＂	2251085
86 ＂UNIYERSITY＂	23 FIM 2
67 ＂FOREST RESEMRCH＊	241
日8－LABORATORY＇	25 ＂PLOT SIZE＊
09 CF 15	26 PROMPT
10 SF 16	27 \％
11 SF 21	28 ST0 13
12 CF 29	29 FIX ${ }^{\text {a }}$
13.085454154	$30-\mathrm{RGY}$ ？
14 ST0 25	31 PROMPT
15＊LEL 01	32 ST0 14
160	$33 \cdot L B L$
17 STü 08	340

3551066	52 PROMPT
3651067	53 ROFF
37 ST0 日8	54 AST0 Y
$38 \mathrm{ST0} 09$	55 ＂ $\mathrm{N0}{ }^{\text {－}}$
39 STO 10	56 AST0 X
4951011	$57 \mathrm{X}=\mathrm{Y}$ ？
41 ST0 12	58 CTO 85
42 STO 21	$59+$ LBL 83
43 ＂SPECIES？	69 RCL 21
44 RON	611
45 PROMFT	$62+$
46 AOFF	63 FIX 0
47 ASTO 15	64 －DBH NO．＊
48 ＂D0 YOU HAYE＂	65 ARCL
43 AYIEH	66 ＂F ？${ }^{\text {c }}$
50 ＂TARIF TREES？＂	67 FIX 1
51 HON	68 PROMPT

$69 \mathrm{X}=6$ ？	126 ＂HAX．IEH CL．？＊	183 RCL 17	248 RCL 12
70 GT0 96	127 PROMPT	1842	241 ＊
71 ST0 16	12851018	185＊	$24259+60$
72 FIX 9	129＊LBL 88	$186+$	243 RCL 日7
73 ＂HT？	136 RCL 17	187 FCL 12	$244 \mathrm{ST}+\mathrm{V}_{2}$
74 PROMPT	13151021	188＊	245 RCL 日8
7551017	132×12	169 RCL 25	$2465 \mathrm{~T}+6.3$
76 －RG？＊	133 RCL 25	194＊	247 －AMOTHER SET？＊
77 PROMPT	134 ＊	191 RCL 26	248 AOH
78 STO 18	13557022	192 ＊	249 PROMPT
79 XEE IND 15	136 －CL．	193 ST＋㫙	250 HOFF
30 FIX 1	137 ARCL 17	194＊LBL 㫙	251 AST0 Y
81 ＂CYIS＝＊	136 ＂F TREES？＊	195 RCL 18	$255^{\circ} \mathrm{H0} 0^{\circ}$
82 ARCL X	139 FROHPT	19 RCL 17	253 H5T0
83 AVIEH	$14 \mathrm{BX} \mathrm{X}=\mathrm{Q}$ ？	§1972	254 \％+7 ？
84 XEQ＂TN＂	141 GT0 89	$198+$	255 GTO 6
85 ＂TH＝	142 RCL 13	19951017	256 LBL 16
86 ARCL ${ }^{8}$	143 ＊	2й 8 CQ	257 ＂TOTALS
87 AVIEH	144 ST0 29		258 AYIEH
$88 \mathrm{ST}+11$	$145 \mathrm{ST}+66$	202 －SPECIES＂	$299 \mathrm{FI} \mathrm{O}^{\text {团 }}$
89＊LBL 04	146 RCL 22	293 ARCL 15	$266{ }^{\circ} \mathrm{T} / \mathrm{H}=\times$
98 RCL 18	147 ＊	2044 AYIEH	261 ARCL 91
9110	148 STO 24	205 FIX ${ }^{\text {O }}$	262 AYIEM
92 \％	$149 \mathrm{ST}+67$	$246{ }^{\text {＂}}$／／$/ \mathrm{H}=$＂	263 ＊ $\mathrm{BH} / \mathrm{A}=$＝
33 RCL 14	15 SEQ ＂CYTS＂	297 HRCL 66	264 ARCL V2 2
94 \％	151 RCL 26	29 SNYIEH	265 AYIEH
$35 \mathrm{ST}+12$	152 ＊		266 FIO 1
961	$153 \mathrm{ST}+89$	215 ARCL 日7	267 － $\mathrm{BAG} / \mathrm{A}=$＊
$97 \mathrm{ST}+21$	154 RCL 17	211 AYIEM	268 ARCL Ba_{3}
93 GT0 93	155.81	212 FIH	269 AYIEH
994 LBL 85	$156-$	213 ＂ $\mathrm{BAG} / \mathrm{H}={ }^{\text {－}}$	270 FIX 2
108 ＂AV．TARIF？	15751021	214 ARCL 88	271 RCL 日G
181 FIX 1	158×12	215 AYIE	272 RCL 61
102 PRUMPT	159 RCL 25	216 FIX 2	273 \％
10351011	169 ＊	217 －11 GR0＝	274 －11 GR0＝－
104 ＊PY．IG？＊	16157022	218 APCL 12	275 ARCL ${ }^{\text {\％}}$
195 FIX 2	162 YEQ＂CUTS＂	219 APIEM	276 AlIEM
186 PROMPT	16357023	224 FI\％	277 FIM
10751012	164 RCL 17	221 － $\mathrm{HOL} / \mathrm{H}=\cdot$	278 － $\mathrm{MOL} / 2 \mathrm{C}=$
108 GTO 07	165．61	222 ARCL 99	279 ARCL 04
$109+$ LBL 06	$166+$	223 AYIEH	286 AYIEH
110 RCL 21	16757021	$224-\mathrm{Ma} / \mathrm{H}={ }^{\text {\％}}$	281 － $\mathrm{WG} / \mathrm{H}={ }^{\text {a }}$
$1115 \mathrm{~T} / 11$	168×42	225 ARCL 19	282 ARCL 65
$112 \mathrm{ST} / 12$	169 RCL 25	226 AYIEA	283 A IEM
1130 LBL 87	1780	227 FIU 1	284 FIX 1
114 FIX 1	17151022	228 RCL 10	285 RCL 85
115－84．TH＝＊	172 汭＂CUTS＂	229 ST＋ 85	286 RCL 94
116 ARCL 11	173 RCL 23	238 RCL 日9	287 \％
117 AYIEH	174 －	$2315 \mathrm{ST}+04$	288109
118 －${ }^{\text {PV }}$ DG＝＊	175.82	232 \％	209＊
119 FIX 2	176%	233189	$29 \mathrm{MCO}=-$
120 ARCL 12	177 RCL 12	234 ＊	291 ARCL ${ }^{\text {\％}}$
121 AVIEH	178＊	235 －45\％＝	292 AYIEH
122 FIX	179 RCL 28	236 ARCL 8	293 GTO 61
123 － HIH. DEH CL．？＊	180＊	237 AYIEH	294 EHLI．
124 PROMPT	$1815 \mathrm{~T}+16$	230 RCL 66	
125 \＄T0 17	182 RCL 12	$239 \mathrm{ST}+61$	

§ This program line determines 2 －inch diameter－classes．Change the digit＂ 2 ＂to＂ 1 ＂for 1 －inch diameter－classes．

Notation

ALD	alder	MAX. DBH CL.	maximum diameter class
ASP	aspen	MAP	big-leaf maple
AV	average	MIN. DBH CL.	minimum diameter class
BA	basal area	PP	ponderosa pine
BA/A	basal area per acre	RG	radial growth
BAF	basal-area factor	RGY	radial growth years
BAG	basal-area growth	SS	Sitka spruce
BAG/A	basal-area growth per acre	T/A	trees per acre
CL.	diameter class	TN	tarif number
CVTS	cubic-foot volume, total stem	VARP	variable-radius plot
D	midpoint DBH of the diameter class	VG\%	percentage of volume growth per year
DBH	diameter at breast height, 4.5 ft .	VG/A	cubic volume growth per year
		VOL/A	volume per acre
DF	Douglas-fir	VOLGRO	volume growth per tree of the
DG, D GRO	diameter growth		diameter class
FIXP	fixed plot	Subscripts	
GM	growth multiplier	av	average
HM	western hemlock	d	diameter class
HT	height	t	individual tree

TAPPEINER, J.C., J.C. GOURLEY, and W.H. EMMINGHAM. 1985. A USER'S GUIDE FOR ON-SITE DETERMINATIONS OF STAND DENSITY AND GROWTH WITH A PROGRAMMABLE CALCULATOR. Forest Research Laboratory, Oregon State University, Corvallis. Special Publication 11. 18 p .

Instructions are given for estimating current volume and basal area and periodic volume, basal area, and diameter growth of forest stands with a hand-held, programmable calculator. The technique, which uses the tarif system of Cole and Chambers and Foltz, enables estimates to be made in the field. Use of the estimates in silviculture prescriptions is discussed.

KEYWORDS: Stand growth, stand examination, growth and yield, silviculture prescriptions, programmable calculator.

TAPPEINER, J.C., J.C. GOURLEY, and W.H. EMMINGHAM. 1985. A USER'S GUIDE FOR ON-SITE DETERMINATIONS OF STAND DENSITY AND GROWTH WITH A PROGRAMMABLE CALCULATOR. Forest Research Laboratory, Oregon State University, Corvallis. Special Publication 11. 18 p.

Instructions are given for estimating current volume and basal area and periodic volume, basal area, and diameter growth of forest stands with a hand-held, programmable calculator. The technique, which uses the tarif system of Cole and Chambers and Foltz, enables estimates to be made in the field. Use of the estimates in silviculture prescriptions is discussed.

KEYWORDS: Stand growth, stand examination, growth and yield, silviculture prescriptions, programmable calculator.

OR HEO/F7E/2 . 4Gp: :11 E.3
Tappeiner, J. G.
A user s guide for armsite determinations of stand

Oregon State Library
Salem, 97310

As an affirmative action institution that complies with Section 504 of the Rehabilitation Act of 1973, Oregon State University supports equal educational and employment opportunity without regard to age, sex, race, creed, national origin, handicap, marital status, or religion.

[^0]: ${ }^{\text {a }}$ Source for the western hemlock equation is Chambers and Foltz (1979). All other equations are from the British Columbia Forest Inventory (Brackett 1973).
 ${ }^{\text {b }}$ This equation applies only to trees less than 140 years old.

[^1]: ${ }^{\text {a }}$ Curtis et al. (1981).
 b Mean annual increment: total volume (no thinning or mortality) divided by stand age.
 ${ }^{C}$ Periodic annual increment: average annual growth for previous 10 years.

[^2]: ${ }^{2}$ Estimates of the density and growth of trees after a hypothetical thinning of 130 trees and $76 \mathrm{ft}^{2}$ basal area per acre. Trees were designated on variable plots and measurements were summarized in VARP.

