

The transmission of price changes between wholesale and ex-vessel markets in the Alaska shoreside pollock fishery

Ben Fissel
NAAFE
March 22th, 2017

NOAA FISHERIES SERVICE

Transmission of prices through the supply chain

- Theory of derived demand: prices of goods should be linked (transmitted) through the supply chain (Gardner (1975) farm-retail price spreads).
 - demand/supply elasticities drive price variation
 - Fisheries example: Asche et al. (2007) horizontal and vertical (wholesale-retail) price integration in European salmon markets.
- This research considers the *vertical* transmission of prices between the ex-vessel (pre-processed) and first-wholesale markets (post-processed)

Asymmetric price transmission

Imperfections in the markets at different levels of the supply chain can result in asymmetries in transmission of prices.

- Linkage between markets is different depending on the state of some other variable. Examples:
 - Price decreases are transmitted more than increases
 - Price decreases are transmitted fully and increases are transmitted partially.

Causes typically attributed to frictions or imperfection in markets (e.g., menu costs, market power).

Examples of asymmetric price transmission (APT)

b): Speed

Meyer and von Cramon-Taubadel (2004) JAE 55:3

The Literature on Asymmetric Price Transmission

APT researched extensively in agriculture

- Balke et al. (1998), Abduli (2002), Meyer & von Cramon-Taubadel (2004), Goodwin & Harper (2000), vCT (1998)
- Fisheries applications include: Jaffery (2005), Nakajima et al. (2011) Simioni et al. (2013), Guillen & Franquesa (2015).

APT is a subset of the more general literature on "Threshold Cointegration" (extension of TAR)

- TAR: Chan et al. (1985) Tsay (1989), Tong (1990), Chan (1993)
- TVECM: Balke & Fomby (1997), Enders & Granger (1998), Enders & Silko (2001)

Modeling asymmetries and thresholds in the price relationship

Maintain the long-run equilibrium: $p_t^e - \alpha_0 - \alpha_1 p_t^w = u_t$ Adjustment to equilibrium is allowed to differ

$$du_{t} = \rho^{+} I^{*} u_{t-1} + \rho^{-} (1 - I^{*}) u_{t-1} + \lambda du_{t-1} + e_{t}$$

$$I^{*} = 1, \text{ if } du_{t-1} \ge \tau \qquad I^{*} = 0, \text{ if } du_{t-1} < \tau$$

Momentum Threshold AR process

Threshold error corrections model describe short-run

$$dp_t^e = \beta_1^+ I^* u_{t-1} + \beta_1^- (1 - I^*) u_{t-1} + \gamma_{11} dp_{t-1}^e + \gamma_{12} dp_{t-1}^w + \varepsilon_{1,t}$$
$$dp_t^w = \beta_2^+ I^* u_{t-1} + \beta_2^- (1 - I^*) u_{t-1} + \gamma_{21} dp_{t-1}^e + \gamma_{22} dp_{t-1}^w + \varepsilon_{2,t}$$

Market levels in the supply chain

Alaska shoreside pollock (2001-2014)

Ex-vessel market:

- Transaction between catcher-vessels (n=556) that deliver their harvest to shoreside processors (n=34)

First-wholesale market:

- Shoreside processors in-turn sell processed products (fillets, surimi, roe, H&G) on the "global" market.
- A large share of products are exported: 70% of fillets, 90% of surimi, 90% of roe, 90% of H&G

Data

Analysis is restricted to major ports, near Dutch Harbor, on the AK peninsula and on Kodiak island. Product types is restricted to products/deliveries fit for human consumption (in particular this exclude meal).

Monthly ex-vessel prices are derived from ADFG fish tickets.

Wholesale data from COAR data is annual. Monthly wholesale prices are interpolated from monthly export prices using the Chow-Lin method.

Average wholesale price/lb = \$1.389 Average ex-vessel price/lb = \$0.158

Unit root tests confirm non-stationary prices

Long-run price equilibrium

$$p^e = -2.15 + 0.55 \ p^w + 0.21 \ I(year \ge 2008)$$

R-squared: 0.697

The dummy indicates a structural break in the long-run relationship between prices.

The margin between prices has decreased about \$0.04

price equilibrium

Determining the optimal threshold

RSS of different thresholds

RSS of the equilibrium adjustment process

$$du_t = \rho^+ I^* u_{t-1} + \rho^- (1 - I^*) u_{t-1} + \frac{1}{2} + \frac{1}{$$

model indicates
that negative
thresholds provide
the best description
of the data.

$$\tau = -0.08$$

Long-run adjustment process

$$\rho^{+} \qquad \rho^{-}$$

$$du_{t} = -0.650I^{*}u_{t-1} + -0.969(1 - I^{*})u_{t-1} + e_{t} I^{*} = 1, \text{ if } du_{t-1} \ge -0.08$$

$$(-5.94) \qquad (-8.81)$$

$$(-8.81)$$

Large negative deviation adjust to equilibrium faster than positive deviations

Reject the null of insignificance

$$H0: \rho^{+} = \rho^{-} = 0$$
 F-stat: 56.5 p-value $< 2e - 16$

Reject the null of symmetry

$$H0: \rho^{+} = \rho^{-}$$
 F-stat: 4.24 p-value < 0.04

wholesale price

wholesale price

Stylized depiction of price dynamics after a shock to

wholesale

prices

Small shock ex-vessel price

Big shock ex-vessel price

Short-run dynamics

$$\begin{split} dp^e_t &= \beta_1^+ I^* u_{t-1} + \beta_1^- (1-I^*) u_{t-1} + \gamma_{11} dp^e_{t-1} + \gamma_{12} dp^w_{t-1} + \varepsilon_{1,t} \\ dp^w_t &= \beta_2^+ I^* u_{t-1} + \beta_2^- (1-I^*) u_{t-1} + \gamma_{21} dp^e_{t-1} + \gamma_{22} dp^w_{t-1} + \varepsilon_{2,t} \\ \text{Ex-vessel price equation} & \text{Wholesale price equation} \end{split}$$

$$\begin{bmatrix} \beta_1^+ & -0.5 & (-3.92) \\ \beta_1^- & -1.11 & (-8.04) \\ \gamma_{11} & -0.03 & (-0.40) \\ \gamma_{12} & -0.14 & (-1.60) \end{bmatrix} \begin{bmatrix} \beta_1^+ & 0.28 & (2.24) \\ \beta_1^- & -0.16 & (-1.14) \\ \gamma_{21} & -0.01 & (-0.09) \\ \gamma_{22} & -0.20 & (-2.43) \end{bmatrix} \text{ HO}_2$$

Granger causality tests indicate that price shocks flow downstream

 $H0_1$: p^w does not Granger cause p^e F-stat: 2.99 p-value 0.086 $H0_2$: p^e does not Granger cause p^w F-stat: 0.01 p-value < 0.93

Summary of the model results

There exists an equilibrium between wholesale and exvessel prices:

- Structural break in the equilibrium relationship in 2008 that reduced the margin between prices.

Evidence of Asymmetric price transmission:

- Find that large negative deviations (>8%) are transmitted to the more quickly.
- Find that price shocks flow downstream through the supply chain (wholesale -> ex-vessel).

Final remarks

Identification of APT does not assign a causal mechanism (methods lacking in this regard)

- Lack the data to investigate whether the asymmetries can be attributed to adjustment costs by processors
- A better understanding of the contractual relationships between harvester and processors is needed.
 - Investigate differences in the contractual relationships for AFA pollock vessel in the EBS and GOA pollock vessels.
- Herfindahl indices show some increased concentration of deliveries after 2008 & many vessels deliver to only a single company (>70%). Suggesting potential for market power.
- The reduction in the margin starting coinciding in 2008 runs contrary to the notion of market power as a sole cause.

Concentration in the ex-vessel market

Herfindahl index over the volume delivered to processors

Vessel deliveries to multiple processors

Final remarks

The identification of APT does not assign a causal mechanism (methods lacking in this regard)

- We lack the data to investigate whether the asymmetries can be attributed to adjustment costs by processors
- A better understanding of the contractual relationships between harvester and processors is needed

The concentration of deliveries to processors starting in 2008 play role.

- The reduction in the margin starting coinciding in 2008 runs contrary to the notion of market power as a sole cause.
- Given that 30%-40% of vessels deliver to multiple processors this may provide sufficient competition.

Estimating the Asymmetric price transmission model

- 1. Estimate the long-run relationship between prices
- 2. Test if the relationship forms an equilibrium
- 3. Estimate the equilibrium adjustment process and associated threshold
 - Test the validity of the threshold
- 4. Test

Connection Between Markets

In a friction-less, sufficiently competitive economic world the difference between first-wholesale and ex-vessel prices would be the value-added by processing.

=> Fluctuations in prices across markets coupled.

$$p_t^{wsl} - \alpha_0 - \alpha_1 p_t^{exv} = u_t$$

The dynamic relationship between these market can be modeled through an error-corrections model.

Modeling relationships between prices (The symmetric case)

Long-run equilibrium relationship

$$p_t^e - \alpha_0 - \alpha_1 p_t^w = u_t$$

Adjustment to the equilibrium modeled as AR process

$$du_t = \rho u_{t-1} + \lambda du_{t-1} + e_t$$

Error corrections model describes the short-run dynamics

$$dp_t^e = \beta_1 u_{t-1} + \gamma_{11} dp_{t-1}^e + \gamma_{12} dp_{t-1}^w + \varepsilon_{1,t}$$
$$dp_t^w = \beta_2 u_{t-1} + \gamma_{21} dp_{t-1}^e + \gamma_{22} dp_{t-1}^w + \varepsilon_{2,t}$$

Pollock's global market position

Global whitefish & other groundfish: 74,004,976 mt

Global wild white fish 2013 (capture): 9,198,320 mt

Global pollock harvest 2013: 3,247,621 mt

Total AK pollock harvest 2013: 1,370,100 mt

Pollock competes in a global market for whitefish products. Export prices should serve a good proxy for first wholesale prices. Price changes at the wholesale level are largely exogenous by the larger global market for whitefish products.

Chow & Lin (1971) interpolation:

- Based on estimation of the low-frequency relationship between prices.
- Adjustments so that annual average of the monthly price is equal to the annual price.

Structural break in the equilibrium relationship between ex-vessel and wholesale prices in 2008.

Error Correction Term

date

Testing the price equilibrium

Price tend to be non-stationary => no long-run mean H0: Unit Root present (i.e. price are non-stationary)

	ADF Test	ADF Test (lags)		S Test (lags)	
log wholesale price/lb	-1.98	(3)	-1.9	(3)	
log ex-vessel price/lb	-1.63	(12)	-1.53	(12)	
	1pct 5p	1pct 5pct 10pct		1pct 5pct 10pct	
Critical values	-3.46 -2.88 -2.57		-2.58 -1.94 -1.62		

Conclusion: prices are non-stationary

If the estimate relationship is stationary the prices are coupled over time (i.e., there's an equilibrium relationship)

Residual ($\hat{u_t}$) stationary ADF: -7.09*** DF-GLS= -4.35***

Conclusion: there exists an equilibrium between prices