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Chapter 1: Introduction

1.1 Motivation

In traditional image recognition tasks, all inputs are partitioned into a finite set of known

classes, with equivalent training and testing distributions. However, many practical

classification tasks may involve testing in the presence of “unknown unknown” classes

not encountered during training [5]. We consider the problem of classifying known classes

while simultaneously recognizing novel or unknown classes, a situation referred to as open

set recognition [25].

A typical deep network trained for a closed-set image classification task uses the

softmax function to generate for each input image the probability of classification for

each known class. During training, all input examples are assumed to belong to one of K

known classes. At test time, the model generates for each input x a probability P (yi|x)

for each known class yi. The highest-probability output class label y∗ is selected as

y∗ = arg max
yi

P (yi|x)

where P (y|x) is a distribution among known classes such that
∑K

i=1 P (yi|x) = 1.

In many practical applications, however, the set of known class labels is incomplete,

so additional processing is required to distinguish between inputs belonging to the known

classes and inputs belonging to the open set of classes not seen in training. The typical

method for dealing with unknown classes involves thresholding the output confidence
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scores of a closed-set classifier. Most commonly, a global threshold δ is applied to P (y|x)

to separate all positive-labeled examples from unknown examples:

y∗ =


arg maxyi P (yi|x) if maxyi P (yi|x) > δ

unknown else

(1.1)

However, this type of global thresholding assumes well calibrated probabilities, and

breaks down in many real-world tasks. For example, convolutional network architectures

can output incorrect high-confidence predictions when faced with test data from outside

the training distribution, as evidenced by work in adversarial example generation [30].

Better methods are needed to facilitate the learning of a decision boundary between the

known classes and the unknown open set classes.

A number of approaches exist to separate known from unknown data at test time.

Some approaches involve learning a feature space through classification of training data,

then detecting outliers in that feature space at test time [12] [2]. Other approaches follow

the anomaly detection paradigm– where the distribution of training data is modeled

without classification, and inputs are compared to that model at test time [26]. Our

approach follows another line of research, in which the set of unknown classes is modeled

by synthetic data generated from a model trained on the known classes [7].

1.2 Contributions

Fig. 1 illustrates our procedure applied to the SVHN dataset, where digits 0 through

4 are known and 5 through 9 are unknown (ie. not included in the training data). We

train a generative adversarial network on the set of known classes. Starting from the
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Known Categories

Figure 1.1: Left: Given known examples (green dots) we generate counterfactual exam-
ples for the unknown class (red x). The decision boundary between known and counter-
factual unknown examples extends to unknown examples (blue +), similar to the idea
that one can train an SVM with only support vectors. Right: Example SVHN known
examples and corresponding counterfactual unknown images.

latent representation of a known example, we apply gradient descent in the latent space

to produce a synthetic open set example. The set of synthetic open set examples provide

a boundary between known and unknown classes.

Our contributions are the following: (1) We introduce the concept of counterfactual

image generation, which aims to generate synthetic images that closely resemble a given

real image, but satisfy certain properties, (2) we present a method for training a deep

neural network for open set recognition using the output of a generative model, (3)

we apply counterfactual image generation, in the latent space learned by a generative

adversarial network, to generate synthetic images that resemble known classes images,

but belong to the open set; and we show that they are useful for improving open set

recognition.
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Chapter 2: Literature Review

2.1 Open Set Recognition

A number of models and training procedures have been proposed to make image recogni-

tion models robust to the open set of unknown classes. Early work in this area primarily

focused on SVM based approaches, such as 1-class SVM [27]. In [24], a novel training

scheme is introduced to refine the linear decision boundaries learned by a 1-class or bi-

nary SVM to optimize both the empirical and the open set risk. In [12], based on the

statistical Extreme Value Theory (EVT), a Weibull distribution is used to model the

posterior probability of inclusion for each known class and an example is classified as

open class if the probability is below a rejection threshold. In [25], W-SVM is introduced

where Weibull distributions are further used to calibrate the scores produced by binary

SVMs for open set recognition.

More recently, Bendale et al. explored a similar idea and introduced Weibull-based

calibration to augment the softmax layer of a deep network, which they called “OpenMax”[2].

The last layer of the classifier, before the application of the softmax function, is termed

the “activation vector”. For each class, a mean activation vector is computed from the

set of correctly-classified training examples. Distance to the corresponding mean activa-

tion vector is computed for each training example. For each class, a Weibull distribution

is fit to the tail of largest distances from the mean activation vector. At test time, the

cumulative distribution function of the Weibull distribution fit to distance from the mean

is used to compute a probability that any input is an outlier for each class. In this way,
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a maximum radius is fit around each class in the activation vector feature space, and

any activation vectors outside of this radius are detected as open set examples. The

OpenMax approach is further developed in [7] and [22].

In [11], a network is trained to minimize the “II-loss”, which encourages separation

between classes in a learned representation space. The network can be applied to open

set recognition tasks by detecting outliers in the learned feature space as unknown class

examples.

2.2 Generative Adversarial Nets

The Generative Adversarial Network was initially developed as an adversarial minimax

game in which two neural networks are simultaneously trained: a generator which maps

random noise to “fake” generated examples and a discriminator which classifies between

“fake” and “real” [8]. Variations of the GAN architecture condition the generator or

discriminator on class labels [17], augment the generator with additional loss terms [23],

or replace the discriminator’s classification objective with a regression objective as in

the Wasserstein critic [1]. The original and primary application of GAN models is the

generation of images similar to a training set, and current state-of-the-art GAN models

are capable of generating photo-realistic images at high resolution [13].

Generative adversarial nets have been applied to unsupervised representation learn-

ing, in which features learned on an unsupervised task transfer usefully to a supervised

or semi-supervised task [29] [4]. Architectures that combine generator networks with

encoder networks, which invert the function learned by the generator, can be more sta-

ble during training and make it possible to distort or adjust real input examples while

preserving their realism, which is useful for applications such as style transfer and single-
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image superresolution [21] [14] [16] [6]. The use of generative adversarial networks for

data augmentation has been explored in the context of image classification [28].

2.3 Generative Models for Open Set Recognition

Generative methods have the potential to directly estimate the distribution of observed

examples, conditioned on class identity. This makes them potentially useful for open set

recognition. A generative adversarial network is used in [26] to compute a measure of

probability of inclusion in a known set at test time by mapping input images to points

in the latent space of a generator.

Most closely related to our approach, the Generative OpenMax approach uses a

conditional generative adversarial network to synthesize mixtures of known classes [7].

Through a rejection sampling process, synthesized images with low probability of inclu-

sion in any known class are selected. These images are included in the training set as

examples of the open set class. The Weibull-calibration of OpenMax is then applied to

the final layer of a trained classifier. The Generative OpenMax (G-OpenMax) approach

effectively detects new and unknown classes in monochrome digit datasets, but does not

improve open set classification performance on natural images [7].

Different from G-OpenMax, our work uses an encoder-decoder GAN architecture

to generate the synthetic open set examples. This allows the features learned from the

known classes to be transfered to modeling new unknown classes. With this architecture,

we further define a novel objective for generating synthetic open set examples, which

starts from real images of known classes and morphs them based on the GAN model to

generate “counterfactual” open set examples.
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Chapter 3: Methods

3.1 Counterfactual Image Generation

In logic, a conditional statement p→ q is true if the antecedent statement p implies the

consequent q. A counterfactual conditional, p �→q is a conditional statement in which

p is known to be false [15]. It can be interpreted as a what-if statement: if p were true,

then q would be true as well. Lewis [15] suggests the following interpretation:

“If kangaroos had no tails, they would topple over” seems to me to mean

something like this: in any possible state of affairs in which kangaroos have

no tails, and which resembles our actual state of affairs as much as kangaroos

having no tails permits it to, the kangaroos topple over.

Motivated by this interpretation, we wish to model possible “states of affairs” and

their relationships as vectors in the latent space of a generative adversarial neural net-

work. Concretely, suppose:

• The state of affairs can be encoded as a vector z ∈ Rn

• The notion of resemblance between two states corresponds to a metric ||z0 − z∗||

• There exists an indicator function Cp(z) that outputs 1 if p is true given z.

Given an actual state z0 and logical statements p and q, finding the state of affairs

in which p is true that resembles z0 as much as possible can be posed as a numerical

optimization problem:
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minimize ||z0 − z∗||2

subject to Cp(z
∗) = 1

We treat Cp : Rn → {0, 1} as an indicator function with the value 1 if p is true.

Given the optimal z∗, the truth value of the original counterfactual conditional can be

determined:

p �→q ⇐⇒ Cq(z
∗) = 1

For a concrete example, let z be the latent representation of images of digits. Given an

image of a random digit and its latent representation z0, our formulation of counterfactual

image generation can be used to answer the question “what would this image look like if

this were a digit ‘3’?”, where p is “being digit 3”. In Figure 2, we show images from the

known set (left column), and the counterfactual images generated by optimizing them

toward other known classes for the SVHN and MNIST datasets. We can see that by

starting from different original images, the generated counterfactual images of the same

class differ significantly from one another.

Optimization in the latent space is capable of producing examples that lie outside of

the distribution of any known class, but nonetheless remain within a larger distribution

within pixel space consisting of plausible images (see Figure 3.1). The counterfactual

image optimization connects to the concept of adversarial image generation explored in

[9] and [19]. Similar to adversarial image generation, our process of gradient descent on

the classification objective regularized by a distance metric produces an output that is
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Original Counterfactual Original Counterfactual

0         1         2         3         4 3         4         5         6         7

Figure 3.1: Input examples and corresponding counterfactual images for known classes,
generated by optimizing in latent space. Left: SVHN, Right: MNIST

close in content to the original, perturbed just enough to change its class identity. How-

ever, while optimization in pixel space produces adversarial examples, the counterfactual

optimization is constrained to a manifold of realistic images learned by the generative

model. The combination of diversity and realism makes generated images useful as train-

ing examples. In the following section, we show that training on counterfactual images

can improve upon existing methods of open set classification.

3.2 Open Set Image Recognition

In this section, we will first provide an overview of our method for open set recogni-

tion, followed by a description of our generative model and the proposed approach for

generating counterfactual open set images.
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Figure 3.2: Top: Diagram of the encoder-generator model. Bottom: Diagram of the
counterfactual image generation process. Example images are generated from the Tiny-
Imagenet dataset.

3.2.1 Overview of the Approach

We assume that a labeled training set X consists of labeled examples of K classes and

a test set contains M > K classes, including the known classes in addition to one or

more unknown classes. We pose the open set recognition problem as a classification of

K+ 1 classes where all instances of the M −K unknown classes must be assigned to the

additional class.

We assume the open set classes and the known classes share the same latent space.

The essence of our approach is to use the concept of counterfactual image generation to

traverse in the latent space, generate synthetic open set examples that are just outside

of the known class boundaries, and combine the original training examples of the known

classes with the synthetic examples to train a standard classifier of K+1 classes. Figure
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3.3 provides a simple illustration of our high level idea.

Training Images Realistic Images 

Encoder/Decoder
Model 

Figure 3.3: Our model learns to encode training images into a latent space, and decode
latent points into realistic images. The space of realistic images includes plausible but
non-real examples which we use as training data for the open set of unknown classes.

Our method consists of three phases: training a generative model, applying the

counterfactual optimization to generate synthetic open set examples, and finally training

a classifier network with the combined known and synthetic open set data.

3.2.2 The Generative Model

The standard DCGAN training objective penalizes the generation of any image outside

of the training distribution, and generators normally suffer from some level of mode

collapse.

Inspired by the use of reconstruction losses to regularize the training of generators

to avoid mode collapsing in [3] and in [32], we use a training objective based on a

combination of adversarial and reconstruction loss.

Our encoder-decoder GAN architecture consists of three components: an encoder

network E(x), which maps from images to a latent space, a generator network G(z),

which maps from latent space back to an image and a discriminator network D that
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discriminates fake (generated) images from real images. Figure 3.2 shows the relationship

of the encoder and decoder to the counterfactual image generation process.

The encoder and decoder networks are trained jointly as an autoencoder, with the

objective to minimize the reconstruction error ||x − G(E(x))||1. Simultaneously, the

discriminator networkD is trained as a Wasserstein critic with gradient penalty. Training

proceeds with alternating steps of optimization of the losses LD and LG, where:

LD =
∑
x∈X

D(G(E(x)))−D(x) + P (D) (3.1)

LG =
∑
x∈X
||x−G(E(x))||1 −D(G(E(x))) (3.2)

where P (D) is the interpolated Wasserstein gradient penalty term of [10]:

P (D) = λ(||∇x̂D(x̂)||2 − 1)

Finally, along with the generative model, we also train a simple K-class classifier CK

with cross-entropy loss on the labeled known classes.

3.2.3 Generating Counterfactual Open Set Examples

Our goal is to use counterfactual image generation to generate synthetic images that

closely resemble real examples of known classes but lie on the other side of the true

decision boundary between the known classes and the open set. This can be formulated



13

as follows:

minimize ||E(x)− z∗||2

subject to G(z∗) is an open set example

where x is the given initial real image.

We do not have a perfect decision function that tests for open set, but we can approx-

imate such a function using the classifier CK which has learned to differentiate the known

classes. We deem an example to belong to the open set if the confidence of the classifier’s

output is low. Specifically, we formulate the following objective for counterfactual open

set generation:

z∗ = arg min
z
||z − E(x)||22 + log

(
1 +

K∑
i=1

expCK(G(z))i

)
(3.3)

Here C(G(z))i are the logits of the classifier prediction for the counterfactual image

G(z) for class i. The second term of the objective is the negative log-likelihood of the

unknown class, assuming the unknown class has a score of zero. By minimizing this

term, we aim to simultaneously push the scores of all known classes to be low.

To generate a counterfactual image, we select an input seed image x at random

from the training set. We encode the image to a latent point z = E(x), then minimize

equation 3.3 through gradient descent for a fixed number of steps to find z∗, then decode

the latent point to generate the counterfactual image G(z∗). Each counterfactual image

G(z∗) is augmented to the dataset with class label K + 1, indicating the unknown class.

After a sufficient number of open set examples have been synthesized, a new classifier

CK+1 is trained on the augmented dataset.
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3.2.4 Implementation Details

The architecture of our generative model broadly follows [23], with a few differences. In-

stead of the traditional GAN classification loss, our discriminator is trained as a Wasser-

stein critic with gradient penalty loss (see Equation 3) as in [10]. The generator is trained

jointly with an encoder E which maps from the input image space to the latent space

of the generator, with an effect similar to [21]. The encoder architecture is equivalent

to the discriminator, with adjustments to the final layer so that the output matches the

dimensionality of the latent space, and no nonlinearity applied.

We additionally include a classifier, both for the baseline method and for our own

method after training with generated open set examples. The classifier, both in the K-

class and K+1 class training settings, has an equivalent architecture to the discriminator

and encoder.

In order to easily transfer weights from the K-class to the K + 1-class classifier, we

follow the reparameterization trick from [23] by noting that a softmax layer with K

input logits and K output probabilities is over-parameterized. The softmax function is

invariant to the addition of any constant to all elements of its input: ie. softmax(x) =

softmax(x + C). Using this fact, the K-logit classifier can be recast as a K + 1-class

classifier simply by augmenting the K-dimensional vector of logits with an additional

constant 0, then applying the softmax function resulting in a K + 1-dimensional proba-

bility distribution.

Our generator network consists of blocks of transposed convolutional layers with

stride 2, each block increasing the size of the output feature map by a factor of two.

The discriminator, encoder, and classifier all consist of standard blocks of convolutional

layers with strided convolutions reducing the size of the feature map after each block.
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The LeakyReLU nonlinearity is used in all layers, and batch normalization is applied

between all internal layers. Dropout is applied at the end of each block in all networks

except the generator.

3.2.4.1 Algorithm

Algorithm 1 specifies the process of counterfactual image generation. Algorithm 2 sum-

marizes the full process of open set learning using counterfactual image generation for

dataset augmentation.

Algorithm 1 Counterfactual Image Generation

input Encoder E, generator G, classifier CK , training example x
initialize z(0) ← E(x)
for i← 1...I:

compute ∆z ← ∂
∂z

∑
CK(G(z))− β||z(i) − z(0)||

update z(i+1) ← z(i) + λ∆z
return generated example G(z)

In our experiments, a fixed number of gradient descent steps I = 100 are performed

with a fixed step size parameter λ = .01 and β = 1. Empirical results show that these

parameters are sufficient for our applications, but in more challenging scenarios, Nesterov

momentum or adaptive step size heuristics could be applied.

Algorithm 2 Open Set Learning

input Training examples (x1, y1)...(xN , yN )
train classifier CK on training examples (x1, y1), ...(xN , yN )
train adversarial encoder-decoder model E, G, D on training examples x1...xN
for i← 1...N

generate x∗i ← Counterfactual Image Generation(E,G,CK , xi)
apply label y∗i ← unknown

train classifier CK+1 on training examples (x1, y1), ...(xN , yN ), (x∗1, y1∗)...(x∗N , y∗N )
return classifier CK+1
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Chapter 4: Experiments and Results

We evaluate the performance of the open set classifier CK+1 by partitioning the classes

of labeled datasets into known and unknown sets. At training time, the only input to

the network consists of the K known classes. At test time, the network must assign

appropriate labels to examples of the known classes and label K + 1 to examples of the

M −K open set classes.

4.1 Datasets

We evaluate open set classification performance using the MNIST, SVHN, CIFAR-10,

and Tiny-Imagenet datasets. The MNIST digit dataset consists of ten digit classes, each

containing between 6313 and 7877 28x28 monochrome images in the training fold. We

use the labeled subset of the Street View House Numbers dataset [20], consisting of ten

digit classes each with between 9981 and 11379 32x32 color images. To test on a simple

set of non-digit natural images, we apply our method to the CIFAR-10 dataset, consisting

of 6000 32x32 color images of each of ten natural image categories. The Tiny-Imagenet

dataset consists of 200 classes of 500 training and 100 test examples each, drawn from

the Imagenet ILSVRC 2012 dataset and downsampled to 32x32.

Classes within each dataset are partitioned into separate known and unknown sets.

Models are trained using examples drawn from the training fold of known classes, and

tested using examples from the test fold of both known and unknown classes.
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4.2 Metrics

Open set classification performance can be characterized by the overall accuracy or

F-score for unknown class detection on a combination of known and unknown data.

However, such combined metrics are sensitive not only to the effectiveness of the trained

model, but also arbitrary calibration parameters. To disambiguate between model perfor-

mance and calibration, we measure open set classification performance with two metrics.

4.2.1 Closed Set Accuracy

An open set classifier should remain capable of standard closed-set classification without

unreasonably degrading accuracy. To ensure that the open set classifier is still effective

when applied to the known subset of classes, we measure classification accuracy of the

classifier applied only to the K known classes, with open set detection disabled.

4.2.2 Area Under the ROC Curve for Open Set Detection

In open set classification, it is not known at training time how rare or common examples

from the unknown classes will be. For this reason, any approach to open set detection

requires an arbitrary threshold or sensitivity to be set, either explicitly or within the

training process. The Receiver Operating Characteristic (ROC) curve characterizes the

performance of a detector as its sensitivity is varied from zero recall (in this case, no

input is labeled as open set) to complete recall (all inputs labeled as open set).

Computing the area under the ROC curve (AUC) provides a calibration-free measure

of detection performance, ranging from situations where open set classes are rare to
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situations in which the majority of input belong to unknown classes. To compute the

ROC curve given a trained open set classifier, we vary a threshold θ ∈ [0, 1] which is

compared to the predicted probability of the open set class P (yK+1|x) > θ for each input

image x.

4.3 Experiments

4.3.1 Open Set Classification

In the Open Set Classification experiment, each dataset is partitioned at random into 6

known and 4 unknown classes. We perform the open set classification experiment with

the CIFAR, SVHN, and MNIST datasets, repeated over 5 runs with classes assigned at

random to the known or unknown set.

4.3.2 Openness

In addition to open set recognition accuracy for the case where K = 6, we wish to

understand the effect of varying openness on the performance of our model. Intuitively,

a larger set of known classes will result in an easier open set classification problem, as

a richer descriptive feature representation will be learned which will broaden the set of

synthetic images generated by the counterfactual process. To quantify the relationship

between openness and classification performance, we vary K with a fixed M = 10 in 4.1

for the MNIST dataset.
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Method CIFAR-10 SVHN MNIST

Softmax Threshold .677 ± .038 .886 ± .014 .978 ± .006

OpenMax .695 ± .044 .894 ± .013 .981 ± .005

G-OpenMax∗ .675 ± .044 .896 ± .017 .984 ± .005

Ours .699 ± .038 .910 ± .010 .988 ± .004

Table 4.1: Open Set Classification: Area under the ROC curve. Mean and standard
deviation of the ROC AUC metric for selected datasets. Results averaged over 5 random
partitions of known/open set classes. For all runs, K = 6 and M = 10.

4.3.3 Extended Open Set Classification

Following [24], we define the openness of a problem based on the number of training and

test classes:

openness = 1−
√
K

M
(4.1)

The previous experiments test the effectiveness of the method where K = 6 and

M = 10, so the openness score is fixed to 1−
√

6
10 . To test the method in a range of greater

openness scores, we perform additional experiments using the CIFAR10, CIFAR100, and

TinyImagenet datasets.

We train on CIFAR10 as described previously with K = 4 known classes. At test

Method CIFAR-10 SVHN MNIST

Softmax/OpenMax .801 ± .032 .947 ± .006 .995 ± .002

G-OpenMax∗ .816 ± .035 .948 ± .008 .996 ± .001

Ours .821 ± .029 .951 ± .006 .996 ± .001

Table 4.2: Closed Set Accuracy. Classification Accuracy among K = 6 known classes
for the open set classifier trained on each dataset. Because Softmax Thresholding and
OpenMax use the same network, classification results are identical.
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time, in place of the remaining classes of CIFAR10 we draw 10 unknown classes at

random from the more diverse CIFAR100 dataset. To avoid overlap between known

and unknown classes, known classes are selected only from non-animal categories and

unknown classes are selected from animal categories. The AUC metric for the resulting

open set task is reported as CIFAR+10. This experiment is repeated drawing 50 classes

from CIFAR100 (CIFAR+50). Finally for the larger TinyImagenet dataset we train

with K = 20 known classes, and test on the full M = 200 set. Results reported for all

methods are averaged among 5 separate samples of known/unknown classes.

4.4 Technical Details of Compared Approaches

4.4.1 Our approach

We begin by training an ordinary K-class classifier CK with cross-entropy loss on the

labeled dataset. Simultaneously, we train the generative model consisting of encoder,

generator, and discriminator on the labeled data, following the combined loss described

in section 4.

Once the classifier and generative model is fully trained, we apply the counterfactual

Method CIFAR+10 CIFAR+50 TinyImagenet

Softmax Threshold .816 .805 .577

OpenMax .817 .796 .576

G-OpenMax∗ .827 .819 .580

Ours .838 .827 .586

Table 4.3: Extended Open Set Classification: Area under the ROC curve. Known vs.
unknown class detection for selected datasets. Results averaged over 5 random class
partitions.
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image generation process. Beginning with encoded training set examples, the counter-

factual image generation process finds points in the latent space of the generative model

that decode to effective open set examples. For all experiments listed we generate 6400

example images. The original labeled dataset is augmented with the set of all generated

images, and all generated images are labeled as open set examples. We initialize the new

open-set classifier CK+1 with the weights of the baseline CK classifier.

After training, we use the CK+1 classifier directly: unlike the OpenMax methods we

do not perform additional outlier detection. For the open set detection task however,

we further improve discrimination between known and unknown classes by including

a measure of known class certainty. Given an output P (yi|x) for i ∈ [1...K + 1] we

recalibrate the probability of open set inclusion as

P ∗ = P (yK+1|x)−max
i≤K

P (yi|x) (4.2)

This modified value P ∗ is used for evaluation of the AUC metric.

4.4.2 Softmax Threshold

We compare our open-set classification approach to a standard confidence-based method

for the detection of unknown classes without dataset augmentation. In this method, a

classifier network CK is trained only on known classes and for each input x provides

a class prediction P (y|x) for the set of known classes y. For the purpose of open set

detection, input images x such that maxCK(x) < θ are detected as open set examples.
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4.4.3 OpenMax

We implement the Weibull distribution fitting method from [2]. This approach augments

the baseline classifier CK with a new OpenMax layer replacing the softmax at the final

layer of the network. First, the baseline network is applied to all inputs in the training

set, and a mean activation vector is computed for each class based on the output of the

penultimate network layer for all correctly classified examples. Given a mean activation

vector for each class j ∈ [1...K], a Weibull distribution with values (τj , κj , λj) is fit to

the distance from the mean of the set of a number η of outlier examples of class j. We

perform a grid search for values of η used in the FitHigh function, and we find that

η = 20 maximizes the AUC metric.

After fitting Weibull distributions for each class, we replace the softmax layer of the

baseline classifier with the a new OpenMax layer. The output of the OpenMax layer is a

distribution among K + 1 classes, formed by recalibrating the input logits based on the

cumulative distribution function of the Weibull distribution of distance from the mean

of activation vectors, such that extreme outliers beyond a certain distance from any class

mean are unlikely to be classified as that class.

We make one adjustment to the method as described in [2] to improve performance

on the selected datasets. We find that in datasets with a small number of classes (fewer

than 1000) the calibration of OpenMax scores using a selected number of top classes α

is not required, and we can replace the α−i
α term with a constant 1.
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4.4.4 Generative OpenMax

The closest work to ours is the Generative OpenMax method from [7], which uses a

conditional GAN that is no longer state-of-the-art. In order to provide a fair comparison

with our method, we implemented a variant of Generative OpenMax using our encoder-

decoder network instead of a conditional GAN.

Specifically, given the trained GAN and known-class classifier CK , we select random

pairs (x1, x2) of training examples and encode them into the latent space. We interpolate

between the two examples in the latent space as in [7] and apply the generator to the

resulting latent point to generate the image:

xint = G(θE(x1) + (1− θ)E(x2))

where θ ∈ [0, 1] is drawn from a uniform distribution.

Once the images are generated, we then apply a sample selection process similar to

that of [7] to identify a subset of the generated samples to include as open set examples.

In particular, we use confidence thresholding – that is, generated examples for which

CK ’s prediction confidence is less than a fixed threshold maxi P (yi|xint) < φ are selected

for use as open set examples. In all experiments we set φ = 0.5.

Once the requisite number of synthetic open set examples have been generated, a new

CK+1 classifier is trained using the dataset augmented with the generated examples. For

all experiments we generate 6,400 synthetic example images. At test time, the Weibull

distributions of the OpenMax layer are fit to the penultimate layer activations of CK+1

and the OpenMax Weibull calibration process is performed. We report scores for this

variant of Generative OpenMax as G-OpenMax∗.
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4.5 Results

In Table 4.1, we present the open set detection performance of different approaches on

three datasets as measured by the area under the ROC curves. The closed set accuracies

are provided in Table 2. From the results we can see that classifiers trained using our

method achieve better open set detection performance compared to the baselines and do

not lose any accuracy when classifying among known classes.

It is interesting to note that all approaches perform most accurately on the MNIST

digit dataset, followed closely by SVHN, with the natural image data of CIFAR and

TinyImagenet trailing far behind, indicating that natural images are significantly more

challenging for all approaches.

Note in Table 4.1, our version of the Generative OpenMax outperforms OpenMax

on the more constrained digit datasets, but not in the CIFAR image dataset, which

includes a wider range of natural image classes that may not be as easily separable as

digits. This fits with the intuition given in [7] that generating latent space combinations

of digit classes is likely to result in images close to real, but unknown digits. It is possible

that combining the features of images of large deformable objects like animals is not as

likely to result in realistic classes. However, using the counterfactual optimization, we

find that we are able to generate examples that improve open set detection performance

without hurting known class classification accuracy.

In Figure 4.2, we plot the ROC curves for the SVHN and CIFAR datasets. We see

that the curve of our method generally lies close to or above all other curves, suggesting a

better performance across different sensitivity levels. In contrast, Generative OpenMax

performed reasonably well for low false positive rate ranges, but became worse than the

non-generative baselines when the false positive rates are high.
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Figure 4.1: AUC metric plotted against openness score for our method applied to splits
of the MNIST dataset with varying K.

Figure 4.2: Receiver Operating Curve plots for open set detection for the SVHN and
CIFAR datasets, for K = 6.



26

Chapter 5: Conclusion

This thesis introduces a method for open set recognition, which uses a generative model

to synthesize examples that closely resemble images of known classes but likely belong

to the open set.

An encoder-decoder model is trained with adversarial loss to learn a flexible latent

space representation for images. We introduce counterfactual image generation, a tech-

nique which we apply to this latent space, which morphs any given real image into a

synthetic one that is realistic looking but is classified as an alternative class. We apply

counterfactual image generation to the trained GAN model to generate open set train-

ing examples, which are used to adapt a classifier to the open set recognition task. On

low-resolution image datasets, our approach outperforms previous ones both in the task

of detecting known vs. unknown classes and in classification among known classes.

5.1 Future Work

Possible avenues of future work include experimentation with new generative model

types, extension to new datasets and data modalities, and alterations to the counterfac-

tual image augmentation process. The use of encoded individual training set examples

as the seed values for the counterfactual optimization could be revisited. Other poten-

tial methods of selecting examples might allow for a number of counterfactual images

unbounded by the size of the training set.

Finally, the generative model could be altered to use any one of a number of recent
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advances in the field of generative adversarial networks. In the image domain, the number

of classes and the resolution of output images could be improved. The use of spectral

normalization in the generative model could improve the ability of the generator to model

a larger number of distinct image classes [18]. Progressive growing [13] of the generative

model from a low to a high resolution could significantly improve the maximum output

image size. Alternative network architectures such as WaveNet [31] could adapt the

generative model to alternative data modalities such as audio or time series data.
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