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An improved version of the one-dimensional horizontal two-fluid flow model

has been developed by incorporating physical terms for gravity and local void fraction

profiles. Introduction of an interface mixing layer concept allows the one-dimensional

two-fluid model to remain hyperbolic. This will overcomes a major obstacle in using

the current one-dimensional two-fluid horizontal flow model that was developed

without considering the local void fraction information.

All these concepts allow the creation of a unified one-dimensional two-fluid

model that would work over a wide range of flow structure and wide range of stable

relative velocities. The unified formulation removes the unphysical instability caused

by switching between flow regimes transition correlations. By eliminating the

unphysical instability or numerical oscillations, a smooth transition near flow regime

transition boundaries is possible. The unified interfacial model could significantly

improve the numerical stability of a thermal-hydraulic code by eliminating the need

for a subjective flow regime map and flow regime dependent correlations with the

unified correlation.

It is shown that the proposed one-dimensional two-fluid horizontal flow model is

stable in a range of flow regimes. To investigate the achieved physical stability, a

theoretical characteristic stability analysis is performed with inviscous flow condition.

The result is similar to the Kelvin-Helmholtz instability criterion, but closer to realistic



two-fluid natural stability. The unified two-fluid model could significantly improve

the stability of horizontal flows and yield a more promising approach to a variety o

practical problems.
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A Unified Model of One-Dimension Two-fluid Horizontal Flows and its

Stability Analysis

INTRODUCTION

Two-fluid flow can be specified by two intractable single-fluid flows. These

local instantaneous two-fluid flow fields can be characterized by their fluid motions,

which can be coupled together through the interfacial boundary dependently. The two-

fluid boundaries are dynamic, deformable, and continuous at the interface, having a

large number or single number of interfaces, resulting in complex flow structures. In

the modeling process, the probability of a single-fluid can be represented by single-

fluid conservation with interdependent interfacial balance, respectively. These

interactions, transferring flux, at interface can be expressed by a set of constitutive

relationships. These two-fluid properties can be preserved with a set of mass,

momentum, and energy conservation equations using their interface balance

conditions.

Even if the resolving of local instantaneous two-fluid motions, it is rendering to

more impractical or less useful in applications. A more practical method is necessary

for more simplified formulations of the complex two-fluid interactions. This can be

accomplished by averaging the two-fluid flow, making two independent fields by

introducing some parameters, void fraction or etc. Fundamentally, the difficulties of

resolving of the two-fluid interactions can be simplified by introducing a time-

averaged parameter. By time-averaging, one of practical methods, a two-fluid flow

conservation equation set can be made to an independent two-fluid flow conservation

equation set that is engaged with an existing probability density function.

As it is well known, the averaging of these equation sets can depress the real

physical governing laws of a two-fluid field in an averaged sense. Time-averaging of

local instantaneous conservation equations produces a three-dimensional two-fluid

conservation equation set, and area-averaging of the two-fluid conservation equation



set produces a one-dimension two-fluid conservation equation set. The one-dimension

conservation equation sets have been used in important multiphase one-dimension

computer code formulations.

With having average process and simplifying the complex interface interactions,

the current one-dimension two-fluid horizontal flow formulation has unphysical

instability problems in applying two-fluid flow numerical calculations. The cause of

unphysical instability is the oversimplification of physical situations in dealing with

the two-fluid flow or failure to express interfacial transfer terms in averaging

processes. To solve these problems, some application codes use a large amount of

empirical correlations or correlation factors dependent on flow regimes. The more

extensive usages of an empirical correlation cause more numerical instability by

switching correlations dependent on flow regimes. These code results could be

incorrect when the flow regimes are no longer consistent and thus a numerical

instability occurs in these calculations. In order to avoid these problems, a more

reasonable physical approach is required to maintain consistence and a proper

mechanical method is needed to unify these correlations.

The understanding of the interface interaction mechanisms is very important for

determining the two-fluid flow characteristic. A proper averaging mechanism for

interface balancing terms is required to correctly express the interfacial constitutive

relationship. Averaging of many interfaces or a single interface, the interface

distributions dependent on two-fluid flow structure, is required for the closure of these

one-dimension equation sets. It will satisfy the necessary condition that a one-

dimension two-fluid system equation needs to become closed, then the one-dimension

two-fluid difference model can express two-fluid flow physical values well in

averaged forms.



2 LITERATURE REVIW

It has been shown in previous design or analysis of two-fluid flow applications

that the dedicated prediction of averaged quantities would be sufficient. A local

instantaneous behavior of various flow variables would be too expensive or require

too much time even if it were possible. In these applications, some greatly useful

parameters that should be known are average velocity, pressure, void fraction, and

their gradients on two-fluid flow directions with accounting of instability problems.

Unphysical instability can be caused by either unintentionally oversimplifying or

neglecting the system physical situations and characteristics during a one-dimension

modeling process. If the resultant modeling system is not stable, these models would

be of little use under those flow conditions.

2.1 TWO-FLUID FLOW MODELS

As expected, a two-fluid flow consists of two Newtonian fluids with arbitrary

viscosities, densities, and deformable interfaces. It is natural that these interfaces are

more difficult to understand since their interaction is complex. These difficulties

constitute closure problems which are related to the local interfacial terms that require

expressing surface wave shapes and distributions of interfaces. In local instantaneous

two-fluid flow, each fluid flow is considered separately along with interfacial

boundaries with some relations of fluid conservational properties [Revankar and Ishii,

1992]. The basic properties are mass, momentum and energy of each of the two fluids.

The transfer rates between the two fluids can be derived by their own conservations

and interfacial balancing conditions. They can describe a changing or transferring of

mass, momentum and energy of each fluid flow. The most important advantage of

two-fluid model is a dynamic interaction between the fluids.

Another advantage is that the model can predict one-dimension-changes by area-

averaging the time-averaged two-fluid flow and their interactions. Two-fluid modeling



(2.1)

is far more complicated not only in terms of field equations, but also in terms of these

interfacial constitutive equations. Various approximations are usually made to

simplify them. In the simplest approach, the two-fluid flows have been represented

with a one-dimension single-pressure system form. In many practical applications,

one-dimension single-pressure models are sufficiently accurate with only a little

increase in the computational efforts compared to a single fluid simulation if without

any unphysical instability problems.

These unphysical numerical instabilities are caused by the changing numerical

correlations or constitutive equations form one regime to the other. Thus, a proper

unified modeling of those complicated fluid structures is very important in achieving

stability or finding instability. Using reasonable unified physical terms or a unified

constitutive closure relationship, a smooth transition can be possible instead of

unphysical oscillations that could occur near flow regime transitions. Furthermore,

their numerical codes would no longer need a more subjective flow regime map or

regime dependence correlation by eliminating regime dependences.

First of all, a useful two-fluid model that has been considered as a

comprehensive two-fluid model that is consists of six field equations. Averaging over

time is considered mathematically or physically comprehensive of the two-fluid flow

[Ishii, 1975; Ishii and Hibiki, 2006]:

Continuity Equation and the Interfacial Mass Transfer Condition:

lVrnkaakpk
akpkuk 1kk U,at

mk k Pk("k -uj)
21 mk =0

k=1T 1, 11k .uJ



Momentum Equation and Interfacial Momentum Transfer Condition:

5UkPkUk - -
+V(akpkukuk +akpkrk +ak(pkl -f))-Fkak
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U' 11k
2

1

(thUk+nk.(PkI-k)=O
Tkflk .UJ

S Energy Equation and Interfacial Energy Transfer Condition:

akpk(ek +-)+V(akp;(ek + 2)ukk(Pkj

=-- (m(e +--)+nk (PkI -T)uk +11k qk)
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In obtaining a time-averaged two-fluid flow model, it is needed to treat each of the

two-fluid variables separately, including their deformable interfaces modeling. For

example, the time-averaged interface pressure at a deformable interface is different

from the time-average bulk phase pressure in principle. The truth may actually be

quite appropriate in one-dimension two-fluid horizontal flow modeling.

2.2 TWO-FLUID HORIZONTAL FLOW

2

(2.3)

There are primary types of two-fluid flow patterns dependent on the definition of

two-fluid horizontal flow. The most common types of two-fluid horizontal flow are



separated flow and mixed flow. By definition, the separated flow is typically

considered as two local flow fields that are subdivided into single fluid regions with a

varying number of moveable boundaries. Mixed flow has multiple local boundaries

that subdivide into very small single fluid regions. These two-fluid flow types are

often classified according to their natural characteristics [Ishii, 1975]: Basically, the

three types are:

Dispersed flow-particles or droplets or bubbles flow

Separate flow-annular flow or stratified flows

Transition flow

There are also other types of categorizations according to the interface

distribution patterns. Dispersed flow types are characterized by the existence of

dispersed bubbles in continuous fluid flow. Slug flow consists of larger bubbles in

separating continuous fluid slugs with varied interfaces. Plug flow consists of a few

big bubbles with few interface, even nonnally separate flow has a single interface.

Also, all these are dependent on flow properties such as flow rates, channel geometry,

density, surface tension, and flow orientations, etc. These flow points are typically

determined by using a flow regime map. One of regime maps for horizontal flow is

plotted in Figure 2.1. The flow regimes are plotted as a function of superficial

velocities, which are determined by dividing volumetric flow rates by total flow cross

section area.

From these complicated characteristics, knowing a unique flow pattern is

important in a unified modeling or correlation developments in predicting the flow

types. Also, it is important to know the point at which one flow pattern will take place

from the other in pressure drop calculations. The pressure drop of mixed flow is an

order magnitude higher than that of separated flow, especially, in horizontal flow

[Taitel and Ducker, 1987].
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Figure 2.1: Flow Map for Horizontal Flow IMandhane et al., 1974]

2.3 ONE-DIMENSION FLOW MODEL INSTABILITY

The previous one-dimension models have a few problems in respect to instability,

even if one-dimension two-fluid horizontal flow models are very useful in industrial

two-fluid calculation applications. These one-dimension models can be formulated by

averaging three-dimensional two-fluid equations over the flow's cross-section area.

Because of the oversimplification of the physical properties in the averaging process

or modeling process, these models have unphysical instability characteristics and have

a non-hyperbolic nature.

In one-dimension single-pressure modeling, it has been assumed that each fluid

moves at its own uniform velocity with a uniform pressure. On the basis of these local

boundary equilibriums, the model has been shown to be unstable for unequal fluid

velocities [Gidaspow, 1974; Gidaspow et al., 1983; Lyczkowski et al., 1978; Song &

Ishii, 2001]. In multiphase modeling, the main difficulties are due to the deformable



interfaces between the fluids and the discontinuities associated with them. They are

directly associated with surface instability problems [Ishii & Mishima, 1984].

2.3.1 Hyperbolicity of One-Dimension Two-Fluid Flow

The introduced instability of a one-dimension model will be directly related to

the well-posed or hyperbolic characteristics of the flow model. As an initial boundary

value problem, a well-posed model has a solution which must satisfy the following

three prerequisites [Drew, 1971; 1983].

Solution must exit.

Solution must be uniquely determined

Solution must depend continuously on the initial and boundary conditions.

This means that hyperbolic system has a unique solution over the system variables,

also pointing out that hyperbolicity is main requirement to understand the

characteristic solutions that are associated with their governing systems [Drew, 1971].

Hyperbolicity will correctly reflect what one expects to hold true for fundamental

physics systems [Drew, 1983], even if an improper mathematical formulation can

describe the physical phenomena. This means that if a one-dimension horizontal flow

is modeled properly and has hyperbolicty, the model can simulate the motions of two-

fluid flow well. Many other methods have been tried in order to get the system

hyperbolocity by proper modeling. One of the attempts to create a realistic stable

horizontal flow model is the use of compressible fluid [Gidaspow, 1974; Lyczkowski

et al., 1978; Song and Ishii, 2001]. In these attempts of accounting for two-fluid

compressibility, an increasing stability was achieved even though it is not a real

situation. In the one-dimension two-fluid flow model field, these unequal fluid

velocity instability problems have been studied for a long time.



2.3.2 Physical Instability and Unphysical Instability

As well known, the previous one-dimension two-fluid models have physical

instability problems when the two-fluid velocities are not equal. These unphysical

instabilities are due to a failure in one-dimension modeling such as pressure

differences between the interface and phase pressure of two-fluids. If a model

possesses a physical instability, the model becomes ill-posed and miss-estimation of

two-fluid flow properties during the instability.

Another unphysical instability occurs when a two-fluid flow model is handled

improperly. Some multiphase computer code uses one-dimension models that are

incorporated with some flow related constitutive correlations. The constitutive

relations came from experimental correlations that are dependent on the flow regimes.

The correlations should be switched in response to two-fluid flow regime change.

Sometimes, an improper commutation between these corrections occurs when an

inaccurate flow regime prediction is made. This improper handling causes a numerical

oscillation, an unphysical instability. If the model has an inconsistent numerical

scheme creating oscillation, then problems become unsolvable [Lyczkowski et al.,

1978]. In order to avoid the extensive use of empirical correlations, a more physical,

reasonable and mechanical method is needed for unified constitutive relations.

Several attempts have been made to improve these instability properties by

introducing some reasonable physical and mathematical terms. Some of the methods

are adding a virtual mass term, accounting for a surface tension effect, adding a

fluctuating velocity component [Trapp, 1986], introducing one-pressure model sets,

assuming a continuous pressure across interface [Gidaspow, 1974], adding viscous

stress terms [Ramshaw and Trapp, 1978], adding a virtual mass effect of heavier fluid

and an interfacial drag for correcting the acceleration of light density flow in transient

mode [Stuhrniller, 1977]. In another method with assuming that the pressure of two-

fluid flow equalized with an infinite pressure propagation speed and under

hydrostatic conditions, an improved two-pressure model is presented with real

characteristic roots [Ransom and Hicks, 1984]. All these attempts show that these
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equations improved the appropriate two-fluid model. Table 2.1 shows some those

attempts and improvements by appropriately choosing closure model forms. Some of

these methods lead to a real characteristic root and have increased system stabilities.

2.3.3 Characteristic Stability Analysis

A physical instability lies on the prediction of the flow regime transition from

stratified wavy flow to mixed slug flow [Trapp, 1986]. The physical mechanism

behind flow regime transition is due to interfacial surface instability, when the inertia

force overcomes the gravity force. In internal separate flow cases, the interfacial

instability would cause growth of flow surface waves reaching the top of the cross

section. The flow then transitions from a separated flow into a mixed flow, causing

some instable intermittent flows. There is a strong need to determine at what

conditions these instabilities occur. These can be analyzed by performing a

characteristic analysis method of two-fluid flow equations [Gidaspow, 1974;

Lyczkowski et al., 1978].

The characteristic stability analysis method is very similar to perturbation

analysis methods, in determining whether a disturbance will amplify or decay a given

two-fluid flow condition. For the determination of flow stability, the two-fluid system

equations, mass and momentum equations need to line up with these closure

relationships. The following procedures are used to change the governing equations to

simplify the source term. Writing down mass and momentum conservation equations

with these constitutive relationships, and applying incompressible, potential flow, and

no body forces, the governing equations are made into a simple differential system of

equations. The differential equations can be arranged in a characteristic matrix from

which stability characteristic of the system can be found. Following the previous

described simplification procedures, a previous model of one-dimension two-fluid

horizontal flow can be written:



S Momentum Equation:

cak PkUk + ôGk PkUkUk + a =0
at kax

Continuity Equation:

ôPkak + ôPkakUk = Q
at ax

(2.5)

With definition of the system state vector x;

x=[a Uk u p}T (2.6)

the two-fluid flow differential equation can now be expressed in matrix form:

[A][B]= [c] (2.7)

Based upon a prescribed set of initial values, the solution of the matrix equations can

be reduced to investigate the roots of the following determinant:

AAB=O (2.8)

11

(2.4)



(2.9)
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For the determinant to be nontrivial, it should be equal to zero. While considering

gravity, the determinant solution result gives a specific condition, Kelvin-Helmholtz

stability criterion, for the system to remain hyperbolic and be well-posed:

I LtpgHa
UrE(Ui_U2)< I

'I Pi

The result shows a criterion that is based on a relative velocity between the two

fluids. Mainly two-fluid flow instability is due to the onset of competing dominant

forces and the timely switching of them. The above transition criterion is a point

where the buoyancy force takes over the inertia force of the two-fluid flow. In the

separated flow case, the flow regime will change when buoyancy force dominates the

inertia force. In mixed flow cases, a bubbly flow will appear when the liquid inertial-

turbulence forces are dominated by the buoyancy force. This knowledge is required to

determine the instability criteria, thus must be used in making a well-posed system.

2.4 OBJECTIVES

With literature review of previous works, the current basic one-dimension two-

fluid model has an unphysical instability problem. The main cause of the unphysical

instability is due to a failure to express the interface of a two-fluid and its interfacial

transfer distribution in dealing with the model. In more detail, the cause of the

unphysical instability is on the failure of the model is main force; the pressure

difference between the bulk phase and the interface pressure that would govern forces

of two-fluid flow stability. The pressure difference is between the void fraction-

weighted average interfacial pressure and the bulk pressure. Once knowing the unique

void fraction profiles from stratified flow to fully mixed flow and incorporating the

phase unique distributions into the model, a unified one-dimension two-fluid model

can be provided.
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In cases of two-fluid codes, these also cause the unphysical instabilities in

switching the correlations. They have flow a regime dependence on empirical

correlations for flow regimes. When the numerical instability has occurred, the

governing equations are not able to be correctly solved and thus, these solutions are no

longer consistent. In order to avoid the extensive use of the empirical correlation, a

more physical, reasonable and mechanically approached set of equations are needed to

close the model equations. Proper modeling of those fluid structures is very important

in determining system stability in many applications. With proper modeling of the

void distributions, the computer codes will no longer need to be based on the more

subjective flow regime maps and its flow regime dependence correlations. Instead, the

unphysical instabilities that occur within the current basic one-dimension two-fluid

model can be eliminated. By eliminating the unphysical oscillations that can occur

near flow regime transition boundaries, a smooth transition from one flow regime type

to another can be possible by the unified model. In proposing a unified one-dimension

two-fluid horizontal flow formulation with an interface mixing layer concept will be

introduced to produce and a unified pressure force in any flow regimes. The unified

interfacial differential pressure model could significantly improve the numerical

stability of the thermal-hydraulic code.

In this paper, using gravity and void fraction profiles, the author proposes a

difference pressure model and furthermore, introduces a unified one-dimension two-

fluid horizontal flow formulation with which achieving a physically stable system is

possible.
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Table 2.1: Previous Work for Improving Stability of Two-Fluid Model

Author

Gidaspow

Lyczkowski et al.

Ramshaw &

Trapp

Stumiller

Thorley & Wiggert

No & Kazimi

Lahey

Song & Ishii

Song & Ishii

Song

Chung et al.

Kent Abel

Year Method

1974 Added
compressibility
for both phases

Included
Surface
tension and
compressibility
for stability
analysis.

1977 Interfacial
pressure

Momentum
covariance of
the convective
term

Surface
tension and

2004 finite interface
thickness

2005 Interfacial
pressure model

Result

Improvement of
stability by a finite
wave propagation
speed

Compares instability
of system between
short wavelength and
long wavelength of
two flows

Modified the
interfacial pressure
for improvement of
stability

Includes the virtual
mass force in
interfacial force

Represents effects of
void and momentum
flux profile for the
stabilized flow

Introduces the
modified surface
tension term for
instability

Shows the interfacial
pressure by
considering gravity

Comment

The two-fluid flow
should be
incompressible.
(Ma<0.3)

Only short
wavelength is stable.

Used for bubbly
flows.
No separated flow
consideration

Requires virtual
mass coefficient
No separated flow
consideration

Account for both
void and velocity
profile
No separated flow
consideration

No separated flow
consideration
Requires interface
thickness

Symmetric
interfacial pressure
model

Shows the interfacial

Ransom and Hicks 1983 Interfacial pressure by averaging Symmetric
pressure model the two phases interfacial pressure

pressure

1985

1985
Virtual mass

1991

1978

1978

2000

2001

2003

2001



3 ONE-DIMENSION TWO-FLUID MODELING

For a real industrial application of two-fluid flow, a more practical fonnulation

or simplified method is necessary due to the complexity of two-fluid structures and

interactions. This can be accomplished by making a mean two-fluid flow model with

reasonable constitutive relation. Various methods can be applied in averaging local

instantaneous formulations by more rigorous mathematical foundation [Ishii, 1981].

Two-fluid flow can be expressed by time-averaged conservation equation sets.

Furthermore, one-dimension two-fluid models can be obtained by averaging a local

instantaneous flow conservation mechanism over space and time. Mathematical

derivation of these models is based on a fundamental time-space-averaging of two-

flow conservation with the same procedure for closure relations. Time-averaging of

local instantaneous two-fluid flow provides local void fraction parametric two-fluid

flow relationships, which are mass, momentum, and energy conservation. An auxiliary

relationship is inter-fluid distributions such as a local void fraction distribution that

distinguishes two-fluid mixture in an equilibrium state. By distinguishing two

individual fluids, the void fraction is a mixture fraction or an existence probability of

one of two single-fluids. A detailed derivation of two-fluid conservation equation will

be described on the above point of view. Area-averaging of the void parametric two-

fluid flow can produce a one-dimension two-fluid equation. The resulting averaged

conservation equation has a simpler mathematical formulation than the original local

instance equations. By making the readable formulations, some information could be

lost with improper average handing. The lost information is needs to be complemented

by carefully applying appropriate methods. With the auxiliary relationships, the one-

dimension model can be used in multiphase computer codes without the previous

instability problems. The derivation of these auxiliary relationships is a shift in

moderating constitutive relationships, which is needed to close the relationship of the

one-dimension two-fluid flow equation.

15
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With the previous mathematical operations, various average terms will appear in

a two-fluid modeling. Physically, time-averaging will separate mean values from a

timely fluctuating, a sort of a noise single, quantity. The mean values can be

measurable and, sometimes, invaluable in a mean average manner. Using these time-

area-averaged definitions, a one-dimension two-fluid model can be developed.

Practically, the developed one-dimension model can be used in calculation of

multiphase flow, if the model does not show an unphysical instability.

3.1 AVERAGING

Averaging is integrating, normalizing, and smoothing a local instantaneous

variation over a concerned domain. It will average, normalize, and smooth out the

related value. By averaging methods, a mean two-fluid flow behavior can be obtained

from a local instantaneous two-fluid flow. These are based on the following

mathematical formulation method:

Time- Averaging

Space-Averaging

Both methods are commutative, interchangeable, and independent in the order that

they applied. By integrating over flow cross-sectional area and dividing by the area, an

area-averaged equation can be obtained. Similarly, by integrating over a sampling time,

a time-averaged equation can be obtained. In these averaging processes, an additional

variable can be introduced into the averaged equations like a time fraction or void

fraction. The fractions are deeply dependent on each other, because a specific space

occupation material in two-fluid flowing is one of two relative materials. Void fraction

is commonly used in two-fluid modeling [Ishii 1975].

For illustrating the mathematical averaging procedure of two-fluid flow, the flow

variables are required to be continuous and first order derivation. This means that the



17

local instantaneous flow variables need to be continuous over individual fluids and

would be discontinuous at the interfaces. In these cases, these constituents are treated

as superimposed continua and could be described by a mean variable, which can be

obtained through averaging process. For a functional quantity, F(x,t) , the

corresponding mathematical time-averaged quantity is defined:

(3.1)

In the above equation, T is a total sampling time and Tk is the occupational time of k-

fluid at a local point. With the definition of a time averaged quantity, the time- average

of the time-fluctuation should be zero except for the averaging of these products. Also,

the averaging of two variable products is different from the product of the two average

variables:

= Fk + F'k

F'k =0 (3.2)

FGk =FkGk +F'kG'k

In the above equations, Fk is the time-averaged value of any two-fluid variable F and

F'k is its timely fluctuation. These relations are very important to variables that are

averaged in the deriving of average-product components, particularly, a fluctuating

velocity product. In two-fluid flow, a velocity fluctuation term leads to a description of

the Reynolds stress, one of the important properties in time-averaged momentum

conservation. Similar to a time-average, an area-average quantity is defined:



Mk(x,t)={1

(F)fFdA (3.3)

In the above equation, A is the total cross section area of a two-fluid flow and Ak is

the summation of flow cross-section area of a k-fluid. Furthermore, a weighted area-

average quantity is defined by:

((Fk))
(akF)

- (ak)

In the above equation, ak is an average weighting factor and would be a time fraction

or a void fraction of a two-fluid flow depending on the definition. These relations will

be used in applying the important concept of a two-fluid fraction weighted average in

defining two-fluid flow variations, and in expanding to the fraction-gradient-weight

average.

3.2 BASIC RELATIONS OF LOCAL TWO-FLUID INDICATION

To indicate a specified single-fluid of a two-fluid flow over time and space

domain, some special indication functions are needed. They have to be continuous in

the individual fluid and discontinuous at the interfaces as shown Figure 3.1 and Figure

3.2. Graphically, they will show whole flow structure information through the local

indication function, on or off two-fluid configuration over a flow cross section, for a

separated and a mixed flow. One of them is an index function that is defined at a

spatial position and a temporal time:

if x is in k fluid at time t

otherwise

(3.4)

(3.5)

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9
yIH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ylH

0.8

0.6

I! 0.4

I

1.2

0.2

0

1.2

0.8

0.6

0.4

0.2

0

Figure 3.1: Separate Flow Indication Function (Typical)

Figure 3.2: Mixed Flow Indicator Function (Typical)
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With these definitions, the variations of two-fluid flow can be multiplied by the

indication function. The corresponding mathematical time-average of the indication

function, a local void fraction or time fraction of a specified k-fluid, is defined:

ak -1Mk(x,t)dt=-
TTK T

In the above equation, T is a total sampling time and Tk is a k-fluid occupation time

during the sampling time. From this definition, the local instantaneous two-fluid flow

can then be treated as superimposed continua and can be expressed through average-

smoothing processes. This time-averaging can be applied on a time fluctuating

interface to obtain local void fraction, which will allow a simulation parameter of the

time average interface motions in two-fluid flow [Ishii, 1975; Drew 1979, 1983].

0.3 04 05 0.6 07 08
yIH
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By the definition, time-averaging of the indication function is the probability of a

fluid occupation over a relevant total time. The average function is continuous and is

equal to zero outside of a single-fluid domain. Graphically, Figure 3.2 shows cross-

sectional two-fluid flow time-average structure through the local void fraction

function. It is the probability of existence of one of two single-fluids, for a separated

and a mixed flow.

3.3 BASIC RELATIONS OF LOCAL TWO-FLUID VOID FRACTION

A time-averaging of local instantaneous two-fluid interactions allows a simple

local two-fluid fraction formulation, which is very useable in mean formula algorithm.

As shown in Figure 3.2, the higher order fluctuations are the results of multiple local

instantaneous two-fluid interactions, mixing, and transitioning toward a local

spontaneous equilibrium state. Time-averaging the flow arising flow fluctuations, an

index function, can be suppressed as shown Figure 3.3. Mathematically, all these two-

fluid interface relations can be obtained by applying Leibnitz's rule and Gauss

theorem [Appendix A]:

Leibnitz Rule:

11kf

Tk Tk k

Guass Theorem:

JV.tdt=V.Jfdt+ "k f
Tk Tk U1

(3.7)

(3.8)



In the above equations, Tk is the occupation time of k-fluid during sampling time. By

combining the above two terms, a void fraction conservation equation can be written:

aak+u. Va =0i k

(3.9)

(3.10)

(3.11)
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In the above equation, n is the k-fluid normal vector, and u. 11k is the two-fluid

interface surface displacement velocity. From the Leibniz rule, the averaging of the

time-derivative indication function over a time sampling time can be written:

aak I * 11k

t T4UiIIk

With Gauss theorem, a space-derivative indication function can be derived similarly:

The void fraction equation shows the local void fraction invariant. Also, a steady-state

void fraction can vanish unless there is a timely void source [Ishii, 1975, 2006; Drew

& Passman, 1999]. By setting the partial time derivative terms equal to zero, some

stationary relations of the void fraction are obtained.

{i] ==o
ax ay

[2] +=0
ox Oy

(3.12)



Figure 3.4: Definitions of Coordination and Two-Fluid Interface
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The first equation sets lead to a solution that can be valid for both well mixed bubbly

flow and separated single-fluid flow. The second fonn would lead to the solution of

mixture or mixing zone.

[i] ak = const

[2]
i3ak

ay

(3.13)

The above relations provide the foundation for deriving a one-dimension two-fluid

flow model with a local interface relationship term. In next section, local

instantaneous two-fluid flow conservation equation derivations are described.

3.4 LOCAL INSTANTANEOUS TWO-FLUID CONSERVATION

A two-fluid conservation equation set can be derived by manufacturing local

instantaneous two single-fluid conservation equation sets. By adding each single-fluid

conservation equation, a homogenized two-fluid local instantaneous conservation

equation can be made. On the basis of a continuum of two-fluid, these attempts have

been made in considering simple two-fluid flow models [Ishii, 1975; Drew 1979,

1983].
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JPkVkC11 + Jflk (PkIJkuk + Jk)dA = JSkdV

k=1 dt k=IA k=IV
(3.16)
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An integral form of a single-fluid local instantaneous general conservation

equation can be written with the following descriptions. The time change rates for the

conservation quantity are equal to source rates minus sink rates over a control volume,

including the flux over the surface of the control volume. Mathematically, the integral

form of the single-fluid local instantaneous conservation equation can be written as

JPkqJkdV =fskdV-Jpkqik(uk 11k)' f k jk'' (3.14)

In the above equation, Pk1Vk is the conservation quantity, and k is the non-

convective flux, with which the conservation quantity is transported over the control

volume surface, and Sk is the production rate of the conservational quantity. By

adding two single-fluid conservation equations with index k, an integral form of the

two-fluid local instantaneous conservation equation can be written:

(3.15)
k=1 dt k=I A k=1 A k=l v

By rearranging the local instantaneous two-fluid equation, it can be reduced to a new

two-fluid flow conservation equation:

In the above equation, the first term is the time change rate of the conservation

quantity, the second term is a net change rate over the two-fluid flow surface, and the



V A,

Combining the two previous terms:

dV+fpkqJk(u .nk)dAJ
k=1l\V öt A,

+Jk)dV-$nk (PkVJkk +Jk)dAJ= JSkdV
k=1 v A, k=1V

By rearrang*g both sides in a control volume, the above conservation equation can be

written:

(3.19)
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third is the source generation rate. Applying Leibnitz rule and Gauss theorem to the

first and second terms, they can be rewritten, respectively:

First Term:

JPkqJkdV_J dV+Jpkqik(u1.nk)dA (3.17)

Second Term:

fflk .(pqiu +Jk)dA
A (3.18)
=JV.(pkqlkuk +Jk)dV-Jflk (PqJu +Jk)dA

+V.(pqJu +Jk)-Sk}JV
at

fflk (PkIJk(uk -u)+Jk)dA =0
k1 A,

(3.20)
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Because the control domain of the above two-fluid conservation equation is arbitrarily

selected, the summation-integral terms can be divided into the control volume and the

control surface, and both the summation-integral individual parts are zero:

J(ôPkVJk +V.(pkqikuk +Jk)-SkdV=0 (3.21)
I

Further, by removing the summation notations using the previous argument,

simplified differential form of the two-fluid conservation equation can be obtained:

+V.(pqJu +Jk) Sk =0 (3.22)

Similarly, the integrand over the control surface can be reduced to a summation of a

two-fluid balance equation:

mcpk k 0 (3.23)

m_Pk(pk(uk u1) 11k

With a mass transfer rate definition, the surface balance can be simplified. By time-

averaging the above equation set, a two-fluid conservation equation can be obtained

3.5 TIME-AVERAGED TWO-FLUID FLOW EQUATIONS

The main purpose of time-averaging a local instantaneous two-fluid equation is

to remove the local flow fluctuations and get a two-fluid model equation representing

a mean flow relation and base flow behavior [Trapp 1986]. By multiplying the



) Tr

First Term:

If aPkJkMk..a ak
r at atTk

Second Term:

=V.C-J(pqJu +Jk)dt
TJTk

Pk(Pk cIt
I n.u.k JQqJ

T k

1-JV.(pkqlkuk +Jk)Mkdt
(3.26)

'1k (PkIJkuk +Jk)

Tknk

Combining the first two terms, the time-averaged equation can be written:

JPkPkdtJf(PkV1kt1k +Jk)dtJ--Jskdt
1 TkatTk Tk

"k t"pqj _"k (Pk(Pkhlk +Jk)
T. T, kik .i Tknk .uH

(3.25)

(3.27)
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conservation equation sets by each fluid index function and applying time averaging

over a sampling time, an integral form of time-averaged conservation can be obtained:

1JôpkpkMk dt + i-Jv . (pk!JkukMk + JkMk )dt = JSkMkdt (3.24)
TT at TT

Applying Leibnitz rule and Gauss theorem [Appendix B], similar to deriving the

differential two-fluid conservation equation, a differential form of time-averaged

conservation equation can be obtained:



With the definitions of time-averaged quantities;

I
JPkVJkdt P,q',,

TkTk

I
SPkPkk' Pk(PkUk

TAT,

--JJkdt J

Jskd
-T- tSk

TkTk

The integral form of the two-fluid conservation equations can be reduced to a more

readable time-averaged differential conservation equation form:

-T
+J)-akS

(3.29)
"k

(Pk(uk-uJIJk+Jk)
T k U1

The first three terms are the same form as the local instantaneous general conservation

equations and the last tenn is very similar to the local instantaneous interface two-fluid

balance equation. Using the definition of mass transfer rates, the time-averaged

conservation two-fluid flow equation can be rewritten:

+akjk)-aksk
(3.30)

(thqJ+n.J)
II'k U1

(3.28)

28
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The above equation is similar to the local instantaneous conservation equations

multiplied by a local void fraction. Furthermore, by averaging fluctuation over time, a

substantial conservation equation is obtained:

(apqJ)+V .(akpkqJu +Pk(P'kU'k +akJk)-aksk
(3.31)

(thqJ+n.J)
k

These formulations will hold that the two-fluid flow variation is indicated by long

waves of local void fraction that is considered by averaging these flow variables over

time. Averaging of the above time-averaged conservation equation over a two-fluid

flow cross-sectional area will provide a one-dimension two-fluid equation.

3.6 ONE-DIMENSION TWO-FLUID FLOW EQUATIONS

By removing the over bar of the time-averaged equations for simplified notation,

a time-average conservation equation can be written:

apqJ + V (akpkqikuk + PkV'k U'k +akJk)
(3.32)

= -- (thqJ+n.J)aksk
I

kik .ui

In the above relations, it is assumed that the density does not change over the total

sampling time. The first term is the local time change rate, the second term is the

convective change rate, and the third term is the source generation rate. As shown in

time-average procedures, an integral form of the area-averaged two-fluid conservation
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equation can be created by integrating over the flow cross section area and by dividing

both sides by the total two-fluid flow cross-sectional area:

iJaapqJ
dA + i-Jv (akpkqikuk + PkP'k U'k +akJk )dA

AA at AA

I
__JskakdAAjf-> (mqJ 'k Jk)C1A

AA Ilk Ui

(3.33)

It has been assumed that the densities in the time-averaged conservation equations are

constant over a small time distance. Such an assumption can also be applied in while

deriving a one-dimension two-fluid conservation equation over a very small flow-

direction distance. By introducing some related quantities and assumptions as shown

in the previous time-averaging procedure, an integral form of the area-averaged

conservation equation can be written. Each integral variation of the conservation

equations be transformed to a differential form as be shown in two following

subsections.

3.6.1 Mass Conservation Equations

Following the basic mathematical time-averaging procedures, a one-dimension

conservation equation set for two-fluid flow can be obtained. Introducing the

definition of mass related quantities, the integral form of one-dimension general

conservation equation can be reduced to a differential form of a one-dimension mass

conservation equation by applying Leibniz rule and Gauss theorem [Appendix C].

With the definition of mass conservation quantity, flux, and source terms:

Pk =1

= (3.34)

Sk =0



the integral form of mass conservation equation can be written:

m
dA

1 JaGkPk
dA+IJV.akPku dA=_A T Tk k .u11'4A at AA

lJôPkakdA_a 1Ja pdA Ja P (u )dC
AA at atAA A,

---JpkakdA+I Jp
a i

kuk114JAJf
m

dA
8tAA aXAA k

(3.35)

By taking the dot product of flow-direction normal unit vector to the mass

conservation equation and then applying Leibnitz rule and Gauss theorem on the first

two terms respectively, the first two terms of the conservation equation become:

First Tenn:

(3.36)

(3.38)
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Assuming that density does not change over the flow cross-section area, the following

mass conservation equation can be obtained:

Second Term:

V PkuakdA
= Ii Pk akdl4)+

A
Jnk pkuUakcC (3.37)

By combining these terms, the integral form of the mass conservation equation can be

reduced to a differential form of the equation:



[11

-&JadA+JuadAJ
I I m

at A A
k aXIAA AAlnk dA

rj [2] [3]

Using definitions of an average void fraction and a void fraction weight average

quantity, the terms of the mass conservation equation can be written:

adA a

atA k =pk(ak)

a
[21 AjUxtJ = _ _JUXkakdAJ = Pk (elk )((u)) (3.41)

ax ax AA

m
dA=-1-f]TkdA(Fk)[3'

A7flk.U, AA

(3.39)

(3.40)

(3.42)
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In Equation [3], a new two-fluid mass source term, mass transfer rates per unit

interface length, are defined.

m
(3.43)

T 'k

This definition takes into account of the mass transfer rate which is due to the effect of

the interface surface displacement velocity between the two fluids by the contraction

or expansion of interface surfaces. It is induced by the velocity difference between the

interfaces and the single-fluid phase [Ishii, 1975]. By combining all the above terms



a a
pk(ak)+--pk(ak)((uXk))--(rk)
at ax

a a
pd(ad) + Pd(ad)((ud)) = (rd)

ax
a a

p(a) + ---p(a)((u)) = (re)

Pk Uk

k PkItk
Sk

T
+ PkU'k U'k

(3.44)

Both the lighter upper (dispersed) flow and the heaver bottom (continuous) flow can

be indicated by replacing the subscript "k" with the subscripts "d" and "c",

respectively. The one-dimension mass conservation equations are:

(3.45)

(3.46)
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and including the mass transfer rates, a differential form of the one-dimension mass

conservation equation can be obtained:

These equations can be applied to a real problem if a constitutive relation of the mass

production and exchange rate is known. Beside an interfacial mass exchange due to

unequal two-fluid velocity, the mass change rate that can be induced by phase-change.

3.6.2 Momentum Conservation Equations

A two-fluid momentum equation can be derived by incorporating the definition

of momentum conservation quantity, flux, and source into the time-averaged general

conservation equation:



iJaPkuak
dA+1-JV.ak(pkuku +111 Pk'. TJA

AA 3t AA

=1$FakdA-1J-- III (thuk+nkpkI-nkk)dA
AA AAT T

By applying Leibniz rule and Gauss theorem, each term of the integral form of area-

averaged momentum conservation equation can be written:

First Term:

iJaPkuak I
dA akpkudAJ(nk uI)akpkudC (3.48)

AA ôt ôtA A1

Second Term:

ai IapuudA == _Japu2 dA + _fn . aPUUdC (3.49)
A,

Third Term:

dA=__Japa I
aXAA

k kdA+AJnl.akpkdC

(3.47)

(3.50)
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By integrating the general conservation equation and taking the dot product of the

flow directional normal unit vector the momentum equation, and dividing the

momentum equation over the flow cross section area, the integral form of the one-

dimension momentum conservation equation becomes:



Fourth Term:

AIVakTIkdA

ai
=_AJck(T +PkUUI)dA+jnX

akTkcJC +DaWkrWk

In the above equation, the wall shear stress's constitutive relationship is needed to

obtain a realistic analysis of the transient response of viscous flows. By combining the

above four terms including, a more manageable form of the area-averaged momentum

conservation equation can be written:

JakpkuXl(
IdA +JakpkuXkdA

ÔtAA aXAA

=

+-1-JFXkakdA
AA

I-----fn ak(pkitk)dCx

4aWkrWk

D9

I n

al =
fU;jT +PkU'U'x )dA

ax A A

(Thu11 +Ilk pki1k J)(IA
AAT I1k .ui

(3.51)

(3.52)
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The above equation shows a void fraction weighted integral that is useful in deriving a

one-dimension equation. The integral can be used for deriving a more readable and

manageable average void fraction parameter. By assuming that the density does not

change over a very small flow distance, the momentum conservation equation can be

written:



III t1

air=-----iap dA
âxA i'

I
i>

u1
fl7U+flkAjkak AlT1 Iflk

II 16)

JffkUdA + ÔAfaku

4aWkTWk ô I
- D0

[3] []

13].
a i--III

axA akpk IdA = S pkakdA = -- (a, )((Pk))
ox A A

[41 -axA'T +PkUUI)dA =(ak)((T +PkU'u'x)) (3.57)

PkI'flk .)dA

1--Jn ak(pkI)dCA,

The first five terms of the integral one-dimension two-fluid momentum equation

become:

Afuxkck =-pk(ak)((u)) (3.54)

12
12]. JuXkakdA = (ak)((uXk)) cm(ak)((uxk)) (3.55)

AA

(3.53)

(3.56)
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[51. -S(Fk nX)akdA =ASFXkakdA = (ak)((F)) (3.58)



First Term:

thu1
dA=-1-JFkuXkdA=(Fk)((u))

flkUI

Second Term:

ljl k flxPkidA =((Pk))a(ÔaUXk)
(1k

Third Term:

(3.59)

(3.60)

(3.61)
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In the second term, an important auxiliary relation comes from the separation of the

average of products into the product of averages, representing the average products of

dependent variables to the products of the averages ratio. With the definition of the

covariance coefficient as the rate of the average of products velocity to the product of

averages of the velocity, the second term becomes more simplified. A more detailed

covariance coefficient can be introduced by evaluating the local instantaneous two-

fluid velocity profiles. The third term shows the normal stress contribution at the

interface and the fourth term shows viscous stress terms that consists of a wall

interface shear stress and a timely velocity fluctuation. Since all terms are related to

the two-fluid interfacial momentum sources, these five items need more detailed

evaluations:



Fourth Term:

1 18
UkPXkdC =_A1akPkIdA - (iii Vakpk) (3.62)

Fifth Term:

14iA
111'C .aktkdC==(Tvak .nX)+AJak

By summing the terms, a differential form of the one-dimension two-fluid momentum

equation can be obtained:

o a
Pk (Uk )((uXk)) + - CmPk (c'k )((UXk

))2
- ( )((F,))

Ox

0
+ (ak )((Pk)) - ((PkI))

O(ak) 0
+ (ak)((T + Pk11'U'x))

Ox Ox Ox

= (rk )((uXk)) 4 aWkTWk (a' . Vakpk)- (Tvak n,)
De

(3.63)

(3.64)
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In the above momentum equation, the total drag forces at the interface can be

expressed by the combination of the pressures and viscous stress terms, in which

variations are induced by void fraction gradients {Ishii, 1975; Ishii and Hibiki, 2006]:

M = -n, Vakpkl - TIdVak (3.65)

It is noted that void fraction variations along the two-fluid flow direction would play



t3(ak) 3(ak) 2

at
Pk((u)) + CmkPk ((uXk)) - (Uk )((F,<))

ax

a(ak) a(ak)((..
+Pku'u'X))(prn)) +

ax ' ax ax

=(rk)((uXk),
4UWkTWk +1M' \\xk/

For a two-fluid flow, the two one-dimension momentum equations can be obtained by

replacing the k with c and d:

a(a)
P ((u)) a(a)

CmcPc ((u
))2

- (aX(F))az

a(a) - )\ô(a) a(a
+ Pk

ax 'az ax

= (r )((u0)) 4wTw + (M)
De

ô(ad) ô(ad)

at
Pd (('Xd)) + CmdPd((Uxd

))2
- ( )((Fd))

az

a(ad)
((Pd)) - ((PId)

ô(ad) a(ad)
((xxd + Pk

ax 'ax ax

= (rd )((uXd))
4UWdTWd

+ (Md)
De

(3.66)

(3.67)

(3.68)
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major roles for interface roughness. By combining the above definition of interface

drag force, the one-dimension momentum equation can be reduced to:

With the exception of the drag force sign and index, the dispersed momentum

equation is the same as the continuous momentum equation. The interfacial drag force

is a function of the interface shape, interface pressure, and interface shear stress.
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It is needed to provide constitutive relationships to close the system for realistic

analysis. Even if a full description of momentum change would require the

considerations of various phenomena such as added-mass effects, Bassett forces, drag

forces, and phase-change effects, they are all local instantaneous forces and needed in

an additional local instantaneous modeling. These local instantaneous two-fluid

models are out of the scope of this research and the attention is restricted to one-

dimension two-fluid horizontal flow model. In one-dimension flow, a dominated

momentum exchange would arise when the two-fluids have different mean velocities

unless a realistic mass transfer or phase change term is taken into account. The one-

dimension model can be applied to a real problem if these corresponding constitutive

relations are known.

3.6.3 Constitutive Equations

As shown in previous sections, a reasonable constitutive relationship is required

to close the one-dimension conservation equations. Specifically, one-dimension

constitutive relationship are strongly desired since a local instantaneous relation and

its combinations could be impractical to use as a one-dimension constitutive relation

corresponding to the one-dimension equations. For example of local instantaneous, it

has been assumed that interfaces have no thickness and no mass, hence the

conservation quantities like mass, momentum or energy can not be stored in local

instantaneous two-fluid flow interfaces. From these relationships, some local

instantaneous constitutive relationship could be obtained. However, they can not

directly preserve their three dimensional characteristics in one-dimension flow

modeling.

By averaging a local instantaneous interfacial transfer conditions with the same

method, one-dimension conservation equation deriving methods, a conservative one-

dimension instantaneous interfacial transfer condition will be obtained. By starting
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with a local instantaneous interfacial condition, a general conservation equation across

the interface can be written:

[thkqJ llk]° (3.69)

The first two terms in the above equation denote a mass production flux and an

interfacial flux. With a definition of mass related quantity and flux, a mass interface

condition can be written [Appendix C]:

mk 0 (3.70)

By inserting the definition of mass transfer rate equation and by taking the normal

directional property of the two-fluid interface, the interface velocity relationship of

two-fluid flow can be obtained:

(3.71)

It is shown that the interface velocity is due to the effects of density difference as well

as the two-fluid velocity difference. This relationship can be used in making an

approximation of interface velocity. Also, it has been usually assumed that there is no

mass transfer in a two-fluid flow equation unless two-fluid phase-changes. This can be

proven by time-averaging the mass transfer condition. By multiplying the local

instantaneous mass transfer term by the indication function and averaging this

equation over a sampling time, a time-averaged interfacial mass transfer rate can be

obtained:
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(3.72)
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With the condition of non-zero void fractions, the time-averaged mass transfer rates

can be reduced to zero:

O=thkT=th (3.73)

The above expression yields a very important two-fluid flow condition. In the quasi-

steady-state sense, any time-average interfacial mass transfer rates should be no

interface mass transfer rate conditions without phase-changes.

3.6.4 One-Dimension Two-Fluid Horizontal Flow

A one-dimension two-fluid flow model can be formulated by time-area-

averaging, even with a two-fluid flow consisting of two single-phase regions bounded

by dynamic interfaces. In the incompressible flow limit, the densities of the two-fluids

can be taken outside of all derivative terms. In considering one-dimension interface

force balancing condition with average void fraction variations, two important

pressure gradient constitutive relations are need. A pressure variation condition is

more important to the results of one-dimension constitutive modeling. The variation is

caused by a net transverse momentum balance and by a net flow-direction momentum

balance. It will supplement the one-dimension horizontal model as basic constitutive

relations.

(3.74)



"k =0

F=O
(3.75)

43

Furthermore, in the one-dimension two-fluid horizontal flow momentum equation the

available choice of the effective external body force and the mass transfer rates are

zero without phase-change situations:

Since the mass interface transfer in two-fluid flow is statements of the local

instantaneous interfacial velocity difference between the fluids, the time-average mass

transfer rates will disappear. For fully developed flow applications, the covariance

coefficients are set equal to one. With the two-fluid flow situations, the mass and

momentum equations of the one-dimension two-fluid flow equations become:

a apa +p1a1u2=O
at ax
a a-p2a2 +a p2a2u2 0

a a 2p1a1u1 +p1a1u1 -p=-
ax ax

a a 2
+

ax ax

(3.76)

These relationships are expressed without a bracket and over bar, by using delta

pressure definition for simple notations. In the simplifications of the above two-fluid

flow equation set, the delta pressure expression would be an effective pressure

difference between the interface and phase pressure. It has been evident that the delta

pressure is an amplification factor of the void gradient and an important factor of two-

fluid stability. With all these previous relationships, the number of dependent variable

and system sizes can be changed.



3.6.5 Stability Analysis with Delta Pressure

A characteristic analysis method is one of the well known methods for

determining two-fluid flow stability as well as the linear perturbation method. More

specifically, whether an interface wave has been amplified or decayed needs to be

determined by interface transfer relationships. The impact of the pressure on

instability of the model needs to be determined since delta pressure is one of the

important constitutive relations of the current one-dimension two-fluid horizontal flow

model. In the characteristic analysis, this section will show how delta pressure could

be involved in one-dimension two-fluid models with the pressure gradients.

Continuity Equation:

act au1-+u '-+a L=Ø
at 1ax 1ax

aa au--+u --+a
at 2ax 2ax

Momentum Equation:

aa au 2 au aapu1'-+a1---'-+(u1 +Lp1)_1+2a1u1_L+_i__=O
at at ax ax p1ax

act au 2 act au aap
at at ax ax p2ax

(3.77)

(3.78)
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With the simplified velocity coefficients and assumptions, a simplified set of

differential one-dimension two-fluid horizontal flow equation sets can be made. As

can be seen in the above momentum equations, the delta pressure and inertial forces

cause the space void variation in making equilibrium momentum even if the inertial
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force term is only a coefficient or a temporal growth factor of void fractions. To

perform a characteristic analysis, a matrix form of the equations can be written with a

simplified external source. These one-dimension mass and momentum conservation

equation sets can be written in a simple matrix form:

[A}.+ [B].L = 0
at ax

S={a u1 u2 P]T

As noted in the above matrix, there are no external source terms. Mathematically, the

characteristic analysis is not dependent on external sources since the analysis shows

only overall system characteristics as complementary solutions. The solutions are

reduced to the investigation of the determinant roots:

(Lp1_p1(u1_A)2)(I_a)+(Lp2_p2(u2_A)2)a=O (3.80)

To solve the above equation, an appropriate expression of the delta pressure term is

necessary. The delta pressure is effective pressure difference between the interfacial
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A parametric equation of one-dimension two-fluid horizontal flow model can be

obtained by a system characteristic method. The roots of the above equation can be

found using quadratic equation:

Lip ("p1 + p2
U1U2)+I_aL 1a)(384)
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and phase pressure, and could be derived from a local void fraction relation with

involved body forces. In an air-water two-fluid case, the air-phase delta pressure can

be set to zero with the following liquid-phase delta pressure expression:

ttp2 = Lip (3.81)

The previous determinate equation that has the unstable solution forms for a long time

can be recast:

(_p1(u,_A)2)(1_a)+(Lp_p2(u2_A)2)a=O (3.82)

For an appropriate solution of the physical stability, expressions of the delta pressure

are necessary. These could be derived from two-fluid physical modeling. By

accounting for a non-zero unspecified delta pressure expression, a second order

characteristic equation can be obtained:

(a
'2

"1A
2(p1u1 '2'2 A+IP1U1

p2u22 P (3.83)
(1a)) a (1a)) a (1a)) (1a)
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The main interest resides in the terms under the square roots. By definition of the

determinant, the solutions are the system roots. When the one-dimension horizontal

flow has imaginary solutions, flow instability would exist. Since an imaginary solution

is the signature of system instability, determining whether the solutions of the

quadratic formulation have imaginary parts is very important. This means that the

instability is dependent on the sign of the square root. For the determinant, the

following equations can be obtained by the square root:

When the equality of the above equation is violated, interface instability appears and

grows. This means that the delta pressure has a positive pressure expression unless the

relative velocity has a zero tolerance of stability, which should be handed correctly. If

the two-fluid flow has a large density difference, then the above equation can be

further simplified:

(u-u)± /.R a
2 \1p11a

(3.86)

This result shows that the delta pressure is the main factor in stabilizing the flow and

shows how the delta pressure term helps to stabilize the flow. By incorporating the

delta pressure expression, the characteristic stability analysis method will show the

important flow stability mechanism that is needed to be determined In order to obtain

a more reliable result, delta pressure correlations should be explicitly expressed. With

any positive delta pressure, the delta pressure expression in the square root equation

would help to stabilize the flow. This expression can be refined by additionally

considering an available body force distribution by the definition of the delta pressure.



4 VOID DISTRIBUTION IN MIXTURE LAYER

This section will explore the optional void fraction governing relationships

incorporating gravity, which can be used to determine overall void distribution

profiles in the mixture layer of horizontal two-fluid flows. In order to obtain a useful

void distribution profile, it is essential to determine what two-fluid flow parameter is

the main factor and how it can be obtained. Ideally, the best way to perform this is the

use of analytical functional forms in terms of known parameters such as average void

fraction, pipe diameter, gravity, and superficial velocities. However, this may be

difficult since the physical process within the two-fluid flow is a very complicated

interaction in real situations.

Proper mathematical or mechanical modeling allows the explanations of various

void variations of two-fluid interactions in horizontal flows. The main motivation of

this section is to obtain void fraction distribution governing equations by

approximation of void immigration processes when the two-fluid flow is within

mixing layer. The modeling is started by considering a transportable bubble which can

switch the positions to the liquid phase with effectively involved forces. One of the

void immigration mechanisms in mixture flow is the liquid fluctuations with

suspended voids. The velocity fluctuation of suspended voids could be expressed by

void concentration variations [Lahey et al, 1993; Anglart et at, 1997; Bostjan Koncar

et al, 2004;].

The void immigrations can be formulated by adding two two-fluid momentum

equations, analytically making a net momentum equation of void dominant force

relations. They can be used to describe a relationship among a local void fraction,

liquid turbulence, and buoyancy. An advantage of this formulation is that it can easily

include the void immigration mechanisms, void diffusivities and liquid turbulence, etc.

The formulations allow the dominant force dependent void fraction profiles, higher

flat void profiles for higher buoyancy forces and lower void profiles for higher liquid

48
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Figure 4.1: Void Distribution Profile of Different Flow Regimes

4.1 LOCAL VOID PROFILES

Some typical relationships among different two-fluid flow regimes are shown in

Figure 4.1 with their typical local void profiles. The void distribution of a wavy flow,

for example, can be represented by a smoothly varying line over the two-fluid flow

cross area, dominated by long surface waves. Also, the two-fluid flow generates

fluctuation ripples, which would have a much smaller wave than the long surface

wave even if the main wave of a stratified separate flow is a surface fluctuation ripple.
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turbulence. These contributions will play a more important role as turbulent-

diffusivities vary.

Specifically in model developments, these liquid-velocity fluctuations can be

taken into account within an expected force variation range. Another natural

characteristic of these void immigration mechanisms is the terminal velocity of raising

suspensions. The terminal velocity of the suspended voids would be constant and in-

steady-state suddenly, depending on the two-fluid properties such as densities, void

concentrations, etc. All these relations can be assumed to be held in near stationary

states due to the fact that the flow pattern is re-established, and instantaneously feels

the influence of mixing forces; the same things can be observed inside mixing layer

flows [Buckingham, 1997].
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Normally, the wave is composed of long waves over which fluctuation ripples are

superimposed. Without knowing the detail constitutive relations of the void

distributions, the best way is evaluating the momentum balance between the two

horizontal flow fluids.

Since coupling of the two-fluid flow can occur at the two-fluid interface only,

local two-fluid interfacial transfer is strongly dependent on the two-fluid interfacial

fractions. It can be an important connection in developing a two-fluid fraction related

closure, specifically, when the ratio of disperse to continuous density is very small so

the turbulence of the disperse phase would be neglected over the whole mixing layer

flow. The relative strength of fluctuation ripples will influence the amount of void

fraction immigration, even if the immigration amount is induced by retractably and

manageably small turbulent ripples. These approaches require knowledge of

relationships between turbulence and void fraction variations as any interfacial

transfer terms that would be directly related to its surface area and governing force.

They are also required to find a net interfacial void immigration force. It has been

assumed that turbulence can influence void fraction immigration or void fraction

distribution [Buckingham, 1997]. From these approaches, the relationship between a

void fraction gradient and a velocity fluctuation can be found.

4.2 VOID DISTRIBUTION EQUATION

In steady-state with no net flow in the vertical direction, the local void

distribution over the two-fluid mixture could be determined using momentum

conservation in the vertical direction. The most reasonable way to obtain the

constitutive of two-fluid fraction is by deriving a momentum balance between two

fluids or a net momentum balance in mixture flow. The net momentum balance can be

obtained by adding the individual momentum balance among the turbulence, the

turbulent gradient, and buoyancy forces between the two flow fluids, all making a two

fluid force balance and fraction relationship. In more details, the total momentum
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equation can be modified by considering each-phase turbulent strength, even if the

outside of mixture flow is governed by their individual-phase dominant force

relationships. For example, the governing force tenns of a mixture flow are

continuous-phase turbulent force since the continuous-phase turbulent forces are larger

than that of dispersed-phase turbulence due to density effects. If the turbulent strength

is much smaller than gravity, void fraction immigration would be derived primarily

with buoyancy; thus void rising is significantly affected by net gravity forces. In the

case of strong turbulence, the gravity force is limited to balancing the turbulent

deficiency of disperse phase flow. In all the above cases, the two-fluid total

momentum balance plays a main role on void fraction distributions. As a starting point,

the gravitational-direction two-fluid momentum equation was obtained from a general

momentum conservation equation [Ishii & Hibiki, 2006].

akp

aUYk oak

8x +uYkJ+ak(PIkPk)
a = a ==8ak(rYk +)-ak(rYk +e)+M/k

(= OaJ( = Ocx')

In the above equation, the subscript indicates correspond to phases, a is a local void

fraction, yk is the vertical-direction viscous stress, is Reynolds stress, and

is the interface shear stress, respectively. It is worth noting that void raising

velocity is assumed to be finite due to buoyancy effects, to be fully developed

condition. With these approximations, the momentum equation can be rewritten:

Oa = - Ocx-- k,+,ak(TYk +f.)+(plk
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This means that in steady-state with no net flows in the vertical direction, the local

void distribution can be determined by the vertical directional momentum

conservation equations.

Each of the above momentum equation terms need to be constituted in order to

achieve exact solutions mathematically, even if some weak force terms must be

neglected to physical understand the solutions. For example, the dynamic pressure

variation and viscous terms can be neglected in inviscous incompressible two-fluid

flow cases. When considering a vertical momentum equation, the dynamic pressure

difference between phase pressures and its counterpart interfacial pressure will be

negligibly small unless there are some considerable body forces. In these situations,

most other terms are negligible with the exception of gravity, turbulence (Reynolds

stress), and interfacial drag (interfacial source). By rearranging and applying these

considerations, the two-fluid momentum equation can be reduced to two simple

single-fluid momentum equations:

o = --a1 + p1a1g + M,1
(4.3)

+p2(1-a)g+M,2

With the approximation thatall interfaces can be homogenized without

considering interfacial forces, surface tension force, etc, the net momentum equation

can be further simplified. Because these two interfacial momentum sources would be

equal in magnitude and opposite in sign, the net two-fluid momentum of mixture flow

can be obtained by adding the each-phase momentum in considering a homogenized

mixture flow. Without heterogeneous interfaces, all of the previous features made the

net momentum equation a dominant equation in which the interfacial momentum

source can canceled each other.
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If the disperse-phase density is much smaller than the liquid continuous-phase in

two-fluid flow, the density-related forces would be relatively small and negligible. The

magnitude of disperse-turbulence forces can be neglected to relative liquid-turbulence

forces. The liquid-turbulent turbulence can produce void immigration forces compared

to the disperse-turbulence. Summing up the all above features, a dominant force

momentum equation can be determined:

o_fRe+(1_a)jRe+apg+(1...a)pg (4.4)

The above equation shows that the liquid-phase turbulence is dominated forces by

gravity. Since the turbulence is a timely resolved velocity fluctuation, a closure

relationship is needed to take into account how the liquid-fluid fluctuation dispersed

mixture flows. Thus, the above momentum equation can be turned in to a void fraction

parametric equation. By incorporating void-diffusivity in liquid-turbulence, the

turbulence can get void constitutive closure [Lahey et al, 1993; Anglart et al, 1997;

Buckingham, 1997; Bostjan Koncar et al, 2004, Ishii & Hibiki, 2006]:

=Rer,2 =-(CTDp2k)-

In the above equation, k is the turbulent kinetic energy of the liquid-phase and CTD is

its dispersion coefficient. Indeed, the closure relationships should provide migration

mechanisms of void fraction towards the lower parts of the flow. This relation can be

introduced to compensate for an averaged two-phase continuity that does not allow

phase diffusion effects [Ishii & Hibiki, 2006]. This means that a downward void flux

is due to liquid-turbulence and an upward void flux is due to buoyancy force

[Buckingham, 1997]. The turbulent-void relationship can also support a liquid-

(4.5)
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turbulence can be expressed in two parts, a constant turbulence term and a void

proportional term:

Re Re -Dy2 0

By substituting the above relation to the net momentum equation, the net momentum

equation can turn to a void distribution equation:

a (= aa"aa (= aa"aa(1- - D-j- - - - (p2 - p1)ga = -p2g (4.7)

By assuming homogenous two-fluid flow and even mixture of the two-fluid flow, the

above distribution equation can be changed to a diffusion equation:

a 1aa' ôa (P2Pi) p2gII+c +ayay) ay P2"2 P2U:

D(1-a)/p2u
CE:o /p2U

The last two coefficients define diffusivity and turbulent ratio to liquid inertial force.

The turbulent coefficient, c, is the percentage of turbulent associate forces to inertial

force, and the proportional coefficient, D, is the turbulent-diffusivity of the disperse-

phase to overcome the inertial forces in the continuous-phase. With the definitions of

the relative force coefficients, the above equation can be reduced to a simple

parametric void distribution equation:

(4.8)
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The above void equation is similar to one which has been modeled as a diffusive-

transport equation [Picart et al, 1985]. In the above, the Froude numbers provide the

important linkages between the dispersed void dominate force and the continuous

liquid force, where the inertial force to gravity ratio is introduced as an external source.

The Froude number contains the orthogonal force ratio of the horizontal inertial force

to vertical gravitational force and justifies the ratio of the continuous liquid force to

the dispersed void body force. In mixed two-fluid flow, these features will be

illustrated with the solution of the obtained total momentum equation. They also

provide direct relations to the void moving mechanisms horizontally and vertically.

4.3 VOID DISTRIBUTION EQUATION SOLUTION FORMS

In the previous section, it is clearly shown that the amount of disperse void

immigration is influenced by turbulence and buoyancy forces. The void distribution

equation is represented by the dominate force parameters. The parameters are defined

with a function of continuous-phase turbulent force, including its gradients. The

turbulent force is expressed additionally through the void diffusion term in the

distribution equation. The raising nature of dispersed voids is taken into account by

introducing buoyancy, even with turbulence specif'ing diffusivity. There are main

advantages of the void diffusion-distribution formulation. It does not utilize any

raising two-fluid velocity and incorporate local instantaneous behaviors of voids.

Since these void raising velocities and behaviors would be unknown functionalities of

two-fluid concentrations, densities, and viscosity, all these complex aspects would

need to be studied in further research.

(4.9)
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With the homogenous equation, some complementary solutions can be found. In case

of very small diffusion coefficients, the void distribution equation can be limited to

first order difference equations, since the second order term becomes very small or

zero. By setting the diffusion coefficients to zero, the void distribution equation can be

the simplified differential equation below:

(4.11)
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As the previous discussion deals with some of the most important fundamentals

of void distribution, these ideas can be furthermore manufactured with simple

mathematical studies of the void distribution equation itself and its solution forms. In

these mathematical formulations, it is worth while to note that the continuous liquid

turbulence should be included in finding some meaningful solution forms. If void

fraction solution is a constant, the second order differential equation leads to particular

solution.

(4.10)

The solution could be found while considering over a long distance value that can be

reached by. In deriving a one-dimension two-fluid flow model, the above relation is an

important base relation in a constant void fraction zones. Furthermore, the void

distribution equation can be associated the following homogeneous equation form.

Oct 1 a=O (4.12)
Oy HFr
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By choosing a suitable internal boundary condition, this solution agrees with long

range solution well. However, it cannot satisfy the external boundary condition. This

is because the solution is an entire long range solution. For a very short range solution,

a simplified differential equation can be derived by modifying the void distribution

equation as done in previous for small diffusion coefficient. To this end a new inner

variable is introduced by stretching the void distribution coordinates:

(4.14)

This means that the coordinate is scaled in proportion to a very small coefficient, and

that the coordinates are expanded for very small range solutions as the coefficients are

going to small value. Using this relation, the void distribution equation can be written:

(4.13)

(4.15)
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Physically, the equation shows that a large amount of disperse void immigration is

influenced by buoyancy and turbulent forces, specifically by the factor of liquid-phase

turbulence. The first order differential equation has the following solution:

Setting the diffusion coefficient zero, the void distribution equation can be written for

a very small range solution:



a2a act+ C -0
ac'2 a'

(4.16)

In spite of simplification, this equation still remains second order, and then the general

solution can be written as:

(4.17)

It is worth while to note that this solution form can satisfy the external boundary

conditions as well. Determining the constant B is carried out by matching the short

range solution and the long range solution since these two solutions must be equal in

an overlap range region. It immediately makes the short range solution and the

following relation should be hold:

a(9)=A(1-e) (4.18)

These two solutions represent the entire solution when each is applied in their

regions of validity. The composite solution is shown graphically in Fig. 4.2, where the

blue solid curve is the long range solution and the black, green solid curves are the

short range solution and the composition solution. The long range solution

corresponds to the strong turbulence and buoyancy zone which do not satisfy the

external boundary conditions at the wall. The short range solution is valid in a very

narrow zone attached to the wall, and corresponds to the interface layer between the

wall and very short range zone which is determined by turbulence gradients. However,

it is only by including this short range solution that the external boundary condition at

wall can be satisfied. As the diffusion coefficient is vanishing, the void distribution

solution passes over to the long range solution. The obtained entire solution can be
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valid for the whole region by adding both partial range solutions: making the

composite solution. In parametric studies, the specific characters of local void fraction

profiles will be shown due to the relation of turbulence and gravity force at two-fluid

mixture flow region.

Figure 4.2: Void Distribution Equation Solution Forms

4.4 PARAMETRIC STUDY OF VOID DISTRIBUTIONS

As implied in the previous section, it can be mentioned that these asymptotic

analytical solutions can show the overall void fraction profiles inside the mixture layer.

Numerically, some parametric studies can be performed with adjusting all of the void

distribution coefficients. As is well known, a stratified separate flow can only exist

when the two-fluid inertia force dominates over the buoyancy force. But, inside of the

mixture flow zone, two-fluid flow structures can be constructed when the continuous-

Small Range Solution

Long Range Solution

Composite Solution
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phase turbulence becomes one of the main important factors. The turbulence becomes

an important parameter in profiling flow structures as well as buoncy. There is need

to predict different turbulent regions, one is the lower liquid turbulent region and the

other is the higher turbulent region. The behaviors of a uniform or non-uniform void

fraction profile are different since they stem from the differences in the spatial

turbulence force throughout the flow cross-section domain. Figure 4.3 through 4.5

show these effects taken into account, the expected variation of turbulent diffusivity,

turbulent strength, and the contributions on momentum, thus on void fraction

distributions at a two-fluid mixture flow region.
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Figure 4.3: Void Fraction Diffusion (Diffusion Coefficient Variation)

Figure 4.3 shows some turbulent-diffusion coefficient effects on local void

fraction profiles, which are evaluated by fixing the other contributing factors. As the
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turbulent-diffusion coefficient increases, the void fraction profile peak broadens with

keeping overall profile shape. This implied that the turbulent coefficient affects the

location and magnitude of the peak void fraction of two-fluid mixture flow. This is

because the active diffusivity of void increases, diffusing to a lower part of the flow

area, as the diffusion coefficient of the two-fluid flow is increased. As diffusivity

moves downward, the changing of flow structure can be accompanied by active

mixing of the lower-density phase: hence a lower void fraction peak, flatter mixture

ratios, and lower peak void fractions can be observed.
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Figure 4.4: Void Fraction Decrease (Turbulent Ratio Variations)

Figure 4.4 shows the effects of variation of the ratio of liquid-phase turbulence to

inertial force, liquid-phase turbulent ratio. As the turbulent ratio increases, the overall

shape of the void fraction profile decreases. It is clearly shown that liquid-phase
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turbulence affects the overall void fraction profiles without changing the maximum

void fraction locations in the cross-section area. It is further explained that as the ratio

increases, thus increasing turbulent force, the immigration of voids is increased and

the relative diffusivity of the disperse-phase is increased. The overall void fraction

profile is lowered by a given two-fluid flow amount. Even if the decrease in void

fraction profiles happen, the overall void distribution profile is still maintained in any

case. The usage of these turbulent coefficients is limited because there are no good

formulations [Ishii & Hibiki, 2006].
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Figure 4.5: Void Fraction Swell (Froude Number Variation)

Figure 4.5 shows Froude number variation effects: a relative variation of two-

fluid flow buoyancy to liquid-phase inertial force. When the inertia force dominates

and overcomes the buoyancy force, the void profiles approach a stratified flow case. In
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the opposite case, they would approach a swollen void fraction profile of the mixed

two-fluid flow. In order to obtain exact profiles, Froude numbers in conjunction with

flow coefficients, turbulent-diffusion, and turbulent ratio coefficient must be acquired

locally.

4.5 VOID DISTRIBUTION IN TWO-FLUID MIXTURE LAYER

By applying the concept of the proposed homogenous mixture two-fluid flow,

the void distribution equation can incorporate the void interactions, convection, and

diffusion. Assuming a nearly stationary state of two-fluid flow, adding each phase

momentum equation, and proposing a turbulent-void gradient relation, the net

momentum equation becomes a second order differential equation. The parametric

void fraction equation provides more insight than a conventional one, these insights

being taken out by a parametrical study. With these parametrical studies, the proposed

void diffusion-transport model is performed on the two-fluid fraction distribution in

previous sections. By modifying expected coefficient values with observations of

experimental results or incorporation of an appreciable void distribution profile, the

natural characters of disperse phase distributions can be achieved. It is shown that a

dispersed phase distribution can be modeled by several turbulent related coefficients,

including Froude numbers. It is also shown that the amount of void diffusivity is

inversely proportional to the continuous liquid turbulent strength, thus diffusion

coefficient. While in reality, the coefficient represents the sweeps of the disperse voids

through out the control domain. The amount of sweeping is represented in the

incorporated coefficient. Even if liquid-phase turbulence plays a key role on the

magnitude of peak void fraction, both liquid-phase inertia and gravity play main roles

in profiling the void fraction distribution in the whole mixture domain as well shown

in the previous section. A higher buoyancy force can result in a higher void fraction on

the top. Unlike the diffusivity, they are directly related to body forces.
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In considering all these parameters, it is found that the obtained two-fluid overall

configurations show similarity. This similarity is not surprising knowing that the

Froude number is much smaller than unity. Physically the amount of void dispersions

is proportional to the liquid-phase inertial force or carrier diffusivity, a net effect of

turbulence strength between the continuous and the disperse phase. Another important

aspect that needs to be taken into account is an effect of the movements of the

dispersed void itself. A long wave movement in the upward direction could be covered

by buoyancy effects.

Furthermore, additional work is needed to validate the proposed model to

minimize uncertainties, which can be introduced by a measured difflisivity or

turbulence strength coefficients. There is also need to verify that the turbulent gradient,

which will vary significantly from the liquid or disperse turbulence near the interface,

while the turbulent strength of the continuous side will be higher than that of the

disperse side [Carruthers and Hunt, 1985]. In order to assess the prediction capabilities

of the void distribution model, void distribution data of the mixing layer is needed.

The coefficients of the void distribution equation can be benchmarked against the void

fraction data. In analytical modeling, these parameters will play a key role in a one-

dimension two-fluid horizontal flow model. In the mixture flow zone, the momentum

balance will depend on the mixture buoyancy, inertia, and turbulence even if the

interface momentum sources cancel each other as shown previously. In the following

section, a proposed one-dimension two-fluid pressure model will be described,

allowing a unification of flow regime changes. This will provide not only one set of

unified equations to solve, but will also allow smooth change of flow regimes. Thus, it

will reduce or eliminate the numerical oscillations caused by sudden changes in flow

regime or flow instability. The performances of the model can be verified by the

characteristic system analysis.



5 UNIFIED ONE-DIMENSION HORIZONTAL FLOW MODEL

As shown previously research, time-averaging approaches are the most effective

methods to find a two-fluid model, which handle two-fluid fraction variation. In

deriving a one-dimension two-fluid flow model, the derived equation set is interrelated

with a couple of interfacial transfer conditions. That will be a main mechanism to

construct a unified one-dimension two-fluid flow model.

The considered models may have simple-unified constitutive relations in order to

unify the stereotypes of two-fluid flows. They can allow smooth transitions between

the various two-fluid regimes and permit correct determination of these variations,

even if the original local instantaneous equation does not have the same kinds of

simple constitutive relationships. The model equations have the capability of

calculating the flow variations such as velocity, pressure, and pressure gradient

without any instability problems, and determine the average pressure and the average

interfacial pressure, even in one-dimension incompressible flow, at a given void

fraction profile.

Two-fluid pressures distribution over the cross-section could follow certain two-

fluid faction distribution profiles. This would be a rather drastic assumption which can

enable manufacturing of stereotypes of two-fluid flow structure in unification. In case

of a separate two-fluid flow, some specific void heights can be calculated using the

one-dimension conservation equations [Taitel and Ducker, 1977]. They show a

relationship between the equilibrium void height and equilibrium pressure in separate

flows. Independently, the pressure distribution over an individual wave was calculated

using a mathematical model, which was based on physical interpretation of roll waves.

This also shows some equilibrium pressure relationships [Miya and Hanratty 1971].

When the interface surface of the two-fluid is not aligned in the direction of mean

motion, there is an apparent mass force in accelerating inviscous flows [Wallis &

Dobson, 1973; Wallis, 1969]. Based on hydrostatic assumptions, a unified parameter

has been discussed by Dr. Kojasony and Dr. Ishii. The parameter would be dependent
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on the void fraction profile of two-fluid flow types. All of the above are main

mechanisms to be used in a unified void-pressure model.

A theoretical derivation of the unified pressure model is illustrated by assuming

a linear variation of void profiles. More specifically, a unified void-pressure

relationship will be shown with a linear void fraction profile over the mixture layer.

These works are performed in two main sections: First, making a unified pressure

model with a set of two-fluid flow governing equations; second, performing

verification of the model by characteristic system analysis. Physically, the pressures

between the two fluids would be in local equilibrium when considering static pressure.

In considering the hypostatic body forces, there would be significant pressure

differences between phase pressure and interface pressure. With the above

descriptions, a theoretical void distribution model can be made understandable,

explaining void fraction weight average process. The theoretical void-pressure

expression will be acquired in conjunction with real experimental data.

5.1 VOID FRACTION VARIATIONS

A local void fraction distribution profile and its effects on two-fluid flow types

should be known in order to develop the unified model. In another way, any different

types of flow could be expressed in a unified model or in a unified expression form. In

the case of a single-fluid zone, there is no interface and no void fraction gradient as

expected. The single-fluid zone flow can be observed to obey their single-fluid

governing laws. In the mixture flow regions, above or below the interface of the two

single-fluid zones, the fraction of two-fluids would vary from zero to one. These void

fraction distributions are evaluated by proposing a linear profile. The furthest position

of the penetrating lighter upper fluid into the heaver bottom fluid can be explained by

two-fluid momentum balance. The furthest boundary of the lighter upper fluid could

create a mixing layer on the way, thus the local void fraction distribution is explained

by overall momentum balancing in the direction.



5.1.1 Void Fraction Weighted Average

In considering the theoretical model of two-fluid fraction profiles, these trends

need to manufacture mathematical associations. From this mathematical model, the

estimation of the associate-value weighted averaging can be made analytically. As

well known, time-averaging of the single-phase index or single-fluid conservation

qualities give local void fractions or local void fraction weighted conservation

qualities, respectively. Further, averaging them over the flow cross-section leads to

area-averaged single-fluid occupations or one-dimension conservation qualities. In

mathematical expression, the associated void fraction and the void fraction weighted

average variable can be defined:

--Ja dt(ak)AAk
I

Sakuk dA =((uk))(ak)
AA

I
-A-JakPk dA ((Pk)Xak)

All of the above expressions show that these mean values are a function of void

fraction profile and can be used in one-dimension two-fluid conservations equations.

5.1.2 Two-Fluid Flow Interfacial Pressure

Interface pressure only occurs where the local two-fluid wave interface surface

or the time-averaged interfaces are present with some degrees of void fraction

variations. In order to evaluate the interface pressures of two-fluid flow, there needs to

be a weight-average with interfacial wave surface area or void fraction at the interface.

However, it is very difficult to calculate local interfacial surface area or local void

fraction, even if they are greatly related to void fraction profiles. The difficulty lies in

(5.1)
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the fact that the interfacial terms are only defined on the associated interfacial

surfaces. Furthermore, the local two-fluid conservation qualities are present with big

changes at their interfaces. This happens wherever interfaces occur. A gradient of

local void fractions represents the probability variation of a single-fluid occupation at

their interfaces. This is the reason that a void fraction gradient weighted interfacial

pressure term should be used. From the definition of the interfacial average, the

averaged interface pressure can be expressed:

((Pk)) J-"p. dA/f--!- dAAX) AX)

In the above definition of an average interface pressure, it is exact only if the interface

is not flat. This is the main cause of redefining the average interfacial pressure term.

This means that mean interfacial pressure only exists with the local void fraction

gradients. The pressure term can be a mixture of two-fluid density, local two-fluid

fraction and local two-fluid fraction gradient. The above interfacial expression is more

reasonable than using a local void fraction since the interface pressure is a surface

related quantity. In this way, any interfacial properties of a single interface or multiple

interfaces can be consistently evaluated.

5.1.3 Void Fraction Integral Parameters and Unification

The evaluation of integral parameters can be shown by accounting the pressure

difference caused by a gravity head and considering a momentum balance of

horizontal two-fluid flow. The development of the unified model can be started with

the previously derived two-fluid governing conservation equations. In the one-

dimension two-fluid horizontal flow, the pressure difference between the phase

pressure and interfacial pressure, delta pressure, should be in equilibrium in the two-

fluids. In these cases, the delta pressure term is always in a coefficient of the void
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fraction gradient term of the one-dimension momentum equation. A mathematical

expression is given in the following:

(5.3)

As already explained in previous sections, the coefficient of which equation is a

very important term governing the growth or decay of void fraction and its stability.

The pressures can be generalized by its body force by incorporating the influences of

two-fluid structure and their involved forces. With the definition of the one-dimension

two-fluid horizontal flow notations, the two pressures can be written:

((p)) = Pr
(5.4)

((P.))=P +JJPmgdY[)dA/J [_JdA

In the above equation, Pr is a reference pressure at the top of the two-fluid flow

geometry, A is the two-fluid flow cross-section area, and y is the vertical distance

measured from the top. The equations can be expanded by the definition of mixture

density and gravity:

Pm =p1a+p2(1-a),

P(Y)Pr +JPmgdy

In a rectangular channel flow case, the integration can be expanded to a channel height,

H. By assuming that the pressure variation due to gravitational head is only a function

of vertical distance in incompressible limit, the pressure equation sets can be greatly
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simplified. By giving void profiles, both pressure equations can be evaluated

explicitly:

I f'adha dy J f'(l - a)dhady
((p)) = Pr + p1g

f adh
+p2g H 0

fadh
(5.6)

Physically, the phase and interfacial two-fluid consist of a lighter fluid plus a heaver

fluid. The gravitational force is proportional to fluid densities and the displacements

from a reference value. Simplifying of the above equations further, new integral

parameters are defmed as various integral forms of local void fraction and local void

fraction gradient such as:

e, Efj'adha dy/H JHady

JIadh(JdY/HJ(JdY

JH ya dy/I-It ady
(5.7)

= JIdh3_Jdy/HJj_Jdy

Using the previous integral parameters, the one-dimension interfacial and phase

pressures are given by a simple form:

('(p)) - Pr = -(P2 - p1 )gHe1 + p2gHe2
(5.8)

((Pi))Pr =
(pa p1)gHã1 +p2gH52
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The above equations show that pressure terms are composite in their substantial

forces, buoyancy and gravity. The advantage of this arrangement is that the pressure

contributions of two-fluid flow can be identified, buoyancy and heaver fluid

gravitational head in a linear function of integral parameters. The integral parameters

could appear as a virtual displacement, even if it is usually difficult to deal with the

integrations of local void fraction distributions. Evaluation of the integral parameter is

the main key in construing a unified two-fluid model. These integral parameters could

be approximated using a reasonable assumption or empirical relationships of void

fraction profiles. The integral parameters can be simplified in a series of mathematical

manipulations with a linear void fraction profile.

5.2 LINEAR LOCAL VOID FRACTION MODEL

It is important to note that void fraction distribution profiles can be evaluated by

momentum balancing for any number of interfaces. These corresponding interface

conditions would not be dependent on flow types. The proposed linear void fraction is

very useful in taking account of locally distributed interfaces in these integral

parameter evaluations. In two-fluid horizontal flow, there are wavy, slug, and bubbly

flow as graphically shown in Figure 5.1. These figures show the characteristics of void

fraction profiles, which is needed for the unification model. Any flow type is

somewhere between stratified separate flow and well-mixed bubbly flow, even if some

of them would be existence for a very short time. The main difference between wavy

and slug flow is the number of interfaces. In two-fluid modeling, it can be assumed

that these interfaces are distributed over the mixture zone, even if the interface of

wavy flow is well distributed on the wave surface. Different types of overall void

fraction profiles depend on the type of two-fluid flow. A void fraction model is needed

to evaluate these void fraction profiles. Using the linear void fraction model, the

identification of the flow characteristics can be attained with some manageable

precision and be reduced to a simple form.



5.2.1 Stratified Separate and Well-Mixed Bubbly Flow

Mathematically, the interfacial pressure relationships have been attained in the

previous sections to develop one-dimension two-fluid horizontal flow models. The

definition of the interfacial pressure is a summation of the local interfacial pressure

variation over the interface surface or the average of void fraction gradient weighted

pressure. Sometimes, the average interface pressure could not be evaluated since the

void fraction variation is ignorable small or infinitely large depending on the two flow

types. There is need for a crude approximation of a one-dimension pressure difference

equilibrium condition and a momentum equilibrium condition between two-fluid fluid

flows, as well as an assumption of manageable void fraction gradient.

Both flow types have no gradient void fraction profiles, near symmetric, because

the both fluids represent the same amount of momentum exchange between the fluids.

By definition, the interfacial pressure would be considerably large depending on the

two-fluid flow types. With a relatively large local void fraction variation flow or a

relatively large interfacial pressure, the pressure difference would be constant:

= Constant (5.9)

By definition in well-mixed flow, there would be no interfacial pressure since the

symmetrical geometric void distributions. There is no significant pressure difference

between the two-fluids. Thus, the average interfacial pressures would be relatively

zero. The delta pressure would be equal to the phase average static pressure:
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p1gH
1a

p2gH (1 (a))
2 "" 2

(5.10)

It is worth mentioning that there is no significant pressure difference between the

phase and interface. It has been shown that interfacial pressure occurs where a void
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fraction variation. Mathematically, this is because making an interface pressure can be

not presentable with the void fraction variations. In a simple case of stratified separate

flow, the delta pressure would always remain limited due to the difference of the

hydrostatic head. In the fully mixed flow case, the pressure is equal to continuous flow

pressure, as expected. By taking these mathematical operations over the newly

introduced parameters, detailed analytical expression can be obtained. The parameters

could be approximated to manageable levels using reasonable assumptions and/or

empirical relationships. The evaluated value is a one-dimension pressure difference

instead of the interface itself pressure. This is another form of the momentum

balancing conditions, which is expressing the vertical pressure difference. All results

are based on a one-dimension two-fluid flow definition mathematically and would be

true in any case of two-fluid horizontal flow. The pressure would be continuous at any

flow regime. A more detailed delta pressure model will be developed and compared in

each of the flow regimes in the following section.

5.2.2 Wavy Flow

In wavy flow, there is a significant mean interfacial pressure by the

mathematical definition. The phase pressure is proportional to the amount of fluid

fraction. As soon as a surface wave appears, the average interface pressure term could

be calculated. It has been illustrated by some measurements of the local interfacial

pressure of the wave surfaces [Miya, 1971], where the interfacial pressure is plotted as

a function of position along the wave. There would be a different interfacial pressure

value depending on the wave shape.

As expected in wavy flow, there are two characteristic void fraction variations: a

constant and a continuous variation zone. Based on the assumption of a smoothly

varying void fraction profile over a mixture flow, a linear slope void fraction

distribution model can be constructed as shown in Figure 5.1. Actually, the model

needs three variables, maximum void fraction and two max-mm void locations. These
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variables can be chosen to describe the linear void model in a sufficient equilibrium

two-fluid flow state. It is very convenient to impose a linear void variation when

modeling the void fraction profiles in theoretical pressure calculations.

Hg Hf Height

Figure 5.1: Linear Void Fraction Profile Model-Wavy Flow

As illustrated in Figure 5.1, the proposed void fraction profile model can replace a real

void fraction profile by these linear variations and replacing the void fraction max-mm

heights with integral parameters, which can be rewritten by fixed-value formulations

[Appendix D]. In the case of wavy flows, the integral parameters can be found:

UM(Hf +H9Hf 2H:)
6H(Hf - H9)

(5.11)

e
(a)

12H
e

+ 2Hf H9 + 2H
2 - 3H(3H9 +1-If)
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All evaluating integral parameters can be restricted within the specific mathematic

formulation condition, any derivative value from the fixed void fraction formulations

reduced to second order error. By combining these integral parameters for delta

pressure, they can be greatly simplified to a physically understandable expression.

This is appeared as an important relationship between the delta pressure and the linear

void fraction profile:

It is shown that the delta pressure is dependent on two basic variables, mean void

fraction and maximum void fraction. On physical interpretations, the delta pressure is

expressed as two two-fluid main forces and their mixture ratio. The first represents the

gravity, and the second accounts for the buoyancy force.

5.2.3 Mixed Flow

The delta pressure expression of mixed type flows can be evaluated by using the

same linear void fraction model, basing on a physical interpretation of the mixture

flow as shown in the pervious sections. As expected in mixture flows, there is a unique

characteristic void fraction variation, a continuous variation zone. Based on the

assumption of a smoothly varying void fraction profile over a mixture flow, a uniform

slope void fraction profile model can be constructed as shown in Figure 5.2. The

model needs three variables, maximum void fraction and two max-mm heights. These

variables can be chosen to describe the linear void model in a sufficient equilibrium

two-fluid flow state. It is very convenient to impose a linear void variation when

modeling the void fraction profiles, and evaluating with integral parameters.
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Figure 5.2: Linear Void Fraction Profile Model-Mixed Flow

As shown m the previous section, the void fraction profile shows a linear

variation over a vettical distance. At a sufficient two-fluid equilibrium state, the void

fraction profile has three related linear model parameters, max-mm void heights and

maximum void fraction--Similarly after a series of mathematic manipulations, the delta

pressure integral parameters can be rewritten [Appendix El.

(5.13)
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It is worth noting that these integral parameters can be written in simplified forms. By

combing these integral parameters, a relationship between delta pressure and the

integral parameters of mixed flow can be written:

In the above equation, all of the parts are exactly the same form as in the previous case,

including the proportional factor which is the ratio of the peak to the average void

fraction. From the above two delta pressure relationships, the modeling results show a

possible connection in making a unified model.

By linear theoretical examination of the void fraction profile, a simple

relationship of the delta pressure expression is found. In the same frame of void

fraction profile examinations, the complex integration parameters can be put into a

simple delta pressure expression. These results can be applied to a unified delta

pressure formulation of one-dimension two-fluid horizontal flow. The delta pressure

model can be greatly used in describing a characteristic analysis of the two-fluid flows.

It is important to note that the analytical fixed value formulation efficiently closes all

integral parameter relationships, handling a unified delta pressure model for a single or

multiple interface flow case.

5.3 DELTA PRESSURE ON iNSTABILITY ANALYSIS

It is well known that when a heavier fluid flowing over a lighter fluid at any

velocity, a physical instability occurs at the layer of the two-fluid interfaces. In case of

a lighter fluid moving over a heavier fluid, a physical instability can occur at a specific

relative velocity on the layer of the two-fluid interfaces. The instability results from

transitions from one flow type into another flow type, displaying different types of

void fraction profiles. A physical mechanism behind the regime transition is interfacial
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surface instability. These interfacial instabilities have been investigated, to the growth

of the interface surface reaching the top of the flowing area [Trapp, 1986; Kosasony,

1985]. When the lighter upper fluid exceeds the critical relative velocity, the inertia

forces pull upon these interfaces. This means that the force overcomes the gravity

force of the bottom heaver fluid, and pulls the crest of the heaver fluid surface to the

top. Physically, the more interesting parts of instability lie on the prediction of the

flow regime transitions.

A stability analysis is needed to determine under what conditions the model

remains instable and where the instability transition point would be. For this stability

analysis, the mean flow conditions of the two-fluid flows should be known and could

be simplified such as neglecting source terms. In the horizontal two-fluid flow, there is

a mass generation source and no external body force source acting in the flow

direction, even if the two-fluid flow occupational area is exchanging. Since these area

variations greatly affect the mean momentum of two-fluid horizontal flow, including

hydrostatic pressure that should be considered in varying interfaces. In these

relationships, void fraction distribution concepts and gravity are very important in

evaluating equivalent forces. Furthermore, they show reason why the interface

pressure should be weighted by interfacial void fraction variation. In order to

determine the impact of the variations on stability of one-dimension two-fluid

horizontal flows, the governing equation needs to be expressed in a matrix:

ap1 0

o (1a)p2 0

ap1(A-2u1) 0 a

o (1a)p2(A-2u2) (1-

Based on the prescribed characteristic analysis process, the solutions of the above

matrix equation can be reduced to an investigation of the roots of the determinant. In
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order for the determinant to be equal to zero and keep the solution nontrivial, the

determinant becomes a second order quadratic equation:

Itoh'-h p22 / (U1 -U2)2 + p2 '
A

a 1a) a(1a) 1aa 1a) (5.16)
1,2 (+ ,

a Ia,)

For the solution to remain in real, the quadratic equation would be hyperbolic and

well-posed, and the square root term of the quadratic equation must be real positive

value. As long as the square root part of above equation keeps positive, two real

characteristic roots can exist. If the root's evaluation term with the delta pressure term

behaves in such a way that the inequality is always met, the two-fluid flow model

becomes well-posed:

u1u2± (5.17)

When the inequality of the above equation is violated, additional momentum

interactions due to inertial force would presumably appear. In analyzing the system

real stable limit ranges, a real formulation or a real value of the delta pressure is

needed. Using the preceding linear void faction profile model, one of an exact form of

the delta pressure can be expressed theoretically. A further characteristic analysis can

be performed by substituting in the delta pressure formulation, and the above criterion

expression turn into:
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Furthermore just after the transition to a slug flow, the coefficient k is keeping to one

and the well known peak void fraction is going to:

aTM =2/3 (5.19)

The transition point of flow regimes should be somewhere between a separate flow

and a mixed flow and the delta pressure would be continuous between them. From the

all above relationships, the criterion for slug transiting flow becomes:

2 < +Hg
(p2 - Y.PL a-

-- Pl t\2 6 )I\p2 1_aJ
(5.20)

By assuming that the light upper fluid density is much less that heaver bottom fluid

like an air-water flow case, the above hyperbolic criterion can be further simplified:

- 0.57
a I lpgaH

\I1-aj pi
(5.21)

In the range of relative velocity, the two-fluid flow is a well-posed system. This result

is similar to the previously obtained well known Kelvin-Helmholtz instability criteria,

showing that gravity force stabilized the two-fluid flow over a significant inertial force.

5.4 UMFIED ONE-DIMENSION HORIZONTAL FLOW MODEL

The linear void fraction model has been used in order to unify one-dimension

two-fluid horizontal flow problems. The continuous void fraction distribution profiles

can be simplified by replacing with an approximate linear void distribution. By
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replacing the void fraction characteristic variation by a linear variation model, a new

vertical direction momentum relationship can be obtained with the function of the

mean void fraction and the peak void fraction of two-fluid flows. In considering stereo

types of local void faction profiles that are dependent on two-fluid flow regimes, it is

found that there is a unique relationship in balancing the vertical momentum.

In a mathematic derivation of the integral parameters of the one-dimension two-

fluid equations with the linear void fraction model, the delta pressure, vertical

momentum balancing relation, can be written:

The expression is always consistent through the flow regimes in any of the cases of

two-fluid flow types, and the amount of the delta pressure force is proportional to the

fluid density difference and these displacements. It should be recognized that it is also

convenient to take the proportional coefficient as the ratio of average void fraction to

maximum peak void fraction in some apparent mass effects being included.

Furthermore, the delta pressure would be continuous at any flow regime, including an

unstable transition point even if the flow situation continuously exists or not.



6 RESULTS

The unified one-dimension two-fluid horizontal model has been developed and

can be applied to any flow types. In the development of a unified correlation, the one-

dimension horizontal flow model is getting stabilities. The model is tested to the

relative velocity limit of two-fluid stable system by the characteristic system analysis.

By comparing the theoretical linear void profiles model with experimental void profile

data, the test results are verified. For verifications of the theoretical linear void profiles

model, a numerical integral of the empirical real void fraction profiles are treated,

even if all the data is dependent on these flow regimes. If the previous approximations

and assumption in the theoretical model developments are correct, a numerical or a

theoretical constitutive relationship for two-fluid flow will be reduced to a unique

pattern.

In the unified flow modeling with hydrostatic body force, it is no longer

appropriate to apply the pressure jump at the two-fluid interfaces and/or flow type

transitions point even if in a one-dimension sense. These intentions can be evaluated

by the delta pressure model, which has continuous pressure changing between flow

types. Since all these possible discontinuous transition regions can be replaced by the

mean continuous properties, all these results may be in a physical stable condition,

continuous flow transition, and be allowed the instability to remain hyperbolic in

naturally. A detailed comparison of the hydrostatic relations will be discussed in the

next section.

6.1 VOID FRACTION DISTRIBUTION

In steady-state with no-phase change two-fluid flow, the empirical void fraction

distribution profiles have been measured by various methods. Some void fraction

measurement devices result in an average value over a given flow domain, and others

do not. If two-fluid flow structures show fast-changing along the flow direction, the
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two-fluid fraction measurements would not be the same. It would happen near a

sudden instability region between before and after it. They also require two- and/or

three-dimensional void fraction measurements, allowing the local measurements over

the whole flow cross-section areas.

For theoretical or analytical usages of the void fraction profiles, the most

effective and simplest methods are numerical estimating approach or a simple

approximation method of local void fraction measurements. The basic concept of the

approximation method is choosing a known functional form of the void fraction

distribution profiles or a known form of the void fraction differential equations, and to

adjust its consequent form of parameters so that the non-linear void profile is

numerically or analytically satisfied as close as possible. These methods should be

easier than calculating with the actual profile, but won't contain much information

about void fraction mechanisms that can be created by the actual profiles. But these

will mimic actual void fraction distribution profiles and be a good analytical usage in

comparing to a linear void faction distribution profile model.

Separated Wavy Flow Slu2 Flow

Figure 6.1: Mixture Flow Layer of Different Flow Regimes

Figure 6.1 shows visualized two-fluid structure and its correspondence to conceptual

mixture layers, which are obtained by evaluation of these local void fraction profiles

or time-averaging local instantaneous two-fluid horizontal flows in various two-fluid

flow regimes.
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Figure 6.2 Contours of Void Fraction Distribution

In these horizontal two-fluid flows, void profiles characterize the spatial trend of

void concentrations, which would locally transport into one another according to

involved forces. In considering a local void distribution profile as a time-averaged

two-fluid interface, the interfaces are replaced by a homogenous mixture with a direct

parallel to two-fluid flow as shown in Figure 6.2. In mixture layer, there are two

important common contours, separate and mixed flow, in view of void variation over

the whole vertical distance. The blue-solid lines of Figure 6.2 represent local void

fraction distributions of separated flows. The maximum of these void fractions is

dependent on two-fluid flow rates, even if there is a very small mixing zone in the

middle of the flow cross-section. The blue-dotted lines represent the expected void

fraction profiles of mixed flow. The outside of blue-lines, the dotted black and red

lines, represent expected void profiles of a stratified and a bubbly flow, respectively.

84

-



6.2 LOCAL VOID FRACTION PROFILE

The actual void fraction profile measurements are represented in the following

few sections. The measured void fraction distributions will provide better insight of

local two-fluid flow construction, local two-fluid volume ratios. In quasi-steady-state,

the local two-fluid flow combinations are seen, since the two-fluid fraction is a time-

average fraction of the two-fluids. From the local void fraction measurements of a

separate flow, it is easily expected that the void fraction will have a constant zone near

the top wall. The constant void fraction is the peak maximum void fraction, which also

has the transit point from a constant to a continuous void fraction variation in the

vertical direction of horizontal flow. In these void fraction profiles, there is a void

fraction variation zone, the time-average of interface mixing layer. As shown in the

previous chapters, these profiles are very similar to the solutions of the void

distribution model or the profiles of the linear void fraction model.

These void fraction distributions explain the involved body forces, which cause

same amount of void to move upside to balance all the concerned force terms

physically. These fractions are the maximum at a much higher point in two-fluid flows,

and are monotonically or suddenly changed thorough the interface mixing region until

a region occupying only one heaver fluid. Even if the actual measured profiles have

much more meaningful characteristics, the mixing layer thickness can grow with those

void fraction profiles variations and these growth rates are not proportional to the

variations. This is because the two fluids have different velocities, densities, and are

less dependent on void concentrations. Also, suddenly occurring two-fluid instabilities

significantly affect overall void fraction distribution profiles. These void distribution

profiles have less information of the two-fluid instability: far away from the instability,

the void fraction profiles have a constant void fraction, just after the instability the

maximum peak void fraction is 0.65 (2/3). There is no known method to find an exact

solution of these void distribution profiles, even if some analytical methods are good

at approximation they are still under research. As shown previously, the delta pressure

model is one of candidates.
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6.2.1 Void Fraction Profiles

Under a steady-state two-fluid horizontal flow, the flow may have two typical

types of void fraction profiles. As shown in Figure 6.3 and 6.4, both void fraction

profiles are the function of two-fluid flow rates. They correspond to net momentum

balancing results, while some voids are pushed downwards by turbulent force near the

mixing layer with the maximum void fraction at the topside. The continuous constant

void fraction is likely intercepted at the mixing layer boundary, which is always found

at the topside of separate flows. With their higher average void fraction, a

monotonically changing void zone is observed from the topside of the mixing layer to

the lower part as expected. In more detail, the topside of the two-fluid flow area is

mostly occupied by a lighter fluid with a constant two-fluid fraction
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Figure 6.3: Experimental Void Fraction Profiles, (j1,) =1.65 mIs
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Figure 6.4: Experimental Void Fraction Profiles, (j,) = 3.8 mIs
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Similarly, the bottom part is occupied by a heaver fluid with constant local two-

fluid fractions. Between these top and bottom regions, a monotonically two-fluid

fraction variation region exists until the boundaries of the areas occupied by one

specific fluid. Approximately, the two-fluid fraction corresponds to the balance of

inertia and buoyancy, while some rates of voids are pushing downwards by flow

turbulence near the mixing layer. A net effect of these forces results in void fraction

distribution: if the inertia of the lighter fluid overcomes the buoyancy force, the higher

part of the two-fluid flow area is prevailing with the light-weight fluid that would be

responsible for the separating two-fluid flow. With actual measurements, Figure 6.3

shows what percentage of the singe-fluid flow area is occupied by separate two-fluid

flow. The three solid lines show a numerical curve fitting corresponded to these void

fraction distributions, where three void fraction distribution profiles are compared with

their three air flow rates.
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6.2.2 Void Fraction Profiles of Mixed Flow
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They exhibit continuous variations all over their mixture layers. They will happen

until the average fraction of air is approximately up to a quarter. After that point, a

separation mechanism is no longer stable: the overall void fraction profile transitions

from having partial constant trend to whole variation two-fluid mixture trend flowing

as shown in Figure 6.4.

All actual measurements [Kocamustafagullari and Wang, 1991; Kojasony and

Hung, 1994; Kocamustafagullari et al., 1994 Iskandrani and Kojasony, 2001] suggest

that the topside local void fraction is larger than in the bottom and these differences

make an asymmetric void distribution profile, which is strongly related to a mean two-

fluid mixture flow condition. A large portion of air is flowing along the upper part of

the flow area, the air fraction is nearly constant, and continuously decreases over the

vertical direction. Also, a strong mixing action is made by a rapidly growing

instability and a whole area mixture flow situation is constructed after the instability,

sharply re-establishing the void fraction trend. This strongly suggests that local void

fraction distribution profiles could be dependent on their mixture flow situations and

be changed by the two-fluid flow conditions. These void fraction profiles also have a

characteristic slope as a function of mean void fraction, even if the slope is

continuously changing. These characteristic void fraction slopes could be introduced

by balancing two-fluid total momentum, which takes account of turbulence and

gravity. With a total momentum balance concepts in two-fluid mixture layer, an

equivalent hydrostatic pressure should be in existence with the function of equilibrium

local void fraction distribution. It is important to note that there is no difference

between applying these concepts on any of the two-fluid flow regimes From these

relations, a unified theoretical pressure relation has been developed.

In void fraction measurements of mixed flows, there are no constant void

fraction zones. The void fraction zone will change in a continuously varying
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distribution. Also it has been observed that all void fraction profiles have very similar

overall shape with a peak void fraction peak near the topside as shown in Figures 6.5.

Specifically in air-water horizontal flow, it is well known that the maximum peak void

fraction is about 0.65 just after the transition from separated to mixed flow. It has been

expected that the maximum fraction is a maximum packing factor of equal-size

spherical bubbles in an equilibrium force state. Physically, the turbulent force

overcomes the surface tension of a larger bubble and the accumulated bubbles near the

top would be broken into smaller bubbles. The creation of smaller bubbles can

establish new bubble upward forces, buoyancy forces, made to balance the liquid

turbulence force.
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As the liquid flow rate is increased, the dispersed bubbles become diffusive and

wider by increasing the continuous fluid inertia, thus liquid turbulence, as shown in

Figure 6.6. Even if the void distribution profiles look like half of a Gaussian

distribution curve, they may or may not represent a statistic distribution. They simply

come from a characteristic trend of void distribution with two-fluid momentum

balancing in mixture flow layer. It is important to note that the different between the

void fractions have been shown with different values of air flow rates. The maximum

void fraction is decreased and occurs at more or less intermediate position as air flow

rates are decreased, even though the overall shapes of void fraction distribution has no

affect. At the void fraction peaks and these locations are decreased and deeper as

continuous phase flow rates are increased.



6.3 DELTA PRESSURE VERIFICATION

All above figures show that the visualized flow structures observed by actual

void fraction measurements and numerical re-constructions of the two-fluid fraction

distributions. To evaluate the actual interfacial momentum balancing forces, delta

pressures, a set of real experimental data is required. In the evaluation of any two-fluid

flow regime, a linear void fraction profiles have been used as one of the candidates.

The actual measurements can be used in evaluations of void fractions, thus delta

pressure, both correspond to the numerical approximations.

In the void profiles of well-mixed flow and stratified separated flow, it is

expected that the gradient of the two-fluid fractions would be nearly zero and very

large respectively. In these two cases, the interface pressures are not well known. Only

when two-fluid flow diverges from stratified or well-mixed flow, the influence of void

fraction gradients on the vertical force balancing relations can become evident. For the

verification of these void fraction models, the actual evaluation results are needed to

compare to the actual measurement data. For comparison purposes, the actual void

fraction profiles from actual measurement data can be numerically approximated by

fitting the coefficients of the void diffusion-transport model based on the homogenous

flow approximation. By estimating actual void fraction distribution profiles over the

flow cross-section, the real characteristic trend of two-fluid flow structures can be

shown.

With the same mathematical definition of theoretical delta pressure, a numerical

delta pressure can be evaluated with real measurement data. The experimentally

evaluated delta pressures, red-dots, are shown for comparisons purpose in Figure 6.7,

where the theoretical delta pressures, blue-dots, are found with the concepts of linear

void fraction profile and its equivalent gravitational body force. All of these evaluated

pressures are relative to the static pressure of the fully channeled single-liquid pressure.

This means that all these experimental and numerical delta pressures are normalized

by the full height liquid pressure.
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Figure 6.7: Comparison of Experimental and Theoretical Delta Pressures

Within a number of significant digits, both delta pressures are very similar, even if

there are some differences at lower void fraction values. The differences between them

could be attributed to the fact that small errors or uncertainties of measurement might

amplify the difference between the predicted and measured values in evaluating the

spatially void distributions. It is believed that given these uncertainties, the agreements

are well matched. As shown by the solid black line in Figure 6.7, the overall trend of

delta pressures is to decrease with the mean void fraction. This means that delta

pressure is decreased as being the generation of a surface wave and void mixture wave,

and their amplitude growth in vertical direction as they are going to well mixed

situation.
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These delta pressure results can be used in system characteristic stability analysis

for the verification of the theoretical delta pressure model. The flow characteristic

analysis is focused on a role of delta pressure relating the momentum balance of

different two-fluid flow regimes In cases of perfectly-stratified and well-mixed two-

fluid flow, the stable relative velocities could be hard to evaluate by the facts that the

void fraction gradients are infinite and zero respectively, even if all these could be

estimated in numerical evaluation of experimental void fraction data. Considering a

linear void fraction profile, the functional relationship of delta pressure can be greatly

simplified with an asymptotical approach to real gravitational momentum balancing

problems. Furthermore, there would not be suddenly changing forces with a possible

unphysical instability by unifying the interfacial momentum balancing relations.

6.4 STABILITY LIMIT

It has been shown that the delta pressure plays a main role in stabilizing the one-

dimension two-fluid horizontal flow formulations, where overall void fraction profile

is considered with its equivalent stabilizing gravity force. Basically, the gravitational

delta pressure expresses the momentum balance of two-fluid flow in the gravitational

direction, and increases the stable relative velocity significantly. In a mixed two-fluid

flow, the two-fluid flow will decrease the stable relative velocity to the point where

the dispersed fluid velocity is slightly faster than the continuous fluid one. The

dispersed fluid would have enough inertial force to overcome buoyancy force along

the horizontal flow channel and also has its own unique stable constant relative

velocity. As the flow situations diverge from a well-mixed flow, a finite void gradient

shows up and a calculable interface pressure appears, thus another newly stable

relative velocity comes up. All these results are related to the variations of effective

momentum in the force balancing of the two-fluid flow, affecting on the neutral

stability of the flow.
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The most promising way to find the above characteristic effects is a direct

investigation of the delta pressure relations to the two-fluid instability. For the

characteristic stability analysis, the delta pressure expression should be recast in an

evolution equation set forms or equivalent values. By considering two-fluid effective

gravity, the delta pressures can be theoretically expressed in terms of two-fluid volume

ratios and densities. For verification purposes, experimental delta pressures are

numerically illustrated in the instability analysis. These are evaluated by numerically

approximating the actual measured void fraction profile, numerically adjusting their

associated coefficients or parameters to perform the analysis determine under what

condition the flow has stability numerically.
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As shown in Figure 6.8, the theoretical and experimental relative velocity

criterion to keep the two-fluid flow hyperbolic is obtained. The theoretically achieved

velocity limits are calculated with red dots and the numerically evaluated velocity

limits are represent with blue dots. Both the experimental and theoretical evaluation

results are well matched over all two-fluid flow regimes. The instability limit is mostly

identical to the criterion of the actual relative velocity [Wu, Q. & Ishii, M., 1996].
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Figure 6.9: Expansion of Analytical Stability Criteria Lines

In evaluation of velocity criteria, the solid black line represents the stability line

predicted by the Kelvin-Helmholtz instability limit and the dotted black line represents

the analytically predicted instability limit. All these instability limits can be used as a

very important reference in physical instability criteria of two-fluid flow. Some
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discrepancies could be interpreted as the theoretical criterion is calculated with the

linear void fraction profile approximations, thus these solutions would be

asymptotically approached. All previous results show two unique consistencies that

were previously expected. As shown in Figure 6.9, two-fluid flow is stabilized by

gravity force over the whole ranges of void fractions, and furthermore is accounting

for the unified model improving the two-fluid unphysical system stability. For a

relative velocity which is lower than the above criterion, the one-dimension two-fluid

horizontal flow would be stable. Physically, they do appear realistic with stabilizing

gravity force, and maintaining against the possibility of instability.



7 DISCUSSION AND FUTURE WORK

Taking two general conservational single-fluid flow balance relations, adding

them and averaging them over a time and space respectively, a one-dimension two-

fluid horizontal flow model has been created. All of the conservational properties of

two-fluid flows are balanced within the two-fluid system status in constructing the

two-fluid flow, which is consists of a virtual mixture layer and two single-flow layers.

A physical explanation of these features is interpreted as a steady-state expansion of

the mixing of steady-state two-fluid construction of two single-fluid boundaries. They

arise from a force balancing of buoyancy, liquid-turbulence and its gradients, etc,

thereby gravitational local void fraction profile representations. Naturally taking into

account the gravitational force with the two-fluid fraction representations, a new

stability-enhanced one-dimension two-fluid horizontal model can be obtained.

To find the one-dimension constitutive explicitly, a linear void fraction model is

used. With the theoretical development of two-fluid integral parameters, an important

unique value formula, applicable to any two-fluid flow regime, is deduced. While

keeping the formula in derivation of the integral parameter, the encountered void

fraction integral parameters are linearly combined in order to create a unified model.

The major advantages of this model are, first of all, it can explicitly unify any

distributed multiple interface flow including any single interface flow and, second it

has reasonably simple formulation. They make the unified theoretical correlation of

the interfacial force of two-fluid horizontal flow possible. Thus the unified correlation

can apply to any two-fluid flow types, allowing a transition of flow types or transition

back if required. The proposed unified model further enhances a hyperbolic nature by

fixing the unphysical instability problems of two-fluid.

After the development of the one-dimensional model, the model's stability is

tested. The stability of the new one-dimension model is tested by a characteristic

system analysis method. By comparing these results with the measurement results, the

proposed model has good agreement with experimental data and the correlation works
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for a wide range of horizontal flow conditions, even within the evaluations of

interfacial forces based upon a linear void fraction. In order to keep the derivations

reasonably simple, the two interface layer boundaries are assumed to have slower

enough variation that any dispersion terms could be neglected. For the same reason,

the interfacial shear stress is assumed to be small enough so that drag force is

negligible. This would avoid the potentially nonlinear variations of the variables

across the interfaces, and the property variations simply follow a gravity long wave

variation. The success of the simple linear model may be explained by the fact that the

turbulent dispersion and drag force forces were negligible, thus leaving us only with a

two relative strong forces, turbulence and gravity.

There is future work that can archive more stability enhanced one-dimension

two-fluid horizontal flow model developments and verifications. A phenomenological

void fraction relationship of two-fluid interface mixing has been proposed as a unified

interface force balancing model, with the developments of a mixture layer concept. As

seen in flow compatible linear void fraction profile modeling procedures, further

work is required to find void distribution mechanisms as well as two-fluid interfacial

area transport mechanisms, the mechanisms of the generation, deformation, and

propagation of void waves and two-fluid surface waves. From these wave distribution

mechanisms, vertical profiles and their variations could be evaluated, correlated, and

projected into the one-dimension forms. The void distribution mechanisms would need

to include turbulence shear stress and its gradient, even if it has been introduced in the

mixing layer void distribution equation in a previous section. Additionally, there is

need to conduct work that is related to interfacial area, its transports, and its

implementation of different two-fluid flow structures. More theoretical and

experimental work is needed to verify these relationships, including the other

interfacial area transport relationships between transverse interfacial area

concentrations and corresponding interfacial pressures.

It is also required to take care of these applications for other two-fluid flow

geometries like a tilted two-fluid flow and to create an analytical solution or an exact
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formulation. There is need for a more detailed theoretical interfacial pressure

relationship for determining exact interfacial terms of two-fluid flow. Especially when

a two-fluid flow has similar densities or a small change of void fraction distribution,

more exact correlation evaluation becomes more important. All these additional tasks

works are required to develop these closure relationships. Results for a more smoothly

varying stnicture over a wide range of flow conditions would significantly improve

the modeling of fully mixed flow. The creation of a good model can eliminate

subjectively the instability that could be associated with numerical calculation near a

transition point. All these results will need to be incorporated in the one-dimension

two-fluid difference equations and these efforts could eliminate the non-hyperbolic

nature of the previous one-dimension two-fluid single-pressure model.



8 CONCLUSIONS

With the previous work, two-fluid flow models have been considered as the

superposition of two single-fluid flows separated by interfaces. In one-dimension two-

fluid horizontal flow, a more advanced mode has been considered in a long times since

the previous one-dimension two-fluid single-pressure models have instability

problems. The main cause of the unphysical instability is due to a failure to express an

interface force and to model its interfacial transfer distribution in dealing with the two-

fluid flow. This would be a governing force of two-fluid flow surface stability. As the

indication of a system instability analysis, the interfacial factors play a main dominant

role in void fraction growth.

By starting from the view point that the instability comes from the

oversimplified void fraction profile results of the previous model, a proper

consideration of local void fraction profiles can allow a unified model to overcome the

instability. Considering one-dimension modeling, the main focus is on the relation of

the actual void fraction profile to gravity. This natural approach allows combinational

relationships between the void fraction profiles with the average pressure variation in

the vertical direction in a horizontal two-fluid channel flow. Physically, the system of

two-fluid flow consists of two regions with a large number of boundaries or a single

interface. In order to determine the value of the pressure and the interfacial pressure,

changing the two-fluid horizontal flow to three virtual zones, two single-fluid flow

zones and a mixed-fluid flow zone, is needed. Determining effective forces of these

zones is important in closing the total momentum balance and creating a unified one-

dimension two-fluid model with flow regime transitions. An analytical expression of

the interfacial factor is derived as a function of average void fraction, two-fluid

densities, and peak void fraction by considering gravity and a linear two-fluid

distribution profiles. By incorporating the physically reasonable approaches, the

unified one-dimension two-fluid model has two distinct interfacial forces. On these

bases, this pressure model has very desirable physical properties and reasonably well
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describable stability velocity criteria. In extending previous convectional one-

dimension two-fluid horizontal flow equations, the characteristic test is performed to

the determinate if physical stability has been achieved.

This research has demonstrated that a stability-enhanced one-dimension two-

fluid flow equation can be derived with the mixture layer concepts. These equations

describe the mean two-fluid flow behaviors in the time-averaged mixture layer. The

mixture layer concepts can be used in unifying a one-dimension two-fluid horizontal

flow formulation, even if there are sufficiently thin interface thicknesses dependent on

the two-fluid flow types. The proposed unified one-dimension two-fluid horizontal

flow formulation is introduced with virtual thick mixture layer concepts to produce the

static interfacial pressure. The results are shown to be much better than that of the

Kelvin-Helmholtz instability criterion. The unified two-fluid model has significantly

improved the stability, achieving physical stability and contributing to remove

unphysical instability. Removing instability problems will improve the numerical

stability of thermal-hydraulic codes because the computer codes will no longer need

the more subjective flow regime maps or flow regime dependence correlations.

Eliminating the unphysical oscillations that can occur near flow regime transition

boundaries and a smooth transiting from one flow regime type can be possible. All of

these properties indicate that the proposed model would be one of the promising one-

dimension two-fluid horizontal flow models. With the unified two-fluid model, it can

also naturally overcome the unphysical stability of a one-dimension two-fluid

horizontal flow.
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NOMENCLATURE

A flow area

a interfacial area concentration

C0 distribution parameter

Ck momentum covariance term

dm Sauter mean diameter

g gravity acceleration constant

H flow channel height

j superficial velocity

k wave number

L length scale at interface

th mass flow rate

n surface normal vector

p pressure

Q volumetric flow rate

heat flux

t time

u, v velocity

Vgj drift velocity of the jth interface

x vapor quality

x, y, z spatial coordinates

Greek Symbols

a void fraction

A difference between two terms

F mass generation rate per unit volume

p density

0 void distribution parameter

t shear stress
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co angular frequency

angle from vertical, rates of change of the bubble number density

dissipation, rates of change of the mterfacial area concentration

wetted perimeter

bubble shape factor

Subscripts

d, c, i dispersed fluid, continuous fluid, interface

m,n index

r relative

t unit time

x, y, z spatial coordinates

0 reference

Mathematical operators

area averaged quantity

void fraction weighted area averaged quantity

void fraction gradient weighted area averaged quantity
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8M dt=--
Tk

a(-rk I c' Uvflk
iJiT.skIi Ilki

a 1 UflkaUki,
hlVflkI

Mkdt-
i "k

Mk
T, lu k1

Leibnitz Rule:

Jdt=--ffkdt I 'k C
'tk

Tk IUjflkI

Gauss Theorem:

J V.fkdt=V.ffkdt+
Tk Tk IUI k1

Tk: Occupational time of k-fluid

flk: Normal vector of k-fluid

u1: Local instantaneous interface surface velocity.

First Term:

APPENDIX A: VOID FRACTION EQUATION

To derive a basic void fraction equation, a time-averaged indication function, a limit

form of Leibnitz rule and Guass theorem [Ishii, 1975; Delhaye 1981] can be used:

(A.!)

(A.2)

(A.3)
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Second Term:

f V.Mkdt=V.JMkdt+
'k Mk

Tk T ; U1fl

1TkV.)=_f
I1i1kI

Vak T,u1
k1

Combining the first terms and the second terms:

(A.4)
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+u.Vak=O (A.5)



APPENDIX B: TWO-FLUID CONSERVATION EQUATIONS

Applying the limit form of Leibnitz rule and Gauss theorem [Appendix A]:

First Term:

J
ôf3JM

dt
1 aPkWk dt

T1 at TtTk at

i II
PkVk

Iui k1
at

=[-_-JPkkdt] 1 i k
PkWk

at TtTkTk TtI"lkI

JPkWkC1tJf
k U

PkIk
kat Tk

Second Term:

kN1k'kMk +JkMk)dt

=LJV.(pkllIkuk +Jk)dt
it T

= V .IiJ(pu + Jk)dtj+ k (pkvkuk +

Tk T Tknk U

= V ----f(Pk1vkuk +Jk)dtJ+ k (Pkwkuk k)

Tklnk UiT Tk Tk

= V .-J(piu +Jk)dtJ+ k (PkliJkuk k)

Tklnk .uJTk Tk

(B.1)

(B.2)
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Combining them:

/

PkkdtJ

/

-- +V I(Pk1kukk)dtJH5kdtatTkT t kT k Tk

1 11k111
= PkWk

_11k (PklVkUk k)

I11kiI T Tklnk.ujl

With a time-averaged quantity definitions;

f PkWk
k Tk

;j- fPklvkukdt P'I'U
k Tk

k

fskdt
k Tk

Pk(Uk11)flk k

The time-averaged general conservation equation can be reduced to:

a -T T T

(ak Pk'Vk) + V (;PkNlkuk + UkJk) - aksk

(ihkwk+nkJk)
-1
k
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APPENDIX C: ONE-D TWO-FLUID CONSERVATION EQUATIONS

C.1: Mass Conservation Equation

With the definition of the conservation quantity, flux, and source terms;

lVk =1

k =0
Sk =0

the integral form of mass conservation equation becomes:

dA1JkPk dA+--JV.akpku%kdA=
AATt Tk 11k UiIAA at AA

By applying Leibnitz rule and Gauss theorem, the first and second term of the

conservation equation can be rewritten;

S First Term:

ljöpkak dA=-if akpkdA_ -Jakpk(u n)dC
AAat

S Second Term:

V pk kakdA = [JPkuXkakdAJ + Jflk Pku%Iak (C.4)
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-P--Ja dA+--JP-LJU kUk'=
atAA k ÔXAA '

IT]

[2]

1 1 ---dA (C.5)
a1-- dA+_I_$pA1Pkak kuXkakdAJ=-Sf

1 Ifik .uil

Assuming that the density change is very small over the flow cross sectional area, the

mass conservation equation can be reduced:

m
dA

AATt i IflkUiI

Using an averaged void fraction and the void fraction weight averaged quantities, each

term of the mass equation can be rewritten as follows:

Ill --JakcIA a

ÔtAA _Pk@k)

[__JuXkakdAJ = _JUXI(akdAJ = (C.8)
aXA

[31
1 1 th

dA=*JFkdA=(I'k)
(C.9)
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By combining these two terms, a differential form of the mass conservation equation

can be written:

AA



ui

T T1 k

Combining the first term, second term, and the area averaged source term, the one

dimensional mass conservation equation reduced to:

a a
Pk(Uk) +_Pk(Uk)((U)) = (r'k)

C.2: Momentum Conservation Equation

By taking the definition of the conservation quantity term, flux term, and source term;

'l'k 11k

k Pk'(k +UkUk)=PkITk (C.12)

Sk Fk

By taking the dot product in the x-direction normal unit vector for one dimensional

equation and integrating the time-averaged momentum conservation equation;

(C.lO)

(C.11)
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JaPkU dA+JV.ak(pkuku +fl Pk1 -1 .TIJJA
A at A

=JFakdA-J-- I" (thuk+nk.pkI-nkk)dA
A AT T k

(C.13)

The area-averaged one dimensional momentum conservation equation can be obtained

as following:



IAiJaPkuxkak dA+ifV.ak(pkuku +n1 Px k
AA at AA

(mu Pk'k Tk)cIA
1k

Applying Leibnitz rule for the first term and Gauss theorem for the second, third, and

fourth terms of the momentum conservation equation;

First Term:

if
8U1L

dA = --JakPkUXkcIA - J(flk uC)akpkudC
AA at atAA

1

= --f akpku(dA --J(nk uI)akpkulkdC
atAA

Second Term:

V. akpkukudA
= akpkukuxkdAIJ+Ink akpkukudC (C.16)

=--fakpkuXkdA+fnk kPkUiUzk

Third Term:

'JVakp a(i
aXAA kPxkJfI1kkPxk- dA=_l_fn a

Iakpk
1dA+_fn akpkdC
A

(C.14)

(C.15)

(C.17)
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Fourth Term:

iJv akdA = atdA + ;1Jflc aktdCaXAA'

+txyk +)dA+(n1 a +fl1 aWktWk)dC

-T
+ u'u' )dA + adC +--a ktwJc

A , D

In the fourth term, a wall shear must be used in modeling to obtain realistic transient

response analysis for the mean well shear stress, 'twk, with the wall wet perimeter.

Combining all of the above terms with the time-averaged source term;

Sakpk"x-- dA+_fa pkuXkdA

Jak(Tk+uuX)dA+JF,dCakdA (C.19)-
XAJkpkdA

1

De xAA

'k Pki'k Td)(1J11x k(PkTk)d1C

Assuming that the density is not changed much over the flow cross section area and

the averaged quantities are constant in the small x-direction distance, the conservation

equation can be written as:
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[3j

[21.

+ --JakuXkdA
ÔxAA

[6]

--JUXkLkdA =--Pk(akX(uXk)) (C.21)

12fuJakdA = (ak)((u)) cffl(ak)((uXk))

adA =/ak)((pk))1131. -_-1Jn kPkA_-7-fPkak Ox'OxAAX

[4]. --fakTk +u'u')dA=-_(ak)((k +i'))
OxA

(C.22)

(C.23)

(C.24)
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[1] [2]

= JakPkdA-4
8 1 -

De ox AIT +uu')dA+--JFakdA
(C.20)

[I [5]

1_4± x (thukj+nk.p-nk.J)dA--_JnX.ak(pk1-)dC
AATt i, flkUiI

[51. ±-f(Fk nx)akdAAIFXkakdA(ak)((FXk)) (C.25)



dA

The five parts of the sixth term can be written as followings:

First Term:

_(r'k)((U)) (C.26)

Second Term:

1 1 "k flIPidA_IJ±.11k 11'dA
AJT flkUiI AATt i fr'k'I

= -i-JnxpkjV akdA

=fpj-dA
ô(ak)

1 k

)AAo )

Third Term:

(C.27)

(C.28)
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Fourth Term:

_TJ111 dC=_-Lfn. .akpXkdC---fnW.akpXkdCkakPXk
A '

1=__fn nakpkdC
A

18
= --JakpkdA = (n .Vakpld)

Fifth Term:

*f1 .aktkdC_fn

_i a

A

= IJ .i.dA+ifa A

=(Vak.n)+Jak

(C.29)

(C.30)
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Combing all the equations, another form of the one-dimensional two-fluid momentum

conservation equation can be obtained such as:

Pk(akX(t1xk)
a 2 8- ) + cmPk(ak)((uxk)) + (ak)((pk)) - (ak)((FXk))

(C.31)

= (Fk)((uXk)) + ((pu))
ô(ak)

(n VakP) - (vak n) 4awktwk

De



a a 2a
Pk (ak )((u)) + - CPk (Uk )((uXk)) +- (Uk X(Pk)) - (Uk )((FXk))

ax ax

a(Uk)
= (Fk)((uXk)) + ((pu)) (M) 4UWktWk

ax D

M Vakpl8j TIdVUk 11

C.3: Constitutive Equation

The local instantaneous form of the general conservation equation across the interface

can be written:

flk10
=1 (C.33)

k 0

The interface mass jump condition can be derived:

By multiplying the mass jump condition by an indication function and averaging this

equation over a sampling time, the time-averaged interfacial mass transfer conditions

can be obtained as follows.

(C.35)

(C.32)

(C.34)
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With the mass balance equation and none zero void fraction, the interface mass jump

condition can be reduced to the following time-average mass transfer rate conditions:

0= = (C.36)

C.4: One-Dimensional Horizontal Flow Model

The averaged momentum equation can be simplified with the delta pressure definition

as the averaged interfacial pressure and the averaged bulk pressure difference:

(F)=o (C.37)

Without phase change conditions, the mass interface balance equation is the only

statements of the local instantaneous interfacial velocity difference.

(i'k)=O (C.38)

APk ((Pkj))((Pk)) (C.39)

After simplifications with no mass transfer and no-viscosity, the averaged momentum

conservation equation can be written as:



a a 2 a a
pi(ai)((ui))+cmpi(ai)((ui)) ip1

a a 2 a a
p2(a2)((u2))+cmp2(a2)((u2)) +AP2(a2)=_((P2))(C4O)

a a
((Pi)) =((P2))

With simple notation, the one dimensional two-fluid momentum equations can be

written:

8 8 2
-p1a1u1 + CmPiUiUi - ip1 a =

a a 2 8 8
p2a2u2 + CmP2a2U2 - p2 a2 = p1

(C.41)
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APPENDIX D: INTEGRAL PARAMETERS FOR SEPARATED FLOW

(D.1)
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aM

Hg Height

Figure D.1: Void Fraction Profile Model (Separated Flow)
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UMHg+57(Hf+Hg)

51-I: +2H1Hg +2H
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APPENDIX E: INTEGRAL PARAMETERS FOR MIXED FLOW
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Figure E.1: Void Fraction Profile (Mixed Flow)
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APPENDIX F: DELTA PRESSURE EVALUATION

With the integral parameters, the delta pressure can be written:

Separated flow

((pi))((Pg))=(p2 -p1)gH(01 -1)-pfgH(O2 2)

(PfPg)(1
6

2HgaMJ+Pf

With the definition of the triangle void faction area to total flow void faction

area ratio for linear wavy fraction void fraction model;

-Hg)aM K(a)H =-(2Hg)aM =K(a)H =Hg =KH(F.2)
UM

The delta pressure of the wavy type flow can be written:

((Pj))_((pg))=KI pfg Pf Pg

3aM
(F.3)
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+Ps!fóH

(Pi Pg)(l

2H+2HfHg+6H H
(F.1)

(Hf +3Hg)

2HgaMJ+Pf

(Hf +3Hg)J

Pf$g
3



Mixed flow

((p1)) - ((Pg)) _(Pf - pg)gHaM
4H 6H(HfHg)

(2(H2 +HfHg +H) (Hf +Hg)"I
pfgHl

t 3H(Hf+Hg) 2H
J

(HfHg
gH (F.4)=(pf-pg)gHaM

12H
J+Pf 6H(Hf+Hg)

Hf
= (pr - Pg)HctM

1

+ pfgH1-)

(Hf
= (Pi - Pg)aMjjj) +

Similarly, with the triangle void fraction area condition for the linear slug

flow void fraction model;

=Hf=2KH2HfH UM

the delta pressure term of slug flow can be written;

((pj))((pg))=K(_Pf PfP
6

jg(a)H (F.6)

(F.5)
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