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[1] Whole ecosystem carbon dioxide (CO2) exchange estimated with the eddy covariance
(EC) technique has been central to studies on the responses of terrestrial ecosystems to
disturbance and intra-annual and interannual variations in climate, but challenges exist in
understanding and reducing the uncertainty in estimates of net ecosystem exchange (NEE)
of CO2. We review the potential uncertainties associated with the eddy covariance
technique, including systematic errors from insensitivity to high-frequency turbulence,
random errors from inadequate sample size associated with averaging period, vertical and
horizontal advection issues, and selection criteria for removing periods of inadequate
mixing from further analyses. We also discuss benefits and caveats of using independent
measurements to evaluate EC-derived NEE, such as comparisons of EC-derived annual
NEE and allometric net ecosystem production estimates (NEP) and interpretation of
nighttime NEE with scaled chamber-based estimates of ecosystem respiration.
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1. Introduction

[2] The use of eddy covariance (EC) has improved our
understanding of temporally and spatially integrated net
ecosystem exchange rates (NEE) of CO2 between ecosys-
tems and the atmosphere, identifying key biotic and abiotic
processes that control these rates [Loescher et al., 2003;
Bowling et al., 2001; Katul et al., 1998; Lee, 1998; Goulden
et al., 1996; Grace et al., 1996; Hollinger et al., 1994] and
improving ecosystem process models [e.g., Thornton et al.,
2002; Law et al., 2002; Williams et al., 2001; Aber et al.,
1996]. As the EC technique matures, efforts are focused on
reducing uncertainty in NEE estimates.
[3] The EC technique was pioneered over grass and

croplands with long fetch and short roughness lengths
[Kaimal and Wyngaard, 1990; Verma et al., 1989; Lemon,
1960; Monteith and Szeicz, 1960]. Researchers have since
applied this approach over structurally complex ecosystems
in nonideal terrain, introducing new challenges in the
interpretation of results and reduction of uncertainties. The
EC technique is a direct, nondestructive micrometeorolog-
ical approach derived through the simplification of the
conservation equation [Baldocchi, 2003; Baldocchi and

Meyers, 1998; Baldocchi et al., 2000; Shen and Leclerc,
1997]. EC is used to estimate NEE through the addition of
above-canopy turbulent exchange and the change in CO2

storage in the canopy air space (i.e., the temporal change in
carbon concentration integrated from ground level to the
point of measured turbulent exchange, term I, equation (1a)):
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where c is the scalar quantity such as CO2, u, v, and w are
horizontal, cross-wind, and vertical windspeeds (m s�1),
respectively, x, y, and z are Cartesian coordinates, t is time,
and Z is the measurement height (m), the overbars indicate a
time average and prime denotes turbulent fluctuations (i.e.,
deviations from a mean quantity). Term I in equation (1a)
represents the time rate-of-change of c in the vertical
column (i.e., storage), and is considered to be equal to zero
over a 24-hour period, but can be significant over shorter
time intervals. Terms II–IV represent the turbulent flux
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divergence. Terms V–VII represent advection through the
layer between the surface and sensor. The partial derivatives
usually are estimated from data at points in the domain, and
thus are replaced here by finite differences. Assuming that
the measurement height is sufficient and the surface
characteristics are horizontally homogeneous, terms III
and IV are often thought to be 0 and ignored. Terms IV–
VII are inherently difficult to measure well, but thought to
be small and thus not often estimated. Hence only terms I
and II remain. Term II in equation (1b) is commonly
referred to as the eddy covariance (additional assumptions
in its estimation are discussed later). NEE is typically
estimated over a 30-min period from high-frequency
measurements, and integrated further to estimate daily,
season and annual fluxes. The relative importance in the
sources of error differs across timescales, spatial extent and
site conditions. For example, for NEE at minute-to-hour
timescales (compare with photosynthetic uptake and
respiratory efflux), systematic and random errors associated
with instrumentation precision, calibration and placement,
and turbulent transport become significant. In scaling NEE
from day-to-season (months), random errors are reduced,
but other errors are added because of filtering and filling
gaps in data. Consequently, the sources of error in applying
EC to understand rapid biological response to meteorolog-
ical variables are quite different from those errors associated
with determining the environmental controls on phenology,
annual carbon exchange, effects from disturbance, or
whether mature forested ecosystems continue to accumulate
carbon. Of course the relative contribution of all errors
becomes large in either example (i.e., minute-to-hour and
day-to-season) when the mean flux is close to 0.
[4] Some of these errors or uncertainties stem from flows

not fully accounted for within and below the sensor field,
which can result in potential violation of the assumptions.
Other uncertainties result from the stochastic nature of
turbulence. A key stratagem of the long-term flux network,
AmeriFlux, is to assure accurate estimates within and
among flux sites for synthesis activities and regional anal-
ysis. The AmeriFlux science plan has outlined rigorous
quality control protocols for within site measurements (see
http://public.ornl.gov/ameriflux/About/scif.cfm) to avoid
large systematic biases so that subtle spatial and temporal
trends may be discerned. Quality assurance across the
network is assessed through direct comparison of software
routines and instrumentation. Using an independent raw
data file developed by the Euroflux and AmeriFlux net-
works (‘‘gold files’’ for closed- and open-path infrared gas
analyzers can be found at http://public.ornl.gov/ameriflux/
standards-gold.shtml), researchers can process flux data sets
through their own software routine and check estimates
against a standard processed file. Site-to-site differences
among instrument configurations are estimated by an inde-
pendent portable flux measurement system that visits each
site. Consistency and rigor in sample design, analysis,
diagnostics, and data quality checks help to ensure data
are comparable across sites.
[5] In this paper, we review the current progress in

estimating ecosystem level carbon exchange using the eddy
covariance approach across different temporal scales, and
suggest future research directions that can be enhanced by
the EC technique. Explicit discussion of instrumentation

errors and calibrations are not covered here, and are given
by Foken and Oncley [1995],Massman and Lee [2002], and
Foken et al. [2004], and related discussions on surface
energy balance closure are given by Aubinet et al. [2000],
Mahrt [1998], Twine et al. [2000], and Foken et al. [2004].

2. Challenges in Measurements, Analyses,
and Interpretation of EC Fluxes

2.1. Flux Measurement

[6] Estimates of the total CO2 flux from a vegetated
canopy should be made in the surface layer, above the
roughness sublayer, the depth of which changes with
stability [Raupach, 1991; Raupach and Thom, 1981]. In
the surface layer, sometimes referred to as the inertial layer,
Monin-Obukhov similarity theory applies in homogenous
stationary atmospheric conditions [e.g., Kaimal and Finnigan,
1994]. The level close to the surface where the winds
asymptotically become zero by extrapolating Monin-
Obukhov similarity theory downward is d + z0, where d is
the zero-plane displacement and z0 is the characteristic
roughness length [see Panofsky and Dutton, 1984]. Combined,
d and z0 determine the bottom boundary of the surface layer
and d can vary with changes in stability [Loescher et
al., 2003]. Consequently, d and z0 are not easily estimated
for forest canopies and are not formally defined for below-
canopy environments. Estimates of z0 range from 0.01 m
for grass [Hansen, 1993] to >2.4 m over tropical forests
[Loescher et al., 2003].
[7] The use of eddy covariance relies on conditions which

induce turbulence in the surface layer (i.e., shear stress,
surface heating), and sometimes these conditions are weak
or absent. Nighttime conditions can be particularly prob-
lematic as surface heating is absent and radiational cooling
produces stable thermal stratification of the air column that
acts to suppress sheer induced turbulence. The measure-
ments above the canopy may become partially decoupled
from the surface and the computed fluxes become sensitive
to the method of calculation. Researchers have, by neces-
sity, found that empirical relationships between the friction
velocity (u*) and scalar fluxes can determine conditions that
can assist in the estimation of robust turbulent exchanges in
30-min averages. The u* is normally defined as [cf. Weber,
1999],

u* ¼ w0u0
� �2þ w0v0

� �2h i0:25
ð2Þ

[8] Examining the sensitivity in annual integrals to dif-
ferent u* thresholds was introduced by Goulden et al.
[1996] and is now a common method to determine ‘‘well-
mixed’’ conditions [cf. Aubinet et al., 2000; Gu et al.,
2005]. The impact of accepting data on the basis of different
u* thresholds is illustrated in annual integrals from
Howland Forest, an AmeriFlux site, where the annual sums
do not change above a u* threshold of �0.25 m s�1

(Figure 1a). At other sites, a u* threshold however, may
not always be as evident. Using 30-min-averaged data for
example, the nighttime EC flux continued to increase with
increasing u* values from a structurally simple and topo-
graphically flat cocoa plantation (Figure 1b), suggesting
inadequate mixing to fully estimate the respiratory losses
using 30-min-averaged turbulent data.
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[9] Presently, 80% of flux sites surveyed report the use of
a u* threshold criteria for acceptance of nocturnal data with
values ranging between 0.0–0.6 m s�1 (Table 1). The
number of nocturnal 30-min periods excluded from further
analysis by a u* threshold vary from site-to-site. An extreme
example is found in the tropics where Miller et al. [2004]
report that as much as �80% of nighttime data are removed
depending on the value of the u* threshold. The choice of

the threshold value in this case resulted in a �5 t C ha�1 y�1

range in annual NEE. The flux community has developed
no standardized method to determine u* thresholds, al-
though a statistical approach was developed by Gu et al.
[2005]. Use and applicability of a u* threshold to determine
carbon flux remains an active area of research, but the
general concept of restricting analysis to periods with
sufficient atmospheric mixing is sound.

Figure 1. The relationship between u* threshold and (a) annual integrals for 1999 and 2000 from a
coniferous forest at Howland, Maine (45�1201400N, 68�4402500W), and (b) nighttime 30-min data from a
13-year-old, even-aged cocoa plantation, Sulawesi, Indonesia (1�802700S, 120�303400E). Indonesian data
were collected from 4.3 m above a 10.3 m canopy, from February 2002 to April 2003, and the site was flat
for �6 km in any direction from the tower. Cocoa data were bin averaged across u* intervals of 0.1 m s�1,
and error bars are ±1 SD. For additional site and data description for Figure 1a, see Hollinger et al.
[2004], and for Figure 1b, see Falk [2004].
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Table 1. List of Studies That Discuss the Relationship Between u* and Annual NEEa

Study Location Vegetation type Year Annual NEE u* Threshold

Anthoni et al. [1999]b Oregon ponderosa pine 1996 �3.2 none
1997 �2.7 none

Anthoni et al. [2002]c Oregon ponderosa pine 2000 0.1 < u* < 0.55
Barford et al. [2001] Massachusetts maple/oak 1993–2000 �2.0 0.2
Berbigier et al. [2001]d France pine 1997 �4.3 0.4
Black et al. [1996]e Saskatchewan aspen 1994 �1.6 0.15

1996 �0.8
1997 �1.2
1998 �2.9

Clark et al. [1999] Florida slash pine 1996 �7.4 0.2
1997 �6.1

cypress 1996 �0.8
1997 �0.4

Goulden et al. [1997] Canada black spruce 1995 0.7 0.2
1996 0.2
1997 �0.1

Goulden et al. [1996] Massachusetts maple/oak 1991 �2.8 0.2
1992 �2.2
1993 �1.4
1994 �2.1
1995 �2.7

Grace et al. [1996] Brazil tropical humid 1994 �1.0 none
Granier et al. [2000]f France beech 1996 �2.2 0.00

1997 �2.6 0.00
Hollinger et al. [1999]g Maine mixed conifer 1996 �2.1 0.15
Hollinger et al. [2004] Maine mixed conifer 1996 0.25, 0.1–0.5

1997 0.25, 0.1–0.5
1998 0.25, 0.1–0.5

Jarvis et al. [1997] Canada black spruce 1994 �2.0 0.4
Lee et al. [1999] Ontario maple 1996 �0.8 0.15

1997 �2.7
1998 �2.0

Lindroth et al. [1998] Sweden pine 1995 0.9 0.4
1996 �0.05
1997 0.8

Lindroth et al. [1998] Sweden 1997 �1.9 0.4
Loescher et al. [2003]h Costa Rica tropical wet 1998 0.05 0.45

1999 �1.53
2000 �5.97

Malhi et al. [1998] Brazil tropical humid 1995 �5.9 none
Malhi et al. [1999] Saskatchewan spruce 1995 �0.7 yes
Meyers [2001] Oklahoma grassland 1997 0.41
Oechel et al. [2000] Alaska tundra 0.4
Paw U et al. [2000] Washington mixed conifer 1998 �1.7
Pilegaard et al. [2001] Denmark beech 1997 �1.7 0.25

1998 �1.2
Schmid et al. [2000]i Indiana deciduous 1998 �2.4 0.2
Schmid et al. [2003] Michigan deciduous 1999 �1.7 0.35

2000 �1.60 0.35
2001 �0.8 0.35

Suyker et al. [2003] Oklahoma prairie 1997 �2.67 0.2
Valentini et al. [2000] Italy spruce 1998 �4.5 0.2

oak 1997 �6.6
spruce? 1998 �4.5 0.2
beech 1994 �4.7 0.17
mixed deciduous 1997 �6.6 0.2

Germany spruce 1996 �3.3 0.3
Germany spruce 1997 �0.8 0.2
Germany spruce 1997 �0.8
Germany conifer 1996 �3.1 0.4

1997 �4.9 0.4
Netherlands pine 1997 �2.1 0.25
Iceland poplar 1997 �1.0 0.2
UK spruce 1997 �2.1 0.2

1998 �6.7 0.2
Finland pine 1997 �2.3 0.3

1998 �2.6
1999 �1.9

Belgium mixed 1997 �4.3 0.4
Valentini et al. [2000]j 1997 �1.6 0.0
Vourlitis and Oechel [1997] Alaska wet tundra 1995 �0.156 none

moist tundra 1995 �0.276 none
Vourlitis and Oechel [1999]k Alaska tussock tundra 1994 �0.395 none
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2.1.1. Systematic Errors
[10] There are different sources of systematic errors in EC

measurements. Systematic errors occur as a result of instru-
ment response time, pathlength averaging, and physical
separation between sonic anemometers and the measure-
ment system for CO2 or other trace gases [Massman and
Lee, 2002]. In addition, selective systematic errors can
result from both the exclusion of high-frequency turbulence
due to low-pass filtering (used to eliminate noise) and the
exclusion of low-frequency flows due to the length or
method of averaging time [Mann and Lenschow, 1994;
Foken and Wichura, 1996; Vickers and Mahrt, 1997]. For
example, the transport of carbon dioxide due to slowly
moving boundary layer eddies (i.e., conditions with weak
winds and significant surface heating), may be excluded by
traditional averaging periods [Sakai et al., 2001]. The
overall effect is analogous to inadequate spatial averaging,
as is the case with using too short of an averaging distance
to define the turbulent fluctuations in aircraft observations
[Betts et al., 1990; Desjardins et al., 1997]. Systematic
errors occur within each of the averaging periods (i.e.,
30 min) and are present in the EC term (equation (1b))
and scale in the same proportion with longer time integrals
(i.e., 1 year, Table 2). Systematic errors associated with tilt
corrections, flux divergence and advection between the
surface and EC measurement level can exist because of
inaccurate definition of the flux field, or when particular
conditions arise causing one or more of terms III–VII
(equation (1a)) to be not equal to zero, and these errors
may not become apparent until data are examined across
longer time intervals, from day-to-season-to-year.
2.1.2. Defining the Flux Field
[11] The partitioning between turbulent and nonturbulent

motions is influenced by the coordinate rotation method
used to align the sonic anemometer with respect to the
surface [Wilczak et al., 2001] and can lead to systematic
errors. While investigators have been attempting to correct
for possible sonic misalignment for at least 25 years, the
methods for such corrections have been detailed in the

refereed literature only recently. One method, planar rota-
tion [Wilczak et al., 2001], was developed in the late 1970s
by Steven Stage. For nighttime stable conditions, rotating
the coordinate system for individual (e.g., 30 min) records
can lead to erratic results [Finnigan et al., 2003]. Applying
new rotation angles for each 30-min record to eliminate the
cross-wind Reynolds stresses cannot always be justified for
such nocturnal conditions. Several alternative methods have
been developed which compute rotation angles across
longer or ecologically significant periods (month-season-
annum). Some of these methods are classified by Paw U et
al. [2000] and discussed in extensive detail by Wilczak et al.
[2001]. Alternatively, Lee [1998] rotated the coordinate
system for the entire data sample, independently for each
wind direction group. This approach tends to better capture
the directional influence of slopes on turbulence, and the
directionally dependent flow distortions associated with the
instruments, mounting brackets and so forth. This planar fit
method however, is sensitive to remounting of the sonic
anemometer, which will result in the necessary calculation
of new rotation angles.
[12] Mahrt et al. [2000] compared different coordinate

rotation methods for (carefully aligned) sonic anemometers,
and found that differences were insignificant, except for the
estimation of momentum flux under weak wind conditions
(<1 m s�1) or for scalar fluxes under very weak winds
(<�0.25 m s�1). Such conditions would typically be elimi-
nated by the u* threshold discussed previously. They recom-
mended a slightly modified version of the rotation scheme
used by Lee [1998]. Formisaligned sonic anemometers, more
serious errors of�14% and 3% per degree tilt were found for
momentum and scalar fluxes [Moncrieff et al., 1996].
[13] Instrument-induced flow distortions may be larger

below canopy because the vertical velocity is not small
compared to the total horizontal velocity, i.e., large attack
angles. Careful examination of coordinate rotation method-
ologies is needed on below-canopy fluxes and should also
take deviation in flow by trunks and branches into account,
particularly for sites located on challenging topography.

Table 1. (continued)

Study Location Vegetation type Year Annual NEE u* Threshold

1995 �0.552 none
Wilson et al. [2001] Tennessee maple/oak 1994 �5.25

1995 �6.1
1996 �6.0
1997 �6.5
1998 �6.6
1999 �7.4

Yamamoto et al. [1999] Japan deciduous 1994 �1.2
1995 �0.7
1996 �1.4
1997 �1.5
1998 �1.4

aNEE is reported in units of t C ha�1 y�1, and u* is reported in m s�1.
bIncluded a vertical advection term following Lee et al. [1999] and scaled chamber measurements to estimate Re.
cSeasonal fluxes only.
dUsed data from nights when u* > 0.4 for at least 2.5 hours and had storage flux for 1 month.
eUsed sigma u criterion to develop a temperature response, then modeled Re.
fNo correlation found between NEE and u*.
gAssigned uncertainty of 25%, some of the integrated flux (DOY 145–265); the data was filled with a functional relationship using u* > 0.4.
hFixed nighttime Re based on data with u* > 0.45.
iThe u* correction reduced sink by �50%.
jNo relationship between u* and NEE.
kEstimated sink for growing season only.

D21S90 LOESCHER ET AL.: UNCERTAINTIES IN EDDY COVARIANCE DATA

5 of 19

D21S90



2.1.3. Random Errors
[14] Sources of random error differ in flux estimates made

within an averaging period (e.g., 30 min) and those associ-
ated with adding averaging periods together to achieve
estimates across longer time integrals, that is, random flux
errors generally decrease with increasing record length. The
random flux error that Moncrieff et al. [1996] refers to is the
variability among averaging periods, which includes both
the random error that is added from averaging period to
averaging period and the variability due to synoptic changes
in ambient conditions. Diurnal variations were filtered out
of their calculation. Sources of random error within an
averaging period result primarily from an inadequate sample
size [Hollinger and Richardson, 2005; Kruijt et al., 2004;
Finkelstein and Sims, 2001; Vickers and Mahrt, 1997;Mann
and Lenschow, 1994; Lumley and Panofsky, 1964]. This
does not mean to imply however, that sampling more
frequently (e.g., from 10 to 50 Hz) would necessarily reduce
the effects of random error. Needed instead, is the ability to
sample fast enough to resolve all transport scales, but also
long enough to adequately sample the infrequent large
turbulent motions that transport flux. The Allen variance
can be used to assess the relative contribution of instrument
random and systematic error under static conditions and can
assist in determining an appropriate averaging time to
reduce random error [Allen, 1966; Barnes and Allen,

1990] [cf. Bowling et al., 2003; Loescher et al., 2005]
(Figure 2). This is strictly true only if the random error is
normally distributed which is apparently not the case for
(dynamic) flux data [Hollinger and Richardson, 2005;
Richardson et al., 2006]. In the case of a closed path sensor,
longer averaging times used to reduce random error can
introduce systematic error (e.g., sensor drift), which makes
frequent calibrations and instrument stability (i.e., pressure
control and temperature regulation) increasingly important
to reduce uncertainty. With regard to instrumentation noise,
the random error generally becomes small with averaging
times >15 min while the effects from systematic error scale
among different time integrals.
[15] Unfortunately, increasing the averaging period to

capture a large enough sample size also has the potential
to increase the overall contribution of nonstationarity of the
ambient environment, which in turn, can bias the computed
fluxes [Lenschow et al., 1994]. Techniques for assessing
nonstationarity in geophysical turbulence are given by
Gluhovsky and Agee [1994], Foken and Wichura [1996],
and Mahrt [1998].
[16] To reduce random errors, two averaging times are

used to compute the turbulent flux, such that,

s0 ¼ s� sh i ð3Þ

Table 2. Different Sources of Error in 30 min and Annual NEE Estimatesa

Source of Error
Systematic

Error, 30 min
Random

Error, 30 min

Time-Integrated
Error for Annum

Estimates Notes, Annual NEE t C ha�1 y�1 Reference

Instrument noise 2% 11% 2% 
 
 
 
 Kruijt et al. [2004]

�0% 10–20% �0% 
 
 
 
 Weseley and Hart [1985]


 
 
 
 15–20% 
 
 
 
 due to large eddies sampled at 495 m Berger et al. [2001]
Rotation scheme and
averaging operator

10–25% 
 
 
 
 10–25% 
 
 
 
 Kruijt et al. [2004]

14% 
 
 
 
 
 
 
 
 
 
 
 
 Moncrieff et al. [1996]

�0–20% 
 
 
 
 5% uniform systematic error Goulden et al. [1996]
calibration �0–20% 0–6% due to signal and span drift Kruijt et al. [2004]
Frequency loss 8.4% 
 
 
 
 Kruijt et al. [2004]

<5% for daytime NEE estimates Berger et al. [2001]
<12% for nighttime NEE estimates ‘‘ ’’
0–9% cospectral similarity Goldstein et al. [2000]
6–16% ‘‘ ’’ Loescher et al. [2003]

Advection (– ) 10–15% during June and July at WLEF, WI Yi et al. [2000]
(– ) 5–20% Carson, WA (1.9, 1998–1999) M. Falk et al. (manuscript

in preparation)
(– ) 40% vertical advection term only Baldocchi et al. [2000]

Total uncertainty 12.5% Jaru, Brazil site (�5.0, 1999) Kruijt et al. [2004]
32% Manaus, Brazil site (�8.4, 2000) ‘‘ ’’
14% Petersham, MA site Goulden et al. [1996]
21% bOak Ridge, TN site (2.1, 1994) Wilson and Baldocchi [2001]
54% cMetolius, OR site (3.2, 1996) Anthoni et al. [1999]
13% d‘‘ ’’ ‘‘ ’’
<27% Tapajos, Brazil site (2.7, 1997) Saleska et al. [2003]
119% e,fWLEF,WI (0.16, 1997) Davis et al. [2006]
264–527% f,g‘‘ ’’ ‘‘ ’’

Gap filling 3–20% 
 
 
 
 Kruijt et al. [2004]

3.5–20% 8.3–11% for daytime NEE estimates Falge et al. [2001]
1.5–4% 7–52% for nighttime NEE estimates ‘‘ ’’

aThe errors attributable to gap filling were not available for estimates of total uncertainty (except as noted).
bConstrained by soil respiration estimates.
cError of �1/2 due to errors in the respiration estimate.
dError due to gap filling.
eRandom uncertainty only.
fHigh % due to relatively low estimate of NEE.
gSystematic errors only.
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where s is the measured scalar quantity, and the angle
brackets refer to the averaging operator that defines the
turbulent fluctuations (noted by the prime). The correspond-
ing perturbations ideally include all of the turbulent motions
but exclude influences from mesoscale motions. The
vertical motion at lower frequencies cannot be adequately
measured by sonic anemometers, although it is often
thought that their overall contribution to the total surface
flux is small and can hence be ignored. Inadvertent
inclusion of mesoscale motions however, can lead to large
random flux error [Vickers and Mahrt, 2006a; Sun et al.,
1998]. Such contamination most likely occurs with stable
conditions in the presence of gravity waves, meandering
motions, nonstationary drainage flows and other nameless
mesoscale motions of unknown origin [see references in
Mahrt et al., 2001b].
[17] The vertical flux is then computed as hw0s0i where

the angle brackets represent the averaging time on a longer
timescale to reduce the random flux error (i.e., averaging the
products of perturbation). The longer averaging time
(30 min to 1-year scale) is sometimes referred to as the
‘‘flux averaging time’’ and leads to the NEE estimates. Both
the overbar and angle brackets must be chosen as simple
unweighted averages, particularly to satisfy some averaging
schemes [e.g., Reynolds, 1901]. Sometimes the averaging
period in equation (3) and that associated with the overbar
(compare with equation (1b)) are the same, in which case,
random flux errors may be large. For example, the largest
turbulent motion included in equation (3) would be of the
same timescale as the flux averaging time, and therefore
only one sample of this motion would be captured. Such

errors can contribute to large variability in process-oriented
studies that use 30-min averages, but are less important
when averaged fluxes are summed together for longer time
periods, as in the calculation of seasonal and annual NEE
estimates, or when inferring relationships such as light
response to daytime NEE with a large number of
30-min average data sets.
[18] At times, the distinction between turbulent and

nonturbulent motions is difficult to detect and may overlap
in scale. The inspection of integrated cospectra (ogives),
however, can assist in determining the temporal scale for
transport of carbon [Friehe et al., 1991; Oncley et al.,
1990]. On the basis of examination of a large number of
multiresolution cospectra, under a variety of conditions,
Vickers and Mahrt [2006a] demonstrate that the ideal
averaging time for defining the turbulent fluctuations
(equation (3)) decreases with increasing stability. However,
they also show that averaging times increase with height
above the canopy because of increases in eddy size with
height. Hence the use of variable averaging times seeks to
minimize the influence of random errors in very stable
conditions due to inadvertent capture of mesoscale motions
and to minimize systematic flux loss in unstable weak wind
conditions due to inadvertent omission of slowly moving
large eddies. Use of variable averaging times, however, may
be impractical for routine calculations, and the applicability
of this approach to below-canopy flux calculations is not
known. In many cases however, it is necessary to charac-
terize the absolute or relative magnitude of random flux
measurement errors. Maximum likelihood and Kalman filter
approaches, for example, require such estimates.

Figure 2. Allan variance calculated for sampled CO2 from a closed-path infra-red sensor (model Li-
7000, Li-Cor Inc., Lincoln, Nebraska). The Li-7000 was placed in a temperature-controlled chamber
(31.00 ± 0.02�C), and after an equilibration period (�12 hours), 20 Hz data were collected for �3 hours.
Flow of N2 was regulated through both reference and sample cells. Dashed line indicates a 30-min
averaging period.
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2.2. Flux Divergence Below the Measurement Level

[19] Environmental conditions that contribute toward flux
divergence (i.e., terms II–IV 6¼ 0, equation (1a)) often also
affect storage flux (i.e., term I 6¼ 0, equation (1a)) and
advective flows (i.e., terms V–VII 6¼ 0, equation (1a)),
which can be confounded and difficult to resolve. Under
very stable conditions with semiopen canopies, nocturnal
radiative cooling at the ground surface can cause strong
atmospheric stratification below the canopy, suppressing
turbulent mixing [e.g., Mahrt et al., 2000, 2001a], despite
the fact that the openness of some canopies would presum-
ably encourage greater mixing between the below-canopy
environment and the atmosphere. With strong below-canopy
stratification, below-canopy flows may become decoupled
from the above-canopy flow, particularly with formation of
below-canopy drainage flows (discussed further below).
Under these conditions the vertical CO2 flux decreases
rapidly with height above the source area, sometimes in
the lowest few meters above the surface [Soler et al., 2002;
Wilson and Meyers, 2001; Lee et al., 1995]. As a result, the
magnitude of the turbulent flux may be much smaller at the
above-canopy EC measurement level than the total flux
[Staebler and Fitzjarrald, 2004]. When the below-canopy
environment is (partially) decoupled, CO2 concentrations
increase and can be advected horizontally and vented at
heterogeneous locations downwind [Sun et al., 1998] or
during the early morning transition periods [Grace et al.,
1995; Lee and Black, 1993; Yang et al., 1999].
[20] With very stable conditions (smaller eddy size and

weak mixing), the influence from local heterogeneities and
microscale turbulent structure becomes increasingly impor-
tant in quantifying the flux. Deploying sonic anemometers
closer to surface can reduce the influence of vertical flux
divergence, but in doing so, increases the flux loss due to
pathlength averaging and instrument separation, and
reduces the representativeness of the flux measurement
(i.e., smaller footprint [Schmid, 1997; Foken et al.,
2004]). Therefore the effects of inadequate representation
of the source area can become large when the understory,
litter, and soil fluxes are significantly heterogeneous in
space. Increasing the EC measurement height increases
the representativeness of the measurements, but may also
increase uncertainties due to vertical flux divergence.

2.3. Estimation of Advection

2.3.1. Vertical Advection
[21] There have been several recent studies examining the

effects of localized advective flows on tower-based esti-
mates [e.g., Staebler and Fitzjarrald, 2004]. Vertical ad-
vection at night may be significant even though the mean
vertical windspeed near the surface is very small (i.e.,
�0 m s�1). Vertical advection has sometimes accounted for
the largest fraction of the variation in nocturnal 30-min NEE
estimates [Lee, 1998], and can greatly alter annual NEE
estimates [Baldocchi et al., 2000; Lee, 1998]. Finnigan
[1999], Paw U et al. [2000] and Baldocchi et al. [2000]
further argue that if a vertical advection term is included in
the conservation equation, then the horizontal advection
terms should also be included. Complications further arise
in some forests when advection terms during the night differ
between above- and below-canopy environments. Vickers
and Mahrt [2006b] have concluded that the mean vertical

motion cannot be estimated from sonic anemometers and
that the mean vertical motion must be estimated from mass
continuity.
2.3.2. Horizontal Advection
[22] Respired CO2 may be advected horizontally below

the EC measurement level, leading to underestimation of
ecosystem respiration (Re). Horizontal advection can be
partitioned into separate types of flows: (1) synoptic scale
occurring over a deep atmospheric layer, often deeper than
the boundary layer, (2) propagating transient mesoscale
flows, and (3) localized stationary flows associated with
surface heterogeneity, sometimes occupying only the lower
part of the boundary layer [Lee, 1998, and references
therein]. The direct effect of synoptic advection is generally
small within the canopy environment, except for the passage
of frontal systems. A wide variety of physical processes
contribute to mesoscale motions.
[23] Winds over complex topography can modify the

mean wind shear and generate turbulence and waves. The
latter can lead to local advection and breakdown of
the nocturnal boundary layer. Recently, such investigations
have examined the effects of small amplitude waves at
intermediate periods of 1–5 min (D. Anderson, personal
communication, 2002) and stronger rotor motions at longer
periods of about 20-min [Turnipseed et al., 2003] on CO2

budgets.
[24] Cold air drainage is generated by a cooling air mass

over sloped terrain [i.e., Gedayloo et al., 1980; Doran and
Zhong, 1994; Doran, 1991]. Its development is opposed by
the Bernoulli pressure gradient, vertical stress divergence
and drag forces [Staebler and Fitzjarrald, 2005; Lee, 1998;
Mahrt, 1992]. Drag forces are often associated with the
spatial distribution of aboveground vegetation [Staebler and
Fitzjarrald, 2005], but may include other small-scale topo-
graphical features such as boulders, ledges and dunes. With
clear skies and weak mesoscale flow, nocturnal drainage
flows can develop on extremely small angled slopes
[Caughey et al., 1979; Lee and Hu, 2002], and sometimes
develop entirely below canopy [Lee, 1998; Miller et al.,
1983; Staebler and Fitzjarrald, 2004]. Examination of
drainage flows can be particularly difficult because they
can occur in a thin stratified layer, particularly in the early
evening [Manins, 1992; Soler et al., 2002], sometimes
becoming nonstationary or pulsating [Doran and Horst,
1981]. Additional advective flows can develop from local
circulations generated over contrasting landscape types,
e.g., nocturnal updrafts over warm surfaces such as lakes
[Sun et al., 1998], and daytime updrafts and large eddies
over a forest initiated from adjoining clearcut areas
[Loescher et al., 2006; Leclerc et al., 2003].
[25] The magnitude and sometimes even the sign of the

advection can be questioned for all but the simplest topog-
raphy. For example, air temperature along a slope does not
vary monotonically and the temperature gradient can re-
verse in sign because of variations in soil heat flux,
enhanced mixing related to changes in roughness, and
increased shear-induced mixing associated with drainage
flows. Increases in the vertical mixing of heat imply
increased mixing of CO2. A reversal of horizontal gradients
can occur at midslope where a thermal belt occurs because
of the downward mixing of warmer air at midslope, in
concert with colder air trapped in the valley [Yoshino, 1975;
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Geiger, 1961]. These spatial variations in flow regimes not
only limit the utility of flux measurements from all but the
most ideal tower sites but also prevent precise estimates of
horizontal CO2 gradients without a detailed measurement
system. Staebler and Fitzjarrald [2004] present an approach
on the basis of spatial coherence calculations to determine
the spatial resolution needed to adequately estimate hori-
zontal gradients. They investigated horizontal advection
associated with surface horizontal heterogeneities at the
Harvard Forest and Camp Borden AmeriFlux sites. They
found that obstructions (tree stems) can explain below-
canopy directional flow patterns, and also found that night-
time thermal stratification could produce drainage flows
�92% of the time, and that buoyancy exerted more control
on these drainage flows than stress divergence and pressure
gradients �58% of the time. While these findings are not
universally transferable to all sites, Staebler and Fitzjarrald
[2004] outline a methodology to determine the magnitude of
controls on below-canopy advection.
[26] Exact contributions of horizontal advection to NEE

are difficult to estimate and cannot be determined by the
current EC technique (i.e., single-point, tower measure-
ment). Instead, the current micrometeorological methods
used to estimate vertical and horizontal components of
advection [cf. Lee, 1998; Paw U et al., 2000; Finnigan,
1999] may be more appropriate in assessing when advection
becomes significant [Lee and Hu, 2002; Gudiksen et al.,
1992], determining bounds on NEE [Baldocchi et al., 2000],
and estimating appropriate u* thresholds that may remove
much of the data for conditions when advection or flux
divergence is prevalent [Gu et al., 2005]. Nascent, site-
specific estimates of advection range from 5–40% across
seasonal to annual intervals (Table 2).
[27] Applying a classical fluid dynamic approach of

estimating budgets in a control volume may be an alterna-
tive solution to the CO2 advection problem [Sun et al.,
1998; Finnigan et al., 2003]. Developing this approach is
difficult however, because it requires detailed estimates of
storage, horizontal and vertical advection by the mean flow,
and the horizontal flux divergence. Aircraft observations
[Betts et al., 1990, 1992] can estimate vertical transport
through the ‘‘top of the box’’, provided that spatial hetero-
geneity is not too great. Since aircraft EC measurements are
relatively expensive, they are limited to a small fraction of
the desired observational period and are most meaningful
when used in concert with tower measurements [Vickers
and Mahrt, 2003].
[28] Other approaches include the use of a tracer in

conjunction with independent scalar flux measurements
[Martens et al., 2003], or Langrangian and analytical model
efforts [Leclerc et al., 2003]. Martens et al. [2003] used a
tracer (i.e., Radon–222 which occurs naturally and is
biologically inactive) to provide an independent estimate
of advection and to examine the use of a u* threshold on Re,
found u* corrected EC estimates agree well with radon-
derived Re. Their result supports the use of a u* threshold
when estimating Re from EC, and suggests drainage flows
export carbon when the canopy is not well mixed. However,
comparisons between advection rates derived from a tracer
or traditional micrometeorological methods can be con-
founded by use of inappropriate parameters, such as auto-

correlated turbulent diffusion coefficients or mismatched
characterization of above- and below-canopy environments.

2.4. Gap Filling

[29] Other errors in annual estimates of NEE may arise
through the filling of the unavoidable gaps in the EC data
sets so that integrated fluxes may be calculated daily to
annually, and in estimating daytime respiration or gross
ecosystem exchange. Falge et al. [2001] found that errors
did not differ much among three methods for gap filling:
mean diurnal variation, nonlinear regressions, and look-up
tables based on meteorological and seasonal conditions.
Each of these three methods provided a good approximation
of the original integrated values when artificial gaps were
created, even when large percentages of data were missing.
They also reported that (1) the mean diurnal variations were
best simulated when estimated for 7-d windows for night-
time data and 14-d windows for daytime data and (2) look-
up tables and nonlinear regressions provided higher levels
of accuracy across seasons-to-year intervals and among
large temperature ranges. The authors did not however,
recommend a particular method because much of the
variation among methodologies was confounded by differ-
ences in data preparation and in identifying nocturnal
periods with insufficient turbulence for valid EC measure-
ments. In the simulations of Falge et al. [2001], errors
attributable to gap filling were <0.50 Mt C ha�1 y�1, even
with �65% of the annual data missing.
[30] The construction and use of physiologically based

models are central to the analysis of EC data [Hollinger and
Richardson, 2005]. Models of varying complexity are also
used to test our understanding of ecosystem processes. The
recent availability of EC data has led to the increased use of
data-based modeling (also called inverse modeling) where
model parameters are estimated directly from the data. In
order to do this correctly, and to estimate the uncertainty in
the model parameters, we need to know the uncertainty
(random error) in the underlying EC measurements, and
have a methodology that can explicitly express the nonlin-
earity between EC derived fluxes and abiotic parameters.
[31] Hollinger and Richardson [2005] examined the

characteristics of random error in EC measurements with
a unique two-tower system, and found that flux data do not
conform to least squares assumptions of error term variance
homogeneity and normality. Using a data binning approach,
they confirmed that errors in flux data are heteroscedastic
and not normally distributed at a variety of flux sites
ranging from crop fields to large towers [Richardson et
al., 2006]. Flux data errors appear to be better represented
by a double exponential probability density function (PDF)
than a Gaussian PDF.
[32] There are potentially serious consequences from

using ordinary least squares (OLS) fitting techniques with
flux data, including incorrect determination of model pa-
rameter values and bias in annual NEE sums [Hollinger and
Richardson, 2005; Richardson and Hollinger, 2005]. In-
stead of OLS methods, approaches such as maximum
likelihood provide unbiased estimates of model parameters,
and when coupled with, for example, Monte Carlo methods,
also provide confidence intervals for parameter estimates.
Several authors have applied these or related approaches
(e.g., neural networks) to EC data [Papale and Valentini,
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2004, 2003; Schulz et al., 2001; van Wijk and Bouten,
2002]. Richardson and Hollinger [2005] showed that OLS
fitting methods resulted in models that overestimated noc-
turnal respiration (and hence underestimated NEE) relative
to the maximum likelihood approach.
[33] Kalman filter techniques are another approach for

estimating model parameter values and filling gaps in a data
record, and have recently been applied to EC data [Jarvis et
al., 2004; Williams et al., 2005; Gove and Hollinger, 2006].
The Kalman filter is a recursive algorithm for estimating the
state of a process in a way that minimizes the error [Kalman,
1960]. It has a structure that is ideal for time series where the
data structure is autocorrelated, which make it an attractive
candidate for estimating missing flux data. The equations for
a Kalman filter consist of two parts; time update or ‘‘pre-
dictor’’ equations, and measurement update or ‘‘control’’
equations [Welch and Bishop, 2001]. The time update
projects the current state (surface flux) and covariance
estimates forward in time, and a measurement update adjusts
the projected estimate on the basis of an actual measurement
made at that time. Because the original Kalman filter was
developed to estimate the state of a system on the basis of
linear stochastic difference equations, and many interesting
processes are nonlinear (including ecosystem atmosphere
exchanges), a variety of approaches have been developed for
the nonlinear problem. Williams et al. [2005] use the
ensemble Kalman filter to assimilate EC and other ecosys-
tem data into an ecosystem C balance model [Evensen,
2003] while Gove and Hollinger [2006] employ the un-
scented Kalman filter [Julier and Uhlmann, 1997] to esti-
mate NEE model parameters and fill gaps in an EC record.

3. Measurements of Respiration Components
for Diagnosing EC Data and Understanding
Sources of Respired CO2

[34] Ecosystem respiration (Re) can be estimated with EC
during the night, but may vary in temporal resolution, from
30 min to 12 hours, because longer averaging periods may
be needed to assess the flux divergence, advection and
storage terms (equation (1a)). Independent measurements
of respiration from foliage, wood and soil have also been
made with chambers, scaled to a site, and used to examine
contributions of different processes to ecosystem produc-
tivity [Harmon et al., 2004; Bolstad et al., 2004; Granier et
al., 2000; Law et al., 1999a; Lavigne et al., 1997; Goulden
et al., 1996]. Attention is being focused on the spatial and
temporal representativeness of soil chamber measurements
because soil CO2 efflux accounts for �50 to 70% of Re

[Davidson et al., 2006; Law et al., 1999a; Goulden et al.,
1996] and because of large spatial variability in soil
properties, litterfall, coarse woody debris, and microbial
activity. In this section we discuss the uncertainty in
chamber measurements over soil, which also apply toward
other chamber-based measurements.
[35] In an attempt to estimate both the temporal and

spatial variability in soil gas exchange, sampling designs
often include the combination of automated chambers
(closed dynamic [e.g., Lavigne et al., 1997; Norman et
al., 1997; Goulden and Crill, 1997]) to assess temporal
changes in soil fluxes (e.g., hourly timescale), and manual
chambers (closed static, e.g., Li-6400-09, Li-Cor Inc.)

measured at many locations weekly to seasonally to assess
spatial variation for scaling the automated chamber mea-
surements to the site or approximate footprint of the tower.
[36] Sampling errors can also originate from not fully

accounting for the spatial heterogeneity in soil CO2 flux
[Drewitt et al., 2002; Law et al., 2001a; Janssens et al.,
2001; Rayment and Jarvis, 2000;, Law et al., 1999a; Fang et
al., 1998; Lavigne et al., 1997]. It is essential to characterize
the spatial variability and adjust the sampling design appro-
priately for scaling to site and to ultimately compare with EC
data. However, this can be quite a challenge if the chamber
and tower source areas are mismatched.
[37] Capturing the spatial heterogeneity and achieving

high accuracy in soil flux measurements are not necessarily
the same thing. A biased chamber design can measure the
spatial heterogeneity while still being inaccurate. Accuracy
in chamber estimates can only be established by measuring
known fluxes under defined conditions. This has been done
very infrequently [cf. Davidson et al., 2002; Butnor and
Johnsen, 2004; Fang and Moncrieff, 1998]. For example,
Butnor et al. [2005] found that dynamic closed chambers
underestimated fluxes through porous media such that air-
filled porosity of soil alters the effective chamber volume. If
systematic uncertainties are uniform among chambers, the
coefficient of variation (CV = s/m where s is the standard
deviation and m is the mean) can be used to determine the
number of chambers needed to adequately represent
the spatial variability. The CV can be used to estimate
the precision in the measured (population) mean (see
Figures 3a–3b). Reported values of CVs range 0.15–0.55
(Table 3). These CVs are relatively high and they place
limits on the precision we can expect from a reasonable
number of chambers. Furthermore, CVs may also change
with seasonal climatic conditions, for example, it is possible
for CVs to increase to 0.8 during spring snow melt with
increased and spatially variable microbial activity (for
Metolius, J. Irvine, personal communication, 2005), or also
increase with the onset of wet season rains. As a general
rule, increasing the number of chambers will enhance the
precision in the measured mean.
[38] Estimates from both chamber types, custom built and

manufactured alike, are subject to systematic and sampling
errors that can be large (Table 3). Estimating the systematic
uncertainties can determine how accurate the measured
mean is to a true mean from the soil surface. Sources of
this type of error include the size and dynamic volume of
the chamber, differences between the external and internal
chamber environments such as; wind, light [Dore et al.,
2003], pressure [Lund et al., 1999; Massman et al., 1997],
and temperature can affect measurements, but once identi-
fied, can be remedied [Dore et al., 2003; Davidson et al.,
2002; Fang and Moncrieff, 1998]. There are efforts under-
way to calculate soil fluxes on the basis of a dynamic soil
volume to address changes in effective soil volume with
moisture, particularly in porous soils (L. Xu, personal
communication, 2005).
[39] Most importantly, automated chambers assess the

temporal variability in soil respiration and a large number
of spatially distributed, manually sampled dynamic closed
chambers can assess the spatial variability. If all the cham-
bers are in the representative tower source area, these two
methodologies can be used in conjunction to estimate soil
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respiration at comparable scales to those measured by EC.
Protocols for measurement, sampling strategies and how
soil respiration estimates can be used in conjunction with
EC are discussed by Ryan and Law [2005].

[40] Deploying EC systems below forest canopies along
with chamber measurements has increased our understand-
ing of functional and physical relationships governing NEE.
Below-canopy flux measurements have provided useful

Figure 3a. Mean number of chambers needed to be within a percentage around the mean across
different a-values from two different contrasting soils types. Estimates are from the (top) Metolius,
Oregon, intermediate ponderosa pine stand, measured with 32 manually operated, open-dynamic
chambers (Li-6400-09, Li-Cor Inc.) across five sampling periods within one season (DOY 219, 226, 234,
249, and 283 in 2002). (bottom) Relationship between the number of chambers needed and precision
(with an a = 0.1) of the measured soil flux as a function of the coefficient of variations (CV) for the
same data set. CV’s were adjusted by changing the standard deviation as a proportion of the mean flux.
Mean flux ranged 3.37–1.71 and 4.49–3.05 mmol CO2 m�2 s�1 from Metolius and La Selva sites,
respectively.
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temporal information for understanding seasonal differences
in diel patterns and turbulent structure, while chamber-
based measurements can characterize the partitioning
of respiration from the different sources, including soil,
foliage, and bole [Law et al., 1999b]. Taken together, Law et
al. [2001b] determined the vertical distribution of respira-
tion components and provided an estimate of the below-
canopy CO2 source area. The information can be used
to evaluate component processes in models, particularly
belowground processes that are poorly understood. Data

from chamber measurements have also been used to fill
gaps in EC data sets, particularly when a (large) represen-
tative portion of the ecosystem is included in the measure-
ments [Dore et al., 2003; Bubier et al., 2002; Oechel et al.,
1998; Drake et al., 1996]. However, this is extremely labor
intensive when foliage and wood respiration measurements
need to be sampled frequently, in addition to automated
measurements of soil respiration, so it is not a feasible
approach to regularly replace nighttime respiration esti-
mates from EC measurements.

Figure 3b. Mean number of chambers needed to be within a percentage around the mean across
different a-values from two different contrasting soils types. Estimates are from (top) La Selva, Costa
Rica (old growth wet tropical forest), measured with 24 closed dynamic chambers across 12 sampling
periods within one (dry) season (DOY 365 in 1998, and DOY 14, 26, 35, 49,63, 83, 98, 112, 133, 141,
and 155 in 1999). (bottom) As for Figure 3a.
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[41] In tall forests, the structural complexity often does
not allow well-mixed conditions to prevail through the
canopy profile even under high u* values [Saleska et al.,
2003; Loescher et al., 2003; Miller et al., 2004], which
increase the uncertainty of Re estimates. When nocturnal
mixing of the canopy airspacewasminimal (u* < 0.25m s�1),
some studies found chamber-based estimates of total eco-
system respiration were correlated with the change in
storage in the canopy air space, which can dominate NEE
estimates during calm wind conditions [Law et al., 1999a;
Lavigne et al., 1997]. However, when u* � 0.25–0.3 m s�1,
NEE was significantly less than chamber estimates and
subcanopy flux measurements [Law et al., 1999b], suggest-
ing that under weak wind conditions, flows with low-CO2

concentration developed below—and compromised mea-
surements from the above-canopy EC system.
[42] Even under conditions of sustained turbulence,

chamber and EC estimates of nocturnal respiration do not
always agree [Chambers et al., 2004; Dore et al., 2003;
Drewitt et al., 2002; Law et al., 1999b; Bolstad et al., 2004;
Cook et al., 2004; Lavigne et al., 1997; Goulden et al.,
1996; Davidson et al., 2006]. Because uncertainties in these
techniques are dominated by different factors (spatial var-
iability for chambers and intermittent turbulence for EC), it
is often difficult to interpret differences between chamber
and EC-based estimates of ecosystem respiration. However,

such comparisons may still be used to partition the relative
importance of component to the ecosystem flux, determine
the process level controls on these fluxes, and constrain
parameters used to model and scale estimates of carbon flux
[Law et al., 2006].

4. Comparisons Between EC and Allometric
Estimates of Net Ecosystem Production

[43] Determining net ecosystem production (NEP) by
assessing the change in ecosystem carbon mass over time
can provide an independent check of integrated EC mea-
surements, and can partition NEE into the component
fluxes.
[44] A mass balance approach for estimating NEP from

biological measurements in forests separates gross photo-
synthate into three carbon allocation pathways [Law et al.,
2003; Campbell et al., 2004; Randerson et al., 2002]:

NEPfoliage ¼ NPPfoliage � Litterfall ð4aÞ

NEPwood ¼ NPPwood � RHwoody debris ð4bÞ

NEProot ¼ Dcoarse rootþDfine root ð4cÞ

NEPtotal ¼ NEPfoliage þ NEPwood þ NEProot þDsoil C ð4dÞ

Table 3. Reported Sources of Error and Coefficient of Variation (As an Indication of How Accurately Spatial Heterogeneity is

Estimated) Among Different Chamber Designs and Environmentsa

Source of
Uncertainty

Percent Error
of Estimate Environment Reference

Chamber Design
CS, CD, OD (–) 7–45% black spruce/jack pine, boreal Norman et al. [1997]b

CD, SL (– ) 1–46% Scots pine, subboreal Janssens et al. [2000]b

CD < (– ) 3% beech/Douglas fir, temperate Longdoz et al. [2000]c

CD (– ) 15% laboratory Nay et al. [1994]d

CD (–) 8–14% ponderosa pine, temperate Irvine and Law [2002]
CD (–) 20–70% grassland, temperate Lund et al. [1999]e

SL 25%,–75% laboratory Nay et al. [1994], Nay [1994]d,f

OD (–) 0–10% black spruce/jack pine, boreal Rayment [2000],
Rayment and Jarvis [1997]b,g

OD �200% slash pine, subtropical Fang and Moncrieff [1998]h

OD 0–15% eastern United States, mixed, temperate Davidson et al. [2002]i

Coefficient of variation
CD �0.30 old growth, wet tropical (H. Loescher and P. Crill,

personal communication, 2004)
CD �0.35 ponderosa pine, temperate (H. Loescher and J. Irvine,

personal communication, 2004)
CD 0.15–0.20 ponderosa pine, temperate Irvine and Law [2002]
CD 0.16–0.45 aspen, boreal Russell and Voroney [1998]
OD 0.48 old growth, wet tropical (H. Loescher and P. Crill,

personal communication, 2004)
OD 0.45 ponderosa pine, temperate (H. Loescher and J. Irvine,

personal communication, 2004)
OD 0.55 slash pine, subtropical Fang and Moncrieff [1998]g
OD 0.30 eastern US, mixed, temperate Davidson et al. [2002]
OD �0.30 ponderosa pine, temperate Xu et al. [2001]

aCS = closed static, i.e., syringe samples, CD = closed dynamic, e.g., automated chambers, OD = open dynamic, i.e., scrubs headspace below ambient,
SL = soda lime.

bIncludes the potential of an altered diffusion gradient and the spatial heterogeneity on the natural environment.
cSystematic leakage for CO2.
dMeasurements made over a uniform synthetic medium.
eChamber overpressurization by 0.5 Pa.
fSL tended to underestimate high fluxes (�4.9 mmol m�2 s�1) and overestimated low fluxes (<1.5 mmol m�2 s�1).
gRemedied the large effects due to pressure differentials within open systems.
hChamber pressure < atmospheric pressure by �0.6 Kpa.
iLack of equalizing pressure to ambient.
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Where NPPfoliage is net primary production of tree, shrub,
and herb foliage and litterfall is assumed to approximate the
heterotrophic decomposition of dead leaves, NPPwood is
the net primary production of the bole, branches, and bark
of trees and shrubs, RHwoody debris is the heterotrophic
respiration from fine and coarse woody debris, and Dcoarse
root and Dfine root are the changes in each of the root
carbon pools over time, respectively. Total net ecosystem
production (NEPtotal) can be then calculated by the addition
of equations (4a)–(4c) with Dsoil C accounting for any
accumulation or depletion of carbon in the mineral soil
(e.g., through leaching or erosion). The NEP of foliage,
wood, and root are typically determined by measuring
annual growth increment of these tissues, while the change
in soil C is typically assessed by the difference between
carbon content at two points in time (e.g., five years apart),
or by chronosequences and the use of paired plots, trading
space for time.
[45] In an alternative mass balance approach, NEP can be

approximated in ecosystems as;

NEPtotal ¼ NPPtotal � HRdetritus � HRsoil ð5Þ

where NPPtotal is the total net primary production, HRdetritus

is heterotrophic respiration from all detritus, and HRsoil is
heterotrophic respiration from the soil. Estimating NEP in
this manner requires an estimate of annual soil respiration
(typically modeled from periodic measurements) and the
fraction of which is heterotrophic metabolism. Separating
autotrophic and heterotrophic sources of soil respiration
can, however, be difficult. In some cases, where vegetation
has transitioned between C3 and C4 cover, stable isotopic
analysis of respired CO2 can be used to partition rhizo-
sphere respiration and decomposition [Rochette et al.,
1999]. Alternatively, isotopic tracers can be added [Pataki
et al., 2003]. In other cases, separation between autotrophic
and heterotropic respiration can be made using trenched
plots [cf. Epron et al., 1999] and girdling [cf. Hogberg et
al., 2001]. More commonly, the heterotrophic contribution
to total soil respiration is estimated by measuring the CO2

evolved from freshly excised roots [Law et al., 2001b].
There are often other ‘‘missing’’ fluxes such as dissolved
organic carbon [Neff and Asner, 2001], herbivory [Clark et
al., 2001], and harvest [Scott et al., 2004] that need to be
estimated to determine if these components are significant at
the measured timescales.
[46] While NEP derived from mass balance approaches

has the potential to serve as a cross check of NEE, its utility
as a validation tool is limited by both the mismatch in
temporal scale between the two metrics and the various
inherent measurement errors. For the most part, NEP is
integrated over a one-to-five year interval rendering it
insensitive to the seasonal changes in carbon flux resolved
by EC. While chronosequences (typically spanning de-
cades) are adequate to detect long-term changes in soil C,
they are insensitive to assess the short-term changes (e.g.,
<1 year), which may be contained in NEE measurements.
Alternatively, some studies assume that soil C is in steady
state at interdecadal timescales, implying the allocation
patterns are also at steady state at shorter timescales (e.g.,
interannually). The extent that these assumptions are met
however, is not clear. Ironically, it is the incongruence

between NEE and NEP that may best address the assump-
tions of short-term steady stasis in soil C.
[47] To properly assess EC estimates of NEE with mass

balance estimates of NEP, it is important to recognize the
various sources of error in NEP. We recognize three
categories:
[48] 1. Measurement error arising from instrument or

human error. This error can be random or systematic but
is typically small. Examples include the error in measuring
tree height or shrub cover.
[49] 2. Sampling error arising from the use of limited

sample points to represent a contiguous area or time
interval. This error can be large but is typically random.
Examples include scaling soil C from a subsample of cores
to a hectare plot or by using monthly soil respiration
measurements to compute an annual flux.
[50] 3. Parameterization error arising from the use of

scaling parameters derived from other studies. These sys-
tematic errors can be large or small. Examples include the
use of non-site-specific allometric biomass equations or
decomposition constants.
[51] Generally speaking, the measurement error of values

used to compute biomass such as tree diameter and tree
height is low with an estimated CV of <0.02 from a
structurally complex tropical forest (D.B. Clark, personal
communication, 2003), inferring the CV (precision) is likely
closer to 0 in structurally less complex ecosystems. This
precision can also be enhanced when care is taken to
standardize sampling protocols used from plot-to-plot and
year-to-year (e.g., reducing human measurement error, mea-
suring the circumference at the same location on the bole).
[52] Sampling error, on the other hand, can be quite large.

Measuring radial bole increment on only one fifth of the
trees in a hectare plot and inferring the growth of the
remaining boles from diameter measurements imposed a
CV of 0.20 of the stand-wide bole increment (i.e., error 2
above [Campbell et al., 2004]). Alternatively, Keller et al.
[2001] used a resampling approach (i.e., Monte Carlo) to
simulate the uncertainty associated with scaling based on
the measured spatial variability in DBH measurements, and
found that 15 0.5 ha plots were needed for estimates to be
within 20% of the measured mean (and 95% CI, i.e., error 2
above).
[53] Parameterization error arises largely because of the

inability to estimate all necessary parameters for a complete
budget. The most common is the use of non-site-specific
wood decomposition constants and non-site-specific esti-
mates of the heterotrophic contribution to soil respiration
[Hanson et al., 2000]. Perhaps more problematic is the use
of non-site-specific allometric equations that predict bio-
mass from variables such as height and stem diameter. The
log-log nature of most allometric equations mean that even
subtle differences in these equations can lead to large
systematic errors in biomass estimates [Gower et al.,
1996]. Differences among published allometric equations
led to a 200% range in biomass estimates for a tropical
moist forest in Thailand [Clark et al., 2001] and an 83%
range in biomass estimates for a conifer forests in the
Pacific NW, USA [Law et al., 2006]. This approach
however, assumes that each parameter estimate is normally
distributed, which is often not met, and may exaggerate
uncertainty in NEP estimates. For example, Keller et al.
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[2001] report the uncertainty in the allometric equation used
to estimate the biomass from tropical trees with DBH >
35 cm resulted in estimates within �20% of the mean (i.e.,
error 3 above).
[54] Despite a general awareness of the uncertainties

associated with mass balance estimates of NEP, quantifying
these uncertainties in a consistent manner among sites
remains a challenge for most researchers. Most studies rely
upon their own expert knowledge of a particular ecosystem
and/or technique to assign liberal estimates of uncertainty to
each component of NEP [Harmon et al., 2004; Campbell et
al., 2004]. Aggregating the component errors can be done
as the root sum square of the component errors or through
more sophisticated stochastic resampling procedures (e.g.,
Monte Carlo), which can account for probability distribu-
tions for each specific component variable as well as the
covariance in error among component variables [Harmon et
al., 2004; Campbell et al., 2004]. Furthermore, second-order
uncertainties can be estimated by comparing alternative
approaches to estimating NEP such as the method defined
in equations (4a)–(4d) to those defined in equation (5)
[Law et al., 2001a].
[55] For annual integrals of NEE, uncertainties can be

estimated for gap filling techniques [Falge et al., 2001,
2002], u* filtering [e.g., Miller et al., 2004], and bounds
established by advection estimates. No matter what the
approach, the magnitude of random uncertainty scales with
the flux (compare with multisite comparison [Richardson et
al., 2006]).
[56] Reducing known systematic errors (by, for example,

minimizing pressure differentials between ambient and
chamber environments, ogive analyses, and rigorous testing
of u* filtering, for EC) and maintaining high-quality assur-
ance in data acquisition (e.g., using traceable calibrations,
appropriate and frequent maintenance of sensors, estab-
lished and tested protocols for both allometric and EC
methods) is essential in estimating NEP and NEE. If the
magnitude of the summed errors is small (e.g., <50% of the
total estimate), then absolute comparisons between EC and
allometric estimates may be appropriate, but if they are large
(e.g., >1.5x the mean estimate), comparisons are likely to be
more qualitative. As a result, single year comparisons of
NEE and NEP may not be reliable, but rather comparisons
over multiple years may help to place bounds on expected
values and increase our confidence that apparent trends in
partitioned fluxes are real.
[57] Comparisons of NEE and NEP have been used (1) to

directly assess long- and short-term climatic effects of the
changes in C stores, (2) to test functional relationships used
to scale carbon flux from plot-to-region [e.g., Vourlitis et al.,
2000; Oechel et al., 1998], and (3) in determining appro-
priate conditions to apply u* thresholds on EC measure-
ments. For example, Curtis et al. [2002] reported annual
NEE and NEP from five temperate deciduous forests to be
within the range of expected estimates, but found that it
took at least five years for the cumulative estimates of NEE
and NEP to converge. Biometric estimates of decomposition
of coarse woody debris may have to be averaged over
several years for robust comparisons of annual estimates of
net uptake. Hence these comparisons are not expected to be
good in systems with slow turnover rates.

[58] Saleska et al. [2003] and Miller et al. [2004] esti-
mated uncertainty in both NEE and allometric measures of
C flux on the basis of a rigorous empirical determination of
u* thresholds and confidence intervals, respectively (cf.
from an old growth tropical humid forest). Saleska et al.
[2003] constructed a C budget that approximates NEP but
lacked litterfall and respiration estimates (except for a rough
estimate of coarse woody detritus respiration). Miller et al.
[2004] used only live aboveground biomass estimates
which included trees with a diameter >55 cm, lianas, vines,
and hemi-epiphytes. Both of these studies estimated annual
NEE that were within error bounds established by the
allometric estimates, but the allometric-based errors were
large, ±1.6 and 2.0 t C ha�1 y�1 compared to ±0.5 and 0.4 t
C ha�1 y�1 from NEE estimates (Saleska et al. [2003] and
Miller et al. [2004], respectively). Including measured and
scaled respiration budgets into these estimates would likely
add many additional sources of error. This highlights prob-
lems associated with the interpretation and utility of incom-
plete NEP budgets for comparison purposes. However, for
robust comparisons, all NEP components should be esti-
mated (either measured or modeled), particularly below-
ground processes, and uncertainty estimates provided for
both the NEP components and NEE estimates alike.

5. Conclusions

[59] A goal of all flux sites should be to identify and if
possible reduce systematic and random errors, thereby in-
creasing the accuracy and precision in NEE estimates. Some
errors associated with low-frequency flux loss can be
addressed through a more rigorous use of ogive analyses
(integrated cospectra). At a minimum, ogives can be assessed
over time spans that capture the effects of local andmesoscale
motions to better determine the appropriate averaging times.
However, additional flux loss may occur under specific
climate conditions that would not be seen by ogive analyses.
Exploration of some as yet undefined similarity functions
may be able to determine specific conditions under which
low-frequency transport of carbon occurs.
[60] Comparing NEP to NEE helps validate both esti-

mates and enhances our understanding of carbon sequestra-
tion. Such comparisons are also useful for determining the
underlying controls on productivity within a particular
ecosystem. NEP estimates allow the partitioning of carbon
stores and fluxes at coarse timescales (annual to multi–
annual). In contrast, NEE estimates integrate over larger
spatial areas and can determine environmental controls on
fluxes across fine-to-coarse timescales (half-hourly to multi-
annual). Even though chamber measurements have addi-
tional utility in partitioning EC NEE, the spatial and
temporal variability in these measurements are a large
source of uncertainty. The number of chambers needed to
reduce this uncertainty (i.e., 95% confident to be within
10% of a measured mean soil flux (Figure 3a, top)) can be
impractical and unrealistic for many ecosystems. New
approaches are needed to reduce the measured variability
in respiratory losses.
[61] All sites are subject to potential losses of CO2 via

advection. Many ecosystems that are important to our
understanding of terrestrial carbon budgets are in challeng-
ing topography. For this reason, we need to be aware of
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conditions that lead to advection on flat and hilly terrain
alike. Improvements to current approaches are necessary to
increase the precision of within-site measurements and
across-site comparisons, and to increase our ability to
predict regional carbon flux. Possible approaches may
include some combination of designs that can better define
and quantify the types of advective flows that exert the
greatest influence on carbon flux [e.g., Staebler, 2003]
coupled with NEP estimates to constrain the fraction of
advection not accounted for meteorologically, or constrain-
ing productivity by other surrogate measures that can utilize
multiple constraints derived from functional relationships of
NEP or NEE. In all cases, more effort is needed to assess
errors in the multiple approaches to estimating whole
ecosystem fluxes and contributing processes.
[62] While it would be nice to suggest a uniform criteria

for measurement accuracy and precision, (e.g., to provide
comparisons with NEE, components A, B and C of NEP
should be measured with accuracy of D while components
X, Y and Z may be safely approximated) this is not possible
since such guidance is inherently site specific. The sources
and characteristics of measurement uncertainty are contin-
gent on the measurement technique used and the physical
and biological system under investigation. We support
current calls [cf. Randerson et al., 2002; Chapin et al.,
2006] for consistency in NEP estimation among sites.
[63] The largest challenge in reducing the uncertainties in

EC measurements today, is addressing our inability to
properly quantify the advection terms. We support exploring
new techniques and technologies that can resolve the
nighttime CO2 gradients at the relevant temporal and spatial
scales to account for these otherwise missed flows.
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