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BACKGROUND: Consumption of raspberry products have been observed to 

produce healthful effects and reduce weight gain and positively shift metabolism 

in mice fed obesigenic diets. In the past, our lab has successfully shown a 

reduction in weight gain for mice consuming RPC+HF vs. mice fed HF alone. 

Currently, there is not a lot of scientific literature characterizing specific 

mechanistic changes which occur in metabolism due to the consumption of 

raspberry products.  

 

OBJECTIVE: This study investigates raspberry puree concentrate (RPC), RPC 

polyphenols (RP), and RPC fiber (RF) for their healthful and beneficial effects in 

mice consuming a high-fat western diet. Specific indicators of metabolic-related 

diseases were evaluated to see if RPC and RPC fractions attenuated the 

development of obesity, dyslipidemia, diabetes, hepatic steatosis, hypertension, 

and chronic inflammation to the same degree.   



 

 

METHODS: The C57BL/6J (C57) mouse model was used for this study due to 

their propensity to easily develop metabolic disease when fed a high-fat diet. 

These metabolic conditions include obesity, high blood lipid and cholesterol 

levels, diabetes, fatty liver, hypertension, osteoporosis and chronic inflammation. 

Mice were fed a western-style diet containing 45% of calories from fat and 15% 

of calories from added sucrose. Diets included a low-fat control (LF), a high-fat 

control (HF), and supplemented HF diets (RPC+HF, RP+HF, and RF+HF). Mice 

had ad libitum access to these diets for 10 weeks, enough time for C57 to 

develop significant metabolic complications from HF consumption.  

 

RESULTS:  Based on our findings, fiber and polyphenols appear to work 

together to achieve the healthful effects observed when RPC is consumed. The 

unique properties and metabolic changes produced by these two fractions help 

us to better understand how RPC acts on the metabolism of C57BL/6J mice.  
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INTRODUCTION AND LITERATURE REVIEW 
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Chapter 1  

1.1 Introduction: 

According to the World Health Organization, metabolic disorders are disease 

states that are proposed as one of the primary drivers of chronic disease (WHO, 

2017). Within the United States, it is estimated that the treatment of obesity and 

related metabolic conditions cost Americans between $147 billion to $210 billion 

annually (Cawley and Meyerhoefer, 2012). An additional $4.3 billion could be 

added if absenteeism and consequential decreased work production from obesity 

related illnesses or hospitalizations are included (Finkelstein et al., 2009). Aside 

from cost, The Centers for Disease Control and Prevention (CDC) estimated 

300,000 people died of obesity related causes in 2010 (CDC, 2012).  

 

Researchers are looking into metabolic disease associated with 

overconsumption and assessing potential therapies which may help remediate 

disease symptoms and increase metabolic function. Impaired metabolism can 

produce chronic inflammation, cause hormonal imbalances, and lead to excess 

body fat accumulation. It is of interest to the general public to come up with 

solutions to mitigate the obesity epidemic without requiring individuals to make 

major alterations to their dietary or lifestyle choices. Therefore, we are evaluating 

the potential of a polyphenol and fiber rich food, the red raspberry, to improve 

metabolism.  
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1.2. Lipid Metabolism  

During states of excess energy consumption, an increase in body fat 

accumulation is typically observed. An increase in energy consumption paired 

with high saturated fat intake typically leads to an increase in circulating fatty 

acids and triglycerides. Lipoproteins carry lipids in circulation throughout the body 

and deliver them to peripheral tissues for uptake and use. Examples include 

chylomicrons, LDL, and HDLs. Lipoprotein particles contain non-polar fat, fat 

soluble vitamins, and cholesterol for transport within the circulatory system.  

 

Lipids are synthesized in the liver tissue when glucose levels are high. Glucose 

enters hepatocytes via the GLUT-1, GLUT-2, GLUT-9 and GLUT-10 transporters 

 (Karim, et al., 2012). Around 100g of glucose can be stored in the liver as 

glycogen for short term energy when blood glucose levels decline. After glycogen 

stores are repleted, excess glucose is then converted into fatty acids and 

transported for long term storage to adipose tissue. 

 

The glycolytic pathway is utilized to convert glucose to glucose-6-phosphate. 

Glucose-6-phosphate then further catabolizes to form pyruvate. Pyruvate enters 

into the mitochondria and is acted on by pyruvate dehydrogenase to form acetyl 

CoA.  Once acetyl CoA is formed it can enter into the TCA cycle, producing ATP. 

The first conversion within the TCA cycle forms citrate from acetyl CoA and 

oxaloacetate. Citrate can then be transported out of the mitochondria into the 

cytoplasm where oxaloacetate is cleaved off by ATP citrate lyase and acetyl CoA 



 

 

4 

Chapter 1  

is remade. In the presence of high insulin concentrations, ATP citrate lyase 

activity increases. Cholesterol and fatty acids can be synthesized from 

cytoplasmic acetyl CoA. These newly biosynthesized fatty acids are used in 

triglyceride synthesis.  

 

Long chain fatty acids are made via acetyl CoA carboxylase (ACC) which forms 

malonyl CoA, the starting molecule for fatty acid synthesis.  Malonyl CoA has two 

carbon units to which acetyl CoA is added. Additional acetyl CoA two carbon 

units are added as the fatty acid chain grows. Fatty acids are synthesized in the 

cytosol of the cell. These long chain fatty acids are then added to glycerol to 

create triglycerides. Adipocytes are the main tissue which stores body fat as 

triglycerides and diglycerides (Trayhurn and Bing, 2006). When lipid metabolism 

is working correctly, excess fatty acids will be stored in adipose tissue and not in 

muscle or hepatic tissues. Typically, fatty acids will be incorporated into 

triglycerides or diglycerides for long term storage within the adipocyte.  

 

Conversely, β-oxidation is the catabolic process of breaking down fatty acids in 

the mitochondria for energy production. When serum insulin concentrations are 

high due to elevated serum glucose levels, the rate of β-oxidation decreases and 

triglyceride breakdown is inhibited.  Insulin will affect different enzymes in the β-

oxidation process in order to use glucose as a first source of energy. One 

example of the effect of insulin, on an enzyme of lipolysis, is its ability to inhibit 

hormone sensitive lipase function reducing triglyceride breakdown. 
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1.3. Obesity and Related Metabolic Diseases: 

Obese individuals have greater probability of developing diabetes, hepatic 

steatosis, chronic inflammation and hyperlipidemia. Metabolic dysregulation can 

cause individuals to develop one or more of these diseases.  

 

Body mass index (BMI), is commonly used to estimate body composition and 

identify if a person is overweight or obese (25 - 29.9, >30, respectively) (National 

Institutes of Health, 1998). In obese individuals, accumulation of visceral fat is 

attributed to greater health risks and can increase pressure on internal organs 

and affect hormone regulation and function (Grundy et al., 2004). 

 

Another predominant medical condition brought on by obesity and 

overconsumption is metabolic syndrome. Having three of the following symptoms 

constitutes a diagnosis of metabolic syndrome: 1) large waistline, 2) high plasma 

triglycerides, 3) low plasma HDL levels, 4) high blood pressure, and/or 5) a high 

fasting blood glucose (Grundy et al., 2004).  More and more Americans are 

suffering from metabolic syndrome and people suffering from the disease are 

more likely to suffer from diabetes, heart attack or stroke.  
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Table 1.1 Conditions for metabolic syndrome1 

Diagnostic Parameters Men Women 
Waste Circumference           > 102 cm > 88 cm 
Plasma Triglycerides                ≥	150 mg/dL                    ≥ 150 mg/dL                 

HDL Levels                           < 40 mg/dL                       <	50 mg/dL                                  
Blood Pressure                     ≥ 130 /		≥ 85 mg/dL        ≥ 130 /		≥ 85 mg/dL                         

Fasting Blood Glucose          ≥ 100 mg/dL                    ≥ 100 mg/dL      
                       

1 Adapted from the revised 2005 NCEP ATP III criteria (Huang, 2009); 

metabolic syndrome is defined as having 3 or more of the following 

conditions. The IDF (2005) criteria requires central obesity of 94 cm (M) 

and 80 cm (F) and two additional conditions listed above (Alberti, et al., 

2005). 

 

1.3.1 Obesity: 

Obesity is a growing epidemic and a severe health crisis affecting more than 

one-third of American adults (Flegal et al., 2012). A survey conducted by 

NHANES in 2012 showed 68% of American adults suffer from being either obese 

or overweight. Many obese individuals suffer from metabolic complications 

brought on by the disease (WHO, 2017).  

 

Genetics can also play a role in determining whether or not a person will be more 

likely to develop obesity and related health problems, as seen in early twin 

studies (Standard, et al., 1986). However, genetic risk for obesity is unlikely to be 
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the explanation for the increase in obesity rates observed in the last few 

decades. This has led researchers to believe the current obesity epidemic is far 

more likely related to overconsumption paired with modern day sedentary 

lifestyles.  

 

Different strains of mice were observed to have differential propensity to develop 

obesity when fed high-fat diets (West et al, 1992). One such obesity-prone 

mouse strain is the C57BL/6J (C57). Many metabolic studies, including ours, 

have used this strain due to their high susceptibility to diet-induced obesity and 

type II diabetes (Surwit et al.,1988).  

 

Many overweight individuals develop insulin and leptin resistance which 

complicates weight loss. Certain foods have been shown to improve insulin and 

leptin sensitivity. Some studies suggest a calorie of a fat-rich food is not 

biologically equivalent to a calorie of vegetables even though they contain the 

same amount of energy. Certain foods will stimulate the release of insulin and/or 

leptin, while high fat diets tend to suppress insulin and leptin secretion (Van 

Heek, et al.,1997).   

 

1.3.2 Diabetes:  

Type II diabetes is a metabolic disorder caused by a genetic predisposition and 

unhealthy lifestyle and dietary choices. During the initial stages of pre-diabetes 

the peripheral tissues become insulin resistant which leads to prolonged high 
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levels of serum glucose. Pancreatic beta cells increase production of insulin in 

order to keep up with the rise in serum glucose levels. Eventually this causes 

beta cell hypertrophy and they become dysfunctional. Hyperglycemia results 

from loss of beta cell function in the pancreas and results in an inability to 

produce adequate amounts of insulin. Insulin is a hormone which helps the liver 

and other insulin sensitive tissues utilize blood glucose. Prolonged 

hyperglycemia can damage the kidneys, heart, eyes, and nervous system 

(American Diabetes Association, 2006).  

 

As well as organ damage, high blood glucose will cause dysfunction in red blood 

cells as over-saturation causes sugar to bind hemoglobin rendering them useless 

for oxygen transport (Lima et al., 2009). The resulting inability for red blood cells 

to distribute oxygen causes cell respiration issues and potential cell death. 

Another key issue regarding high plasma glucose and hypertension is 

arteriosclerosis. The link between high glucose levels and hypertension may be a 

decreased production of nitric oxide, a vasodilator. Excess cellular glucose can 

cause an increase in O-GlcNA which competes with nitric oxide synthase for 

phosphorylation (Lima et al., 2009). 

 

There are many tests to determine if someone has diabetes. One of the more 

popular methods is the fasting plasma glucose (FPG) test, which requires the 

participant to fast for 8 hours before measuring their blood glucose concentration 

(American Diabetes Association, 2014). A normal test would show less than  100 
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mL/dL glucose in the blood stream. Blood glucose levels of 100 to 125 mL/dL 

indicate prediabetes and 126 mL/dL or greater indicate diabetes (American 

Diabetes Association, 2014). Other methods of testing diabetes include glycated 

hemoglobin test (A1C), Oral Glucose Tolerance Test (OGTT), and the random 

plasma glucose test. Hemoglobin A1C estimates plasma glucose levels over the 

prior two to three months, with a value of 6.5% or higher indicating diabetes. A 

5.7 to 6.4% value indicates a person is pre-diabetic and is at risk of developing 

the disease (American Diabetes Association, 2014). The OGTT measures how 

the body reacts to a controlled dose of glucose over two hours. Random plasma 

glucose testing will indicate diabetes if over 200 mL/dL blood glucose is found 

when randomly tested (American Diabetes Association, 2014).  

 

1.3.3 Hepatic Steatosis 

There are two kinds of common hepatic steatosis syndromes: alcoholic liver 

disease and nonalcoholic fatty liver disease (NAFLD). The prevalence of NAFLD 

within the U.S. population is somewhere between 14 and 24% and typically 

presents in adults rather than children (Browning and Horton, 2004). Broadly 

speaking, insulin resistance and resulting hyperinsulinemia will cause an 

increase in hepatic glucose and lipid synthesis, and a decrease in glucose 

excretion. This leads to hepatic steatosis which can result in reduced liver 

function.  

 



 

 

11 

Chapter 1  

Mechanistically, insulin resistance will cause up-regulation of hepatic sterol 

regulatory element-binding protein 1 (SREBP-1c) and carbohydrate-responsive 

element-binding protein (ChREBP) which in turn increases transcriptional 

activation of lipogenic genes (Elkatrwy, 2011).  An up-regulation of ChREBP will 

also increase activation of L-type pyruvate kinase (L-PK). (Elkatrwy, 2011) These 

changes in hepatic gene expression causes glucose to be converted to free fatty 

acids (FFA) which are readily used in hepatic lipogenesis. Excess FFA will also 

cause a rise in malonyl CoA which inhibits carnitine palmitoyltransferase I, a key 

enzyme in fatty acid transport though the mitochondrial membrane, thus favoring 

lipogenesis (Browning and Horton, 2004). Adipose is also affected by 

hyperinsulinemia which acts to up-regulate hormone-sensitive lipase (HSL) 

activity, increasing adipose triglyceride lipolysis and elevating production of FFA 

flux to hepatic tissue (Browning and Horton, 2004). These regulatory changes in 

hepatic and adipose tissues will lead to a metabolic shift which promotes lipid 

accumulation in hepatic tissue.   

 

1.3.4 Chronic Inflammation 

Many of the metabolic problems seen in obese individuals are due to chronic 

inflammation brought on by high-calorie diets and low physical activity. Metabolic 

diseases may be caused by chronic low-grade inflammation causing tissues to 

become metabolically dysregulated and inflamed. Chronic inflammation is related 

to homeostatic imbalances within tissues which leads to an increased propensity 
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for disease, decrease in tissue repair, and decreased ability for tissues to adapt 

to stressors (Xu et al., 2014).  

 

Inflammation is associated with elevated C-reactive protein (CRP) and serum 

amyloid A (SAA). Normal serum CRP levels are below 3.0 mg/dL (Berlin and 

Lisovaya, 2014). Immune cells, liver and adipose tissue are all sources of CRP. 

As a pro-inflammatory marker and an active agent in the inflammation process, 

high levels of CRP can indicate an increased risk of heart disease, obesity and 

diabetes (Berlin and Lisovaya, 2014). Another pro-inflammatory marker is SSA 

which is elevated in people with atherosclerosis. Atherosclerotic plaques and 

increased risk for cardiovascular disease are also elevated in those with high 

serum SAA levels (Berlin and Lisovaya, 2014).  

 

Chronic inflammation can cause cell membranes to breakdown causing an 

imbalance in electrical currents kept by concentration gradients through 

membrane compartmentalization (Xu et al., 2014). Also, an increase in cell death 

or apoptosis is expected with resulting poor membrane stability with chronic 

inflammation. The potential to select foods which have an anti-inflammatory 

effect would be likely to improve metabolism.  

 

1.3.5 Hyperlipidemia  

Hyperlipidemia is a condition where abnormally high concentrations of blood 

lipids exist in the circulatory system for extended periods of time. According to 
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the National Institute of Health, problematic levels of serum total cholesterol 

begin at ≥ 200mg/dL (National Cholesterol Education Program, 2001). The NIH 

also recommends keeping LDL blood level below 100mg/dL and for HDL blood 

levels to be above 60mg/dL for optimal health (National Cholesterol Education 

Program, 2001). Total blood triglyceride level is recommended to be kept below 

150mg/dL for optimal health (National Cholesterol Education Program, 2001).  

 

People who suffer from hyperlipidemia are at a greater risk of developing 

arteriosclerosis, coronary heart disease, myocardial infarction, stroke, and renal 

failure. Fat and cholesterol accumulates in the circulatory system when there is 

an excess of triglyceride and cholesterol synthesis in body tissues (Xu et al., 

2014). After a meal, blood lipid and cholesterol levels increase, which becomes a 

significant issue when these concentrations increase past recommended levels 

or remain elevated for extended periods of time.  

 

1.4 Functional Foods and Metabolic Health  

Consumption of functional food is a popular way of attempting to improve 

metabolic function. Functional foods contain healthful compounds or ingredients 

which have a medicinal effect. Our goal is to understand how functional foods 

and their components work to improve metabolism. Popular functional foods 

include tree nuts, berries, brassicas, and whole grain foods. These recognized 

functional foods contain healthful compounds such as omega-3 fatty acids, 

polyphenols, isothiocyanates, and fiber. 
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1.4.1 Fruit and Vegetable Intake 

Dietary Guidelines for American 2015-2020 recommends a vegetable intake of at 

least 2.5 cups per day for adults based on a 2000 Calorie daily diet. The recently 

published guideline recommendation also suggests a daily fruit intake of around 

2 cups. Based on these 2010 recommended values, only 57.8 percent of US 

citizens are meeting the guidelines for fruit and vegetable intake, leaving 42.2 

percent deficient for these two food categories.   

 

Increased consumption of healthful foods can benefit metabolic function and 

decrease one’s risk of developing metabolic related diseases. Tree nuts contain 

high levels of omega-3 fatty acids which impacts cardiovascular, immune and 

inflammatory pathways. Berries are a rich source of polyphenols which are 

reducing agents that help decrease oxidative stress, improving metabolic 

function and lessening inflammation. Cruciferous vegetables have high levels of 

glucosinolates, which upon hydrolysis become biologically active isothiocyanates 

capable of regulating enzymes involved in metabolism, inflammation and 

elimination of xenobiotics. Fiber is a well-recognized functional food component 

of whole grain foods. Consumption of high fiber foods can reduce risk for type II 

diabeties and increase cardiovascular and gut health (Slavin, 2013). 
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1.4.1.1 Anti-inflammatory properties 

Among the bioactive compounds in berries are salicylic acid, gallic acid, 

quercetin, raspberry ketone, catechines, kampferol, cyanidins, carotenoids, and 

pelargonidins. Many of these compounds can act to decrease levels of 

inflammatory cytokines. These compounds may be capable of shifting 

metabolism and alleviating metabolic concerns brought on by poor diet choices.    

  

1.4.1.2 Anti-oxidant properties of Red Raspberry  

Many bioactive molecules are relatively abundant within raspberries and promote 

free radical scavenging and increase metabolic health and productivity. Some of 

these anti-oxidant promoting molecules include quercetin, raspberry ketone, and 

ellagic acid. Anti-oxidants can alleviate some of the issues associated with 

catabolic processes which require oxygen.  A reduction in the concentration of 

free radicals will also provide protection against mutations to DNA and tumor 

growth.  

 

1.4.2 Nutrient Content of Red Raspberry 

Red raspberry is commonly sold commercially as a hybrid of Rubus ideaeus and 

Rubus strigosus (Fernández-Fernández et al., 2011). Approximate composition 

of red raspberry is as follows: 80.6% water, 15.7% carbohydrate, 1.5% protein, 

0.6% fat, and 1.6% ash (Jay et al., 2008). The USDA National Nutrient Database 

for Standard Reference estimates one cup of whole red raspberry contains 80 

kcal of energy, 2 g of protein, 16 g of carbohydrate, 6 to 8 g of dietary fiber, 6 g of 
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sugar and 1 g of lipid. Whole red raspberry is also a good source of minerals and 

vitamins and is also known for being one of the highest fiber-containing fruits 

(Dodevska, Šobajić, and Djordjević, 2015). One cup of whole red raspberries 

contains 20 mg of calcium, 1.08 g of iron, and 23.9 of vitamin C (USDA National 

Database). Red raspberry does not contain appreciable levels of sodium, vitamin 

A, saturated or trans fats (USDA National Database). Anthocyanin content of red 

raspberries varies with region and season harvested (2.43 to 1113.1 mg/100 g) 

(Probst, 2015).   

 

1.4.2.1 Red Raspberry and Fiber 

Red Raspberry in particular is exemplary in providing dietary fiber, more than 

most whole foods on the market today (USDA National Database). One serving 

(100g) of whole red raspberries contains 6 to 8 g of dietary fiber (USDA National 

Database). 

 

Table 1.2 shows the fiber and polyphenol content of one portion of whole red 

raspberry as analyzed by Dodevska in 2015. They found the soluble and 

insoluble fiber content of red raspberry to be approximately equal, 2.6 to 2.9 g 

respectively. Cellulose, as determined from the insoluble fraction, was present at 

a much lower rate within red raspberry 1.2g per 100g.  
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Table 1.2 Fiber content of one portion (100g) of whole red raspberry*  

Fiber parameters             Red raspberry 
Total fiber (g / 100g)  5.5 
Soluble fiber (g / 100g) 2.9 
Insoluble fiber (g / 100g) 2.6 
~ Cellulose (g / 100g) 1.2 

 

* Adapted from (Dodevska et al., 2015). 

~ Subcategory of the previous row  

 

In a second study, Jakobsdottir et al. measured soluble and insoluble fiber along 

with digestible polysaccharides, in dried whole red raspberries. They found a 

higher content of insoluble compounds, although their reported values included 

non-fiber compounds.  

 

1.4.3 Red Raspberry Health Benefits  

Whole raspberries have been examined as a potential food candidate that could 

remediate metabolic disease concerns brought on by consumption of a western 

diet. Bioactive compounds of red raspberry have been studied for their ability to 

regulate gene and protein expression within the body. Addition of red raspberry 

flavonoids and polyphenols to the diet have been studied and potential functional 

biomolecules within red raspberry have been identified (Burton-Freeman et al., 

2016).  
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Table 1.3 Phytochemical compounds in frozen red raspberry* 

 
Phytochemical Compounds              mg/100g 
Anthocyanidins   
          Cyanidin 22.6 
          Delphinidin 0.02 
          Pelargonidin 1.60 
Flavones  
          Apigenin 0.01 
          Luteolin 0.02 
Flavonols   
          Kaempferol 0.01 
          Myricetin 0.03 
          Quercetin 1.10 

   

*Adapted from (Burton-Freeman et al., 2016). 

 

Effects of red raspberry polyphenols are less studied than many other berries for 

their relative health benefits.  

 

1.4.3.1 Red Raspberry and Polyphenols 

A large portion of the polyphenols within raspberries are anthocyanin 

compounds. Anthocyanins are responsible for the pigmentation of many fruits 

including raspberries and have antioxidant capabilities which can reduce 

inflammation.  Within plants, anthocyanins are used to reduce the amount of free 

radical species created during conditions of high UV light and increased rates of 

photosynthesis, as well as protect plants against potential plant pathogens 
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(Paterson et al., 2013). These compounds are less well studied for mechanistic 

effects on physiology than other phenolic compounds.  

 
Table 1.4 Composition of polyphenolic compounds in 300g of red 
raspberry* 

(Poly)phenolic Compounds          𝛍mol/ 300g 
Cyanidin-3-O-sophoroside      175 ± 6 
Cyanidin-3-O-(2-O-glucosyl)      
rutionoside        

56 ±	2 

Cyanidin-3-O-glucoside                                  37 ±	1 
Cyanidin-3-O-rutinoside                                  20 ±	1 
Cyanidin-3-O-(2-O-xylosyl) 
rutinoside             

2.7 ±	0.1 

Pelargonidin-3-O-sophoroside                        1.2 ±	0 
Pelargonidin-3-O-glucoside                             1.1 ±	0 
Cyanidin-3,5-O-diglucoside trace 
Total anthocyanins  292 ±	10 
Ellagic acid-O-pentoside 3.2	±	0.2  
Ellagic acid-O-hexoside  3.1	±	0.2 
Total ellagic acids 6.3 ±	0.3 
Sanguiin H-6 195 ±	7 
Sanguiin H-10 5.7 ±	0.4 
Lambertianin C 50 ±	1 
Total ellagitannins 251 ±	3 
Ferulic acid  1.2 ±	0.1 
4-Hydroxybenzoic acid 2.3±0.1 
Total (poly)phenols 553±19 

 
*Adapted from (Ludwig et al., 2015). (Poly) phenolic compounds identified and 

quantified by HPLC-MS. 

 

Ellagic acid is another phytochemical which may be responsible for improved 

metabolic function upon consumption of red raspberry. Raspberries contain one 



 

 

20 

Chapter 1  

of the highest levels of ellagic acid (Landete, 2011). Around sixty percent of the 

phenolic content in red raspberries are ellagitannins which are hydrolyzed to 

ellagic acid during metabolism. (Landete, 2011) The three main benefits of 

ellagic acid consumption are their anti-inflammatory, antioxidant and 

antimicrobial functions. Once ellagic acid reaches the microbiota within the gut, it 

is then metabolized into a family of compounds called urolithins (Kang et al., 

2016). 

 

Current research suggests urolithins are modulators of the gut microbiome. 

Urolithins may influence epigenetic regulators through DNA methylation, histone 

modifications and mRNA expression, though more evidence is needed to support 

the potential causal relationship (Gerhauser, 2018). Microbial metabolism of 

ellagic acid contributed to an ecological change in the microflora promoting the 

growth of Bifidobacterium spp. and reducing inflammation. Two enzymes 

involved in adipogenisis, histone deacetylase 9 (HDAC9) and histone arginine 

methyltransferase 4 (CARM1), are inhibited in the presence of ellagic acid.  

Ellagic acid also, helps to reduce TNF𝛼-induced inflammation through inhibition 

of histone acetyltransferase (HAT) activity in monocytes (Kang et al., 2016). 

 

A strong antioxidant, quercetin, is found abundantly in many fruits and 

vegetables.  The abundance of quercetin in red raspberry is shown in Table 1.3. 

Quercetin has a catechol structure, with two hydroxyl groups on the b-ring 

phenol, which gives it superior free radical scavenging ability. Quercetin has 
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been shown to improve pancreatic islet cell function, enhancing insulin secretion, 

which increases the body’s ability to process food and respond to metabolic 

stresses (Natarajan et al.,2017). Supplementation with quercetin has also shown 

a protective antimutagenic and antiviral effect. Quercetin can protect against 

tumor growth and promotion as it scavenges free radicals which could cause 

DNA damage and has been shown to stop mutagenic cells at the G1 stage of cell 

division (Wei et al., 1994).  

 

 1.5 Fiber and Health  

Fiber is of particular interest as it has been connected to better metabolism and 

increased colon health (Anderson et al., 2009). Americans on average do not eat 

enough fiber in their diet (Dietary Guidelines for Americans 2015-2020), which 

causes heath complications and increases absorption of glucose into the 

epithelial cells of the small intestine (Anderson et al., 2009). Inadequate fiber 

intake can also damage the gut lining causing leaky gut, a shift in normal 

microbiome, cause laxation issues, diverticulosis, and increase cancerous polyp 

development (Madhu et al., 2017).  

 

Adults are advised to consume 20-35 g/day of fiber and children 5 g/day, these 

levels are typically not met by the most US citizens (Dietary Guidelines for 

Americans 2015-2020). Consumption of fiber is associated with both glucose and 

cholesterol reductions in blood and increased gut microbial heath. These effects 

are related to the viscous properties of fiber. Viscous fiber creates a physical 
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barrier to bile acid reabsorption within the gut, which promotes excretion of bile 

acids in the feces. Enhanced bile excretion causes cholesterol to be used by the 

liver to replace the lost bile acid, therefore lowering overall concentrations of 

LDL-cholesterol within the blood (Anderson et al., 2009). 

 

1.5.1 Fiber and the Microbiota 

Consumption of a high fiber diet will promote a healthier microbiota and increase 

gut health. The gut contains the greatest number of immune cells in the body and 

is responsible for mitigating the exposure to multiple antigens from diets, 

commensal bacteria, and pathogens (Sun et al., 2015).  Short chain 

oligosaccharides, contain two to ten sugar units, also promote the formation and 

colonization of bifidobacteria within the microbiota which are dependent on fiber 

as an energy source (Anderson et al., 2009). Pathogenic bacteria cannot use 

short chain oligosaccharides as an energy source and will decrease in number 

and slough off into fecal matter when short chain oligosaccharide fiber content is 

high (Anderson et al., 2009). The physiological impact of incorporating longer 

chain fiber into the diet is not fully understood at present (Benítez-Páez et al., 

2016). Fiber studies have often given inconsistent or inconclusive results, likely 

due to the persistence and resistance of certain gut microbes (Kieffer et al., 

2016).  
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1.6 Previous Red Raspberry Studies 

Our lab has conducted two previous studies examining the overall health benefits 

provided by consumption of raspberry products. The first study evaluated effects 

of supplementation of whole red raspberry juice concentrate (RJC), whole red 

raspberry puree concentrate (RPC), raspberry seed extract (RSE), raspberry fruit 

extract (RF), ellagic acid (EA), raspberry ketone (RK), and ellagic acid with 

raspberry ketone (EA+RK) in a high-fat western style diet provided to mice. In 

study II the scope was narrowed to assess only the health benefits, as seen in 

study I, of RJC and RPC. In Study I, these supplements were given at the 

equivalence of four serving per day and in study II the dietary dose was lowered 

to one-serving per day.  

 

1.6.1 Study I 

A study conducted by the Shay laboratory in 2015 examined the development of 

obesity in mice fed a high fat diet with or without the supplementation of different 

raspberry products. The diet groups in this study included a low-fat control, a 

western diet control, and high-fat western-style diet supplemented with the seven 

raspberry-derived products mentioned above. The macronutrient content of the 

western diet was ~45% fat, 35% carbohydrate, and 20% protein, by energy. 

Concentrates and powders were supplemented at 20% of total energy and 

purified compounds were supplemented at 0.2% (w/w). RPC and RJC was 

provided at the equivalence of four servings a day. Six-week-old C57 mice were 

acclimated for 2 weeks and then were divided into their respective diet groups 
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and fed for 10 weeks. Mice were maintained in an animal care facility with a 12h 

light/dark cycle and were allowed to eat and drink ad libitum. Body weight, food 

consumption, and spillage were measured weekly and blood glucose was tested 

6 hours prior to sacrifice at the end of week 10. (Luo et al., 2016)  

 

There was a decrease in weight gain for mice supplemented with RPC, RJC and 

EA+RK compared to western diet alone. Serum resistin, a marker of insulin 

insensitivity, was decreased in mice consuming the RPC and RJC diets (Luo et 

al., 2016).  

 

1.6.2 Study II  

The Shay laboratory conducted another study providing a single daily serving of 

RPC and RJC in order to observe specific changes in metabolic syndrome 

parameters. Four groups of C57 mice (n=8) were fed: low-fat diet (LF), high-fat 

western-style diet, or a high-fat western-style diet was supplemented with either 

RPC or RJC (Luo, et al., 2017). Mice were placed on the diets for 10 weeks, and 

allowed to eat and drink ad libitum in a 12-hour light/dark controlled environment, 

maintained at 24°C (Luo, et al., 2017). The results from Study II are highlighted in 

Table 1.5.  
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Table 1.5 Study II experimental results* 

 
Metabolic Parameters 

Compared to HF-diet alone 
Treatment groups 

(2.5% of total energy, ~1 serving / day) 

 HF+ RPC HF+RJC 
Decrease in Hepatic Lipid 

Accumulation 
15% ±	6% 17%	± 3% 

Decrease in Final Body 
Weight 

15% ±	6% 17%	± 3% 

Insulin Sensitivity Increased Increased 
Baseline Blood Glucose No difference No difference 

HOX1 up-regulation Yes Yes 
Lipe up-regulation Yes Yes 

  

* From (Luo et al., 2017) 
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2.1 Introduction  

The consumption of polyphenols and fiber have been shown to ameliorate some 

of the negative health impacts of consuming a high-fat and high-sugar western-

style diet. For this reason, this experiment has undertaken a study to deduce the 

relative health benefits associated with the fiber and polyphenol fractions of red 

raspberry. This project will produce a better understanding of the health benefits 

observed with consumption of red raspberry fiber and polyphenols. The purpose 

of our study is to observe the relative effects of raspberry derived polyphenols 

and fiber when fed to mice consuming a “western-style diet.”  

 

Chapter two describes how these food fractions were derived from the whole 

food (RPC).  This chapter also includes a characterization of the whole food 

(RPC) and the individual fractions, red raspberry polyphenol-enriched (RP) and 

red raspberry fiber-enriched (RF). The analysis includes the relative fiber content, 

moisture content, and specific polyphenolic compounds within each treatment 

group.  

 

We hypothesize the red raspberry polyphenols and fiber are unique in their 

metabolic activity and may also work synergistically to produce the health effects 

observed in our earlier studies (Luo et al., 2016 and Luo et al., 2017).  
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2.2 Materials and Methods 

2.2.1 Storage Condition 

Raspberry Puree Concentrate (RPC) was donated by Milne Fruit Products 

(Prosser, Washington). The RPC was stored at -20°C in the dark in air-tight 

containers until needed. After-storage, RPC was thawed for 24 h at room 

temperature followed by additional time, if needed, at 4°C. Any time during 

processing when the product was not being actively handled, it was stored at 4°C 

in the dark. Nutritional content of RPC is found in Table 3.1.  Diet composition of 

the RPC-containing rodent diet is found in Table 3.2. 

 

2.2.2 Moisture Content 

Moisture content of RPC was determined using an oven heating protocol.  Two 

empty aluminum metal drying containers (70 mm diameter x 32 mm height with a 

tight-fitting lid) were cleaned and dried at 100°C for 15 minutes and placed in a 

desiccator. Special care was taken to handle them with gloves as to not transfer 

any oil to the surfaces. Each aluminum metal drying container with its 

corresponding lid was weighed and recorded. The scale was tared and around 

5g of product was weighed out directly into each container. 

 

 A vacuum oven is connected to a pump which maintains a partial vacuum          

(≤ 25mm Hg) and is connected to a H2SO4 gas-drying bottle. For this procedure, 

the vacuum oven was set to 70°C. Once the desired temperature was reached, 

the sample-filled containers were transferred to the oven. Lids were placed on 
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the containers unsealed in order to allow moisture to escape during the heating 

process. Both samples were heated at 70°C overnight (16 h) and then removed 

from the oven. After retrieval, the sample-filled containers were cooled in a 

desiccator until they reached room temperature, after which they were weighed. 

The new weights were recorded and moisture content was calculated. Samples 

were dried for an additional three hours in the vacuum oven to ensure a final dry 

weight was achieved. 

 

The equations used were 

Wet Sample wt. - Dry Sample wt. = Moisture Lost During Drying 

Wt of Container & Sample After Drying - Empty Drying Container = Dry wt  

(Moisture Lost / Wet Sample wt.) x 100 = Moisture Content Wt. Basis % 

 

2.2.3 Fiber Content of RPC 

Fiber was measured using a modification of AOAC Official Method 991.43 (Total, 

Soluble and Insoluble Dietary Fiber in Foods) and a combination of enzymatic 

(pancreatin) and gravimetric analysis. A preliminary analysis of the puree used a 

dietary fiber kit (Sigma TDF-100A) to determine total fiber content. The 

manufacturer’s recommended protocol was followed.  

 

A second analysis used pancreatin in place of the dietary fiber kit. Fiber used in 

the feeding study was obtained using the pancreatin substitute as the dietary 
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fiber kit uses celite, which could cause dietary distress in mice even if provided in 

trace amounts.  

 

2.2.3.1 Preparation of Buffer 

A potassium buffer was used to achieve optimal conditions for the porcine 

pancreatin. An acetate buffer (pH 4.0) was mixed with a phosphate buffer         

(pH 7.0) to create a pH 6.8 buffer which was then used for the enzymatic 

digestion with pancreatin.  

 

2.2.3.2 Preparation of Pancreatin Digest 

Pancreatin was added at 2 g for every 100 g of RPC converted (amylase activity: 

minimum 25 USP u/mg, protease activity: minimum 25 USP u/mg, lipase activity: 

minimum 2 USP u/mg) according to specification. The porcine pancreatin was 

sourced from Alfa Aesar (Tewksbury, MA).  The mixture was placed in a water 

bath at 40°C overnight (~16 h) to simulate conditions within the porcine digestive 

track.  

 

2.2.3.3 Clarification of Fiber 

After retrieving the digest from the water bath the contents were cooled to room 

temperature. The digest then underwent centrifugation at 6,000 rpm or 6037xg 

(Rotor GSA, Centrifuge RC5c) for 10 minutes and the supernatant was collected. 

The supernatant obtained from the first centrifugation was used to produce a 

polyphenol-rich fraction via hydrophobic chromatography (2.2.3.4). The pellet 
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obtained was then re-homogenized, washed, and centrifuged twice with 80% and 

95% ethanol to further clarify the enriched fiber fraction. After washing, the pellet 

was dried using a vacuum oven at 70°C for 5 h and stored at -20°C until needed. 

 

2.2.3.4 Amberlite Polyphenol Extraction 

Amberlite® FPX-66 (Rohm Haas, Philadelphia, PA) was used to produce a 

polyphenol-rich fraction from the supernatant obtained after centrifugation.     

FPX-66 are adsorbent polymer beads which bind to hydrophobic polyphenolic 

compounds in the supernatant through hydrophobic interactions. The mixture of 

amberlite® beads and the digest was agitated for 1 h on a shaker table resulting 

in a clear supernatant which was then discarded.  Amberlite® beads with the 

bound polyphenols were then eluted with a 95% w/w ethanol wash until the wash 

ran clear and all of the colored supernatant was collected.  

 

 2.2.3.5 Drying of Extracted Polyphenols 

After collecting the eluate of the amberlite® bead wash, the volume was reduced 

under vacuum while heating in a water bath at 50°C. This product was stored at  

-20°C until further concentration. The subsequent concentration utilized a food 

dehydrator at 74°C until a thick paste was produced. This polyphenol-rich 

material was then used for rodent diet production. 
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2.2.3.6 Polyphenol Content Determination 

Polyphenol content of RPC and RP was conducted by Mr. Robert Durst, Oregon 

State University, using the Folin-Ciacatten method (Ainsworth and Gillespie, 

2007).  
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Figure 2.1 Flow chart of the fiber extraction of using a modified AOAC 

official method 991.43 with pancreatin.  

* Indicates fraction used for polyphenol extract preparation. 
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Figure 2.2 Flow Chart of Amberlite® FPX-66 extraction of polyphenol-rich 

fraction. 
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2.3 Results  

2.3.1 Moisture Content 

Table 2.1 Moisture content measurements  

 1st Container * 2nd Container * 
Empty Container(g) 28.719 29.488 
Wet Sample RPC (g) 5.032 5.078 
RPC + container after 
16 h of drying (g) 

30.173 30.944 

Dried Sample (g) 1.454 1.456 
Water lost (g) 3.579 3.622 
Water Content (%) 71.10 71.33 

    

* measurement was preformed in duplicate 

 

2.3.2 Fiber Content of the Red Raspberry Puree Sample 

Using a dietary fiber kit (Sigma TDF-100A), we measured a fiber content of 13% 

in the dried raspberry puree sample. This method resulted in a much higher fiber 

content than in the manufacturer’s nutrient content data sheet for the RPC. 

 

A modified AOAC Official Method 991.43 (Total, Soluble and Insoluble Dietary 

Fiber in Foods) substituted pancreatin instead of individual enzymes, and was 

used during the fiber fractionation. We obtained a value of 2.8% fiber content, 

which was quite close to the given manufacture value.  

 

 

 



 

 

36 

Chapter 2  

2.3.3.7 Fiber Content of the Enriched Product  

The RF fiber content was measured using AOAC method 934.06 by Rtech 

laboratories, Anden Hills, MN 

 

2.4 Lab Analysis and Enrichment Calculations 

2.4.1 Fiber Enrichment of RPC*   

The fiber content of the whole food RPC was 2.0% based on wet weight. Dry 

fiber content was calculated using the percent moisture (73.4%). Table 3.1. 

 

Table 2.2 Fiber enrichment of RPC* 

Material Mass 
(g) 

Fiber 
Concentration 

(g / 100g) 

Fiber Content 
(g) 

Yield  
(%) 

Fold 
Enrichment 

RPC (wet) 2000 2.0 40 100 1.0 

RF (wet) 316 9.45 29.9 74.8 4.73 

RPC (dry) 532 7.5 40 100 1.0 

RF (dry) 66.9 44.6 29.9 74.8 5.95 

*RF fiber content was measured using AOAC method 934.06 Rtech 
Laboratories, Anten Hills, MN.  
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2.4.2 Enrichment of Phenolic Compounds 

 

Table 2.3 Phenolic enrichment of RPC*   

Material Mass 
(g) 

Polyphenol 
Concentration 

(mg / 100g) 

Polyphenol 
Content (mg) 

Yield  
(%) 

Fold 
Enrichment 

RPC (wet) 2000 131.7 2634 100 1.0 

RP (wet) 204 488.2 996 37.8 3.8 

* Polyphenol content was analyzed by Folin-Ciacatten method 

 

 

 

 

 

 

 

 

 

Figure 2.3: Red raspberry fiber-enriched and polyphenol-enriched fraction 

yields  
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2.5 Discussion 

One of the ways to combat obesity is through the use of functional food products 

in the diet. In order to best use functional foods, we need to understand their 

effects on metabolism and through this exploration, if possible, increase the 

nutritional properties of food products. One way to enhance beneficial bioactivity 

of food is through fractionation to increase the abundance of healthful 

ingredients.  

 

In this chapter, two methods of fractionation were utilized. For the red raspberry 

fiber fraction, we used a modification of AOAC Official Method 991.43 (Total, 

Soluble and Insoluble Dietary Fiber in Foods) with pancreatin. For the red 

raspberry polyphenol fraction, we used a hydrophobic affinity column 

fractionation technique. These two techniques enabled us to concentrate the 

desired bioactive fractions from the whole food, which allowed us to assess the 

relative metabolic effect of these two fractions in a 10-week feeding study 

conducted using C57 mice (Chapter 3).  

 

Our measured moisture content of the whole food (RPC) was comparable to the 

moisture content provided by the manufacturer (~71 vs. ~73.4%, respectively). 

Fiber obtained through the modified AOAC Official Method 991.43 with 

pancreatin was also consistent with the nutritional label (2.8% to 2.0%, 

respectively). These findings indicated that the food shipped was representative 

of the nutrition label given and represented in Table 3.1.  
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However, the fiber content found when using the dietary fiber kit (Sigma TDF-

100A) was much higher than represented on the nutrition label (~13 to 2.0%, 

respectively). These findings might support the evidence that the fiber content 

found in the analysis of the fiber fraction could be over-estimated. Often, foods 

rich in polyphenols, will assay higher in dietary fiber content in comparison with 

their actual concentration (personal communication with Dr. James Podolske, 

Director of Innovation K. Rettenmaier USA-LP, School craft, MI.) This is what we 

observed when testing the RPC food through the dietary fiber kit method and 

then again in fiber analysis conducted by an outside service lab. 

 

One limitation of our fiber-enrichment procedure is possible loss of soluble fiber 

during the RPC enzymatic digestion in a water based buffer. Our fiber-

enrichment procedure yielded 75% of the original RPC fiber concentration. We 

expect the fiber-enriched product has more insoluble fiber than original RPC 

product (2:1 instead of 1:1 insoluble to soluble fiber, respectively).  

 

Analysis showed the phenolic enriched-fraction contained a 3.8-fold increase in 

phenolic content from the original RPC product. The fiber enriched-fraction 

contained a 5.95-fold increase in fiber content (dry weight) from the RPC product. 

Both of these results indicate the success of our fractionation techniques and the 

activity of the pancreatin used in the digest. 
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3.1 Study Introduction 

This study assessed the relative contribution of red raspberry polyphenol- and 

fiber-enriched fractions of RPC in promoting metabolic health, as observed with 

our earlier studies of whole RPC (Luo et al., 2016 and Luo et al., 2017). An 

obesigenic high-fat western-style diet was used to promote the development of 

metabolic disease in male C57 mice.  Many different parameters associated with 

metabolic disease were assessed to better clarify the differences produced by 

consumption of the red raspberry polyphenol- and fiber-enriched fractions.  

 

Raspberry puree concentrate (RPC) was used to produce two fractions: a 

polyphenol-enriched fraction (RP) and a fiber-enriched fraction (RF). Fractions 

were produced via amberlite® affinity hydrophobic chromatography and 

enzymatic methods, respectively (Chapter 2). The whole food RPC, RP and RF 

fractions were fed for 10 weeks to C57 male mice fed a high-fat, high-cholesterol, 

and high-sucrose diet (HF). A second control group was fed a LF diet.  Body 

weight and food intake were measured weekly and a glucose tolerance test and 

an insulin sensitivity test was administered in weeks 9 and 10, respectively.  After 

10 weeks mice were sacrificed and tissues and serum samples were collected 

for further analysis.  
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3.2 Materials and Methods 

3.3 C57 Mouse Model and Diets 

The C57 mouse is an excellent model to mimic human metabolic disease when 

provided a high fat diet. As a commonly used murine animal model, the C57 

mouse develops diet-induced metabolic syndrome shortly after being placed on a 

HF diet. The C57 mice will develop obesity, hyperinsulinemia, hyperglycemia, 

hypertension, and become more susceptible to atherosclerosis when fed a HF 

diet, whereas if the same mice are provided a LF diet they will eat normally and 

not develop these debilitating metabolic conditions. After around four weeks, C57 

mice fed a HF diet will show a significant increase in body weight gain compared 

to LF-fed control mice. Male mice more readily develop diabetes in comparison 

to their female counterparts and are typically used in metabolic studies 

(Ingvorsen et al., 2017).  

 

Forty, six-week-old, male C57 mice were purchased from Jackson Laboratory 

(Bar Harbor, ME) and allowed to acclimate for four weeks prior to 

experimentation. They were gradually introduced to the LF diet over the first two 

weeks by incrementally adjusting the diet every two to three days from common 

lab chow to the semi-purified LF diet in around 20% steps. By the end of the two-

week adjustment period, mice were consuming 100% LF.  Animals then were 

maintained on the LF diet for an additional two weeks until the experimental diets 

were introduced. Purified LF and HF diets, along with the experimental red 
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raspberry-enriched diets were produced by Research Diets, Inc. (New 

Brunswick, NJ, USA) (Table 3.2). 

 

Mice were housed four each to a plastic shoebox-style cages with standard 

bedding and were allowed to drink water ad libitum. They were kept in the 

controlled environment of our animal facility at 20°C. The animal room had an 

automated 12h light/dark cycle. Mice were assigned to different diet groups 

(n=8), the two control groups were placed on either a LF diet which contained 

10% fat and 70% carbohydrate (by energy) or a HF diet which contained 45% 

energy from fat, 35% energy from carbohydrate and 1% (w/w) cholesterol. The 

other three groups were placed on HF diets enriched with RPC (HF+RPC), RP 

(HF+RP), or RF (RF+HF). The HF+RPC diet contained 20% energy from RPC. 

Both the RP and RF treatments were added to the diet according to the relative 

amount obtained from RPC. The RPC, RP, and RF were all provided at the 

equivalence of four serving / day.  

 

During the ten-week study, body weight, diet intake, and diet spillage were 

measured each week. All mice were closely monitored during the study and 

acclimated bi-weekly to routine handling and exposed to a restraining tube used 

during glucose and insulin tolerance testing. Training was used to acclimatize 

mice to the procedure and helped further mitigate false insulin and glucose 

spikes related to stress. Tubes were cleaned between training exposures. 
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3.4 Glucose Tolerance and Insulin Sensitivity Testing  

Two tests were conducted to measure glucose homeostasis: the glucose 

tolerance test and the insulin sensitivity test. Baseline glucose and changes in 

glucose levels were measured during both tests to determine the response to an 

intraperitoneal injection of glucose or insulin. 

 

Both glucose tolerance and insulin sensitivity tests were conducted one time 

each on all mice. Testing was performed during the second half of the light cycle 

(12:00 to 18:00 h). All animals were fasted for 5 h prior to testing.  

 

3.4.1 Glucose Tolerance Test 

Glucose tolerance protocols generally followed those used in our lab previously 

and other established protocols (Andrikopoulos et al., 2008, Ayala et al., 2010, 

Heikkinen et al., 2007, Christensen et al., 2009). Glucose was measured from 

blood obtained from a small nick of the lateral tail vein produced by a sterile 

scalpel after brief anesthetization by isoflurane inhalation. A small drop of blood 

was then acquired through a milking technique to read the serum glucose levels 

using a glucometer (Contour Next EZ, Bayer HealthCare LLC, Mishawaka, IN) at 

0, 15, 30, 60, 90 and 120 min after a bolus glucose injection. A 20% glucose 

solution was used to provide a 2g glucose / kg body weight dose injected 

intraperitoneally (10𝜇L of glucose solution per gram body weight). Mice were 

continually observed to ensure the surgical nick had clotted and that mice were 
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alert. Area under the (glucose) vs. time curve (AUC) was calculated using the 

trapezoidal rule. Baseline glucose concentration was set as the glucose reading 

at time 0.  

 

3.4.2 Insulin Sensitivity Test 

Insulin sensitivity was tested in a similar manner to the glucose tolerance test.  

Human Recombinant Insulin (MP biochemical IC0-219390010) was used. Blood 

glucose levels were measured at time 0, 15, 30, 60 and 90 min after bolus insulin 

injection (1 IU/kg insulin administered at 7.2 𝜇L per g b.w.) Mice were continually 

observed to ensure the surgical nick had clotted and that mice were alert. Insulin 

sensitivity was then determined. Baseline glucose concentration was set as the 

glucose reading at time 0 calculating area above the curve (AUC1). If the glucose 

level exceeded baseline, the values above were set to baseline to ensure AUC1 

values only correspond to the reduction in glucose levels from the dose of insulin.  

 

3.5 Necropsy  

At the end of the ten-week study, all mice were sacrificed and blood and tissues 

collected for further analysis. Mice were anaesthetized using inhaled isoflurane. 

To ensure depth of anesthesia, mice were tested using the pedal withdrawal test 

on both hind legs. If flinching was observed when the foot pad pinch was 

administered, isoflurane inhalant was increased until no response was observed. 

Careful attention was paid to ensure depth of sedation throughout the cardiac 

puncture, and exsanguination procedure.  
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3.6 Plasma Biomarkers 

Blood collected via cardiac puncture was immediately put on ice for a 30-60 

minute incubation period before centrifuging at 1,000 g for 15 min at 4°C to 

isolate serum. After centrifugation, serum was stored on dry ice and then at -

20°C until needed.  

 

Serum insulin and monocyte chemoattractant protein 1 (MCP-1) levels were 

measured using ELISA kits (88-7391 and EMINS, respectively) following the 

manufacturer’s procedures. For serum insulin determination, the ELISA kit from 

the Invitrogen Corporation (Camarillo, CA, USA) was used. For serum MCP-1 

determination, the ELISA kit from (Thermo Scientific, Frederick, MD, USA) was 

used. A Wallac 1420 Victor2 Microplate Reader (PerkinElmer life and analytical 

sciences, Turku, Finland) was used to read the 96-well plates.  

 

3.7 Hepatic Tissue Histology  

Hepatic tissue pieces (~100 mg) were collected post-mortem and formalin-fixed 

overnight. Liver tissue was fixed in 10% buffered formalin and embedded in 

paraffin. To quantify fat droplet accumulation, two 5-μm thick sections of each 

animal’s liver were transferred to numbered slides. Tissue processing, cutting 

and staining were conducted by Nationwide Histology (Spokane, WA). Liver 

sections were then stained with hematoxylin-eosin. Images were acquired using 

a Nikon Eclipse E400 microscope (Nikon Co., Tokyo, Japan) equipped with an 
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Infinity 1-3C camera (Lumenera Corporation, Ottawa, ON, Canada). Lipid droplet 

percentage (the ratio of white color area pixel to the total area pixel) was 

obtained with Adobe Photoshop 7.0, as described by Dahab et al. (2004). Liver 

sections of each mouse were evaluated at random locations (n=3) and averaged 

to represent each mouse. Care was taken to not include biliary tubules during 

analysis, as inclusion could increase the percentage of white color area.  

 

3.8 HOMA-IR and HOMA-%B  

Using insulin and glucose values, a mmol/L glucose concentration was obtained 

through the homeostatic model assessment for insulin resistance and percent 

beta cell function (HOMA-IR and HOMA-%B) calculations. (Heikkinen et al., 

2007).  

 

Calculations used to determine HOMA-IR and HOMA-%B are shown in the 

appendix.  Fasting plasma insulin (FPI) was obtained from serum collected at 

necropsy. Fasting plasma glucose (FPG) was taken as an average of the two 

baseline values obtained on the glucose tolerance test day (ninth week) and the 

insulin sensitivity test day (during the tenth week).   

 

3.9 Microbial Ecology in the Cecum 

Whole ceca were collected from each C57 mouse for microbiome analysis. 

Quantitative polymerase chain reaction (qPCR) was conducted on all samples to 

acquire the representative DNA sequencing of the existing microbiological 
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population. After isolation of DNA in each cecum and sequencing, a microbiome 

profiling open source pipeline, quantitative insights into microbial ecology 2 

(QIIME 2), was used to determine the specific bacterial species comparing the 

DNA sequences obtained against a large genomic library. Matched DNA 

sequences allowed for the determination of the relative abundance of different 

bacterial species. Average values of each control and treatment group were 

calculated in order to determine the relative bacterial populations.   
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Table 3.1 Nutrition information for the raspberry puree concentrate* 

 

* Produced by Milne Fruit Company Disclaimer: This nutritional 

information does not represent lot specific testing and is not to be considered a 

specification.  

Analysis Name

Moisture (Vacuum Only) 73.4 0.01 %by wt.
Total Carbohydrate 22.2 0.1 %by wt.
Estimated Caloric Value 106 2 Ca l/ 100g

The Estima ted Caloric Va lue has been ca lc ula ted
accord ing to the deÀnition found in the nutrition labeling
regula tions p rinted on January 6, 1993 in CFRPart 101.9,
where: Ca lories/ 100g = 4 (%protein) + 9 (% fa t) + 4 (%carbs)

Vitamin C 32 1 mg/ 100g
Total Dietary Fiber 2.0 0.1 %by wt.
Protein (modiÀed Dumas) 2.3 0.1 %by wt.

The %protein was ca lc ula ted from %nitrogen
using a fac tor of 6.25.

Fat (Ac id Hydrolysis) 0.9 0.1 %by wt.
Beta Carotene 80 20 IU/ 100g
Lycopene 0 0.5 mg/ 100g
Total Sugar 16 1 %by wt.

Fruc tose 8.0 0.1 %by wt.
Dextrose 7.7 0.1 %by wt.
Suc rose 0.2 0.2 %by wt.
Maltose < 0.3 0.3 %by wt.
Lac tose < 0.5 0.5 %by wt.

The tota l sugar result does not inc lude
trisaccharides or tetrasaccharides.

Ash 1.29 0.01 %by wt.
Calc ium 38.3 0.5 mg/ 100g
Sodium 23.9 0.2 mg/ 100g

Lim
it o
f

Qu
an
tita
tio
n

Re
su
lts

Un
its

28 BRIX
milnefruit.com

804 Bennett Avenue
Prosser, WA 99350
tel: 509.786.2611
fax: 509.786.4915

This nutritiona l information does not rep resent lot spec iÀc
testing and is not to be considered a spec iÀca tion.

65 BRIX

RED RASPBERRY PUREECONCENTRATE
28 BRIX Nutritiona l Information

Updated 9.25.17
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Table 3.2 Red raspberry study composition of experimental diets 

 Diet Groups 
 LF HF RPC1 RP2 RF3 

Ingredient  g g g g g 

Casein 200 200 190 200 200 

L-Cystine 3 3 3 3 3 

Corn Starch 452.2 72.8 57 72.8 72.8 

Maltodextrin 10 75 100 100 100 100 

Sucrose 172.8 172.8 112.8 172.8 172.8 

Cellulose, BW200 50 50 42.5 50 50 

Soybean Oil 25 25 25 25 25 

Lard 20 177.5 174.3 177.5 177.5 

Mineral Mix S10026 10 10 10 10 10 

DiCalcium Phosphate 13 13 13 13 13 

Calcium Carbonate 5.5 5.5 5.5 5.5 5.5 

Potassium Citrate, 1 H20 16.5 16.5 16.5 16.5 16.5 

Vitamin Mix V10001 10 10 10 10 10 

Choline Bitartrate 2 2 2 2 2 

Cholesterol 0 8.5 8.5 8.5 8.5 

RPC Whole Food 0 0 3751 0 0 

RPC Polyphenol Fraction 0 0 0 28.32 0 

RPC Fiber Fraction 0 0 0 0 593 

Total  1055 866.6 1145.1 894.95 925.6 

Total (dry basis) 1055 866.6 869.9 880.8 925.65 

kcal%      

Protein  20 18 18 18 18 

Carbohydrate 70 36 36 36 36 

Fat 10 46 46 46 46 

kcal / gm 3.77 4.59 4.57 4.29 4.29 

1RPC (Milne Fruit): 106 Cal /100g = 4 servings; 20 % of total kcal  
2Raspberry Polyphenol Enriched Fraction: 4 servings; (6.4% w/w) 0 kcal/serving 
3Raspberry Fiber Enriched Fraction: 4 servings; (3.16% w/w) 0 kcal/serving  
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B) 

 

 

 

 

 

 

 

Figure 3.1 (A) Mouse study schedule, (B) study groups Low fat (LF), a high 
fat (HF) diet alone, HF plus: raspberry puree concentrate (RPC), enriched 
raspberry polyphenol (RP), or enriched raspberry fiber (RF)   

A)  
Week of Study 

Measurement /Test 1 2 3 4 5 6 7 8 9 10 
Body Weight X X X X X X X X X X 
Diet Consumption X X X X X X X X X X 
Baseline Glucose         X X 
Glucose Tolerance Test         X  
Insulin Sensitivity Test          X 
Necropsy          X 

LF HF 

HF+RPC HF+RP HF+RF 
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3.10 Results  

3.10.1 Body Weight and Net Weight Gain  

No initial body weight differences were observed between the groups at the start 

of our study. Mice consuming the LF remained lean as the study progressed. 

However, animals fed HF gained weight readily throughout the ten weeks. No 

differences in net weight gain were observed in the red raspberry puree (RPC), 

red raspberry polyphenols (RP), and red raspberry fiber (RF) groups compared 

with the HF-diet groups (Figure 3.2A and 3.2B). 

 

3.10.2 Energy Intake and Food Efficiency 

The HF fed mice consumed more energy than mice fed the LF diet (p < 0.05). 

The energy intake of mice consuming RPC, RP, and RF diets were not reduced 

compared to HF-fed mice. In fact, the RPC-fed mice consumed more energy 

than the HF-group (p < 0.05) (Figure 3.2C)  

  

Food efficiency for HF-fed mice was greater than the LF-fed group (p < 0.05). 

However, the RPC and RP groups were statistically indistinguishable from both 

the LF and HF-fed mice (p > 0.05). This indicates a reduced accumulation of 

body weight (g) for the same energy of ingested food (in joules) in these two 

treatment groups as compared to HF-alone. This beneficial food effect was not, 

however, observed in the mice fed the RP treatment, which like the HF-fed group 

was greater than the LF-group (p > 0.05). 
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Figure 3.2: (A) Final body weight, (B) net body weight gain (C) weekly 
energy consumed (in joules), and (D) food efficiency of diets in C57 male 
mice fed a low fat (LF), a high fat (HF) diet alone, or HF plus red raspberry puree 
concentrate (RPC), enriched red raspberry polyphenol (RP), or enriched red 
raspberry fiber (RF) during 10 weeks feeding. (B) Results obtained with the 
subtraction of day one weight from the end necropsy weight of each animal. 
Values are mean ± SEM (LF and HF controls n=12, otherwise n=8). Values 
sharing the same superscript are not significantly different from each other. One 
way ANOVA indicated significant differences between diet groups (p <  0.05) 
Values that do not share a letter differ (p < 0.05).   

A 
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B 

D 
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3.10.3 Organ to Body Weight Ratio  

The HF-fed mice had greater liver mass than animals fed the LF-diet (p < 0.05). 

All red raspberry treatment groups were comparable to the liver weight observed 

in the HF-fed mice, with only the RPC group being statistically indistinguishable 

from the LF fed mice (p > 0.05) (Table 3.3). 

 

A difference in liver to body weight ratio was also observed between the two 

control groups with the HF-fed mice exhibiting a larger ratio than animals fed on 

LF alone (p < 0.05). All red raspberry treatment groups were comparable to the 

ratio observed in the HF-fed mice, with only the RPC group being statistically 

indistinguishable from the LF fed mice (p > 0.05) (Table 3.3). 

 

None of the kidney weights were statistically different. (Table 3.3). None of the 

red raspberry treatment groups changed the kidney to body weight ratio 

compared to HF-fed mice. However, mice in the RPC group also exhibited a 

kidney to body weight ratio that was not statistically different than mice 

consuming the LF-diet.  

 

No statistical differences in accumulation of inguinal adipose tissue were 

observed in the RPC, RP and RF treatment groups compared with the HF-fed 

mice. However, all treatment groups showed an improvement in their 

corresponding adipose to body weight ratios. All three red raspberry products 

were comparable to both the high and low fat-fed mice. 
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Table 3.3 Organ tissue weight and weight as percentage of final body 
weight of male C57 mice 

 Diet Groups 
Organ Tissue Weights LF HF RPC RP RF 

Liver (g) 1.1±0.08a 2.24±0.25b 1.69±0.06ab 1.98±0.18b 2.38±0.27b 

Liver/Body Weight     
(g/g %) 

3.37±0.17a 4.89±0.35b 4.49±0.09ab 4.88±0.32b 5.34±0.41b 

Kidney (g) 0.20±0.01 0.21±0.01 0.21±0.01 0.19±0.02 0.17±0.02 

Kidney/Body Weight  
(g/g %) 

0.67±0.04c 0.51±0.03ab 0.54±0.02bc 0.47±0.05ab 0.38±0.04a 

Adipose Tissue (g) 0.69±0.08a 1.25±0.09b 1.10±0.09b 1.17±0.10b 1.14±0.06b 

Adipose/Body Weight 
(g/g %) 

2.08±0.22a 3.26±0.32b 2.62±0.10ab 2.88±0.17ab 2.65±0.18ab 
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Figure 3.3: Organ weights and organ to body weight ratios of liver, kidney 
and adipose tissue (A) liver weight, (B) liver to body weight ratio, (C) kidney 
weight, (D) kidney to body weight, (E) adipose weight, and (F) adipose to body 
weight. Values reflect organ and organ to body weight ratios of C57 male mice 
fed a low fat (LF), a high fat (HF) diet alone, or HF plus red raspberry puree 
concentrate (RPC), enriched red raspberry polyphenol (RP), or enriched red 
raspberry fiber (RF). Bars are mean ± SEM LF (n=12) and HF (n=11), otherwise 
n=8). Values sharing the same superscript are not significantly different from 
each other. One way ANOVA indicated significant differences between diet 
groups    (p < 0.05). Values that do not share a letter differ (p < 0.05). 
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3.10.4 Hepatic Fat Content 

Liver fat content was measured using histological image analysis (Figure 3.4). All 

images shown in Figure 3.4. Quantification of hepatic lipid content and the 

corresponding ANOVA is shown in Figure 3.5. Among HF-fed groups, only in the 

RPC-fed mice was there a decreased amount of lipid accumulated within hepatic 

tissue, so that it is statistically indistinguishable from both the LF and HF animals 

(p > 0.05). 
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Figure 3.4: Representative hematoxylin and eosin stained liver sections 
from C57 Mice fed a low fat (LF), a high fat (HF) diet alone. Slides were observed 
under 40x magnification using a Nikon Eclipse 50i microscope (Nikon 
Corporation, Japan; Serial # 211880) fitted with an Infinity1-3C camera 
(Lumenera Corporation, Ottawa, ON, Canada; Serial #; 0186995). Scale 0.5’’ = 
50 µm 
 
  

LF 
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Figure 3.5 Hepatic fat content. Male C57 mice were fed a low fat (LF), a high 
fat (HF) diet alone, or HF plus red raspberry puree concentrate (RPC), enriched 
red raspberry polyphenol (RP), or enriched red raspberry fiber (RF). One way 
ANOVA indicated significant differences between diet groups (p < 0.05) Values 
that do not share a letter differ (p < 0.05). 
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3.10.5 Fasting (baseline) Glucose  

Baseline glucose (t=0) was determined in LF, HF, RPC, RP, and RF-fed mice. 

Two measurements were taken for each animal, once for the glucose tolerance 

test and once for the insulin sensitivity test. Baseline glucose values are shown in 

Figure 3.6A. As seen, HF-fed mice had an increased blood glucose level 

compared to LF-fed mice (p < 0.05). The RPC group exhibited a reduction in 

baseline glucose values which was statistically indistinguishable from both the LF 

and HF groups. 

 

Serum insulin concentration was determined for all treatment and control groups. 

Serum insulin level was greater in HF-fed vs. LF-fed mice (p < 0.05). Both the 

RPC and RF treatments showed a reduction in serum insulin levels with both 

treatments being statistically indistinguishable from LF controls (p > 0.05) and 

significantly lower than HF controls (p < 0.05). The RF treatment reduced plasma 

insulin concentration but the reduction did not reach statistical significance. 

 

The insulin resistance test (HOMA-IR) showed differences between both controls 

with HF exhibiting a higher IR value than LF (p < 0.05). Both RPC and RP 

showed a reduced HOMA-IR values so that they were indistinguishable from LF 

(Figure 3.6C). Beta cell function (HOMA-%B) did not reveal any statistical 

differences in any of the treatments or control groups.  However, a trend 

difference (p < 0.10), was observed between both controls with HF having an 

increased HOMA-%B.  
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Figure 3.6: (A) Fasting glucose values, (B) insulin concentration, and (C) 
homeostatic model assessment of basal insulin resistance (HOMA-IR), and 
(D) beta cell function (HOMA-%B) for C57 male mice fed a low fat (LF), a high 
fat (HF) diet alone, or HF plus red raspberry puree concentrate (RPC), enriched 
red raspberry polyphenol (RP), or enriched red raspberry fiber (RF) during the 
beginning of week 10. Bars are mean ± SEM (LF (n=12) and HF control (n=11), 
otherwise n=8). Values sharing the same superscript are not significantly 
different from each other. One way ANOVA indicated significant differences 
between diet groups (p < 0.05) Values that do not share a letter differ (p < 0.05).  
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3.10.5.1 Glucose Tolerance and Insulin Sensitivity Test 

Area under the curve (AUC) was calculated from a glucose tolerance test 

conducted on all animals during the ninth week of the study. The AUC was 

greater in HF- vs. LF-fed mice (p < 0.05). However, no statistical difference was 

seen between the HF control AUC and those of the RF and RP experimental 

treatments (p > 0.05). Mice fed RPC had low AUC values, such that they were 

statistically indistinguishable from both the LF and HF control animals (Figure 

3.7.A) 

 

The log of the slope between 15 and 30 minutes for the insulin tolerance test is 

shown in Figure 3.7B. Mice on the LF diet have a larger slope than those on the 

HF diet, though it was not statistically significant. Though no significance was 

shown, mice on the RP and RF diets also appear to have a larger slope than the 

HF mice (p > 0.05). A trending difference (p < 0.10) was observed between the 

HF and RF fed mice, with mice consuming the RF diet having a larger decrease 

in blood glucose between 15 and 30 minutes than animals consuming the HF 

diet.  

 

Total AUC1, between 0 and 90 minutes, showed no statistically significant 

differences between any of the treatment or control groups (p > 0.05). No 

statically significant differences were found in the AUC1 associated with the 15 to 

30-minute time frame either for any of the treatment or control groups.  Results 

for total AUC1 and AUC1 from 15 to 30 minutes are not represented in ANOVA 
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figures below. No trending data was observed between control and treatment 

groups (p >	0.10)  



 

 

64 

Chapter 3  

 

Figure 3.7: (A) Area under the curve generated from the glucose tolerance 
test, (B) slope generated from the insulin sensitivity test, for C57 male mice 
fed a low fat (LF), a high fat (HF) diet alone, or HF plus red raspberry puree 
concentrate (RPC), enriched red raspberry polyphenol (RP), or enriched red 
raspberry fiber (RF) during the beginning of week 9 and 10. Bars are mean        
± SEM (LF (n=12) and HF (n=11), otherwise (n=8). Values sharing the same 
superscript are not significantly different from each other. One way ANOVA 
indicated significant differences between diet groups (p < 0.05) Values that do 
not share a letter differ (p < 0.05).  
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3.10.6 Monocyte Chemoattractant Protein-1  

No statistically significant differences were observed in serum levels of monocyte 

chemoattractant protein-1 among controls or treatment groups (p > 0.05).  
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Figure 3.8: Serum concentration of monocyte chemoattractant protein 1 in 
C57 male mice fed a low fat (LF), a high fat (HF) diet alone, or HF plus red 
raspberry puree concentrate (RPC), enriched red raspberry polyphenol (RP), or 
enriched red raspberry fiber (RF) obtained through ELISA. Bars are mean ± 
SEM (LF and HF controls n=12, otherwise n=8).  
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3.10.7 Microbiome Ecology in the Cecum 

The relative microbiome ecological differences were determined for each group. 

The seven most abundant bacterial species are reported in Figure 3.9 and Table 

3.4. A decrease in the relative abundance of Bacteroidales S24-7 compared to 

LF was seen for all animals consuming a HF diet regardless of treatment (p < 

0.05). Mice consuming the RPC had a decreased relative abundance of 

Akkermansia muciniphila and reflected the bacterial population of mice 

consuming the LF alone. The population of Bacteroidaceae Bacteroides was 

increased only in mice consuming the RF-diet (p < 0.05).  

 

The rest of the bacteria found were of the order Clostridiales. A difference in DNA 

sequencing was determined for four groups of Clostridiales reported below 

(Figure 3.9 and Table 3.4).  Three of these four Clostridiales populations are 

vague in name due to unknown information on the sequence within the 

Greengene database default in QIIME. To keep these three-reported bacterial 

populations separate, their respective color codes from Figure 3.9 will be 

reported alongside values or significant findings (grey, orange, and blue). No 

statistical difference was found in the relative abundance of Clostridiales 

Ruminococcaceae (orange) (p >  0.05) for any of the diet groups. However, 

differences in Clostridiales Ruminococcaceae (blue) populations were found. 

Mice consuming the LF diet had less blue Clostridiales Ruminococcaceae (blue) 

than HF, with RPC and RP exhibiting similar population frequencies to LF (p < 

0.05). Clostridiales populations (grey) were significantly higher in mice 
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consuming the RPC and RF diets than mice consuming LF alone. The relative 

frequency of Clostridiales Lachnospiraceae was much higher in animals 

consuming the HF diet compared to LF. Mice consuming the RPC and RF diets 

had similar Clostridiales Lachnospiraceae populations to mice on the LF diet. 

However, the Clostridiales Lachnospiraceae population of mice on the RF diet 

was indistinguishable from both the LF and HF-fed mice.  
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Figure 3.9: Cecal microbiome ecology from C57 male mice fed a low fat (LF), 
a high fat (HF) diet alone, or HF plus red raspberry puree concentrate (RPC), 
enriched red raspberry polyphenol (RP), or enriched red raspberry fiber (RF).  
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Table 3.4 Ceca microbiome in mice fed LF, HF, RPC, RP and RF* 

 Diet Groups 
Bacteria Type LF HF RPC RP RF 
o_Bacteroidales  
f_S24-7 

38.2±3.2b 20.9±1.2a 24.1±2.3a 23.3±2.0a 19.5±0.8a 

g_Akkermansia; 
s_muciniphila 

11.9±1.6a 26.1±2.5b 8.7±1.6a 21.3±2.7b 23.0±1.1b 

o_Clostridiales1 14.1±2.0a 14.8±0.8ab 25.0±2.1c 21.3±1.6bc 18.7±1.3abc 

o_Clostridiales; 
f_Ruminococcaceae2 

7.3±1.3 11.4±1.3 10.1±1.5 10.4±1.4 9.3±0.9 

f_Bacteroidaceae; 
g_Bacteroides 

4.8±0.6a 6.3±0.6a 7.3±0.4a 5.3±0.7a 13.1±1.1b 

o_Clostridiales; 
f_Ruminococcaceae3 

4.3±0.5a 7.7±0.7c 4.8±0.8ab 7.3±0.6bc 5.6±0.3abc 

o_Clostridiales; 
f_Lachnospiraceae 

5.9±1.2bc 2.0±0.2a 8.1±0.5c 2.4±.2a 3.2±0.4ab 

 
* One way ANOVA indicated significant differences between diet groups  
  (p < 0.05) Values that do not share a letter differ (p < 0.05). 
1 DNA sequencing for the grey Clostridiales in Figure 3.9 
2 DNA sequencing for the orange Clostridiales Ruminococcaceae in Figure 3.9 
3 DNA sequencing for the blue Clostridiales Ruminococcaceae in Figure 3.9 
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3.11 Discussion 

Study I, the Shay Laboratory confirmed the health benefits observed with the 

supplementation of the equivalent of four servings a day of RPC in the HF diet. 

Study II, it was shown the healthful effect observed in Study I could be attained at 

the lower level of one serving per day. In the present study, Study III, as outlined 

in this thesis, we provided information on how fiber and polyphenol fractions of 

RPC impact health. Overall, we conclude that that the health effects observed 

with red raspberry consumption in HF-fed mice is most likely provided by both 

the fiber and polyphenol fraction.  

 

The whole food, RPC, alleviated more of the metabolic parameters associated 

with metabolic syndrome than either of the enriched fractions (Table 3.5). 

Beneficial effects of whole red raspberry products was seen even though the 

energy intake of mice on RPC was significantly higher than either the LF or     

HF-fed mice. Care was taken to account for spillage in order to accurately reflect 

consumption, however, the RPC pellets were indeed softer than any of the other 

diet pellets, which may explain the increase in consumption seen within the RPC-

mice. Unrecovered fine spillage on the bottom of the cage may account some of 

the high intake seen in the RPC treatment groups. Another possible explanation 

for the increase in intake is enhanced consumption of the softer feed, due to 

increased access from feed which fell to the bottom of the cage.  
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Mice consuming the RPC and RP diets had a decreased food efficiency, which 

corresponds to a lower conversion rate of ingested energy in to body mass. This 

improvement was not significantly reflected in the final body weight or net weight 

gain of these animals over the ten-week study. Based on our findings for food 

efficiency, more significant weight differences would be observed between      

HF-fed mice and the two treatment groups (RPC and RP) if the mice had 

consumed these diets for a longer duration than ten-weeks.  

 

Typically, as mice gain weight their livers increase proportionally, thus the organ 

to body weight ratios should remain unchanged. Only the RPC group had 

significantly lower liver weights at necropsy, signifying a benefit related to lower 

liver fat content. This effect of the whole food on the liver was not seen in either 

the polyphenol or fiber fraction. The findings for hepatic fat content were 

consistent between photomicrograph assessment and liver weight 

measurements. During both of these tests RPC showed a remediation of hepatic 

fat accumulation and liver weight gain, so that values were indistinguishable from 

LF. This indicates a reduction of liver lipid percentage within the RPC-fed mice. 

The liver specific health benefits of RPC might only be achievable through a 

symbiotic relationship between the two food fractions or possibly an unknown 

and unexplored component of RPC.  

 

Organ to body weight ratios were affected differently depending on the treatment 

mice consumed, with RPC exhibiting beneficial effects on all ratios observed. All 
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three diets improved the adipose to body weight ratio so that they were 

indistinguishable from the LF fed mice.  

 

The kidneys do not accumulate fat as mice gain weight and therefore organ to 

body weight ratio decrease as the mice gain weight. Only RPC improved kidney 

to body weight ratio and liver to body weight ratio so that they were 

indistinguishable from mice fed LF-alone. Neither of the food-fraction treatments 

showed beneficial improvement to either kidney or liver body weight ratios.   

 

Along with organ to body weight ratios, only the RPC group was seen to 

significantly lower baseline glucose values in mice fed a high-fat high-sugar 

western-style diet to a level similar to LF. Improvements to baseline glucose, 

reduces health risks associated with continual high levels of glucose in the blood. 

One such risk is an increase in A1C which could cause aggregation of platelets 

and potential vascular blockage.  

 

Both the RPC and RP fed mice had serum insulin concentrations which were 

statistically indistinguishable from the LF-fed mice. This indicates less pancreatic 

beta cell stress for mice fed these two diets. This data is supported by the trend 

observed in HOMA-%B, which indicates an increase in beta cell function for mice 

consuming the LF vs. HF diet. An enhanced secretion is often observed in the 

early stages of diabetes as the beta cells hypertrophy and overproduce insulin in 

order to keep up with the increasing demand, The HOMA-IR also reflected these 
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findings, indicating less resistance within tissues to bind and respond to insulin.  

Less insulin needs to be produced by the beta cells when insulin sensitive 

tissues are able to used insulin effectively to cause an uptake of excess glucose 

from the blood.  A reduction in insulin production and insulin resistance indicates 

better ability of these mice to maintain glucose homeostasis.  

 

Both the RP and RF treatments showed an improvement in the ability to reduce 

glucose levels significantly between 15 and 30 minutes after administration of 

insulin during the insulin sensitivity test.  

 

Introducing fiber-rich foods into the diet will decrease the colonic pH due to an 

increase in starch fermentation by intestinal bacteria. Prebiotic fibers enter into 

the ileum and colon where they are broken down into monosaccharide units 

which are fermented by various microorganisms into short-chain fatty acids such 

as propionic acid, acetic acid, and butyric acid (Stipanuk and Caudill, 2013). The 

resulting pH change impacts the ecology of the microbiota favoring bacteria 

tolerant to low pH environments.  

 

Diet significantly influenced the microbiome ecology of all animals and the seven 

most abundant bacteria are listed in Figure 3.9 and Table 3.4 above. The whole 

food RPC was the best treatment for remediating the ecological shifts observed 

within the cecum of mice consuming a HF diet. Mice consuming RPC had 

bacterial populations which closely resembled the microbiome of mice on the LF 
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diet. The next best diet for remediating the bacterial shifts observed with HF-food 

consumption was RF, with RP only showing positive effects on one bacterial 

population. Enriching the diet with RF was more effective than RP at remediating 

potentially detrimental bacterial shifts in the microbiome of C57 mice. The RF diet 

encouraged the growth of beneficial bacteria and hindered the bacterial shifts 

associated with poor diet choices.  

 

No positive dietary effect was observed in increasing Bacteroidales S24-7 levels 

to that in the LF fed mice. Higher levels of Akkermansia were observed in 

animals fed the HF, RP and RF diets. A decrease in Clostridiales, shown in grey 

(Figure 3.8), was observed in mice consuming the RF compared to other 

treatment groups. The relative frequency of Bacteroides was increased in RF 

well above all other treatment or control groups.  Ruminococcaceae, (shown in 

blue), was also significantly decreased in the RPC and RF treatments, so that 

they were indistinguishable in frequency to the mice consuming LF-alone. 

Lachnospiraceae populations were increased in the cecum of mice consuming 

the LF compared to HF diets. Treatment with RPC and RF remediated 

Lachnospiraceae population loss observed with HF consumption.  

 

Currently, little is known about the activity and function of Bacteroidales S24-7 

within the mice microbiome. However, many studies have reported observing 

high numbers of these bacteria within the gut of diabetes-sensitive mice fed a 

high-fat diet (Ormerod, et al., 2016). More is known about the effects of 
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Akkermansia on murine health. Studies have observed a reduction in obesity 

related inflammation and the prevalence of diabetes in animals with higher 

Akkermansia populations (Everard et al., 2013).  We see different data, our study 

shows an increase in the Akkermansia populations with high-fat consumption 

 

One possible explanation for our different microbiological findings is that our 

animals were fasted before tissue collection. A five hour fast may have allowed 

for slight microbiological shifts due to lack of nutrients. Cyclical changes occur in 

the gut microbiome during natural feeding and fasting rhythms.  Feeding patterns 

and time of harvest should be considered when comparing the microbiomes of 

two different studies (Zarrinpar et al., 2014).  

 

Clostridiales are often gram-positive bacteria which can form spores. Some of 

the best-known Clostridium species are Clostridium perfringens and Clostridium 

botulinum, both of which can cause foodborne illness. Some of the Clostridium 

class, however, have a more positive impact on health. Ruminococcaceae and 

Lachnospiraceae are two families of the class Clostridium which are obligate 

anaerobes. In humans, a low abundance of these two bacterial families 

(Ruminococcaceae and Lachnospiraceae) is associated with the condition known 

as Crohn’s disease (Morgan et al., 2012). Other studies have shown a high 

abundance of Lachnospiraceae populations are associated with protection 

against colon cancer (Wang et al., 2012) 
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A summary of all findings is provided in Table 3.5. 

 

Table 3.5 Highlights of significant findings for raspberry treatment groups 

             Diet Groups 
Statistically Indistinguishable from LF RPC RP RF 
Energy Intake (MJoules / wk) N Y N 
Food Efficiency (g / Joule) Y Y N 
Liver Weight (g) Y N N 

Liver to Body Weight (%) Y N N 
Kidney to Body Weight (%) Y N N 
Adipose to Body Weight (%) Y Y Y 
Liver Lipid (%) Y N N 
Averaged Fasting Glucose (mg/dL) Y N N 
Insulin Concentration (𝝁IU/mL) Y Y N 
HOMA-IR Y Y N 
AUC (mg/dL * minutes) Y N N 
Slope15-30 (log (mg/dL) / 15 minutes) Y Y Y 
Akkermansia Relative Frequency (%) Y N N 
Clostridiales Relative Frequency (%) N N Y 
Bacteroides Relative Frequency (%) Y Y N 
Ruminococcaceae  
Relative Frequency (%) 

Y N Y 

Lachnospiraceae  
Relative Frequency (%) 

Y N Y 
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4.1 Summary 

In this study, the metabolic improvements and changes in phenotype and two 

serum markers (MCP-1 and insulin) were measured to see if the intake of RF or 

RP had a significant impact.  Mice fed the HF diet became obese and developed 

the hallmark phenotypes of metabolic syndrome. The HF-fed mice had higher 

baseline glucose values, higher insulin levels, and a reduced ability to handle 

glucose or insulin challenges. The diets with the enriched fiber and polyphenols 

did not perform as well on remediating metabolic syndrome as the whole-food 

RPC group. However, a significant reduction in adipose to body weight ratio was 

observed for both RP and RF diet groups. The RP-fed mice also exhibited a 

significant reduction in food efficiency and HOMA-IR, comparable in value to   

LF-fed mice. Red raspberry enriched fiber (RF) mice showed a reduction in 

serum insulin concentration, comparable to LF.  

 

Food phytochemicals, or their metabolites, are absorbed by the body and 

delivered to the liver and peripheral tissues. After absorption into the cells, 

phytochemicals may interact with nuclear hormone receptors and other 

regulatory factors to modulate carbohydrate and lipid metabolism. In the future, 

we would like to explore the nuclear hormone effects of both the polyphenol- and 

fiber-enriched red raspberry products. This would give us a clearer 

understanding of exactly how these two fractions impact different cellular 

mechanisms to produce the phenotypic results observed in the mouse study 

discussed in this thesis. 
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This dietary supplement study shows that different healthful fractions of red 

raspberry impact health parameters in different ways. When consumed together, 

as RPC, these two fractions were better able to remediate the detrimental health 

effects of HF diet consumption.  

 

4.2 Future Directions 

Due to the nature of our findings, it would be interesting to conduct a study 

looking at the delivery of polyphenols into the body. It became apparent in our 

study that polyphenol exposure alone is not as beneficial as consuming this 

fraction within the whole food matrix. To better understand this phenomenon, it 

would be interesting to look at different slow delivery techniques. It is possible 

that the fiber plays a role in slowing the absorption of polyphenolic compounds, 

to allow these compounds to be introduced more gradually into the enterocyte.   

 

The effects of fiber in the microbiome should also be an exciting future study. 

Metabolism of the polyphenolic compounds are somewhat dependent on the 

composition of the microbiota in the gut. Increased consumption of fiber-rich 

foods allows Bifidobacteria and lactobacilli to proliferate more readily. As 

Bifidobacteria increase in number, the demographics of microorganisms in the 

gut change to accommodate. Bifidobacteria are strongly influenced by the 

presence of polyphenolic compounds and flavanols are active inhibitors of gram 

positive bacteria (Gwiazdowska et al., 2015). Both Bifidobacteria and lactobacilli 



 

 

80 

Chapter 4  

can exert a hypocholesterolemic effect by increasing bile acid deconjugation 

(Kaczmarczyk et al. 2012). 

 

One limitation of the study design is of the fiber extraction technique, which was 

only able to isolate insoluble fiber. Soluble fiber was probably dissolved in the 

pancreatin digest, which was used to rid the RPC of sugar, fat and protein.  This 

limitation likely caused a reduction in the health effects observed with mice 

consuming the RF diet.  Soluble and insoluble fiber impact the physiology of the 

gut differently.  

 

Another limitation of this study is the limited knowledge available about the 

bacteria that colonize the mice gut microbiome. Information related to strains of 

murine gut bacteria is not presently abundant, and much is still unknown about 

the interaction between these bacteria and their host’s physiology. These major 

limitations can hinder the investigative efforts behinds the exploration of how diet 

affects bacterial populations and the subsequent physiological effects.  

 

Future studies to observe the synergy between red raspberry polyphenols and 

red raspberry fiber are warranted. Secondary metabolites of polyphenols are 

affected by the ecology of the microbiome (Marín et al., 2015). Inclusion of 

soluble and insoluble fibers into the purified feed will increase the growth of 

beneficial bacterial populations (lactobacilli and bifidobacteria) and increase the 

diversity of bacterial populations (Slavin, 2013) (Kaczmarczyk et al., 2012). 
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Increased utilization of polyphenols by microbial populations would be expected 

to occur.  Care must be taken in studies observing the effects of polyphenols on 

health to allow their best action. 

 

A clinical trial could be undertaken evaluating the effects of red raspberry intake 

on pre-diabetic obese individuals. This study will allow for a more direct 

measurement of health benefits observed in human subjects.  

 

Studies like ours will add to the available literature and allow for an increase in 

knowledge about the diversity and function of different microbiota members and 

how diet affects colonization. Hopefully in time, the persistent investigative efforts 

of the microbiome will lead to a universal understanding of how different bacterial 

strains affect metabolic function. An increased knowledge of how diet affects 

these bacterial populations will lead to meaningful health breakthroughs related 

to diet. Our study adds to the available knowledge and helps in addressing the 

obesity epidemic facing America today.  
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Appendix 

Preparation of buffers 

pH 4 buffer: 

 Solution A glacial acetic acid 0.2M  

 Solution B potassium acetate 0.2M  

pH 7 buffer: 

 Solution A potassium phosphate 0.2M 

 Solution B dipotassium phosphate 0.2M 

 

Calculations for HOMA-IR and HOMA-%B: 
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(Martin et al., 2015) 

Figure A1: Absorption and metabolism routes for dietary polyphenols and 
their derivatives in humans 
 
 
  

Dietary Polyphenols 
Sm

al
l I

nt
es

tin
e Hydrolysis of most 

glucosides 
(LPH, CBG) 

 
Conjugation reactions 
• Methylation 
• Glucuronidation 
• Sulfation 

C
ol

on
 

Feces 

Not absorbed 

Urine 

Tissues 

Action by bacterial 
enzymes 

(𝛼-rhamnosidases) 

Po
rt

al
 v

ei
n 

 
Liver 

Conjugation reactions 
• Methylation 
• Glucuronidation  
• Sulfation 

Not absorbed 

Aglycones 

Aglycones 

Bile 



 

 

93 

L F H F R P C R P R F
0 .0

0 .5

1 .0

1 .5

2 .0

B
a

c
te

ro
id

e
te

s
:

F
ir

m
ic

u
te

s
 R

a
ti

o
(T

o
ta

l)

b

ab

a a

ab

 
Figure A2: Bacteroidetes to firmicutes ratio (total) 
 

 
Figure A3: Bray-Curtis PCA plot in C57 male mice fed a low fat (LF), a high fat 
(HF) diet alone, or HF plus red raspberry puree concentrate (RPC), enriched red 
raspberry polyphenol (RP), or enriched red raspberry fiber (RF).  
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Calculations for fiber content of HF, RPC, RF and RP:  

HF: 50g cellulose / 866.6 g total dry wt. = 5.8% fiber (dry) 

RPC: (42.5 cellulose) + (375g wet RPC x 0.03 % fiber) =53.8 g fiber in RPC 

 53.8g fiber / 1145.15g wet RPC diet = 4.7% fiber wet w/w 

 53.8g fiber / 869.9g dry RPC diet = 6.2% fiber dry w/w 

RP:  50g cellulose / 880.8g RP dry = 5.6% fiber from cellulose (dry) 

 50g cellulose / 894.95 g RP wet 5.7% fiber from cellulose (wet) 

RF:  50g cellulose / 925.65 dry RF diet = 5.4% fiber dry  

6.93% fiber (by assay) – 5.4% fiber (diet w/o RP) = 1.53% fiber RF 

 14.2 g raspberry fiber / 28.3g RF used = 50.2% fiber in product 

 

Table A1: Fiber content of the diets 

Measurement HF RPC RP RF 

% fiber (dry bases) 5.8 6.2* 5.6 6.93 

 

*Both wet and dry fiber percentages were reported for the RPC diet because this 

diet was not completely dried down. The fiber content would more accurately be 

represented by a number falling between these two values.  
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Analysis Name

Moisture (Vacuum Only) 73.4 0.01 %by wt.
Total Carbohydrate 22.2 0.1 %by wt.
Estimated Caloric Value 106 2 Ca l/ 100g

The Estima ted Caloric Va lue has been ca lc ula ted
accord ing to the deÀnition found in the nutrition labeling
regula tions p rinted on January 6, 1993 in CFRPart 101.9,
where: Ca lories/ 100g = 4 (%protein) + 9 (% fa t) + 4 (%carbs)

Vitamin C 32 1 mg/ 100g
Total Dietary Fiber 2.0 0.1 %by wt.
Protein (modiÀed Dumas) 2.3 0.1 %by wt.

The %protein was ca lc ula ted from %nitrogen
using a fac tor of 6.25.

Fat (Ac id Hydrolysis) 0.9 0.1 %by wt.
Beta Carotene 80 20 IU/ 100g
Lycopene 0 0.5 mg/ 100g
Total Sugar 16 1 %by wt.

Fruc tose 8.0 0.1 %by wt.
Dextrose 7.7 0.1 %by wt.
Suc rose 0.2 0.2 %by wt.
Maltose < 0.3 0.3 %by wt.
Lac tose < 0.5 0.5 %by wt.

The tota l sugar result does not inc lude
trisaccharides or tetrasaccharides.

Ash 1.29 0.01 %by wt.
Calc ium 38.3 0.5 mg/ 100g
Sodium 23.9 0.2 mg/ 100g

Lim
it o
f

Qu
an
tita
tio
n

Re
su
lts

Un
its

28 BRIX
milnefruit.com

804 Bennett Avenue
Prosser, WA 99350
tel: 509.786.2611
fax: 509.786.4915

This nutritiona l information does not rep resent lot spec iÀc
testing and is not to be considered a spec iÀca tion.

65 BRIX

RED RASPBERRY PUREECONCENTRATE
28 BRIX Nutritiona l Information

Updated 9.25.17
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J62162  Pancreatin, porcine pancreas

Product Number: J62162
CAS number: 8049-47-6
MDL number: MFCD00131789

Product Specification
Assay (unspecified): Amylase activity: Minimum 25 USP u/mg
Assay (unspecified): Lipase activity: Minimum 2.0 USP u/mg
Assay (unspecified): Protease activity: Minimum 25 USP u/mg
Comment: Source: Porcine pancreas

Date of Print: April 7, 2017
Version: 1

Product Specifications are subject to amendment and may change over time.


