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Abstract approved:

Image segmentation is the process by which an image is divided into number of

regions. The regions are to be homogeneous with respect to some property. Definition

of homogeneity depends mainly on the expected patterns of the objects of interest. The

algorithms designed to perform these tasks can be divided into two main families: Split-

ting Algorithms and Merging Algorithms. The latter comprises seeded region growing

algorithms which provide the basis for our work.

Seeded region growing methods such as Marker initiated Watershed segmentation

depend principally on the quality and relevance of the initial seeds. In situations where

the image contains a variety of aggregated objects of different shapes, finding reliable

initial seeds can be a very complex task.

This thesis describes a versatile approach for finding initial seeds on images fea-

turing objects distinguishable by their structural and intensity profiles. This approach

involves the use of hierarchical trees containing various information on the objects in

the image. These trees can be searched for specific pattern to generate the initial seeds

required to perform a reliable region growing process. Segmentation results are shown

in this thesis.

The above image segmentation scheme has been applied to detect isolated living

cells in a sequence of frames and monitor their behavior through the time. The tissues

utilized for these studies are isolated from the scales of Betta Splendens fish family.
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Since the isolated cells or chromatophores are sensitive to various kinds of toxic agents,

a creation of cell-based toxin detector was suggested. Such sensor operation depends on

an efficient segmentation of cell images and extraction of pertinent visual features.

Our ultimate objective is to model and classify the observed cell behavior in order

to detect and recognize biological or chemical agents affecting the cells. Some possible

modelling and classification approaches are presented in this thesis.



©Copyright by Nicolas Roussel

March 27, 2003

All rights reserved



Advanced Image Segmentation, and Data Clustering Concepts applied to Digital Image
Sequences featuring the Response of Biological Materials to Toxic Agents

by

Nicolas Roussel

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March 27, 2003
Commencement June 2003



Master of Science thesis of Nicolas Roussel presented on March 27, 2003

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Chair of Department of Elerical & Computer Engineering

Dean of GradLuit"e-8'choo1

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Nicolas Roussel, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGMENT

I would like to thank:

Prof. Wojtek Kolodziej (Department of Electrical and Computer Engineering),

Assoc. Prof. Frank Chaplen (Department of Bioengineering),

Assoc. Prof. Phil McFadden (Department of Biochemistry and Biophysics),

DARPA, NSF, the Cathalyst fundation,

Bertrand Boichon, Angela Teng (Graduate Student in Electrical and Computer

Engineering),

The entire Cytosensor team,

for their help and support.



TABLE OF CONTENTS

Page

1. INTRODUCTION .......................................................... 1

1.1. Overview ............................................................. 1

1.2. Cell response: Biological understanding ............................... 3

1.3. Related work .......................................................... 5

1.3.1. Modeling of biological cell processes ............................ 5

1.3.2. Cell image segmentation ....................................... 6

2. REGION BASED SEGMENTATION ON COLOR IMAGES ................ 7

2.1. Introduction .......................................................... 7

2.2. Problem formulation .................................................. 8

2.3. Hierarchical approach to region based segmentation ................... 10

2.3.1. Building the hierarchical structure descriptor ................... 11

2.3.2. Pattern searching in the hierarchical structure descriptor ....... 13

2.4. Segmenting Chromatophore cells ...................................... 14

2.4.1. Chromatophore density map ................................... 14

2.4.2. Description of cell population .................................. 18

2.4.3. Split and merge approach applied to the hierarchical Tree ...... 23

2.4.4. Searching for chromatophore patterns in the hierarchical Tree .. 27

2.5. Segmentation processing loop ......................................... 27

2.6. Segmentation results .................................................. 28

3. PROCESSING OF VIDEO SEQUENCES .................................. 33

3.1. Basic concepts ........................................................ 34

3.1.1. Expected cell behavior ......................................... 34

3.1.2. Sequential segmentation ........................................ 38

3.2. Cell tracking strategies ................................................ 41



TABLE OF CONTENTS (Continued)

Page

4. CELL ANALYSIS . 42

4.1. Geometrical analysis .................................................. 42

4.2. Color analysis ......................................................... 44

4.2.1. Statistical analysis ............................................. 45

4.2.2. Cluster analysis ................................................ 46

4.3. Chromatosome statistical analysis ..................................... 47

4.4. Cell monitoring ....................................................... 48

5. MODELING AND CLASSIFICATION ..................................... 51

5.1. Static cell classification ................................................ 51

5.2. Dynamic behavior modelling .......................................... 55

5.2.1. Feature preprocessing .......................................... 55

5.2.2. Behavior modeling ............................................. 56

5.3. Agent signature classification .......................................... 59

5.4. Agent signature ....................................................... 60

5.5. Simple classification test .............................................. 61

5.5.1. Training Data ................................................. 61

5.5.2. Classification results for the basic data set ...................... 62

5.5.3. Classification results for the elicitor extended data set .......... 62

5.6. Interpretation of the classification results .............................. 63

6. CONCLUSION ............................................................. 64

BIBLIOGRAPHY .............................................................. 65



TABLE OF CONTENTS (Continued)

Page

APPENDICES................................................................. 66



LIST OF FIGURES

Figure Page

1.1 (a):Betta Splenderis fish (b):Fish scales ................................ 2

1.2 Sequence of images featuring the response of living cells ............... 2

1.3 Inside schematic view of Chromatophore cells ......................... 3

1.4 Response of Chromatophore cells ..................................... 4

2.1 Chromatophore and melanophore cells ................................ 9

2.2 Presentation of the various configurations of Erythrophore and Melanophore
cell families ........................................................... 9

2.3 Presentation of the various configurations of Erythrophore and Melanophore
cell families ........................................................... 10

2.4 Original RGB image and cumulative binary image collection (N = 6) 12

2.5 Labelling of the cumulative binary image collection .................... 12

2.6 Hierarchical Tree building process ..................................... 13

2.7 Schematic view of the acquisition system .............................. 15

2.8 Medium volume schematic view at location x .......................... 18

2.9 Cell images and their density profiles .................................. 19

2.10 Original RGB image .................................................. 21

2.11 selected Objects in color space ........................................ 21

2.12 selected Objects in cumulative label space ............................. 22

2.13 P(radius = rlclabel = 1) .............................................. 22

2.14 P(clabel = 1) ......................................................... 23

2.15 Best case scenario .................................................... 24

2.16 Root split required .................................................... 24

2.17 Splitting and merging required ........................................ 25

2.18 Node partition Results ................................................ 26

2.19 Examples of Objects associated with their sub-trees ................... 27



LIST OF FIGURES (Continued)

Figure Page

2.20 Diagram of the segmentation processing ioop .......................... 28

2.21 Original RGB image depicting a population of Chromatophores ....... 29

2.22 First pass segmentation result ......................................... 30

2.23 Second pass segmentation result ...................................... 31

2.24 Third pass segmentation result ........................................ 32

3.1 Use of a disk shaped structure element to simulate Aggregation ........ 35

3.2 Cell erosion using a radially oriented structuring element T ............ 35

3.3 Aggregation of a compact chromatophore ............................. 36

3.4 Aggregation of a dendritic chromatophore ............................. 36

3.5 Dispersion of a compact chromatophore ............................... 37

3.6 Dispersion of a dendritic chromatophore .............................. 38

3.7 RGB image at frame i ................................................ 40

3.8 segmented image at frame i ........................................... 40

3.9 Marker image used for frame i + 1 .................................... 41

4.1 Geometrical features computation ..................................... 43

4.2 Color analysis of a cell, (a):Cell Image (b):Extracted Cell (c):Pixels of
a cell in RGB space ................................................... 44

4.3 Ellipsoid of constant density of probability ............................ 45

4.4 (a) :Extracted Cell, (b) : Crisp segmentation, (c) :Fuzzy segmentation, (d):
Pixels of a cell in RGB space, (e): Clusters display, (f): Clusters mod-
elling................................................................. 46

4.5 Monitoring of the cell area in a one-stage experiment .................. 48

4.6 Monitoring of the cell area in a one-stage experiment .................. 49

4.7 Monitoring of the cell area in a Two-stage experiment ................. 49

4.8 Monitoring of the cell area in a Two-stage experiment ................. 50



LIST OF FIGURES (Continued)

Figure Page

5.1 Cell response to beta amyloid 100 uM ................................. 53

5.2 Population of fully aggregated cells .................................... 54

5.3 Evolution on a cell feature ............................................ 57

5.4 Original data and model of the response of a cell to a single agent 58

5.5 Evolution on a cell feature in response to two agents .................. 58

5.6 Original data and model of the response of a cell to two agents ........ 59



LIST OF APPENDIX FIGURES

Figure Page

A.1 Immersion, (a):Original Image (b):Gradient Image (c):Immersion of the
gradient Image ....................................................... 68

A .2 Watershed segmentation, (a): Original Image, (b) : Gradient Image, (c) : Marker
Image, (d):Segmentation result ........................................ 69

B.1 Binary image ......................................................... 70

B.2 Vertical connectivity detection ........................................ 71

B.3 Sub-connected components detection .................................. 71

B.4 Conflict resolution .................................................... 72

B.5 Label Image reconstruction ........................................... 73

D.1 Schematic representation of the acquisition of images obtained by trans-
mission............................................................... 76



ADVANCED IMAGE SEGMENTATION, AND DATA
CLUSTERING CONCEPTS APPLIED TO DIGITAL

IMAGE
SEQUENCES FEATURING THE RESPONSE OF
BIOLOGICAL MATERIALS TO TOXIC AGENTS

1. INTRODUCTION

1.1. Overview

Today most of the systems for detecting biological threats or dangerous chemi-

cal products are relatively specialized devices focused on a specific toxin or chemical

molecule. A relatively new approach involves the observation of specific biological or-

ganisms (e.g. cells) which interact naturally to some biological or chemical threats (e.g.

toxins). These biological organisms may respond in a observable sense and consequently

provide data to the processing device, which can present this information in a meaningful

manner. If the organisms to be observed react visually to the agent, image segmentation

for the purposes of feature extraction is a required step.

This research project addresses general issues associated with the quantification

and modeling of biological processes. The approached fields are principally cell seg-

mentation, modelling and classification. The basis for our studies is a time sequence of

images depicting the response of chromatophores to toxic and non-toxic agents.

The tissues utilized for these studies are isolated from the scales of Betta Splendens

fish family (See Figure 1.1). Isolated cells or chromatophores sensitivity to various kinds

of toxic agents suggested the possibility of creating a cell-based toxin detector. Most of

our experiments were performed on image sequences featuring the time-dependent cell



(a) (b)

FIGURE 1.1: (a):Betta Splendens fish (b):Fish scales

1 mm

response. Nevertheless the methods that have been developed here are relatively generic

and could easily be applied to other kinds of organic materials.

Chromatophores exposed to certain toxin classes react by altering their internal

state (aggregation or dispersion of color bearing particles or chromatosomes). We will

first briefly describe the cells from a biological point of view. A basic understanding of

the physical processes involved in the cell reaction may provide us with some insights

about the cell dynamics and help us in our subsequent tasks of quantification, modeling

and prediction.

First Image Subsequent Images

;0

Last Image

FIGURE 1.2: Sequence of images featuring the response of living cells
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Measurement of the cell evolution is based on a sequence of RGB images taken at

a constant sampling rate (See Figure 1.2). Our first task is to reduce the RGB image

sequence into a comprehensive set of features. This require the use of advanced Region-

based segmentation strategies for cell detection and tracking. Knowing the location of

each individual cell in time allows to compute a set of time based features.

Finally, these extracted time series of features can be used for high level modeling,

detection and identification.

1.2. Cell response: Biological understanding

A eukaryotic cell is composed of a nucleus surrounded by cytoplasm, which contains

various kinds of organelles enclosed inside the cell membrane. Mechanical support is

provided by the cytoskeleton which is a complex network of protein filaments that extend

throughout the cytoplasm (See Figure 1.3).

It has been established experimentally that chromatophore organelles called chro-

matosomes are equipped with bound motor proteins which can move them along the

cytoskeleton (Microtubule or actin filaments).

Cytoske etc
M icrotu bu 1

iented Organelle:
nosome/Eryth rosome

FIGURE 1.3: Inside schematic view of Chromatophore cells
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distribution; and 2) Many agents interact at receptor sites on the cell surface nad the

information is carried toward the cell center using internal signaling mechanism. Oth-

ers penetrate the cell membrane and interfere with membrane associated processes or

processes occurring within the cell proper.

1.3. Related work

This section reviews the current research related to the main topics addressed in

this paper: Modeling of cell processes and Cell image segmentation.

1.3.1. Modeling of biological cell processes

The modeling of the various biochemical signaling pathways that allow the cell

to receive, process and respond to information is a very active field of research, which

is motivated by the need to understand the cell response to various chemicals. Such

an understanding is of great interest for example to the pharmaceutical industry, non-

linear approaches such as Biochemical signalling networks [1] are designed to fully model

the internal cell mechanisms. The ultimate purpose of these techniques is to design

simulation tools that would make pharmaceutical research significantly more efficient.

More closely related to the topic of this paper is research that focuses on modeling

specific observable cell behavior, namely the transport of Intracellular Particles. These

phenomena have been studied from a macroscopic point of view and one-dimentional

models were designed for a wide variety of organelles [2]. Most of this research focuses

on precisely describing this phenomenon, which results in complex sets of equations with

biologically oriented parameters.

Quantitatively assessing external factors based on organelles transport is under

intensive research, but publications on this topic are still relatively sparse.
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1.3.2. Cell image segmentation

Segmentation of images depicting the cells is crucial to understanding of the cell

behavior, thus the field of region based image segmentation is of interest to us. A variety

of generic techniques has been proposed and tested by segmenting images into regions

of some common property. These techniques can be classified into two main classes:

Splitting algorithms

Merging algorithms

Some of these techniques are usually associated with specialized data structures. A large

variety of techniques utilizes quadtree as an image descriptor, they are for the most

part designed to detect and segment objects characterized by their uniform intensity

or texture. Such an approach which is of great interest for image compression would

not apply to the segmentation of complex dendritic objects with non-uniform density

profiles.

In situations where the object structure is complex and where over-segmentation

is not acceptable, it has been shown that some a priori knowledge of the objects to be

extracted is required. In the case of overlapping and touching objects this requirement

is even more critical. This leads to the specific field of model based image segmentation

where many segmentation approaches applied to various object structures have been

tried.

Some versatile approaches using deformable object models have been developed

[3]. However they are, in practice, limited to relatively simple models. In the case of

Chromatophore cells, the density profile of the organelle distribution can exhibit a great

variety of configurations and has an inherent morphological complexity.



2. REGION BASED SEGMENTATION ON COLOR
IMAGES

2.1. Introduction

1

The function of Region-Based Segmentation is to extract homogeneous, with re-

spect to some properties, regions of an image. Definition of homogeneity depends mainly

on the expected pattern of the objects that we want to extract. This task is important

to image compression, pattern recognition, computer vision etc.

Numerous algorithms have been designed to perform segmentation tasks. Basically,

these algorithms can be divided into two main families: Splitting Algorithms and Merging

Algorithm. The later comprises seeded region growing algorithm which is a well known

region-based segmentation method that segments intensity images into regions based on

a marker set. As the name implies it is a procedure that groups pixels into larger regions.

Border pixels are added to regions in an order that depends on the similarity between the

pixels and the marked region. Performance of this method is therefore highly dependent

on the initial seeds choice.

The automatic generation of a marker set is a broad area of research which involves

object detection. This approach always requires specific knowledge or models of the

objects that we want to detect. In the case of images containing several objects of

different shapes and intensity that together form compound objects, detection can be a

very complex task that is often assisted manually by a user.

In this paper, we present a generic approach for automatic object detection. This

method is best suited to gray scale images where objects are to be distinguished by

their low intensity profile (high light absorbtion or low light transmission factor). This

method involves the generation of a hierarchical tree containing information concerning

the structure and intensity of an image. Object detection can be performed by searching

this tree for specific patterns.



2.2. Problem formulation

Let I be an image that we wish to segment, I(x, y) is the value of the pixel at

the coordinates (x, y). I can be ideally divided into an optimal set S of N regions:

A, i = 1...N: S = {A, i {1...N}}. A1 will be the background region and A, i = 2...N

will represent the regions of the (N 1) objects contained in the image.

Our objective is to generate a marker set 5' = {A, i E {O. ..N}} such that for each

optimal region A, i {1...N}, A C A. A' is the region of unknown class modeling the

ambiguity of the object detection process. This ambiguity will be resolved by the seeded

region growing segmentation algorithm.

The method discussed in this paper requires specific knowledge about the objects to

be detected, and the performance of the algorithm depends on this knowledge relevance.

Knowledge of the expected objects can be extensive or reduced to simple facts such that

{ "Each Object corresponds to a local intensity minima" }.

Figure 2.1 shows a sample image where this method can be applied. It features

a population of cells called Chromatophores which can be found in the scales of B.

Splendens fish.

This image highlights many object detection issues such as:

e The image contains cells of various shapes and intensity profiles.

. Some of the cells form aggregate, compound objects.

Here the Chromatophore cells are the objects that we wish to detect. They can

be divided into multiple families. For our purposes we focus on Erythrophores and

Melanophores. Among these two families, cells can come in several configurations. Fig-

ure 2.2 and 2.3 show the various cell types and configurations that the object detection

algorithm may encounter. In Chapter 3 we will present the result of segmentation ob-

tained for these chromatophore images.



FIGURE 2.1: Chromatophore and melanophore cells

Erythrophore Cells

Dendritic Configuration

I

Reddish dendritic medium sized objects

Compact Configuration

Reddish solid and big objects

Aggregated Configuration

Dark, small and round shaped objects

FIGURE 2.2: Presentation of the various configurations of Erythrophore and
Melanophore cell families
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Melanophore Cells

Dendritic Configuration

Aggregated Configuration

Black dendritic medium sized objects

Black solid and big objects

Dark, small and round shaped objects

FIGURE 2.3: Presentation of the various configurations of Erythrophore and
Melanophore cell families

2.3. Hierarchical approach to region based segmentation

The proposed approach to perform a reliable region based segmentation when the

cell structure is not precisely defined can be decomposed into 3 successive steps.

. Building the hierarchical tree that we might call hierarchical structure descriptor.

Searching the tree for specific pattern to generate the objects markers.

Performing the seeded region growing to segment the initial image.
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2.8.1. Building the hierarchical structure descriptor

The hierarchical structure descriptor is very closely related to a region based im-

age representation called Max-Tree [4]. This structure has been first introduced as an

efficient way to implement Connected Operators [4] that are filtering algorithms inspired

by mathematical morphology that eliminate part of the content of an image leaving the

boundaries information unchanged. In this paper, we describe a variation of Max-Tree

that we will use for object detection purposes.

The first step toward building the hierarchical structure descriptor is Image quan-

tization. The input image I is to be reduced to an image L of N color labels, each one

of them corresponding to a representative color class. Efficient algorithms that divide a

population of pixels into a number of classes with respect to some minimal class variance

constraints are available [5].

We assume that labels corresponding to representatives colors are sorted with

respect to their decreasing intensity.

Image L can be viewed as N binary images {B, i E {1...N}}, such that B(x, y) = 1

if L(x, y) = i. L is used to generate the cumulative binary image collection: {Bc, i e

{1...N}} which is created as follows (see figure 2.4):

Bc1 = B1 e Str Str

Bc = (Bc_1 + B) e Str Str
Notice that we incorporated morphological opening using a structuring element

Str. This process is very similar to a dynamic multi-thresholding that would be applied

to a gray scale image.

Alternatively cumulative binary images collections can be represented as a cumu-

lative label image LB of N labels defined as:

LB(x) = 1 if Bci(x) = 1

LB(x) =i if Bc(x) = land Bcj_i(x) =0 ,i=2...N
The second step of this process involves connected components labelling applied

to the cumulative binary image collection (Figure 2.5). This produces N sets of re-

gions: {RegionSet, i E {l...N}} where RegionSet contains the n connected compo-
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Original RGB image

Cumulative Binary Images

FIGURE 2.4: Original RGB image and cumulative binary image collection (N 6)

nents {Cc, j {1...n2}} from the cumulative binary image Bc. Notice thatRegionSetN

contains only one connected component comprising the whole image thus N = 1.

Cumulative Binary Images

Cumulative Binary Images
labelled for connected
components

FIGURE 2.5: Labelling of the cumulative binary image collection
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The hierarchical structure descriptor is a tree containing n2) nodes (See

Figure 2.6). The root node correspond to the Connected component Cc and represents

the entire image. Given a node corresponding to region Cc its children are regions from

(ii) (ii)the labelled image {Cck ICCk C Cc3}.

Cumulative Blnaiy Images
labelled for connected
components

FIGURE 2.6: Hierarchical Tree building process

2.3.2. Pattern searching in the hierarchical structure descriptor

The hierarchical structure Tree is a high level descriptor of the image objects. It

contains information on both the shapes and color/intensity of the objects in the image.

It can be used to perform various tasks such as object detection or recognition.

The simplest use of the tree would be the search for local maxima and use them as seeds

for region growing segmentation (in our case marker initiated Watershed segmentation).

A local maxima would correspond to the top of the branch of a tree. For basic denois-

ing purpose we can introduce minimal area criterion for those seeds. Some practical

segmentation results using this simple method are presented in Section 2.6. Figure ??.
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Based on some a priori knowledge of the of objects the tree can be processed using

split and merge approaches and next be searched for specific pattern. The search result

can be used to generate a more relevant marker set for region growing segmentation.

Knowledge of the object structures that we wish to segment can be summarized

by ranges of tolerance of various region node properties:

. We can define general and specific Color and intensity tolerance ranges. In our

experimental tests we did not use extensively this option. Instead we here focused

on performing a light independent structure based object detection.

The Area of region node must be within a tolerance interval. We can define a

general Area range for all the cell types and configuration [GeneralMinirnalArea,

GeneralMaximalArea]. Some area ranges specific to the cell type and configura-

tion can also be devised.

Additional structure oriented features can be used to assess the cell type and

configuration such as Object Solidity, ConvexArea, etc.

2.4. Segmenting Chromatophore cells

In this section, we apply the generic concept of Hierarchical region based segmen-

tation discussed in section 2.3. to images depicting chromatophore cells. Our task is

to design proper tree processing and pattern searching algorithms relevant to detecting

chromatophores.

2.4.1. Chromatophore density map

The grayscale images showing chromatophores are obtained by the image acquisi-

tion system. These images provide us with a rough estimate of the organelle (chromato-

some) density distribution within the field of view. There are two major drawbacks of

using this estimate.
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. The gray scale level of the image can vary depending on the light intensity.

At a given pixel location gray scale level and local chromatosome density are related

through a non linear mapping function. This can make statistical analysis of

chromatosome population difficult.

In this section we define a consistent estimator of the chromatozome density map

using the LIP (Logarithmic Image Processing) model shortly presented in section D.

2.4.1.1. The image acquisition system

An example of image acquisition system is shown in Figure 2.7. A source emits

light that is transmitted across two stacked mediums: the fluidic medium Mf and the

chromatophore medium Mc. The transmitted light is captured by the camera and

converted to a gray scale image f.

Light Camera
Source

Cell Fluidic + Sponge
Medium Medium
Mc Mf

Output Image

FIGURE 2.7: Schematic view of the acquisition system

The chromatophore medium Mc is a simplified view of the chromatosomes pop-

ulation in the field of view. It is characterized by its transmission factor T: T(x) < 1

if some chromatosomes are located at x, T(x) = 1 if no chromatosome is located at x.

The fluidic medium Mf represents all the materials other than the chromatosomes. Our

objective is to minimize the influence of the fluidic medium.
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According to LIP formalism, the output image f can be seen as the result of the

LIP addition of two images f and ff:f = fc(+LIp)ff where f is the image obtained

when only the chromatozomes medium is present and f)c is the image obtained when

only the fluidic medium is present.

2.4.1.2. Filtering out the influence of the fluidic medium

The information made available to us by the acquisition system is an image f =

fc(+LIP)ff obtained by the transmission across the chromatophore and fluidic medium.

In practice only f is of interest

Theoretically, obtaining f could be as simple as performing the LIP substraction

f(LIP)ff. Unfortunately fj is not directly available and needs to be estimated.

Let the background B of an image be a set of pixels where no chromatophore is

located. According to our previous assumption, we know that T(x) = 1, f(x) = 0 if

x E B. Therefore, if x E B, 1(x) = f1(x). The estimate of f1 can be obtained by

extrapolating the values of fj' at the location B.

Since f is available, it is relatively straightforward to obtain an estimate of fc:J =

f(LIP)ff

2.4.1.3. Software based light stabilization

Basically, increasing the light input is equivalent to decreasing the thickness of

the medium using LIP multiplication XLIp. Stabilizing light input involves the task

of adjusting the background intensity to a target gray scale level N using the XLIp

operator. The LIP multiplier n can be obtained simply using the following formula.

fl = f XLIP

This leads to a stabilized image f stable:

(2.1)



fstable = f X LIP Ti
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(2.2)

Notice that to obtain the LIP multiplier factor, we only used f)c instead of f. The

reason for this is that the background (obtained by transmission over the fluidic medium)

has an average transmission factor that is relatively constant because the volume of liquid

is standardized in our experiments.

2.4.1.4. Estimating the chromatosomes density

Estimating the image f is an important step toward the creation of a density map.

However, it can be demonstrated that f is not linearly related to the actual density of

chromatophore d.

Let us first discuss the physical meaning of f and I. We consider a pixel at

location x in the medium.

If a unitary volume v of chromatozomes is located at x 2.8 (a) then

T(x) = 1

. If a volume kv of chromatozomes is located at x (Figure 2.8 (b)) then
U \k\fc(x)=M(1(1M)

UkT(x) = (1 M)

The estimate of the chromatophore density d can be theoretically obtained by the

following formula:

d
log(1

(2.3)
1og(1)

This formula requires that the grayscale level f obtained by transmission across

a unitary volume of chromatophores is known. However, under stable light conditions,

this value is assumed to be constant and a reliable estimate of d can be obtained as.

= log(1 ) (2.4)
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'4-'.

4r 4:
gray scale image density profile

FIGURE 2.9: Cell images and their density profiles

The major advantage of hierarchical Region based segmentation is that it can

be used to search for specific object patterns based on some a priori knowledge of the

objects. We divide object knowledge into two categories: Hard parameters and Soft

parameters.

2.4.2.1. Hard parameters

We call Hard parameters, any information provided by the end user. Such a

set of information is supposed to be short, comprehensive, and valid for the broadest

range of experimental conditions. In our implementation, we reduced this set to simplest

structural cell properties:

MINIMAL CELL AREA

MAXIMAL CELL AREA
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2.4.2.2. Soft parameters

Soft parameters on the other hand are not provided by the end user and only

apply to the image currently under consideration. The general idea is to perform a sub-

optimal region based segmentation on the current image, select the region that meets the

Hard parameters requirement and derive from those regions an extensive set of object

properties that will be used in the next tree processing iteration.

Consider the set S of M regions S {R, i = 1 . . . M}. Using the Hard Objects

parameters we can define exclusion rules to filter out the region set S thus creating a set

S' of N valid object regions 5' = {R,j = 1. . . N} (See Figure 2.11 and 2.12).

As soft parameters, we could use order 0 and 1 moments of various quantities

such as color, Intensity, Chromatozome weight etc. But in our approach we focus on

computing some density distributions of the region pixel values in the cumulative label

image LB (See section 2.3.1. ).

Each region R from 5' is a set of pixel locations, which can be characterized

by their associated value in the map LB and their radius relative to the geometric

centroid of the corresponding region. From this we can devise the density distributions:

P(clabel = lIradiis = r)

P(radius = r)

P(radius = rjclabel = 1) (Figure 2.13)

F(clabel = 1) (Figure 2.14)
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FIGURE 2.14: P(clabel 1)

2.A.3. Split and merge approach applied to the hierarchical Tree

Each node of the hierarchical tree represents regions of the image. In theory, a

node region may coincide with one or several cells. For the latter, it is expected that

children nodes from lower levels will allow the identfication of each individual cell (Figure

2.15).

However the following may arrise:

A node which coincides with a single cell can have several childrens thus wrongly

implying that this node is composed of several cells (Figure 2.17).

Children of a node which coincide with several cells may not allow the ideutfication

of each individual cells (Figure 2.16).

To resolve those problems, we need to devise split and merge strategies applied to

the nodes of the tree. Given a node region R corresponding to k actual cells, we intend

to divide R into k sub regions {c, i = 1 .. . k}, each one of them corresponding to a single

cell.



24

Root/Children view Gray scale Image

FIGURE 2.15: Best case scenario

Root/Children view Gray scale Image

FIGURE 2.16: Root split required

R can be considered as a collection of points in 2D together with their weights

taken from the chromatosome density map (see Section 2.4.1.). Assume that cells can

be modeled by a gaussian density distribution, then R can be seen as a mixture model

composed of k chromatosome distributions. Our objective here is to identify each one of

these distribution.

A very well suited method for this task is the Gath-Geva (GG) clustering algorithm

[6] since it assumes that each cluster is a realization of a normally distributed random

variable. The main issue in this approach is that the number of clusters must be known

a priori and given as a parameter. To perform an optimal clustering, we must apply the

GG process with several values of k, retaining the partition that best fits the objects

properties.
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Root/Children view Gray scale Image

FIGURE 2.17: Splitting and merging required

Given a partition PN of R into N sub regions PN = {cj, i = 1 .. . N} our main task

is to define a clustering quality index Q. In our approach, the estimator is primarily

based on the soft parameters extracted previously and discussed in Section 2.4.2.2..

As mentioned previously each sub region Cj from PN is a set of pixel location, char-

acterized by their associated value in the map LB and their radius relative to the geomet-

nc centroid of their corresponding region. Therefore the partition becomes a collection D

of M pixels represented by their radius and cumulative label: D = {(rf', If'), i = 1 .. . M}.

As a quality index we use:

Q(PN) = P(radius = rf'Iclabel = lf')P(clabel = if') (2.5)

This estimator will ensure that the partition with the highest "probability" is

selected. Figure 2.18 shows the experimental results of this approach.

The output of the GG algorithm is a partition map that is used to define splitting

and merging rules. These rules can be applied recursively to the processed node and its

children.
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Selected partition Gray scale Image

FIGURE 2.18: Node partition Results
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2.4.4. Searching for chromatophore patterns in the hierarchical Tree

In the Hierarchical Tree, we are going to check each individual node for specific

patterns. From the tree we will consider a node from level i and its immediate successors

form level (i + 1). This procedure forms the subtrees that will be next checked for

patterns. Examples of these subtrees can be seen in Figure 2.19.

IA)

[B)
Sub tree representation

Sub tree representation

Sub tree representation

c RGB image Actual regions

FIGURE 2.19: Examples of Objects associated with their sub-trees

In our implementation, most of the computational complexity is in the split and

merge processing of the tree. As a result we will search our enhanced tree for simple

local minima patterns (See Figure 2.19 (a)).

2.5. Segmentation processing ioop

in Section 2.4.2.2., we described Soft parameters as region information extracted

from a sub-optimal segmentation of the current image. These soft parameters are then



used by the split and merge algorithm and yield an enhanced tree. From this enhanced

tree, more relevant seeds can be extracted to perform a marker initiated region growing

process such as Watershed segmentation.

Assuming that the new regions better describe the actual cell population, they

could be used to refine the initial soft parameters and reiterate the segmentation process.

From these considerations, it is relatively straightforward to define a multipass seg-

mentation process where the segmentation result would improve after each ioop iteration

(Figure 2.20).

RGB Building Hierarchical
Image Tree

Sub optimal region
based segmentation

Regions Hard
Set Lmeter5____I

Hierarchical
Tree

Object selection

Spht& merge

Let
pmet5 parameters

Soft Building soft
parameters parameters

FIGURE 2.20: Diagram of the segmentation processing loop

This concept can be further extended in the case of image sequences where changes

between two subsequent frames are limited.

2.6. Segmentation results

In this section, we present the result of our segmentation algorithm applied to a

rather challenging image where distinction of individual cells is extremely difficult.



29

As hard parameters we selected:

MINIMAL CELL AREA=dOO

MAXIMAL CELL AREA=5000

To initialize the process, we performed a marker initiated watershed segmentation

using local minima seeds from the tree.

FIGURE 2.21: Original RGB image depicting a population of Chromatophores
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FIGURE 2.22: First pass segmentation result
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FIGURE 2.23: Second pass segmentation result
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FIGURE 2.24: Third pass segmentation result
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3. PROCESSING OF VIDEO SEQUENCES

The region based segmentation algorithm described in the preceding chapter ap-

plies to a single image. A simplistic approach would be to use this method for each image

of the sequence. the cell tracking could be performed using for example the Ungarian

Algorithm to assign to each object of an image a single successor from the next image

according to some minimal cost criterion.

Such an approach although valid is very time consuming and does not fully exploit

the inherent redundancy between images in a time sequence. Here we use a more efficient

approach for dealing with both the image segmentation and cell tracking.

The general idea behind this method is that changes of cell size and location from

one image to the next are relatively small. Furthermore, upper bounds of these changes

can be devised based on the biological facts. Therefore region based segmentation of an

image can be performed in a relatively straightforward manner by using the segmentation

result from the preceding image as markers.

This method has proven to be reliable and relatively fast, however it needs to be

further refined to be able to deal with some special situations:

Translation of the image focus:

This particular phenomena shows as a global translation of the field of view. In our

implementation, we used a crude correlation based tracking strategy that should

not be needed in stabilized operational conditions.

Fast cell migration:

The observed cells are maintained in a fluidic environment. Chromatophores are

surface adherent, but it is not uncommon to see some cells moving freely in the

fluidic medium.



3.1. Basic concepts

Let us first assume that we are observing a cell population under optimal condition,

i.e. that we are not confronted with such disturbances as change of the image focus or

fast cell migration. The only behavior that is expected from the chromatophores is

organelle aggregation or dispersion.

First, these cell evolution processes are described and models are proposed. Next

the actual sequential segmentation process is discussed.

3.1.1. Expected cell behavior

When the membrane of a cell comes in contact with some toxic agent, two kinds

of behavior can be expected: Chromatosomes Aggregation or Dispersion.

In the case of Aggregation (See Figure 3.3 and 3.4), the organelles migrate along the

cytoskeleton toward the center of the cell. Considering the microtubules configuration

inside the membrane, this movement can be considered as radial following a straight line

from the periphery toward the center of the cell.

This behavior can be seen as an apparent change in the cell are, or in the image

processing term as a morphological erosion of the cell binary map. The choice of the

suitable structuring element S is important. While a disc shaped S could be perfectly

valid for convex cells, it is likely that such S wrongly erases the dendrils of non-convex

cells (See Figure 3.1).

A better choice would be to use a radially oriented structuring element T (See

Figure 3.2).

Let us considering a region R1 of the frame taken at time t1. The chromatozomes

of this region are assumed to converge toward the center at speed v. If we want to corn-

pute the estimate of R2 at time t2, then the eroding structuring element T(xy) applied

at the location (X, Y) of R1 is mathematically defined as follows:
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p.d mo.phologlcal

0

FIGURE 3.1: Use of a disk shaped structure element to simulate Aggregation

T(x,y)(x,y)=1 if Yx+Xy=O
and iJ(X x)2 + (Y y)2 <v(t2 ti)

T(x,y)(x,y) = 0 otherwise

We assume in this formula that the center of the cell corresponds to the origin.

Notice that in this case we use a dynamic structure element to perform the erosion,

which can be computationally expensive. In the case of large regions it is preferable to

process the image in the polar coordinates with static T.

o
FIGURE 3.2: Cell erosion using a radially oriented structuring element T
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t=10

Dt=15

t=25

t=35 I

Color Image Binary mask Differential binary mask

FIGURE 3.3: Aggregation of a compact chromatophore

t=1

t=2

t=3

t=4

Color Image Binary mask Differential binary mask

FIGURE 3.4: Aggregation of a dendritic chromatophore
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In the case of Dispersion (See Figure 3.5 and 3.6), the organelles migrate along the

cytoskeleton toward the periphery of the cell. This movement can be considered also as

radial following the straight line from the cell center and towards its periphery.

We could simulate this behavior in a similar way as for the aggregation process

using the same type of structuring element T, but performing morphological dilatation

instead of erosion.

t1 a
t=2

t=3 cpl

t=4

Color Image Binary mask Differential binary mask

FIGURE 3.5: Dispersion of a compact chromatophore
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t=1

t=2

t=3

t=4

Color Image Binary mask Differential binary mask

FIGURE 3.6: Dispersion of a dendritic chromatophore

3. L2. Sequential segmentation

In this section, we specifically discuss the segmentation of image sequence depicting

the changes in Chromatophore cell population. We assume that the individual cell

locations can be estimated from the segmentation results of the preceding frame of the

sequence. This approach does not involve object detection discussed in section 2. such

detection must be performed for the first frame as part of an initialization process.

Let It and 't+tt denote two consecutive RGB images from a sequence taken at

the sampling rate it. The segmentation result of It is available to us as a set of regions

= {r, i 1.. . N}, r is the background region and {r, i = 2. . . N} are the regions

of the N 1 cells present in the field of view at time t.

Our objective is to derive the regions from and St. To do so we need

'(t+t)to generate a marker set 8(t+Lt) = {r2 , i {O...N}} such that for each optimal

region i E {1...N}, rtt) c rt. t+t) will be the region of unknown class

featuring the ambiguity that need to be resolved by a seeded region growing segmentation

algorithm such as watershed.
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We assume that the only behavior that can be expected from the chromatophores

are aggregation or dispersion. From biological facts, we can obtain the maximal aggre-

gation speed Va and the maximal dispersion speed Vd.

. If a cell r is undergoing a dispersion process, then r can be directly taken as a

marker since r C Tt+t:

'(t+t)
Ti

i

In the case of the background r1 is shrinking and we must anticipate the largest

possible shrinking rate to obtain a relevant marker. To do so we must erode r

using a circular structuring element S of diameter (2 Vd Lit):

i(t+t) = r e S(2. Vd t)

If a cell r is undergoing a aggregation process, we must anticipate its largest

possible shrinking to obtain a relevant marker. Therefore we must erode T using

a radial structuring element T (See section 3.1.1.) of length (2 . T/a

T(tt) = T e T(2 . Va t)

On the other hand the background region T can be directly used as a marker since

t+Lt.T1CT1

-
T1 T1

In real operating conditions, we cannot predict the cells behavior, furthermore we

can be confronted with a situation where one cell type (Melanophore) is aggregating

while the other (Erythrophore) is dispersing. To be able to cope with such cases, we

need to combine the marker generation rules:
T(tt) = T e T(2. Va. st), i e {2...N}

'(t+t) - t
T1 T1 e 8(2 . Vd t)

The global process of marker generation is illustrated in Figures 3.7 3.8 and 3.9.
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4. CELL ANALYSIS

Region Based Image segmentation of an image sequence provides us with a map-

ping (x, y, time) -+ (CellId, time). By computing certain object features, it is possible

to represent these objects in a feature space. An image sequence is therefore reduced to

feature array time series.

In this part, we investigate certain features to determine which ones are most

relevant to modelling and prediction.

Geometrical analysis:

This leads to the analysis of the shape of the cell, as defined by the binary mask

computed during the segmentation process.

Color analysis:

The objective is to estimate the statistical model of the cell color content in a

color space. Pigmentation of organelles is an important feature since it permits

the differentiation between Erythrophores (red) and Melanophores (black).

Chromatozome statistical analysis:

In this case chromatophore cells are considered as a distribution of microscopic

organelles called chromatosomes enclosed inside the cell membrane. We use the

chromatosome density map (Section 2.4.1.) to analyze this distribution from a

statistical point of view.

4.1. Geometrical analysis

Here, only the binary map defining the cell region is considered. Thus, this process

is dedicated to computing geometrical features. At this point, we do not know exactly

which features are important to correctly model cell behavior. More experiments are
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needed to answer this question. Presently we compute a standard set of features (see

Figure 4.1)

Let R = {(x, y), i 1 . . . N} be the region composed of N pixels representing the

cell to be analyzed. We compute a standard set of geometrical features:

Area Centroid

Perimeter

Major Axis Length

Eccentricity

Convex Area

Equivalent Diameter

ConvexHull

Extent

Minor Axis Length

Orientation

Euler Number

Solidity

ConvexArea

Area which estimates the extent of the Chromatosome distribution spatial support

is probably the most interesting element of this set since it provides us with an estimate

of the organelle aggregation/dispersion rate.

Solidity defined as (Area/ConvexArea) can be used to estimate the degree of

dendricity of a cell, thus allowing us to define sub-populations of dendritic and "compact"

cells.

STRUCTURAL FEATURES:

Area: 611
MajorAxisLength: 36.6694

___- MinorAxisLength: 34.9972
Eccentricity: 0.2985
Orientation: 62.1704
ConvexArea: 1193
FilledArea: 611
EulerNumber: 1

EquivDiameter: 27.8917
Solidity: 0.5122

FIGURE 4.1: Geometrical features computation
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The global set of cell regions S = {r, i = 2.. . N} is defined by the labeled image

resulting from the region based segmentation. If we assume a 4 or 8 pixel connectivity,

we can estimate the connectivity conmect(i,j), i = 2. . . N,j = 2. . . N "value" between

two cell regions, thus allowing us to investigate the possible interactions between cells

which are in contact with each other.

4.2. Color analysis

In this case, the analysis is performed in a color space (see Figure4.2). We assume

that we are working in the RGB domain but other domains might be considered as well

(e.g. HSV, Principal components).

(a) (b) (c)

FIGURE 4.2: Color analysis of a cell, (a):Cell Image (b):Extracted Cell (c):Pixels of a
cell in ROB space

Our final objective is to model the color distribution of each cell. To do so, two

kinds of analysis are performed:

. Statistical analysis

Fuzzy cluster analysis
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4.2.1. Statistical analysis

For this analysis, we need to assume a statistical distribution of the pixels of a cell

in the color space. A natural choice in our situation is to assume the distribution to be

Gaussian. Therefore we aim to find the parameters of the following density function.

1 1P(x) = e_x_1)T1(x_1A) (4.1)
(2ir)'/2 IEI'12

x : RGB vector representing a pixel

mean color of the cell

Correlation matrix

d number of color bands

This gaussian density function can be easily obtained by computing the mean color

a and the Correlation matrix E.

The Correlation matrix is of particular interest to us because it allows to obtain

the axes direction of the ellipsoids of constant density (See figure 4.3). These axes can

be computed directly by performing the eigenvalue/eigenvector decomposition of E.

FIGURE 4.3: Ellipsoid of constant density of probability
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4.2.2. Cluster analysis

The purpose of this analysis is to model color components of the cell. It can be

typically divided into two regions:

The core

(typically darker color region)

The periphery

(Typically lighter color region, extend of which can vary depending on the toxic

environment)

pp p
(a) (b) (c)

:Lt Lt
(d) (e) (f)

FIGURE 4.4: (a):Extracted Cell, (b):Crisp segmentation, (c):Fuzzy segmentation, (d):
Pixels of a cell in RGB space, (e): Clusters display, (f): Clusters modelling

To identify these regions, the cluster analysis approach, which detects grouping

within the data, is a natural choice. From large number of existing clustering techniques,

we chose a variant of the fuzzy K-mean clustering to perform this operation.
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In our case, the fuzzy approach is more appropriate because fuzzy cluster analysis

avoids unambiguous mapping of pixel values to classes, and instead computes degrees of

membership to specify to what extend data belongs to a cluster. This is of particular

interest considering that the region between the core and periphery of a cell can be very

shallow. Another advantage is that this method is more stable and less sensitive to local

minima of the objective function used in clustering.

For the details about clustering algorithm, refer to [6]. From a practical point

of view, the fuzzy C-mean algorithm computes a probabilistic cluster partition f(p)(k)

which can be interpreted as the probability for membership of the pixel p to a cluster k.

This partition is all we need to divide the pixels of a cell into two classes. Next

these classes can be analyzed statistically (See Figure 4.4).

4.3. Chromatosome statistical analysis

In this part, we focus on the way the chromatosomes are distributed within the

boundaries of the cell membrane. The organelle distribution of a cell is defined by its

spatial support R = {(x, y), i = 1 . . . N} and its chromatosome density map d (See

section 2.4.1.).

From this we can first compute the distribution weight W and center (Xm, yw):

W = (x,y)ER d(x, y)

(x,y)ER x.d(x,y)

Xm
(x,y)ERd(x,Y)

(x,y)ER yd(x,y)

Ym (x,y)ERY)

We can also compute the second moments of the distribution as a correlation ma-

trix C:

xm)2d(X,y) >(XY)ER(x xm)(y ym)d(X,y)

xm)(y ym)d(X, y) (X,y)ER(Y ym)2d(X, y)



4.4. Cell monitoring

Some of the cell features that we computed can be used for static analysis purposes,

i.e. to assess the nature (Melanophore, Erythrophore, dendritic, compact) of the cells

when they are in their resting state.

But the key feature of the chromatophores under study is their dynamic behavior

when exposed to toxic agent. This is what allows us to assess an agent toxicity and

permits toxin classification and recognition. By monitoring the structure and color

evolution of each individual cell, our ultimate objective is to compare these behaviors to

some models so as to be able to detect and identify toxins.

To characterize the cell behavior, we will monitor the evolution of the cell features

after injection of one (See Figure 4.5 and 4.6) or several agents (See Figure 4.7 and 4.8).

200 400 600 800 1000 1200 1400 1600

I

Injection of:

PMSF lOOuM

FIGURE 4.5: Monitoring of the cell area in a one-stage experiment
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FIGURE 4.6: Monitoring of the cell area in a one-stage experiment
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FIGURE 4.7: Monitoring of the cell area in a Two-stage experiment
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FIGURE 4.8: Monitoring of the cell area in a Two-stage experiment
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5. MODELING AND CLASSIFICATION

In the previous sections, we principally discussed the concepts of tracking the

changes of individual cells. To this end, an extensive number of features were computed to

characterize these changes. Our major concern was segmentation reliability and stability.

In this part of the study, our intention is to extract from the previously generated

raw data a set of features relevant to some specific cell behaviors. Ultimately, we want

to model the feature changes.

To achieve this objective, a standardization of the cells and the experimental pro-

tocols are needed. The scope of this preliminary study is limited, since such standardiza-

tion is currently under the development. Here, we only introduce the general concepts

involved in cell change modeling.

5.1. Static cell classification

When exposed to some agents, chromatophore cells can react either by chromato-

some aggregation or dispersion. The nature and extent of this reaction depends on the

injected agent and the nature (Erythrophore, Melanophore) of the cell. For example,

some experiments demonstrated that beta arnyloid, induces aggregation on Melanophores

and dispersion on Erythrophores (See Figure 5.1).

Membership to a class Erythrophore or Melanophore has to be crisp since there

are no intermediate/hybrid cells containing a mix of Erythrosome and Melanozome or-

ganelles. The nature of a cell can be assessed from its associated object features, prin-

cipally its color and area.

To perform this classification, we chose a simple discriminant function approach.

Lets consider = {wl,w2} of 2 cell categories, and X = [Xl,..., x] a fea-

ture vector . The objective is to associate each class with a discriminant function

dA(x), A = 1 . . . 2. They can be expressed in a vectorial form as:
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dA(x) = a (x)

a, is a parameter vector and (x) is the processed features vector. Various parame-

terization schemes can be introduced here. We selected linear-in-parameters model so

the solution takes close-form. Notice that (x) can be arbitrary vectorial function of its

argument. Here we chose (x) as follows:

aA[bo '- it-

(x) = [1, Xi, . . .

Our objective is then to find the best discriminant functions dA(x), A = 1 . . . 2 of

this family to perform the classification task.

Let us define the optimal discriminant function basis: {i,.. .
t5} such that:

6A(x)=1 if XEw,,,

= 0 otherwise

We want dA to be the best approximation of the ideal discriminant function 6A

Considering the mean squared errors

Mse = dA(c))2} = E{>1(&x(x) a

our objective is to minimize Mse.

Rewriting the expression for Mse in a matrix-based form we have

Mse(A) = E{((x) At(x))}

(x) = ,ö2(x)]t

A=[aiI...a2}

Our objective is to find the optimal parameter matrix A* such that:

A* = ArgMim(Mse(A)).
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It can be shown that this optimal parameter matrix satisfies the following relation:

A* = [E{p(x)çot(x)}]'E{ço(x)t(x)}

t = 160

t = 280

t = 2970

FIGURE 5.1: Cell response to beta amyloid 100 uM
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The initial aggregation state of a cell can greatly influence the toxin response. An

organelles aggregation agent such as Clonidine won't have any effect on a fully aggregated

cell, similarly a organelle dispersion agent will not affect a fully dispersed cell.

Since cells can come in various aggregation states, our concern is more of quantifica-

tion than classification. From experimental observations, we know that fully aggregated

chromatophores exhibit relatively standard spatial support area (See Figure 5.2). From

this fact we can obtain the typical area of fully aggregated cells AreaAG and use it to

define an estimate of the cell degree of aggregation: Agr:

A Area
AreaAG

O WI
w
0 0
I...:. I.

. V
. . .

.. .
.... *

1! ,,4W -,.,.!0I'.. I

:

w .

.. .ty.-..iI

FIGURE 5.2: Population of fully aggregated cells

Finally, the initial degree of dendricity must be quantified since the membrane

configuration is likely to affect the flow of chromatozomes during the aggregation or

dispersion processes. As an estimate of the cell dendricity dend we used the ratio of the
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area over the convex area:

dend Area
ConvexArea

5.2. Dynamic behavior modelling

By monitoring each cell individually, we can obtain a vectorial time series of van-

able length which depends on the experiment duration. Modelling such time series

consists of describing them by a fixed length set of parameters called feature vector.

5.2.1. Feature preprocessing

The analysis process discussed in section 4. computes an extensive number of

features to characterize each cell. This set has been developed to be as extensive as

possible within the bounds of what can be computed in a relatively short time.

Any feature describing aspects of a cell is in principle relevant but our intent is to

select the ones that best describe the cell internal process and to pre-process them for

normalization purposes.

5.2.1.1. Feature Selection

Through the selection process discussed above, we intend to identify a subset of

features relevant to the expected cell behaviors. Designing a strategy for dynamically

selecting features depending on the experimental conditions is beyond the scope of this

thesis. What was done in practice was to chose the features which best represent the

expected cell behavior.

The currently used features include, area, convexarea and the eigenvalues (A1, A2), A1

A2 of the correlation matrix of the cell chromatozome distribution.
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5.2.1.2. Feature Extraction

Feature extraction is required for normalization purposes. As an illustration we

consider some possible normalized extracted features:

/ ConvexArea
fi) =

7r

This feature is basically the equivalent radius er of the cell Convex Hull, it is

expected to characterize the chromatosome displacement involved in the aggrega-

tion or dispersion processes. This measurement is designed to be valid on both

compact and dendritic cells and is motivated by the fact that the chromatosome

displacement is visible at the extremas of dendritic chromatophores.

A 2 ()2_ ()2
f2(i) = 2ir{Ai(i)2 + lm(4-)], e

1

A1(i)

2

f2 can be interpreted as a statistical area within the unitary variance bounds.

5.2.2. Behavior modeling

By monitoring each cell individually, we can obtain a set of time series of variable

length (see figure 5.3). Modelling this series consists in describing it by a fixed length

set of parameters called feature vector.

Time series modelling is the ultimate step required to perform response classifica-

tion. A possible approach to this modelling is presented below.

First, note that we are not really interested in obtaining a model of the cell behav-

ior. Modeling leads to explaining how the data is generated, which is extremely complex

in this case. What we want is a descriptor that makes the minimal assumptions on

the nature of the signal. To reach this objective, Auto-regressive (AR) processes is a

possibility.
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FIGURE 5.3: Evolution on a cell feature

Assuming that we have a normalized time series y featuring the response of a cell

to a single agent, the evolution of y will be modelled by a order p auto-regressive process.

the model Ym of y is defined as:

ym(ti) C if 0 < ti <tL

ym(ti) = b0 + ym(tj_p)ap) + Wi if tL <ti

The parameters of this model are :C, tL,bO, (ai, i 1. . . p). They are determined in

order to minimize the mean square error of the model and characterize the cell behavior.

The model assumes that the cell response level remains at a constant value C for a

duration tL which determines the latency of the cell response, then actual evolution is

modelled by a AR process with parameters (ai, i = 1 . . . p) and b0. An illustration of this

modelling approach is given on Figure 5.4.
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FIGURE 5.4: Original data and model of the response of a cell to a single agent

This modelling scheme applies to the situations where cells are responding to

a single agent. However some experiments deal with the responses of the cells to a

combination of two or more agents. In Figure 5.5, such a case is illustrated. Agent 1 is

first injected and the cell response is recorded, then the operator injects Agent 2.
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FIGURE 5.5: Evolution on a cell feature in response to two agents
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The initial cell response prior to the second injection can be modeled using the

single agent modelling scheme. However after the second injection, 2 different agents

are present in the medium. In this situation, we decided to model this behavior using

two successive AR process segments. The location of each segments is optimized in the

mean square error sense (See Figure 5.6).
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FIGURE 5.6: Original data and model of the response of a cell to two agents

Choosing the correct modelling scheme is a very important topic that will require

further research.

5.3. Agent signature classification

Experimental observations suggest that the cell dynamic behavior in response to

an injected agent could be used as a signature. Classification of these signatures can

make toxin detection and recognition feasible.



In this last part of the thesis we describe some possible approaches to define a

reliable agent signature. Early experimental results demonstrating the capability of the

selected features from a classification point of view will be presented.

5.4. Agent signature

Our observations of the chromatophores suggest that the dynamic behavior of a

cell subjected to a chemical or non-chemical agent can be described by four main factors.

the evolution of the chromatosome distribution

the agent type

the cell family (Erythrophore ,Melanophore, dendritic, compact)

the cell initial state

Agent type is basically the unknown variable or class C to be determined by the

classification techniques. The three other factors are observation variables described

by a feature vector f which is the agent signature. Our objective is to determine the

agent type C based on the data f describing the observed variables. The classification

performance will primarily depend on the quality of our observation and thus on the

description accuracy of f.

f is a feature vector basically composed of three components:f = {fd, ft, f8]

fd is a set of features describing the cell dynamic behavior when exposed to the

agent C. It contains model parameters of the evolution of the various computed

cell measurements.

The ft set describes the cell nature: Erythrophore ,Melanophore, dendritic or

compact.

The set f8 comprises various measurements assessing the initial state of a cell.
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Our first approach to feature engineering was to consider that the the initial state

of a cell was principally defined by its initial aggregation degree. We were assuming

that cell measurement taken on the first image prior to toxin injection were a reliable

estimator of the cell initial state.

However, some tests as well as visual observations demonstrated that the initial

biochemical state inside the cell membrane was not entirely quantifiable through visual

cell inspection. To overcome this difficulty, Prof Frank Chaplen [7] from the Bioengi-

neering department of Oregon State University suggested that the state of a cell could

be characterized by its dynamic behavior in response to a known agents called elicitors.

[7] proposes to modify the experimental protocols by injecting the known agent some

time after the injection of the toxin. Figure 5.6 illustrate such an experiment with a

Bacillus Ceresus strain 1 primary agent and a MSH as the elicitor.

Model of the dynamic response to the combined effect of primary agent and elicitor

constitutes a fourth feature set fe that will improve the cell initial state description.

5.5. Simple classification test

Designing the best classification method for toxin recognition is beyond the scope

of this thesis. Instead, we focus on demonstrating the capabilities of our measurements

for classification purposes.

5.5.1. Training Data

Our basis for this preliminary study is a set of experiments featuring the Ery-

throphore response to 3 primary agents (BC1, BC5 and BC6) and one elicitor (MSH).

Definition of agent signature:

fd contains the first order model parameters describing the evolution of the equiv-

alent radius er of the cell Convex Hull defined in Section 5.2.1.2.).
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. Since we restricted our study to Erythrophores, ft is limited to the level of den-

driticity of the cell.

. We limited f8 to the initial cell area.

Finally, for fe we take the models of the evolution of er in response to the elicitor

injection.

From our experimental data, we define two labelled data sets for classification

purposes. The first data set called BasicData will contain feature vectors of the form

f = [fi, ft, fs], leaving out the elicitor feature set. The second data set ExteridedData

contains all the available features f = [fe, ft, fs, fe]. Both of these sets are normalized

and tested for Bayesian classification.

5.5.2. Classification results for the basic data set

To assess the classification capabilities of the basic data set, we tested a Bayesian

classifier using "leave-one-out" cross validation. We assume that classes are Gaussian

distributions.

The following confusion Matrix was obtained:

Actual class 1 class 2 class 3

Predicted class 1 204 36 19

class 2 21 69 42

class 3 22 178 160

Global classification accuracy : 57.66

5.5.3. Classification results for the elicitor extended data set

To assess the classification capabilities of the elicitor extended data set, we tested

a Bayesian classifier using leave one out cross validation. We assume that classes are

Gaussian distributions.



The following confusion Matrix was obtained:

Actual class 1 class 2 class 3

Predicted class 1 198 25 14

class 2 17 122 17

class 3 32 136 190

Global classitication accuracy : 67.YlU/c

5.6. Interpretation of the classification results

Distinguishing strains of Bacillus Ceresus using chromatophore is an extremely

difficult task since they trigger similar aggregation processes. Due to the limited quantity

of experimental data, we had to reduce the number of features to be classified to a

minimum. Furthermore, we limited ourself to only one type of Chromatophores: the

Erythrophore.

The purpose of these classification tests were not to demonstrate the absolute

classification capabilities of the cells. We intended to show the classification improvement

introduced by the use of elicitors, therefore demonstrating the existence of non-visible

initial cell states.



6. CONCLUSION

In this thesis, our primary concern was of reliable cell detection by segmentation

of color cell images. To achieve this goal, we presented a tree based approach that

demonstrated good performance and stability while requiring minimal user input. These

algorithms were designed to run in the real-time mode, therefore they could be coupled

with existing real time video acquisition platforms.

Cell segmentation and tracking allowed us to generate time series of features. It has

been conjectured that Chromatophore initial states and dynamic behaviors in response

to an injected agent represent a reliable agent signature. In this thesis we presented

preliminary development on signatures modelling and classification.

The results presented in this thesis are promising and demonstrate the capabilities

of the biosensor approach to toxin detection and recognition. However many Chro-

matophores internal biochemical pathways are yet to be discovered and further research

is needed on agent signature design and classification.
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A THE WATERSHED SEGMENTATION

The watershed theory as well as the algorithms used in this project are presented

briefly. For more details refer to [10].

Al. Basic Concepts

The intuitive idea underlying this method comes from geography: it is that of a

landscape or topographic relief which is immersed in a lake, with holes pierced in local

minima. Catchments basins will fill up with water starting at these local minima, and,

at points where water coming from different basins would meet, dams are built. When

the water level has reached the highest peak in the landscape, the process is stopped.

As a result, the landscape is partitioned into regions or basins separated by dams, called

watershed lines or simply watersheds.

From the image processing point of view, this immersion can be applied to the

gradient of a gray scale image, see figure A.1.

A2. Watershed segmentation algorithm

In conventional watershed algorithm, gradient image is used to segment the original

image into nearly constant gray level regions. The region growing process involves adding

the neighborhood pixels of regions to one of the regions. The merging criterion is the

value of the gradient. Pixels are considered in the order based on gradient value. Lowest

gradient pixels are processed first. If there are two neighborhood regions for a pixel then

it is merged with the region with lowest distance.

In the modified watershed algorithm [9] used here, a marker image, that provides

the initial seeds for regions in segmented image, is derived from the original image. The

region growing process involves adding the adjacent pixels with marker. The merging



(a) (b)

(c)

FIGURE A.1: Immersion, (a):Original Image (b):Gradient Image (c):Immersion of the
gradient Image

criterion is the distance between value of pixel under consideration and the average pixel

value of the region. Every time a pixel is added the average value of the pixel is updated.

Pixels are processed in the order based on distance. Pixels with lower distance value are

processed before pixels with higher distance.

In practice, a labelled image is used as a marker. This image (see Figure A.2)

consists of zeros to mark pixels of unknown region, and positive integer to mark pixels

of known region.

An interesting approach for generating the marker image is to use an approxima-

tion of the segmentation result. If such an information is available, it is relatively easy

to derive the marker image by applying a binary erosion around each segment, leaving

between them some uncertainty frontiers whose thickness depends on the size of the mor-

phological operator. The task performed by the segmentation process is thus reduced to

the processing of these uncertainty regions.



(a) (b)

(c) (d)

FIGURE A.2: Watershed segmentation, (a):Original Image, (b):Gradient Image,
(c) :Marker Image, (d) :Segmentation result

This approach is very promising in our situation where we deal with sequential

image data. Indeed, the approximation of the segmentation results is directly available

in the form of the previously segmented frame.

In the case of the first processed frame where no prior knowledge is available, the

cell detection techniques are required.
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B DETECTION OF CONNECTED PIXELS IN A
BINARY IMAGE

A binary image or digital grid can be seen as a special kind of graph, where the

vertices are called pixels. The connectivity among the vertices are usually a 4 or 8-

connectivity. Here, we assume a 4-connectivity, but its generalization to 8-connectivity

is relatively straightforward.

FIGURE B.1: Binary image

Our objective is to detect the connected components (marked as l's) of the image

(see figure B.1). A naive approach would be to construct a graph structure based on

the image information and detect the connected components using, for example, a depth

first search method. However, this would require a significant amount of memory and

time.

A typical approach in such situation is to break down the problem complexity.

The proposed here algorithm can be divided into several processing steps.

Step 1: Vertical connectivity detection
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FIGURE B.2: Vertical connectivity detection

First, the image information is reduced to vertically connected components called

Runs. Each run is defined by its column, starting line and ending line (see Figure

B.2).

Step 2: Sub-connected components detection

Recorded Class Equivalence:
1-2

FIGURE B .3: Sub-connected components detection
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At this point, runs are processed column by column(See figure B.3), the algorithm

tries to associate runs of one column to the runs of the previous column. If no

association is possible, then the run receives a new label. If one single associa-

tion is possible, the run receive the same label as his connected counterpart from

the preceeding column. Finally, if several associations are possible (conflict), the

run receives the label of its first counterpart and class equivalence information is

recorded.

Step 3: Conflict resolution

Equivalence Graph

G-o 1i
Qcomponent detection 2 3

FIGURE B.4: Conflict resolution

At this point, we have sub-connected components associated with label equiva-

lences. Based on this information, we can build a graph and perform a connected

components detection using a depth first search. The sub-connected components

are relabelled accordingly.

Step 4: Label Image reconstruction
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FIGURE B.5: Label Image reconstruction

The classification conflicts are now resolved, and we can next construct the labelled

image.
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C SINGLE CELL EVOLUTION
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C2. Segmented
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D LIP MODEL

In this part we briefly present the Logarithmic Image Processing (LIP) Model. For

further details, refer to [8].

Dl. Physical interpretation of images obtained by trans-
mission

Basically, the LIP model applies to gray-scale images obtained by transmission

across a medium. A schematic view of such an image acquisition system is presented

in Figure D.1. Schematically, a light source is emitting a uniform flux of light ç5j which

is transmitted across a medium characterized by its transmission factor T(x). On the

other side of the medium a non-uniform light flux 0(x) is emitted and captured by the

camera to form the gray scale image f(x).

The image f is assumed to be encoded using M gray scale levels, a common value

for IVI is 256.

Light Camera
Source iøo

Medium

Output Image
f

FIGURE D.1: Schematic representation of the acquisition of images obtained by
transmission
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We define the transmission factor of the medium as the ratio between the outgoing

flux q over the incoming flux

T(x)=.

Let's consider the gray scale value of f at the location x:

f(x) = 0 means that the medium is transparent at the location x, thus T(x) = 1.

f(x) = M means that no light is received at location x, therefore T(x) 0

There is an inherent duality between the medium transmission factor T(x) and

the image f(x). From a mathematical perspective, T(x) can be interpreted as the prob-

ability for an incoming photon to get through the medium at location x and the duality

can be mathematically defined by the formula:

T(x)=1-4

D2. LIP operators

From the physical concepts discussed above, it is possible to define LIP image

operators: the LIP addition +LIp, substraction LIP and multiplication XLIp.

D2.1. LIP addition

Assuming that a medium 1 with transmission factor T1 produces an image Ii and

a medium 2 with transmission factor T2 produces an image f2, the image (fi +LJp f2)

is defined as the image that would be obtained by transmission across medium 1 and 2.

Obviously, the combined transmission across medium 1 and 2 is (Ti .T2), and using

the image/transmission formula, we can mathematically define the LIP addition by:

11(1)12(s)
(fi +LIP f2)(x) = fi(x) + 12(x)



D2.2. LIP substractiori

The transmission across medium 1 minus medium 2 is and we define the
T2 (x)

LIP substraction by:
1-

(flLIP f2)(x)=M(1 -
M

D2. 8. LIP multiplication

The LIP multiplication of an image by n involves multiplying the thickness of a

medium by n, the resulting transmission factor becomes T(x) and we define the LIP

multiplication by:

f(x)
(fl ><LIP n)(x) = M M(1 -M-)




