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MINIMUM COST SCHEDULING OF RESOURCE CONSTRAINED JOBS ON PARALLEL
MACHINES UNDER CONTROL OF INTERCHANGEABLE PROCESSORS

CHAPTER I

INTRODUCTION

Effective management of all resources is a key concern in today's

industry. Productivity depends upon the ratio of the values of

the output resources over the values of the input resources. Re-

sources include not only materials and energy, but also the equipment

and personnel for processing both these physical entities as well as

as information.

An effective usage of the processing system means that jobs

must be scheduled in such a way as to minimize the total operating

cost, maximize the throughput, and provide a reasonable makespan.

Above all, such a schedule needs to be flexible, dynamically alterable,

and practical. This scheduling problem is further complicated by the

fact that modern processing systems include subsystems that must them-

selves be scheduled effectively. A typical configuration is a system

where jobs are processed by several machines sharing the use of a more

expensive common processor. Figure 1-1 illustrates such a system.

Figure 1-1: A two-machine one processor system.
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1.1 Multi-Processor Scheduling

The central problem discussed in this thesis is a special case of

multiple processor scheduling, a problem we shall refer to as the "MP"

model. More specifically, it involves the effective scheduling of

resource constrained jobs on parallel machines under the control of

interchangeable processors.

Such problems occur quite frequently in both industrial and social

situations. Jobs,machines, and processors can stand for (1) patients,

medical equipment, and doctors in a hospital, (2) students, classrooms,

and teachers in a school, (3) cargos, ships, and cranes in a port,

or (4) jobs, computer terminals, and main frame computers in a multi-

processor time-sharing computer network. In each case, jobs require

a machine, available time on the processor, and other resources neces-

sary for its processing. A typical resource might be a tool mold,

computer memory, an I/O device, etc.

Surprisingly few studies have investigated the problem of analyti-

cally finding the minimum cost schedule for multiple machines or pro-

cessors (Chapter III). None, to the best of the author's knowledge,

has addressed specifically the problem of minimizing the changeover

cost of resource constrained jobs handled by processor controlled ma-

chines.

The problem becomes even more complicated in practice. To be an

effective tool to be used in industry, it is not sufficient to minimize

the total cost of changeover jobs in machines. The scheduling should

permit the consideration of jobs currently in the machines, allow for a
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reasonably balanced makespan for all machines and processors, and permit

as many jobs to be completed by the due dates as possible. In addition,

it must be flexible enough so that the management could use it to re-

schedule the system as new jobs are added, equipment fails, orders

are cancelled, or resource shortage occurs.

The purpose of this thesis is to investigate existing algorithms

and propose methods that can be effectively used in industry. Current

data from an aluminum reduction plant operation are used to validate

the effectiveness of the proposed algorithms by computing the labor

saving cost resulting from the application of these algorithms.

The term "algorithm" is used loosely to mean any computational

method that can reasonably satisfy Knuth's (1975, pp. 4-9) five features

of (1) finiteness, (2) definiteness, (3) input, (4) output, and

(5) effectiveness.

1.2 Minimum Changeover Cost

The problem of minimizing changeover cost or set-up and tear-down

time in sequencing jobs on machines under resource constraints arises

quite frequently in various types of industrial operations. Several

examples may be cited.

Consider, for instance, a manufacturer of "31-flavor" ice cream mixes

with his several ice cream machines. Orders for delivery with specified

quantities for each flavor are received. It is then desirable to have

a production schedule that will minimize the number of changeovers

from one flavor to another while meeting the due date commitments.
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Another example may be a printing shop with rotary presses (pro-

cessors) which must mount different cylinders (machines) to print

several different magazines and newsprints. To find a feasible and

optimal production schedule to minimize the number of cylinder mount-

ing and color changes may be important. A change of color from red

to black may be easier than a change from black to red.

A third example is from the tire industry. Operators (processors)

operate general purpose machines, called "cavities" (machines) and

a set of transferrable parts called "molds" (resources). To design

a production schedule that minimizes the number of set-ups while satis-

fying the mold availability is important because molds are expensive

and cavities should not be kept idle. A schedule that minimizes the

amount of resources used, equipment idle time, and the total set-up

(or grade change) time means additional production and profit to the

company.

Roll in and roll out of jobs on a computer system, heating and

cooling of kilns used in ceramic production, and transporting ferti-

lizers and weed killers in the same tank-truck are examples of other

changeover costs.

In this thesis, the terms "sequence" and "schedule" are not used

synonymously. A sequence is defined as a feasible ordering of a set

of jobs to be processed through the machines. A schedule emphasizes

the specification of time when the sequenced jobs are started and

ended (Elmaghraby, 1968). Job ordering, or sequencing is a binary

relationship that is transitive (if i -<j and j -<k, then i -<k),



5

nonreflexive -740, or no job precedes itself), and antisymmetric

(if i --<,j then j --0). The changeover cost is associated with each

transition.

1.3 Organization of the Thesis

In Chapter II the MP model is formulated and criteria and con-

straints are described. The characteristics of the problem and the

difficulty of its solution are discussed.

Chapter III surveys the past work and investigates methods of

solutions to the MP problem. Integer programming, dynamic programming,

branch-and-bound, combinatorial analysis, and heuristic approaches

are discussed.

Chapter IV prepares the theoretical background necessary to develop

the two heuristic algorithms. Numerical examples are included. The

"Next Minimum Cost" and the "Longest Processing Time" algorithms are

discussed in relation to the proposed algorithms.

Chapter V treats the application of bin-packing and branch-and-

bound algorithms to meet processor scheduling, the third algorithm is

proposed for the solution of the MP problem.

Chapter VI presents a real life case study involving the design

and implementation of a production planning system in an aluminum re-

duction plant. Real data are used to test the effectiveness of three

algorithms and labor cost savings of up to 51% are observed in com-

parison to manually produced schedules which had been implemented by

the industry.
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Chapter VII summarizes the findings and draws conclusions from

this research as well as to suggest areas for future research efforts.



CHAPTER II

MODEL FORMULATION AND ANALYSIS

2.1 Notation

Throughout this thesis, the regular subscript (e.g. Ti) and the

computer language type subscript (e.g. T(j)) are used interchangeably.

Most frequently used notations are described below.

Notation Description and example

t

7

Discrete time scale, 0, 1, 2, 3,....,
One time unit may correspond to 1/10 day, or 2.4
hours.

n A finite number of jobs to be considered in a given
schedule. E.g. n=30 jobs per monthly schedule.

s The total number of machines available. E.g. s=8
machines.

3

r

The total number of processors available. In this
thesis, one or two machines are assigned to each
processor. E.g. k > s/2=4 processors.

Job identification. Job i is usually considered to
be followed by Job j, or i -cj 1 < i < n
and 1 < j < n. J means job number j.

The total number of types of resources. E.g. r=20
resources types.

e The total number of job types available

T(j) or Tj The job duration in time units for job j. E.g.

T(1)=10 means that job #1 takes 10 time units.

E(j) or Ej The job type for job j. 1 < E(j) < e. E.g. E(3)=5
means that job #3 is of type 5.

R(j) or Rj The resource type for job j. E.g. R(5)=3 means that
job #5 requires resource type #3 to be attached to
the processor controlling the machine which operates
upon job #5.
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(R)

m(t,j,6

P(t,j,p)

A(t,j)

X(i,j)

8

Description and example

The machine identification. 1 < 8 < s.

The processor which is shared by the machine 8 .

E.g. a (2)=1 means that the machine #2 is controlled
by the processor #1.

Resource identification. 1 < k < r. E.g. k=3 means
resource type 3.

A 0/1 integer variable that is set to 1 when the job
j is assigned to machine B at time t, and 0 other-
wise. E.g. M(4,2,1)=0 means that job #2 at time 4
is not on machine 1.

A 0/1 integer variable that is 1,if p=a (8) and
M(t,j,B)=1,and is set to zero otherwise. E.g.

P(3,4,5)=1 means that at time 3, the job #4 is being
operated by a machine which is controlled by the pro-
cessor 5.

A 0/1 integer variable that is set to 1 if the job j
is active at time t, and set to 0 otherwise.
E.g. A(2,3)=1 means that job #3 is being processed
by one or more machines at time t=2.

A 0/1 integer variable that is set to 1 if job i is

followed immediately by job j on the same machine.
X(4,5) means that job #5 starts as soon as job #4 is
finished.

a(t,k) or ak(t) The amount of resource of type k available at time t.
It is assumed that once a resource is assigned to a
processor, that processor will need only one unit of
the resource regardless of the number of jobs being
processed by machines attached to that processor and
that all machines attached to that processor can only
process jobs requiring that type of resource. E.g.

a(3,1)=3 means that there are enough resource of type
1 available to make three processors dedicated to
service machines attached to them. All such machines
must process jobs whose resource requirement is of
type 1.

C

C(i,j) or Cij

Total changeover cost for the schedule.

Changeover cost for immediately following job i with
job j. E.g. C(2,3)=10 means that unloading job #2
and making the machine ready for job #3 takes 10 cost
units.
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G(E(i),E(j))

or

Cg13

B(R(i),R(j))

or

C
r

I(a)

Z(a)

W(j) or Wj

QP
a

9

Description and example

The changeover cost component due to changing the job
type between an old job i to the new job j. E.g.

G(E(1),E(2))=5 means that the cost of changeover is
5 cost units for unloading a job of type 1 and load-
ing a job of type 2 in its place.

The changeover cost component due to switching the
resource brand between job i and job j. E.g.
B(R(1),R(2))=4 means that changing the resource

required by job 1 to another required by job 2
costs 4 cost units.

The makespan of jobs on machine R. It is equal to the
time duration from the beginning of the schedule (t=0)
to when the machine first becomes idle.

The makespan of the processor is the longest makespan
of machines it controls. Z(a)=max (Toola attached
to a ).

The makespan of the system. Z=max(Z(x))
a

Job status. Set to 1 if the job is in a machine at t=0.

A sequence of jobs on processor . 1 < a < k

w
a

A subset of jobs assigned to processor a

2.2 Input Data

For each job j, the following information must be provided before

the scheduling activity can commence. These data can be conveniently

denoted as an array
' 3

J.(E.
J

R.
' J

T.
'

W.) where:

E. = E(j) the type of job that the job j is. 1 < E(j) < e

Rj = R(j) the type of resource that the job j requires

I < R(j) <r

Tj = T(j) the length of processing time for the job j.

W. = W(j) the processing status of the job j at the beginning
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of the schedule. W(j) = 0 if the job is new, 1 if

currently on a machine being processed. Omitted

if W(j)=0 V j.

In addition, the following data must also be supplied.

a (0 The processor a to which machine a is

attached.

Ci,j=C(i,j) The cost matrix computed from the job type (grade)

change E(i) to E(j) and the resource type change

R(i) to R(j), using the grade change cost matrix

G(E(i),E(j)) and the resource change cost matrix

B(R(i),R(j))

a(t,k) The resource availability schedule for resource k at

time t, 1 < k < r and t=0,1,2,....

The job description
'

R. T. W.) is conveniently abbreviated as JJ.(EJ
' '

on Gantt Charts, or expressed only with meaningful parameters when others

are not used. The notations Pa
and m

R
are used to identify the pro-

cessor a and machine a .

2.3 The Independent Variable

The independent decision variable in the MP formulation is M(t,j43),

a 0/1 integer variable which identifies whether a job j is assigned to

the machine 13 at time t or not.

From this information and a(s), we know which processor is being

engaged. Similarly, R(j) will identify the resource that must be at-

tached to the processor to process this job.
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The job sequencing within each machine is controlled by the 0/1

integer variable X(i,j) which is set to 1 only if job j is immediately

preceded by job i in the same machine. However, X(i,j) can be expressed

as a function of M(t,i,

co s

X(i,j) = 1 if E E M(t,i, 13) M(t+1,j, 13 )=1

t =0(3 =1

0 otherwise.

2.4 Model Formulation

The scheduling problem MP can be formulated as an integer program-

ming model:

n n

Minimize C = T E C(i,j)X(i,j)
i=1 j=1

where C is the total cost of changeovers for the schedule,

IlL

X(i,j) = 1 when a job switch occurs from job i to job j

on the same machine.

0 otherwise.

C (i,j) = IG(E(i),E(j)) + B(R(i),R(j)) if i # j

lco otherwise

n = total number of jobs in the schedule.

Subject to the following constraints:

(i) Each job must be assigned to a machine for its job duration.

co

E E M(t,j,12.) = T(j) for every j, 1 < j < n

t=0 (3=1
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( ii) Total usage of a resource cannot exceed its availability at any

time.

E (P(t,j,p)IR(j)=k) < a(t,k) for every t and every k,
j=1

0 < t < , 1 < k < r._ _ _ _

and A(t,j) = U M(t,j, 6)
6=1

(iii) A job is assigned to each machine from the very beginning of

the schedule.

n

E M(0,j, 6)=1 for all 6
j=1

1 < 6 < s.

iv) The job changeover occurs only when a job i is immediately fol-

lowed by a job j in the same machine.

D s

{

X(i,j) = 1 if E E M(t,i,6 ) M(t+1,j,6)=1
t=0 6=1

to otherwise.

(v) There is no idle time allowed between jobs on machines.

s T(6) n
E E T ,M(t,j, 6) = E T(j)
6=1 t=0 j=1 j=1

where
n

T(6) = min (t 13C M(t,j,6)=0)
j=1

2.5 Assumptions

The following assumptions are usually implied, and unless otherwise

stated, apply to the remainder of this thesis.
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(1) Time zero, t=0 is defined as the instant at which the new

schedule commences.

(ii) No job cancellation is allowed after the job schedule has been

set up. If it does occur, a rescheduling will be necessitated.

(iii) No preemptive priority is allowed. This means that the job may

be split between machines but not interrupted and delayed or

discarded.

(iv) No precedence relationship may exist among jobs.

(v) The processing time for each job is finite, deterministic, and

known before scheduling.

(vi) Machines, processors, jobs, and resources are assumed to be avail-

able throughout the schedule horizon. If availability changes,

a rescheduling may become necessary.

2.6 The Complexity of Scheduling Problems

2.6.1 An "easy" vs "hard" problem

How much computation should a problem require before we

rate the problem as being'easy or difficult? There is a general agree -

merit that if a problem cannot be solved in polynomial time, then the

problem should be considered intractable. The following definition is

made to measure the complexity of a problem. (Aho et al, 1974, p. 364)

Definition A problem is a polynomial time problem if an

algorithm exists which can find an optimal (or

exact) solution with a number of computations

which grows at a rate less than a polynomial
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function of the "size" of the parameters speci-

fying the instance of the problem. (A problem

which is not polynomial time is an exponential

time problem.)

Before we can analyze how 'hard' the MP problem is, the concept

of a class of problems which are called NP-complete (nondeterministic

polynomial-time complete) is needed. Rather than digressing to define

it explicitly, only some implications of belonging to that class will

be presented. An excellent treatment of NP-complete problems is con-

tained in Garey and Johnson (1979).

To say that a problem is NP-complete implies that the problem

has the following two characteristics.

(1) If a polynomial time algorithm can be found to solve the prob-

lem, then a polynomial time algorithm exists for all NP-complete problems,

which include the linear integer programming problem, the travelling

salesman problem, the set covering problem, and many others.

(2) The problem is an exponential time problem.

Since no polynomial time algorithm has been found for an NP-complete

problem, it is conjectured that none exists. If this is true, the

diagram shown in Figure 2.1 would apply.

Polynomial time

Problems

NP-complete

Problems

Exponential time problems

Figure 2.1 Problem Classes
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2.6.2 The complexity of the MP problem.

A scheduling problem is easy to state but difficult to solve.

"It has been a graveyard for practicing management scientists and problem

solvers for many years" (Poole, 1977, p. 49). A more traditional

and now classical quote from Conway et al. (1967, p. 103) asserts pes-

simistically that:

Many proficient people have considered the problem,
and all have come away essentially empty-handed.
Since this frustration is not reported in the liter-
ature, the problem continues to attract investiga-
tors, who just cannot believe that a problem so
simply structured can be so difficult, until they
have tried it.

A scheduling problem becomes difficult for mainly two reasons:

(1) The combinatorial nature of the problem.

(2) The problem has to satisfy too many objectives at once.

The theory of NP-completeness provides many straight forward

techniques for proving that a given problem is "just as hard as" the

large number of other problems that are widely recognized as being

difficult (Garey and Johnson, 1979). These problems have been challeng-

ing the experts for years.

To prove that a. problem in NP is NP-complete, it suffices to prove

that some other NP-complete problem is polynomial transformable to

it since the polynomial transformability relation is transitive (Baase,

1979). "Partition" is an NP-complete problem.

Theorem 2.1 The problem of finding an optimal schedule to a set J

of n jobs, on t processors with variable processing
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time T. (1 < j < n) and a time limit D is NP-

complete.

This problem can be transformed from Partition.

A detailed proof can be found in Garey and

Johnson (1979, p. 64).

Theorem 2.2 Scheduling a set J of n jobs, on t processors with

variable processing time Tj (1 < j < n) and r

resources; with resource bound a
k

(1 < k < r) and

time limit D is NP-complete.

This problem can be transformed from 3-Partition.

A detailed proof can be found in Garey and

Johnson (1975, p. 408).

Theorem 2.3 MP is NP-complete.

The subproblems of MP from the above two theorems

are proved to be NP-complete, therefore MP is also

NP-complete.

It is bad news to know that MP is intractable. However, it is

felt by this author that this should not be a reason for neglecting

this problem. For small problems exponential time algorithms

may perform just as well as polynomial time algorithm (e.g., 2n < n
10

for 1 < n < 59). In addition, by saying that a problem is an exponen-

tial time problem implies that an algorithm exists, which can solve

even the worst set of values of the parameters of the problem in expo-

nential time.
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CHAPTER III

REVIEW OF LITERATURE AND METHODS OF SOLUTION

3.1 Survey of Past Work

Before we go on to review other past research work in this area,

it is helpful to identify the relative position of the MP problem

among other problems in sequencing theory. A scheme for classifying

sequencing problems is shown in Figure 3.1 (Day, 1970, p. 119). The

deterministic sequencing problems are divided into those with single

processors and those with multiple processors. Compared with the prob-

lem of multiple processors, the problem of single machine has received

much more attention in the literature. It is worthwhile to review

and study some results and solution methods for the problem of a single

processor case, mostly because these results and methods have given

us ideas about the approaches used in the solution of the MP problem

in this research. A formal description of the job shop scheduling

problem and an excellent summary of past research works are also given

by Conway et al. (1967).

Sequencing problems with multiple processors in series have drawn

more attention from researchers than those with multiple processors

in parallel (Day, 1970). The criteria (measure of performance or objec-

tive) proposed in the literature on the parallel case of static sequenc-

ing include: (1) Minimize the cost of tardiness and penalty (Elmaghraby

and Park, 1974; Schild and Fredman, 1961; Barnes and Brennan, 1977), (2)

minimize the makespan (Elmaghraby and Elimani, 1980; McNaughton, 1959;
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Coffman, 1976; Barker, 1974, p. 116; Graham, 1969), (3) minimize the

total cost of production (Gorenstein, 1970, p. 373 and Dinkel et al.

1976), and (4) minimize the maximum flow time (Conway et al. 1967).

One way to solve a difficult problem is to solve a related 'easy'

problem and hope that the solution to the easy problem can be shown to

be a solution to the difficult problem. There are very few papers which

focus on the minimization of changeover cost on multiprocessors or mul-

tiple machines. However, there are a lot of algorithms developed for

single machine models (Glassey, 1968, p. 342; Driscoll, 1971, p. 388;and

Presby, 1967, p. B454). The task of minimizing the sum of the production

cost or set-up time on a single machine corresponds to what is usually

called the traveling-salesman problem (TSP). The TSP can be stated as

follows: a salesman must visit each of n cities once and only once and

return to his point of origin and do so in a way that minimizes the total

distance traveled (or total time, or cost, etc.). Each city corresponds

to a job, and the distance between cities corresponds to the time or

cost required to change over from one job to another. A set of nonre-

petitive jobs to be scheduled on a single machine is similar to an open-

path TSP. There are algorithms to solve it (Gavett, 1965 and Ramalingam,

1969, p. 85). For the close-path TSP, there are many papers discussing

how to solve this problem efficiently. A good summary of methodologies

may be found in the paper by Bellmore and Nemhauser (1968, p. 538).

In the real world, the constrained version of the TSP is seen to be

a generic model for a wide variety of problems. Carpaneto and Toth

(1977) developed a branch-and-bound algorithm based on a depth-first
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technique to solve TSP with due date. Dinkel et al. (1976) and Dantzig

and Ramser (1959) used several good approximation methods to solve a

constrained TSP. Their constraints are the length of a trip and the

capacity of the vehicles.

Bodin and Kursh (1978) solved an m street-sweepers routing problem

by using TSP solution technique. The methods of "cluster first,route

second" and "route first,cluster second" are introduced. However, they

favor the "cluster first,route second" approach. It decomposes the

network into a collection of m (the number of vehicles to be used)

subclusters and then solves a "one vehicle" routing problem over each

of these subclusters.

Frederickson et al. (1978) developed two methods for building k tours

for k traveling salespersons. The first method is to build k subtours

simultaneously. A set of heuristic rules (the nearest neighbor, the

nearest insertion, and the cheapest insertion, etc.) is used to gene-

rate an approximate solution to a "one person" problem. The second

method is to build k tours by splitting a good tour for one person

into k tours.

Another formulation of the multiple salesmen problem is given in

the paper by Gorenstein (1970). He regards m traveling salesmen to be

the same as a single traveling salesman problem with m-1 additional

home visits. However, Svestka and Huckfeldt (1973) solved the m-

salesman problem as an (m+n-1) city problem. Their algorithm consists

of three main parts; the branch-and-bound scheme, the initial tour

generator, and the assignment algorithm. Every solution to the
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m-salesman problem will contain exactly m sorties, one for each of the

m salesmen.

In resource constrained scheduling, Garey and Johnson (1975)

showed why resource constrained scheduling is so difficult. They

proved that even with just two processors and one resource available,

a set of unit execution jobs result in a scheduling problem that is

NP-complete. Garey and Graham (1975) studied multiprocessor scheduling

with resource constraints and derived a number of close bounds for

this system.

A complete and detailed guide to the problem of scheduling under

resource constraints can be found in the review paper by Davis (1973)

and Moder and Phillips (1970, p. 152).

3.2 Methods of Solution

A survey of the approaches used in solving the scheduling problems

reveals that there are mainly five different methods:

(i) Combinatorial analysis

(ii) Integer linear programming

(iii) Branch-and-bound methods

(iv) Dynamic programming

(v) Heuristic methods

Theoretically, the first four methods lead to an exact optimal

solution. The remainder of this section will be devoted to reviewing

the five approaches for scheduling problems.
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i) Combinatorial approach

Methods of combinatorial analysis often turn out to be useful

in some scheduling problems. They frequently involve a close exami-

nation of the effect of a minor change in a particular schedule (notably

the interchange of two possible adjacent jobs) to satisfy a given

criteria (Root, 1965). The basis for the works by Smith (1956) and

McNaughton (1959) is also this combinatorial approach.

ii) Integer linear programming

A natural way to attack machine scheduling problems is to formulate

them as mathematical programming models. Pritsker, Watters and Wolfe

(1969, p. 93) proposed a model to solve the multi-project scheduling

problem for which several objective functions were allowed; i.e.

minimization of the total project throughput time, minimization of

total makespan and minimization of the total cost of tardiness.

Garcia (1976) developed an interactive computer system to solve

classroom scheduling using integer programming. The objectives were

to maximize the number of student requested courses, utilize the class-

room facilities as efficiently as possible while keeping the size of

the courses within given bounds.

In the case of resource constrained scheduling, numerous integer

programming formulations have appeared in the literature (Wagner, 1959;

Manne, 1960; Mason and Moodie, 1971). However the solution of real

problem using general purpose integer programming code has not appeared

computationally feasible (Barker, 1974, p. 286).

Geoffrion and Marsten (1972) gave a good summary of the state-of-the

art integer programming techniques. They described what kind of general
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purpose integer linear programming algorithms existed and their compu-

tational success. They remarked that the integer programming generally

can not solve many special structured scheduling problems. Problem

solvers often turn to more tailor-made forms of implicit enumeration

similar to those which are to be discussed next.

iii) Branch-and-bound

Branch-and-bound methods are useful tools for solving many com-

binatorial problems. They are sometimes also known as "reliable

heuristics," "controlled enumeration" or "implicit numeration". There

are nine different characteristics of branch-and-bound which are des-

cribed by Kohler and Sterglitz (Coffman, 1976, Chapter 6). Branch-

and-bounds were developed and first used in the context of mixed integer

programming (Land and Doig, 1960) and the traveling salesman problem

(Eastman, 1959), but soon their wide applicability was perceived.

From the past literature survey, we have mentioned that most of

the least cost routing and sequencing problems are closely related

to the single and multiple salesmen problem with further constraints

(e.g., due date, machine capacity, etc.) to be met. The majority of the

literature which has been cited used branch-and-bound methods. How-

ever, the bounds for all the least cost branch-and-bound methods (LCBB)

using relaxation are calculated based on the availability of one machine

only. Therefore, it is not surprising to know that the LCBB methods

applying to multi-machines scheduling problems have received little

attention in the scheduling literature.

Thompson (1970) developed a general FORTRAN-based package for
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solving sequencing problems using branch-and-bound methods. His pro-

gram can solve one resource to many resource constrained project

scheduling problems. His program data structures resembled that

of GASP II simulation language which was developed by Pritsker and

Kiviat (1969).

iv) Dynamic programming

Dynamic programming is closely related to certain branch-and-

bound algorithms. It is an algorithm design method that can be used

when the solution to a problem may be viewed as the result of a se-

quence of decisions. It drastically reduces the amount of enumeration

by avoiding the enumeration of some decision sequences that can not

possibly lead to an optimal solution. In dynamic programming, an

optimal sequence of decisions is arrived at by making explicit appeal

to the Principle of Optimality (Riggs and Inoue, 1975, p. 296). This

principle was developed by Richard Bellman. It states that an optimal

sequence of decisions has the property that whatever the initial state

and decisions are, the remaining decisions must constitute an optimal

decision sequence with regard to the state resulting from the first

decision.

A dynamic programming formulation for the problem of a single

processor was given by Held and Karp (1962) and Lawler (1964). Driscoll

and Emmons (1977, p. 388) used dynamic programming to find an optimal

schedule on one machine. Their objectives were to minimize the total

changeover cost and meet the due date of all customers. Their algorithm

required 155 CPU seconds (IBM370) to solve 15 jobs.
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Horowitz and Sahni (1978, p. 233) showed that an 0(n22n) dynamic

programming algorithm solves the traveling salesman problem. Although

this represents a considerable improvement over explicit enumeration

(e.g. for a 15-job problem, 152(2)15 = 7,372,800 where explicit enu-

meration gives 15! = 1.31 x 1012), this method is still computationally

infeasible for problems with a large number of jobs.

For the problem of sequencing n immediately available jobs on

multiple processors, Rothkopf (1966) presents a formulation. His ob-

jective is to minimize the total penalty cost. One noticeable assump-

tion of his model is that the order in which the jobs are considered

for scheduling is specified in advance. He mentions that the number

of calculations is of the order of (0
n-1

(m-1/2)
n
/n4

n-2
, where t is

the average processing time for the identical machines. For n=5, t=6

and m=2, the number of calculations is approximately 35,000.

v) Heuristic methods

Heuristic methods usually consist of a series of priority rules

which, when applied to the basic problem data, give a feasible

but not optimal solution. They are characterized by Brown (1971,

p. 86) as:

(a) Being derived from the problem environment; and thus

(b) Being highly problem-specific

(c) Giving sub-optimal results with uncontrolled error

(d) Being often intuitive in nature.

In most practical situations, because of the complexity of a prob-

lem, to find an optimal solution would often be too time-consuming
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to be feasible. Under these circumstances, heuristic methods that

produce good, but possibly suboptimal solution are of interest to most

of the practitioners.

Presby and Wolfson (1967) offered a heuristic approach to sequence

jobs on individual machines to minimize job changeover cost. Their

algorithm is very similar to dynamic programming. The algorithm starts

with four job sequences and from these constructs five job sequences,

from the five job sequences, six job sequences are constructed, and

so on. At each stage, a large fraction of sequences are eliminated

from further consideration. They claimed that the number of considera-

tions (N) are

i=k-2
N = k! E

i!(k-i-2)!
where k is number of jobs.

i=1

So, for a list of ten jobs, N=22950, while the number of complete se-

quences for ten jobs is 10! = 3,628,800.

Gavett (1965) has developed three heuristic rules for choosing

a least cost schedule for a single machine situation. The three

heuristic methods are:

(i) The "Next Best" rule

(ii) The "Next Best Prime" rule

(iii) The "Next Double Prime" rule.

He has tested the algorithm for a large number of problems in

which the elements of the cost matrix are independent identically dis-

tributed random variables--in some cases from a normal distribution,

in others from a rectangular distribution. Examples of each
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type of problem are generated and tested. The performance of the al-

gorithm seems to weaken as the number of jobs increases.

Researchers usually have to face another problem when they schedule

multiprocessors in parallel, that is the problem of makespan minimiza-

tion. It appears to be difficult in general because it is known to

be NP-complete (Coffman, 1976, Chapter 4). McNaughton (1959) obtained

an optimum solution to the makespan problem when job pre-emption is

allowed.

Graham (Coffman, 1976, Chapter 5) describes a sequence of algorithm

that yields an optimum in a computation time that grows exponentially

with number of processors and behaves more and more like exhaustive

search as the guaranteed accuracy improves.

Barker (1974, p. 116) refers to Kedia's Longest Processing Time

(LPT) algorithm to minimize makespan in multiprocessors. It ranks jobs

with the longest processing time first, then assigns a job from the

list to the processor with the least amount of processing time already

assigned. Graham (1969) showed that the makespan obtained by Kdeia's

LPT algorithm is at most 4/3 of the optimum.

Elmaghraby and Elimam (1980) present a knapsack-based heuristic

method for makespan problems with large numbers of machines.
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CHAPTER IV

ALGORITHMS DEVELOPMENT

4.1 Analytic Models

4.1.1 Makespan Minimization on Parallel Processors.

In the single-machine model, the makespan is equal to a

constant for any sequence of n given jobs, therefore the makespan

problem in the single-processor case is trivial. In multiple-

processor cases, however, this is no longer the case.

An elementary result for the makespan problem was presented by

McNaughton (1959) with the assumptions that jobs are independent and

preemption is permitted. With preemption allowed, the processing of

a job may be interrupted and the remaining processing can be completed

subsequently, perhaps on a different machine. Therefore, an optimal
n

schedule would have divided the processing load E T.; evenly among
j=1

the R, processors. The schedule of length D (or planning horizon) is
n

E T./t.
j=1

Consider the following job set when t=4 processors are available:

TABLE 4.1 List of jobs and their processing time.

Jj 1 2 3 4 5 6 7 8

Tj 1 2 3 4 5 6 7 8
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The planning horizon D is the same as the optimal makespan Z

*
D = Z =36/4=9

J
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time

1

Z =9

Figure 4-1 Gantt chart shows that a preemptive schedule
can achieve an optimal makespan.

If job preemption is prohibited, the problem of minimizing make-

span is more difficult. No exact method has been developed to solve

this problem optimally. The minimum makespan is obtained by the follow-

ing formula:

Min Z = Max EIJI

1 < a < j acla

A simple yet effective heuristic procedure called LPT (Longest Process-

ing Time) algorithm was reported by Kedia (Barker, 1974, p. 116). This

heuristic can be implemented to run in a time proportional to nlog(tn).

The algorithm is described as follows:

Step 1: Construct an LPT ordering of the jobs, from the longest to

the shortest, e.g.J80.17....,J1.
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Step 2: Schedule the jobs in order, each time assigning a job to the

processor (or machine) that has the least amount of process-

ing already assigned.

A nonpreemptive schedule of jobs from Table 4.1 resulting from

LPT heuristic procedure is shown in Figure 4.2.

J
8el i

5 J7
1

J2

51
J6

1
J3

i

J
5

J
4

time Z=9

Figure 4.2 Gatt chart shows that a non preemptive schedule
from LPT algorithm.

It so happens that, in this example, Z = Z. Graham (1969, p. 416)

shows that the makespan obtained by Kedia's LPT has a bound of (1/3 -

1/(39)) in the worst case, i.e.

Z*(I) Z(Ii_ <1 1

Z (I)
3
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where 9, is the number of processors. Z (I) is the finish time of an

optimal R,- processor schedule for instance I of the schedule problem.

Z (I) is the finish time of an LPT schedule for the same instance.

Although the main objective of MP focuses upon the total cost

changeover minimization, the makespan consideration is not to be ne-

glected. For example, in Figure 4.3, there are three possible schedules

for eight jobs on four processors,Z1=10, Z2=12 and Z3=13 for schedules

L1, L
2

and L3, respectively. Each schedule has a production cost. In

this case, suppose C1 > C2 > C3 in dollar value. From the cost reduc-

tion scheduling point of view, C3 is the least cost, so L3 should be

chosen. In the real world situation, however, if C1 - C3 = E, and E

is a small value in dollars, schedule L1 may be chosen because the per-

centage of processor utilization is better than any of the other two.

Therefore, makespan minimization can not be ignored in identical

parallel processors scheduling.

4.1.2 Single machine vs. double machines

Two machines generally share one processor and one resource

to perform a task. We assume that if a job may be split over two

machines, then that job is completed 50% earlier than on one machine.

This can be shown more clearly with a Gantt Chart. Consider the job

set in the following table when all jobs use the same kind of resource.

The makespan for two cases is shown in Figure 4.4

Table 4.2. A jobs list

J. 1 2 3 4

T 4 2 4 2
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Figure 4.3 Gantt Charts for three possible schedules
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Case 1 when k=1, s=2

ml D
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J (4) J4(2)

J
2
(2) J

3
(4)

m2 1:1

time --4
Z=6

Case 2 when k=1, s=1
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2
(2) J

3
(4) J

4
(2)

m
1

m
2

X (breakdown) Z=12

time

Figure 4.4 Jobs execution Gantt Chart of one machine
vs. two machines.
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4.1.3 Resource Constraints Consideration

Lemma: 4.1

t t

If E K(u)>E a(u,k)for any t, and k 1 < t < D, 1 < k < r, then
u=1 u=1

no feasible schedule of length D exists.

Proof: Assume that a feasible schedule of length D exists. A feasible

schedule implies that all resource requirements are met. Thus,

any duration t less than or equal to D, we should have k(u)5.a(u,k)

or E k(u) s E a(u,k). This contradicts the premise above. Q.E.D.
u=1 u=1

Consider the following example when s=3, k=2, r=2.

Table 4.3

Jj 1

A jobs list and their attributes.

2 3 4 5

24

3=8

T.
J

4

R. 1

J

a
k

1

2

1

1

6

3

1

2

3

1

10

3

1

5

Z = E TVS =
j=1

Let D=8 which is also equal to the optimal makespan (Z*) for the

schedule. Each resource type has only one unit available; we construct

one possible schedule which is shown on the following page.

Although there is a two-unit-time space available on machine m3

after job J2,job J4 can not be placed on machine m3 because no addi-

tional resource of type 3 is available.
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Legend: J. (R
j
, T.)

J J

J (3,5) J
3
(3,3)

J5(3,5) J
3 '

(3 3)

J

1

(1,4) J
2
(1

'
2)

Z=8
m3 0

P2 0
J4(3,2)

Job J
4

is left behind.

Figure 4.5. D=8 Scheduling dilemma.

Corollary 4.1 ak(t).. ak. The total usage of resource type k

(1 < k < r) at any instant of time t must not

exceed its total availability.

4.1.4 Changeover Criteria

In real world situations, a set of jobs J can be classified

according to their properties or functions. We consider three possible

cases where a cost will be incurred when job Ji changes to job Jj.

Case 1. J (E
i
,R

i
) ---> J

j
(E ,R

j
)

i.e. When a job Ji of job type Ei and a resource Ri
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changes to job Jj with the same job type Ei but

different resource Rj usage. The cost for job change-

over will be due simply to the change in resource

(tools), and is often a constant.

Cij = Cr

Where C
r

stands for the resource changeover cost.

Case 2: J.(E., ---> Jj (E.J ,R.)
1

i.e. Job Ji and Jj are using the same resource Ri

but the job type is different. Therefore the cost of

changeover will be the cost incurred in grade

change, cleaning or some other technical adjustment,

etc.

C.. = CCij
g
ij

Where C stands for the cost due to different job
ij

type changes.

Case 3. J. (E.,R.) ---> J
j

(E
j
,R )

In this case both jobs have different job type and

resource type requirements, therefore the total

changeover cost will be

Cij = +C
r

gij

Lemma 4.2 If there is no resource conflict, there exists an optimal

schedule in which no job is split.
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Proof: Let L
1
be a schedule with job-splits. We wish to show that

there always exists a better (or equally good) schedule L2

with no job-split other than L1. There are three types of

job split:

(1) a job is split on the same machine.

(2) a job is shifted from one machine to another adja-

cent machine which is controlled by the same

processor.

(3) a job is shifted from one machine to another machine

which is controlled by a different processor.

Consider an example with a set of job J when n=6, e=4, and s=2.

The following table shows the numerical value for Jj (1 j n),

Rj (1 < Rj < r) and Ej (1 < Ej e) and each job execution time Tj.

Table 4.4 A Jobs List

Case 1.

J . 1 2 3 4 5 6

Ej

Rj

1 2

1 1

3

1

4 2

2 2

3 When k=1 and
s=2,

2 then D=12

T. 2 4 6 2 4 6

A job split on a machine. Legend: J.(E.,R.,T.)
J J J J

J2(2,1,2) J
1
(1,1,2) J

2
(2,1,2) J

5
(2,2,4) J

4
(4,2,2)

ml
it x,

A--- .,
I

i

I I
I

L
1

P3(3,1,16) J6(3,2,6)

t=2 t=4
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In schedule L1, we notice that job J2 is interrupted at t=2 and resumed

after job J1 has been completed. The total number of changeovers in

Q is five (including the old job in previous schedule on machine m1).
m1

We can find a better schedule L, with no job split.

J
2
(2

'

1
'

4) J1(1,1,2) J5(2,2,4) J4(4,2,2)

p

J3(3,1,6) J
6
(3,2,6)

m2

In schedule L2, the number of changeovers in Q
m

is decreased by
l

one, i.e., four. The least number of changeovers, the better the

schedule will be.

Case 2: A job is split between two machines that are controlled by the

same processor.

J
1(1,1,2)

2
(2,1,2)

le"

J
3 k/ 5
(3,1,2) J (2,2,4) J (4,2,2)

1

I I

(2,1,) J
3
(3,1,4) J6(3,2,6)

t=2 t=6
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In schedule L1, job 2 is interrupted at t=2 on machine m2 and

transferred to ml after job 1 is completed on machine ml. Because of

this interchange, job 3 has to be split between machines ml and m2 in

order that all jobs using the same resource type 1 may finish by t=6.

The number of changeovers on ml and m2 are five and three, respectively.

We can find a better schedule L'
2
with no job split between the machines.

J1(1,1,2)
2
(2,1,4) J

5
(2,2,4) J

4
(4,2,2)

ml

L 2, P

J1(3,1,6) J6(3,2,6)

m2 r-t
2 1--

The number of changeovers on ml and m2 are four and two, respec-

tively. Case 3 can be shown similarly to case 2. By induction, there

always exists a better (or equally good) schedule with no job split

for any schedule that has a multiple-split schedule on a machine or

machines.

Corollary 4.2 If there is a set of jobs J and each job in the

set uses a distinct type of resource, then each

job has to be split over two machines which are

controlled by a single processor.
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The above statement can be illustrated more clearly by using an

example.

Consider s=2, k=1 n=3 and r=3. A set of jobs J with their attri-

butes is listed below.

J.

Table 4.5

1

A Jobs List.

2 3

E 1 2 3

Ri 4 8 5

T. 4 2 6

We construct three schedules to distinguish feasible schedules from

infeasible schedules.

J1(1,4,4) 2(2,8,2)

mly 1

L
1

P

m
2

Et
J (3 5 6)3 9 9

Z=6

Figure 4.6a An infeasible schedule

Figure 4.6a, Schedule L1 is an infeasible schedule because one

processor can not use two resources (4 and 5, then 8 and 5) at the

same time.
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J (3 5 6)3 1

Idle

Z=12
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Figure 4.6b. An infeasible schedule

In Figure 4.6b, schedule L2 does not have a resource conflict prob-

lem; however, the machine utilization is very poor. When there is idle

time existing in a schedule, we say that that schedule is not feasible.

L
3

m10

J
1 i
(1,4,2) J

2 e
(2,8,1) J

3
(3,5,3)

I

P (:)
J (1 4 2)

J2(2,8,1) J
3
(3

'

5
'

3)

1 "
m2

Z=6

Figure 4.6c. A feasible schedule

In Figure 4.6c, L3 is a feasible schedule. Each job is split over

two machines. The makespan is six. There is no other feasible schedule.

L
3
can be represented by a processor Gantt Chart in Figure 4.6d.
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J1(1,4,2) J2(2,811) J3(3,5,2)

I I

Figure 4.6d. A processor Gantt Chart.

4.1.5 Permutation Schedules

In previous sections (4.1.1 to 4.1.4), we have discussed

some characteristics of MP. Here we wish to extend our discussion of

what is a feasible or infeasible schedule to cases where set-up costs

are associated with the decisions of a schedule. Graphical descrip-

tion is used to show the relationship among the job type, resource type,

job processing time, processors and machines.

In many industrial situations, a set of new jobs must be scheduled

on the machines or processors which are still processing some of the

jobs from the previous schedule. In the following production period,

the next set of jobs, including the jobs being processed, is to be se-

quenced for processing on the same machines so that the total changeover

cost (or the total set-up time) for all the machines is minimized.

Consider an example with four machines, s=4, and two processors,

k=2. Suppose that seven new jobs are to arrive and their job attributes

and changeover cost are shown in Table 4.6 as:
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Table 4.6

J
1

(1,1,8)

J
2

(2,1,6)

J
3

(1,2,5)

A from-to cost matrix and the jobs descriptions.

Job changeover Cost Matrix [C
ij

]

J
4

(3,2,5) 1 2 3 4 5 6 7

J5 (5 2 10)5 9
1 0 5 2 4 6 5 3

J
6

(4,3,3)
2 1 0 3 10 7 3 2

J7 (2 3 3)7 9
3 2 4 0 4 1 3 6

4 9 3 0 0 1 4 5

5 3 4 1 0 0 3 7

6 2 3 4 3 5 0 1

7 4 2 3 9 4 0 0

Suppose that the new jobs J1 and J3 are identical to the jobs which have

been completed on processor P1 with m1 and m2, P2 with m3 and m4, respec-

tively. We suppose that the cost of resource change is a constant,$2.

The cost for job type changeover is a variable. Then the cost for chang-

ingfrOITILLth J is expressed as the sum of grade change C and
gij

resource change Cr

Cij = Cgij + Cr

The cost matrix in Table 4.6 is completed by the above expression.
7

The optimal makespan of the schedule will be E T. = 40/4 = 10
j=1 Jis

execution time units. In minimum changeover cost scheduling, we take

advantage of the fact that if we assign a new job to the machines and
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processors which have just completed the same or similar type of jobs

with the same resource, then there will be little cost involved in the

job changeover. Schedule L
1

(Figure 4.7) is constructed in this way

with job J1 and job J3 assigned to pl and p2, respectively. The rest

of the jobs are assigned pairwise to the machines. We obtain a feasible

schedule with 18 cost units and a makespan of 10 execution time units.

J 1 (1 , 1 , 4) 77J
7
(2,3F1.5) J

2
(2,1,317 J

6
(4,3,1.5)

m
1 C

m
1

=8

P1 2(2,1.3) J6(4,3,1.5)
J1(1,1,4) J

7
(2,3,1.5)

le/
le C =8

m
2

1 1
I

t m
2

A A A As.

©
J (1,2,2N J (5,2,5) VJ (3,2,2.5)

m3 173

P20

m4 D
A

J (1 2 2 5)3 1 J5(5,2,5)

Changeover cost for J.
1

to J

C =1
m3

J
4
(3

'

2
'

2.5)

C
m

=1

4

Z=10

Total cost for schedule L
1

is C
m1

+ C
m2

+ C
m3

+ C
m4

= 18

Figure 4.7 A feasible schedule and its total changeover cost
when each job is split over pairwise on a processor.
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L
1
can be represented by a processor Gantt Chart as shown in Figure 4.8.

L1

P2 O

J
1
(1

'

1
'
4) J7(2,3,1.5) J2(3,1,3) J6(4,3,1.5)

J3(1,2,2.5) J5(5,2,5) J4(3,2,2.5)

Figure 4.8 A processor Gantt Chart for L1

If we examine the schedule L1, we shall notice that the jobs on 1

m3 and m4 use the same type of resource. Job Jl and J2 also use the

same type of resource on ml and m2. We are interested in finding a per-

mutation schedule which is lower in cost than the old schedule without

increasing the makespan. Referring to the cost matrix in Table 4.6.,

we can intuitively see that if jobs 3 and 4 are interchanged with job

5 on m4 and m3, and job J1 is split to machines ml and m2, then we ob-

tain a better schedule with the total cost of 17 units (Figure 4.9).

In Figure 4.10, schedule L3 has the same cost as L2 with a make-

span of 11. However, it is regarded as an infeasible schedule because

the idle time exists on machine m2. In Figure 4.11, the schedule L4

is also infeasible because P
1
can not be used as two resources to per-

form jobs J2 and J7 or job J2 and job J6 at the same time.

The graphical representation shows that finding an optimal schedule

is very difficult, especially when the number of resources and the num-

ber of jobs increase. In fact, just for one machine and one processor

with 20 jobs available, there will be 20! = 2.45 x 10
18

possible
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J1(1,1,7) J6(4,3,3)

m cp

P
J J

2
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1
'
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7
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'

3
'

3)

m
2

-1-
C
m2

=7

1 Cm =5
1

77 J3(1,2,5) W J4(3,2,5)
Cm =4
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J5(5,2,10)
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Figure 4.9 Schedule L
2

is obtained from L
1
through

jobs permutation.

'V J1(1,1,8) 77J6(4,3,3)

C =5

ml

p1Q J2(2,1,6) Idle J7(4,3,3)

m2D
1,7,7,zze7,1 C
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=7

d A
Q J3(1,2,5) W J4 "(3 2 5)

Z=11

M 0 Cm
3

=4

P20
J5(5,2,10)

m

A
=1

Figure 4.10 A least cost job sequencing that is
infeasible because of idleness.
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Figure 4.11 An infeasible schedule due to
resource conflict.
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solutions. If a computer is used to evaluate one solution every micro-

second, it would take more than 76,000 years to try all possibilities.

Horowitz and Sahni (1974) showed that a makespan minimization on pro-

cessors with n variable processing time tasks scheduling will require

an enumeration of kn possible schedules.

Based on the characteristics of the MP, three algorithms are de-

veloped. They will be described in the next two sections.

4.2 Two Heuristic Algorithms

From the last section, we have shown that the MP can be solved by

intuitive judgments which are hard to program on a computer. The over-

all strategy of the solution methodology presented here is to obtain

a locally feasible and optimal schedule with a minimum amount of compu-

tation. There are two stages in solving the problem. The first stage
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is to construct an initial feasible schedule. The second stage is to

modify the initial schedule by applying a series of pairwise inter-

changes of those jobs which use the same type of resource. An improved

permutated schedule can be obtained.

Two heuristic algorithms for scheduling immediately available in-

dependent n jobs, with k identical processors and s parallel machines,

where the objective is to minimize the total changeover cost, are de-

veloped by using three priority rules:

(1) Select the job which has the lowest changeover cost.

(Purpose: to minimize total production cost.)

(2) Select the job which has the same resource usage as

the previous completed job on the machine and pro-

cessor. (Purpose: to have an improved and near

optimal permutated schedule later.)

(3) Select jobs which have the longest processing time.

(Purpose: to minimize the makespan.)

These two algorithms are similar to each other. The differences

between the first and second algorithm are that the second one has a

planning horizon and all the processors have to compare each other be-

fore undertaking the job assignment.

We introduce the following additional notations: Jj(Ei,RJ,Ti,Wi,

) where:

1 means job j is an old job.
W. =

0 means job j is a new job.

e.g. (i) j1(2,5,0,1,5)
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(ii) J3(3,6,2,0,0)

(i) means job one is an old job and is currently on processor

P5. But the order of this job has just completed, so T1=0.

(ii) means that job 3 is a new job, it needs two execution

time units to complete the order.

Pa (u) is the number of machine(s) controlled by P
a

where

(1 < u < 2)

e.g. P3(2) means processor 3 has two machines.

f k) is the least cost for the current job i on
Pa

processor P
a

changes to job j which correspond to the

k
th

position
J

C..1J, of the [C1..]; where f
p '

k)=

Min C.
1
. ; for j= 1...n }

4.2.1 Heuristic algorithm I

Preparation: Observe what type of jobs and resources

are currently on each machine and processor. Obtain a cost

matrix [C
ij
] which consists of the changeover costs for the

old jobs to the new jobs.

Input: n,r,k,s,Pa(u), Cii], ak, Rj, Ji(Ej,RsTi,Wj,Pa).

where (I < i < n, 1 < j < n, I < k < , 1 <u. < 2, I < u < 2).

Output: Schedule L, Q ,Z(a) , Z(3) , where (1 <13 < s)
a

C
p

// Cumulative total cost for Pet //

and 2'

C
a // Total changeover cost on all processors

= 1 pa
and machines //
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Step 0: (Initialization). Initialize storage arrays for job attri-

butes in all processors and machines.

Step 1: (Previous unfinished job assignment). Assign all the old

jobs to each processor. Update the current Z(1), set C
P=0
a

for a = 1 to k . Set the corresponding columms in the matrix

where the jobs are assigned to infinity. Decrement the

resource count.

Step 2: (Select a processor). Find Pa which has the shortest cur-

rent makespan Z(a). Increment the previous resource count

on P
a

by one.

Step 3: (Select a job). With the current Ji in Pa , select a job

Jj such that Cij is the minimum. i.e., f (i,k) = min

iCij,for . If Cij = co then go to step 6. If there

is a tie, choose the job which has a same type of resource

usage as the previous job Ji. If the above criterion fails,

choose the job which has the longest processing time (Ti).

Check whether the resource which is going to be used by Jj

is available. If the resource is available, go to step 5;

otherwise, go to the next step.

Step 4: (Select the next best job). Find the next job which has

the second lowest cost of change. If there is a tie, apply

the same criteria as in step 3. Check for resource avail-

ability, if there is no resource conflict, then go to the
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next step; otherwise, repeat Step 4 until a job can be

assigned without resource conflict. If no job can be

scheduled, then print "not all jobs can be scheduled."

Call exit.

Step 5: (Decrement resource count). Assign Jj to P , decrement
a

resource count of ak which is used by Jj by one. Set

the column of the [Cij] corresponding to Jj to

infinity. Update Q
Pa

, Z(3) and C . Go to

Step 2.
a

Step 6. (Termination). When Cij = it means that all jobs have been

scheduled. Call output to print schedule L. END.

The flowchart for the algorithm is shown in Figure 4.12, the pro-

gram for the algorithm is shown in the Appendix.

Numerical Example: The foreman of a job shop has received 11 jobs for

the next month production. The last jobs in this

month being scheduled to be processed on proces-

sors P1 and P2 are job J1 and job J6. Suppose

that J3 had been finished by P3. In what order

may the 11 jobs be scheduled for production

so that the total set-up cost for all the machines

and processors is minimized? The job attributes,

processors, machines and resources availability

are given in Table 4.7a and the cost matrix is

in Table 4.7b.
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START )

INITIALIZE
ALL STORAGE

ARRAYS

SCHEDULE THE
UNFINISHED JOBS
TO ALL Pa (A =1

....

DECREMENT THE
RESOURCE COUNT,
UPDATE Z(a) C9

SET COUNTER=k

FIND Pa WHICH
HAS THE LEAST
CURRENT Z(a)

FIND f
5

k)
PA

= Min f c
ij

FOR

j=1....n 1.

IF YES
C
ij

NO

ARE
THERE

ARE MORE THAN
ONE JOB WITH
THE SAME COST

YES

NO

FIND THE JOBS
WHICH HAVE THE
SAME RESOURCE
USAGE AS THE
PREVIOUS JOB

IF THERE AREA

ORE THAN ONE
J?B

YES

FIND THE JOB
WHICH HAS THE

LPT

NO

Figure 4.12 Flow Chart of Heuristic Algorithm I.
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ARE ALL

OF[Cij] OF THE EXHAUSTED?
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COUNTER + 1
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PRINT
RESOURCE,
CONFLICT

4

STOP I:)

ALL JOBS HAVE
BEEN

SCHEDULED

OUTPUT
RESULT

Figure 4.12 (Continued)
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Table 4.7a Jobs list, processors, machines and
resources availability

Job Description

Legend: Jj (Es, Rs, Tj, Wj, Pa

J1(1, 1, 8, 1, 1)

J2(2, 1, 6, 0, 0)

J3(1, 2, 0, 1, 3)

J4(3, 2, 5, 0, 0)

J5(5, 2,10,0, 0)

) Resources availability

r=5

RA( a
k

1 1

2 1

3 1

4 1

5 1

J
6
(4, 3, 3, 1, 2)

Processors and machines
status

J
7
(2, 3, 3, 0, 0)

pl has 2 machines: p1(2)

J
8
(6, 5, 4, 0, 0)

p2 has 2 machines: p2(2)

J
9
(7, 4, 4, 0, 0) p3 has 1 machine: p3(1)

J
10

(6, 4, 7, 0, 0) k=3 s=5

J
11

(8, 5, 2, 0, 0)

J
12

(4, 1, 3, 0, 0)

J
13

(9, 4, 4, 0, 0)

J
14

(6, 3, 6, 0, 0)
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Table 4.7b Cost Matrix

(1) (2) (3) (4) (5) (6) . (7) (8) (9) (10) (11)(12)(13)(14)

( 1) 999 5 2 4 6 5 3 3 9 4 3 1 2 3

( 2) 1 999 3 10 7 3 2 4 3 3 3 1 3 2

( 3) 2 4 999 4 1 3 6 2 3 6 2 9 2 2

( 4) 9 3 0 999 1 4 5 2 3 2 3 6 2 3

( 5) 3 4 1 0 999 3 7 6 2 8 11 3 13 4

( 6) 2 3 4 3 5 999 1 7 6 2 13 2 3 1

( 7) 4 2 3 9 4 0 999 2 4 5 7 2 2 0

( 8) 5 10 4 6 10 2 7 999 2 2 4 2 8 2

( 9) 3 4 2 7 11 6 10 5 999 8 2 6 0 11

(10) 2 11 5 2 4 8 2 2 0 999 5 3 6 2

(11) 4 2 7 12 2 11 16 0 7 9 999 4 6 0

(12) 0 0 4 13 2 2 7 11 3 2 3 999 3 2

(13) 2 4 2 5 8 6 3 2 1 0 2 10 999 8

(14) 8 9 5 8 3 0 4 2 8 2 2 8 4 999
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Solution procedure

The (14 x 14) cost matrix in Table 4.7b consists of the previous

scheduled jobs, J1, J3 and J6. There is only one job of each type and

resource hence we cannot process Ji after processing Ji. This is avoided

by setting Cii = 03.

We know that no preemptive priorities are allowed. All the cur-

rent unfinished jobs on each processor and machine have to be continued

to be processed in order that no cost will be involved at time zero

of the new schedule. Therefore, J1, J
3
and J

6
have to be assigned to

pl, p3 and p2, respectively. We get the cost matrix in Table 4.8 and

processors Gantt Chart (Figure 4.3) after the previous scheduled jobs

assignment in step 1 of algorithm I.

Pi °

P2 01==

= = 4Qp1 Z(1) Cp1=0

Qpz = tJ6 Z(2) = 1.5 Cp2=0

Qp3 = {J3) Z(3) = 0 C
p3 =0

Figure 4.13 Processors Gantt Chart after J1, J3 and J6

have been assigned.
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Table 4.8 The cost matrix after the previous jobs

have been assigned.

1 2 3 4 5 6 7 8. 9 10 11 "12 13 14

1 co 5 . 4 6 3 3 9 4 3 1 2 3

2 . . . 10 7 . 2 4 3 3 3 1 3 2

3 . 4 . 4 1 co 6 2 3 6 2 9 2 2

4 . 3 . co 1 0, 5 2 3 2 3 6 2 3

5 . 4 co 0 co co 7 6 2 8 11 3 13 4

6 . 3 . 3 5 . 1 7 6 2 13 2 3 I

7 . 2 . 9 4 . . 2 4 5 7 2 2 0

8 . 10 . 6 10 . 7 2 2 4 2 8 2

9 co 4 co 7 11 . 10 5 . 8 2 6 0 11

10 co 11 . 2 4 . 2 2 0 . 5 3 6 2

11 . 2 . 12 2 . 16 0 7 9 . 4 6 0

12 . 0 . 13 2 . 7 11 3 2 3 . 3 2

13 . 4 . 5 8 . 3 2 1 0 2 10 . 8

14 co 9 8 3 . 4 2 8 2 2 8 4

p3 now has the shortest current Z, therefore p3 gets the next job assign-

ment. The minimum changeover cost from J3 to any other job is expressed as

fp (3,k) = mint C3,j;j=1...n ) and f
P

(3,5) = C3,5=1. This means that
3

3
J3 changes to J5 incurs the minimum cost. Since p3 has one machine

only, the execution time unit for J5 will be (T5/p1(1) = 10). There

is no resource conflict for resource type 2, so J5 is assigned to p3.

C
i5

is set to cc, for (i=1...n). We have a partial schedule with
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Q

131

.fJ

1

,

Q
p2

43
6

,

Q
p
3

:(,)

3
,J

5

Z(1)

Z(2)

Z(3)

=

=

=

4,

1.5,

10 ,

Cpl =0

C =0

P2

C
P3

=1

Among the three processors, p2 has the shortest Z, so this time p2 gets

the next job assignment. fp (6,k) = min j C6,i ; 1= 1...nj = C6,7 =

2
C
6,14

= 1 cost unit. There is a tie. Both J
7

and J
14

use the same

resource type 3, but T14> T7, therefore, without resource conflict,

J
14

is assigned to p
2
with f (6,14) = 1. The execution time is

P2

3 units. The cost matrix is shown in Table 4.9 with Ci,1°4
= ... (for

i=1..n). The processor Gantt Chart is shown in Figure 4.14.

J
1
(1,1,4)

P10 ()pi: {Ji ItZ(1)=4, C =0

J
6

J
14

(6,3,3)

p Q-2: tJ6J14) ,Z(2)=4.5 Cp2=2
I P

P30 Qp3: tJ3,J619Z(3)=10

C =1
P3

J
5
(5,2,10)

1

Figure 4.14 A partial schedule L.
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Table 4.9 The cost matrix after the 5th job
has been assigned.

2 4 7 8 9 10 11 12 13 14

1 5 4 3 3 9 4 3 1 2

2 . 10 2 4 3 3 3 1 3

3 4 4 6 2 3 6 2 9 2

4 3 . 5 2 3 2 3 6 2

5 4 0 7 6 2 8 11 3 13

6 3 3 1 7 6 2 13 2 3

7 2 9 . 2 4 5 7 2 2

8 10 6 7 . 2 2 4 2 8

9 4 7 10 5 . 8 2 6 0

10 11 2 2 2 0 . 3 6 0

11 2 12 16 0 7 9 . 4 6

12 0 13 7 11 3 2 3 3 00

13 4 5 3 2 1 0 2 10 03 CO

14 9 8 4 2 8 2 2 8 4

This procedure is repeated until all jobs have been assigned. We

then obtain schedule L
1
which is shown in Figure 4.15. The total

changeover cost is 21 cost units. The makespan is 15 execution time

units.

An attempt was made to pairwise interchange those jobs which use

the same resource and are adjacent to each other. We cannot produce





61

a better schedule than schedule L
1
at this time, and this schedule

is said to be locally optimal in this sequence.

4.2.2 Heuristic Algorithm II

Algorithm II has only a few changes from Algorithm I. We

shall state the differences.

In order to make the algorithm clear, we add one additional nota-

tion.

Let G
Y
(p
a
(k)) be the least cost of job k to be assigned to P

a
after

y jobs have been assigned.

and G
Y a
(P (k)) = min If (i,k); for = 1...k}

a

Preparation: The same as in algorithm I.

Input: The same. Add the planning horizon D.

Output: The same.

Steps 1, 2, 5, 6: same.

Step 0: (Compute the optimal makespan and initialization)

Z
*

= E T;/s
j=1

*
If D < Z then print "not all jobs can be scheduled within

the time limit of D." Call exit. Otherwise, initialize

storage arrays.

Step 3: (Select a job for each processor)

With the current job Ji in each pa = , find the

least cost job Jj.



62

(i,k) = min tC.
,j

; for j=1
Pa

If there are jobs with the same minimum cost for a given

p
a

, break the tie by using the priority rules (jobs with

the same resource type and LPT is scheduled first) as in

algorithm I. Go to next step.

Step 4: (Assign a job to a processor)

Find the minimum cost for each processor; i.e.

G
Y
(p
a

(k)) = min f
p

(i,k) a =1....t .

a

If there is a tie, break the tie arbitrarily.

Check whether the type of resource which is going to be

used by Jj is available and the cumulative processing

time ( Z) of pa is less than the planning horizon D. If

it is true, go to next step; otherwise mark the J. which

can not be processed by pa at that particular time. Go

to step 3 to find next job. If no jobs can be assigned

to any of the pa , print message and go to step 6 to print

out the partial schedule.

We do not exhibit the flow chart for this algorithm, because it is

easily constructed from algorithm I. The program for this algorithm

is shown in the Appendix.

Numerical Example: We use the same example in algorithm I to illustrate

how the algorithm works. We add the planning

horizon D to be 15.5 execution time units.
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Solution Procedure

* n

Step 0: Z = E T./s = 65/5 = 13
j=1

*
Since D > Z , there may be a schedule existing such

that all jobs can be finished at or before the time

limit D.

Steps 1
& 2: J1, J6J and J

3
are assigned to pl, p3 and p2, respect-

ively. This is the same as in algorithm I. The

processors Gantt chart and matrix are shown in

Figure 4.13 and Table 4.8.

Step 3: y=3 (3 jobs have been assigned.) Iteration 1: (a) Find

the least cost job for each processor.

f (1,k) = min [C1,j ; for j = 1...n
131

= C
1,12

= 1

f
P1

(1,12) = 1

f (6,k) = min ; for j = 1 ...n
P2

= C
6,7

= 1 ; C
6,14

= 1

J
14

has the LPT. So J
14

is selected .'. f (6,14) = 1
P2

f (3,k) = min t C3,i ; for j = 1...n ./

P3

= C
3,5

= 1

. . f (3,5) = 1
P3

(b) find the best assignment for a job to a particular pa
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Step 4: G3 (Pa(k)) = min {P1(12) = 1, P2(14) = 1, P3(5) = 1 '\

There is a tie. Although J12, J14 and J5 have the

same resource type as the previous jobs, and

T
5

> T
14

> T12, we break the tie arbitrarily.

J
5

is chosen.

Before assigning J5 to P3, check whether the resource

type 2 is available and the current makespan of Z(3)

is less than D.

'.' Resource type (k=2) is available and Z(3)=10< D.

J5 is assigned to P3,set Ci5 = c° (for i=1...n)

Decrement resource amount a
k
by 1 with a dura-

tion of 10 execution time units.

y = y+1. Go to Step 3.

Iteration 2. (repeat Step 3 and Step 4)

(a) find a least cost job

f (1,k) = C j = 1 n

P1
1, j'

= C
1,12

= 1 k= 12

fp2 (6,k) = min C6,j; j = 1 ...

= C
6,14

= 1 k = 14

fr, (5,k) = min IC5,i; j = 1 ...n
F3

= C
5,4

= 0 k = 4

(b) find the best assignment



65

now

G4(P (k)) = min{ (1,12) = 1, P2 (6,14) =
a

P3 (5,4) =

G
4

(P
3
(4)) = 0 is the lowest cost.

So J4 is assigned to P3 after checking

R
2

is available and Z(3) = 10 + 5 < D. Set Ci4 =

Q
P1

=1 J

1

\

Qr.,

F 2

= ci /

Q
p3

= .J
3'

J5' J
4
)

,

Z(3) = 15 C =1
P3

, Z(1)

, Z(2)

=

=

4

1.5

Cpl = 0

Cpl = 0

Iteration 3 y = 5 ; G5 (P2(14)) Set Ci,14 =

Iteration 4 y = 6 ; G6 (P1(12)) Set Ci,12 =

After (n-k) iterations, all jobs have been assigned. The machines'

Gantt chart is shown in Figure 4.16. The total cost for schedule L2

is 25 cost units. The makespan Z is 15. In this example, the result

of algorithm II is worse than algorithm I, due mainly to the choice

of the last job J11. This also illustrates how a heuristic algorithm

can lead to poor decisions toward the end of sequence. However, if

we interchange J11 with we we get a much better schedule L2' with

a total cost of 17 units; the processor's Gantt chart is shown in Figure

4.17.
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4.23 Discussion

The computational experience of these two algorithms is

given in section 5.4.

These two algorithms suffer two disadvantages.

(i) If there is only one processor controlling two machines, and

each job has a different resource type requirement, then all

jobs have to be split over two machines in order to satisfy

the constraints stated in Corollary 4.2.

(ii) Both algorithms will fail when:

(a) One type of resource is used by many jobs and its

amount of availability is limited (i.e., "satu-

rated").

(b) The number of processors increases, the makespan be-

comes shorter, this will make the resource availabi-.

lity of each type tighter.

The branch-and-bound algorithm discussed in the next chapter will

alleviate the above difficulties.
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CHAPTER V

APPLICATION OF BIN PACKING AND BRANCH AND BOUND ALGORITHMS
TO MULTIPROCESSOR SCHEDULING - THE THIRD ALGORITHM

5.1 Introduction

Since the subproblems of the MP problem are NP-complete, it is

hard to find an optimal solution for medium size of jobs in a reason-

able time of computation. Here we present an algorithm based on the

common-sense philosophy that a complex problem may be decomposed into

several less complex problems. If there are several algorithms which

exist to solve the subproblems of the complex problem, then these al-

gorithms may be combined together to form a new algorithm which may

be bounded by addition, multiplication and composition of the com-

plexities of its component algorithms.

The philosophy for the third algorithm developed can be summarized

by three main points:

(1) To design a procedure for partitioning n jobs into mu-

tually exclusive subsets called classes.

(2) To design a procedure for specifying a sequence and

priority of the classes.

(3) To design a procedure for sequencing and packing jobs

into bins within each class.

The proposed algorithm is abbreviated BINBAB (Bin Packing and Branch and

Bound methods.)
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This chapter contains a review of existing heuristics and branch

and bound algorithms for solving the least cost scheduling and makespan

minimization on multiprocessors. BINBAB algorithm is presented and

is followed by a numerical example. Finally, comparison of computa-

tional results among three algorithms are presented.

5.2 Previous Algorithms

5.2.1 Minimum Cost Sequencing

From the literature review, we noticed that the minimum

cost sequencing "routing" problems to which branch and bound algorithms

have traditionally been applied were all based on an availability of

a single processor (or a single machine, or traveling salesperson).

A number of branch and bound algorithms to find the exact solution for

small-to-moderate-size traveling salesperson problems (fewer than 50

cities) appeared in the literature during the past 17 years. However,

most, if not all, are based on the algorithm by Eastman (1959) or Little

et al. (1963, p. 972). The work of Little, et al. is a tour-building

algorithm, while the work of Eastman is subtour elimination algorithms.

However, the former may be considered a modification of the branching

and bounding procedure used by Eastman. The Eastman algorithm is ex-

tended by Shapiro and the computational experience of his algorithm

makes using Little's algorithm less desirable (Bellmore and Nemhauser,

1968, p. 550). Ramalingam (1969, p. 81) showed how to modify Little

et al.'s algorithm for solving sequencing problems with nonrepetitive

jobs.
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Bellmore and Hong (1974) used graph theory to show that a multi-

salesmen problem can be transformed to a single traveling salesman

problem. The multisalesmen problem can be stated as follows. Given

m salesmen who are required to visit n "customer cities" from a "base

city" and return to the base city with a minimum total distance (or

cost) traveled incurred by all salesmen. Each city must be visited

exactly once by exactly one of the m salesmen. Thus the multisalesmen

problem is as hard as the single salesmen problem. In fact, if m=1

then the problem is reduced to a standard traveling salesman problem.

Svestka and Huckfeldt (1973, p. 798) presented a generalization

algorithm to the multisalesmen case. Their branch and bound scheme

was based on the Bellmore and Malone Model (1971, p. 278) and it is

of a subtour elimination type. Their computational experience showed

that the multisalesmen in fact is faster in computation time than the

single salesman. They observed that the minimum computation time occurs

when the integer [n/m] lies between three to seven. However, their al-

gorithm can not be applied to the MP, because their algorithm produces

closed sub-tours and the length of each tour for each salesman is not con-

sidered. The running time for their algorithm is worth noting. They

claimed that for m=1, their algorithm execution time is t=e 0.074 n

0.115 n
while Little et al.'s algorithm is t=e

0.
where n is the number

of cities.

The author observed that no algorithm has been reported on schedul-

ing n independent jobs with variable execution time on multiprocessors

where the objective is to minimize the changeover cost.
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5.2.2 Makespan Minimization

The bin packing problem is similar to the problem of make-

span minimization of identical parallel processors problem. The bin

packing problem can be described as follows (Horowitz and Sahni, 1978,

p. 572):

If we are given n objects which have to be placed in
bins of equal capacity L. Object i requires Z. units
of bin capacity. The objective is to determine the
minimum number of bins needed to accommodate all n
objects. No object may be placed in one bin and
partly in another.

Horowitz and Sahni also showed that the bin packing problem is

NP-hard (1978, p. 573). They stated four simple known heuristic al-

gorithms to solve it. They are:

(i) First Fit (FF)

(ii) Best Fit (BF)

(iii) First Fit Decreasing (FFD)

(iv) Best Fit Decreasing (BED)

The LPT algorithm can be applied to solve the bin packing problem.

It has been described in section 4.1.1.

Coffman, et al. (1978, p. 1) introduced a comparably fast proce-

dure named MULTIFIT (Multiple fit) algorithm which is based on the

First Fit Decreasing (FFD) bin packing technique to solve the multi-

processor scheduling problem. The basic algorithm is as follows:

(i) Construct an LPT ordering of jobs.

(ii) Start with known upper and lower bounds on the makespan
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Z, and at each step come up with a value, D,

midway between the current upper and lower

bounds.

(iii) Schedule the jobs in order, each time assigning a job

to the lowest index processor without violating the

deadline D.

(iv) If all jobs are assigned such that the load on each

processor Pa, Z < D, then we succeed in construct-
a

ing a schedule with a makespan

Z = Max Z

P
a

P
a

and D becomes the new upper bound. If necessary, go

to (ii) to start another interation.

(v) Otherwise D becomes the new lower bound (we have not

obtained a complete schedule yet) and go to (ii) to

start another iteration.

(vi) Stop when the desired number of iterations is com-

pleted. At each iteration, the potential range is

halved, and a good makespan value is approximated

very rapidly.

The authors proved that the MULTIFIT algorithm satisfies the worst-

case performance bound of 1.22. This is precisely the best possible

bound for the algorithm when m < 7. (Where m is number of processors).

Coffman, et al. (1978, p. 1), conjectured that the best possible general

bound for their algorithm is 20/17.
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Elmaghraby and Elimam (1980, p. 94) presented a knapsack-based

algorithm (KOMP) which requires more computational effort than either

LPT or MULTIFIT. However, the efficiency of their multiprocessor's

schedule appears to be superior to that of either LPT or MULTIFIT.

Their algorithm is quite long. KOMP is based on the simple observation

that a two-machine makespan problem is equivalent to a knapsack prob-

lem. A "crude" heuristic is used to yield a feasible schedule. The

makespan machine teams up with the shortest processing time machine

to form a knapsack which is solved to yield a lower makespan. The

process is iterated until a good, if not optimal, makespan is reached.

They claimed that KOMP yields an optimum schedule most of the time.

5.3 BINBAB Algorithm

KOMP and MULTIFIT algorithms are both effective. They can be

applied to MP under the following assumptions:

(i) The previous jobs are not necessary to be scheduled

first at the beginning of a scheduling period.

(ii) There are no resource constraints. If this assumption

is held, t processors will become resources, we then

seek to find a schedule which meets a common deadline

D for S identical machines.

BINBAB algorithm can be summarized into three steps. First, the

jobs with the same type resource usage are grouped together into classes.

This may help to eliminate the resource conflict. Second, each class

of jobs is assigned to a processor by using the FFD bin packing
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techniques, the makespan minimization can be achieved. After the second

step, we have a subset of jobs in each processors and they are mutually

exclusive (w1U w
2

w = J). Third, each subset of jobs is solved

as a single machine case by using the algorithm described by Ramalingam

(1968, p. 81) and the branch and bound method by Little et al. (1963,

p. 979). We will obtain an optimal sequence of jobs for each processor.

The step-by-step BINBAB algorithm is described as follows:

Preparation: Same as algorithms I and II.

Input: Same as algorithms I and II.

Output: Z*, Z(a), C , subcost-matrix for each
Pa

subset of jobs, Q
Pa'

Step 0. (Find the optimal makespan)

Step 1.

* n

Z = E T./s
j=1

* *
Round off Z to its greatest integer. Z

is the lowest bound of the completion time

for the schedule.

(Find the height of a stack, h)

*
Set h = Z , if there is a processor which

has only one machine.

or set h = 2Z
*

, if there is a tight re-

source situation and one processor two

machines situation.
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Step 2. (Sort J into classes). Each class of job needs the

same type of resource. The jobs in each class are

arranged by a decreasing order of its processing

time T.

Step 3. (Place jobs into stacks). Put the jobs in each class

into a stack with a stack height limitation, h. The

unfinished jobs of the previous schedule have to be

put in each stack first. The remaining jobs are placed

into the stack by using the First Fit Decreasing method

(FFD). (Baase, 1978, p. 268). i.e., the longest pro-

cessing time job is filled in the stack, then find the

second longest to fit the remaining stack level. If

all jobs in that class are exhausted before the stack

is full, name the stack, otherwise continue to put the

remaining jobs of that class into a new stack and name

the stack. Update the number of stacks. This proce-

dure is applied to all classes of jobs until all jobs

have been put into stacks with each stack height less

than h. After this step, the total number of stacks

is always equal to or greater than the number of re-

source type (r) available.

Step 4. (Assign previous jobs to processors). Index and treat

each processor as a bin. If a processor has two

machines, then the processor capacity B = 2Z* other-

wise, B = Z . Assign the stacks which have the pre-

vious jobs to processors.
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Step 5. (Pack each processor with stacks). Arrange the re-

maining stacks according to their decreasing order of

stack height. Apply FFD algorithm again. Afterwards,

we would have two cases:

Case 1. There are no more stacks, all stacks

have been assigned. Go to step 7.

Case 2. There are stacks left behind. Go to

next step.

Step 6. (Assign the remaining stack to processors). Assign the

tallest stack to the processor with the biggest amount

of remaining capacity Br until all stacks are assigned

to the processors. Go to next step.

Step 7. (Find the optimal sequencing) fora = 1 to Q.

Sort out the subcost matrix for the jobs in each Pa .

Call branch and bound procedure (BANDB) to find the

optimal job sequencing. END.
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Procedure BANDB ([Cki], NUM)

[Ckl] is the subcost matrix. NUM is number of

jobs on the processor P
a

.

This section has been lifted from Ramalingam

(1968, p. 83).

Step 1. Set Cki = because job 1 is always the

job which is left behind at the last sche-

dule.

Step 2. Reduce matrix [Co] by finding the small-

est number in each column and subtract each

column with that number. Subtract the

smallest number from the first row of the

[C
kl

] only.

Step 3. We obtain a reduced cost matrix [C101].

Let S=1 be the cost of all possible sche-

dules. Label S with

V(S) = sum of reducing constants.

Step 4. For each cell (a,b) with zero cost in the

reduced matrix [Col], compute the cost

penalty ( Pa,b) of not using it, where

(Pa,b)
min [Coi] + min [Ckl']

kia lib

Enter the value of (Pa,b) in the cell (a,b)

Step 5. Choose a cell (c,d) such that Pc,d = Max
(Pa,b)
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for all a and b values. Ties, if any, may be broken

arbitrarily. We branch the set of all possible

schedules from S into those that contain the route

(c,d) and those that do not. Let us denote these

subsets by Y and Y. Delete row c and column d.

Step 6. The lower bounds for subsets Y and Y may be calcu-

lated as follows: For the subsets Y, v (Y) = v (S) +

(Pc,d), determine the starting job s and ending job

e of the schedule containing (c,d) among schedules

generated by the selected pairs of Y. Record in the

matrix [Col], set C(e,$) = .... Reduce the matrix

[Ckl i] by columns and the first row only. v (Y) = v (S)

+ (sum of reducing constants).

Check if the reduced matrix is of size 2 x 2. If yes,

complete the single route and continue, otherwise go

to next step.

Step 7. Examine the lower bounds of the nodes obtained so far

and choose the one with the smallest value.

Step 8. Check if the best schedule found so far has a cost (Z
o
).

less than or equal to the lower bounds on all terminal

nodes of the decision tree. If yes, the sequence es-

tablished in step 7 is the optimal schedule.

If the lower bound of some other artibrary node X has

less value than that of the last node Y, go to step 9.

Otherwise, go to step 4.
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Step 9. In the original cost matrix [Ckl], choose the

pairs (c,d) that are previously selected in

the route of S. Compute g = EC
c,d

For each of (C,d), delete the row c and column

d. For each route among the (c,d) group, find

the starting jobs s and the ending job e and set

C
(e,$)

= .... For each (d7d) that is not in-

cluded in the schedules of S, set C(c-a) =

Reduce the remaining matrix [Co] if possible.

The lower bound of X, v (X) = g + sum of reducing

constants. Then, go to step 4.

Numerical example: We use the example in Table 4.7 a and b for illus-

trating how the BINBAB algorithm works.

Solution Procedure:

Step 0. Z = 65/5 = 13

Step 1. In this example, we set h= 2Z *, because we have

a tight resource availability.

Step 2. Sort J into classes, we have five types of re-

source, therefore we have five classes of jobs.

Arrange the job in each class by the decreasing

order of Ti.

Class 1

J1(1,1,8,1,1) > J2(2,1,6,0,0) > J12(4,1,3,0,0)
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Class 2

J5(5,2,10,0,0) > J4(3,2,5,0,0) > J3(1,2,0,1,3)

Class 3

J
14

(6,3,6,0,0) > J7(2,3,3,0,0) > J
6
(4,3,3,1,2)

Class 4

J
10

(6,4,7,0,0) > J
9
(7,4,4,0,0) > J

13
(9,4,4,0,0)

Class 5

J8(6,5,4,0,0)
> J11

(8,5,2,0,0)

Step 3. Each job is placed into a stack with the previous

unfinished job first. Apply FFD algorithm to stack

the remaining jobs. Afterwards, we have five stacks

with various stack heights (Figure 5.1). The

height of each stack is less than 26.

Step 4. Assign stack 1, stack 3 and stack 2 to processor #1,

#2, and #3, respectively. Stack 4 and stack 5 are

left behind.

Steps 5 & 6. Since processor #2 has more room in it, Br =26-12=14.
2

Stack 4 is assigned to processor #2 and stack 5 is

assigned to processor #1. We have all processors

filled with jobs. (Figure 5.2).

Step 7. Sort out the sub-cost matrix for the jobs in P1.

It is shown in Table 5.1. Call procedure BANDB.
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Table 5-1. Cost matrix for the jobs in
Processor #1.

(1) (12) (2) (11) (8)

(1) . 1 5 3 3

(12) 0 .0 0 3 11

(2) 1 1 .0 3 4

(11) 4 4 2 .0 0

(8) 5 2 10 4

The following are branch and bound procedures.

Steps 1 & 2. Set C
kl
= .0 and reduce the cost matrix. We

obtain Table 5-2

Table 5-2. The reduced cost matrix No. 1

(1) (12) (2) (11) (8)

(1) 0 5 0 3

(12) CO 00 0 0 11

(2) 00 0 0 4

(11)

(8)

CO

tX)

3

1

2

10 1

0

Step 3. S=1, v(1) = 4

Steps 4-9. Table 5-3 to Table 5-6 show the results of each

step in the branch and bound algorithm. The
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final decision tree is shown in Figure 5-3.

Table 5-3. The reduced cost matrix No. 2.

i\j (12) (2) (11) (8)

(1) 00 5 0
o

3

(12) . 0
2

0
o

11

(2) 0° co 0° 4

(11) 3 2 . 05

(8) 1 10 1

Table 5-4. The reduced cost matrix No. 3.

(12) (2) (11)

(1) 5 0°

(12) . 05 0°

(2)
0°

0 °

(8) 1 10 CO

Table 5-5. The reduced cost matrix No. 4.

-\j
(12) (11)

(1) 01 0°

(2) . 0 c°

(8) 1 CO
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Table 5-6. The reduced cost matrix No. 5.

(12)

(1) O1

(8) 1

The results of this problem are shown in Figure 5.4 and Figure 5.5.

The total cost for the initial schedule L1 and permutated schedule L1

is the same. In this example, BINBAB produces the best answer com-

paring with algorithm I and algorithm II.

The flow chart for the BINBAB algorithm is shown in Figure 5-6. How-

ever, the flow chart for the procedure of branch-and-bound is not shown

here because the detail flow chart can be found in Little et al. (1963,

p. 978). The program for the BINBAB algorithm is shown in the Appendix.

5.4 Computational Experience

All three proposed algorithms were coded in FORTRAN IV. Approxi-

mately 9 problems were run on CDC Cyber 17720 at Oregon State University.

Only the problem with a successful result produced by the algorithms

I and II are summarized in Table 5.7. The cost matrix data are either

selected from Gillett(1976, p. 503) or generated by the random number

subroutine.

From the results and observations of computation of these three

algorithms, we have the following conclusions:

(1) The solution time of heuristic algorithm I is faster than
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Optimal Schedule for processor #1 is

(1) - (12) - (2) (11) - (8) with total cost = 4

Figure 5.3. Decision tree for the sequencing of
non-repetitive jobs on processor #1.
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Table 5.7 Computational Results

Algorithm I Algorithm II Algorithm III

Prob-
lem
No ntSZ*

Solu-
tion
in CPU

sec

Total

Cost

Z =
Max

M a)]

Solu-
tion

in CPU
sec

Total

Cost

Z=
Max
[Z(a)]

Z
-47
Z

Solu-
tion

in CPU
sec

Total

Cost

Z =
Max

[Z(x)]

Z
--Te
Z

1 14 2 4 25 .04 180 28.5 1.14 .09 191 30 1.20 .84 185 27.5 1.10

**2 14 3 5 13 .04 21 15 1.15 .16 25 15.5 1.19 .40 15 15.0 1.15

3 16 3 5 25.5 .05 220 27.6 1.08 .15 187 28.75 1.13 .56 178 28.0 1.10

4 18 3 6 35.0 .05 140 37.5 1.07 .16 153 39.75 1.14 1.14 136 40.5 1.16

5 25 4 8 15.0 .06 650 17.0 1.13 .18 620 17.0 1.13 1.48 589 16.5 1.10

6 30 3 6 31.0 .07 790 34.0 1.09 .31 720 34.5 1.11 3.04 701 36.5 1.18

**
The data of this problem were not randomly generated.
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algorithm II because algorithm I is of order0(n) and

algorithm II is of order 0(2,n), where 2, is the number

of processors. The third algorithm is the slowest

because the amount of work done is much more than the

other two. The amount of operations are due mainly to

the sorting, tree branching and searching.

(2) Algorithm III produced the least cost schedule when

randomized data were used. However, when the data were

not randomly generated, it did not always produce the

least cost schedule. More will be discussed on this

in the next chapter. Algorithm II seemed to give

lower cost results than algorithm I. However, from the

observations of the results, the makespan of the sche-

dule obtained from algorithm II is usually poorer than

algorithm I and the chance of failure (i.e. an infeasi-

ble schedule) is higher than algorithm I. The failure

often occurred at the end of the schedule where the

last one or two jobs could not be scheduled. The infeasi-

ble schedule was due to either an insufficient resource

or beyond the given planning horizon. Generally it is

possible to distinguish good and bad heuristics by

making a number of experimental trials.

(3) Three algorithms produce a schedule with the assumption

that all jobs have to be split over two machines equal-

ly in order to have a feasible and tight schedule.
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(4) It is difficult to investigate how the solutions obtained

from these three methods compare to the optimal solution

because the latter is difficult to obtain. An exhaustive

search program is hard to program, because we have to con-

sider the resource constraints, cost and makespan at the

same time. If we ignore the makespan and resource con-

straints consideration, we can solve the MP as an assignment

problem by a modified transportation algorithm of Ford and

Fulkerson (1962, p. 95) or by the Hungarian method

(Gillett, 1978, p. 112). An improved lower bound for the

cost will be obtained but it is not guaranteed to be the

optimum.
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CHAPTER VI

APPLICATION OF THE ALGORITHMS --- A CASE STUDY

6.1 Introduction

We present a real life case study of how the developed algorithms

function in the design and implementation of a production planning

system in an aluminum reduction plant. The plant, the largest in the

Northwestern part of the U.S., is strategically located in the State of

Washington to take advantage of cheap electrical power. The plant pro-

duces alloyed and unalloyed sheet, plate, foil and foundry ingots, T-

ingots and extrusion billet. Products from the plant are shipped to

other fabricating facilities of the company or to customers both at home

and abroad. The plant employs about 1,020 people with an annual pro-

duction capacity of 210,000 tons.

6.2 Brief Description of the Plant Operation

A. Raw Material Flow

The process of aluminum reduction runs 24 hours a day,

seven days a week. This means that raw materials must be in

constant supply, pots must be kept operating at all times, and

the pouring operation and handling of the finished product

must be maintained around the clock.

The basic raw material is a fine, white powder called alumi-

na ore which has about the consistency of sugar. It is brought

into the plant by ship. The ore unloading system at the plant
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dock features a long 150 foot-high gantry crane and suction

nozzles to suck up the ore from a ship's hold. The system

is designed to eliminate this alumina ore dust in the air

and water. The ore, which is now stored in two huge silOs

at the end of each reduction building, is transported into

the potroom through pipes.

B. Reduction

The plant has six production lines which are called the

"potlines." The potlines reduce aluminum oxide (alumina)

into molten metal through an electrolytic process that is

considered to be both highly efficient and low in cost. This

high productivity is accomplished by the use of proper ma-

terials, equipment, and manpower. Under normal operating

conditions, raw materials and manpower usage in the reduction

processes are predictable by the plant's management.

Operation of a potline can be broken down into three

basic activities: working, oreing up, and tapping.

"Working the pots" is the term applied to breaking up

the crust of the pot with a poker prepatory to adding ore

to make the molten bath. "Oreing up" is done when each pot

is,worked. The pots are then fed with alumina. "Tapping"

is the final operation performed on the potlines. This pro-

cess, drawing the aluminum from the bottom of the reduction

cell, is illustrated in Figure 6.1. A large crucible is

brought in from the pouring room on a low trailer. The
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Figure 6.1. Transferring molten metal into a crucible
for transportation to the cast house
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crucible is equipped with a siphon lid and a long tube which

is inserted through a hole punched in crust, and lowered

to the bottom of the vessel suspended by an overhead crane.

The crucible is placed into position; a workman places a

cover over the pouring spout and attaches a vacuum hose to

a fitting on the lid. Attached to the crane is a scale,

which is used to determine how much metal is flowing into

the crucible.

C. Pouring (casting)

i) Aluminum ingots--the crucible containing the molten

metal is transported on the trailer to the cast faci-

lity. The crucible, equipped with pouring handle,

is then picked up by an overhead crane and is guided

by an operator into proper position to pour into a

furnace. The molten aluminum must be cleaned and

then poured into ingots or 'pigs." The latter weigh

between 50 and 1200 lbs. These aluminum ingots are

up to 99.6 percent pure.

ii) Alloy ingots--the company produces sheet ingots

and billets depending upon what kinds of alloys are

being produced. Alloying ingredients are added to

the melt in the furnace. Regardless of the alloy, the

molten aluminum must first be cleaned and degassed in

the filter box; then various sizes of ingots are pro-

duced according to the customer's specifications.
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6.3 System Boundary and Processes Description

A. System Boundary

The cast house located in the reduction plant is composed

of nine holding furnaces, four vertical casting units (VDC

units) and a pigging wheel. These units are arranged in

the cast house as indicated in Figure 6.2. Each holding

furnace that feeds a vertical casting unit can be operated

in conjunction with a molten metal filter box.

B. Processes Description

In order to present the problem more clearly, the acti-

vities in the cast house (system boundary) are divided into

the following processes:

i) Molten metal arrives at the cast house--Crucibles

of molten metal arrive at the north and south cast

houses. The metal arrives at the south cast house

from the south potline, and the crucible average net

capacity is 5,600 lbs. The molten metal from the

south potline cannot be used in the north cast house

furnaces because of its low grade in purity. The

metal arrives to north cast house from the north

potline, and the crucible average net capacity is

8,600 lbs.

ii) Molten metal is charged into furnaces--upon arrival

the overhead craneman hooks up the full crucible and
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moves it to a scale. A scaleman weighs and records the

value.

iii) Melting--each furnace has a maximum capacity of

95,000 lbs. They are usually operating in conjection

with a 5,000 lb. filter box. There is always a mini-

mum of 15,000 lbs. to 13,000 lbs. molten metal left

in the furnace after each casting (called a "drop").

Sometimes it will be more, depending on the drop

weight (the amount of molten metal poured out during a

drop). So a furnace has a usable maximum melt capa-

city of 80,000 lbs. When a furnace is full, an

alloyman charges a calculated amount of various alloy-

ing ingredients into the furnace according to the

particular alloy to be cast. Then the alloyman stirs

the furnace with a boom. The molten metal is then

fluxed with chlorine gas for half an hour to get

rid of the alkaline metallic elements. Upon comple-

tion of this fluxing, the alloyman skims the furnace

to get rid of the dross (non-metallic oxide from the

molten metal) and takes samples from the furnace.

iv) Casting--when the metal in the furnace is on

grade and the vertical casting unit is ready, a

crew consisting of a furnace operator and a casting

attendent starts the drop (a casting) by removing the

plug from the furnace. They tap the furnace to induce

the molten metal to the trough (Figure 6.3).
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Various size alloys have different casting speeds which

are expressed in inches per minute. The casting time

can be represented by the following formula:

cast time (hours) = cast length (inches) = [(casting speed)x
60 minutes]

v) Ingot Removal--immediately after a drop, the ingots

are removed to storage by an overhead craneman with the

assistance of the casting attendants.

vi) Tool Change--when an alloy of size S1 is changed

to size S2, the mold in the VDC has to be changed before

a new casting.

vii) Furnace "Wash" and Filter Box "Wash"--different

alloys have different chemical composition. (Refer

to Table 6.1). For example, a can-stock alloy (5052),

which is used to make beverage cans, has a high magnesium

content. If the production of this can-stock alloy

is followed by the production of a cable alloy (1100,

a magnesium free material for electrical power cable),

then the furnace has to be drained, diluted, and cleaned

with pure molten aluminum. This pure molten aluminum

becomes scrap (off-grade metal). The scrap generated

from the cleaning process can be computed and considered

a part of the changeover cost. If a filter box is used

with the furnace, it must also be "cleaned". However,

in the case of the filter box, the washing process



Table 6.1

Alloy Chemical Composition

ALLOY ID FE FE SI SI CU CU MN MN MG MG ZN ZN CR CR

5E' 3E 5E'
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1050 1 .28 .35 .08 .12 0.00 .03 0.00 .03 0.00 .01 0.00 .04 0.00 .03

1100 2 .55 .65 .10 .15 .10 .20 0.00 .05 0.00 0.00 0.00 .10 0.00 0.00

5052 10 .40 .65 0.00 .12 0.00 .10 0.00 .10 1.30 1.70 0.00 .20 0.00 0.00
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continues after the furnace wash is completed. Some

alloy changes may not require a furnace "wash" (e.g.,

from a low concentration to high concentration), but

a filter box "wash" is almost always required. The

filter "washing" process is very similar to the continu-

ous process, and the scrap produced is also predictable

(Figure 6.4).

The scrap from a washing process can be re-used

at any time. After a dilution process, the scraps are

cut into small pieces and transferred to a remelt pro-

cess.

6.4 Problem Identification

Each month the plant receives a list of customers' orders

from headquarters. These orders contain what type of products and

specifications, order quantity and desired shipping dates (week ending).

The cast house general foreman schedules the production of the products

ordered by intuitive judgment and experience. He will try to balance

and consider all factors (e.g. furnaces makespan minimization, mold

availability, etc.). He manually constructs an acceptable schedule

for a month by using a Gantt chart and load diagrams. At present,

there is no quantitative technique used to evaluate how good or optimal

a schedule is. The company management feels that this is a weak point

in the company's structure from the risk management point of view.

The complete production planning system depends on an experienced foreman.
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At the moment, the cast house is expanding and new furnaces are

being built. As a consequence, the management is interested in finding

a good scheduling procedure which can minimize the total setup and

scrap cost with fixed availability of tools and molds while at the

same time balancing furnace utilization.

6.5 The Production Planning System

As the result of this study, we have proposed to introduce a two-

level computerized production planning system.

(1) The aggregate production planning - A computer program

has been developed to compute the job changeover cost,

the processing time of each job and furnace capacity..

(2) Feasibility and optimization scheduling - To the re-

sults of (1) above, we apply the three heuristic

algorithms to find the best minimum cost scheduling.

Figure 6.5 shows the detail of the system.

6.6 The Result of the Case Study

Past historical data are used to evaluate the effectiveness

of these three algorithms. The changeover cost of each job is computed

and all values are scaled (divided by 15) in order to have the unit

costs to have numerical values less than 999. Since all three pro-

grams use the same input format, the actual data used are shown in

Table 6.2. Table 6.3 shows the cost matrix. The results are listed on

Table 6.4. Because of limited computer funds, the three algorithms were



107

Job

Order

File

Resource and

furnance

availability

*4

Material

availability

Aggregate

production

planning

Output:
processing

time of
each job

cost matrix
capacity analysis

Three heuristic

algorithms

Output:
economical
sequence of
the jobs on

each furnace

Figure 6.5 The production scheduling system.



108

Table 6.2 Job order of October 1980.

46. 3F P43CESSCRS ARE 3

NO. OF JOS5 ARE 24
40o OF RES(.URCE TYPE 6

TYPE 'WANT

OROCESSOR

1

MAGNINES

1

(20 z 54 2 -2

20 z 60 3 2

2 2
- 24 z 41 9 2

3 2 24 45 6
of 5 7

24 Z 60 ) 6

.105 OESCR2P7ZON INPUT _ 12t 4114_13_ 1

18 r 61) 16

---...-
AIM

- .11411.--
Its.

Quantity in N Th.
isquired-

Pirsoossing

1 11 113.9 5..11.0.1., 1.! 5352 243413182 900+ 200 5"-'"..
''(outstanding__

*miss)

4 22 (131,9_16.. 4949 201010 5352 24 3 41 3_192 400 _ . _

3) 412o. 6., 5.0.3.,0.1 5252 24 3 45 2 1" 500 5

40 (12., 5.9 4460.000) 5252 24 z 41 z' 150 Soo 4

4) 412.. 7., 1.0.J..0.1 5252 24 Z 53 z 150 400 3.;

61 (15., 7.9150090.9001 .5657 24 z 53 z1e2 1800 15

71 (15oy 6.9 7.11.4.90e1 5657 24 z 60 11 172 1000 7

. _ .

6) (15.9 69 4.11.006) 5657 24 x 45 z 164 400 4

91 to., Soy 2.6.3.90.1 5657 24 z 41 2 76A tuv 2

( 10/ (27..160.10.0.14.2.1 _ma% _ 1.L.,a, x t64_ 1200 a 10

(outstanding order)

1111 411., 5., 4.0,41..0.1 505280 24 z 41 Z164 500 8

(12) us.. s., 6.0,0.01.1 88192 24 7C-41. 2 164 300

(131 ( 7., 5., 5.0,4.14.1 3003r 24 Z 41 z 154 500 5

(141 ( 7.. Po9 641191149 Os) _3002_ 26,_21. SS XL 742 j100

(15 1 7., 2.1 2.0,0.,a.1 3003o, 20 2 $2.2 164. 300

.1_

(161 ( 4o. 7., 0009 1.93.1 1235 24 z 53 z 195 0 0

4171 4 9., 2., _2.410.01.) _1255_ _ 211 )154 8_116 300 2

(161 (32..13..18.3,41..0.1 7029 12 dia.. 253 1500 18

1 191 _ _ .4 10.4 6.114.0,00,14 5050 24 X_ 45. 2 195 Iwo

(20) 42209 3., 464,0os4o/ 141221 20 z 60 z 10150 4

(21) (28., 6., 6.0,0.,0.1 111175 24 z 45 z 164 600

422/ 1 0.. 8., 461,76.1 4343 24 X 602 150 400 4

1231____420.. 3,.20,0.0.1

.---7672-

8079 24 z 60 z 195 200

124) 419., 2., 3.0.0..4.) 20-i-itz r1tr----300- 3----
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Table 6.3 Changeover cost of the alloys
for the month of October, 1980.

COST MATRIX

111 211 3)1 414 511 614 711 811 41110)111/1 12/A13111411191 I/6/417111411191 1201121)(2211231124/1

1) 999 10 2 2 12 34 36 36 26 SO 2 37 200 210 210 270 270 32 30 190 73 230 134 130

1_2)- __10_Y99 0 12 12 36 36 26 36 50 12 47 210 210 210 270 270 32 20 190 63 230 130 130

31 10 4 999 12 12 31 36 20 38 SO 12 47 210 210 210 270 270 32 20 190 63 230 130 130

1 .1 3 10 10 949 12 30 34 34 24 34 2 37 200 214 214 270 270 32 30 190 73 234 130 130.

1 51 10 13 10 12 949 26 34 3434 SO 12 47 210 200 218 260 270 32 30 190 73 234 134 130

1 03 16 16 16 14 16 999 10 14 10 24 14 22 SO 40 50 126 130 61 14 22 14 73 5550

4 71 16 16 10 16 16 10 499 10 /3 24 14 22 50 Si SO 134 134 61 14 22 14 44 55 50

I 11) to 6 4 16 16 10 10 999 10 2414 22 50 SO ed 136 134 61 4 22 4 70 35 30

91 6 14 16 a 16 10 10 10 999 24 4 LZ 40 50 136 130 61 14 22 14 20 85 ti

(141 19 19 19 19 12 24 20 20 22 999 18 27 90 90 90 00 80 25 14 19 34 90 30 35

1111 21 31 30 2G 30 25 25 25 15 SS 999 34200 210 210 260 260 32 30 130 30 130 130 134

(12) 32 42 44 30 42 35 35 35 25 20 32 999 57 67 67311 3. 39 44 54 14 SO 60 26

113) 271 401 260 274 274 264 266 264 254 190 56 100 999 10 10 264 264 290 94 74 160 288 60 70

1141 201 261 264 244 264 264 zse 264 266 190 64 190 10 499 10 254 264 294 9'. 70 160 260 64- 70

(151 201 2e1 204 204 27S 266 264 264 266190 66 190 10 10 995 264 254 290 54 70 160 zee 60 60

1161 40 46 35 35 45 30 40 44 40 27 30 16 52 42 52 999 10 28 32 27 36 42 20 24

(171 40 40 35 35 35 44 40 40 40 27 38 16 52 52 42 10 999 20 32 27 18 42 30 14

116) 150 150 155 155 155 160 140 144 160 260 196 32 300 300 300 250 250 499 194 296 384 231 310 327

4191 31 21 23 30 34 33 33 23 33 10 25 00 150 150 130 160 164 16 99S 120 14 150 135 SO

120) 100 100 114 110 110 115 115 115 115 40 114 20 54 50 SO 40 .0 54 90 999 126 60 29 40

(211 460 .70 .60 470 .50 450 440 .50 360 475 340 455 455 .55 455 *90 440 524 440 440 999 257 360 370

1221 400 .00 445 .05 .05 395 365 305 1410 340 200210 210 210 410 *10 450 343 340 454 2 199 eze 380

1223 40 44 36 36 3 5 42 42 rz 42 34 .4 28 45 45 49 31 31 SO 20 34 10 64 999 2?

724) 120 120 130 130 130 125 125 125 125 100 126 100 182 102 172 150 144 12 136 115 120 142 160 499



Table 6.4 Comparison of schedules obtained by manual methods and three algorithms

Algorithm III
Manual Method Algorithm I Algorithm II (BINBAB)

Month/
Year

Job
Status

North
Cast
House
Status

Total
Cost

in $
Value

Z

z
*

Total

Cost
in $
Value

Total

Cost
After
Schedule
Permu-

tated

Z

il

Total
Cost
in $

Value

.

Total

Cost
After
Schedule

Permu-
tated

Z

f*

Total
Cost
in $

Value

Total
Cost
After
Schedule
Permu-
tated

Z

il.

Total Cost
Saved in

$

Value

Percent
Reduc-

tion

n = 24 s = 5 3040 x 31 1516 x 1498 x 30 2273 x 2273 x 34 1672 x 1672 x 30 47,600 - 22,470 23,130
Oct. e = 15 P. = 3 15 = 29.2 15 = 15 = 29.2 15 = 15 = 29.2 15 = 15 = 29.2 = 23,130 45,600
1980 r = 8 45,600 = 22,470 22,470 = 34,095 34,095 = 25,080 25,080 = x 100%

1.06 1.03 1.16 1.03 = 51%

n = 13 s = 6 1904 x 15 1675 x 1645 x 15.5 1655 x 1632 x 16.5 1803 x 1660 x 15.5 28,560 - 24,480 40,080
Jan. e = 8 t = 3 15 = 14.3 15 = 15 = 14.3 15 = 15 = 14.3 15 = 15 = 14.3 = 4,080 28,560
1980 r = 6 28,560 = 25,125 25,125 = 24,825 24,480 = 27,045 24,900 = x 100%

1.05 1.08 1.15 1.08 = 14%

n = 26 s = 6 3398 x 28 2266 x 2236 x 28 2546 x 2217 x 31.5 1890 x 1816 x 28 50,070 - 27,240 23,730
Feb. e = 8 t = 3 15 = 27.33 15 = 15 = 27.33 15 = 15 = 27.33 15 = 15 27.33 = 23,730 x 100%
1978 r = 6 50,970 = 33,990 33,540 = 38,190 33,255 = 28,350 27,240 = = 47%

1.02 1.02 1.153 1.02

where n = number of alloys (jobs)

e = number of different types of alloys (job types)

r = total number of different molds used in that month (resource types)

s = number of furnaces (machines)

t = number of vertical casting units (processors)



p

77 0 77
J1 J3 J6 J7 J

8
J7

0

77 V
J10 J1 J9 J5 J

111

C =78
ml

Z=31

m2 0 J I t 1 i J C
m

=93
2

P2 0
J10 J11 J12

J11
J13 J14

m3 n 1 I 1... I 1 J Cm
3

=295

A

J
1,6 18

m4 Li

P3 0
J16

m5 D

V V
J19

20
1

J21

I I
122 I3

J24

1

Cm
4

=1264

J23 J1 J15

18
J J J22/

1

19
i

01 21
I 1 1 Cm =1310

Total Cost = 3040

Figure 6.6 The production schedule produced by
manual method.



ml

p1

m2

p20

J1(13,5,11) VJ3(12,6,5)Y Jig(10,6,14)
j Cm1=22

V I:7
J10 1

vjv
5

LI I

112

V3
20

I

Ji J
1

J
20

A

vv

P3 0

A AAAA A

7 77J
21 1 1

V 77

A A

1 1/
21 J24

J2

Z=30

Cm
2

=121

C
m3

.121

Cm
4

=626

JJJJ JJJJ23 J24 J28
17 12 21 22 14 15 13 Ae

...

M5 Elli il i i i I I
C
m
5

=626

A A® &AAtA AL it,

Total Cost = 1516

Figure 6.7a A schedule is produced by algorithm I.



(13,15,11) J (12 6 5)3 9 9 J19(10'6'14)

113

1 i I C =22
m
1

Z=30

o T V'
J10 J9 J4 J11 J2

WV V
J6J5 J7 J10

m2 CI 177.7:4-13%70./WZr'iM

P2 0

Cm =131

2

J10
J11 J2

J6 37
I

=93
m3 Q r.(//// 4 I

3

J
24JJ JJJ.JJJ J

2817 12 21 22 14 15 13 23

m4 crlr I I 1 [

7j12 '321'122
J J J
14 15 13 23 j24

J
28

Total cost = 1498
FGV77402

Cm
4

=626

Cm
4=626

Jobs have been
permutated.

Figure 6.7b A permutated schedule from figure 6.7a.



114

31
V

J
V'

114

's573 Tif Tr35

p1 0 1

I l
I Cm =79

i

Z=34
ml 0

77
319 318

P2 0

VJVJ WJVJ
2 3 5 8

TIT
24

Cm2=312

33 35 J8 J
20

J23 24

m

J10 J19

3 El
J

18
Cm3=312

A

m4

A A A .L AA All

316 31221

P30

m5
16317 312321

322 314 313 36

Cm = 785

322
31 313 36

4

Cm

5=785

,A,&& AA AA
Total Cost = 2273

Planning horizon = 34 days

Figure 6.8 A schedule is produced by algorithm II



115

TJTJ
1 4 11

D

m
1
0
V

m2 0

P20

m3 0

V _1

u 13

1 Cm =204
1

010 J 3
J

149 018 12
J
21

1 1 1 1 I I
=118

01 019 01 012
02

1 i 1 I 1 1
=118

A itt, A A A A A

P3 0

0160170240200230502
J

m
5

D

itt

06
j

J7 14®O1 ®022

Z=30

=616

J
14 14022

T- -T--1 Cm
5

=616

AA A A

Total Cost = 1672

Figure 6.9 A schedule is obtained from algorithm



116

run on only three sets of data. The results show that all heuristic

methods do better than the trial-and-error manual scheduling method.

Only the results of the month of October, 1980 is shown in Gantt

charts (Figure 6.6 to Figure 6.9).

From the results of this computer analysis, we have made the fol-

lowing observations.

(1) Although Algorithm III implicitly enumerates a subset of

jobs to find the best sequence, it has fallen below our

expectations when real data were used. (October 1980

and January, 1980). The reason may be because dis-

similar alloys with the same size are grouped together

thus producing a lot of scrap. Therefore another method

worth trying may be to group similar alloys together and

disregard the resource availability; then we may use a

branch-and-bound method to implicitly enumerate each sub-

set of jobs and find the best sequence. If it arbitrarily

comes out with no resource conflict, then we have obtained

a near-optimal solution.

(2) The percentage of total cost reduction is different each

month. It is because scheduling by experience may some-

times produce an optimal solution. However, if the

number of jobs, types of job and types of resource in-

crease, human intuitive judgment becomes increasingly

difficult.

(3) The author has tried to use different priorities for
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scheduling. For example, if there is a tie, schedule the

job with the shortest processing time (SPT) instead of the

longest processing time (LPT). Sometimes a better solution

is obtained.

(4) At present, the cast house general foreman takes four to

six hours to produce a manual Gantt chart schedule at the

beginning of each month. With the computerized system,

about one hour is required to gather the necessary infor-

mation to execute both the aggregate planning program and

three heuristic programs. The time required to do one

schedule permutation is about thirty minutes. Therefore,

the total time required to produce a good production sche-

dule by computer is about 21 hours. This is a reduction

of up to 50% in clerical work.

(5) During the year 1978, the cast house produced about 20

million pounds of furnace scrap at the cost of 2 million

dollars. If this can be reduced by 20%, a real savings of

$400,000/year will result. This also represents an in-

crease in productivity for the plant.

6.7 Discussion

The scheduling of production and control of inventory are becoming

more and more important to manufacturing companies. Often the volume

and variety of products make the production scheduling computation

difficult to perform manually. Furthermore, since more than one
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satisfactory schedule may be possible, the computer is useful in per-

forming the complex calculations necessary to discover the best

schedule for reducing costs and effectively utilizing scarce produc-

tion resources. Computer scheduling is also more dynamic since it

facilitates quick responses to changes in the availability of or de-

mand for materials and facilities after production has started.

The benefits of the proposed computerized production planning

system can be summarized as follows:

(1) Yield is improved by scrap reduction because of better

scheduling and fewer errors.

(2) Small fluctuation in alloy quality and a tight, uniform

furnace schedule is obtained.
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CHAPTER VII

SUMMARY, CONCLUSION, AND EXTENSIONS

The MP problem presented in this thesis is but a sample of the

type of problems that are becoming increasingly frequent in indus-

try. This is expected to become even more important as robots and

computerized controls start replacing the more traditional man-machine

systems. Sharing of a "processor" or a pool of processors becomes

a vital issue as all segments of production must feed data to, and

receive information from, centralized or distributed data base systems.

The MP problem in this thesis was limited to two machines per

processor and one resource type per job. Other restrictions were also

imposed to make the model practical for use in the aluminum industry.

Some of those restrictions can be removed easily, others will need

restructuring of the model and of solution approach.

The difficulty of solving an MP model became evident. A simple

model with a single objective of minimizing the total changeover cost

in scheduling n resource constrained jobs on s parallel machines with

t interchangeable processors proved to be a challenging problem even

for computers, and we now believe that the use of heuristics is in-

evitable.

Three methods were examined in this thesis. Algorithm I,

the Least Cumulative Processing Time model, focused on always assigning

jobs to the processor with the least cumulative processing time assigned.

This proved to be a simple, economical, and reliable method that yielded
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reasonable total cost and makespan. Algorithm II, the Planning

Horizon model, assigned jobs to the processor based upon the least

changeover cost criteria until the planning horizon is reached. Algo-

rithm III, the Bin-Packing Branch-and-Bound method was the most elegant

approach combining decomposition with branch-and-bound algorithm. It

was designed to provide a good feasible solution even when both Algo-

rithms I and II fail to do so.

Algorithm III is developed based on the simple observation that

if jobs with the same resource type usage are grouped together into

a class and assigned to a processor, then we can eliminate the resource

conflict. Algorithm III also serves as a comparison with Algorithm I

and II and helps us to make a better decision to select a schedule. The

reason is that both Algorithm I and II make a decision by choosing

the next job with the least cost in the row of a cost matrix, but cer-

tain types of data may trap the algorithms into a bad solution. In

order to avoid this situation, Algorithm III applies branch and bound

methods to find the best sequence in a given subset of jobs.

A summary of the results of each of the three methods is given

below.

(1) Algorithm I behaves consistantly well, it usually produces

a least cost with minimum makespan, when n is small.

Algorithm II behaves inconsistantly. Sometimes it is good,

sometimes it is bad. The bad result occurs very often be-

cause of poor decisions at the end of the sequence. The

chance of failure is higher than with Algorithm I, when we
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give a planning horizon D which is close to the optimal

makespan Z , however, if D >>Z , a very poor makespan

may occur.

Algorithm III uses First Fit Decreasing (FFD) method to

achieve a good makespan. This algorithm may not be

used under the following conditions:

(i) One machine is attached to one processor only, -

in this case, we lose the advantage of permutating

the job to achieve a better schedule.

(ii) When there is a great contrast in the property of

jobs which uses the same resource type.

(2) The execution time of Algorithm I is faster than Algorithms

II and III, Algorithm III is the slowest.

(3) In order to have a feasible and tight schedule, three algo-

rithms produce a schedule with the assumption that all jobs

have to be split over two machines equally. A manual per-

mutated schedule is achieved by switching adjacent jobs

which use the same resource type. A better schedule is usu-

ally obtained.

(4) These three algorithms are applied to a real industry sche-

duling problem. The results show that all three algorithms

are better than the manual scheduling method.

Conclusions drawn from this research are given below.

The three heuristic methods presented here will help in finding

a schedule that is better than a shop foreman can make up by hand and
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more economical. After a good and feasible schedule is obtained, any

person will be able to improve the schedule so that more cost will

be saved.

There is a healthy interaction between scheduling theory and prac-

tice in the field of operations research. This will continue to make

scheduling problems a challenging research area.

Suggested future extensions of this research are:

(1) The manual permutation schedule procedure can be eliminated

by modifying the heuristic algorithm developed by Armour (1961).

Jobs with the same resource type and processing time can be

pairwise interchanged. An improved schedule can be obtained

after a series of sequential moves.

(2) Job priority or due dates are included in the schedul-

ing.

(3) Removal of the requirement that all machines and processors

must be identical.

(4) Consideration of precedence relationships among jobs.

As a final note to this thesis, the author wishes to point out

that the insights gained concerning the MP-type problems and their

significance in industry have both surpassed any expectation he had

when the research began. The advances in hardware technology must

be matched by our enhanced ability to handle the scheduling of in-

creasingly costly and complex systems. The savings generated in our

case study, up to a quarter of million dollars per year, are not trivial,

but insignificant when compared to the potential that this type of
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research could lead to in all segments of our economy. Of an even

greater importance is the hope that this research has given by making

us realize that we can continue to create algorithms to match the com-

plexity of future industrial systems.
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3, ti7ecnT:Ntt
:F(. .GT. 1) GJTO 55

Ld

.0r3c1(1,1)=1
INC(1)=.
IF(ID5OC(1) .EQ. 1) GJTO 55
mCF;1(1.2)=31
INC(2)=31
coNT:Nuz

INITIALIZE :J03 ANC IPzOS

CO 6C I=1,N
Ii03(/)=3
iin0S4I)=11-
IF(1.GT.N) 7;OTO 00

50 -Pilt)=0

5: CONTENUE
,;E'UoN
ENO



1 513.7.0UTINE 41EAOIN
CO'4.40/3LOCK1/:N,JG,H,4 IPcoc(7),sJo3s(80,5)

CCMHOWd.00O/IFES(20)
5 011E11510N 'i3LK(32) . . _

C" .7EA0 THE NUm3EP. CF ?ROCESSORS M ANO NO. OF JOBS '

C.
cE4c(IN.100:)m.N

10 1000 FORMAT(2I5)
C

15

133

).F/TE(J0,1)m,N
1 FO...HAT(xlx//3EA.FTHE 3CHEJULINO OUT0UTF//1)J4.xN0. 3F PCOCEJSCRS
.A<E 1,:5//1:A,240. 3F J08S Ac,E s,IS/)
wP:-E(.10,2)

2 FOkmaT(//10).*P2OCES30,1$0,X.IMACmINESt/1

C" lEA:1 THE PROCE:50R IOEATIF:CATISN ANC THE 13. OF m:.CHINE ON EACH P C

2C CO IJ :=1.m
cEAC( :Nli000)/P,:).)

3 F0=H4T)124,:5.3X,I5/1
25 tu CCNTINLi

PE1C JC3 Ci4CP:PT:CNS

13 FO;mAT)//1:4,:10.3 CES:1IFT:ON INPUTM
0,1, 2C I.10

30 ;EACCIN.13001(SJ063):,J),J=1.51
w=1.7(Jc.11)I,(SJOS(:..JI.J=1.51

11 FOi.AT(//10A,s(s,:2,six,3x,s(s,21F3.G.A.:1074.1,4,A,F2.0.A..F2.4------
..$)z)

2C CC4TINUE
-35

L." F.Et0 NWItIER OF ?ESCUPICE TYDE,IR
C

kEvI'N.100;J'a
.0 H1:TEi10.1p1Ii

16 Fc=1AT(////10k,*NO. CF 2ESCUPCE TYPE 2x.:5//1CA.tTYPEs,2X,x0UANT$
./)

45 C CO 3? :mit:::
;E4C(IN.1000):PT,:hUM
H:,I7E(J0.17)IPT,:mum

1' FL-,AT(IGX.:5,2X.-I5V-
:ES):=T)-1/AUm

31 C,d4T:NuE50

60

5

70

7,

IF(1) .GT. 32) GOTO 45
07 33 =104_

33 Cosi:NUE
Hz:Ti(J3.4)

u Fc:4A1*(//34-(IIC1ST mATIIks,/1H,34X's
wF:TE(.10.91) iLK(J).J=1.N)

h./ I

PEAC THE CJST 9AT00 4HICH N IS LESS THE4 21

CC 15 :=1,N
AEAOlI1,1230)1IGNII,J).J.1.4)
wzITE(JC.12)I.CICM(:..1).J=1.N)

12 PCP4AT(14C,s(1,1.2,A1A.IX.32(I3,1X)1
.1! -CONTI-MO:

12:0 F1P4A-(32:3)
GO'' :11

99 c:N#:nut.
CC 41 1.104
)0 42 J=1,N

CAL.. FAN1(uF)

:F(I.EG.J)
42 CONT:NUc

OCNTINUE
111 Q.:TUPN

ENG"



1 Eu3FGUTIN5 aSS:GN
comHow/LOCK1/:4,100.0 P=OCt").SJ03S(80,5)
,..371-nc..rlt-OCKZrnT.I.Urr,.. .831
COH104/3LOCKX/IPES(2C)
C.j40)43L3C<3/E'STI2C)
:usiCN/iLJC,(4/:J03(50),IP2CS(7,:PP(7),IPR517.T1
CImENSCON JAYS)80.2)

134

C
r THCS PLUTINC IL TO FIi0 CLC JOSS LEF' OVER AND ASSIGN

10 C THEl TO ,iES3ECTIvE PROCESSORS FIRST
C
C iNF-1990
C

INF=399
15 K.0

CO 65 I.1.N
IF(SJO25(J,.) .4E. 1.0) GOTO 65
p<=<#.1.

:JC°tII-I
20 IP-OC( :)=SJJ95)/95)

IP(.()=SJO0SII.5/
65 C047:NUC

C
IN:TIAL IC33 TJ Jw,CCLP/E0 P;OCESSOS. INITIAL J085 AFE

25 C ASECGNE0 13 TPE FFCCESSOF KITH THE LEACT 0UmuL^TIVE PRCCESSING
C _ _

:F(K.GF.H) GOTO 78

30 1.3
66 I=1

:F)/ .GT. NI GIOT0 67
IF(I.Jo9(:) .h.m. 0) GCTO 06

35 carStt.tt=SieSSA-:33,
34YEAL.2)21
GOT 66

67 CC4T:NuE

40 00 6P ii=1.N1

CC Ao JJ=IPLU51,L

1.6 T2=CAYSC.I.2I
3.Ars(!:,1)=CArS(jj,1)
:ArS(1.1.2).0ArS(JJ,2)
JAYS(J.).1)=T1
CAYS(11.2)=T2

50 EE CONT:NcE
8)--001G-7-8

03 69 1=10(
=PI')

sfl;f(:)=IRES(I1)-1
05 69 C3)4:NuE.

7C 3CNTINLIE

71 ;1=r
'2- 1'

60 ":"..DAYS(:,1)

1.7(K .E). 0) GOTO 77
00 73 L=1.K

65 ,F)S.)03(IT,2) .E0. SJ035(L1,2)) GOTO
73 C04Ti4UE

.

Gc!C:75,
.F(ERE"(L) .LE. 0) GCTO 72

75 COvr:NLE
70 :J33(:')=IT

76 KI.K14.1
IF(K .LT. 1) GO TO 86 .

00 77 J=10(
IF(IPr(J) .E0. Kl) GC TO 76

--75 ---77-t9NTIMuE
68 CONTINUE

IPF03(IT)=K1



K=10.1
IC(K)=K1

TO TFTX r1
78 CONTINUE

CC 79 I2I.N
IrlIAPCS(I) .20. 01 GO TO 79
K12:FPCS(I)

95 IR:SIKII2IJO9(I)
73 CONT:NLE

135

C
7,-ET-'14rCUEUFN UP I M . ,XST-M l FI71 t..ww4FUNUTAG-TII-Tli-

C J09 TO INFINITY
30

CO 91 1=10
IF(IJC9(Z1 .ECi. 0) GOTO 91
JJ2IJC9II)
CC 30 J2101
:C4(J.JJ)=INF

MC-1.:C17-NUm
!I :ON7INUE

FETURN
EN:

1

5

1.

SUe;OUTINE PANI(UR)
C aANCCP NU12Eh GENERATOR

7..>-I1 :rrtr
I:=LNC(.NC(20e3 :F0338607)..1772721.83ddo07)
J=2FLCATIIR)/9388237
c:TUPN
.210

SJ9POUTINE JTDUT
O'IT":1/7 1'11'4-Ott 74-r4J13-_15-tite-r5

CC 4 1 / 3,3C < 5/0SCH(TEO v3) mOPR 1 ( 7 .21 ,OPi2 (7. 3 ) 9140 (141
C
C TmIS cCUTINE IT TO P4INT zESULTS
C

TC*1S724.
20 150'1=1,4

10 6.0"2(J0.500):
,y4 FU,nT1-77 ,T y ki

l%PiT'E(J0,51J)
510 FC1AT(//5X.21ACHINE.NO. 1.2/0

A'f7E(J0.520)
15 E20 F0-1,MATC/15%.2J09 TYPE2,5X,2RES. TYFE2,5x.AN0. OF PROCESSING DAYS:

./I
L122CF;1(r,I)

135 2rI-rIJO,53010SCHII.1.11.0.TCH(L1.2).0SCH(1.1,3)
':''2,0"Al-ter TF P-21-721

20 Li=1.1+1
:F(CSCH(LI,I) .1E. 1.3) GC'O 135

.E0. 1) G070 145

SAC FOcmAT(//52.22ACKINE NO. 22/)
25 4PI72(J0.523)

1.1=mCPk1(I,2)
: 2*.M.",531111113ChtL1,1),01- -Ch

L1 =1.141
IF(0SCH(L111).:42. C.C) GCTO 140._

30 1l wRITE(,J0.5,0):.OPR2(i,1)
55a FO;/.17(//5(,270Ti.L CCS' CN PRuCESSOP NO. 2,12,2 2 A,F1C.2)

TCCS7=7COSTOFR2(I,1)-
150 CON7INU2

w=ITE(J0.56017COS7
3! Ti7t--Fir.trtrttTst0/14-c-ER-I2 t4TIhe-t9ST 2#

FETU.:N
ENO



1 3 5a

APPENDIX B

ALGORITHM II
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PPOG1t1, PtANHONI.:NPuT , CU !PUY , rAPEE1=INPUT TAPEErt.OvTPuT)--
CcHICN/3LOCK I/ IN, JC.",NIFFOC (7) .SJ0o5 (d1,5)
CoHe.CNi3LOCK2/IR.INUN,:,Ht30,6:1
CUm1CN/3LOCKX/IRuSElEJ,211.:FES(201

5 COHNON/3LOCK3/IPST(20)
COHHCN/3LOCK4/IJ03(30),IPPCS(71.IFT(7),IFRS(71,71
CO"HON/3LOCK5/0SCH(5c3,3).H0PF1(7,2).OF42(7,3),I10(14)
0:HENSION ITEMP(7,2),ISPPIT,..),Hos(7,a0)

C ........., ..............4......---IC L DEFINITION OF vAIA36ES
C 5J035 CONTAINS mAAIM:04 OF 20 JO3E, EACH JOi .3 CHA=ACTEN.ERIZ:0C ' SJC3S(I,I1 = J.Jd TYPE

-SJC9S(i,2) = JESOUPCE TYPE.
'.": SJO3S1I,31 = 10 3F- FPOCESSING DAYS.

15 C SJCiS(1,4) = TAG . 1 NEN JC3
C = 1 OLD JC3
C SJOk!StIi5r-=-PPTC:SSOsi-IOEITIFICATIcN-t-
C P = PNOCE3SOF IDENT:FILATION , IF TAG . I

_

C ' N0S = USED TO KEEP 'PAC( CF JC3S THAT _;ANNCT 3E PPOCE3SED ON A2C ,.. DAR' .00; PPSCESIOS DUE TO N4UFF:-. 7.NT RECJJ,CES
C :::4 z COST HATR.X
C :=ES(I) .1 NO. OF r._-_SJURSE4 OF TYPE I.
C IPP,:CtI) = NU OF ?iACHINES :N FFOCESSOR :. I5:FROC32.
C iJC? = CUP.i,.ENT JOBS TJ 35 SCHEOuLEO

.PRS(It =-' THE-OU10ENTJ01-IN- P,?9CESSOP-1.
C HCP;:11:,J1 = :'ART:NG LOCATION OF JC3 SCHECuLL I4 JSCH FCPC PPOCESEJR I, MACHINE J
L cc2(:,1) = ACOOmULATE0 TOTAL COST 3N PPCCES:.04 I.
C CFP2(I,2) = TOTAL NC, CF JAYS SCHELJLEO CM mACH:NE CNE OF30 C PRCIASJOH I.
C OPR2(:,3) = TOTAL NC. CF DAIS SCMEDULEO ON HAOrIZNE 2 OF
L PiOSESSCR :.
C '-----CSCHtI,L7-.--J- r-r:t
C 1SCH(I,2) = RESOUF,E TYPE.

35 C OSCH(I,3) = NU. CF PPOCESSING DAYS.
C _CP-,(:,1) . PROCESSOR :
C :CPP(1,2) . J03 NUmiz;.
C IOPF(:,3) . ISOST
L :0PF(I.,.) . PEV:OUS 7ESOURCE TYPE..0 C
C ..-.H1.1....H...41-4.....41.0-1 4= E 3

JO.S.1
C

-5 C. INPUT AL:, PAPAMETERS
C

CALL PAcIN
C :NPUT 1HE DESIRE PLANNING HCRIZCN
CC.

5C p.it0(:N,I)TOTOYS
FI O;HAT(F5.1)
01 TE(JO,2)7CTOr5

2 FO::AT(//10.11. HE SCNEOULING 'OPL2ON IS x,F6.1,1 DAYS$)
C F::.0 THE OPTIHAL FINISHING TIME

55
tLUH=0.
CI 3 -t,4

3 SUM.XSUNI+SJC5:1(I,3)
,.:H =3

iG OO ,.. -=1,,m
4 mAcH 3cHI3pc7(:)

t5

C
70

5 CALL SESCNO(T)
T3EGIN = r

=r = XSO /mAcH
CHECK F0P FEAS:3LE SCHEDULE
:FITOTOYE FT) GCTO 5
w0I-5(JO,5)TOTer-3

5 FOi...417t///lLY,t NUT ALL JCAE CAN SE SCHEDULED WITHIN 1HE OUFATION OF x,I OUP.ATION OF s,F5.1,* CATS t)
GO TC 949

COMPUTE THE PUNNING TIME

7! INIT:ALIZATION
SALL INITIAL

C



ITJ =
SO INF =V399c ASSIG) JOE TO OUTPUT AR=AYSC" UPDATE THE QUEUE OSCH

C
85 L=C

137

L=1.0.1
W=IhC(L)

5G CSC)'(X.1) =G.1035(J3,1)
OSCH(X,2) = SJO=S(J3,2)
IR=SJOES(J8.2)

T1 = 1J:9S(J9.3)

95 OSCH(W.3) = T1
I,L(L) = <1
IF(19,cc(:) .10. 1) GO TO 32

Z=INC(L)
130 OC:H(K.I)=SJCESIJ9,1)

0,z4(K,2).5Jots(J3,2)

iN:(L1 =o.
82 CONIINOE

135 ;. uPOATE TOTAL NO. CF 34YS LN PRCCESSORS I
C

To = OFR2(:.2)
CRR2(I.2)=OP92(I,2)TI

110- IFIIP°CC(I) 2) .OPM211-0)--.-1R42(Ii3Y-.T1-----
C.* UPCITE -.ESJUR:E MAYR:X FOR RESOURCE TYRE :=.

CALI, UR5ES(TC,T1pIR)
85 CAN :NUE

C
115 ,TJ = m

120

:** SCHsCuL= 'NE REHAM:NC JO34 TO MINI1:ZE C:ST . A JOi IS ASSIGhE: TO
10tEJS07 T.40 A:L6 COMPLE'S R:RST. YHA.' :5 T4c JNc .HCSE

trcurut,:%7-n1.-//, :4-Ys LtAsl.c T -E JO= TO 44s.4hEO TO . R=CCESSCR 24 THE ONE T4AY WILL
RESULT :N LEAST Cu5T. :'SE= Mcks '4AN CNE RESULT IN THE.C" TN= 3m4t .sAST COST. Tuft CHOLs ThE ONE THAT ois THE t:APIE
,ESCUmCZ TYPE A5 '4E 99E4IOUS JO9 ON HE e90C-s509.(, :F THIS CCNC:TICN JCE4 NOT HOLD THEN CHUOSE THE ONE 4ITH
-CN4EST 0=OCESS:N0 03v3.

125
tl-c-141.-mat

co 93 II = 1.
CO 93 JJ =

=
13C 93 CONTIlls

87 tOON7/NLE

CO 90 :=1,H

135 :CRRl-,J)=0
91 CON':NUE

00 210 :P = /.4
C

S;HF.ClE PPCC:ESSOX :P
1.1

W= )

12--Evt.1
K=K*I
:F(CR9.CC(I) .10. 2) K=K1

145 92 CONTI')Ls
K = :NC(K) -1C" PREVIOUS RESCURCE USEJ WAS OF TYRE.ITYPE4.
!TYPE = OSCH(K.2)

--FINO-F4EVSet15-443--1-4-G.-SCHEOUtLa-614-0ROGeSS012- .

C
J3=10RS(:P)

SEARCH LONG ROW Ji OF COST MATRIX TO LOCATE THE NEXT JOE TO EE



138

155 C"-- SCHEaut.r.0-erwoocet3.1cP.-/PT-
C4. PING JO3($1 WITH LAST COST ANC STORE IN ITEAF (ITE1P(I.1)=COST,LE :75.1.(.C,2)=.109 NO.)

:1-F = INF
co 95 : '2.10

16C 1) Go TO 95
( 31:) .GE. UHF) GO To 95

:THF.,c4(.13,;)

C
--9!-CONTINu:

1E5 :F ITHP 2 :NF:NiTy, IJ MORE JCSS CAN 3E SCHEDULED ON ?ROCESSOC :P
C

IF(:THF .EQ. INF) GO TO 190
C INCP ALL J03 WITH THE LEAST COST

L . 0
ITO DO 37 :.10

IF(NP-stif.,I)--.EQ, it-Go-T0-97
IF(ICH(.13,I) .N.:.. :Imp) GO TO 97

175

100

L=L+1
:Tt1P(,1) . :THF

97 ;1:4t-Y)
I

C IF L= i THEN ONLY CNE CANDIDATE JOE TO 3E SCHEJuL50.
:E(. .E3. 1) GO TO 113

C,*-- LHECK JO }-THAT- HAS SAm.E-EESO0PCE-TyPE-AS-TmE-CNE-Pa.-E4iCuso,-5CI-EO--------
C- 3LEO

LLCo 1J; : 2 /

Li = :TEI12(:,)
ISJ3 = SJO3S)L1.2)
IF(I3J2 .co. :TYPED GC TO 105

1E5 ICC, CONTINJE
C SCHEJJLE JO3 wITH LcNGEA PROCESSING DAYS.
C

Li = ITEmP(1,2)
THc.SJ03s(LI,3)

130 L221
Co 1:2 := 14.
Li . ITEIP)..2)
:F(ciJoeS(LI.3) .LE. Tm0) GO TO 1G2

TMJ = SJ035)L1.3)
195 L2 2 !

1G2 CuNTINuE
-'CST = :TEmP(L2.1J
JN = TTEHP(L2.0
GO 115

2Z0 IC5 :00S7,2:TEmp( :.1)
.1t4=ITEHP(I,2)
Go TO 115

110 !C35'- ITEHPfict
:TEwP(1,2)

235 115 CoNT:NuE
5CHECoLE J03 NO. JN. 37SULTING IN :COST cF IcCST
LECcEpENT NO. OF HiSOuRCE6 OF Ti E RESOURCE .YFE USE0 5Y JOB JN

C
.T.,;..S.JOES(JN.2)

210 IOPF(lp,1) = n7)

:C,HP( :F,3) = ICOST
:QHF(:F.4) 2- ITYPE
GO T3 201

215 19C :OPF(IF.1) = 0

:CPF(iF,3) = INF
IGPP.c:F.41 a

-26e-CONTINuE
Ml = 41220
Co 202 .= i.H1
:n1.1 = 1
CO 2C2 J= :FL.10
;F(ccpF)...3) ._E. :JF1to.3» GC TO 202.

225 ;T: = IOFR(C,I)
IT2
:13 I0P2(:,31-

inF0CI.11
ok2(;1

OF2(.J.1)
230 :CFR(C.2)2:0F.T(J,2)

:OPR)I.3)=I0F.(3,3)



-Topp-rr-,41- :-17P01T,41
:C00(J,1)=171
:OFR(J.2) 172

235 :IPPIJ,3)=IT3
.0FR(J.4) =

202 CONT:NUE
:71 =
:F(ICP;(1.3) .20. INF) GO TO 121

240----- - .TI 1-
.F (7.71' .GT. M) GO TO 123
IF(IC1=1:1.113) .EQ. INF) GC TO 123
IP = ICPN(IT111)
JN=ISPF.(:T1,2)

245 ICOST=I0FRIITI.3)
:TYPE=TOFR(I71,4)
71 = SJJz3(JN,3)
:F(100CC(:0)- 21-r1-T112.0
Tcays = ,:P<2(IP,2) T1

250 iF(TCAY; .Gr, TOTCYS) TC 204
-,c=5J0§4(JN,2)

lei JN CAN 3E SCHEOULE0- CN PROCESSOR :0.
TO = CPz.2(IP.2)
:=(ICFE:;(10..TC,T1) .El. C) GO TO 210

2=5 204 NPS(:.,J74, . 1
GS TC 17-

C uPLAT5 'NE TOTAL COST ON 0POCESSOR :P
21: 0P412(:0',1)=,..Pi.c2(:°11) :CCST

C OPCATE TOT/L. NO. JF JIrs IN 0ROCESSCR :0
2=C 01=02(10.2)= OPP2(IP,2) T1

1F(:PPOC(I01 .E0. 21 s;PR2(IP.3) = 6F12(:P.3) TI
L0:JATE IURPENT J03 SCHEOULE0 ,j14 P4CCESSOM IF
:02S(:F) = JN
uo0ATE:-TME-0tt-0-14,EVEAN0--.)4C--RE-90,1*Ce-A7kkAr---

265 CALL uFRES)TO,T1.1F)
<K. 3

:31 IP-1
;Ft/Pi .,E. 01 ;0 TO 216
:0 205 := 1.I01

170 KK = KK
IF(I0RCI(I) .EQ. 21 KK=KK1

205'CCNT,Nuz
2CE KK = KK1

:Nj1=IN3(KK)
275 CZ,;M(IN.;1,1) = SJO3S(J4,1)

cscH(INo1.2)=sJ0i5(o,2)
= T1

1:J2(KR) = 4:4011
IFlig;XC(IP) .EQ. 1) 07 TO 120

2'C KK = XX* t
IN31= INC(KK)
CE:N(INO1,1) = SJOE3(.0,1)
CC.4(:);71.2) = 3JO3S(JN,2)
c;0NI:471.3) Ti

255 :N0(04) :NO/ 1

120 CJNTINu2
C SET ,7,CL4MN 3CF0.55PCNC:NG -C J03 :N TC INFINITY.

_. :1.122
:c4(I.JN) :NF

290 122 I0Nr:NUE
C 00 iALK AN° SCNEOULE ?EMAINING JOSS

IT).:TJ1
GC 'C i6

123 0L.,":NLE
295 iFti"J .i0 N) GO TO 125

w0:151t1.51)--
.E0C FQ;HAT(///5Y,.. NCr ALL JOBS COULD 3E SC4ECo..20 *=)
'25 CONTI).UE

C" PF:NT cEEULTS
300 SECCNO(T)

TOTAI,T = T-T3EgIN
Im.;ITOJO,611) IOTALT

Eil FORMAT(//10x, ArI).E FCR ESECuTION IS *,F10.2,* S2074052)
C

305 C ir,INT PESU-TS
GAIL OTPuT

999 ETCP
ENO

139



140

Su3P3UTINE -qtAC:ru
CCMMG:4/3L0".3K1/IN,J00.:1.:P5OC(7),,;,ACES(90.5)
Com,L4/34,jCK2/:°,INUm,;Cm(60,!C)
CCmHON/dLCCKX/CRUSE (53.231.:1; ES (2G1

5 C-HENSICH :34.K (32)L 510 THE ;,iumatER CF PPOCESSOPS M 1N1 NO. OF nes
C.

-essaat:rf.inctplor
10 FoR.47 (2:5)

C
wRETE(..),,,1)(1.N

I FOmmAT (zix// 35X ,s-THE SCHECLILiNG 3UTPUTA//13x *NO. OF P5OCESSCFS
.APE t.I5//11X.A1G. CF JOSS A,I5/)

15 w5:TE( J!),2)
2 F,J=.44T (//10X toROCI:SSOt.6X,X14CtliNESF/)

C l'EAC THE F.00ESSOR :CCNTIFICATION ANC THE ;IC. OF 111,:,HINE ON EACH P C PaCCE
C

2G C7 -=101

CC (.1:3)..:1

3 ,7,:,-mAT(124.i5,3X,15/1
2.5 rc. 13 CO.T...1Lc.

C z 5_10 iL3 01.1C5IPT:CN:
.10,131

13 50,,AT (//13), ,siO3 LESCJ.IPTCON. :NPUTA/1:0 '2C ::10
30 kr:::J( IN, L300) (SJ062 (I ,J) .3=1.5)

I iu.11 1, (SJC,35A J1.1; 1,5111 FL':;',4,,T(//10Aix(i,12,s1s,.3Y,A1A,2(F3.0,:,$),F4.1.s.s.F2.3.A,A,F2.3., 2)
GCNTINUE

35 13C1 r0PmA't2F5.:,F5.122F5.31
Le" PE40 NUM2EP CF 2ESCUFCE TYPE./F
C

,-EACCIN.133,/
t.0,: TEC .10,161:6.

-1E F Vs.M1T --1- 1'5 frl *1' YP-15*-42X *OUANTs-./1C" .;,E40 CF 2ESCURCE TTFE.CP.
45 CO 31i

510
t:H,134317.z,T,INUm

17 AT
,,:1;,1- wE( J171IFT.INum

t :PT 1-1.4tim-
IC 3C CUNT:NNE

:F(4 .GT. 321 GOTOCO 33 =10
.13L1Cl

5e 33

t+, 5C5*AT
J0.31(IiL<1.11.3:101)5C,mAT(5x,32(*(t,I2,$):1//1

60
-7,EAC -- COST HA TRI) .0HICH N :s LESS THEN 21
CC 15 :=10
-"i4t71C.:4,12:;C) (7.13 )..1z1.H)ES . wc.1 (.1:.',,127t,

12 FL,P1TC:Ha.$(*,:2,$)g,IA,32(/3,1x))
15 CUNT:NNE1203 ,Tcc,AT(32/3)

aV
70

41.
JO (.2

CALL PAril(UF)
75 "C. ,J)=1A T(UR1J31IF!: .10. 3) IC1* LT, .11 i9

CONT:NuE
C'CtrtIctrE--

111 PPTuPt.
30 EF-10



suenuT:Ne rurr:At.----
ccmect./3!_ocKt/D4,Joil,N,:Pocc(71,I43staa,51

cC410)46.0;)(4/:J03(63),IPROS(7),/oR(7)f:1245(7),T1
i:CNmUN/21.0,:K5/05,m(560,3).mCF=1(7,2),OF*2(7.3),:NO(14)C

C THIS *CUT:NE IN:TIALIZE ALL ARRAYS

.4.- 32 4-ItC1:-
10 CO 32 J =1222

32 CONTINUE
C
C wJTPU' ARRAYS

15 C

20

25.

30

.35

141

CO 35 1=1,560
GO- 35-.1%1,3
CSCH(I,J)=0

35 C.4,7INUS
CO 40 1=1,7
CO 40 J=1.2
rop-1(:0)=0

4,(2 CONT:NL:.
CO .2 :11,7

45-J=1,3
CP.721:.J)=3.0
CCAT:NUE
L=-19
L1=0
CO I=1.m

23
ft.041(',1)=L
LI=LI,I

.EC. 1) GCTO 50

,L1-,?;1):.2)=L
LI=L1*1
IsC(11)=,

53 CONTINUE
--:Ftm tf

' OPc1(1,1):1
1NO(1)=1
:F(.1P,-oC(1) .20. 1) ti TO 55
`4CP=111,2)=31

INC (2) =31
55 C. C:": NUE.

ti :!IIT :A t: 25
:0 50 C.10
:PCC(:)=0
:F(:.GT.MI ,.;CTO 63.

F5 :Pc11)=0
-pcS(I)=3

tC et,*TINUt
,;.E7UPN=Nn

r
5

1C

-r

5

10

733Prx7-.:5.7.- rpr,mmcN/I...ocov:?usE(aoac),:FEccez)
=TC^2
J= T1*2
:J = 7.J

= *1:-onT:ntr.E.

------FuNoTICI-IC*.ES-flpiTliTtr--------
CJ:.mCN/3LOCKX/IRUSE(60,20),I;ES120)

= C
I= TC42
J=71*2
1J= : J
:=1,1
10 IC -=:,:J:Ft

IC CONTInUi
ki7U=,N
:NC
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APPENDIX C

ALGORITHM III

(BINBAB)
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C

PROGRAM RINBAB(INPUTOUTPUNTAPE5=INPUTTAPE6=OUTPUTI
COMMON/HATCOM, ICOST(20.20),K
COMMON/RLOCKI/ IN,JO.MN .IPROC (71 SJORS(80,51
la.mivolteele*titrtsomTfResi-rft-Ttem

COMMON/9LOCK3/LINK(801oLIST(80),ITOP(201.IPTOP(7).TOTSTK(20)
COmMON/9LOCK4/TOTP(7),TOTMAX(7)
EXTERNAL TIMF.STKO
OATA IN.J0/5.6/00TSTK/20*0/

10 C CALL INPUT SUBROUTINE
CA L REAOIN

142

15
CALL SECONO(T,

C
C

TBEGIN=T

FINO OPTIMAL FINISH TIME
SUM=0.
00 100 I=1 .N

'0 10G SUmw-St044-4-J.045-4 o

IAC4=0
30 105 I=1.4

105 4ACH=HA14IPROC(I)
IFT=CSUM/NACH12+0.9999

25 ARITE(J0.*)tTHE OPTIMAL FINISH TIME IS to/FT
30 1)5 1=10

105 TOTMAXID=UFT411/(3*IPROC(/))

C SORT THE JOBS INTO THE LIST
30 30 110 I=1.N

110 LIST(I)=I
CALL RSORT(LIST,TIMF04)

C
C FILL THE STACKS USING FIRST FIT DECREASING

35 90 115. 1,1,20
IT-GP-4

115 CONTINUE
C IF ONE OR MOPE PROCESSORS HAVE ONE MACHINE ATTACH TO IT
C SET ISINCLE=I. OTHERWISE ISINGLE=0

40 REAO(IN.1)ISINGLE
1 FORMAT(I1)

IF(ISINGLE .NE. 1)GOTO 10
IFT=IFT/2

10 CALL rut(Irroom-544() -
45 C FINO THE PREVIOUS JOBS EXECUTING ON EACH PROCESSOR.

C PUT THE STACKS TEAT CONTAIN THEM FIRST ON THE PROCESSOP STACKS ANO
C OUT THOSE JOBS FIRST IN EACH STACK

00 200 I=1.NUMSTK
J=ITOP(I)

50 120 IF(J.E0.0)GOTO 200
IF(SJOBS(J.41.NE./.) GOTO 140
IF-44wf-011-14-012-14- GOTO 139
LINK(LSTJ1=LINK(J)
LINK(J)=ITOP(I)

55 130 IPTOP(SJORS(J.5))=J-
ITCP(I)=999
TOTP(SJOBSAJ..511=TOISTK1I1
J=0
GOTO 120

J=LINK(JI
GOTO 120

200 CONTINUE
C

65 C SORT THE STACKS INTO THE LIST
00 210 I=1.NUMSTK

210 LIST(I)=I
CALL 0504T(e1ST,6TKO.NUMGTK)

C
70 C FILL THE PROCESSOR STACKS ACCORDING TO THE

C FIRST FIT DECREASING METHOD
CALL PFILL(NUMSTK)

C
C ASSIGN THE SUBCOST MATRIX

75 90 590 IP=10
Lit
K=1
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I=IPTOP(IP)
J=I

SO 5L0 IF(J.EQ.0IGOTO 540
5t0--if IreEITI)-DITO 53 0

ICOST(K.L1=ICMCI.J1
I=LINK(I)
K=K1.

85 GOTO 520
530 CONTINUE

I=IPTOP(IP)
K=1
.J= tiMt(tJt

90 L=14.1
GOTO 510

540 CONTINUE
C
C PRINT OUT THE SUB COST MATRIX

15 C ALONG WITH THE LIST OF JOBS IN THE PROCESSOR STACK
J=IPTOP(IP'

---------X=t---
n10 IF(J.EQ.11GOTO 640

LISTIK)=J
100 J=LINK(J)

K=1(.1
GOT° to

540 K=K...1

wRITEIJO.*ltJOIS FOR PROCESSOR t.I11,2 ARE t.(LIST(J).!..t.-1=1.K1/05
WP-IIE140141118FIRIFIPROOf-IP-t-rTOT114-Ii1)100 FORMAT(! FINISH TIME FOR PROCESSOR t.I2.t WITH t.I3.

t 1ROCESSOR IS t,F6.2/t)
.WRITE(J3.901)(1IST(J) .J=1,K)

101 FORHAT(20X.20f1X.t(t.I3,A)$.1X)1
110 JO 550 J=1.K

n50 WRITE(J0.9021LISTIJ).(ICOSTJ,I).1=1,K)
C

1-0-2FORA4TA1-BK-01-44-TI-4.0.40-4-v244-eX,r1-3,20//A)
C

115 C USE BRANCH AND SOUND TO FIND OPTIMAL SEQUENCE OF EACH SET OF JOBSCALL FIANDO
590 CONTINUE

C
CALL SECONDIT1

120 TOTALT=T.-tIEGIN
-WRITZHO-r6-66-)TO

5E5 FORMAT(//10X.AT/ME FOR EXECUTION IS t.F10.2.* SE.IONDS!)
STOP
END

-t

5

10

15

1

5

SUBROUTINE ISORTILIST.TEST.LENGT)41-
ETERNAL TEST
LOGICAL TEST

NGT 111
C THIS SUBROUTINE SORTS THE ARRAY LIST ACCORDING TO *TEST!C USING A IUBBLE SORTING TECHNIQUE

L=LENGTH1
30 500 I=/.L
00 400 K=1.1

IFC.MOT.TESTILIST(J),LIST(J+11),GOTO 500
I1f-MP-=-L-f5T
LISTfJ)=LIST(j+L)

400 CONTI
``I

400
500 CONTINUE

RETURN_
ENO

SUBROUTINE R4N1(UR1
RANDOM NUMBER GENERATOR
DATA /2/111/111/
IR=IA44B+0+04-21-5919*T6-31,01
UR=FLOAT(IR1/8381607

RETURNEN
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/ SUBROUTINE PFILL(NUMSTK)
COMMON/3LOCK1/ IN.JO.M.N.IPROCI7).SJOBS(80t5)
COMMON/BLOCK3/L/NK(80) LIST(80)./TOP(20),IPTOP(7.TOTSTK(201OMMON#4tOCK*04-0HP

5

10

C
C
C
C

i

THIS ROUTINE FILLS THE PROCESSOR STACKS USING THEFIRST FIT DECREASING METHOO
,FILL THEM UP TO THE PROCESSOR LIMIT

LEFT=NUMSTK-N
00 180 I=1.NUMSTK
IFIITOP(LIST(III.E00991GOT0 180

150
J -1

IF(TOTPCJI,TOTSTK(LISTCIII.LE.TOTMAX/JIIGOTO 160J=J4./
15 /F(J.GT.H/GOTO 1E0

GOTO 150
C
C A00 THE STACK TO THE BOTTOM OF THE PROCESSOR STACK160 L=IPTOPCJI

-20-

L=LINK(1)
GOTO 165

170 LINKIL$=ITIPIL/STtIll
ITOP(LIST(I11=99925 TOTPCJI=TOTPCJIITOTSTK(L/ST1/11
LEFT=LEFT..1

/BO CONTINUE
40-E-tEF--T--.-P-H-TTHEM PROCESSOR

C-
C IN THE STACK THATROOM. HAS VIE MOST

30 205 IF(LEFT.E0.01RETURN
J=1
30 210 I=1.NUKSTK
IF(ITOP(II.E0.999)GOTO 210PRINT .I

35 LIST(J1=I

210
JP-4*4--
CONTINUE

C PICK A PROCESSOR STACK
40 IPUT=HINS(LEFT)

ISPOT=MINP(3UMMY)
IKHER=IPTOP(ISPOT)

C
rINO

45 230
TN: LAST CLEMENT IN TOE STACK

IF(LINK(INHERI.EQ.0)GOTO 240
/KHER=LINK(IWHER1

C
GOTO 230

C A00 THE STACK TO THE PROCESSOR STACK50 240 LINK(INHER)=ITOP(/PUT)
ITOP(IPUT)=154
tEFT-PL-EF
TOTPIISPOT1=TOTPUSPOTI+TOTSTK(IPUT)
G O 205OT

55 ENO

1 SUBROUTINE FILL(IFT.NUMSTK)
C THIS ROUTINE FILLS EACH OF THE STACKS USING THE FIRST FIT OECFEASING METHOD.C

11MHO-Nt9te0K1fIN,JOTHTN111"N00-4-7-5
COHMON/BLOCK3/LINK(80).LIST(80)./TOP(201.1PTOP(7),TOTSTK(201CONNON/BLOCK4/TOTP(?).TOTMAX(7)NKJ=1
MAXJ=i
OC 180 I=10

to IF(I.E0.1)GOTO 140
IF(SJOBSILIST(11.2).NE.SJOBS(LISTiI../).2)/NKJ=MAXJ140 J.04XJ

C

FIND THE STACK TO PUT THE JOB EN15
c
160

IFI.NOT.(TOTSTK(J)+SJOBSCLISTII).3).GT.IFT).0R.(TOTSTK(JI.E0.0.1)1 GOTO 150
J=J+1
GOTO 160

150 IF(P.I.GT.WAXANAXJ2.01
C INSERT THE JOB AT THE TOP OF THE STACK

LINK(LIST(I))=ITOPCJI
ITCPIJILISTIII
TOTSTKCJI=TOISTK(J145JOBSCLIST(/1.3)25 180 CONTINUE
Num5Tx2mAxJ-1.
RETURN
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SUBROUTINE REAOIN
CO4MON/BLOCK1/IN.J0,4,N,IPROC(7).5JOBS(.0.51
COm4ON/ILOCK2/IR.INUM.IRES(20),ICM(80.801
3INE-15-1(P4-19i-*F321

C
C** READ THE NU49E/ OF PROCESSORS 4 ANO NO. OF JOBS N
C'

REAO(IN.1000)4.4
1000 FORNAT(2I51

145

10
wRITE(J0,1140
FO.RtA-t-cls //35 tTM£ 9tMEOut.IM6 OUTPUT. /110X.tN9. OF agOCE930R3
.ARE t.I5//10X.*NO. OF JOBS ARE s,I5/1
wRITE(J0.2)

15 2 FORNAT(//t0X.tPROCESSORt$6X.s4ACHINES*/1
C
C3. READ THE PROCESSOR IDENTIFICATION AND THE NO, OF MACHINE ON__EACK.P PROCESSORS
C

00 10 I.1.M

IPROC(IP)=I4
wRITE(J0,31IP,/4

3 FOR4AT(12X.I5.8X.I5/1
10 CONTINUE

25 READ J09 DESCRIPTIONS
wRITE(J0,13)

13 FORHAT(//10X.*JOB DESCRIPTION INPUT. /1
04
READIIN.13001(SJO9S(I.J1.J=1.51

30 wRITE(J0.111I.(SJOBS(I.J1,J=1.51
11 FoRmAT(//10X.s(g.I2*) *.3X.M.2(F3.0.i.t1.F4.1,g.t,F2.-G:t.t:F2.0

.,t1t)
20 CONTINUE

35 c
1300 FORNATI2F5.0.F5.1,2F5.01

c,..---Reka-N(14(ksp-1F-iktseuRse-
C

READ(IN,10001IR
wRITE(J0.161IR

40 16 FORHAT(////10X.tNO. OF RESOUPCE TYPE 2*.I5//10X.tTYPE*.2X.*DUANIs
./1

C" READ NU49ER OF RESOURCE TYPE,IR.
C

45 READ(IN.10001IRT.I4u4
4PITE(J0,17)I9T.INUM

17 F0RmAT(10x.I5.2X.I51
IRES(IRT)=I4UM

30 CONTINUE
50

rF(N .GT. 32) GOTO 99
U=1-04

I9LK(I)=I
33 CONTINUE

55 wRITE00.41
4 FORM4T(//34X.tCOST NATPIXg./1H.34x.* *///1

wRITE(J0.91(191K(J1._J=1.N1
9 FORNAT(5X.321s(x.I2,g)*1//)

C
60 C READ TM_

C
00 15 2 =1,N
REAO(IN.12001(ICM(IJ1.3510)
WRITE(J0.121I.(IC4fI.J1J=1.N1

65 12 FORHAT(1HO.t(s.I2s)t.IX,32tI3,1x11
15 CONTINUE

1200 FOR4AT(32I31
GOT-0-1-

99 IC4(I.J1.0
70 DO 41 I.1.N

00 42 J.1.4
CALL RAN1(UR)
ICM(I.J1=INTIUR.1001
IF (I .E9. J1 ICM(I,J12999

75 42 CONTINUE
41 £9ttTINUE

111 RETURN

EIJD
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5

10

LOGICAL FUNCTION STMOII.J1
COmmON/9LOCK3/LINK(801.L/ST(801.ITOP(201.IPTOP(71.ToTSTK(21(C THIS ROUTIME THE CRITERION FOR SORTING THE STACKS

C INtooeseettotmeotteRTrT+temT-olAt3sricog.rALsE.
IF(TOTSTK(I1.LT.TOTSTK(J11STKO=.TRUE.RETURN
END

LOGICAL FUNCTION TINFIJ.K1
COmmON/9LOCK1/IN.J0.m.N.IPROC(7).SJORS(81.51TIHF=.FALSE.

e TH13 FttH9T-I3N-I3 NYC CIRIff4f-AF-110-59-0-T-ING
.C INTO INCREASING ORDER OF RESOURCE TYPE AND DECREASING ORDERC Of PROCESSOR

aIF(SJOBS(J).E .SJORS(K,21)GOTO 110
IF(SJO9S(.1.21.G .SJOBS(K.2lITIHF=.TRuE.
RETURN

110 IF(SJOBS(J.31.LT.SJOBS(K.311TI4F=.TRUE.RETURN

146

1

C-

INTEGER FUNCTION MINP(OUMMY)
COMNON/9LOCK1/ INIJO.M.N,IPROC(7),SJO9S(A0.5)
COMNON/SLOCK4/TOTP(7100TmAx(7)

5 C THIS FUNCTION RETURNS THE SU9SCRIPT OF THE PROCESSOR THAT HASC 43.40ST ROOM LEFT
DO 100 I=1,4
IF(TOrmAX(D-TOTP(I1.GT.TOTWAX(mINPI-TOTP(4/NP)(MINP=Lto 100 CONTINUE
RETURN

5

10

C
C

-fHISFlIme1191.AfittIRMS.--T-HfSU-D-SDRIPT or TH.:C STACK IN LIST WITH THE MOST PROCESSOR TIMEmINS=LIST(1)
DO 100 Izt,LEFT
IFITOTSTK(LIST(III.GT.TOTSTK(MINS)ININS=LIST(I)100 CONTINUE
RETURN
ENO

INTEGER FUNCTION mINS(LEFT1
COmmON/9LOCK3/LINK(80).L/ST(50),I10P120/.IPTOP(71,TOTSTK(201

OM ...... ".
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r!.1 4.04.'18 80/12/11. 00.16.

/ SUBROUTINE BANOB
COMMON/MATCOM/ ICMATt20.2010
COMMON/LOCAL/ITREE15001;t1ICPEN(20920),IIESTT(20.2)

1. I ft+P-1-20-1-28VTfBeN11193 I00-mt1l-2ry21-1-mewOmffftti-
5 2 ITOUR(20,2).NONCOM(20.2tsIBESTC./PREV.LEFT.INEXTIINO0E.IPGHT

E
IBEST -BEST ROUTE SO FARt IBESTC...BEST COST ON HIS
ICOMIT - COMMITTED ROUTE
INF4:99g
WRITE(6.5301N

10 530 FORNATIX1X95X.ZN z Z.13)
00 5 I=1.N

fttt6:5 tICMAT(I,JI.J -1.Nt
5 CONTINUE

540 FORMAT(5X20I5)
15. CALL INITIAL(INF)

C SAVE COST WATRIX
30 2A I=1.N
00 24 J=10
ITE;P(I.J1z/CMAT(I.J)2T 2,-00NT IttUE---
ICON.°

C REDUCE MATRIX ICMAT BY FINDING THE SMALLEST NUMBER IN EACH COLUMNC AND SUITRACT EACH COLUMN WITH THE SMALLEST NUMBER
CALL MREIUCE(N.ICMAT.IRCONST,INFI

25 IPREV=IRCONST
C LABEL THE IST NODE OF TREE ANO INITIALIZE PTRS.

ITREEt1.1)=IRCENST
wWiTE-169-5-104-11 2CC t 1 rt
INODE=I

30 INEXT=2
C COMPUTE THE COST PENALTY
C

-

IPREV=0
6 CONTINUE

75 CALL PENALTY(M4X.K.L.INF)

BRANCHING

gg21§00E.21
40

=LEFT
ITPEEILEFT.11=IRCONST+MAX*IPREV
IFUTREE(LEFT.11 .GT.- INF ) ITREECLEFT.I/z/NF
ITREE(LEFT,4)=K
ITREE(LEFT.51=L
1TREtt teF fry=ltro

45 ITREEtLEFT.71=1
WRITE(6.600) /TREEtLEFT.11

600 FORIAT(i LEFT BRANCH t g.r5)
INEXT=INEXT+1
IRGHT=INEXT

50 ITREECINOOE.31=IRGHT
IFREV=ITREE(INODE.11,
ITRE-r.-114BH-T-Ot)
ITREE(IRGHT15)=L
UTREEI/RGHT,61=INODE55 ITREE(IRGHT,71=0
INEXT=INEXT*1

C DELCTE ROW K ANC COLUMN L FROM fCmAr_.
DO TO I=1,m

/ICMATII.0:NF60- temikuticTf) fm
70 CONTINUE

C FIND P=PEGIMING OF JOB P AND N ENDING JOB tK.L/
C AMONG THE ROUTE GENERATED BY THE COMMITTED J03-PAIW-

CALL GENROUTtMOP.K.L.INFI
65 ICOm=lcom.i . _

ICOMITIICOM,11=K
/COMIT(ICOm.2)=L
SET IC MAT (M,P)iiNF
ICMAT(M.mP)=INF

70 C REDUCE ICMAT
CALL mREOuCE(N.IOMANIRCONST.INF)

120 ITREEIIRGHT.11=IRCONS1 +IPREV
INOOE=IRGmt
wRITE(6,6101 ITREEIIRGHT.1) 9KtL

75 610 FORMAT(t RIGHT BRANCH t t.10/S1
IPRfY

C CHECK IF ICMAT IS A 2X2 MATRIX
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run 4.04'116 80'12'11.
IT20

00 125 /2/,N80 DO 125 J22tN
IP-uleN*111.3) .NE. INF

125 CONTINUE
IF (IT .GT. 21 GO TO 135
IF (IPREV oLT. IBESTC1 GO TO 12685 GO TO 135

126 CONTINUE
C SAVE THE COST ANC ROUTE

CALL SAVE(ITOT.INF1135 OftUI
90 C EXAMINE THE LONER 30UNDS OF THE TERMINAL NODES ]STAINEDC SO FAR AND CHOOSE THE ONE WITH THE SMALLEST VALJE TO BRANCHC

IN=INEXT1
MINL3=INF95 DO 140 T =2 IN

IF(11TREE(I.2).E(1.0F.AND.(ITREE(I.31.E0.0)100 TI 137COTO-1
137 CONTINUE

IF (trqe-E( lit/ . GE .MINLB GO TO 140100 ling;TEE(I.1,
140 CONTINUE

INODE=MINODE
IPREV=MINL9105
WR-E-E4 fry-4441-44E S-T-Cry-SI #41.9. I NO DE I R GH T650 FORMAT(A /3ESTC2 *.IlOst MINL9 2 A,I5,* MINODEst.I5.* IRGHT=t,/51IF (19ESTC .LE. MINLB1 GO TO 250
IF (MINODE.F.O.IRGHT1 GO TO 6
CALL NXTIN0IMINOCE,IG.NCOMONF1110 C FOR EACH NENCM(K,L1

PROHIBITED FROM ROUTE -IN CjARREMTSET NEWCM(K,L) TO /NF
195 CONTINUE

IF4NOGH,E0.01 GO TO 210
DO 200 I=1,NCON115 K=NONCOMI,11
L=NONCOHtI.2)
NENCNO(.1)=INF

200 CONTINUE
210 CONTINUE120 C REDUCE NEWCM

CALL '1(COUCE(N.NEMGM.IDCONST,INF1
IRCONST2IRCONST+15
IPREV=0

125 GO
UREE(MNDOE,1) =IRCONST

245
I=1,N

DO 245 J=10
ICHATII,J1=NEwCmt1,11245 CONTINUE

130 C PRINT
250 CONTINUE

WRITE(6.5001
500 FORMAT(i0115X,AOPTIMAL SCHEDULE //t1DO 255 I=1.ITOT135

WRITE(6.510/ IBESTTII,11,IBESTT(1,2)255 CONTINUE
510 r0INATI5X.2I51

w0ITE(6,520) TBESTC
520 FORMAT(/' 5X.s0121/4AL COST OF SCHEDULE = *,I5)140

STOP
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Pil 4.84518 10,12/11. 0

SUBROUTINE INITIAL(/NF)
COMHON/MATCOM, ICMAT420.20),N
COMMON/LOCAL/ITREE(50071,ICPEN(20,20),IBESTTI20,21,
fleMP11-0-4-20-t-rIlgEltt*T91-4-1M0-M-111-2-0-1-2t-T-Me0CM-tte-r2e)5

2 ITOUR(20,2),NONCOM(20.2),I9ESTCIPREV,LEFT,INEXT,INODE,IRGMTC ROUTINE INITIALIZES. ARRAYS
DO 10 I=1.20
DO 10 J=1,20
ICRENCI,A=010 10 CONTINUE
DO 15 1=1.500
00-1 -
ITREE(I =0

15 CONTINUE
15 ITREE(1.4)=1

ITREE(1,5)=1
ITRE(1,71=1
IBESTC=INF

C SET CtIe1) TO INF---20 00,-20 I-rt.-W-
M.481'11,1)=TO

20 CONTINUE
C SET DIAGONAL ELEMENTS TO INFINITY

DO 25 I=10
25 00 25 4=10

IFII EO. ICMAT(I,A = rrIF25 CONTINUE
$CT+JR4
END

SUBROUTINE mREOUCE(NOAT,IRCONST,INF)
DIMENSION mAT(20,201

C ROUTINE 10ES THE YATRIX REDUCTIONC- iETtItt44-4-E-Otte-T-IITts-eatt915 IRCONST=0
00 225 J=204
MIN=INF
DO 220 I=10
IFIMAT(I.A.LT.M/N1 MIN=MATCI,A10 220 CONTINUE
IF (mIN.E0./NF) GO TO 225
18C.OMIT-IRCOM3T+R/N
00 222 r=1,N
IFINg(,A.0INT G15 MATII.TAI=MATEAFII-M/N O TO 222

222 CONTINUE
225 CONTINUE

C REDUCE CURRENT FIRST RON
DO 230 I=104

20 ISW=I-
DO 229 J=204
IF (mAT(I,A.NE.INF) ISNal229 CONTINUE

25 230 CO
IF

NT
(ISWINUE .E0.1) GO TO 235

GO'TO 242
235 MIN=INF

IFII rMEs -t)
DO 238 J=2010 IF

23g CONTINUEIMAT(I.A.LT.MIN) MIN=MATCI,J1

IF (MINEl. INF1 GO TO 242
IRCONST=IRCONST+MIN
DO 240 J=204

35 IF tMATII.A.ED.INF) GO TO 240
240 CONTINUE
242 CONTINUE

RET40 ENO
URN



150

80/12/11._0

SUBROUTINE PENALTYtmAx.K.L.INF1 _

COMMON/MATCOM/ ICmAT(20.20),N
COmMON/LOCAL/TTPEE(500.7) ,ICPEN(20.201.IRESTT(2012)(

TE1401-?-1-4-2-0,-71pt-4( 211-51,IG00-111-20,2),NEmOm(20.201.100m,
5 2 ITOUR(20,2) .NONCON(20.2) 9I9ESTC,IPREV.LEFT.INEXT.INODE.IRGHT

C COMPUTESOMPUTES THE COST PENALTY
IP=0

DO 60 I=1.N
00 60 J=2.N

10 IF IICMATII.A.NE. 01 GO TO 60
IRMIN=INF
/e0t-miNvi
00 52 K=2,N
IF to( .E0. J1 GO TO 52

15 IF (ICmAT1I,K1 .LT. IRMIN1 IRMIN=ICMAT(I.K1
52 CONTINUE

00 54 K=1,N
IF (K .ED. I) GO TO 54
IF (ICmAT(K,J1 .LT. ICOLMIN ICOLmIN=ICmATCK.J1

20-- 54-0-ONTIMJE-
Igigi.J1=IRmIN.ICOLmIN

IPEN(I0.11=ICPEN/I,J),
IPEN(IP,21=1

25 IPEN(IP.3)=J
60 CONTINUE

C FIND MAXIMUM COST OF PENALTY
4AK=Ifxe44-1-41
K=IPEN(1.2)

30 L=IPEN(1.3)
00 65 I=1.IP
IF (IREN(I.1).LE.mAx1 GO TO 65
MAX = IpEN(/.1)
K=IPEN(/,2)

35 L=IPEN(I.31
,

RETURN
END

5

SUBROUTINE GENROuTfm0P.K,L.INF1
CO4m0N/MATCom/ /CmAF120.2010
COmmoN/LOCAL/ITREE15001711ICPEN(20.201.IEIESTT(20.2)

...)P164-r201-1,-IPEftfelT31.1e&m
2 ITOUR/20.2100NCOM120.21.IBESTC.IPREV.LEFT.INEKT.INOOE.IRGHT

10

C
C
C

ROUTINE FINDS P = BEGINNING OF JOB P AND M ENDING
J08(K.L1 AMONG THE ROUTE GENERATED 4), THE JOB *AIR
K.L
IF IICOM .GT. 11 GO TO 75 -
mP=K
M=L

75 CONTINUE
C FINO P

15 mP=K
71 CONTINUE

00 80 I=t.ICOm
IF CICOMIT(I.21 .E0. m12) GO TO 82

80 CONTINUE
2-0

82
GO-10-8:
MP=ICOMIT(I.1'1

C
GO TO 78

FINO
85 M=l.

25 88 CONTINUE
00 90 I =1. CON
IFtICOMIT(I,11 .EQ. M1 GO TO 92

90 CONTINUE
GO TO 95

30 92 ftqCOm/T(/,2)
GO TO 88

95 CONTINUE
RETURN
ENO



1

5

10

15
ICOMITIICOM,11=I
ICCNIT(ICOH.2) =J
WRITE(6.6101 I.J

1Z5 CONTINUE
-25- SAVE-THE-ROOTE

00 129 I=Ni.ICOM
LEFT = INEXT
ITREE(LEFT.1)=INF
ITREE(LEFT.4)=ICO'IT(I.1)

25 ITREE(LEFT.51=ICIMIT(I.21
ITREE(LEFT,6)=INODE
IIREE(LEFT,71=1
INiXT-=-14-0(44-t-
IRGHT=INEXT

30 ITRkE(IRGHT.1)=I3ESTC
ITRtE(IRGHT.4)=ICOMIT(I.1)
ITREECIRGHT0)=ICOMIT(I.2)
ITREECIRGHT.61=4NODE
ITREE(IRGHT.71=0

35 INODE=IRGHT
f0E-AY f

129 CONTINUE
C READ OFF ROUTE AND SAVE

ITOT=1
40 ITOUR(ITOT.1)=ITREECIRGAT.41

ITOURIITOT.21=ITREEEIRGHT.51
NI=UREE(IRGHT.6)

130 CONTINUE

45 IFIITREEIN1.71 .E0. if GO TO 132
/TOT=ITOT,1
ITOURCITOT.i1=ITREEIN1.41
ITOURIITOT,21=ITREETNI.51

132 N1=ITREEfN1.61
50 GO TO 130

133 CONTINUE

= rro r + t

/DESTTf/.1fITOUR(Ni.11
55 IBESTT(I.2f=ITOURfN1,21

134 CONTINUE
610...FORHATI*__RIGHT 3RANCK_L_will/.51

RETURN

151

'IA 4.n,111 OVIALL/l10

SUBROUTINE SAVECITOF.INF,
COMMON/MATCOM, ICMAT(200010
COHMON/ (,OCAL/ITREE/500.7),ICREN120.20f.IBESTT(20.2)

1 f

.

2 ITOUR120.21.NONCOM120.21.IBESTC.IPREV.LEFT.INEtT,INOOE.IRGHT
C ROUTINE SAVES THE BEST SO FAR AND THE ROUTE
C GIVING THAT COST

IDESTC=IRREV
HRITE(6.620) /9ESTC

620 FoRmAr(s BEST COST SO FAR t*.riol
mt=icom+t
potrifa-rf
00 125 J=2,N
IF
ICOMIICOH

fCNAT(I.JI EEO. INF1 GO TO 125
+i



Nor I Id /.

152

I M 44 074,..

SUBROUTINE NXTBNO(MINOOE,IG,NCOM.INF1
COMMON/MATCOM, ICMAT(20,20),N
COMMON/LOCAL/ITREE(5007) 1UPEN120,20),IBESTT(20,2)
I-12-4P-tt0-§-20-)-4-1 PEN ( PO 3 ) 1-00141-T- -

5 2 ITOUR120.21,NONCOM120,2)I0ESTC,IPREV,LiFT,INEXT,INODEIRGHT
C STEP 11
C SET UP ORIG/NAL COST MATRIX

00 145 I=1.04
00 145 J=1,04

10 NEWCm(I.J)=ITEMP(I,J)
145 CONTINUE

RE A-0-431-1Ri-÷fr-it-etr+Mf
ICON.°
400m=0

15 IF(ITREE(MINO0E,7).E0.11 GO TO 146
ICCM=ICOM.1
ITOURIICOM.11=ITREEIMINODE,41
ITOUR(ICOma)=ITREEIMINO0E95)
GO TO 148

--1-41,6-NCO.N004.1--tO-
NONCOMINCOm.11=ITREE(MINODE,4)
NONCOM(NCOM2)=ITREE(MINOOE,5)

148 IN=ITREE(MINODE, f)
150 CONTINUE

25 IF (IN.E0.01 GO TO 153
IF IITREE(IN.7).E0.11 GO TO 151
ICOM=ICOM+1

IN.41
ITOUR(ICOM21=ITREEIIN51

30 GO TO 152
151 NCOM=NCOM41

NONCOM(NCOmv1)=ITREETIN9(.)
NONCOM(NCOM2)=ITREECIN51

152 IN=ITREE(IN,6)
35 GO T3 150

st3O+1 YNUE
IG=0
IFtICOM.E0. 0) GO TO 195
00 154 I=1,ICOM

40 IN=ICOM-I'1
ICOMIT(I.1)=ITOURIIN11
ICOMIT(I21=ITOURIIN,2)

154 CONTINUE

45 I=ICOMIT(IM,I)
i=tcomyr (IN 2)
IG=IGNEWCH(I,J)

C DELETE RON I AND COLUMN J
DO 155 Il=1N

50 NEWOM(I,I1)=/NF
NENCM(II.J)=INF
00-NT-IN

C FOR EACH ROUTE AMONG THE (I,J) FIND THE STARTING J03 P AND ENDING
C JOB M ANn SET NENCM(M,P) TO INFINITY

55
CALL GENROUTTMMP.I.JICOM./NF1
SET NEWCM1MP1=INF_

NENCM(N.MP)=INF
190 CONTINUE

RETURN
ENO


