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ANALYTICAL FRAMEWORK FOR MODELING SCALE- RELATED VARIABILITIES IN

REMOTE SENSING

INTRODUCTION

Solar radiation passing through the atmosphere, reflected by the ground features on the Earth's

surface and received by a remote sensor becomes the spectral signature of that ground feature. The

ground feature signature seen by a remote sensor is in fact influenced by surface roughness (such as

plant geometry and canopy structure in case of vegetative surface), surface optical properties (e.g. soil

moisture and chemical compounds), surface topography, and atmospheric conditions (Figure 1). The

aggregation of the feature signature becomes a measure of texture for a specific image. Texture is

therefore an important parameter for feature extraction and pattern recognition in remote sensing

applications.

Sensor Response
Sensor

Raw Image

Atmospheric Condition

14Spectral Signature

Plant geometry Soil type

Canopy structure Moisture

Growth stage Chemicals

Slope

Sun angle

Feature of Interest

Figure 1. Factors affecting the ground feature spectral signature

Sensors that cover different bandwidth and spatial resolutions often provide significantly different

views of the Earth's surface. The real questions are ' Is there any basic feature or process which is

invariant with respect to change of spectral and spatial scale ? ' or ' Is there a limiting scale up to which

a set of spectral bandwidths will deliver the same information ? A more generalized form of the

question would be ' How does a ground feature changes with respect to the scale ?

Typically, a remote sensing image requires certain degrees of preprocessing (Figure 2) before non-
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visual information can be extracted. The preprocessing procedures could produce image enhancement

as well as information degradation. How the effects from these procedures (such as Karhunen-Loeve

transform or Fourier transform) relate to spectral variability is therefore another important factor to

be investigated.

Image Pre-processing

i
Conventional
LP Method

Raw Image

IRadiometric Correction I

Geometric Correction

i

Basic Processing

Multispectral
Transforms

Fourier
Transform

Radon
Transform

Feature Extraction

Ilf

IScale information extraction, Error analysis I

Figure 2. Preprocessing procedures used for image processing

Much research to relate vegetative growth to remotely sensed information has been conducted since

Monteith (1972) first expressed the mechanism by which the solar radiation intercepted by any given

vegetation is transformed into dry matter. That mechanism can be expressed as:

D. - f MitcS dr
r

(1)

Where Dm is the dry matter production; t is the time period, es is the fraction of photosynthetically

active radiation (PAR) of the solar radiation, ei is the fraction of the incident light intercepted by the

canopy , es is the dry matter conversion efficiency and S is the global solar radiation. The equation

can be used for direct solution when all the parameters on the right hand side are assumed to be

known for the inverse problem of estimating vegetation parameters.

In early remote sensing research, efforts were focused on agricultural applications using the Monteith

approach to investigate the relationship between vegetative growth parameters and biomass
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production. Many useful results have been documented from the Large Area Crop Inventory Experiment

(LACIE) and Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

(AgRISTARS). These two projects laid the foundation for using different sensor platforms to obtain

specific growth parameters from remotely sensed information. The researchers used statistical

regression to establish the relationship between instantaneous spectral reflectance and vegetative

parameters of interest. The approach has suffered from the fact that (1) the physical andphysiological

processes and (2) the nature of spectral signature variation and its propagation were not explicitly

taken into account. Most remote sensing models have proven to be site specific or scene dependent

when different sensors are applied to obtain reflectance data from variable vegetative cover under

heterogeneous conditions. As a result, remote sensing is still as much an art, learned by practice and

trial and error, as a science, based on tried and tested methods and rules.

Since practical remote sensing applications have been limited over the past decade, remote sensing

technology has often been treated as an interesting matter or expensive toy rather than a practical

tool. With the recent worldwide emphasis on global change studies, remote sensing has once again

attracted both public and research community attention. With slightly different objectives to be

achieved, the underlying physical processes for more recent global change studies do not differ

significantly from research conducted in the early 70's. Unfortunately, the lessons from the past

unsuccessful history of remote sensing have been forgotten. Instead of extending early efforts in

solving basic problems inherited in remote sensing data (and techniques as well), major efforts have

been devoted to the launches of more sophisticated sensors with higher spectral and spatial resolution

and frequent coverage. While scientists are anxiously waiting for enormous amounts of information

covering the whole Earth that is soon to be gathered by new remote sensing platforms, less than 5

percent of the data gathered by LANDSAT satellites has been analyzed to date. The remote sensing

community should realize that data alone do not provide understanding. It is only when we put data

in context that we create information to provide understanding. Obviously, understanding the

meaning of information is a lot more difficult than collecting and displaying it. A systematic approach

is needed which combines remotely sensed data with a better understanding of underlying causes of

variations in the spectral signature of vegetative canopies. Such an approach could utilize vegetative-

phenologic models to aid in interpreting spectral reflectance data acquired from remote platforms.

In satellite remote sensing digital image processing, sometimes it is difficult to analyze the information

content of an image directly from the intensity of the image pixels. In fact, the intensity is a function

of radiation conditions, atmospheric conditions and sensor response. More important are the local

variations of the reflectance. The size of the neighborhood where contrast is computed must be

adapted to the size of the objects that we want to analyze. This size defines a resolution of reference
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for measuring the local variations of the image. Obviously, the structures we want to recognize have

different sizes. It is therefore not possible to define a-prior an optimal resolution for analyzing an

image. People often assume that the higher the resolution the more detailed the information that can

be obtained. The details involve the expense of data storage, faster computation requirements and

most of all, higher data collection cost.

Efforts to find the optimal resolution for specific image features have been very empirical and limited

in the past due to the limitations of sensor platform availability and methods to analyze the

information. Hall et al. (1988) developed a hierarchical search for image matching which addressed

the resolution problem. It is clear that the study of feature presentation in different scales can

provide a simple hierarchical framework for interpreting the information. At different resolutions

(scales), the details of an image generally characterize different physical structures of the scene. At

a coarse resolution, these details correspond to the larger structures which provide the image context.

It is a natural process to analyze first the image details at a coarse resolution, then gradually increase

the resolution. Such a coarse-to-fine strategy is useful for pattern recognition in image processing and

will help in finding the optimal resolution for analyzing a specific ground feature.

During the last twenty years, Benoit Mandelbrot has gradually developed a class of mathematical

functions known as fractals. Mandelbrot showed that fractal surfaces can be found in a number of

natural processes, ranging from vegetation growth to fingering in porous media flow. A principal

characteristic of a fractal process is the lack of any characteristic length scale. Just as a statistically

stationary process has a probability distribution that is invariant with respect to translation in time,

the fractal process describes the invariance of a probability distribution with respect to scale changes.

Clearly, the statistical properties of Earth's features obtained from remote sensing imagery are the

result of many physical processes that operate at different spatial locations and scales. Each single

physical process may be dominated by a fractal parameter over some localized region and scales.

Pentland (1984) showed that the fractal dimension of an image is a measure of surface roughness as

well as the invariant scale characteristics of the original data. It is therefore possible to use fractal

processes as part of a framework to represent the statistical properties of Earth's features in remote

sensing imagery.

The theme of this thesis is to establish an analytical framework which addresses the spectral signature

variation issue in the multiresolution context. The derivations start with plant geometry, canopy

structure, and their mathematical representation. The relationship between mathematically

transformed spectral indices and plant phenological parameters is then derived followed by the

preprocessing of a digital image. The concept of image processing in a spatial frequency domain is
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introduced. Three mathematical transforms are discussed in detail; they are (I) Multispectral

transformation, (2) Discrete Fourier transform, and (3) Radon transformation. The extraction of scale

information from a digital image is then discussed together with currently used sensors and their

response dynamic. Finally, procedures for determination of signature variability and error analysis

are investigated. The goal for this research is to establish a generalized framework to study the scale

related variabilities from plant canopy level and move up to the satellite level. The specific tasks to

be accomplished include

(1) Invetigate the relation between canopy structure, spectral reflectance, spectral indices,

and phenological parameters (ground cover and leaf area index specifically) by

integrating canopy and photon transfer models.

(2) Study the orthogonal based transform (multispectral transform vegetation indices) and

ICarhunen-Lo6ve transform in feature vecotr space.

(3) Investigate potential methods to extract scale related spatial variabilities within a

remotely sensed image with emphasis in spatial frequency domain and information

content.

(4) Implement and verify the established general framework in the real world applications.

In summary, this thesis proposes systematic procedures to investigate the spectral variabilities due to

different image scales (spatial resolutions). The "spectrar term used here represents raw spectral

reflectance from remote sensors as well as pixel values resulting from image preprocessing.



LITERATURE REVIEW

Remote Sensing Concept

6

Satellite remote sensing has been used for ground observation since the early 1970s. Although the

definition for remote sensing may still be debatable in different disciplines, the following definition

was considered to be applicable in general for all disciplines. Remote sensing can be defined as

"acquisition of information about the condition and/or the state of a target by a sensor that is not in

direct physical contact with it". The use of remote sensing has provided a great way to obtain large

amounts of information about Earth's surface features. Even though the applications of remote

sensing have been broadened dramatically since the Large Area Crop Inventory Experiment (LACIE,

Bauer et al.,1978; MacDonald and Hall, 1980) and Agriculture and Resources Inventory Surveys

Through Aerospace Remote Sensing (AgRISTARS, Bauer et al., 1986) projects, the improvement of

data analysis techniques has been slow in the past ten years. The launches of LACIE and

AgRISTARS were designed to develop operational satellite use capabilities for government and

eventually for private industry. The large-scale field measurement programs accompanying the

satellite program in the 1970s and early 1980s have contributed to satellite data processing and

thematic information capability development such as signature-extendable technology (Hall and

Badhwar, 1987). Unfortunately, the overall results have been much less than expected in establishing

fundamental understanding of the physical relationship between electromagnetic radiation and Earth

surface processes. As a result, the remote sensing community and general public have suffered from

the misconception of pictorial products which produce weak correlation to ground attributes to be

mapped or monitored.

Vegetative / Phenological Model

In case of natural resources applications, the main problem comes from the inappropriate selection

of data based upon the inadequate understanding of the relation between features of interest and the

spectral reflectance obtained by the sensor. The basic assumptions of optical remote sensing are (1)

solar radiation, which has interacted with the ground object to be sensed and has been received by

a remotely located sensor, carries the signature of the object, and (2) this signature can be deciphered

to obtain the important characteristics of the object (Goel, 1989). In case of vegetation, these

important characteristics include (1) plant identity (or plant type), (2) phenological stage, (3) plant

physical conditions, (4) amount of biomass or area indices of plant elements, (5) the architecture of

the canopy such as the orientation of the plant, (6) the spatial distribution of ground cover. Numerous

research projects have been conducted to study the relation between plant phenological parameters

such as the leaf area index (LAI) and light penetration within the plant canopy. The light penetration
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characteristics is in fact a good indicator of leaf reflectance as seen by the remote sensor. Most

research has focused around the Bouger-Lambert Law (or Beer's Law) which states the relative

transmitted light intensity decreases exponentially for each row spacing as the LAI increases. This

phenomenon can be expressed in the form of

I - 4 e-cw) (2)

Where I is the light intensity at the bottom of the canopy, /0 is the light intensity immediately above

the plant canopy, and K is an extinction coefficient which determines the amount of light attenuated

by the plant canopy. This approach provides a useful approximation when the plant canopy is

presented as a homogeneous layer (i.e, canopy is in full cover stage), but does not cover the cases

when the ground is only partially covered by the canopy. Besides the simplified canopy models, many

complex photon transport models were created to simulate the canopy reflectance or inversion of

biophysical parameters. A very comprehensive review covering more than fifty photon transport

models and six hundred reference papers was assembled by Myneni et al. (1989). Most of these

photon transport models assume a fixed leaf distribution and are usually mathematically complicated

which require sophisticated numerical solutions. Direct application of these models to a different

spatial scale are generally difficult or sometimes impossible. Recent advances in language theory and

computer graphics have enable the researcher to define a complex object by successively replacing

parts of a simple initial object using a set of rewriting rules or production (Lindenmayer, 1986).

Originally, the L-system was designed to generate a realistic decorative plant under a given lighting

condition. With simple modification, the deterministic OL system can be used to simulate the canopy

reflectance under a given light penetration.

Sources of Spectral Variations

Remote sensing studies of ground features generally suffer from the atmosphere medium interference.

Many research projects were conducted specifically to remove or reduce the atmospheric effects. So

far, very little attention has been addressed to the influences of soil background over the measured

canopy spectral reflectance. The soil background contribution to plant canopy spectral response is

very significant in a partially covered ground. Majority portions of the vegetative surface on Earth

are partially covered. Huete (1989) investigate the factors which affect the spectral response of partial

vegetation covers. The four factors are (1) the structure and biophysical makeup of the vegetation,

(2) the soil surface background, (3) solar illumination and sensor viewing conditions, and (4) the

atmospheric medium. Research has shown for that for given wave bands soil signatures may vary in

(1) brightness differences which are associated with the magnitude of reflected radiance, and (2)

spectral curve-shape variations attributed to mineralogic, organic, and water absorption features.
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Kauth and Thomas (1976) analyzed soil spectral variations in four-dimensional Landsat images and

found the major variations of soils to be attributed to the brightness. The result from this analysis

was the widely accepted soil line concept. The soil line concept was used by many researchers such

as Jackson et al. (1980), Wiegand and Richardson (1982). The concept of the existence of global soil

line was questioned later as Jackson et al. (1980) and Huete et al. (1984) found that the global soil

line actually consisted of many nonparallel soil lines that represented specific soil types at different

values of soil moisture. The soil line therefore becomes soil-specific and scene-dependent. Stoner

and Baumgardner (1981) investigated 485 soils under different moisture conditions. They found five

soil forms in the spectral region from 0.52 - 2.32 gm which were associated mainly with the organic

matter and iron contents of the soils. Soil spectral curve-shape difference is the cause of deviation

away from the soil line. The variations found in the soil line have certain degrees of influence in the

vegetation canopy spectral reflectance. Huete et al. (1985) investigated the relationship between

spectral reflectance and soil under different moisture contents. Under a bright (light-colored)

background, the red reflectance decreased significantly with increasing amount of green cover. Near

infrared, on the other hand, increased with increasing vegetation for both wet and dry soils.

Researches conducted by Sellers (1985) and Choudhury (1987) indicated that the slopes of spectral

isolines increased with increasing vegetation density. Huete and Jackson (1988) further investigated

the effects from solar angle and atmospheric turbidity. They found out the diurnal changes in red

canopy reflectance was the result of soil effects. The presence of soil background affects the canopy

spectral reflectance in different spectral regions. A canopy with a dark soil background is more

sensitive to atmosphere conditions in the red spectral regions but less sensitive to sun angle and

vegetation density. In summary, the level of soil influence is dependent on the spectral variance of

the soil background within an image. The effects of atmospheric conditions on the remotely sensed

spectral reflectance are fairly complicated. In general, the atmospheric effects are wavelength

dependent. Slater and Jackson (1982) showed that atmosphere effects can cause a three to seven day

delay in the detection of water-stressed wheat due to brightness modulation. Corrections of

atmospheric effects can be performed using slant-direction measurement based algorithms (such as

Diner and Martonchik, 1985), sharp contrast based algorithms (such as Kaufman and Joseph, 1982)

or even a dark object subtraction combined with maximum reflectance normalization brute force

method (Chen and Waddington, 1992).

Digital Image Processing

The utility of remote sensing has not been fully explored partially due to the lack of image analysis

tools, the high cost of satellite images, and data availability. The cost of the remotely sensed data and

data availability are issues currently not in the control of the end users (Chen and Lamb, 1991). The



9

improvement of the image analysis tools therefore will play a pivotal role in bringing remote sensing

techniques to practical applications. Image analysis tools which can be generalized into two broad

groups include image enhancement (quality) and feature extraction.

Image enhancement

The image enhancement uses various contrast stretching, spatial filtering, data reduction techniques

to provide wider dynamic range, higher display contrast and more clear boundary definitions for better

image interpretation. Most image enhancement techniques are discrete linear operators. These

operators form the output pixel intensity at (x,y) from a weighted sum of input pixel intensities in the

neighborhood. The implementations of these algorithms are achieved using a convolution window

kernel in the local region (Pratt, 1991). The operator can be applied in both spatial and temporal

modes. The spatial operators have the following generalized form

2 /2
g(x,y) - E E ka(i,j) f(x+i,y+j)

i--/2
(3)

Where f(x,y) is the input image, n is the number of row (or column), and h. (ij) is the operating

function with nonzero values in region S. The approach for spatial operation can easily be extended

to temporal case by assuming a specific noise effect model in the form of

fi(x) - f + mi(x) (4)

Where f () represents a noise corrupted image and mi () is the noise process at spatial location

x. The desired output image from M ensemble images therefore has the form

g(x) - E /Ax)
augmbk

(5)

The major drawback of these linear operators is the side effect generally associated with the operator

(e.g., the smoothing operator reduces image noise but also blurs edges). The nonlinear operators

which can accomplish the objectives of linear operators but do not possess negative attributes have

begun to demonstrate their potential (Hodgson, 1985). One of the most promising nonlinear

operators is the median filter which is a subset of rank filters. To apply the median filter to an image,

the output intensity of each pixel at spatial location x = (xy)T is chosen on the basis of the relative

rank (or intensity) of pixels in the neighborhood. The rank of a set of N pixels in a region S can be

denoted as

R(X) - f2...-., IN) V f 5 A.' (6)
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Where fi is the intensity of pixel i. The output image intensity is

g(x) - Ranks R(x) (7)

Where Rank. is the position of j in R(1/. A median filter can be implemented by choosing the output

intensity to be 4. where m is the median intensity and can be obtained at ranking location (N +1)/2

(N should be an odd number). The nonlinear median operator therefore becomes

med (R(x)) - RankN.1 (R(x)) (8)
2

Nonlinear operators can usually preserve the edge location and reduce the pixel intensity variance

while increasing the cost due to intensive computation requirements. If the characteristics of the

image sensor and the underlying physical process of the target feature are known and the accurate

characterization of image degradation process is available, the model-based enhancement can be

utilized.

Feature extraction

Statistical feature extraction

Most of the feature extraction techniques are implemented as forms of pattern recognition. Generally,

the pattern recognition can be defined as the determination of an obscure property from a set of

measurements (Varmuza, 1980). A number of algorithms are currently being used (e.g. Jensen 1986,

Lillesand and Kiefer, 1987). In most cases, a particular decision rule is applied on feature space which

is subdivided into non-overlapped regions. The decision rules can be further divided into exploratory

methods and confirmatory methods. The exploratory methods use bootstrap solutions to determine

the number and nature of the groups present from the distribution of points in the feature space. The

confirmatory methods start with an initial hypothesis that k groups of patterns are presented with an

initial estimate of the statistical properties of those groups. The pattern recognition procedures can

be categorized as supervised classification, clustering, and unsupervised classification. The supervised

classification uses proper algorithms to label the pixel in an image as representing particular target

features or classes. The algorithms range from probability distribution based models to multispectral

space partition for optimally located class-specific regions. All the algorithms used in the remote

sensing come from the field of mathematical pattern recognition. The theoretical derivations of these

algorithms and their basic applications can be found in Watanabe (1965), Ball and Hall (1965), Cover

(1965), Chien and Fu (1967), Cover and Hart (1967), Butt (1968), Tou (1968), !Canal (1968),

Batchelor and Wilkins (1968), Hawkins (1970), Duda and Hart (1973), Babu (1973), Anderberg
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(1973), Tou and Gonzalez (1974), Young and Calvert (1974). Decision tree (Nilsson, 1965) which

uses a series of decisions can also be used for the classification. The advantages of this approach is

that different sets of features or algorithms can be used at each decision stage. The application of this

algorithm is described by Swain and Hauska (1977). The applications of supervised and unsupervised

classifications can be found in Jensen (1986), IEEE Transactions on Geoscience and Remote Sensing,

Photogrammetric Engineering and Remote Sensing (American Society of Photogrammetry and

Remote Sensing), or other remote sensing related journals. In most cases, a specific algorithm was

applied to a remotely sensed digital image with some kind of standard statistical accuracy assessment.

Very little progress has been made in advancing the analysis tools during the past ten years. Recently,

with the increasing attention focused on the global change issues and the launches of upcoming Earth

Observing System (EOS, Butler et al., 1984) satellites, remote sensing has once again drawing the

attention from both public and private sectors. The basic understanding of the Earth physical

processes and their relations with the optical sensor and spectral reflectance were the main issues

emphasized in the EOS preliminary studies (Butler et aL, 1988). The need for better techniques to

interpret data acquired by the remote sensing platforms was also stressed in the EOS data panel

report (Butler et aL, 1988). One important issue surfacing from the EOS project is capability to

perform multiscale multiresolution data merging.

Multiscale feature extraction

The basic concept to merge or utilize the data from different scales is similar to the concept of

multiresolution decomposition used in digital signal processing. Koenderink (1984) studied the

structure of an image and proposed the potential of using simple hierarchical framework for

interpreting the image information content. The details of an image generally characterize different

physical structures of the scene at different resolutions. At a coarse resolution, the details usually

correspond to larger structures (or features) which also provide an overall image context. The pattern

recognition procedures therefore should include a coarse-to-fine approach. This approach was first

used by Grimson (1985) to perform a low level image analysis on a set of images in different

resolutions. Another algorithm which holds great potential for multiscale image analysis is the

Hierarchical/Pyramidal image analysis (Biederman, 1985). A hierarchical processing procedure

basically emulates the way human visual system (HVS) process the object vision from a coarser

descriptive level to a set of consecutive refinement levels. Since features in different scales may be

related, a basic requirement for the multiscale operator is the ability to maintain a consistent

representation of the multiscale image. Baubaud et al. (1986) developed a scale-space filter by

convoluting the input image with a Gaussian kernel which contains a scale parameter. The scale-

modified 1-D function is given by
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$(x,y) - f(x) * g(x,y) (9)

Where * represents a specific convolution process or

$(x,y) - f f(u) g(x-u,y)du (10)

In this particular case, the above equation produces an ensemble of images as a function of the scale

parameter y. If a consistent scale-space kernel g(xy) is used, then the new zero crossing may appear,

but the existing ones never disappear (Baubaud et al., 1986). The most interesting characteristics of

such an operator is that for a given linear differential operator, L

L[4(x,50 - L[f(x)] * g(x,9)

- f(x) * L[g(x,9)]

The above equation indicates that image enhancement can either be performed before scale reduction

or after the scale reduction. This feature provides a lot of flexibility for image manipulation. So far,

the multiscale analysis has started gaining popularity among computer vision applications. The

application is still more or less limited to edge contouring (Williams and Shah, 1988) or segmentation

(Bischof and Caelli, 1988). Another tool which also holds great potential for multiscale image analysis

is fractals. Since the introduction of fractais by Mandelbrot (1977), the studies related to fractal

applications have grown exponentially. The studies range from time series simulation, spatial chaos,

random vibration, percolation, phase transition and renormalization, to cellular automata. The

discussions of these studies are far beyond the scope of this literature review. Besides all these

potential applications of fractals, the application in image analysis has been limited to the realistic

image generation of mountains, planets, or trees (Peitgen and Richter, 1986). Pentland (1984)

published a paper titled "Fractal-based description of natural scenes" (Pentland, 1984). The paper has

provided a general foundation for fractal applications in image analysis. A few papers have been

published since Pentland's work. Most of the research has been focused on structure-oriented images

such as an image produced by Synthetic Aperture Radar (SAR, Dellepiane et al., 1991) or the

measuring of the geometric characteristics of natural surfaces (Clarke and Schweizer, 1991). Research

conducted by Lam (1990) focused on the fractal dimension of a satellite image surface which did not

address the multiscale issue. Even though fractal applications in remote sensing has been slow, the

use of fractal description for image analysis still looks very promising.
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In spite of all the development in multiscale analysis, the use of multiscale information extraction in

remotely sensed images (particularly in satellite remote sensing) has been very limited due to the

constraint imposed by availability of the remote sensing platforms ( i.e. very few spatial resolutions

are available to the researcher). Curran (1988) utilized the semivariogram to investigate the

underlying spatial correlation within a remotely sensed image. Woodcock et al. (1988) used the same

technique to simulate and model the remotely sensed scene. This research generated interesting

questions about the scale issue in the remotely sensed images but did not provide real utility for

multiscale image analysis. The general direction of these approaches is positive since the spatial

relationship between adjacent pixels is taken into account. Traditionally, feature extraction in

remotely sensed images has been focused on tonal or spectral information, i.e. pixel values have been

considered individually without regarding the properties of neighboring pixels. Ideally, the features

from neighboring pixels should provide additional spatial information for image analysis. A logical

representation of the neighborhood features is to use some kind of texture measure.

Texture features

The texture presentation was used extensively in the field of psychology. Researchers have studied

texture discrimination by the human visual system. Julesz (1975) conducted statistical analysis on two

textures and concluded that two textures are not discriminable instantly if their second order statistics

are identical. Further study done by Julesz and Caelli (1979) revealed the exceptions in case of

measurement based on local geometrical features. The uses of texture information in image analysis

have been focused on image segmentation in machine vision level. In the field of computer vision,

textures are analyzed either by structural or statistical methods. The nature of texture analysis at the

structural level does not render itself as a tool for remotely sensed data. Texture analysis in the

statistical level does present great potential for multiresolution remote sensing analysis. Theoretically,

the pattern variations in the neighborhood pixel can be obtained from either the image domain or

frequency domain. Weska et al. (1976) adopted an algorithm proposed by Haralick et al. (1973) to

show the advantages of using image domain methods over frequency domain methods. The potential

of using texture information for pattern recognition did not receive wide acceptance due to its

computation costs. Kittler and Foglein (1984) demonstrated the use of textural information as an

additional feature during the feature labeling phase.

It is clear that texture information obtained from the multispectral image has not received any

noticeable acceptance. The reliability resulting from the incorporation of texture information remains

to be proved mathematically or statistically.
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THEORY

Plant Geometry, Plant Development and Phenological Parameters

The plant canopy structure, properties of the leaf, and pattern of light attenuation within the canopy

are the major factors that affect the reflectance acquired from a remote sensing device. In the case

of agricultural crops, how the canopy is structured is mainly a function of cultural practices. Typical

row crops start as independent plants isolated from neighboring plants. As the plant grows the leaf

canopy tends to overlap and interfere with adjacent plants, eventually forming a closed leaf canopy.

Edwards (1986) suggested that there are three levels at which we can investigate the clumping of

leaves in a plant canopy. The three levels are: (1) clumping together as an entire canopy of either

a discrete plant or community of plants; (2) clumping together on the separate branches subtended

by the plant; and (3) clumping together by individual position on the branch. All three levels of

clumping affect the canopy structure in different scales. For most plants the canopy structure is

somewhat heterogeneous in the natural environment. A basic mathematical model of the plant

canopy structure is essential to help in modeling the reflectance observed by the sensor as a result of

light being transmitted, reflected, or absorbed by the leaves and their background. Consider a plant

with a basic structure as shown in Figure 3 (adopted from Prusinkiewics, 1986).

0 Terminal node

Branching point

Apex

Internode

Zero order (main) axis

First order axis

Branch \
Base

Lateral segment

Figure 3. Basic plant branch structure

Plant root

Second order branch
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The plant is represented as a theoretical graph-notion of Preparatas (1973) "rooted tree" with the

botany inspired notion of branches and axes. The base node of the rooted tree is called the root. The

edge segments form paths from root nodes. In a biological context, the edges are referred as branch

segments. A segment followed by at least one more segment in any path is called an internode. A

segment with no succeeding edges is called an apex. A sequence of segments is defined as an axis if

the following conditions are met : (1) the first segment in the sequence originates at the root of the

tree or as a lateral segment at some node, (2) each subsequent segment is a straight segment, and

(3)the last segment is not followed by any straight segment in the tree. The axis and its descendants

constitutes a branch. The axes and branches can be ordered as shown in Figure 3 with a pre-fixed

angle between axes. Prusinkiewicz et. al (1989) have used a similar notation to model and produce

photo-realistic graphics of botanical garden plants. The geometric notation of such a plant should

be viewed as an intuitive link between the graph theory and real plant structure. Similar branching

pattern exists between the theoretical rooted tree in Figure 3 and a typical potato plant diagram as

shown in Figure 4. It is therefore a reasonable assumption to model a specific plant structure with

the mathematical tree shown in Figure 3 coupled with specific leaf angle distribution for the plant.

Figure 4. Diagram of a typical potato plant
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Plant stand modeling using L-systems

The L-systems first originated by Lindenmayer (1968) are widely used by computer scientists as the

formalism of language theory. Recently, L-systems and fractals have been combined to generate photo

realistic images of flowers and plants. The utility of L-systems as a tool to model plant geometry for

spectral reflectance estimation has not been investigated. The basic concept of L-systems can be

described using a definition from Prusinkiewicz (1980) : "define complex objects by successively replacing

parts of a simple initial object using a set of rewriting rules or productions". Vigorous mathematical proofs

can be found in Herman and Rozenberg (1975). Only basic concepts and definitions will be reviewed

in this section. A deterministic OL system (DOL) is the basic form for plant stand modeling.

Define a DOL system as a triple, G - (E ,h, co)

where

E : an alphabet

h : endomorphism defined on E'

E* : the set of all nonempty words over E

: an element of E" refered to as an axiom

Define the language of G as L(G)

L(G) - Uiko hi(w) or

0(6)) - co,h(4)),h2(co),h3(w),...

(12)

(13)

The above definitions indicate that the L-systems have properties such as parallelism in rewriting

processes and the notion of rewriting process conceived as a dynamic process. These properties imply

the suitability for biological development modeling. Obviously, plant development is a far more

complex process than a few simplified mathematical definitions. The lengths of stands are likely to

increase strictly in most plant stand development. A DOL system does not guarantee strictly

increasing word length. More constraints should be added to DOL systems to account for the

biological processes.



Definition : A propagating DOL (PDOL) system is

G - (E,h,w) c { no a E E -. I i e h(a) )

in other words,h is nonerasing

Remark : Li(G,x) - { y EV I y hi(x)} , V x e ' , il
Set L °(G,x) - {x} - L(G) - U LI(G,6))

Define the following terms

x - y, x directly derives y ( in 0) if y e L'(G,x)
G

a
x - y, x derives y in n steps (in G) if y E L"(G,x)

G

x -. y, x derives y (in G) if y E La(G,x), for some n 1 1 ; and
G

x -. y, x derives y (in G) if y E L"(G,x) for some n 2 0
G
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(14)

(15)

This set of tools, L-system characters and rewriting rules will be used to describe a tree. Consider a

string consisting of {x,y} and for each letter a production rule is assigned as

x - y - character x will be replaced by y

y - xy -. character y will be replaced by xy
(16)

This set of rewriting rules produces a tree-like structure as shown in Figure 5. The branching

topology of the tree was defined using the L-systems. However, the geometric aspects such as the

length of each segment and branching angle are not included in the tree.

X
I

Y
I

XY
/ \

Y XY
/ / \

XY Y XY// I \ \
Y XY XY Y XY

Figure 5. Tree structure generated from string {x,y} and L-systems
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Prusinkiewicz (1986) introduced a extension of turtle interpretation with bracket strings and L-system

to formally describe branching structures found in many plants. Details about these systems are not

discussed since it is out of the scopes of this study. Consider a branching point in Figure 3. The state

of a branching point can be expressed as B (x,y,z,r,O,c/p), where the Cartesian coordinates (xy,z)

represent the branching point in 3-D space, and the spherical coordinates (r,9,0) represent the

subsequent segment length and relative location to the branching point (Figure A.1 in appendices).

A plant stem can be generated using the above DOL systems. For simple analysis, leaf curvature was

not considered.
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General law for radiation beam penetration into the canopy

The following approach to study canopy characteristics in radiation regime was adopted from Mann's

early research since it lead to the concept of pseudo area index which was well accepted in agriculture

research community.

1. Line transect model with fixed projection width W

Assume each leaf has a projection width W which is projected onto a transect of length L located

arbitrarily within/below a crop canopy. The leaf projection and related coordinate system are

illustrated in Figure A.2 (Appendices). Each leaf projection is identified by the midpoint. The

locations of midpoints are assumed to be a set of random variables with distribution function F and

density function Pr . If x is a point in the transect L, the probability of x not being covered by a

projection from any of the N leaves in the canopy is given by

where

P (xilV) - [F(x-W ) + 1-F(x+W )] N
2 2

F(x--w) - 0, V x<w
2 2

F(x+w) - 1, V x>L--W
2 2

F(x- E) - probability of x e /1

1-F(x+w) - probability of x e 12

(18)

(19)

(20)

(21)

(17)

The expected portion of the transect being contacted by a light beam is the integral of the probability

of individual points along L being seen by the beam which can be represented by

wI
g'(contactIN Leaves, projection width- W) - 1 [F(x- W) + 1 - F(x+wAN dx

L 2 2

(22)
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L
f [F(x-w) + 1 F(X+E) + [F(x-E) + 1 - F(x+E-)1"

2 2 2
2

L2
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(23)

Assume that for each positive integer N, there is a set of random variables (xi, x2 , x.,Y), where

Y is uniformly distributed along L , xi are distributed according to a distribution function F with

density function Pr , Xi represent the center of leaf projection. (Y = y I W, N) is an event such that

point y has contact with the incoming radiation beam given N leaves with projection on L, each with

a width W. The probability that point y has contact with the radiation beam is equal to the

probability of y not being covered by the leaf projection i centered at Xi and can be expressed as

13.{Y-Y I W.14} Pri(Xi- 17) >y or (Xi+ f) <y} - P,{ I Y I> W}

The probability that point y is not covered by any of the N leaf projections becomes

N

PrIYIKAl P,d; [1X1-Y1 > 1) - 1113,{IXi-y I>
2 1-1.

Since

(24)

(25)

PMJCi-y1> 11-r} - Pr{(Xi-l-V)>y} + Pr{(Xi+E)<y} - F(y-E) + [1-F(y+E)] i-1,2,...N
2 2 2

Equation (25) becomes

(26)

P,{y1W,N} - [F(y-2) + 1 - F(y + TAN (27)

The expected portion of L in contact with the radiation beam is equal

f [F(y - LV) + 1 - F(y +LV)r dy (28)
2 2

The equation is subject to the following boundary conditions,



F(y-E) - 0 , V y<w
2 2

W WF(y-2) - 1 . V )1'1.--
2

Applying the above boundary conditions to Equation (28) yields

W

L
1 i r Ey.. W,

T

if tr kr--) + 1 - F(y .1. EANdy 1 r
2 2 if [F(y- 2 ) + -F(y+E)rdy

o 2

L--W
2 L

+1 1 [F(y -E) + 1 -F(y+E-)]Ndy + 1 f [F(y--W)+ -F(y+E)]Ndy
L w 2 2 L

L
w 2 2

I -i
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(29)

(30)

(31)

(32)

2
L-T

L

- 1 f [1- F(y +W )] N dy + 1 f [F(y-E) + 1 - F(y+ f)ri dy + 1 f [Ry - -1--VANdy (33)
Lo 2 L w 2 L 2

I r--w
2

If the leaf projection location has a distribution function F, the expected value of the portion of L in

contact with the radiation beam for N leaves with fixed projection width W is

L

L
f[F(y--tr) + 1 - F(y+-Er)rdy
o 2 2

(34)

If leaves are clustered together and N becomes large, the total projection area will tend to stay

constant ( NW = k) and Equation (34) becomes

NW-k
1 L11M g' { has beam contact I N,W,} - hra fexp I Nlog [F(y - w) + 1 - F(y+ w) ]) dy (35)

N-... w-- L 0 2 2
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Based on the convergence theory and exponential continuity, Equation (35) can be rearranged as

log[F(y- k ) + 1 - F(y+ Lc)]
1 2N 2Nfexp lim dy (.. W - Lc)
L 0 N-- N -1

(36)

As N approaches the limit, both numerator and denominator will become zero. Simplifying Equation

(36) according to the L'HOpital rule

k k k
L AY ) + .11(Y+ )

k
2N

1 fexp (lim
vv2 2N 2N2 ) dy

L N-. [F(y-- ) + 1 - F(y+
2N
-2--)H-N-2)

2N

1 f- exP I --k If (y) f dY
L 2

Iff is a continuous function,

r { has light beam contact } -
L

k f(y) dy

Assume the leaf projection over L is uniformly distributed, Pr(x) = 1IL, F(x) = xIL, for all x E

Carrying out the integration in Equations (31-33) yields

w W
2 L2̀ L

f (1 -1 --117)Ndy + f (1- W)N dy + f (1 - EY/ dy
L 2 Lo w z--

2 2

Equation (40) can be expanded to

(37)

(38)

(39)

(40)

(41)
r (average portion of contact IN leaves,projection width - W,projection uniformly distributed) -

N-1 W N+1 2 W N+1

N + 1(1
-E) N

+1
(1

L)
(42)
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2. line Transect Model with Stochastic Projection Width R(W) c [a,b)

The result based on the assumption that all the projections have a constant width W cannot be applied

directly to the field condition. It is more reasonable to assume W follows a probability distribution,

that is, the length of leaf projections will vary with location along a transect. Let F (rid) be the

conditional distribution function of X given W = d. The average (expected) portion of contact

becomes

g (contact with radiation beamIN leaves,projection width-W with F1,1))

1 W Nf fEw[Fcli,)(y - + 1 - F(xi .0(y +
2

)] ) dy
L

(43)

(44)

Let Yi represent the location of the center of the ei leaf projection along L and the width of

projection Wi be a random variable with some distribution function. If (Ti I Y = y) represents the

event that pointy is not covered by leaf projection i, the following equality exists

Pr(Ti I Ir-y) gcg,w) PrI(Ti I Y-Y) I (x, w)] (45)

where E(x,W) is the expectation with respect to the joint distribution of X and projection width W.

Equation (45) can be rewritten as

Pr(Tilir-y) f [F(xlz.)(Y-) + 1 F(xlz)(Y+.1')] dz
2

R(W)

(46)

R(W) is the domain of W and g(z) is the density function of W. Rewriting Equation (46) for events

Ti where y is not covered by any of the N leaf projections as

Pr(Ti,NIY-Y) IPAIY-Y)f (47)

The average value for the portion of L that has contact with the radiation beam is therefore equal to

L
1 f fPr(T,NIY-y) - L j j [F(xv)(y--z2) + 1 - F(x .z)(Y+ 2)] g(z) dzeiclY

o R(W)

B.C: R(W)c[O,L] range of the projection width

Wc[a,b] width projection is bounded by [a,b]

(48)

(49)

(50)
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Consider the critical points for the projection midpoint location along L where the probability

distribution changes. Divide L into section I to V as shown in Figure A.3 (Appendices), such that

the probability distribution can be applied to each section separately. The expected value of the

portion that has contact with the radiation beam is

g'(contact with beam IN,W,c[a,b]) -

Section I :

Section II :

Section III :

Section IV :

Section V :

a
b

f i f [1 z(x+Z)] ez)dzIlidxiz.) 2
o a

(51)

(52)

2s

f f [F(.,,z)(x- + 1 - Fwz)(x+f)] g(z)dz + f [1 - Fwz)(x+ f)] g(z)dz)
a a
2

bf f
lz)

(x- ) + 1 - F(xlz)(x+-)] g(z)dz Vick +
b a
2

(53)

(54)

2L -2x

I f [F(xlz)(X Z) + 1 F(xiz)(X+ Z)] g(z)dz + f F(xlz) 2(x-Z g z)] ( )d
2

a a 2L-2x
2

L b

I [f Fwz)(x-f) g(z)dzeldx
L- a a

2

3. 2-Dimensional Model with Stochastic Projection Region

(55)

(56)

Assume that the canopy is projected from a 3-D point (x,y,z) into a 2-dimensional domain R as shown

in Figure A.4. The distribution of 3-D points (x,y,z) will be mapped onto a 2-dimensional distribution.
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Assume the 2-D point distribution is called F(s,t). The total projection area is the sum of N small

areas. The size of each small area 09 equals k /N, where k is some constant. Any point (s,t) e R will

have contact with the light beam if none of the leaves fall within the bounded region

CI : f[s----W , s+W ] : [t--W ,t+W ])
2 2 2 2

The probability of point (s,t) not being covered by a leaf can be expressed as

(57)

h(s,t,w) - 1 - f ff(x,y)dydx (58)
R

where f(x,y) is the joint probability density function of point (s,t) e R that will be bounded by O. If

all leaves are independently distributed the probability that none of the N leaf fragments will cover

the point (s,t) is [h(s,t,w)] N with expected value

t ((S) ,N) - f f [h(s t,w)]N dr**
R

(59)

where {S} is the event that point (s,t) will be covered by any of the N leaves (fragments). By applying

mean-value theorem for each point (s,t) e R there exists a point (a(s),b(t)) e fi such that

Let

8' (15),N) - HU - k f(a(s),b(t))]Ndsdt
N

R

M - sup R f , and e - f(a(s),b(t)) - f(s,t)

Equation (60) can be rewritten as

Note that

... e sm k :.e - 0(-1 )
N N

(60)

(61)

(62)

r((si,N) - ff[i - k f(s,t) + e] Ndsdt - f fp - k f(s,t) - k erdsch (63)
N N N

R R



k k[1 --N-f(s,t)
N i

- E(N )(i-Tf(s,t)) N_i (- ke )i

since 0 s[1-(k )f(s,t)f s 1

Combining Equation (64) and Equation (65) we obtain

N

1[1-T4/Asa) NciNi E(7) ("t4c.; )i

Recall that r t - 0(-1 ) , (I )i i with K- constant
N N2
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(64)

(65)

(66)

(67)

N (1)(1-
(i -1)

) (68)N ke t N(N -1)...(N- i +1) Ki
1

N N
(K )i

-o 1 Nv i

1I*1E() -
(LC)[(1)Nf 1 -1] (LC ) 1

K N N
N

(74) 1 1 - (N )

(_)N+1 1

lim 0 Tvf(s - e-kfis't)
N- 1- N

)
N-

Substituting Equation (70) into Equation (63) yields

(69)

(70)

(IS} ,N) - f fe-k AM) dsdt (71)

In the case where {k = NW = total projection area}, we can define a pseudo area index (PAI=kIA).

Equation (71) becomes

d
f f e-A.PAlf(s,t) dsdt

R

(72)
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Multispectral Transformation

Mathematical basis of spectral signature and spectral indices

The main purpose of the multispectral transformation is to either reduce the dimensionality of the

original data or generate greater separability for class labeling. The characteristics of multi-

dimensional feature space is shown in Figure 6 and Figure 7. In the case of 2-dimensional ( Figure

6) feature space each region is subdivided into non-overlapping regions and labelled in terms of a real

world object such as potato, corn,..etc. To express the process in a more mathematical way, let X =

(xl,r2, ... ,rn) be a set of n pixels, and W = {wpw2, ... orm} be a set of feature names. An

identification operator A can map Xi into W such that

Aj : (x1,x2,....x.) Wi (73)

During the pixel mapping, different features can be labelled with some uncertainty. The procedure

reduces the [n pixels of q bits data] to a correspondent bit. Taking a closer look at the dryland wheat

cluster in Figure 6, no specific conclusion about spectral variation can be drawn. Representation

complexity is greatly reduced but none of the qualitative and quantitative information is provided.

io 20 io 40 io 40 70 80 90
Digital Count (Red 610-680 nm)

Figure 6. Diagram of multispectral feature space ( SPOT HRV 6/10/88)

100
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If another feature vector (in this case, SPOT HRV Green band) is added to the 2-dimensional feature

space in Figure 7, additional information can be extracted. High NIR and low red reflectance are

accompanied by increasing green reflectance which suggests an increase in green biomass as shown

in Figure 7.

19 RED (610-680 nm) 64

Figure 7. Diagram of 3-dimensional multispectral feature space (SPOT HRV 6/10/88)

The unique feature vectors from multispectral sensing devices enable the use of spectral

transformation to create new sets of image components or channels. The derived components

represent alternative descriptions of the original image. With appropriate mathematical constraints,

the new components can be related to the original spectral reflectance through linear combinations.

The multispectral nature of the remote sensing image is accommodated by constructing a vector space

with as many axes (or dimensions) as there are spectral components associated with each pixel. Many

methods are available to reduce or translate the pixel value in the feature space. In general, the

methods can be categorized as pure statistical and semi-empirical indices. Methods such as principal

component transformation or zero correlation rotational transformation are general purpose statistical

procedures and cannot provide a systematic approach to extract specific information from feature

space. Semi-empirical indices are usually developed for certain applications and require local

calibrations.



Orthogonal process

Given a function with the following form

f(x) - Cipi(x) + C292(x) + C393(x) + .... + C.9.(x)

Multiply the above equation by c to obtain

f(x)",(x) - Cicpi(x)(p.(x) + C292(x)p.(x) + C393(x)",(x) + .... + CA).(x)91,,(x)

By integration
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(74)

(75)

b b b b

f f(X)(pai(X)dX f Cipi(x)p.(x)dx + f C292(x)9.(x)dx + .... + f C.9.(x)q).(x)dx + ....
a a a a

The properties of an orthogonal system implies that if 9 (x) is an orthogonal series then

b

f 9.(X)px(X)dX 0
a

Equation (76) can then be simplified as

b

Let f Dp.(x)12dx - k.
a

We can then calculate ; by

V mon

b b

f 9.(x)f(x)dx - C. f[cp.(x)fdr
a a

b

f 9.(x)f(x)dx - C.k.
.

b b

CA f 9.(x)f(x)ch where k. - f[cp.(x)12dv
a

(76)

(77)

(78)

(79)

(80)

(81)

In general, an orthogonal system is conveniently defined with Is, = 1, which implies a normalization

will be required for each vector.
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Gram-Schmidt orthogonalization process

The Gram-Schmidt process can be used to construct a set of linearly combined vectors which will

bring out the most observable feature from spectral vector space. Using the vector inner product

concept we can define

The following rules exist

b

(f,g) - f f(x)g(x)dx
a

( g) (gf)

(f,g +h) - (f,g) + (f,h)

(cf,g) - (f,cg) - c(f,g)

(82)

(83)

(84)

(85)

Assume f and g is an arbitrary pair of vectors that is neither orthogonal nor parallel to each other.

We can write a equation in the vector space such that

g - af + I3u (86)

Where a, 48 are coefficients to be determined, and u is a normalized vector required to be orthogonal

to f. Two coefficients a and 13 can be readily found

and yield

f*g - a
u*: - p

pu - g - af - g-(f* g)f

(87)

(88)

The above procedures create a pair of linear combinations of the two vectors which are mutually

orthogonal. We can continue to apply this procedure to an arbitrary set of vectors. Defining a set

of independent variables

Co fo + Ci fi + C2 f2 + .... 0 (89)

Assume the set of vectors are not orthogonal to each other, a new set of coefficients can be defined

to force the orthogonalization. The coefficients are formulated as



go 10

g1 k1.010

g2 k2,0 10 + k2.1 12

+ fn

Solving the above linear system of equations for kid as

go -10

, V140)
g1 5o

(go,go)

Vr
g0

go) V
g2 12

241)

(gcgo) (gpsi)

Vego) (1.4._1)
g. go 6._1

(go,g0) 6,6-190m-11
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(90)

(91)

The general mathematical procedures can be presented in the following readily applicable form

(1) calculate 81

(2) calculate g2

(3) calculate g2

(4) calculate g3

1

- f2 (e1.12)

g2

I g2I

f3 (gi 13)81 13) g2

(5) calculate g-3
83

1 831

(6) continue the same procedure for g, - 'f,)gi '4,42 .- 'fadesn-1

(92)
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The orthogonal processes have been used for satellite image processing to calculate vegetation indices

such as the perpendicular vegetation index (PY1) and Tasselled Cap transformation. Certain

mathematical and statistical aspects of orthogonal processes have always been neglected. The

consequences have been the main reason leading to the misuse of vegetation indices. The orthogonal

processes derived vegetation indices are usually compared to results from statistical analysis such as

the principal component transform (PCT). Fundamental differences must be addressed in order to

quantify the spectral variability obtained from these procedures. The orthogonal processes and PCT

are similar in the way the final transformation is presented

where

T-WP +CJ 1 i i

Ti : value (or position) of jai pixel in igh transformation axis

Wt : weights matrix of transformation i

Pi : ith pixel from the input matrix

Ci : constant associated with each transformation axis

(93)

(94)

The q term is used to offset or scale the transformation values when a negative number is

encountered (a common result from zero correlation - rotational transform). To prove the offset does

not affect the statistical properties of transformation, define T = T + To where To is the location of

new origin. The covariance of the new coordinate system is

si, - 8' I (74 - Aff) (74 - men

Aft MT TO -* 7' - Mt - T - To - Mi + To - T MT

:. S 7e ... 8 T

(95)

The covariance of the data in the principal component axes is not affected by the offset term C. The

use of the CC term assures the proper display on digital image processing systems. The mathematical

basis for orthogonal processes was described in the previous section. Basic review of the PCT will be

discussed in the following section.
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Karhunen-Loeve transform ( Principal component transform )

Algebraically, principal components are linear combinations of the p random variables X1 , X2 ,..Xp.

Geometrically, these linear combinations represent the selection of a new coordinate axes. The new

axes represent the direction with maximum variability and provide a simpler description of the

covariance structure. A schematic diagram of a 2-dimensional principal component transformation

is shown in Figure 8

Figure 8. Schematic diagram of principal component transform

The direction of iri is defined by the correlation between variables X1 and X2 and the shape of the

ellipse (or ellipsoid in case of p dimensions) enclosing the data points of the variance-covariance

matrix computed from 2 (or p) variables. To use the PCT for multispectral images, the following

procedures are performed:

(1) Compute the variance-covariance matrix S (p x p) from all p spectral bands (correlation

matrix should be used in the case when digital numbers are used),

(2) Calculate the eigenvalues for matrix S, the eigenvalues give the length of principal axes

of the ellipsoid,

(3) Calculate the eigenvectors from each associated eigenvalue, the eigenvector defines the

direction of its associated principal axis,

(4) Use eigenvectors to construct the weight matrix Wi for equation 7) = Wi Pi + ci .
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The principal axes that contain small variabilities are usually discarded in statistical applications. This

is another common mistake made by remote sensing researchers. In the course of preparing this

thesis, some important feature variabilities have been found embedded in components with small

eigenvalues. This is due to the multispectral data collected by satellite or imaging spectro-radiometer

sensors usually do not comprise a single statistical population which has a unique distribution that

can be enclosed by an ellipsoid ( Figure 9).

40

30-
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0 VIVI VIII
0 20 40 60 80 100

Digital number
120

[22 Potato 11.1 Sage bursh Ea Corn
NNWI Wheat Ea Dryland wheat

140 160

Figure 9. Probability distribution of selected features from SPOT (6/10/88) scene

180

Certain procedures are required to reduce the probability that a low eigenvalue component which

contains important information is discarded. The decompositions of wheat and dryland wheat classes

in Figure 6 indicate that the selected features follow a multidimensional normal distribution. A

modification of class conditional probability is therefore required. In the case of a single dimensional

spectral feature space, the normal probability distribution is described by

P(xl
1 {1 (x 0

4
2

0 a)
}- (2n ).-.5 01 exp

2
(96)



where

x : single spectral value

: mean of x

Oi
2 : variance of x ,with an unbiased estimate

20 1
(xj vd2 , ni : number of pixels in class coi

n1- 1r J-1
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(97)

The univariate case can be converted to account for the multidimensional case using the following

procedures

(1) Replace the univariate spectral variable x by X which is a multidimensional variable

(2) Replace the univariate mean pi by multivariate mean M,

(3) Replace the variance ail by covariance matrix Si such that multi-dimensionality and the

effect of between band correlation are both included. Si is defined as

- { (X - M1) (X - r is the expected value operator

(4) Compute the unbiased estimate of Si as

1 nt
Si E [(xi- mo (xi - mi)ti

n1- 1

(5) Compute the multidimensional version of ( x - pi) 2 by ( X - Mi)t( - M i )

(6) Perform the following replacement

_1 N

(2n) 2o1 - (27) 1 'Sill

Finally, the multidimensional probability distribution is expressed as

N

p(Xlwi) - (2n) 2 I Si I 2 exp {-21 (X - Aid` .5;4 (X - M1)}

(98)

(99)

(100)

(101)
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Relation between orthogonal process-based transforms and Karhunen-Loeve transform (PCT)

The optical characteristics of ground features such as different vegetation types have led to the highly

correlated between-band spectral reflectance. The purpose of multispectral transformations are to

reduce the dimensionality of ground feature images acquired by an imaging sensor. Among the

transformations derived for remotely sensed data, the Karhunen-Loeve transform and orthogonal

process-based transforms are both statistically robust but also cause a lot of confusion. In the

previous section, the theoretical basis of these transforms was discussed. It should be clear that these

two types of transforms are fundamentally different in the following aspects

(1) The Karhunen-Loeve transform is defined by the interband correlation. The structure of

the variance-covariance matrix determines the shape of an ellipsoid that encloses the

scattered data and eventually determines the characteristics of the new coordinate system.

The processes of principal component generation is driven by the internal data structure.

Principal components from such a transform are therefore unique to the specific data set.

(2) The orthogonal process-based transforms are based on pre-selected external data. Recall

from the orthogonal process section that the construction of the orthogonal set is not

unique. The transformation weights change with the base vector which is subjectively

pre-selected.

The basic conceptual relation between these transforms is shown in Figure 10. The Karhunen-Loeve

transform identifies the number of dimensions but does not describe the feature space data structure.

The orthogonal process-based transforms describe the feature data structure by defining a set of a

priori functions. Dimensionality information is not available from the transformation results.

Feature p

Ortho-2
Feature plane

:nPA

-1

Ortho-1

Ortho-3
Feature plane

For Tasselled Cap transform

Ortho-1: Brightness Ortho-2 : Greenness Ortho-3 : Wetness

Figure 10. Relation between orthogonal transform and 1Carhunen-Loeve transform
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Functional relation between commonly used vegetation indices

The vegetation indices have been developed using band combination, ratioing and other transforms

to minimize the variability within data due to external factors. Research results have indicated that

the vegetative parameters such as leaf area index (L41), green biomass, percent ground cover (GC),

absorbed photosynthetically active radiation (APAR) productivity, and photosynthetically active tissue

can be reasonably estimated using different vegetation indices. Only a few spectral bands are available

from satellite platforms today. Since so many different vegetation indices have been derived from a

limited number of spectral bands, functional relationships are expected both in mathematical form and

as function of spectral characteristics. The following indices are frequently used by researchers from

various disciplines. The first category includes the direct band combination

RVI -
rre

ratio vegetation index, (Pearson et. al. 1972)
rier

d

. RVI 1NDVI -
+ r

red
+ 1

normalized difference vegetation index, (Rouse et. al. 1972)

PVI - - rufr.bg)2 + (rred., - rmos)2 perpendicular vegetation index, (Richardson 1977

(r - )
"`"e + (1 + L) soil adjusted vegetation index, (Huete 1988)

(r rC + rred.c + L)la,

- coirred,, - 6)2)

(01rwr., + rnd,, - 6)16)2 + X(1 + 02))

SAW

TSAVI

where

r nut reflectance from red band

rAir reflectance from near infrared band

C : parameters related to canopy

bg : parameters related to soil background

X : calibration coefficient

: soil line parameters

transformed SAW, (Baret et. al. 1989)

(102)

(103)

The second category includes the indices from mathematical transforms as described in the previous

section



Brightness - E al./ rj
J-1

R

Greenness - ECI2 ri
i-i

4

Wetness - E a r3J 1
1 -1

Intensity(I) - R + G +B

Hue (H)
G - B
I - 3B

Saturation(S) / - 3B
1
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(Kauth et. al. 1976) (104)

where

aid : weighing coefficients for index i & band j from Gram-Schmidt transformation math

is : number of bands

ri : reflectanc from band i

R : band reflectance displayed in red channel

G : band reflectance displayed in green channel

B : band reflectance displayed in blue channel

(105)

The relation between selected vegetation indices calculated from SPOT satellite image is presented

in Figure A.5 (Appendices)
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Relation between spectral indices and phenological parameters

One of the important applications in remote sensing of vegetation is to study plant dynamic behavior

throughout a growing cycle and to monitor phenological conditions. The variation in canopy spectral

signature as a function of ground cover and leaf structure is therefore of particular interest. With the

advent of new technology and the increasing requirement of frequent coverage and large scale ground

information, remote sensing has drawn attention from hydrologists, foresters, agronomists,

geographers, botanists and others. Even though each of these fields emphasizes certain aspects of the

problem, ranging from development of regional water resource management to the modeling of plant

physiological processes, the interaction between radiant energy and the vegetation canopy is usually

the basis for different applications.

A spectral (or radiometric) signature is basically the average reflectivity of the surface over a specific

bandwidth in the spectrum. The spectral signature is likely to vary with respect to different surface

cover compositions since the surface unit does not always contain homogeneous cover types. Consider

the simple situation of a field partially covered by vegetation. Assume G is the fraction of ground

covered by the vegetation. If the reflectance index (single spectral band, band ratio or other

combination) of the soil background is rs and the reflectance of the vegetation canopy re the

composite reflectance measured by the remote sensor is equal to

r-r,G + rs(1-G) (106)

The generic equation above can be applied to any wave bands of interest. The effective penetration

depth for different wavelengths within a canopy was categorized as shown in Figure 11.

Effective Pawls-Wien Depth

Wave keel (as)

Sod(r) 1 kat 12 leaves

Figure 11. Effective penetration depth for different wavelengths within a typical canopy
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The approximation is used to provide general guideline for the formulation of ground cover and

spectral reflectance relations. The range labelled as "a" in Figure 11 has a valley around 660 nm (.66

vm) which is known as the major chlorophyll-a absorption region. The absorption of radiation by

green vegetation is wave-length dependent and is usually characterized by the spectral absorption

coefficient. In terms of absorbed solar energy, the interaction between plant stand and solar radiation

can be categorized as follows:

(1) Radiation in thermal forms : approximately 70% of solar energy absorbed

by the plant is converted to heat to provide the energy for transpiration

and to maintain plant temperature.

(2) Radiation for photosynthesis: up to 28% of absorbed solar energy (in the

spectral region .38-.71 pm) is used for photosynthesis and stored in high

energy organic compounds in chemical form.

(3) Radiation for photomorphogenetic processes: photomorphogenetically

active radiation begins in the ultraviolet and ends in near infrared. It

performs the role of a regulator in the process of growth and development.

The top layer canopy reflectance and transmittance are low due to the high chlorophyll absorption

in the visible wavelengths. Subsequent reflection and transmission below the top canopy layer can

then be ignored. The spectral radiance at the top canopy layer in the visible range is therefore

approximated in terms of reflectance and transmittance. A general solution of canopy absorption can

be derived from Maxwell equations assuming the leaf is a homogeneous, isotropic, and non-magnetic

media. Rewriting the Maxwell equations for a homogeneous canopy as

where

VE poeo
a2Ep.,c - 0
ar2

E : energy vector

µ0,c0: permeability and permittivity of vacuum

pee, : relative permeability and permittivity

(107)

(108)

In case of a sinusoidal field such as the electromagnetic field in a remote sensing spectrum, the above

equation can be simplified as



where

Cr :
1

VP0e0Prer Fr-i;
: angular frequency

C : speed of light

+ E - 0
C2

The general solution for the above differential equation is

where

E - Aei(kr-6".0)

A : wave amplitude

: phase angle

kr : wave vector in propagation medium, kr
2x
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(109)

(110)

(112)

To formulate the penetration depth under vegetation absorption conditions, the refraction index n

should be introduced

n- - N, + iNi

k - Virko- Nrko+ i Niko

where

2:

NoNi : the real and imaginary parts of refraction index n

The field expression from Equation (111) becomes

E - Ael(Nk° -"ag Eoe-Nik°'

(113)

(114)

(115)

(116)

This equation describes the field behavior when absorption occurs within the medium. The energy
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(or field) decreases exponentially as its intensity is absorbed by the medium. The "skin" depth d is

defined as the thickness at which the field energy is reduced by a factor of C1

d- 1

2Niko 4n Ai;
(117)

It is clear that the penetration depth increases as the wavelength increases. The expression explains

why the near infrared band is a better indicator of canopy geometry than the visible bands. Equation

(117) can be applied to obtain canopy reflectance directly if Ni and kor are chosen properly. The

analysis works well for a canopy close to full cover. To apply the analysis on commonly used remote

sensing platforms on partially covered fields, equations will be written for red and green bands as

rg-rc.gG + r,.g. (1-G)

+ raj (1-G)

(118)

(119)

According to the basic radiative transfer model, re depends on the number of the leaf layers (or LAI).

This theory implies the nonlinear relationship between canopy reflectance and plant cover. Since LAI

is an important parameter for vegetative growth models, a preliminary analysis based on physical and

mathematical processes will be performed to study the LAI and canopy reflectance. The portion of

reflectance due to the vegetation canopy can be expressed as

r - r - r,(1 -G) - rc.G (120)

The range of influence for different wavelengths within the canopy was previously described in Fig.11.

Assume soil reflectance strictly increased with wavelength (Chen, 1991). The ratio of reflectance in

green and red bands is essentially independent of the soil conditions. The relation can be written as:

Rewrite Equation (120) for the infrared band as

(121)

(122)



G

Solving Equations (118), (119), (121), (122), and (123) we obtain

k2.(rg.re.,-tyrc.8)
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(123)

(124)

The transmission of beam radiation through a vegetative canopy is a function of leaf area index, the

canopy extinction coefficient and the radiation flux over a horizontal surface above the canopy. The

beam extinction can be decomposed into the direction of incoming beam radiation and the sensor

viewing direction. Consider the extinction process occurs within the canopy. In the visible wavelength

regions, extinction happens when the beam radiation encounters a leaf. It can be assumed that the

probability of beam radiation hitting i canopy element within n independent events has a binomial

distribution. Since the number of the cells in a canopy can be considered as infinite (or some very

large number), the probability of hitting a specific element will decrease relatively to zero. Assume

the number of independent elements of the canopy is a random variable x, the binomial distribution

under the above condition becomes a Poisson distribution.

P(x-i) , i-0,1,2,
i!

(125)

In the above equation, x is the expected number of elements in which extinction could occur. It is

clear that the probability that no radiation is absorbed (no extinction) is equal to

(126)

Assume the extinction in sensor and beam radiation are independent events. The extinction

coefficients for sensor direction (Ku) and beam radiation direction (Kbr) can be introduced and the

probability of the sensor seeing the sunlit soil is the product of eKbr.IA1 and e". LAI which is

equal to i(Kbr+Ksd)1Al. The apparent canopy cover is therefore equal to

G - 1-e-urk`r")."1

Substituting Equation (127) into Equation (120) we have

- rc. (1-e -(K
k

+K ) 1,41
)

(127)

(128)

A detail theoretical derivations and experimental results on the relation between GC and LAI can be

found in a special pilot project report (Chen, 1990).
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Feature Extraction in Spatial Frequency Domain

Feature extraction or pattern recognition from remotely sensed data reveal a pronounced performance

asymmetry in respect to which texture represents the foreground region and which represents the

background. Two distinguishable textural regions occasionally have unique characteristics that make

one texture more salient than the other. This characteristic implies that more than local or adjacent

textural element analysis should be applied in feature extraction processes. The key point of feature

detection is that features of interest must appear with a distinct characteristic within some given area.

The magnitude (dimension or spectral reflectance) of a feature signature is generally proportional to

either increasing spatial or spectral resolutions. As an observation sensor increases its spectral or

spatial resolution, the original homogeneous image cell (pixel) may start to demonstrate a new

primitive element. At a certain resolution the feature surface may exhibit an image characteristic

which is different from the original image. A similar effect occurs if the resolution is decreased. The

feature details may blur to a constant magnitude and the original feature may no longer be discernible.

Clearly, the choice of an appropriate resolution is implicit to both qualitative and quantitative

processes in feature extraction. Conventionally, the analysis of remotely sensed data utilizes statistical

tools that do not distinguish between spatial and spectral feature space. This approach provides

reasonable results but apparently is not suitable to handle multi-platform image data from various

satellite and aircraft sensors.

Concept of spatial frequency

The image enhancement methods used to extract features from remotely sensed data were derived

from spatial domain approaches. Since the Spatial Domain refers to the aggregate of pixels composing

an image, the spatial domain methods therefore operate directly on these pixels. Image processing

functions in the spatial domain can be expressed as

ex,Y) T [Ax,Y)] (129)

where f(x,y) is the input image, g(xy) is the processed image, and T is an operator on f defined over

some neighborhood region of (x,y). Due to the low computational cost, the spatial domain methods

have dominated the remote sensing digital image processing for the last 15 years. Frequency Domain

methods have been used for non-image data such as radar signal processing, random wave studies, and

underwater object detection. The conventional methods used in the discrete inverse problem of image

processing require matrix inversion. In the one-dimensional case (signal processing or transect

processing of an image), inversion of a square matrix is required. In two dimensional processing, a

block matrix inversion is required. This implies that a N2 by N2 matrix inversion must be performed
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for a N pixel by N pixel image. The matrix inversion requirement has imposed very severe limitations

on some stable numerical algorithms and prohibited the practical use, due to limitation in the size

of the image, of these algorithms. Recent advances in mathematical theory have allowed the

construction of super-resolution images from a blurred source. The method proposed by this research

is the Fourier transform in Radon space. Even though the Fourier transform is computationally

expensive, on a numerical basis, it presents less of a problem than matrix inversion.

Fourier analysis

The Fourier theory allows the representation of a function in terms of its frequency or temporal

characteristics and permits easy translation between the two representations. The representation of

periodic functions are usually done using Fourier Series, a case that does not occur frequently in the

remotely sensed image. Nonperiodic functions (or patterns) are handled through the Fourier

Transform. The measurement processes used by the remote sensing platforms to acquire information

about continuous functions found in the nature is accomplished by discrete sampling. Apparently,

the Fourier theory provides a tool for investigating the processes of replication and sampling.

Fourier series

Dirichlet originally stated the Fourier theorem as "If a function f(t) is periodic, has a finite number of

points of ordinary discontinuity, and has a finite number of maxima and minima in the interval representing

the period, then the function can be represented by a Fourier series

el 41111

f(t) - ao + E alcos(lco t) + E bisin(lca t)
2

(130)

where the expansion in terms of sine and cosine functions are harmonics with the frequency co (4) =

2a /T), where T is the period of f(t). The coefficients can be calculated as

sha

a,, - 4) f f(t)cosn tot dt
TE -44)

b. - (''' j. f(t)cosn ca t dt
it 'c/o

Fourier transforms

(131)

Features in remotely sensed images are often nonperiodic. This prohibits the use of Fourier Series

for digital image analysis. To extend the Fourier analysis to a Fourier transform, the series are



expressed in exponential form

1coshot -
2
(e + e 414")

sinhat - 21 (eu "t + e

A
Co

Rewrite Equation (130) as

f(t) - 1,E (a ib)eih" + (al + ibde-11 "t
2 ,1_, 21_1

The coefficients within the summations are given by

xica

a *I a1 t ib1 - f f(t)(coslwt f isinhot) dt
x/ca

mica

- f f(t)e*ii'dt
-mica

Rewrite Equation (133) as a summation over positive and negative values of I

t(t) - E enabt

t---

mica

where a1 - f f(t)e -11" dt
2 Tr -1IN

The properties of al can be generalized by replacing t by -t

The above equation implies

RIG)

w f fi_oethat dt
2 n

-mica

al a f(t) even

a1 - - a f(t) odd

a1 s a
1

f(t) neither odd nor even
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(132)

(133)

(134)

(135)

(136)

(137)

Unlike the Fourier series wheref(t) is required to be periodic,f(t) in the case of Fourier transforms can

be nonperiodic functions. Fourier expansion of nonperiodic functions can be made by assuming the
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nonperiodic functions are in fact periodic functions with an infinite period. Since to=ir/T, if to -0 0

then T co. Since in the limit (00) the fundamental frequency approaches zero, the summation over

discrete harmonics of the fundamental frequency becomes a definite integral over a continuous

distribution of frequencies. Define the fundamental frequency as AG) and rewrite f(t) in terms of Aa)

u/A

f(t) - f(t + 1-Lt ) - E f f(t) e-"A't dt e"""Ao)
Au) 2E

(138)

The limit is now taken as Aro 0. The harmonics making up the distribution become infinitely close

to one another and, in the limit, the discrete set of harmonics can be replaced by a continuous

function

Taking the limit of f(t) yields

lira (lAw) -
A co -0

f(t) - -1- f f f(t)e"*")cit do)
2x

The Fourier transform of f(t) can now be defined as

.1T {f(t)} .F(o) f f(r)e-1"' cis

(139)

(140)

(141)

Information is not destroyed when using a Fourier transform for temporal to frequency transformation.

The transformed information can be recovered using the inverse transform

F(c) ) - f(t) - f f(o)e"" do (142)

f(t) and F( co) are called a Fourier transform pair. Until now, the derivation has been limited to the

time and frequency domain. Space variables are introduced to the transformation process when

spatial analysis is needed such as in remote sensing image analysis. The transform or conjugate variable

must have reciprocal units. In the case of image processing when the pixel (or its equivalent ground

resolution) is used the conjugate unit would bepixe/ (or meter) and its reciprocal pixel "1 (or m-1). The

conjugate variable to the space variable is called spatial frequency. There are many important

properties associated with the Fourier transform which are described in many mathematical references.
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Convolution integral and Linear system theory are two key properties which require special attention

when applying the Fourier transform in Radon space.

Convolution integral

A Convolution integral are generally expressed in the following form

get) - a(t) 0 b(t) - f a(t)b(r -t)dt
.....

(143)

This integral is called a faltung or folding integral because the function b(t) is folded over the ordinate

before the integration is performed. The weighing function 604), called the convolution kernel, is a

window that moves in time (or conjugate unit) through which we are observing the function a(t). The

convolution is the average of the temporal function a(t) viewed through this window. The convolution

integral is different from the correlation integral which has a form

IMO

her) - a(t) ED b(t) - f a(t) b*(t-r)dt (144)

where a(t) and b(t) are different functions and b. is the conjugate. One major difference is that the

correlation operation does not commute (information passing) while the convolution does. The

relation between convolution and correlation can be described by a simple equation

a(t) ED b(t) - a(t) 0 b`( -t) (145)

The correlation and convolution functions are identical if the weighing function b(t) is a real, even

function. This is an important property for information extraction from vegetation indices derived

from remotely sensed data. The mathematical operations are simplified since the Fourier transform

allows us to write the Fourier transform of the convolution as the product of the Fourier transforms

of the two functions

410

.7111(0 0 b(t) ] - sr f a(t)ber -t)dt - A(G))B(0) (146)

The above property provides an efficient way to manage the complicated mathematical operation

efficiency in remote sensing image extraction.

Linear system theory

The electromagnetic wave passing through the atmosphere is projected onto the vegetation or other
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ground features and reflected back to the sensors on remote sensing platforms. They are many

theories which describes the possible physical processes. To simplify the analysis we can assume each

energy transfer step is a linear system. With this assumption we can characterize a linear system by

determining its response to a delta function input. The output of the linear system to an arbitrary

input function is the convolution of the input function and the delta function response. The

importance of such a property becomes clear as we shall discuss under sensor dynamics in the following

section. A mathematical operator T maps the input function f(t) onto the output function g(t)

1'1111. gi(t), r112 g2(t) (147)

To study the invariant properties embedded through scaling processes, assume the operator is linear,

stationary, and homogeneous

r {afi(t)} agi(t)

r aft(t) + bf2 } agi(t) + bg2(t)

{ fi(t - to) } gi(t - to)

: homogeneous

: linearity

: stationary

(148)

The relationships are based on the principle of superposition which allows the decomposition of a

complex input into a linear combination of simple functions. When a delta function is used as an

input into the linear system, we obtain

r Mt) s(t) (149)

s(t) is called Green's function or the Point spread function in the case of image processing. For a large

set of delta function responses we have

r f(tdo (t-td+ f(t2)8(t-t2) f(tds(t-t1) + f(t2)s(t-t2) (150)

where f(1') and f(t2) are eigenfunctions of linear operator F. The above equation can be expanded

to

r {E f(08 (t - t.)} E f(tds(t (151)
R-1 N-1

The following input function

r f ftti) (t - Ode} (152)

can be decomposed using the sifting property of the delta function



f(t) - ff(e)8(ti - t1)dt'

The superposition integral is derived by

r ff(e)8(t-tdde f f(e)r 16 (t -r') } f f(e)s(t-ts)dti

Radon transform
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(153)

(154)

The resampling procedure used in the scale information extraction requires approximating continuous

inverse problems in a discrete manner. Menke (1989) described the use of Radon Transform for

simple tomography problem. The general form of the continuous inverse problem is

- iGi(z)m(z)dz
a

(155)

A continuous inverse problem can be converted into a discrete event with the assumption that the

model function of a physical process can be represented by a finite number M of coefficients

rn(x)- E off fj(x)
J-1

The data kernel for a two (or more) variable transect (or slicing) processing has a form of

(156)

- f m[x(s),y(s)]ds (157)
c,

The data kernel is integrated along a transect C, that has arc length s. Define an image processing

operator Pwhich can operate on both one- and two-dimensions. Assume an image is separable such

that

I(x,y) - lx(x)ly(y) (158)

The operator P can be applied using

6)1 - 1(x,y) - 6)14 (x)Pily(y) (159)

where P2 represents 6) operating in a two-dimensional situation. The approach is used to overcome

the difficulty of using a two-dimensional process that presents computational problems.

Mathematically, this operation should be restricted to images that are separable. Researchers often
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use parallel stripping processing to relax this constraint. The relaxation might work fine in some cases

but is technically incorrect. The concept behind the Radon transform is to provide a method to reduce

the dimensionality without assuming separability. The Radon transform operator is given by

St - if 8 (z - (x2 + y2)112cose (160)

This equation demonstrates the process of a Radon transform which converts a digital image into a

sequence of one dimensional arrays. Figure 12 illustrates the parameterization of a transect through

an image. The transect is parameterized by the perpendicular distance u from the origin and

depression angle 0 between the transect line and x-axis. Any point on the transect can be expressed

by

Y

(a)

(;)
(sine

_sinea

sine cos.
)

(s)

(as) ( :: cos.) (xy)

u

(b)

(161)

Figure 12. (a) Integration direction in Radon transform, (b) Slicing projection (from Menke,1989)

Rewrite the data kernel di in terms of the transformation as
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d(u,13) - f m[x-ucose-ssin0,y-usin0+scose]cis
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(162)

The Radon transform is mathematically similar to the Fourier transform. The Fourier transform pair

used to transform between spatial position x and spatial frequency kr is

40

F(k) - f f(x)elkxdx

f(x) - 1 f F (k )e T dx
27c

Taking the Fourier transform of the data kernel function di equation with respect to u - lc.

. .
9 {d(k.,8)} - f f m[x-ucos13-ssine, y-usine+ssine)dsei"du

Taking the transform of the double integral from ds du to dx dy we can rearrange the equation as

(163)

(164)

(165)

cl(k d)) - K{d(k,t3)} - f f m(x,y)eik'culez*ikidneY duds

- .5117{ (k-keos0, ky-ksin0)} )

(166)

This procedure provides a way to invert the Radon transform. The last equation simply represents

a Fourier transformed image evaluated along radial lines in the (kx, k,,) plane. The Fourier

transformed image is known for all (kx, 19 if the Radon transform is known for all the values of (u,0).

The spatial domain image m(xy) can be reconstructed by taking the inverse Fourier transform. One

important property about this procedure is that "Since the Fourier transform and its inverse are unique,

the Radon transform can therefore be uniquely inverted (fit is known for all possible (u,0)". The slicing

characteristics of the Radon transform also make it a good candidate for a discrete Fourier transform.

Discrete Fourier transform in spatial frequency domain

The spatial frequency is the image analog of the frequency of a signal in time. A sinusoidal signal with

high frequency alternates rapidly, whereas a low frequency signal changes slowly with time. Similarly,

an image with high spatial frequency in the horizontal direction exhibits frequent changes of

brightness with position horizontally. The foundation of spatial frequency domain techniques is the
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convolution theorem which was discussed in the previous section. Let g(x,y) be an image formed by the

convolution of an image f(x,y) and a position invariant operator h(x,y), that is

g(x,y) - h(x,y) * f(x,y)

The following relation holds in case of Fourier transforms

G(u,v) - H(u,v)F(u,v)

(167)

(168)

Where G, H, and F are the Fourier transforms of g, h, and f, respectively. In the previous section we

also discussed the theoretical background of Multispectral Tranyforms. The eigenvectors associated

with the principal component, the coefficients of the Tasselled Cap functions, and discriminant

analysis transformations define new coordinate axes in the multidimensional space containing the

multispectral data. The data are expressed in terms of the new coordinate axes which could be used

to bring out certain features of interest. The Fourier Tran.tform operates on a monotone (single band)

image. The transform breaks down the image into scale components, which are defined in terms of

sinusoidal waves with varying amplitudes, frequencies, and directions. The coordinates of the two-

dimensional space are given in terms of frequency (i.e. cycle/basic interval). The following figure

(Figure 13) illustrates the spatial and frequency domain representation of a digital image.

along-scan

p

across scan

(a)

cycles per basic interval
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Figure 13. (a) Spatial domain, (b) Spatial-Frequency domain representation of an image

V

Consider a three dimensional feature surface generated from a single band digital image where x and

y axes are the rows and columns in the image with the brightness value of each pixel as the third

dimension. A series of waveforms of increasing frequency are fitted to the brightness surface.
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Information associated with each waveform is calculated. The calculated information provides (1) the

frequency of each of the scale components of the image, and (2) the proportion of information

associated with each frequency component.

Consider an infinite periodic sequence of impulses in the frequency domain spaced Af (Aw/27r) apart.

The inverse transform of this sequence is another sequence of impulses in the time domain, spaced

To (=1/M) apart. If the periodic spectrum F(to) (Fourier transform of f(t)) is multiplied by the

frequency domain sampling function, the convolution theorem states that samples of f(t) will be

formed into a periodic sequence with period To. Assume the spectrum is represented by a number

of K samples. Since the time domain has samples spaced T apart, the duration of sampling is KT.

Let 41(k) (k=0, 1, . . . , K-1) be a set of K samples taken from f(t) over the sampling period 0 to To.

Let F(r) (r=0,1,..,K-1) represent a set of samples of frequency spectrum. The continuous function

f(t) is replaced by the samples 4(k) and 2irf is replaced by 2/Tr0 f (with r = 0, 1, . . , K-1 and

c.)=27rrfro) The time variable t is replaced by kT ( = kTo /K k=0, 1, . . K-1). The Fourier

transform pair can be expressed in a discrete form as

K-1
F(r) T E (k)eU2xII)k,

k-0
r 0, K 1

1 K-1(k)(ki E F(r) e-pxrka k -
`0 rO

The discrete inverse Fourier transform (the second equation) can be rearranged as

1
K-1

E
To r-0

1
K-1

To E
r-0

F(r)e- 122crlIr

K-1
T E 41(k) e-12.r(k-1)1K

k-0

K-1 I-1E k) Eeq2.,(k_ux,
K k-O r-0

(169)

(170)

The second term in the last equation is zero, Vk #1; and equals to K, Vk=1. The above constraint

implies that 4)(1) can simply be replaced by 4)(k). The final form for Fourier transform pair is



K-1
F(r) - E 4)(k)e-i2"kir, r - 0 ,K -1

k-0

1
K-1r,
2 F(r) s

K
k - 0,...,K -1
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(171)

Two important properties of the discrete Fourier transform when applied to image processing are

Linearity and Symmetry.

Discrete Fourier transform of a digital image

Fourier transforms need to be rewritten in order to describe an image in discrete spatial frequency

domain. Define a sequence ¢(i, j) which represents the brightness of a pixel at location i, j within an

image (of size K by K pixels) as

4)(i j), i,j - 0 ,K -1

The discrete Fourier transform of this image is described by

I-1 1C-1
Z(r,$) - E

1-0 1-0

An image can be reconstructed from the above equation by

4) can be rewritten as

1
I-1 1C-1

O(i,j) E E cr,$),J2.(ir isVIC

K 1-0 J-0

K-1
s(r ,$) - E i2xt.ir E (ii) e-12.ispr

1-0 1-0

It is clear that the right side of the process is a one-dimensional Fourier transform

K-1
E (ii) equmr,
i-0

i 0,...,K-1

This one-dimensional property simplifies discrete Fourier transform of an image as

(172)

(173)

(174)

(175)

(176)
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K-1
0(r,$) E cl)(ins) E-12wirir (177)

i-0

The procedure to transform an image becomes (1) transform each individual row and generate an

intermediate image, and (2) transform the result from (1) by column to yield the final result.
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Image information extraction

The relevant details of images exist only over a restricted range of scales. The importance of image

structure which affects the level of resolution was discussed in the previous section. Any given image

has a limited extent or window (defined as outer scale) as well as a limited resolution (defined as inner

scale). These limits are set by either the format of the image, the structure of radiation, or the subject

matter. In the case of an image format, the limitations result from the physical characteristics (such

as grain size, charge-coupled device (CCD) array spacing, sensor mirror scan angle) of the imaging

devices. In the case of inner scale, the determination factor can be the luminance situation. For

subject matter, the limiting factor is the relevant scales of different objects. The problem of setting

outer or inner scales is especially difficult for automated image processing. In satellite image

processing, all variable structures need to be retained if no a priori knowledge is available for certain

features. This implies that the image should be treated simultaneously at all levels. A general

solution to achieve this goal is to (1) embed the original image with a family (a range of scale) of

derived images and (2) analyze relations between structure features in that scale range. In terms of

inner and outer scales, the inner scale measures the resolution while the outer scale determines how

far to proceed. No mathematical formula or theory is available to describe the perception of different

levels of resolution. Any image can be uniquely embedded in a resolution family if the constraint is

set such that no spurious details should be generated when the resolution is diminished.

Theoretically, the diffusion equation with a second order linear parabolic form can be used to describe

the structure of this resolution family in a continuous manner. As the resolution decreases the image

becomes less articulated because the extremes ("bright" or "dark") disappear one after the other. This

is a structure erosion process which is similar in every resolution. Traditionally, the remotely sensed

images are analyzed using pixel-based statistical approaches. The most significant drawback has been

scene dependency which makes cross-referencing and temporal analysis very difficult. Applications of

texture analysis in remote sensing have been limited due to the lack of computing tools and

understanding of the importance of texture. Practically, textures can be analyzed on two levels :

statistical and structural. On a statistical level, a set of statistics are derived from the local features

which are defined in terms of reflectance at a specific position relative to each point in the image.

Analysis on the structural level is complex but can derive more detailed information with the

introduction of neighboring pixels and their statistical descriptions.

First-order statistics

A discrete image array F(ni ,n2 ) can be completely characterized statistically by its joint probability

density function
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p(f) - p{f(1),f(2),....,f(Q)1 , Q - N1 N2 which is the order of joint density (178)

If all pixel values are statistically independent, the joint density can be factored into the product of

its first-order marginal densities as

P(f) - P {f(1)},P tf(2)),....,P{f(Q)} (179)

The probability distributions of image values can be estimated by histogram measurements with the

above characteristics. The first-order histogram estimate of the probability distribution is

N (j)
HE(j;q) '

N
p

(180)

Where N
P

represents the total number of pixels examined and N
P

W denotes the number of pixels for

which f(q) = ri , (ri is a set of discrete values ) , j = 0,4..4-1. If the image source is statistically

stationary, the first-order probability distribution will be the same for all vector components q. If the

image source is ergodic, then measurements over a collection of images can be replaced by spatial

averages. The quality of the image after scale transformation can be examined using first order

statistics. The characteristics of the image histogram can also be investigated using first order

statistics which are computed around single pixels relative to the population. Two first order statistics

selected for investigation are

.
E (i - p.)3 p(i) 3m moment
t- i

n

-E p (i)log (p ( i)) entropy

(181)

wherep(i) is the occurrence probability of pixel value i (either from raw spectral value or transformed

image). The reason to perform such analysis is based on the statistical properties of a histogram. The

third moment is a measure of histogram skewness. When the histogram is symmetrical, its value is

0. The entropy, on the other hand is a measure of uncertainty. The goal to evaluate feature

extraction from multi-scale images is to determine how "close" the features match in different scales.

It is important to have a minimum dispersion along any given direction in the measurement space.

Small dispersion in the measurement space means less uncertainties in the selected feature.

Theoretically, the information content is closely related to the uncertainty. The information content

in any given signal is the amount of unpredictable change. If the signal is completely predictable, then

it contains no information. Consider a discrete signal collected over a time interval [0,T1 such that
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the signal is constant over sampling periods of length T and has values in a discrete set {vo, vn_1}.

The number of possible signals which can be generated in the given time period is n T IT. Define the

information in period [0,7] to be

H- T (182)

The logarithm can be in any base, but the natural logarithm is most appropriate since base 2 is used

in computer communication and the information is measured in bits. If each value in the discrete set

is equally likely (a reasonable assumption for signals from remote sensors), the probability of any level

is p (=1/n). The above equation becomes

H - Inn - --T lnp (183)

In case when the levels are not equally likely (p*1/n), the information content in N intervals is

11-3.

H - E Ri(N)InPi
i-o

(184)

Where Ri (N) is the number of occurrences of vi in a long series of N trials and pi is the probability

of The following equality exists in a long series of N trials

12.(N)

N Pi

In Tir intervals, the information content is equal to

TH - E
r-o

(185)

(186)

The continuous version of information content for a feature population with probability density p(x i)

= pi(x) is therefore

H - fP(xli)InP(xli)dx - -till1P(x101 (187)
x

If p(x j i) = 1, then H = 0 and there is no uncertainty and therefore no information content in the

given signal. The entropy is therefore a good measure of the uniformity of the image histogram. The

entropy will take its maximum value when the pixel value is uniformly distributed. A stronger

theoretical support for using the entropy as a measure of scale variabilities in an image can be
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obtained using the following relationship derived by Schroeder (1991). assuming Sq is the moment

of order q of the probability pi

For the equation becomes

S : - 10g Ld q
, q ES

° 9 1 r.

N

E pi logpi
r-i

(188)

(189)

Which is the generalized form of entropy defined in the previous section. To take the concept of

generalized entropy one step further Schroeder defined a generalized dimension as

N

log E
Dq

r-o q - 1 log

(190)

The p, is now defined as the probability that a random variable falls into the ith class of scale r. For

a equally likely event pi = 1 I N, the above equation can be rearranged as

1 log N(11N)q log N
q q - 1 log r log (11r)

(191)

For q=0, the definition of the equation agrees with the Hausdorff dimension, D. The term, Dq was

defined as a generalized dimension with the hope that it can be used for scale measurement. Consider

a generalized feature generator with line segments ri and probability pi which satisfies

liM

(NE pr; -c
,-1

pi rr - 1

Rearrange the above equation as

N

log E 141
T s(q) - lira

log s
(1 - q)Dq

(192)

(193)

(194)



In case of q=1, ,r(q)=0 we have D1 as

For q--)1 and pi = 1 /N, D1 becomes

N

E pi log pi
D t-i

1 N

E pi log r i
i -1

S,
D, - lim

,--o log s
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(195)

(196)

Where S1 is the generalized entropy defined in the previous section. This information measure has

not yet been used in image analysis. The theoretical link between information entropy and the scale

invariant dimension (or fractal characteristics) in a digital image should be apparent since D1 is

essentially derived from a generalized feature generator. The relation between these two information

measures was used to extract information content from remotely sensed image.

Fractal dimension

A fractal is defined as a { set } for which the Hausdorff-Besicovitch dimension is strictly larger than its

Euclidean dimension (Mandelbrot, 1976). The fractal dimension of a surface is an indicator of the

surface roughness. The closer the fractal dimension is to its Euclidean dimension, the smoother the

surface. By definition, the fractal dimension of a surface is invariant with respect to linear and scale

transformations of surface data. Consider the raw reflectance values or any spectral measures (such

as the results from multispectral transformation or the Fourier transform, etc.) from a remotely sensed

image as the 3rd dimension on the image plane. If the fractal dimension of a specific measure is

invariant to different scales, then the fractal dimension can be used as a basis to compare suitability

of each measure when multi-scale processing is required. It should also provide a suitability scale range

for the specific feature in an image. To show the adequacy of using the fractal dimension as a

measure for surface spectral intensity, only one basic proposition needs to be proved. The proposition

which was first brought out by Pentland in 1984 states: "A three dimensional surface with a spatially

isotropic fractal Brownian shape produces an image whose intensity surface is fractal Brownian and

whose fractal dimension is identical to that of the components of the surface's normal, given a

Lambertian surface reflectance function and constant illumination and albedo". The proof of this

proposition is summarized in the following paragraph with minimum mathematical formulations.

Assume a lambertian surface, the spectral intensity I at any given point P is a function of the surface

normal N at the surface point projects to P
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(197)

where p is the surface albedo, X is the illuminant intensity, and L = (I /y, I ) is the illuminant

direction. The variations in I are dependent on variations in N. The preposition can be defined as

prrx,y) - /(x+iix,y) y)
-

I1Ax HE

(198)

To prove the above equation we first assign N1 to be the normal at point (x,y) and N2 to be the

normal at point (x + & ,y). The above equation can be expanded as

Pr
- pl(N2t)

< Y - F(y)'Pair

The equation can be further expanded as

(199)

pr( p 1 (Nixlx + Nlyly + NIA) pl. (Nul, + N2y1), + Nu 1,)
-

IIAxIIH

As p , 2 , L are constant, Nx, Ny, Nz are all fractal Brownian functions and the surface is a spatially

isotropic fractal Brownian function, then p 2 Nx ix , plAryly,andpANzlz are also fractal

Brownian. Clearly, the following intensity term

I - pl(N-L) - pl(NzLz + NyLy + NZLZ)

must be fractal Brownian also.

(201)

In a remotely sensed image, different land types are better characterized by spectral responses to

different sets of bands than by overall average responses to all bands. Higher D values for a band

implies higher within band variation (more spatially complex) and probably higher textural

information. The coefficient of variation (standard deviation divided by mean) is a spatial statistic

measure of data variability. The fractal dimension, on the other hand, is an index of spatial

complexity (neighboring process). Besides the fractal dimension, three texture measures were also

chosen as candidates for image information content evaluation. These texture measures are based on

second-order statistics.
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Second-order statistics

Estimates of the second-order probability distribution of a digital image source can be obtained by

measurement of the second-order spatial histogram. Second-order histogram features are based on

the joint probability distribution of pairs of pixels. Consider a pair of pixels F(m,n) and F(x,y) which

are located at (m,n) and (x,y) and are separated by r radial units at an angle of 0 . The joint

distribution of spectral values is

P(a,b) - PR{F(m,n) - rQ , F(x,y) - rb) (202)

Where ril and rb are pixel spectral values. The histogram estimate of the second-order distribution

is equal to

P(a,b) N(a,b)
M

(203)

Where N(a,b) is the number of occurrences for which F(m,n) = ra and F(x,y) = rb and M is the total

number of pixels in the measurement window. The second-order statistics used include

(1) Angular second moment - E E [P(Q)12ij r J

(2) Entropy - P(R) p(i,J)
j

(3) Inverse second moment - E E 1

1 + (i +j)2 R

(204)

Where P(ij) is the spatial co-occurrence matrix and R is the frequency normalization constant for

selected orientation.
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Sensor Response Dynamics

Image sensors often do not maintain proper spectral response due to non-uniform material properties.

In the case of space-borne sensors, a common problem is the non-linearity in the sensor.

Preprocessing corrections are usually required for multi-sensor multiscale data fusion. The

commercial remotely sensed data are usually available in corrected forms unless special arrangement

can be made. In most cases, the data subject to the correction processes are irreversible (e.g, TM

geometric correction). The following critical corrections are keys to the scale study.

Non-linearity correction (TM,MSS)

Consider an imaging system which produces an observed image field 4) (x,y) according to the

separable model

4)0(x,y) - ttQf tD{C(x,y)} 1 (205)

where

0,2( .} : sensor point amplitude response

OD { -) : spatial, time, and wavelength response

C(x,y,A) : spectral energy distribution of input field

(206)

Sensor luminance correction can be accomplished by choosing a point restoration operator OR fi

such that

ttie { 0.2 { -} ) - 1 (207)

This correction can be performed using arithmetic operators or look-up tables in a digital image

processing system. In a pre-launch calibration, a set of binary measurements Q are obtained and

converted to a fixed point number L which is linearly proportional to the sensor input luminance.

The following relationship is obtained and fitted to the data

I, - gfo21

.40 Q.,
(L - Lipid

The required luminance response can be obtained by rearranging the above equation as

(g { Q} - Li) (208)

(209)
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Sensor response correction (SPOT)

The spectral response of image sensors is determined by sensor materials ( in case of SPOT, CCD

arrays ). The corrections for improper spectral response functions or cross-platform spectral data

merging can be achieved by a straight forward procedure as described in the following paragraph.

Consider the actual spectral response, L. , and desired sensor spectral response, Ld , to a energy

distribution function P(2) as

L. .. fP(1)5(1)dl.

Ld f P(A)T(1)(11

(210)

Where 5(2) is the sensor spectral response and T(2) is the desired spectral sensitivity. It is possible

to find a functional transformation f such that the estimate of Ld is

Ld PL.} (211)

The linear transformation as shown in the following equation can be used for its computational

simplicity

Ld - aS(1) + (3 (212)

Where a and 13 are regression coefficients which minimize the selected error function.

Feature Signature Variabilities and Error Analysis

The variabilities (or uncertainties in our particular case) of a measure f can be approximated by

(of )2 - (a 102 (Lau
ay ou

ff+( 5 v)2 (-612 + 2C2,, (-9
(ay )

+

where Su is the uncertainty in variable u, and C2uv is the covariance between two variables u and v.

The covariance can be expressed mathematically as

(213)

Cam,2 BM 1E I( Ili 17 ) ( va i; ) la
n.... n

17 and i; are mean values for u and v (214)

The covariance in the above equation approaches zero when measured errors are not correlated with

each other. The use of this generalized equation can best be illustrated using any derived vegetation

indices as described in the previous section. The normalized difference vegetation index (NDVI) is

of the indices used frequently by scientists and researchers. A simple derivation with general
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equations applied to the NDVI is provided in the following paragraph. The analysis of other

vegetation indices is much easier since most of the indices are linear combinations of different spectral

bands.

Assume F denotes the normalized difference of two spectral bands, L1 and L2 or

The partial derivative

The expected value

Var [F]

- L2

be

730-18

expressed as

(213) as

r[ 1.2])

L1 +L2 }

(215)

(216)

(217)

(218)

L1 + L2

of F with respect to any variable (1 can

- 1,1
aF
an (L1 L.2)2

and variance of F can be derived using Equation
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One of the most important variables in land-based remote sensing is the percent ground cover within

an individual pixel. Considering the simple two dimensional projection of a given terrain (Figure 14),

the total reflectance of a given pixel can be expressed as

L(1,,x) - E ch1(x);(1. ,x) (219)

where



(1)k(x) - fraction of cover type k in pixel

- average reflectance of cover type k in spectral band i

The above equation can be expanded with the associated constraint for vegetated ground as

L. - + 4bLi.b + CbLi.sb

ConStraini 4C + d)b + - 1
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(220)

(221)

where c represents canopy, s represents soil

The sensitivity of F can be expressed as

a F

background, and

( az, az
L2-a4), riat )

sb represents shadowed

acos,

background.

(222)aco,

az r
..c..,ix

(L1 + L2)2

a4),
L+ L +11, 1,th

Figure 14. Components of total reflectance in a pixel

Much research has been conducted to investigate the relation between percent ground cover and

associated shadow on the ground. A reasonable model which was adopted for the study is to assume

the poisson distribution of the canopy structure. The relationship between the canopy and its shadow

can be expressed as

4)b - (1 401' I

ri - shadowed area cast by the plantivertical canopy projection area

(223)

Combine (f)c + b + ¢ sb = 1 and ¢ b = ( 1-0c)71+1, the partial differentiation term can be



simplified as

(r1 + ) ( d)c)n
attc

a4)sb (T1 + 1) (1 cion 1

The sensitivity of Lt with respect to (/),. becomes

aL1
- - (ri +1)(1 -cpc)nLic + ((n+1)(1-1)c)n)11,sb
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(224)

(225)

Jasinski (1988) modeled the canopy as a block with height H and width D as shown in Figure 15(a).

The 77 equals to H tan O I D. The relationship can he used for a row crop as shown in Figure 15(b)

with small modification.

(a) (b)

Cylindrical row crop

Figure 15. (a)Block representation of plant canopy, (b)Cylindrical representation of row crop

The canopy of the row crop can be mathematically described by

(x-nh)2
+

y2
+

(Z -Zo)2
1

a2 b2 c 2
(226)

Where x , y , z are the coordinates of a given point on the surface of the canopy and a ,b ,c are the

semi-axes. zo is the distance from the ground to the center of the cylinder and h is the row spacing.



The n for a simplified row crop canopy can be expressed as

1
H2 +D2

Htan O.
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(227)

In the case where no simple geometric equation is available to describe 71, a numerical solution can

be easily performed. The formulation of the error analysis has been generalized and should be

applicable to model the feature variabilities with respect to parameters which might affect the overall

spectral reflectance.
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METHOD AND PROCEDURE

Remote Sensing Data Acquisition

The study covers the area from Boardman to Coldspring Reservoir (Figure 16). Image data from

Landsat TM, MSS, SPOT HRV, SPOT Panchromatic, and Compact Airborne Spectrographic Imager

(CASI) were assembled for the study area. The characteristics of each sensor was listed in Table 1.

The data from Landsat was ordered directly from EROS data center (Sioux Fall, South Dakota) with

satellite orbit correction only. Two scenes cover Path 44, Row 27 and Row 28 were required to cover

the whole area. The special uncorrected scenes was acquired from SPOT Image Corporation under

a special pilot project agreement with CROPIX inc. (Irrigon, OR).

Figure 16. Satellite overview of the study area with DLG vector overlay
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Table 1 Characteristics of the sensors used in the study

SENSOR
SPECTRAL BANDS

(um)

i D. RANGE

I (m) i (bits)
MSS - 1

4

TM- 1

2
3
4
5
6

7

SPOT - 1
2

3

CASI - 1
2

3
4
5
6
7

8

0.5 - 0.6
0.6 - 0.7
0.7 - 0.8
0.8 - 1.1

0.45 - 0.52
0.52 - 0.60

4.

0.63 - 0.69
4.

0.76 - 0.90
1.55 - 1.75
10.4 - 12.5

2.08 - 2.35 @

4.

4.

0.50 - 0.59
.....

0.61 - 0.68
4.

0.79 - 0.89 1.

4.

,.
0.4362 - 0.4782
0.5398 - 0.5504
0.5858 - 0.5964
0.6319 - 0.6444

4

4.

0.6586 - 0.6729
0.6747 - 0.6872
0.7086 - 0.7140 .
0.7463 - 0.7589

79x79
79x79
79x79

4
79x79

30x30
@ 30x30

30x30
30x30
30x30

120x120

30x30

20x20

20x20

20x20

5x5
5x5
5x5

5x5
5x5

5x5

5x5
5x5

7
7

7
4 ...

6

8
8
8

8

8

8

8

8

8

8

12

12

12

12

12

12

12

12

The use of CASI image data was a completely different concept. The CASI system used in this

research was still in its final commercial prototype from ITRES Research Limited (Calgary, Alberta,

Canada). The sensor uses the reflection grating based pushbroom imaging spectrograph technology

which covers the wavelength range from .43um to .87pm. In any operation, the band width can be

chosen as multiples of the 1.8 nm sampling interval. The CASI data were acquired in both

multispectrometer mode and multispectral imaging mode. The multispectrometer was used in 39

equally spaced points across the full field of view. The sensor recorded the entire spectrum for each

selected point in each frame. A moving average was applied to the full spectral curve (244 bands @

1.8nm). Regression analysis was performed using spectral values and the ground feature of interest.

A correlogram was produced with the correlation ranking between ground features and spectral bands.
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The top eight ranking bands were used to reprogram the sensor for the multispectral imaging data

acquisition. Originally, CASI was scheduled for high spatial resolution data acquisition since it can

be mounted on a light aircraft. The instrument provides full resolution image of the scene under the

aircraft for each specific band. The total number of bands chosen determines the maximum frame

rate. Frame rate and ground speed determine along-track pixel spacing (Figure 17). Altitude

determines cross-track pixel spacing (Figure 18). The CASI was mounted on a CESENA 172 aircraft

floor with special approval from Federal Aviation Administration (FAA). A gyro was electronically

connected to the data acquisition system for in-flight rolling, yawing, and crabbing conditions. Data

were acquired from both 1700 meter (2 meter ground resolution) and 3300 meter (4 meter ground

resolution). Difficulties occurred during the 1700 meter test flight due to the strong head wind

condition and the unexpected long integration time required for minimum aircraft stabilization speed.

Images acquired under this condition were fragmented and blurred even after intensive geometric and

radiometric corrections. Very few linear features in the scene were acceptable for texture analysis.

To make things worse, the target area for final flight had to be altered as aircraft restriction was

requested by the Boardman Navy Bombing Range. The high rental cost for the aircraft and CASI

instrument package prohibited another flight from being taken.

v

9

8

7

6
- Flight II

5

4

- Flight I
3

2

l

D , ,
1000 2000 3000 4000 5000

Altitude (meter)

Figure 17. CASI across track ground resolution vs altitude
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Ground Spectral Data Collection

Hyperspectral data were obtained using a Spectron Engineering SE590 spectroradiometer. The

instrument has 250 spectral bands spread over 0.4 p.m - 1.1 pm (Figure 19) with a nominal bandwidth

of 2.6 nm. More than 3200 data sets were taken both in the field and in the laboratory. A family of

spectral curves cover crops from potato, alfalfa, corn, peas, onion, orchards and other dominant land

features in the area of interest were taken in the commercial agricultural fields of the Columbia Basin.

Since incident solar light intensity is variable, the spectral reflectance was calculated using a reference

panel (Spectrolon). The SE590 was attached to the end of a truck mounted boom at a maximum

height of 9.1 meters above the soil surface. Ground cover was taken simultaneous using photography

and a grid rack. The measurements were generally taken between 10 AM to 2 PM Pacific Daylight

Savings Time. The percent ground cover was calculated using a box counting technique. Leaf area

index (LAI) was obtained using destructive sampling. A calibration data set was taken in a dark room

equipped with Tungsten lamps (3200 K). Measurements were made using layers of leaves which

covered different types of soil under different moisture conditions and slopes. Statistical analysis was

conducted to obtain the relationships between several vegetation indices and spectral reflectance.

Detailed analysis was reported in Chen and Lamb (1991) and Axness and Chen (1991).

0

0

0.

0

0

C4 0

0

0

0

Spectrometer Data Analysis
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i
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4
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Figure 19. SE590 spectral reflectance curves and equivalent MSS and SPOT bands
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Radiometric and Geometric Corrections

Calibration and conversion were required to remove the possible errors inherited from preprocessing

procedures. An effective method which can be used to accomplish this requirement is to convert

digital numbers from the Computer compatible tape (CCT) to scientific units such as radiance.

Different corrections were applied to Landsat, SPOT, and CASI data since these sensors have

different characteristics and the data sets available to the end-user were processed differently.

Landsat MSS and TM

The absolute radiometric calibration between bands on the Landsat satellite sensor is maintained by

using internal calibrators which are physically located between the telescope and the detectors and

are sampled at the end of a scan. The radiometric calibration for TM and MSS scanners can be

accomplished by resealing the raw satellite digital data to calibrated data (Clark, 1986). Theoretically,

the raw digital data and calibrated data have a same dynamic range for any scene that is processed

on the ground during a specific period of time. Conversion from a quantized and calibrated value

(QCAL) on CCT-P tape to spectral radiance, Lx, was performed using the following equation

( LMAJCI - LMR411
- LMINA + QCAL

QCAL.

where

QCAL - Calibrated and quantized scale radiance , DN

LMINA - Spectral radiance at QCAL - 0

LMAXA - Spectral radiance at QCAL - QCALW

QCAL - Range of resealed radiance , DN

- Spectral radiance , mW an-2 seer -1

(228)

(229)

The parameters used in the calibration equation have been changed many times since the launch of

both Landsat-4 and 5. The parameters used for spectral data calibration were listed in Table 2.

Further between-scene processing was conducted since the images used for study area were not

obtained from the same acquisition date. For the clear Landsat scene, a reduction in between-scene

variability was achieved through a normalization procedure which converted the spectral radiance to

effective at-satellite reflectance (or in-band planetary albedo). The effective at-satellite planetary

reflectance is given by



where

R Li d2

PP ESUN 1 cos 0,

p - Effective at satellite planetary reflectance , dimensionless

Li - Spectral radiance at sensor aperture , mW cm-2 ster-1

d - Earth-sun distance , astronomical units

ESUN1 - Mean solar exoatmospheric irradiances , mW cm-2 i.sm-1

Os - Solar zenith angle , degrees

vm-1
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(230)

(231)

The mean solar exoatmospheric irradiances used for calibration was listed in Table 3. A precise

accuracy assessment of such a calibration is very difficult due to the possible MSS sensor dependent

changes in sensor optics with time and temperature-dependent changes and continuous in orbit gain

changes of the TM internal calibrator. It seems a reasonable assumption that the error in the

absolute radiometric calibration constant is less than 10% and uncertainties for exoatmospheric

reflectance are less than 2% in visible/near infrared and less than 5% in short-wave infrared.

Integrated in-band radiance, L, is further calculated for each pixel to verify the accuracy assumption.

The integrated in-band radiance can be calculated by

L - BW Li (232)

where

L - in-band radiance for any pixel in a specific band , mW cm-2 ster-I pm-1

BW - Band-width or the difference between the upper and lower band edges of the band-pas

L1 - Spectral radiance for the pixel in that specific band , mW cm-2 ster-1

(233)

To simplify the calculation, the nominal band width, BWn shown in Table 2 was used. An additional

calibration step was used for data acquired by the TM sensor to account for changes in post-

calibration dynamic range. The minimum in-band radiance at QCAL = 0 (DN) and the maximum

at QCAL = 255 (DN) for any specific band are given by



where

and

where

LMIN - BW LMINf I 1
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(234)

LMINI - Minimum in-band radiance at QCAL - 0 DN using full-width at half maximum
(235)

BW1 - Observed spectral band-width as full-width at half maximum

LMINA - Minimum Spectral radiance at QCAL - 0 DN

LMAX - BW LMAXf f 1
(236)

LMAXI - Maximum in-band radiance at QCAL - 255 DN using full-width at half maximum

BWI - Observed spectral band-width as full-width at half maximum

LMAX - Maximum Spectral radiance at QCAL - 255 DN

(237)

Table 2 Spectral radiance for post calibration dynamic range

Band # LMIN LMAX
MSS-1
MSS-2
MSS-3
MSS-4

TM-1
TM-2
TM-3
TM-4
TM-5
TM-6
TM-7

0.3
0.3
0.5
0.3

-0.15
-0.28
-0.12
-0.15

-0.037
0.1238
-0.015

-:,

i

i-4.
I

.
i

26.8
17.9
14.8
12.3

15.21
29.68
20.43
20.62
2.719
1.56

1.438



78
Table 3 Mean solar exoatmospheric spectral irradiance

Band # Mean Std. Dev.
MSS-1 184.9 0.2
MSS-2 158 0.3

MSS-3 126.9 0.1

MSS-4 89.4 0.7

TM-1 195.7
TM-2 182.9
TM-3 155.7
TM-4. 104.7
TM-5 21.93
TM-7 7.452

SPOT HRV and panchromatic data

Calibration of SPOT images were made on SPOT standard product level 113 and level 2A. The

correction applied to the level 113 image included both CCD detector normalization (radiometric

correction), along-line, along column resampling, and unidirectional corrections (all three are

geometric corrections). The correction used for the level 2A image included all the procedures for

level 1B except the use of bidimensional geometric correction. Discussion on SPOT data correction

is limited due to restriction of proprietary information. The concept of Equivalent Radiance was

introduced by utilizing the following equation

L(k)

where

f P(A)Sk(A)clA

iSk(1)d1

- wavelength ,

P(A) - Spectral radiance density of homogeneous target , W m-2 srad

Sk(A) - Spectral response of HRV instrument in band k , % (FigureYYY )

L(k) - SPOT equivalent radiance in the spectral band k

The equivalent radiance calculated in the above equation represents a mean spectral radiance in a

specific spectral band. It can also be interpreted as the spectral radiance of a landscape with uniform
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spectral distribution in terms of wavelength. The equation can be further simplified by grouping some

of the known sensor characteristics (such as spectral response function, Figure 20) as

BL(k) B(k)
Ck

(240)

where L(k) is the equivalent radiance, B(k) is the pixel brightness, and Ck the absolute calibration

coefficient (the denominator in the equivalent radiance integral function). In the case when a non-

standard gain is used for a specific sensor, the Ck was recalculated. By using this approach, the

difference in sensitivity of 2 instruments can be compensated.
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Figure 20. SPOT HRV and panchromatic spectral response function

Compact Airborne Spectrographic Imager (CASI)

The spectrum is integrated and sampled by internal CCD sensors in 1.8 nm blocks with an inherent

average spectral resolution of 1.2 nm. The undersample of the spectrum results in a nominal overall

average 3.0 nm resolution. The overall calibration and correction for the CASI sensor is presented

as the schematic diagram in Figure 21.



IMAGING MODE DATA COLLECTION:
Bands of adjacent 1.8 nm wide spectral lines are
summed, effectively providing programmable
width/programmable centre spectral filters
(bands) for each of up to 578 scene points.

80

osE of `f"'''

MULTISPECTROMETER MODE DATA
COLLECTION: For a programmable num-
ber of points in a scene ("look directions") full-
spectral data may be collected providing a
"Rake Spectrograph". Simultaneously a single
spectral imaging band is collected (scene
recovery band) to allow identification of scene
features in relation to spectral data points.

Figure 21. CASI sensor calibration, correction, and operation diagram
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Spatial Scale Resampling

Spatial resampling was required to obtain different scales for each sensor. The digital resampling is

essentially an optical magnification process different degrees of constraint. Almost all digital

magnification techniques are based on surface interpolation. For natural resource applications such

a technique seems to be appropriate since spectral reflectance is generally a surface optical

representation of a given feature. To reconstruct an exact image, the original image must be spatially

sampled at an interval of at least twice its highest spatial frequency and the reconstructive filter must

be designed to pass the spectral component at control points without distortion. To avoid procedure

with high computational cost, a set of imperfect reconstruction functions were used. Two steps are

required for spatial resampling. The first step is the address transformation between input and output

image since input and output images do not have the same size. Both forward or reverse address

methods can be used to determine the input or output addresses for each spatial transformation. The

forward address method was used for its programming simplicity. A compound geometric operator

which includes generalized linear translation, scaling, and rotation transformation was used. The use

of this operator ensures the address mapping is separable such that horizontal output address depends

only upon the horizontal input and vertical address depends only upon the vertical input. The

separable characteristics can be extended to provide nonlinear spatial warping (or rubber sheet

stretching). Once the address mapping is completed, the spectral value at each pixel is then

calculated. The interpolation of pixel brightness is necessary since there is no one to one relation

between input and output image. Five interpolation algorithms were applied to each pixel in the area

of interest. The algorithms used for the study include (1) Nearest neighbor, (2) Cubic convolution

interpolation, (3) B-spline interpolation, (4) Parametric Bezier, and (5) Bilinear. The mathematical

description of each algorithm can be found in Pratt (1991) and is summarized in the following

paragraph. The computational stencils for some of the algorithms are shown in Figure 22.

Nearest Neighbor : every pixel in the new image is assigned the brightness value of the pixel in the

original image that is nearest to it.

Bilinear interpolation : three linear interpolations were applied over the four pixels that surround the

point found in the image corresponding to a given display grid coordinates.

Cubic convolution interpolation : force the slope of the ends of interpolation to be zero to eliminate

the problem with slope discontinuity. The parametric expression of cubic convolution interpolation

can be formulated as

i(x) - (a + 2) 1x13 (a + 3) 1x12 + 1 , 0 s ix I sl

aIxI3 - 5a1x12 + 8a1x1 4a ,
(241)
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B-spline interpolation : This method was used to provide the edge continuity and smoothness at the

sample point. The B-spline is defined mathematically as

R3(x) - 2 + 1 lx 13 (.02, OS IX I S1
3 2

- 1(2 (x1)3,6
1 s Ix I s2

Alternate mathematical form was used for computer implementation of this algorithm

R3(x) - 1 [(x + 2)3+ - 4(x + 1)3+ + 6(x)3+ - 4(x - 1)3+]
6

MO

(z),t - z° z>0

(242)

(243)

- 0 zs0

Parametric Bezier : A simple Bezier interpolation technique was used for brightness curve

approximation.

Pixel brightness value

Value used for L ( i , j )

L(i,j)

1

i L(i+3,j+3)

Cubic polynomial interpolation

Figure 22. Computation stencils for spatial resampling

Cubic polynomial interpolation
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Data Analysis

The flow chart for data analysis procedures is shown in Figure 23. The raw images from each sensor

were obtained from appropriate sources. The geometric and radiometric correction/restoration were

performed as necessary. The information content such as entropy measure and fractal dimension of

the power spectrum were calculated. Multispectral transformations were applied to the corrected

image. Information contents were again calculated for the transformed images. A set of fourier

transforms based on the ring region feature masking were applied to each image. Assume (air , soy)

are the image spatial frequencies. An optical sensor produces an image output as

m(,),(07) - 1.9(0x,(0y)12 (244)

Angular integration of M (rex , foy) over the spatial frequency plane produce a spatial frequency

feature that is invariant to translation and rotation. This feature is defined in the polar form as

The region of the ring becomes

2w

N(p) - f M(p ,O)dt3
o

e - tan-1(wyl cox)

2 2p2
... 6), + (a)y

p(m+1) 2s

SF* f f M(p ,0) dp dO
p(w) 0

(245)

(246)

The Fourier transformed image served as the input to the Radon transform process. The spatial

resampling algorithms were applied to the output image from the Radon transform to obtain the

spatial resolutions range from 10, 20, 30, 40, 50, 60 meters. The statistical feature extraction

procedures were performed and measures were calculated. Besides the statistical measures discussed

in the theory section, the co-occurrence matrix for a subset of each image was constructed. The co-

occurrence matrix was constructed according to the following mathematical formulation. Assume

f(x,y) is an image with dimension of NxM and G is the number of grey levels of the image (on a non

sliced 8 bit system G equals 256). Assign D as a set of displacement vectors

D - { di - (dx,dy),Osdr<N,-M sdy<M) (247)

Define Md a matrix whose (i,j)th element is the number of times any grey level i and j occur in the

relative location d. The term Md (i,j) is equal to



Md(i,j) - #[((xryi),(x2,y2)) : f(x,yi) - i,f(x2,y2) - j , d - (a,b) , deD
]

-. x2 - xi + a , y2 - yi + b

Where # represents the number of elements in the set.
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(248)

Once the co-occurrence matrix was constructed, the statistical feature extraction and fractal dimension

of the power spectrum were again calculated. The Fourier spectrum fractal dimensions of a 9x9

convolution window over the whole image were computed. Pentland (1984) proved that the spectral

density of p(f) of a fractal Brownian function is proportional to f -2(2-E) -1 , where D is the fractal

dimension. To obtain an estimate of D a simple regression was performed on p(t) and f. The

parameter (2-D) was equated to the regression coefficient and D was calculated.

The co-occurrence matrix was used in combination with contrast and uniformity to extract texture

information from the image. The contrast is defined in terms of Md as

e - E (i-f) 2 Md (i,f) (249)
ij

The contrast of the co-occurrence is a measure of the texture coarseness since this value represents

spread away from the main diagonal. A high value of contrast for small displacement indicates a fine

texture while low values indicate a relative coarse texture. The uniformity (or angular second moment

as defined in the theory section) is

4) E md(ij) 2
ij

(250)

This is a measure of homogeneity of the image. In a homogeneous image, such as a uniformly

covered field, Md has fewer entries of large values therefore produces a large (f) . In a non-uniform

field the Md has large number of entries with small values and (f) should be smaller.
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RESULTS AND DISCUSSION

Canopy Spectral Reflectance Model

The L-system based plant was first constructed using ray tracing technique on a super computer at

the National Center for Super Computing Applications ( NCSA, University of Illinois ). The amount

of CPU time required to construct a plant was about 30 minutes on an interruptible batch mode. A

simplified ray tracing scheme was implemented to reduce the demand of high CPU time. The

simplified ray tracing scheme took 40 seconds to generate a plant. The ray tracing procedure was

used to simulate the spectral reflectance for the preset canopy geometry. The NDVI values calculated

from the L-system plant model and block plant defined in the theory section are presented in Figure

24. The L-system plant produced higher NDVI values compared to SE590 measurements. The

reason for the higher simulated NDVI values was due to the dark (wet) soil background presented

in the SE590 field measurement plots. The relation between NDVI and GC for SE590 and the L-

system is shown in Figure 25. The variation of the simulated NDVI increases with the increasing GC

up to about 50% ground cover and then starts decreasing as the ground cover approaches full cover.

The variation was partially due to the shadow term presented in the model while in the real sensor

data the shadow effect was removed, at least to some extent by using the NDVI values. The NDVI

values calculated from SE590 measurements for different ground resolutions are plotted in Figure 26

together with the NDVI calculated from SPOT images. The 2 meter resolution measurement has

higher NDVI values than the 1 meter resolution measurement. This is probably due to the fact that

at lower resolution (2 meter) with lower ground cover (GC) the sensor was sensing a higher

percentage of the soil background and therefore produced higher NDVI values. The NDVI calculated

from the SPOT images shows low NDVI values at low ground cover (0-50% GC). Satellite CCD

sensors such as those on board SPOT have specific near infrared threshold values under which the

sensor response is low. This is particularly true when the ground has very little vegetation. The low

spectral in the near infrared region combined with the higher red reflectance produces some low

NDVI values. The variabilities of NDVI calculated from various resolutions and simulated spectral

values are presented in Figure 27. The simulated values consistently over estimate the variance of

NDVI. It is clear that the over estimation of the variance is the result of shadow and background

removal mechanisms embedded in the NDVI values calculated from the sensor data.
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The results from the canopy model and SE590 ground spectral measurements showed consistent

agreements with the known physical land processes encountered in remote sensing. The vegetation

index does change somewhat with change in resolutions (scale). The average changes in spectral

reflectance at different scales was not as significant as the variabilities in the spectral reflectance.

These results suggest the spatial information (especially the texture measurement) could be used to

extract more information from multiscale images.

Information Content and Feature Extraction

The information content calculated in terms of entropy and fractal dimension of the power spectrum

are presented in Tables 4, 5, 6, 7 and Figures 28 and 29. The analysis were performed for a

combination of raw spectral reflectance, different sensors, output from different transforms, and also

for four different ground features. In case of information content, the TM shows 4.71 bits/pixel of

entropy, MSS has 3.66 bit/pixel, and SPOT has 4.27 bits/pixel of entropy. It should be noted that the

maximum possible entropy measure for TM is 8 bits, for MSS is 6 bits, and for SPOT is 8 bits. All

the calculated values were lower than the theoretical limit due to the fact that saturation radiances

for all three systems are set well above the levels of typical land surface reflectance. If all the physical

and sensing conditions are set equal, the TM should have an equal entropy measure as SPOT, and

1 bit per channel more entropy than MSS. Table 4 shows TM carries 1.1 bit/channel more entropy

than the MSS and about .5 bit/channel more than SPOT. The slightly lower number for SPOT is due

to the low information content in the near infrared band (0.79-0.89 pm, which misses the red edge

for vegetation). The Fourier transform did not increase information content for TM due to the

homogeneous nature of the agricultural lands. The Radon transform, on the other hand, increased

TM information content substantially. The main reason for such an increase is due to the spectral

diversities of the TM sensor, which was enhanced by the Radon transform slicing characteristics. Both

the Fourier and the Radon transform provide great improvements for MSS and SPOT information

content. The SPOT image improved information content was the result of its high spatial resolution.

Both Fourier and Radon transforms have shown a great potential to improve the overall image

information content. On the individual feature basis, GVI, NDVI, and the 15t principal component

show no significant differences. The Fourier and Radon transform do indicate a gain of more than

1 bit of information. The entropy measures also show increasing separability between each feature.

This implies the possible use of the tranformed image as another spectral band for classification. The

entropy values calculated from different resolutions (10, 30, 60 meters) indicate that the Fourier and

Radon tranforms were able to maintain information content. The result is encouraging since it

suggests this set of upscaling (or downscaling) procedures can be used to integrate local land process

models to regional large scale models.
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Table 4 Entropy values for raw spectral reflectance and output from transforms

Raw Image (full scene) Fourier Transform Radon Transform
Band TM MSS SPOT TM MSS SPOT TM MSS SPOT

1

2

4.00
3.98

i 3.17 i 3.92
I 3.21 4.66

5.33
4.75

4.95
5.10

1 5.92
5.40

5.39 5.25 5.13
5.11 5.295.24

3 4.65 4.45 4.22 4.90 4.65 4.95 5.78 5.97 5.97
4 5.20 3.79 - 4.70 4.71 - 6.30 5.23 -
5 5.30 - - - - -
6 - - - - -
7 5.10 - - - - - -

Average 4.71 3.66 4.27 4.92 4.85 5.42 5.68 5.39 5.46

Table 5 Entropy values calculated from four different ground features.

GVI NDVI Kahunen - Loeve Fourier Tranform Radon Transform
Name 5.70 5.82 PC-1 PC-2 PC-3 TM-1 SPOT-2 TM-1 SPOT-2
Potatoes 4.35 4.17 4.57 4.51 3.13 4.73 4.87 4.91 4.97
Beans 4.91 4.67 5.16 5.74 3.91 6.23 6.05 6.33 6.28
Alfalfa
Orchards

4.60
5.23

4.70
5.09

5.20
5.53

4.90 3.71

3.58
5.76_1 5.92
6.39 6.42

6.02
6.44

6.11
6.395.40

Table 6 Fractal dimensions for raw spectral reflectance and output from transforms

Raw Image (full scene) Fourier Transform Radon Transform
Band TM MSS SPOT TM MSS SPOT TM MSS SPOT

1 1.73 i 1.67 1.73 1.88
4.

1.79 1.79 1.89 1.78 1.89

2...................._
3

1.69.....4....____..................
1.66

t .
i 1.66 1.69

1.69 i 1.64

1.81 1.73 i 1.77

1.69 i 1.75

1.87

1.86

1.70
1.67

1.83

1.831.84

4 1.62 1.64 - 1.81 1.66 - 1.83 1.64 -
5 1.64 - -. 1.77

4..«.
- - - - -

4 t
6
7

- - --. --.
1.59 - -

-
1.68

..

4
-

-
-.................
-

-.....................
-

-...............
-

-
-

Average 1.66 1.67 i 1.69 1.80 i 1.72 i 1.77 1.86 1.70 i 1.85
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Table 7 Fractal dimensions calculated from four different ground features.

GVI NDVI Kahunen -Loeve Fourier Tranform Radon Transform
Name Avg=1.57 Avg=1.52 PC-1 PC-2 PC-3 TM-1 SPOT-2 TM-1 SPOT-2
Potatoes 1.56 1.51 1.62 1 1.52 1.42 1.72 1.69 1.72 1.68
Beans 1.57 1.56 1.59 I 1.51 1.41 1.70 1.66 1.70 1.65
Alfalfa 1.54 1.53 1.57 i 1.48 1.39 1.67 1.66 1.66 1.67
Orchards 1.57 1.56 1.58 r 1.44 1.36 1.75 1.72 ---1 ............

Table 8 Kolmogorov-Smirnov test of spatial resampling algorithms

Enlargement power
Algorithm 2 4 6 8

Nearest neighbor + + + -

Bilinear + + + -

Cubic convolution + - - -

B- spline + + - -

Parametric Bezier - + - -

.+ : Accept @ 5% level, - : Reject @ 5%

The fractal dimensions calculated from TM, MSS, and SPOT raw images show little differences

between each sensor. Much higher fractal dimensions were found in the Fourier and Radon

transformed images (Table 6). The fractal dimensions calculated from individual features were shown

in Figure 29. The orchard fields which have a high spatial pattern in nature show a much higher

fractal dimension than other features. This is a strong indication of the utility of fractal dimensions

as a texture measure. In the cases of self-upscale (or downscale) raw images, most fractal dimensions

decrease with the decreasing spatial resolution. The scale-dependent intermittency can be attributed

to the statistical properties of the Earth's surface in a remotely sensed image which are not a result

of any single dominant physical process. In the case of study area, the variable ground features

coupled with geological depositions in the field produced a complicated background composition

within the image. Theoretically, the quiescence scale-dependent intermittency suggests a fractal

dimension smaller than 2 ( 1 < D < 2 ). As a consequence, the total region which shows active

fluctuation in the larger scale will decrease as the scale of investigation decreases. The fractal

dimension will reach unity as the fluctuation of a two dimensional region approaching a highly

convoluted one dimensional curve. The fractal dimension plot for each individual feature presents

a strong support for this explanation. In the case of the NDVI image (Figure 30), the fractal

dimension drops sharply at the 20 meter resolution. This is due to the fact that the size of most

features within the area have a value smaller than 200 meters and the 9x9 convolution window
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basically covers an area of 180 meters by 180 meters. The GVI image has a much sharper drop in

the 20 meter range (Figure 30) due to the much smaller size of green biomass presented in the scene.

This provides an indirect support for GVI's capability to isolate soil effects from the composite

spectral reflectance. The Radon and Fourier transformed images maintain the scale invariant

properties reasonably well within the studied scale (Figure 30). The texture measures of individual

features were calculated and are plotted in Figures 31 and 32. The orchard fields, which have a

relative coarser texture show lower uniformity values throughout the 10 to 60 meter scale range. The

contrast measure does not show a significant difference between each feature (Figure 31). This is a

little bit of a surprise since orchards have a much coarser visual texture than other crops.

Many algorithms are available for spatial resampling such as those proposed in the early spatial scale

resampling section. No standard measures were established to evaluate the quality of these algorithms

since most statistical methods are scene dependent and site specific. The investigation of changes in

information content is necessary to provide an unbiased measure of scaling processes. The criteria

used to evaluate the spatial resampling should be a measure of image content that is invariant to scale

transformations of the original image. Fractal dimensions seems to be good candidate for this

evaluation. The power spectrum fractal dimensions were calculated using the method described in

the Data Analysis section. The Kolmogorov-Smirnov (K-S) test was used to test whether the

resampled images and original images were drawn from the same population distribution function.

A Chi-square test would have been used if the fractal dimensions were binned data. To perform a

K-S test, assume N events are located at values Xi , i = 1, . . , N and SN (x) is the function given the

fraction of data points to the left of a given value x on the cumulative distribution function. The K-S

statistics for 2 cumulative distribution functions SID, (x) and SN2 (x) is equal to

D - max I SN
I

(X) SN2(x)I
< x <

The function to calculate the significance of a confidence level A can be written as

(251)

(213(2) - 2E (_))-1

The significance level of an observed value of D is given

P(D>observed) - Q

_2j212

by

(252)

(253)N1 N2

N1 + N2

The test results for different resampling algorithms is listed in Table 8. The nearest neighbor
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algorithm shows the best scale invariant nature among all the algorithms tested (Figures 33, 34, 35,

36, 37, and 38). Slightly different results were obtained by Lalitha et al. (1989).

-+- Original -H- NDVI -+K-- GVI

--E3- Fourier -x- Radon

Figure 30. Scale invariant properties of different processes
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Figure 31. Contrast calculated from co-occurrence matrix
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Figure 34. Fractal dimension frequency distribution of nearest neighbor algorithm
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Figure 35. Fractal dimension frequency distribution of bilinear algorithm
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Figure 36. Fractal dimension frequency distribution of cubic convolution algorithm
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Figure 37. Fractal dimension frequency distribution of b-spline algorithm
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APPLICATIONS

Landuse Classification (texture feature)

99

The texture measure (co-occurrence matrix) from the Fourier/Radon transformed TM image (scaled

to 10 meter resolution) was applied together with TM data from May 22 and July 1 of 1991. The

fractal dimension was used as an additional spectral band together with bands 3 and 4. A minimum

distance classification was performed to classify the southern Columbia basin agriculture fields. The

results showed a reasonable improvement of the classification accuracy. Major improvement can be

seen in the textured feature (e.g, orchards). The summary of the classification accuracy is shown in

Figures 37-39 and Tables 9-16.

Table 9 Contingency table of raw image classification

TRUTH
CLASSIFICATION Potatoes 1 Orchards Alfalfa Bean Total Row Accuracy

Potatoes 200 36 23 14 273 73%
Orchards 9 125 42 5 181 69%
Alflafa
Bean

19
... ».---

1 26 307 I 28--4.-
31 17 1 30

380
79

81%
38%

---t
1 I

Total 229 218 389 77 0
Column Accuracy 87% 57% 79% 39% 73%

Table 10 Contingency table of combined raw and GVI image classification

TRUTH
CLASSIFICATION Potatoes Orchards Alfalfa Bean Total Row Accuracy
Potatoes 34 28....... 6..,_

.Orchards
......197

10_1............117... 37 .,.2.,
...265.___74%
_166 70%

Alflafa 16 35 298 34 383 78%

Bean 6 32 26 35 99 35%,

Total 229 I 218 389 I 77 0

Column Accuracy 86% 54% 77% 45% 71%

Table 11 Contingency table of combined raw and NDVI image classification

TRUTH
CLASSIFICATION Potatoes Orchards Alfalfa Bean Total Row Accuracy
Potatoes......................... 207 31 40 12 290 71%

Orchards ....... 4 124 44 4 176 70%
Alflafa 15 i 21 i-4- 299 25 360 83%
Bean 3 42 6 36 87 41%
Total 229 i 218 i 389 i 77 0 i

Column Accuracy 90% 57% 77% 47% 73%
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Table 12 Contingency table of Fourier/Radon transformed image classification

TRUTH
CLASSIFICATION Potatoes 1 Orchards I Alfalfa : Bean Total :Row Accuracy
Potatoes 219 23 27 9 278 79%
Orchards 2 1 158 28 I 5 193 82%
Alflafa 5 1 15 318 1 21 359 89%
Bean 3 22 16 44 85 52%
Total 229 1 218 1 389 1 79 0 1

Column Accuracy 96% 72% 82% 56% 81%

Table 13 Contingency table of resampled (10 meter) GVI image classification

TRUTH
CLASSIFICATION Potatoes I Orchards ! Alfalfa 1 Bean Total !Row Accuracy
Potatoes 209 25 17 8 259 81%
Orchards 7 133 41 4 185 72%
Alflafa 10 i 30 i 312 29 381 82%

'bean
--.4
3

Z
29 19 36 87 41%

Total 229 217 1 389 1 77 0
Column Accuracy 91% I 61% 80% 47% 76%

Table 14 Contingency table of resampled (10 meter) NDVI image classification

TRUTH
CLASSIFICATION Potatoes 1 Orchards 1 Alfalfa : Bean Total ;Row Accuracy
Potatoes 212 31 39 6 288 74%
Orchards 6 129 37 7 179 72% .....
Alflafa
Bean

9 18 ii 308
5

i 29
35

364 i
81

85%
43ii:2 39 !

Total 229 217 389 1 77 0
Column Accuracy 93% : 59% i 79% 45% 75%

Table 15 Contingency table of resampled (10 meter) Fourier/Radon transformed image
classification

TRUTH
CLASSIFICATION Potatoes i Orchards 1 Alfalfa ; Bean Total :Row Accuracy
Potatoes ................_218 13................. 28 11 270 81%
Orchards 174 21 2 200 87%
ARiia 8 369 iii;A---326 21
Bean -----------6--4--li 14 43- 76 59%
Total 229 1 218 1 389 1 79 0 i
Column Accuracy 95% 80% 84% 57% 83%
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Figure 41. Minimum distance classification accuracies from various image sources

The use of the Fourier/Radon transformed enhanced image (same TM data set) also proved to be

useful for a neural network classifier (Chen and Waddington, 1992). The accuracy of using a texture

feature enhanced image is summarized in Table 16. The Contingency table was not used in this case

since a stratified random sampling technique was used for accuracy assessment (see Appendix). The

result showed the texture enhanced classification improved theaccuracy bound for the neural network

classifier.

Table 16 Classification accuracy bounds using a Fourier/Radon texture enhanced image

Classification Accuracy Confidence
Algorithm Bounds Level

Minimum Distance < 0.768,0.843 > 95%

Maximum Likelihood < 0.749,0.812 > 95%
Neural Networks < 0.811,0.833 > 95%

Image Scaling for Regional Ecosystem Modeling

The satellite image used in the data analysis section was used in this case. The Fourier and Radon

transforms were applied to the raw image to obtain an image with higher fractal dimension. A

algorithm with its original concept from the grey scaleco-occurrence matrix was implemented as follows
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(1) Assume a convolution window of size tun and compute the sums of the squares (i.e. cross

variance) of the differences in intensity of the center pixel from the center top, center

left, center right, and center bottom pixels in the windows. The cross variance is equal

to

If(x,y) - E [I(x,y) i(x+i,y +j)] 2
(ii) ES (254)

S - { (0,a ), (0, - a), (a,0), ( - a, 0) )

(2) Pass a 3x3 window across the variances and save the minimum from the nine variances

in the center pixel. Pass another 3x3 convolution window across the resulting image and

set the center pixel to zero if its value is not the largest in the window. The result is the

possible centroid of the texture field.

(3) The resulting pixels from the above procedures were used as the seeds for a 9x9

dilation/erosion convolution window. A fractal dimension threshold was preselected to

maintain the entropy level during the spatial degradation process.The result is an image

which has a coarser spatial resolution suitable for regional scale modeling (the resolution

can be changed by selecting a different iteration number) with similar image information

content compared to the original image (Figure 42).
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Erosion Scale Process

Figure 42. Scale transformed image for regional ecosystem modeling



CONCLUSIONS AND RECOMMENDATIONS

Summary

105

A general analytical framework was established for scale-related variabilities in remote sensing

measurements. The study started with a basic plant canopy model, relations between canopy

reflectance and phenological parameters. The relation between leaf area index, ground cover, and

spectral reflectance was also investigated strictly from the probability of photon transfer and leaf

projection. The variabilities introduced by scaling was investigated using a simulation model, ground

measurement, and satellite data. The relation between orthogonal based transforms and ICahunen-

Loeve transform were investigated in the vector space. The spatial domain information extraction was

conducted using the Fourier transform with the Radon transform enhancement. The image

information content was evaluated using various first and second-order statistics, entropy, and fractal

dimensions. The Fourier and Radon transformed image has showed strong scale invariant

characteristics in most cases. The utility of this framework was verified by two applications.

Conclusions

The general conclusion from this research was the potential use of spatial frequency domain operator

to extract/maintain the scale related spatial variabilities in remote sensing. The study showed the

characteristics of spectral variabilities as a function of complex background, shadow, and particularly

changes in scale. The canopy spectral reflectance study indicated a very detailed canopy model may

provide insights of the radiative transfer physical processes, but most likely will not provide enough

information related to the scale issues. In terms of information content, the vegetation indices (e.g,

GVI) and ICahunen-Loeve transform do not render themselves as useful tools for scale related

applications. The spatially scaled GVI and ICahunen-Loeve transformed images suffered from a severe

information degradation. These results do not exclude these transforms from being useful tools for

image analysis. The result does imply the inadequacy of these transforms for multi-sensor or

multiscale data fusion. A combination of the Fourier and Radon transform, on the other hand,

demonstrated the capability to maintain higher information content and to enhance the texture

feature within the image. These capabilities were proven to be very useful in general landuse

classification and scale image data. The Fourier/Radon transformed image with a texture measure

such as uniformity provided a good feature extraction tool in a scaled image especially for features

with texture patterns. Additional information about the utility and quality of various spatial

resampling algorithms was revealed using the Fourier power spectrum fractal dimension as a measure

of information content. Most sophisticated resample algorithms (mathematically robust and visually

superior) showed poor quality in terms of maintaining the original spectral information.
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Recommendations

Several recommendations for future research in related topics can be made from the results of this

project.

(1) More research should be conducted on the effects of shadow, soil background, soil color,

moisture content and mineral composition on multispectral transforms. A spatial scale

spectral variability component should be implemented in canopy models using a

stochastic approach.

(2) More work should be done on ray tracing procedure by replacing detailed single photon

ray tracing with simplified canopy/phenological parameter models. A cellular level near-

infrared radiative transfer model will provide a key component to complete the

reflectance model which covers the spectral wavelength of the most useful bandwidth.

(3) One important aspect not covered by the project is the effect of limited bandpass filters.

Filters tuned to structured features that exist in the image should enhance the texture

measure of the fractal dimension. If the measured distribution corresponding to a filter

does not match the associated features in the image, the resulting output should exhibit

strong relation with a Gaussian field. The scaling law may not be applicable under this

circumstance. More research should be conducted for better texture measures.

(4) The effect of radiometric scaling should be used together with the spatial scaling. A

preliminary result from the author's other research showed a radiometric degradation

from 8 bit data to 6 bit data reduced the dynamic range by the fourth root of a dynamic

range. The effect of radiometric scaling may be the key to reduce the use of high spatial

resolution data which requires huge data storage space.

(5) More effort should be made to bring the high level image processing techniques to the

general remote sensing community. Some of these techniques have long been developed

in a national lab or other government research center but were never made available

generally. An enormous amount of time in this project was spent in developing

computer code for data analysis. Current research in remote sensing is more or less

limited and restricted by the features available from commercial off-the-shelf packages.

The general direction of the quality of remote sensing research should not be hindered

by the computer programming issue.
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Classification Accuracy Assessment Using Stratified Random Sampling

Introduction

The assessment of classification accuracy allows a degree of confidence to be attached to the

thematic map. Traditionally, accuracy was determined empirically by selecting a sample of

pixels from the thematic map and the labels were checked against classes determined from

reference data. One commonly used method is the contingency table (or confusion matrix)

that incorporated omission and commission errors. Choice of the sample of pixels is a topic

still under investigation. Most methods use some kind of randomized strategy to select the

sample. A problem that can arise with random sampling is the area weighted bias. Large

classes tend to be represented by a larger number of sample points than the smaller classes;

some small classes may not be represented at all. The following section described a stratified

random sampling scheme that can be used as an accuracy assessment tool.

Stratified Random Sampling

The implementation of the method is straight forward. It includes the following steps :

(1) Select a set of strata into which the image is divided. The most appropriate

stratification to use is found to be the actual thematic classes.

(2) Choose a random sample ( 30 to 60 samples ) within each thematic class to assess the

classification accuracy of that class.

(3) Decide the confidence level for accuracy (see next section for details)

Error/Confidence Level of A Classification

Suppose the true map accuracy for a class is 0. The probability of x pixels being correct in a

random sample of n pixels from that class is given by the binomial probability

where

n

p(x;n,0) - C: 6" (1 - 0)''' x - 0,1,...,n

n : number of samples

The "correctness" of the classification can be represented by a binomial form (correct or not

correct). A better expression for the classification accuracy is using an interval within which
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the true map accuracy lies ( e.g. 95 % certainty ). This interval can be expressed as

P {- x ne
< < Z.} - 1 a

610(1-0)

where

x : number of correctly labelled pixels in a sample of n

0 : true map accuracy as shown in previous equation

1- a : confidence level

If we choose a=.05 the above expression states that the probability of (x-n0)/Vne(1-0) will be

between ± xan is 95%; ± xan are points on the normal distribution between which 1-a of the

population is contained.

Numerical Example

Assume x = 211, n = 250 for a class category and a = .05 ( 95% confidence level ). The true

map accuracy (sample mean from random sampling) for the class is x/n = .844 (estimation of

0) . The bounds for 0 are calculated by

Z. x nn

Obtain za/2 = 1.96 from a statistic table. Solve for 0

196 211 - 2500
.

1/250x0(1-0)

which implies the bounds for 0 are

0 - .88586 or .78674

.78674 < 0 < .88586

This concludes that we have 95% confidence that the overall map accuracy is somewhere

between 78.7% and 88.6% compared to the estimated 0 = .844 ( sample mean ).
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Modeling the effect of sensor field of view (FOV), height, off -nadir viewing angle

The variability of spectral reflectance is a function of sensor height, sensor field of view and off-

nadir viewing angle due to a misaligned sensor. The calculation of effective sensing area is a

necessary procedure in the case when a non-imaging sensing device is used. The following analysis

is performed in order to quantify the relationship between each factor that could affect the spectral

value. The basic optical geometry is illustrated in Figure A.6
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Figure A.6 Sensor field of view, off-nadir viewing angle and viewing height geometry

The following terms need to be defined and calculated
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Figure A.7 demonstrates the percent effective sensing area deviation introduced by off -nadir viewing

under different sensor field of view with a 10 meter sensor height
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Figure A.7 Effective sensing area deviation as a function of off-nadir angle


