HEO/F76/2 cial Publication 11

ÜR

.4Sp3 :11 c.3

April 1985

A User's Guide for On-Site Determinations of Stand Density and Growth with a Programmable Calculator

J. C. Tappeiner J. C. Gourley W. H. Emmingham

College of Forestry

Oregon State University

The Forest Research Laboratory of Oregon State University was established by the Oregon Legislature to conduct research leading to expanded forest yields, increased use of forest products, and accelerated economic development of the State. Its scientists conduct this research in laboratories and forests administered by the University and cooperating agencies and industries throughout Oregon. Research results are made available to potential users through the University's educational programs and through Laboratory publications such as this, which are directed as appropriate to forest landowners and managers, manufacturers and users of forest products, leaders of government and industry, the scientific community, and the general public.

The Authors

The authors are members of the College of Forestry, Oregon State University, Corvallis. John C. Tappeiner is associate professor and Jonna C. Gourley is senior research assistant, Department of Forest Management. William H. Emmingham is extension specialist and associate professor of silviculture, Department of Forest Science.

Disclaimer

The mention of trade names or commercial products in this publications does not constitute endorsement or recommendation for use.

To Order Copies

Copies of this and other Forest Research Laboratory publications are available from:

Forestry Business Office College of Forestry Oregon State University Corvallis, Oregon 97331

Please include author(s), title, and publication number if known.

A User's Guide for On-Site Determinations of Stand Density and Growth with a Programmable Calculator

J. C. Tappeiner J. C. Gourley W. H. Emmingham

- **1** Introduction
- **1** How the Programs Work
 - 1 Tarif-Tree Section
 - **3** Stand-Table Section
 - 3 Tree Volume
 - 3 Basal-Area Growth
 - 3 Volume Growth
 - 3 Summation by Species or Sets
 - 4 VARP/FIXP Flowchart

5 User's Guide for VARP / FIXP

- 5 Getting Started
- 6 Running Procedure
- 8 Sample Run: VARP
- 9 Sample Run: FIXP

10 Using Stand Estimates in Prescriptions for Silviculture

- 10 Contrasting Diameter, Basal-Area, and Cubic-Volume Growth
 - **10 Determining When to Harvest**
 - 11 Evaluating the Effects of Cutting
 - 11 Calibrating Growth Models
- 12 Literature Cited

13 Appendices

- 13 Tarif-Number (TN) Equation
- 13 Cubic-Volume Total-Stem (CVTS) Equation
- 13 How to Change Volume Equations
- 14 Species-Specific Equations
- 15 Data Register Assignments for VARP and FIXP
- 15 Program Listing: VARP
- 16 Program Listing: FIXP
- 18 Notation

Introduction

To help foresters quickly determine stand growth and density in the field, we have developed two programs, FIXP for fixed plots and VARP for variable-radius plots, to be run on a hand-held calculator convenient to use on site. We believe the programs will save both inventory and officecomputation time. The necessary field data are relatively easy to obtain. You supply tree height, diameter, radial growth, and a measure of stand density. The appropriate program quickly summarizes the data, providing estimates of the current growth in cubic volume, basal area, and diameter, and of number of trees, basal area, and cubic volume per acre. Because estimates can be calculated in the field, questions they may raise can be immediately resolved by observation or additional measurement.

The programs apply to any species for which you have volume equations. We provide equations from Brackett (1973) for Douglas-fir, Sitka spruce, ponderosa pine, alder, big-leaf maple, and aspen, and from Chambers and Foltz (1979) for western hemlock. The programs allow insertion of local volume equations or those with merchantability standards.

We emphasize that the programs are designed for stand examination and analysis in the field. They do not replace powerful, computer-based stand simulators that estimate and project stand growth under different densities and treatments. However, they can be used with such simulators and with site-specific information to verify growth estimates, test thinning strategies, and calibrate growth models to specific stands.

How the Programs Work

Both VARP and FIXP are constructed in two parts: a tarif-tree section and a stand-table section. We have used the tarif-volume system (Chambers and Foltz 1980, Cole 1965) because it provides a compact method for estimating volume and volume growth from individual tree measurements and volume equations. Two types of data are needed: tarif-tree measurements and a tally of trees by 2-inch diameter class. The kinds of information needed to run the programs are listed in Table 1.

Tarif-Tree Section

Tarif trees should be chosen to represent the stand as a whole or the set of components (species, crown class, tree class, diameter class) for which growth and volume are to be estimated. If there is more than one species, data for each are entered and computed separately. Tarif trees should be distributed throughout the population. In relatively uniform 40- to 50-year-old Douglas-fir stands, we have found that five to ten trees give consistent estimates of total stand growth. Chambers and Foltz (1980) recommend 20 tarif trees per species and provide a method for statistical checking of sample adequacy. If you are using the tarif system for the first time or in unfamiliar stands, we suggest that you make a "sensitivity analysis," varying the number of tarif trees by diameter or crown classes to determine how growth and volume estimates are affected. Measure the tarif trees carefully (see Table 1).

TABLE 1.

INFORMATION REQUIRED FOR THE PROGRAMS.				
VARP	FIXP			
PLOT	DATA			
Basal-area factor of prism (1 to 100)	Plot area in acres (0.01 to 100+)			
Number of plots (prism points)	Species			
Species Number of years (rings) for which radial growth is measured	Number of years (rings) for which radial growth is measured			
TARIF-TI	REE DATA			
DBH to the nearest 0.1 inch	DBH to the nearest 0.1 inch			
Height to the nearest 2 feet	Height to the nearest 2 feet			
Radial growth as counted in 1/20-inch increments	Radial growth as counted in 1/20-inch increments			
STANE	DATA			
DBH of each "in" tree to the nearest inch	DBH of each "in" tree to the nearest inch			

Estimation of volume growth from a tarif number is made with the assumption that the number does not change as the diameter grows. The average tarif number for a given stand is used for all diameter classes. Like other volume-to-basal area ratios (VBAR's), a tarif number implies a relationship between diameter and height. When diameter increases, height must increase correspondingly to ensure that the ratio remains constant. Because tarif number may change with age, and because growth rate changes appreciably, especially in young stands, use caution when projecting volume.

The purpose of the tarif-tree section is to compute the average tarif number, TN_{av} , and the average annual diameter growth, DG_{av} , of a stand. If these values have been previously calculated, they may be entered directly. The calculator performs calculations with as many digits to the right of the decimal as you provide, but the resulting tarif numbers are printed to the nearest tenth and values for diameter growth to the nearest hundredth.

If TN_{av} and DG_{av} have not been previously calculated, individual tarif-tree numbers, TN_t , and annual diameter growth, DG_t , are determined from individual tarif-tree data by means of Equations [1], [2], and [3].

 TN_t is calculated in two steps. The first step requires a species-specific equation by which total-stem cubic-foot volume for an individual tree, $CVTS_t$, is computed from values for diameter at breast height, DBH, and height, HT. Equation [1], from Brackett (1973), is for Douglas-fir, DF:

TABLE 2.

SPECIES-SPECIFIC EQUATIONS FOR TOTAL-STEM CUBIC-FOOT VOLUME (CVTS) INCLUDING TOP AND STUMP.

Progr	am	
symbo	ol Species	Equation ^a
НМ	Western hemlock (<u>Tsuga heterophylla</u>)	$CVTS = (10^{-2.72170})(DBH^{2.00857})(HT^{1.08620})(10^{00568DBH})$
ALD	Alder (<u>Alnus rubra</u>)	$CVTS = (10^{-2.672775})(DBH^{1.920617})(HT^{1.074024})$
ASP	Aspen (<u>Populus</u> <u>tremuloides</u>)	$CVTS = (10^{-2.635360})(DBH^{1.946034})(HT^{1.024793})$
MAP	Big-leaf maple (<u>Acer macrophyllum</u>)	$CVTS = (10^{-2.770324})(DBH^{1.885813})(HT^{1.119043})$
PP	Ponderosa pine (<u>Pinus ponderosa</u>)	$CVTS = (10^{-2.729937})(DBH^{1.909478})(HT^{1.085681})$
SS	Sitka spruce (<u>Picea</u> <u>sitchensis</u>) ^b	$CVTS = (10^{-2.550299})(DBH^{1.835678})(HT^{1.042599})$

^a Source for the western hemlock equation is Chambers and Foltz (1979). All other equations are from the British Columbia Forest Inventory (Brackett 1973).

^b This equation applies only to trees less than 140 years old.

2
4

$$CVTS_{DF} = (10^{B_1})(HT^{B_2LogDBH})(DBH^{B_3LogDBH})$$

[1]

[2]

where $B_1 = -3.21809$

$B_1 = -3.21809$	$B_4 = 2.02132$
$B_2 = 0.04948$	$B_5 = 1.63408$
$B_3 = -0.15664$	$B_6 = -0.16185$

Log is the logarithm to the base 10.

Six other species-specific equations are given in Table 2.

The second step for computing TN_t requires a general equation for all species (see Appendix, p. 13) and values for $CVTS_t$ and DBH:

$$TN_{t} = \frac{B_{1} CVTS_{t}}{B_{2} \left[1 + B_{3} e^{\left(B_{4} \frac{DBH}{10}\right)}\right] \left[BA_{t} + B_{5}\right] - B_{6}}$$

where

 RG_t is the length of the increment core for the growth period measured in twentieths of an inch and entered in the calculator as a whole number. For example, if the increment core is 23/20 inches long, 23 is entered. RGY is the number of years in the growth period (the number of annual rings on the increment core), usually 5 or 10.

$$DG_{t} = \frac{RG_{t}}{10 (RGY)}.$$
[3]

Stand-Table Section

The purpose of the stand-table section is to calculate values per acre (number of trees, basal area, volume, basal-area growth, and volume growth) for each 2-inch diameter class. VARP and FIXP differ chiefly in the way they compute number of trees per acre and basal area per acre for a class. In the VARP program, basal area per acre is computed by multiplying the total number of "in" trees by the basal area factor of the prism. The number of trees per acre in a diameter class is then computed by dividing basal area per acre by average basal area per tree of the class. Average basal area per tree corresponds to the basal area of a tree at the diameter-class midpoint. In the FIXP program, the number of trees per acre in a diameter class is computed by dividing the total number of "in" trees by the plot area. Basal area per acre of a diameter class is then computed by multiplying number of trees per acre by average basal area per tree of the diameter class.

The remaining calculations of diameter class are the same for VARP and FIXP. Volume per tree, basal area growth per tree, and volume growth per tree are computed for a tree at class midpoint. Diameter-class values are obtained by multiplying midpoint values by the number of trees in the class. The sum of diameter-class values comprises the totals per acre.

Tree Volume

Total-stem cubic-foot volume of a tree at the diameter-class midpoint, $CVTS_d$, is computed by means of a species-independent equation (see Appendix, p. 13).

[4]

$$CVTS_{d} = \frac{TN_{av} \left[B_{2} \left[1 + B_{3} e^{(B_{4} \frac{D}{10})} \right] \right] \left[BA_{d} + B_{5} \right] - B_{6} \right]}{B_{1}}$$

where

B values are the same as in Equation [2], D is the midpoint DBH of the class, and BA_d is the basal area, $D^2 * 0.005454154$.

Basal-Area Growth

Basal-area growth of a tree at the diameter-class midpoint (BAG_d) is computed: [5]

$$BAG_d = \left[(D + DG_{av})^2 - D^2 \right] * 0.005454154.$$

Computations are made for each diameter class with the same value for DG_{av} . Differences in

growth by diameter class depend on the diameter midpoint; that is, a larger starting diameter means a larger ring of growth, even though the ring width is constant.

Volume Growth

Volume growth per tree in a given diameter class is found by computing the rate of volume growth per unit of DBH growth for a 0.01-inch increment on each side of the class midpoint diameter [Equation 6] and by multiplying that value, called the growth multiplier, GM_d (Brackett 1973), by the average diameter growth rate for the stand [Equation 7]:

[6]

$$GM_d = \frac{(CVTS_{D+0.01}) - (CVTS_{D-0.01})}{0.02}$$

where

- $CVTS_{D+0.01}$ is the cubic volume of a tree with a diameter 0.01 greater than the class midpoint diam-

[7]

$$VOLGRO_d = GM_d * DG_d$$
.

Summation by Species or Sets

The summation over diameter classes of values per acre for the number of trees, basal area, basalarea growth, volume, and volume growth gives totals per acre for species or other sets. VARP and FIXP will also sum values for several species or sets. For example, if a stand contains Douglas-fir and hemlock, the tarif-tree and plot data may be entered separately for each species, the average tarif number for Douglas-fir tarif trees applied to data for the Douglas-fir plot and the average tarif number for hemlock tarif trees to data for the hemlock plot. After completing both sets of calculations, the programs print a sum that represents full per-acre values for basal area and volume. Similarly, in thinning computations, "cut" trees and "leave" trees can be entered and computed separately, then summed; as can dominant, codominant, intermediate, and suppressed trees. The advantage of using an average tarif number is that it best represents the form of the trees of a particular species or diameter class.

VARP / FIXP Flowchart

Getting Started

The programmable calculator we used was a Hewlett-Packard 41-C with a quad calculator memory module (equivalent to four standard memory modules). The newer HP-41CV has the same amount of memory built in. Three standard memory modules in an HP-41C can also be used.

A printer is helpful for changing programs or for extensive data sets. A card reader is generally used for program entry.

Both VARP and FIXP are video-enabled, providing correct flag settings for duplicating the calculator display on a television screen.

- f Gold shift key (selects alternate function)
- reference

Kev

- XEO Execute key
- LN Natural logarithm key
- f ASN Shift and assign keys
- SIZE Function controlling size of data storage (spelled letter by letter in alpha mode)
- f GTO Shift and go to keys
- R/S Run/stop key
- ALPHA Alpha mode toggle switch
- PRGM Program mode toggle switch
- Program The main programs, VARP or FIXP, perform most of the calculations. They require requirements 1) one or more species-specific volume equations; 2) the tarif program to compute the tarif number for each tarif tree; and 3) the cubic-volume program to compute total-stem cubic-foot volume for the typical tree in each diameter class.

Loading the programs CAUTION: <u>Do not connect or remove equipment from the calculator unless both</u> <u>pieces are turned off</u>. Joining equipment that is turned on produces a current arc that may ruin both pieces.

Turn off the calculator. Attach the card reader. Turn on the calculator.

Adjust the data storage size to at least 26 data registers.

Key XEQ ALPHA SIZ E ALPHA. Key 026.

f XEQ	
	s
	R/S

Be sure the calculator is <u>not</u> in program mode. If PRGM appears in the display, press the PRGM toggle switch. When PRGM disappears, the calculator is out of program mode.

Key f GTO.. (two periods) to place a termination mark after the last program in the calculator.

Repeat Repeat the two following steps for all programs:

procedure Put cards in the reader. (The calculator prompts for each side of the required cards.) Press f GTO.. after each program.

Practice The following example of data analysis is for a 42-year-old Douglas-fir stand. We suggest that you follow each step in the running procedure and use the data in the sample runs to teach yourself how the programs work.

Running Procedure

When using a printer, turn off both calculator and printer, then connect them and turn the printer on. <u>Put the printer in NORM mode</u>. When not using a printer, R/S must be keyed after each line to program displays. <u>Put the calculator in USER mode</u> with or without the printer. VARP and FIXP run identically except where separate instructions are bracketed.

	Display	Response				
Beginning		Key XEQ ALPHA V A R P (or F I X P) ALPHA, or key the assigned function.				
Plot data	VAR PLOT	With no printer, key R/S.				
VARP	BAF?	Key the basal area factor of the prism, then R/S.				
	NO. OF PLOTS?	Key the number of plots, then R/S.				
DIVD	FIX PLOT	With no printer, key R/S.				
FIXP	PLOT SIZE	Key the size of the plot, then R/S.				
	RGY?	Key the number of radial growth years, then R/S.				
	SPECIES?	Key the alphabetic species code, then R/S. Note that the calculator is automatically in ALPHA mode for this entry.				
	DO YOU HAVE TARIF TREES?	With no printer, key R/S. Key YES to enter tarif tree data or NO to enter average tarif number and average diameter growth, then R/S.				

Tarif	DBH NO. n?	Key diameter at breast height for tarif tree "n," then R/S.			
information	HT?	Key total height, then R/S.			
	RG?	Key radial growth, then R/S.			
	CVTS=	(Digits are displayed for total-stem cubic-foot volume for tarif tree "n.") With no printer, key R/S.			
	TN=	(Digits are displayed for the tarif number of tarif tree "n.") With no printer, key R/S.			
	DBH FOR NO. n?	Key a zero, then R/S.			
	AV. TARIF?	Key the average tarif number, then R/S.			
	AV. DG?	Key average annual diameter growth, then R/S.			
	AV. TN=	(Digits are displayed for the average tarif number.) With no printer, key R/S.			
	AV.DG=	(Digits are displayed for average annual diameter growth.) With no printer, key R/S.			
Stand table	MIN. DBH CL.?	Key minimum diameter class, then R/S.			
cable	MAX. DBH CL.?	Key maximum diameter class, then R/S.			
	CL. n TREES?	Key number of "in" trees tallied for diameter class "n," then R/S.			
Species/set results	T/A= BA/A= DGRO= VOL/A= VG/A= VG%=	(The values displayed with the seven output items are available only once.) If you are not using a printer, record the values, then key R/S.			
Repetition/	ANOTHER SET?	(Select the appropriate response.)			
completion		Key YES, then R/S. (The program will return to the plot data section that asks for species. The same species code can be used for more than one category; for example, "cut" and "leave" trees of the same species.)			
		Key NO, then R/S.			
	TOTALS	(The seven output items will be summed over species or sets. For VARP, the program will return to the plot-data section that asks for the basal area factor. For FIXP, the program will return to the plot-data section that asks for plot size.)			

Sample Run: VARP

The sample run of VARP is for a 42-year-old Douglas-fir stand.

Calculator Display	Usei Inpu	it	Calculator Display cont.	User cont	Input
YAR PLOT Baf? No. of plots?	XEQ - 20	VARP- Run	CVTS=81.9 TN=38.7 DBH NO. 6 ?	20	RUN
RGY?	7 10	run Run	AV. TN=38.9 AV. DG=0.18 MIN. DBH CL.?	0.0	RUN
SPECIES? Do you have	DF	RUN	MAX. DBH CL.?	10	RUN
TARIF TREES? DBH NO. 1 ?	YES	RUN	CL. 10 TREES? CL. 12 TREES?	22 5	RUN Run
HT?	14.5 100	RUN	CL. 14 TREES?	12	RUN
RG? CVTS=45.1	20	RUN	CL. 16 TREES? CL. 18 TREES?	20 24	RUN Run
TN=37.2 DBH NO. 2 ?	20.3	RUN	CL. 20 TREES?	18	RUN
HT? RG?	118	RUN	CL. 22 TREES?	6 2	run Run
CVTS=95.9 TN=39.1 DBH NO. 3 ?	24	RUN	Stand Summary		
HT?	12.1	RUN	SPECIES DF		
RG? CVTS=31.4	96 14	RUN Run	T∕A= 212 BA∕A= 249 BAG∕A= 6.0 D GRO= 0.18 VOL∕A= 10243		
TN=38.1 DBH NO. 4 ? HT?	10.4	RUN	VG/A= 261 VG%= 2.5 ANOTHER SET?		
RG? CVTS=24.4	98 12	RUN Run	TOTALS T∕A= 212 BA∕A= 249	H	IO RUN
TN=41.3 DBH NO. 5 ?	18.9	RUN	BAG∕A= 6.0 D GRO= 0.18 VOL∕A= 10243		
HT? RG?	114	RUN	VG∕A= 261 VG2= 2.5 BAF?		

Sample Run: FIXP

The sample run of FIXP is for a 15-year-old thinned alder stand.

Calculator User Display Input		Calculator	Calculator User Input Display cont. cont.		Calculator		Input	
	XFQ	•FIXP"	Display cont.	cont		Display cont.	cont.	
FIX PLOT PLOT SIZE			CVTS=5.3 TN=27.8			CVTS=2.6 TN=23.8		
RGY?	.20	RUN	DBH NO. 6 ?	5.4	RUN	DBH NO. 12 ?	5.8	RUN
SPECIES?	10	RUN	HT?	50	RUN	HT?	48	RUN
DO YOU HAYE	ALD	RUN	RG?	25	RUN	RG?		
TARIF TREES?			CVTS=3.6			CVTS=4.0	30	RUN
DBH NO. 1 ?	YES	RUN	TN=27.5 DBH NO. 7 ?	7.0	RUN	TN=25.4 DBH NO. 13 ?		
HT?	8.3	RUN	HT?	48	RUN	AV. TN=25.3	6.0	RUN
RG?	48	RUN	RG?			AY. DG=0.35 MIN. DBH CL.?		
CVTS=7.9	45	RUN	CVTS=5.7	41	RUN	MAX. DBH CL.?	6	RUN
TN=22.1 DBH NO. 2 ?			TN=23.4 DBH NO. 8 ?			CL. 6 TREES?	10	RUN
HT?	6.6	RUK	HT?	7.1	RUN	CL. 8 TREES?	11	RUN
RG?	50	RUN		54	RUN	CL. 10 TREES?	12	RUN
CVTS=5.3	35	RUN	RG?	42	RUN		2	RUN
TN=25.1 DBH NO. 3 ?			CVTS=6.6 TN=26.4					
HT?	6.5	RUN	DBH NO. 9 ?	6.9	RUN	Stand Sum	nary	
RG?	48	RUN	HT?	54	RUN	SPECIES ALD		
CVTS=4.9	34	RUN	RG?	38	RUN	T∕A= 125 BA∕A= 37		
TN=24.1 DBH NO. 4 ?			CVTS=6.3 TN=26.7			BAG/A= 3.5 D gro= 0.35		
HT?	6.5	RUN	DBH NO. 10 ?	6.5	RUN	VOL/A= 875 VG/A= 93		
RG?	50	RUN	HT?	52	RUN	VG%= 10.6 Another set?		
CVTS=5.2	37	RUN	RG?	32	RUN	TOTALS	I	NO RUN
TN=25.2 DBH NO. 5 ?			CVTS=5.4 TN=26.3			T∕A= 125 BA∕A= 37		
HT?	6.3	RUN	DBH NO. 11 ?	5.0	RUN	BAG/A= 3.5 D GRO= 0.35		
	54	RUN	HT?	42	RUN	VOL∕A= 875 VG∕A= 93		
RG?	40	RUN	RG?	20	RUN	VG%= 10.6 Plot size		

Using Stand Estimates in Prescriptions for Silviculture

Contrasting Diameter, Basal-Area, and Cubic-Volume Growth

Estimates of current stand diameter and diameter growth can be used to evaluate changes in merchantability and in logging costs and log value. For example, if the current average diameter is 14 inches and the average growth rate is 0.2 inches per year, the average diameter in 10 years (if we assume a constant growth rate) would be 16 inches; therefore log value would have increased and logging cost probably would have decreased.

Current basal area and basal-area growth are measures of stand density that can be used to evaluate the need for present or future thinning. Estimates of cubic volume and volume growth are important because they are direct measures of wood production. However, volume growth is not always directly related to diameter growth (Figure 1).

FIGURE 1.

TRENDS IN VOLUME GROWTH DO NOT CORRE-SPOND TO TRENDS IN DIAMETER GROWTH. (DOUGLAS-FIR DATA ARE FROM BERG AND BELL, 1979, PONDEROSA PINE DATA FROM OLIVER AND POWERS, 1978.) Volume growth is a useful measure of stand performance because it integrates radial growth, change in stand density, and height growth; moreover, it is a measure of increase in merchantable material. Evert (1964) has shown that two stands with the same rate of basal-area growth may have very different rates of volume growth if they differ in basal area and in height growth. This was true in two young Douglas-fir stands (Tappeiner et al. 1982), both growing annually about 8 ft²/acre in basal area but about 450 ft³/acre and 340 ft³/acre in volume.

Determining When to Harvest

Volume growth can be used to help select young stands for harvest. Among stands having similar sites and ages, those with high volume growth can be left to grow while poorer stands can be harvested and replaced with more vigorous ones. With estimates of current volume and volume increment, mean annual increment (MAI) and periodic annual increment (PAI) of each stand can also be compared. For example, PAI of the 50-year-old stand in Table 3 is well above MAI, which has not yet culminated. By that criterion, the stand is still vigorous. However, PAI of the 55-year-old stand is less than MAI, therefore MAI has probably cul-Caution should be exercised in using minated. these volume-growth estimates, as tree mortality or volume loss, due to pathogens, for example, is not part of growth calculations but can substantially affect values for net stand growth.

TABLE 3.

VALUES DERIVED FROM VARP ESTIMATES AND DFSIM^a SIMULATIONS OF TWO DOUGLAS-FIR STANDS.

:		d stand, x 115/50, acre	50-yr-old stand site index 128/5 161 ft ² /acre		
Variable	VARP	DFSIM	VARP	DFSIM	
Total stem vol- ume (ft ³ /acre)		4630	6695	6724	
MAI ^b (ft ³ /acre) 101	84	134	134	
PAI ^C (ft ³ /acre)) 80	209	259	234	
Diameter growth (in/yr)	0.14	0.2	0.23	0.21	

^a Curtis et al. (1981).

^b Mean annual increment: total volume (no thinning or mortality) divided by stand age.

 $^{^{\}rm C}$ Periodic annual increment: average annual growth for previous 10 years.

Evaluating the Effects of Cutting

Stand examination may be made with the purpose of evaluating whether or not a particular treatment will be profitable. A proposed level of stocking or basal area can be tested, first, by tallying "cut" and "leave" trees on each plot and choosing tarif trees to represent each class. Entering the data for all trees in an untreated stand will give growth and volume estimates that can then be compared with estimates made with an assumed treatment. In the example in Table 4, almost 2,900 ft³/acre would be harvested. Basal area would be reduced from 266 to $190 \text{ ft}^2/\text{acre}$, and it is estimated that annual volume growth would be reduced 22% (from 317 to 250 $ft^3/acre$). If the remaining trees were vigorous and could respond to the thinning, the reduction might be only temporary.

VARP or FIXP may also analyze data plot by plot. Note that stocking in the Douglas-fir stand in Table 4 varies from 134 to 526 trees/acre and volume growth from 180 to 500 ft³/acre annually. Analysis of individual plots may be important in such stands where great variation in growth warrants different prescriptions. The basal area of this stand appears to be increasing rapidly-from 4.5 to more than $12.0 \text{ ft}^2/\text{acre}$ annually. In 10 years, if we assume no mortality, the basal area is expected to range from $225 \text{ ft}^2/\text{acre}$ (Plot 1) to more than $480 \text{ ft}^2/\text{acre}$ (Plot 2). If a thinning prescription is being considered, marking guidelines might vary with stand density.

Calibrating Growth Models

Growth estimates made with VARP or FIXP can also be used in calibrating growth models to a particular stand. For example, comparison of results of an examination in 50- and 55-year-old Douglas-fir stands with estimates from a growth model (Table 3) show that, until about 50 years of age, the 55-year-old stand produced somewhat more volume than that estimated by the stand simulator. However, in the last 5 to 10 years. diameter growth decreased sharply, and PAI and diameter growth are much less than that estimated by the simulator. Also, VARP indicates that MAI has culminated; the stand simulator indicates that it has not. The stand examination shows that estimates from the simulator should be adjusted to give more accurate projections of future stand volumes.

In the 50-year-old stand (Table 3), total volume estimated by VARP agrees with the estimate of the stand simulator, and periodic volume and diameter growth are comparable. Thus stand growth projected by the simulator can be accepted with greater confidence. Because PAI may increase or decrease rapidly with stand age or other factors, VARP or FIXP growth estimates probably should not be projected beyond 10 years.

TABLE 4.

CURRENT VALUES AND ESTIMATES OF GROWTH ON SIX PLOTS IN A 45-YEAR-OLD DOUGLAS-FIR STAND.

Plot	Trees per acre	Annual diameter growth	Basal area	Annual basal–area growth	Volume	Anni volume g	
		in.	ft ²	/acre	ft ³ /acre	ft ³ /acre	%
1	134	0.2	180	4.5	6,900	180	2.6
2	214	0.2	220	6.2	8,300	250	3.0
3	526	0.2	360	12.7	13,200	500	3.8
4	326	0.2	320	9.4	12,000	370	3.1
5	210	0.2	260	6.9	9,900	270	2.8
6	335	0.2	260	8.4	9,600	330	3.4
Average	290	0.2	266	8.0	9,983	317	3.1
Average a thinning ^a	fter 160	0.25	190	6.3	7,100	250	3.5

a Estimates of the density and growth of trees after a hypothetical thinning of 130 trees and 76 ft² basal area per acre. Trees were designated on variable plots and measurements were summarized in VARP.

Literature Cited

BERG, A.B. and J.B. BELL. 1979. Levels-ofgrowing-stock cooperative study on Douglas-fir. Report No. 5-The Hoskins study 1963-1975. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. Research Paper PNW 257.

BRACKETT, M. 1973. Notes on tarif tree volume computation. State of Washington, Department of Natural Resources, Olympia. Resource Management Report 24.

CHAMBERS, C.J., and B.W. FOLTZ. 1979. The tarif system—revisions and additions. State of Washington, Department of Natural Resources, Olympia. DNR Note Number 27.

CHAMBERS, C.J., and B.W. FOLTZ. 1980. Comprehensive tree-volume tarif tables. 3rd edition, State of Washington, Department of Natural Resources, Olympia.

COLE, B.L. 1965. Construction and analysis of comprehensive tree-volume tarif tables. State of

Washington, Department of Natural Resources, Resource Management Report 8.

CURTIS, R.O., G.W. CLENDENEN and D.J. De-MARS. 1981. A new stand simulator for coast Douglas-fir: DFSIM users guide. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. General Technical Report PNW-128.

EVERT, F. 1964. Components of stand volume and its increment. Journal of Forestry 62:810-813.

OLIVER, W.W. and R.F. POWERS. 1978. Growth models for ponderosa pine: I. Yield of unthinned ponderosa pine plantations in northern California. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California. Research Paper PSW-133.

TAPPEINER, J.C., J.F. BELL and J.D. BRODIE. 1982. Response of young Douglas-fir to 16 years of intensive thinning. Forest Research Laboratory, Oregon State University, Corvallis. Research Bulletin 36.

Tarif-Number (TN) Equation

TN computes the tarif number for each tarif tree by means of Equation [2], p. 2. The program assumes that data register R_{16} contains tarif-tree diameter at breast height, DBH; R_{20} contains total-stem cubic-foot volume of the individual tarif tree, CVTS_t; and R_{25} contains the basal-area constant (0.005454154). Intermediate results are stored in R_{19} . The X register contains the result.

01+LBL "TN" 02 RCL 16 03 10	17 RCL 25 18 * 19 .087266
04 ∕ 05 -4.015292	20 + 21 RCL 19
86 *	22 *
07 EtX	23 .174533
08 1.382937	24 - 25 CTO 10
09 * 10 i	25 STO 19 26 RCL 20
11 +	27 .912733
12 1.0330	28 *
13 *	29 RCL 19
14 STO 19 15 RCL 16	30 / 31 RTN
16 X 1 2	32 END

Cubic-Volume Total-Stem (CVTS) Equation

CVTS computes the species-independent total stem cubic-foot volume by means of Equation [4], p. 3. The program assumes that data register R_{21} contains diameter, D, R_{22} contains basal area, BA, and R_{11} contains the average tarif number, TN_{av} . D may be the midpoint diameter of the class or the midpoint diameter plus or minus a small increment. BA is the basal area corresponding to D. The X register contains the result.

01+LBL "CVTS"	14 RCL 22
02 RCL 21	15.087266
03 10	16 +
94 /	17 *
05 -4.015292	18.174533
06 ×	19 -
07 E†X	20 RCL 11
08 1.382937	21 *
0 9 *	22 .912733
10 1	23 /
11 +	24 RTN
12 1.0330	25 END
13 *	

How to Change Volume Equations

The programs were written in sections in order to facilitate independent checking and easy adaptation, such as substitution of species-specific volume equations. You may wish to use local volume equations or equations that include merchantability standards.

To enter a species-specific volume equation, start by selecting an equation that uses diameter at breast height, DBH, and total tree height, HT, for calculating total-stem cubic-foot volume, CVTS. The example given here is for ponderosa pine (Brackett 1973):

 $CVTS_{PP} = (10^{-2.729937})(DBH^{1.909478})(HT^{1.085681}).$

DBH for each tarif tree is stored in data register R_{16} , and HT in R_{17} . The main program, either VARP or FIXP, expects the answer CVTS to be stored in R_{20} . The common species code for ponderosa pine is PP. The following is the HP-41C program for ponderosa pine volume.

01	LBL 'PP'	Links species code and program
02	-2.729937	Exponent of 10
03	10 🕈 X	Computes 10-2.729937
04	RCL 16	Recalls DBH
05	1.909478	Exponent of DBH
06	Y↑X	Computes DBH1.909478
07	*	Multiplies DBH1.909478
		times 10-2.729937
08	RCL 17	Recalls HT
09	1.085681	Exponent of HT
10	Υ↑Χ	Computes HT1.085681
11	*	Multiplies HT1.085681
		times (DBH1.090478)
		(10-2.729937)
12	STO 20	Stores result (CVTS) in
		register 20
13	RTN	Returns to main pro-
		grams (VARP or FIXP)
14	END	Ends the program

Intermediate results in this program are stored in the "stack", a series of registers used during computations.

Species-Specific Equations

Species codes and volume equations are listed in Table 2, p. 2. The following programs assume that

data register R_{16} contains tarif-tree diameter at breast height, DBH, and that R_{17} contains tarif-tree height, HT. R_{19} is available for storing intermediate results if you wish. R_{20} contains the results.

Alder	Douglas-fir	Western Hemlock	Ponderosa Pine
01+LBL "ALD"	Ø1+LBL "DF"	Ø1♦LBL "HM"	01+LBL "PP"
02 -2.672775	02 RCL 16	02 -2.72170	02 -2.729937
03 10tX	03 LOG	03 10†X	03 10†X
04 RCL 16	04 STO 19	04 RCL 16	04 RCL 16
05 1.920617	05 -3.21809	0 5 2.00857	05 1.909478
06 YMX	06 10†X	06 YTX	06 Y†X
07 *	97 RCL 17	07 *	07 *
88 RCL 17	08.04948	88 RCL 17	08 RCL 17
09 1.074024	09 RCL 19	09 1.08620	09 1.085681
10 YTX	10 *	10 YtX	10 YTX
i1 *	11 Y†X	11 *	11 *
12 STO 20	12 *	12 RCL 16	12 STO 20
13 RTN	13 RCL 16	13 - .00 568	13 RTN
14 END	14 RCL 19	14 *	14 END
• • • • • •	1515664	15 10tX	
	16 *	16 *	
	17 YtX	17 STO 20	
	18 *	18 RTN	
	19 RCL 16	19 END	
Aspen	20 2.02132		
	21 Y†X	Big-leaf Maple	Sitka Spruce
	22 🔹		
01+LBL "ASP"	23 RCL 17	01+LBL "MAP"	01+LBL "SS"
02 -2.635360	24 1.63408	02 -2.770324	02 -2.550299
03 10tX	25 YtX	03 10†X	03 10†X
04 RCL 16	26 *	04 RCL 16	04 RCL 16
05 1.946034	27 RCL 17	05 1.885813	05 1.835678
06 Y1X	28 ENTER†	06 Y1X	06 Y1X
07 *	29 LOG	07 *	07 *
08 RCL 17	3016185	08 RCL 17	03 RCL 17
89 1.024793	31 *	09 1.119043	89 1.842599
10 Y†X	32 YtX	10 YtX	10 YtX
11 *	33 *	11 *	11 *
12 STO 20	34 STO 20	12 STO 20	12 STO 20
13 RTN	35 RTN	13 RTN	13 RTN
14 END	36 END	14 END	14 END

Data Register Assignments for VARP and FIXP

R

- 00 Total weighted annual diameter growth
- 01 Total number of trees per acre
- 02 Total basal area per acre
- 03 Total basal area growth per acre
- 04 Total volume per acre
- 05 Total annual volume growth per acre
- 06 Species/set number of trees per acre
- 07 Species/set basal area per acre
- 08 Species/set annual basal-area growth per acre
- 09 Species/set volume per acre
- 10 Species/set annual volume growth per acre
- 11 Average tarif number

- 12 Average annual diameter growth
- 13 Basal area factor of prism
- 14 Years of radial growth measured
- 15 Species code name
- 16 Tarif-tree diameter
- 17 Tarif-tree height; current diameter class
- 18 Tarif-tree radial growth; maximum diameter class
- 19 Temporary storage
- 20 Tarif-tree volume; number of trees per acre in current diameter class
- 21 Tarif-tree count; D for CVTS
- 22 BA for CVTS
- 23 Volume for (D-.01)
- 24 Number of plots
- 25 Basal-area constant (0.005454154)

Program Listing: VARP

01+LBL "YARP"	39 STO 10	77 PROMPT	115 "AV. TH="
02 "VAR PLOT"	40 STO 11	78 STO 18	116 ARCL 11
03 AVIEW 04 "Copyright 1984"	41 STO 12	79 XEQ IND 15	117 AVIEW
	42 STO 21	80 FIX 1	118 "AV. DG="
05 "OREGON STATE"	43 "SPECIES?"	81 "CVTS="	119 FIX 2
06 -UNIVERSITY-	44 AON	82 ARCL X	120 ARCL 12
07 FOREST RESEARCH"	45 PROMPT	83 AVIEN	121 AVIEW
08 "LABORATORY"	46 AOFF	84 XEQ "TN"	122 FIX 0
89 CF 15	44 HUN 45 PROMPT 46 ROFF 47 RST0 15	85 "TN="	123 "MIN. DBH CL.?"
10 SF 16	48 "DO YOU HAVE"	86 ARCL X	124 PROMPT
11 SF 21	47 HSTU 15 48 "DO YOU HAVE" 49 Aview	87 AVIEW	125 STO 17
12 CF 29	50 TARIF TREES?"	83 HYLEW 84 XEQ "TN" 85 "TN=" 86 ARCL X 87 AVIEW 88 ST+ 11 8941 RL 04	126 "MAX. DBH CL.?"
13.005454154	50 -TARIF TREES?" 51 AON	89+LBL 04	127 PROMPT
14 STO 25	52 PROMPT	90 RCL 18	128 STO 18
15+LBL 01	53 AOFF	91 10	129+LBL 08
16 0	54 ASTO Y	92 /	130 RCL 17
17 STO 00	55 "NO"	93 RCL 14	131 STO 21
07 -FOREST RESEARCH" 08 -LABORATORY- 09 CF 15 10 SF 16 11 SF 21 12 CF 29 13 .005454154 14 STO 25 15+LBL 01 16 0 17 STO 00 18 STO 01 19 STO 02 20 STO 03 21 CF 04	56 ASTO X	89+LBL 04 90 RCL 18 91 10 92 / 93 RCL 14 94 / 95 ST+ 12 96 1 97 ST+ 21	132 X†2
19 STO 02	57 X=Y?	95 ST+ 12	133 RCL 25
20 STO 03	58 GTO 05	96-1	134 *
21 STO 04	59+LBL 0 3	97 ST+ 21	135 ST0 22
22 STO 05	60 RCL 21	98 GTO 03	136 "CL. "
23 FIX 0	61 1	99+LBL 05	137 ARCL 17
24 "BAF?"	62 +	100 "AV. TARIF?"	138 "H TREES?"
25 PROMPT	63 FIX 0	101 FIX 1	139 PROMPT
	64 "DBH NO. "	102 PROMPT	140 X(=0?
26 STO 13 27 "NO. OF PLOTS?"	65 ARCL X	103 STO 11	141 GTO 09
28 PROMPT	66 "H ?"	104 "AY. DG?"	142 RCL 13
29 STO 24	67 FIX 1	105 FIX 2	143 *
30 "RGY?"	68 PROMPT	106 PROMPT	144 RCL 24
31 PROMPT	69 X<=0?	107 STO 12	145 /
32 STO 14	70 GTO 06	108 GTO 07	146 ST+ 07
33+LBL 02	71 STO 16	109+LBL 06	147 RCL 22
34 0	72 FIX 0	110 RCL 21	148 /
35 STO 06	73 "HT?"	111 ST/ 11	149 STO 28
36 STO 07	74 PROMPT	112 ST/ 12	150 ST+ 06
37 STO 08	75 ST0 17	113+LBL 07	151 XEQ "CYTS"
38 STO 09	76 "RG?"	114 FIX 1	152 RCL 20
	ro nu.		ICE WELD

153 *	189 *	225 °VG/A= °	261 "T/A= "
154 ST+ 09	190 RCL 25	226 ARCL 10	262 ARCL 01
155 RCL 17	191 *	227 AVIEW	263 AVIEW
156.01	192 RCL 20	228 FIX 1	264 *B A/A= *
157 -	193 *	229 RCL 10	265 ARCL 02
158 STO 21	194 ST+ 08	230 ST+ 05	266 AVIEW
159 Xt2	195+LBL 89	231 RCL 09	267 FIX 1
160 RCL 25	196 RCL 18	232 ST+ 04	268 * 8AG/A= *
161 *	197 RCL 17	233 /	269 ARCL 03
162 ST0 22	§ 198 2	234 100	270 AVIEN
163 XEQ "CVTS"	199 +	235 🔹	271 FIX 2
164 STO 23	200 STO 17	236 *V G%= *	272 RCL 00
165 RCL 17	201 X<=Y?	237 ARCL X	273 RCL 01
166.01	202 GTO 08	238 AVIEW	274 /
167 +	203 -SPECIES "	239 RCL 06	275 "D GRO= "
168 STO 21	204 ARCL 15	240 ST+ 01	276 ARCL X
169 X †2	205 AVIEW	241 RCL 12	277 AVIEW
170 RCL 25	206 FIX 0	242 *	278 FIX 0
171 *	207 * T/A= *	243 ST+ 00	279 • ¥0L/A= •
172 ST0 22	208 ARCL 06	244 RCL 07	280 ARCL 04
173 XEQ "CVTS"	209 AVIEW	245 ST+ 02	281 AVIEW
174 RCL 23	210 BA/A= "	246 RCL 08	282 - ¥G/A=
175 -	211 ARCL 07	247 ST+ 03	283 ARCL 85
176 .02	212 AVIEW	248 "ANOTHER SET?"	284 AVIEW
177 /	213 FIX 1	249 AON	285 FIX 1
178 RCL 12	214 BAG/A=	250 PROMPT	286 RCL 85
179 *	215 ARCL 08	251 AOFF	287 RCL 04
180 RCL 20	216 AVIEW	252 ASTO Y	288 /
181 *	217 FIX 2	253 * NO*	289 100
182 ST+ 10	218 "D GRO= "	254 ASTO X	290 *
183 RCL 12	219 ARCL 12	255 X≠Y?	291 "VG%= "
184 RCL 17	220 AVIEW	256 GTO 02	292 ARCL X
185 2	221 FIX 0	257+LBL 10	293 AVIEW
186 *	222 •¥0L/A= •	258 TOTALS"	294 GTO 01
187 +	223 ARCL 09	259 AVIEN	295 END
188 RCL 12	224 AVIEW	260 FIX 0	

§ This program line determines 2-inch diameter-classes. Change the digit "2" to "1" for 1-inch diameter-classes.

Program Listing: FIXP

01+LBL "FIXP" 02 "FIX PLOT" 03 AVIEW 04 "COPYRIGHT 1984" 05 "OREGON STATE" 06 "UNIVERSITY" 07 "FOREST RESEARCH" 08 "LABORATORY" 09 CF 15 10 SF 16	18 STO 01 19 STO 02 20 STO 03 21 STO 04 22 STO 05 23 FIX 2 24 1 25 "PLOT SIZE" 26 PROMPT 27 /	35 STO 06 36 STO 07 37 STO 08 38 STO 09 39 STO 10 40 STO 11 41 STO 12 42 STO 21 43 "SPECIES?" 44 ADN	52 PROMPT 53 AOFF 54 ASTO Y 55 "NO" 56 ASTO X 57 X=Y? 58 GTO 05 59♦LBL 03 60 RCL 21 61 1
07 "FOREST RESEARCH"	24.1	41 ST0 12	
09 CF 15	26 PROMPT	43 "SPECIES?"	60 RCL 21
10 SF 16	27 /	44 AON	61 1
11 SF 21	28 STO 13	45 PROMPT	62 +
12 CF 29	29 FIX 0	46 AOFF	63 FIX 0
13.005454154	30 *RGY?*	47 ASTO 15	64 "DBH NO. "
14 STO 25	31 PROMPT	48 "DO YOU HAVE"	65 ARCL X
15+LBL 01	32 STO 14	49 AVIEW	66 "H ?"
16 0	33+LBL 02	50 "TARIF TREES?"	67 FIX 1
17 STO 00	34 0	51 AON	68 PROMPT

69 X(=0?	126 "MAX. DBH CL.?"	183 RCL 17	240 RCL 12
70 GTO 06	127 PROMPT	184 2	241 *
71 STO 16	128 STO 18	185 *	242 ST+ 00
72 FIX 0	129+LBL 08	186 +	243 RCL 07
73 "HT?"	130 RCL 17	187 RCL 12	244 ST+ 02
74 PROMPT	131 STO 21	188 *	245 RCL 08
75 STO 17	132 X†2	189 RCL 25	246 ST+ 03
76 "RG?"	133 RCL 25	190 *	247 - ANOTHER SET
77 PROMPT	134 *	191 RCL 20	248 AON
78 STO 18	135 STO 22	192 *	249 PROMPT
79 XEQ IND 15	136 °CL. °	193 ST+ 08	250 AOFF
80 FIX 1	137 ARCL 17	194+LBL 09	251 ASTO Y
81 "CVTS="	138 "F TREES?"	195 RCL 18	252 "NO"
	139 PROMPT	196 RCL 17	253 ASTO X
82 ARCL X	140 X(=0?	§197 2	254 X≠Y?
83 AVIEN	141 GTO 09	198 +	255 GTO 02
84 XEQ "TN"	142 RCL 13	199 STO 17	
85 "TN="	142 866 13	200 X(=Y?	256+LBL 10 257 -TOTOLC-
86 ARCL X		200 AV-17 201 GTO 08	257 "TOTALS" SEC OUTER
87 AVIEN	144 STO 20	201 GTU 00 202 "SPECIES "	258 AVIEW 250 CIX 8
88 ST+ 11	145 ST+ 06		259 FIX 0
89+LBL 04	146 RCL 22	203 ARCL 15	260 °T/A= "
90 RCL 18	147 *	204 AVIEW	261 ARCL 01
91 10	148 STO 24	205 FIX 0	262 AVIEW
92 /	149 ST+ 07	206 "T/A= "	263 *B A∕A= *
93 RCL 14	150 XEQ "CVTS"	207 ARCL 06	264 ARCL 02
94 /	151 RCL 20	208 AVIEW	265 AVIEW
95 ST+ 12	152 *	209 "BA/A= "	266 FIX 1
96-1	153 ST+ 09	210 ARCL 07	267 *BA G∕A= *
97 ST+ 21	154 RCL 17	211 AVIEW	268 ARCL 03
98 GTO 03	155.01	212 FIX 1	269 AVIEW
99+LBL 05	156 -	213 *BA G/A= *	270 FIX 2
00 "AV. TARIF?"	157 STO 21	214 ARCL 08	271 RCL 00
01 FIX 1	158 X†2	215 AVIEW	272 RCL 01
02 PROMPT	159 RCL 25	216 FIX 2	273 /
103 STO 11	160 *	217 "D GRO= "	274 "D GR0= "
104 "AV. DG?"	161 STO 22	218 ARCL 12	275 ARCL X
	162 XEQ "CVTS"	219 AVIEW	276 AVIEW
05 FIX 2	163 STO 23	220 FIX 0	277 FIX 0
06 PROMPT	164 RCL 17	221 "YOL/A= "	278 "¥0L/A= "
07 STO 12	165 .01	222 ARCL 09	279 ARCL 04
08 GTO 07		223 AVIEN	
09+LBL 06	166 +	224 • V G/A= "	280 AVIEW
10 RCL 21	167 STO 21		281 "VG/A= "
11 ST/ 11	168 X†2	225 ARCL 10	282 ARCL 05
12 ST/ 12	169 RCL 25	226 AVIEW	283 AVIEW
13+LBL 07	170 *	227 FIX 1	284 FIX 1
14 FIX 1	171 STO 22	228 RCL 10	285 RCL 05
15 "AV. TN="	172 XEQ "CVTS"	229 ST+ 05	286 RCL 04
16 ARCL 11	173 RCL 23	230 RCL 09	287 /
17 AVIEW	174 -	231 ST+ 04	288 1 00
18 -AV. DG=-	175.02	232 /	289 *
19 FIX 2	176 /	233 100	290 "VG%= "
20 ARCL 12	177 RCL 12	234 *	291 ARCL X
21 AVIEW	178 *	235 *V G%= *	292 AVIEW
22 FIX 0	179 RCL 28	236 ARCL X	293 GTO 01
23 MIN. DBH CL.?"	180 *	237 AVIEN	294 .END.
24 PROMPT	181 ST+ 10	238 RCL 06	
25 STO 17	182 RCL 12	230 KCL 00 239 ST+ 01	
EU UIU II	IVE NOT IE	207 011 01	

§ This program line determines 2-inch diameter-classes. Change the digit "2" to "1" for 1-inch diameter-classes.

Notation

ALD	alder	MAX. DBH CL.	maximum diameter class
ASP	aspen	МАР	big-leaf maple
AV	average	MIN. DBH CL.	minimum diameter class
BA	basal area	РР	ponderosa pine
BA/A	basal area per acre	RG	radial growth
BAF	basal-area factor	RGY	radial growth years
BAG	basal-area growth	SS	Sitka spruce
BAG/A	basal-area growth per acre	T/A	trees per acre
CL.	diameter class	TN	tarif number
CVTS	cubic-foot volume, total stem	VARP	variable-radius plot
D	midpoint DBH of the diameter class	VG%	percentage of volume growth per year
DBH	diameter at breast height, 4.5 ft.	VG/A	cubic volume growth per year
DE		VOL/A	volume per acre
DF DG, D GRO	Douglas-fir diameter growth	VOLGRO	volume growth per tree of the diameter class
FIXP	fixed plot	Subscripts	
GM	growth multiplier	av	average
HM	western hemlock	đ	diameter class
HT	height	t	individual tree

TAPPEINER, J.C., J.C. GOURLEY, and W.H. EMMINGHAM. 1985. A USER'S GUIDE FOR ON-SITE DETERMINATIONS OF STAND DENSITY AND GROWTH WITH A PROGRAMMABLE CALCULATOR. Forest Research Laboratory, Oregon State University, Corvallis. Special Publication 11. 18 p.

Instructions are given for estimating current volume and basal area and periodic volume, basal area, and diameter growth of forest stands with a hand-held, programmable calculator. The technique, which uses the tarif system of Cole and Chambers and Foltz, enables estimates to be made in the field. Use of the estimates in silviculture prescriptions is discussed.

KEYWORDS: Stand growth, stand examination, growth and yield, silviculture prescriptions, programmable calculator.

TAPPEINER, J.C., J.C. GOURLEY, and W.H. EMMINGHAM. 1985. A USER'S GUIDE FOR ON-SITE DETERMINATIONS OF STAND DENSITY AND GROWTH WITH A PROGRAMMABLE CALCULATOR. Forest Research Laboratory, Oregon State University, Corvallis. Special Publication 11. 18 p.

Instructions are given for estimating current volume and basal area and periodic volume, basal area, and diameter growth of forest stands with a hand-held, programmable calculator. The technique, which uses the tarif system of Cole and Chambers and Foltz, enables estimates to be made in the field. Use of the estimates in silviculture prescriptions is discussed.

KEYWORDS: Stand growth, stand examination, growth and yield, silviculture prescriptions, programmable calculator.

OR HEO/F76/2 .4Sp3 :11 c.3 Tappeiner, J. C. A user's guide for on-site determinations of stand

> Oregon State Library Salem, 97310

As an affirmative action institution that complies with Section 504 of the Rehabilitation Act of 1973, Oregon State University supports equal educational and employment opportunity without regard to age, sex, race, creed, national origin, handicap, marital status, or religion. Forest Research Laboratory College of Forestry Oregon State University Corvallis, OR 97331-5704

Non-Profit Org. U.S. Postage **PAID** Corvallis, OR 97331 Permit No. 200

Address Correction Requested