## Fisheries and Optimal Eutrophication Management: A Bayesian Approach

"Pragmatic Approach for Cost-Effectiveness and Cost-Benefit Analyses for the Marine Strategy Framework Directive"

Soile Oinonen, Heikki Peltonen, Outi Heikinheimo, Laura Uusitalo & Marko Lindroos

The Seventeenth International Conference of the International Institute of Fisheries Economics & Trade (IIFET)

Towards Ecosystem Based Management of Fisheries:

What Role can Economics Play

Queensland University of Technology (QUT), Brisbane, Australia 7-11 July 2014



### **Outline**

- Introduction to the Marine Strategy Framework Directive (MSFD)
  - Good Environmental Status (GES) & 11 descriptors
  - Economic analyses of the management measures
- Introduction to Bayesian Nets
- Step-by-step approach for CEA & CBA using Bayesian Nets
- Eutrophication & biomanipulation



and indicators 2012 (+ 6 years)

ges 2020

**GES 2020** 

**Programmes** 

2015

Marine Strategy

## **Marine Strategy Framework Directive (MSFD)**

- Objective: Good Environmental Status (GES) by 2020
  - **Initial Assessment**
  - Monitoring Programme
  - Programmes of measures

- 11 GES descriptors
  - fish, eutrophication, sea floor integrity, hydrographical conditions, contaminants, contaminants in seafood, marine litter, energy including underwater noise





## **Economic analyses of the programmes of measures**

- "...Member States shall give due consideration to sustainable development and in particular, to the social and economic impacts of the measures envisaged...ensure that measures are cost-effective and technically feasible, and shall carry out impact assessments including cost-benefit analysis, prior to the introduction of any new measure."
  - Member states do not have such tools (marine ecosystem model coupled with an economic model) that would allow cost-effectiveness analysis with respect to 11 GES descriptors
  - Pragmatic approach that is able to handle quantitative and qualitative data and expert knowledge needed
    - > Bayesian Net



## **Development of programmes of measures** in Finland

- Gap analysis: how far towards GES we can get with the present set of management measures?
- Propose new management measures and analyse their cost-effectiveness
- Separate working groups develop a list of new management measure for each descriptor
- Working group of economists run the CEA&CBA
  - Quantitative information on the impact of the measures needed
    - Existing models only for one descriptor (eutrophication)
  - Estimate on costs (financial + econonomic costs)
    needed



## **Bayesian Net**

- Graphically presented mathematical models
- Directed acyclic graph denoting (in)dependencies between the model variable's
- Conditional probability tables denoting the strenght of the links between the variables
- Optimisation possible using decison variables and objective functions





## Step by step approach for CEA & CBA using BN

- 1 measure & 1 descriptor 3. All measures & 1 descriptor
- 1 measure & all descriptors 4. Full CEA&CBA





# **Data collection: Effectiveness of a management measure**

|                            | Probability  |         |            |      |            |           |            |              |          |        |           |  |
|----------------------------|--------------|---------|------------|------|------------|-----------|------------|--------------|----------|--------|-----------|--|
| Impact                     | D1           | D2      | D3         | D4   | D5         | D6        | D7         | D8           | D9       | D10    | D11       |  |
|                            | Biodiversity | Non-    | Commerc    | Food | Eutrophica | Sea-      | Hydrograp  | Contaminants | Contamin | Marine | Energy    |  |
|                            |              | indigen | ial fish & | webs | tion       | floor     | hic        |              | ants in  | Litter | including |  |
|                            |              | ous     | shellfish  |      |            | integrity | conditions |              | seafood  |        | underwat  |  |
|                            |              | species |            |      |            |           |            |              |          |        | er noise  |  |
| No impact                  | 0.1428571    |         | 0.2        | 0    | 0          |           |            |              |          |        |           |  |
| Closes <10 % of the gap    | 0.1428571    |         | 0.8        | 1    | 0.05       |           |            |              |          |        |           |  |
| Closes 10-25 % of the gap  | 0.1428571    |         | 0          | 0    | 0.2        |           |            |              |          |        |           |  |
| Closes 25-50 % of the gap  | 0.1428571    |         | 0          | 0    | 0.5        |           |            |              |          |        |           |  |
| Closes 50-75 % of the gap  | 0.1428571    |         | 0          | 0    | 0.15       |           |            |              |          |        |           |  |
| Closes 75-100 % of the gap | 0.1428571    |         | 0          | 0    | 0.1        |           |            |              |          |        |           |  |
| Good Environmental Status  | 0.1428571    |         | 0          | 0    | 0          |           |            | _            |          |        |           |  |
| Sum of probabilites (=1)   | 1            | 0       | 1          | 1    | 1          | 0         | 0          | 0            | 0        | 0      | 0         |  |

Impact: probability of closing the gap between the present state and the GES

• Models, literature, expert opinion: probability is the common language



### **Combining expert judgements**

- Expected value of the expert's view
- Commonly agreed distribution between a group of experts
- Experts provide their opinion for each measure separately
  - Measures impact is independent
    - Interaction using a modelling technique available in the BN sofwares (Noisy-Max-gate)



## **Effectiveness analysis**





Strength of influence of 7 measures on 5 GES descriptors using GeNIe software

## **Effectiveness analysis**

#### Measure 1



#### Measures 1+2



#### Measures 1+2+3



#### Measures 1+2+3+4



#### Measures 1+2+3+4+5



### Measures 1+2+3+4+5+7





## **Data collection: costs of management measures?**

| Total costs of the management measure in years 2016-2021 | Probabillity |
|----------------------------------------------------------|--------------|
| < 0,1 milj. €                                            | 0            |
| 0,1 - 0,5 milj. €                                        | 0.2          |
| 0,5 - 1 milj. €                                          | 0.2          |
| 1 -5 milj. €                                             | 0.3          |
| 5 -10 milj. €                                            | 0.3          |
| 10 - 50 milj. €                                          | 0            |
| > 50 milj. €                                             | 0            |
| Sum of probabilities =1                                  | 1            |



## Good Environmental Status: scoring system (Society's utility function)

- Defining objective function/scoring system faciliates analysis
  - Expected utility of a set of management measures
- How to specify?
  - Use of non-market valuation studies?

| Impact                          | Score |
|---------------------------------|-------|
| no impact                       | 0     |
| closes less than 10% of the gap | 3,125 |
| closes 10-20% of the gap        | 6,25  |
| closes 20-50% of the gap        | 12,5  |
| closes 50-80% of the gap        | 25    |
| closes 80-100% of the gap       | 50    |
| Good Environmental Status       | 100   |





## **Eutrophication & biomanipulation**



Economics of Aquatic Foodwebs: Finnish Academy Project



### **Eutrophication & biomanipulation**

- High concentration of nutrients promotes excessive growth of algae
  - Murky water, toxic blooms, hypoxia, increase in low value fish populations
- Nutrien load reductions: agriculture, waste water treatment
- Biomanipulation through targeted fishing
  - Foodweb effects
  - Nutrients of catch
- Target species of biomanipulation have low value
  - Reversed fisheries problem: subsidies



## **Optimal eutrophication management**





### **Conclusions**

- EU's marine strategy framework directive calls for
  - Ecosystem approach
  - Cost-effectiveness and cost-benefit analyses
- Lack of data, models & resources
  - Pragmatic approach needed
- Bayesian Nets a possible solution
  - Graphics
  - Optimisation
  - Uncertainties



Thank you!

soile.m.oinonen@ymparisto.fi

