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ABSTRAC T

The development of the energy crisis has resulted i n

close monitoring of depletable energy resources in th e

United States . Within the agricultural sector, irrigation

is a large consumer of energy, with the potential of usin g

several times more energy than all other agricultural fiel d

operations . A better understanding of how energy is use d

by different irrigation systems could facilitate more efficien t

use of energy by one of the largest energy consumers i n

agriculture .

	

-

This study attempts to realistically evaluate the tota l

amount of non-renewable energy resources consumed in th e

irrigation process . Five portable and permanent sprinkle r

system types, plus trickle and gravity irrigation systems ,

were studied . An evaluation of the energy required to manu-

facture, install, operate, and transport the equipment fo r

an entire irrigation season was included in the analysis .

This evaluation was conducted in a variety of operatin g

situations, with varying acreages, consumptive use rates ,

and total irrigation requirements .

The evaluation of energy consumed by irrigation system s

presented in this study was made with the use of a simu-

lation model developed on the Oregon State University OS- 3

Computer System. The model predicted energy requirement s

of an irrigation system by calculating pumping energy fro m

basic hydraulic equations and manufacturing energy fro m

the amounts of basic materials composing the irrigatio n

system. Energy for installation and for field transportation

were evaluated by simulating methods of operation an d

management used in Oregon . Input parameters used in the

modeling process closely reproduced operating condition s

encountered in Oregon . System types, component depreciation

life, irrigation efficiencies and the range of irrigatio n

requirements were ones that could typically be found in Oregon .



For the situations considered, gravity irrigation re-

quired substantially less energy than other system types .

The energy needed for drip systems was about midway betwee n

the energy requirement for gravity and sprinkler system s

in most cases considered . The relative order of energy

requirements for the various sprinkler systems was dependen t

upon the prescribed operating conditions .
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I . INTRODUCTION

With the development of the energy crisis, an increasin g

amount of attention has been focused on the use of our de-

pletable energy resources . When considering measures to con -

serve these energy resources, operations which are the lar-

gest energy consumers are quite naturally expected to con -

tribute the largest energy savings . While agriculture in th e

United States does not compare with the transportation in-

dustry as a user of energy, it is quite energy-intensive .

Barnes (1973) estimated that agriculture accounted directl y

for the use of an equivalent of 250 million barrels of crud e

oil in 1970 . Indirect consumption by agriculture accounte d

for the equivalent of an additional 250 million barrels o f

crude oil . When all the energy that goes into food production

in the United States is considered, including food processin g

and preparation, the food cycle consumes about 12 percent o f

the national energy budget (Hirst, 1974) . The extreme dependenc e

of agriculture on energy, especially petroleum products ,

requires that immediate action be taken to ensure that al l

energy allocated to agriculture is used economically .

In the western part of the United States, one of th e

largest single energy consuming agricultural operations i s

irrigation . Barnes et al . (1973) indicated that over 3 4

million acres of land are irrigated in the 18 western "irri -

gation states ." This acreage (within the states of Washington,
r

Oregon, California, Idaho, Nevada, Utah, Arizona, Montana ,

Wyoming, Colorado, New Mexico, North Dakota, South Dakota ,

Nebraska, Kansas, Oklahoma, Texas, and Louisiana) comprise s

approximately ten percent of the crop land in the Unite d

States . On much of this acreage, 50 to 100 percent of th e

crop production is dependent upon proper application of irri -

gation water . A study in California (Williams and Chancellor ,

1974) found that for nine crop types grown extensively i n

that state, the application of irrigation water was by far the'



largest single factor affecting crop production . It was

estimated that a 50 percent reduction in the amount o f

irrigation water applied would result in an average yiel d

reduction of 49 percent for the nine crop types considered ,

and a reduction in crop value of over $1 billion .

Considering no yield, or a greatly reduced yield, a s

alternatives, the price of irrigation appears cheap, whateve r

the cost in dollars and energy . Despite the vital nature o f

its products, agriculture must not assume that it will alway s ,

have sufficient energy available to constantly increase it s

output, or even to continue at present operating levels . I f

energy becomes a limiting constraint upon agricultural pro-

duction, the first areas to be removed from production as a

conservation measure would probahly be marginal acreage s

irrigated at extremely high energy costs . One study (Barne s

et al ., 1973) estimated that in some cases the energy require d

for pumping irrigation water can be as much as 20 times th e

energy required for all other field operations in producing a

crop . Another study in California (Cervinka et al ., 1974 )

estimated that the pumping of irrigation water consumed 13 . 2

percent of the total energy requirement for agriculture i n

that state .

The vital dependence of crop production upon irrigatio n

water in many of the western states, and the equally vita l

dependence of irrigation upon the available energy supplies ,

makes it extremely important to understand the energy require-

ments of the irrigation process . An understanding of energy

consumption in irrigation could make it possible to reduc e

the losses in existing irrigation systems, and the ability t o

predict energy requirements of new irrigation systems woul d

promote the most efficient designs . Recognizing the sizabl e

variations in operating conditions and procedures in differin g

locations, and the many different options available to a n

irrigator, this study will attempt to evaluate and quantif y

two total energy requirements of typical farm irrigation

systems in the state of Oregon .



According to recent estimates (Shearer, 1975), ther e

are approximately 1,938,000 acres of irrigated crop land i n

Oregon . Gravity irrigation is the predominant type, cover-

ing 1,120,000 acres . Hand move sprinkler systems are th e

second most popular type, irrigating 500,000 acres, whil e

side roll sprinkler systems account for 175,000 acres, cente r

pivot sprinkler systems for 110,000 acres, solid set sprink-

ler systems for 20,000 acres, big gun sprinkler systems fo r

12,000 acres, and trickle irrigation systems for 1,000 acres .

In many areas of the state the water source is surface water ,

developed by government-financed irrigation projects . When

ground water is the source, or when the surface water suppl y

lies below the land to be irrigated, more than 99 percent o f

the pumping plants used to lift irrigation water are powere d

by electric motors .

The state of Oregon has a broad range of agricultura l

crops grown under equally varied climatic conditions .

The Oregon irrigator can consider several types of systems t o

satisfy his irrigation needs, with a wide variety of commercia l

equipment available within each system type . The situation

could range from a center pivot sprinkler system irrigating a

quarter section of potatoes in the Columbia Basin with a

seasonal irrigation requirement of 24 inches of water and a

peak consumptive use rate of three quarters of an inch every

two days, to twenty acres of peppermint in the Willamett e

Valley irrigated with a hand move sprinkler system requiring

only ten inches of water seasonally and having a peak deman d

of one and one-half inches every ten days .

To provide estimates of the energy needs of a number o f

different systems in a wide variety of operating conditions, a

computer model has been developed which simulates the require d

energy inputs to irrigation systems . The model can simulat e

hand move, side roll, center pivot, solid set, and-permanen t

sprinkler systems, as well as drip irrigation systems an d

furrow and corrugation surface irrigation systems . To simulat e
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the irrigation of different crops in differing consumptive us e

situations, several input parameters can be varied to deter -

mine their effects on the ultimate energy requirement of th e

system under consideration .

Previous studies of irrigation energy requirement s

have generally included only the energy required to pum p

water . This study considers not only pumping energy, bu t

also includes the energy required to manufacture irrigatio n

equipment, to prepare the land to accept an irrigation system ,

and to install the system in the field . In this way an

estimate of the total system energy requirement can b e

evaluated, and comparisons of systems can determine relativ e

energy efficiencies .

4



II . REVIEW OF LITERATURE

Since the development of the energy shortage, man y

studies addressing energy consumption have been conducted .

Agricultural use of energy has been investigated, though mos t

studies have been general views of the total industry . A

few, however, have considered individual areas within agri-

culture to determine the energy use patterns of specifi c

operations .

A study by the California Department of Food and Agri -

culture and the University of California, Davis (Cervink a

et al ., 1974) recently evaluated the use of energy by agri-

culture in that state . The consumption of energy was par-

titioned into several different categories, one of which wa s

irrigation . Of the nearly 36 million acres of farmland i n

California, 7,240,131 acres are irrigated . A total o f

20,836,379 acre-feet of water was applied to these lands i n

1969 (Census, 1969) at a rate of 2 .88 acre-feet per acre .

For the irrigation water pumped, census figures show tha t

7,223,133,831 kilowatt-hours of electricity were used i n

pumping. Nonelectric-powered pumping plants supplied th e

balance of the pumping energy, using an estimated 6,530,00 0

gallons of diesel fuel, 487,000 gallons of gasoline, 3,700,00 0

gallons of L .P . gas, and 1,140,000,000 cubic feet of natural

gas . Assuming an efficiency of 0 .30 for the generation o f

electricity in a coal-fired plant, an equivalent of 8 .67 x

10 13 kilo-joules of fossil fuel were consumed by electri c

powered irrigation pumping plants . Using the heating value

of fuels listed in the C .R .C . Handbook of Chemistry an d

Physics, nonelectric pumping plants consumed another 2 .68 x

10 12 kilo-joules of fuel energy, for a total annual con-

sumption of 8 .93 x 10 13 kilo-joules for pumping irrigatio n

water in California . Though the report did not indicate th e

number of acres irrigated with pumped water, the averag e

5



energy consumption for the entire state would be 12,340,77 9

kilo-joules per acre irrigated, and 4,284,993 kilo-joules pe r

acre-foot of water applied .' It should be emphasized that

these values only consider pumping energy, and exclude th e

energy required to manufacture equipment, bury pipe or leve l

fields .

A more comprehensive study of energy use in irrigatio n

was conducted by Utah State University (Batty et al ., 1974) .

The approach was to calculate energy inputs required t o

irrigate a given block of land with the various options i n

irrigation system types available in the area . The study

included the total energy inputs necessary to manufacture an d

install the required equipment, to pump the water, to prepar e

the land by leveling and to meet any labor requirements, i n

order to satisfy a net irrigation requirement of 36 inches o n

a 160-acre field . Systems analyzed were ordinary surfac e

irrigation, surface irrigation with a runoff recovery system ,

solid set sprinkler, permanent sprinkler, hand move sprinkler ,

side roll sprinkler, center pivot sprinkler, travelling bi g

gun sprinkler and trickle irrigation . The study considere d

the application efficiency of each system type, the energy t o

manufacture materials used in system components, the expecte d

operating life of each of the system components, the labo r

required to operate each system throughout the season an d

the energy necessary to install each system in working orde r

in the field . Results were expressed as energy required pe r

season of operation . One-time-only energy expenditures, suc h

as equipment manufacture, were prorated over the expecte d

operating life of the components . Energy for land leveling

was prorated over the number of years the system could be ex-

pected to operate without releveling or changing to anothe r

system type . In this case, a system life of 20 years wa s

used . Seasonal requirements such as pumping energy and labor

'The last two figures were calculated by these authors .
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were totaled directly . Human labor was rated at 300 kilo -

calories per man-hour . The total energy was then calculate d

for each acre irrigated for one season .

The estimates of total seasonal energy inputs required ,

in kilo-calories per acre, were (in order of increasing in -

puts) : surface irrigation without runoff recovery, 197,00 0

kcal . per acre ; surface irrigation with runoff recovery ,

290,000 kcal . per acre ; hand move sprinklers, 968,500 kcal .

per acre ; trickle irrigation, 998,600 kcal . per acre ; side

roll sprinklers, 1,007,100 kcal . per acre ; center pivo t

sprinklers, 1,252,600 kcal . per acre ; solid set sprinklers ,

1,384,000 kcal . per acre ; travelling big gun sprinkler ,

1,858,000 kcal . per acre . These energy consumption figure s

were calculated with the assumption that water was availabl e

at the edge of the field at ground level . The systems fo r

which the energy consumption was calculated were designe d

to meet a peak daily net irrigation requirement of 0 .3 3

inch per day .

Batty et al ., (1974) concluded that the installatio n

energy consumed a significant portion of the total energ y

requirements of each irrigation system . For the example con-

sidered in the study, surface irrigation was the most energ y

conservative . However, this conclusion was prefaced by th e

statement that other systems considered were more water -

conservative . In a situation where delivering high qualit y

irrigation water in adequate amounts had an extremely hig h

energy cost, such as desalinized water, systems with a highe r

irrigation efficiency might possibly have a lower tota l

energy requirement .

An earlier study conducted by Washington State Universit y

(Doran and Holland, 1967) evaluated the cost of owning an d

operating side roll, hand move, and center pivot sprinkle r

systems in the Columbia Basin of Washington . Since thi s

was an economic study, its results do not apply directly t o

a study of energy requirements, but some interesting re-

lationships came to light . Hand move and side roll sprinkler



systems with sprinkler spacings of 40 feet by 50 feet wer e

found to have the lowest cost for electric pumping energy .

The same systems with sprinkler spacings of 40 feet by 6 0

feet, and center pivot sprinkler systems all , had approxi-

mately a 25 percent higher pumping cost . However, when tota l

annual costs, including labor, maintenance, transport ,

and overhead were considered, the center pivot systems ha d

the lowest annual cost for the range of conditions studied .

The systems were designed to supply 42 acre-inches of wate r

per acre during the season at a maximum daily rate of 0 .3 5

acre-inches per acre . A cost evaluation showed that labo r

costs were the major reason for the hand move and side rol l

systems' greater annual expenses .



III . MODEL DEVELOPMENT

The first step in the actual calculation of the energ y

consumption of an irrigation system was the development o f

a working computer model to simulate the operation of a

particular system . Since the aim of the model was not t o

actually design an irrigation system, but rather to comput e

system energy needs, the model was implemented on the OS- 3

conversational time sharing computer system . OS-3 permitte d

the modeller to communicate instantaneously with the model ,

making design changes whenever model output indicated a n

alteration was necessary . The model was conversational i n

nature, asking certain questions about the irrigation syste m

design and feeding back preliminary answers, allowing th e

modeller to make further decisions so that the final desig n

required a minimum of energy inputs .

To simplify the calculation procedure, the energy con-

suming features of irrigation systems were divided into fou r

basic areas :

1. Operating Energy ,

2. Manufacturing Energy ,

3. Transportation Energy, and

4. Installation Energy .

One particular section of the model was devoted t o

quantifying the energy consumed by each of these portions o f

an irrigation system .

Only the consumption of nonrenewable energy, specificall y

fossil fuel sources, was considered by this model . When

reference was made to energy used by a system, the actua l

energy was that required to be developed by the combustion o f

a basic fuel source, such as coal, diesel fuel, or natura l

gas, etc ., to produce the final product . For this reason ,

the efficiencies of electric power generation were als o

9



included . However, human energy was not taken into con-

sideration in this model . The justification for this omissio n

was that human energy input into irrigation is relativel y

small, if the power developed by a man working is the quantit y

included. Israelson and Hansen (1962) rated the output of a n

average man at one horsepower-hour per eight-hour day .

However, if the fuel energy required to produce the food th e

man must eat to develop that energy level were considered ,

human energy would probably be the largest and, by far, th e

most inefficient point of energy use in irrigation or an y

other process .

To determine the calculations necessary in the model ,

the form of the input data must be known . Acreage to b e

irrigated is one of the first basic inputs . Total amount of

water to be applied and rate of application must be known .

At this point the model operator must make some design de-

cisions, using his knowledge of the situation, to transfor m

the available data into inputs which the computer can use .

Knowing the crop, the climate in which it is growing, and th e

type of irrigation system most compatible with land slope an d

soil water intake rate, the operator can provide values fo r

the net irrigation requirement, the peak consumptive use an d

the irrigation efficiency . Then, by specifying the con -

figuration of the system and the size of individual components ,

the operator has provided the model all necessary informatio n

to calculate the energy for each basic segment, and for th e

total system .

Once system configuration and components are supplied ,

the model must have certain basic data to perform necessar y

calculations . To determine the energy to manufacture components ,

the model must know the type and amount of material used fo r

each component, and the energy to make that material . The

dimensions of pipeline components are industry standards an d

vary only nominally from one manufacturer to another .

However, sprinklers vary considerably throughout the industry ;

10



for simplification, Rain Bird Model 30 sprinklers wer e

considered to be used on hand move and side roll systems, an d

Rain Bird Model 20 for solid set and permanent systems . A

further simplification was made by assuming the sprinkler s

were entirely made of brass . The dimensions of mainlines ,

laterals, wheel lines, couplers, sprinklers, and riser pipe s

are listed in Table 1 . The energy to make pipe and sprink-

ler components which are composed of homogeneous material s

can be easily evaluated if the energy of manufacture pe r

unit weight of material is known . Data on manufacturin g

energy were obtained from several sources and were foun d

to vary considerably from source to source . The values o f

manufacturing energy of several sources are listed in Tabl e

2, along with the values used in this study . The value s

eventually used for this paper were not necessarily average s

of the available data, but the available data were used as a

guide in choosing the final manufacturing energy for eac h

material type .

The energy values listed in Table 2 are the quantitie s

of energy in the form of basic fossil fuel required to pro -

duce one pound of the listed materials . Whenever electricity

was the major form of energy used, such as in the electrolysi s

of aluminum, an efficiency of 0 .30 was assumed for th e

generation of electricity from coal . This efficiency was base d

on a generation efficiency for industry of 0 .328 published

by Berry and Makino (1974), and an efficiency of 0 .32 pub-

lished by a congressional subcommittee (U .S . Senate, 1974) .

The source for the congressional figure was Consolidate d

Edison, which suggested an average transmission loss of nin e

percent be incorporated, yielding a total efficiency fro m

generator to source of utilization of approximately 0 .30 .

The computer model is a collection of several differen t

subprograms, each group of which was created to simulat e

one particular type of irrigation system . The subprograms

exist in three different levels, consisting of a mai n

program in Level I which directs the operation of the tota l

11



model, the Level II subroutines which accumulate and prin t

the final answers of each segment of an irrigation system ,

the values of which are calculated in the subroutines i n

Level III . After completing the analysis of one irrigatio n

system, the main program can initiate the analysis of anothe r

system, or terminate the model as designated by the operator .

Figure 1 illustrates the movement of information betwee n

subprograms of the model .

To further illustrate how the model functions, an ex -

planation of the steps followed in analyzing a hand mov e

sprinkler system will be presented . The hand move system was

chosen for this explanation because it was the first syste m

modeled and the subprograms for it were prototypes for th e

modeling of subsequent systems .

When the operator initiates communication with th e

model, he is immediately interfaced with the main program ,

called IRRIGATE (Level I), via a teletype terminal . To

simplify the input process the program is conversational ,

allowing the model to respond with a numbered list of th e

irrigation systems it is capable of analyzing . The operato r

replies with the number of the system he wishes to consider .

For example, the number 1 directed the data input by callin g

subroutine STEPMAIN (Level II) to perform the next functions .

The major functions of STEPMAIN are to read the input dat a

and to write out the results of the analysis . In this case ,

the known inputs were placed in a data file and read as soo n

as STEPMAIN began functioning . After the data file is read ,

the subroutine OPRATE 1 (Level III) is called to calculate th e

operating energy of the system as defined on the data file .

The first step performed in OPRATE 1 is to calculat e

the length of the lateral lines (TLNLT) . The model assume s

that the mainline pipe runs down the center of the field ,

parallel to the longest dimension of the field . Therefore ,

the length of the lateral lines is equal to half the fiel d

width (WIDE) specified in the input data . The sprinkle r

spacing on the lateral (XLNLT) is specified in the inpu t

12



IRRIGATE
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MANFCT I .
INSTALL I
TRNSPRT I .

OPRATE 2 .
MANFCT 2 .
INSTALL 2 .
TRNSPRT 2 .

OPRATE

	

3 .
MANFCT 3 .
INSTALL 3 .
TRNSPRT 3 .

OPRATE 4 .
MANFCT 4 .
INSTALL 4 .
TRNSPRT 4 .

OPRATE 5 .
MANFCT 5 .
INSTALL 5 .
TRNSPRT 5 .

OPRATE

	

5 .
MANFCT 5 .
INSTALL 5 .
TRNSPRT 5 .

LEVEL I

	

LEVEL]I

	

LEVEL III
Figure 1. Schematic diagram of paths of informatio n

transfer in the computer model .
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data, and the quotient of the total lateral length and th e

sprinkler spacing yields the number of sprinklers per latera l

(NOSPR) . The basic system pumping capacity is determined by

the equation ,

QPUMP = (ACRE*DNA*453 .)/(FREQ*HPD*EFIR)

as listed by Pair (1969), where ,

QPUMP = system pumping capacity, (gal ./min . )

ACRE = acreage to be irrigated, (acres )

DNA = net irrigation requirement, (in ./application )

FREQ = application frequency, (days/application )

HPD = daily operation time, (hr ./day )

EFIR = irrigation efficiency

453 . = conversion factor from (acre-in ./hr .) to (gal ./min . )

All required information for the equation is given in th e

input data file . The pumping rate is printed out, an d

the model pauses to allow the operator to exercise hi s

judgment as to how many laterals there will be in the system .

When the number of laterals (XNLTS) is entered, it is divide d

into the pumping rate to find the flow rate in each latera l

(QLT) . The flow rate in each lateral is printed, and th e

operator can now input the size of the lateral pipe lin e

(IDLT) that will carry this flow . Another data input entere d

at this time is the number of "steps" in the mainline (NMS) .

A step is a continuous section of pipe with a constan t

diameter and a constant flow rate . The number of steps i n

the mainline network will be dependent upon the number o f

laterals and the manner in which the laterals are arranged .

The model will now ask for the values of the diameter [IDM(I)] ,

flow rate [QM(I)], and length [XLM(I)] of each mainline step .

All steps must be included ; however, only the flow rates i n

the steps leading to the lateral which will result in th e

maximum total dynamic head should be entered . The flow rate s

for all other steps not on this critical path should b e

entered as having zero flow .

14



All input data necessary to calculate the operatin g

energy are now stored in the model . A check on whether th e

system is feasible is provided by dividing the lateral flo w

rate by the number of sprinklers on the lateral to obtain th e

sprinkler discharge (QSPR) . The size of the nozzle needed t o

provide this discharge is obtained using a form of the orific e

equation (Sabersky, 1971) ,

DNOZ =[QSPR/(28 .94*SPOH ' 5 )] . 5

where :

QSPR = sprinkler discharge (gal ./min . )

DNOZ = nozzle diameter (in . )

SPOH = sprinkler outlet pressure (lb . in . -2 )

28 .94 = conversion factor accounting for units an d

nozzle coefficient of 0 .9711 for Rain Bir d

30-W nozzles (gal . 2 min .
-2

	

lb . ' S )

with the sprinkler outlet pressure as a specified input .

If the sprinkler cannot possibly operate with an acceptabl e

coefficient of uniformity, and thereby hope to achieve th e

irrigation efficiency initially specified, the spacin g

and pressure of the sprinklers and the number of lateral s

in the system can be altered until a suitable level of per -

formance is achieved .

The number of irrigation cycles per season (NIPS) i s

calculated by dividing the total seasonal application (TNA )

by the application per irrigation (DNA) . The total operating

time per season (TTOT) is the product of the number o f

cycles, the frequency of irrigation (FREQ) and the hours o f

operation per day (HPD) . In order to predict the energy

required to operate the pump for this length of time, th e

total dynamic head of the system must be calculated . To

calculate the friction component of the total dynamic head ,

the friction loss in each segment of the mainline and th e

lateral leading to the critical sprinkler must be calculated .

15



To calculate the friction losses of the mainline, a form o f

the Hazen-Williams equation (Morris and Wiggert, 1972) wa s

used as follows :

QMF* [XLM(I)] • 54

	

1 .8 5

HFP = 1
.318*CHWM*7*DMF 2 *(DMF) . 6 3

where :

HFP = friction head loss in the pipe segment, (ft . )

XLM(I) = length of pipe segment, I, (ft . )

DMF = diameter of pipe segment, I, (ft . )

QMF = flow rate in pipe segment, I, (ft . 3 /sec . )

CHWM = Hazen-Williams coefficien t

This equation is executed a specified number of times, wit h

the value of the subscript, (I), increasing from one t o

the total number of mainline steps (NMS) in the system ,

and the total head loss for the entire mainline (HFM) i s

accumulated . The head loss for the lateral line is cal-

culated using a similar form of the Hazen-Williams equation ,

with the additional parameter of Christiansen's F facto r

to account for the manifold flow in the line . The equatio n

for the F factor (Pair, 1969) is :

F =	 1	 + 1 + (M - 1) . 5

(M + 1)

	

2N

	

6N 2

where :

M = exponent of the velocity term in the head los s

equation (1 .85 for Hazen-Williams )

N = number of outlets on the line (NOSPR )

The total dynamic head (TDH) is found by totaling the cal-

culated mainline friction head loss (HFM), the calculate d

lateral friction head loss (HFL), plus the specified inpu t

values of sprinkler operating head (SPOHF), pump suctio n
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lift (STL), elevation difference from pump to field (ELEVDF) ,

friction loss in the suction line (HFSL), and height o f

the riser pipe (RIHT), all expressed in units of feet .

The power required to pump the water is given by th e

equation (Pair et al ., 1969) ,

WHP TDH*QPUMP
396 0

where :

WHP = water horsepower, (hp . )

TDH = total dynamic head, (ft . )

QPUMP = pump discharge, (gal ./min . )

3960 = conversion factor, (ft .-gal ./min .-hp . )

To determine the brake horsepower of the motor required t o

drive the pump (BHP), the water horsepower must be divide d

by the efficiency of the pump (EFPP) . If an internal com-

bustion engine is the power source, dividing the brake horse -

power by the engine efficiency (EFMO) will yield the horse -

power potential in fuel (THHP) required for pumping . I f

an electric motor is the power source, then brake horse -

power must be divided by both motor efficiency and efficienc y

of the electric generating plant (EFGP) to determine th e

potential horsepower in fossil fuel required. The tota l

energy required for pumping during the season (TENPS) i s

simply the product of fuel horsepower and total operatin g

time .

After printing values for head losses and pumpin g

energy, subroutine OPRATE 1 (Level III) returns control t o

STEPMAIN (Level II) . Calculation proceeds with the callin g

of the next subroutine, MANFCT1 (Level III), in which th e

energy to manufacture system components is estimated .

MANFCT1 first calculates the energy to manufacture th e

mainline network . The information on each of the mainlin e

segments is transferred from the STEPMAIN subroutine, an d

dimensional data about standard pipes of various material s
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and sizes are retrieved from a data file (*MAINLNS) . The

size of each pipe sigment is matched with the proper siz e

in the data file . An indicator variable (MMTY) defined i n

the input data is checked to determine the mainline materia l

type . For example, MMTY = 2 would indicate aluminum main -

lines, appropriate for a hand move system . With the weigh t

per foot ®f tubing, the weight of each coupler, and length o f

each individual pipe section composing that segment of th e

mainline, the weight of each mainline segment is calculate d

(TMNWT) . Multiplying this weight by the manufacturing energ y

per pound for the appropriate material type yields the energ y

to manufacture that segment (ELMFT) . Repeating the proces s

for each segment in the network will yield the total energ y

of manufacture for the mainlines (TEMMFT) .

A procedure similar to that used on the mainlines i s

then conducted for the energy to manufacture lateral s

(ELMFT) . The energy for manufacturing sprinklers (ENSPMFT)

is calculated, using the assumption that all sprinklers weig h

1 .1 pounds (the weight of a Rain Bird Model 30) and are

entirely made of brass . The energy to manufacture th e

pumping plant is calculated by assuming the plant horsepowe r

rating is the next standard size equal. to or larger than th e

brake horsepower requirement for the pump . This unit siz e

[PUMPHP(I)] is chosen from a list of available motor size s

and is multiplied by a manufacturing energy per unit horse -

power figure to yield the energy to manufacture the pumpin g

plant (EPPMFT) .

After printing the values of the manufacturing energ y

for the mainlines, laterals, sprinklers, and pumping plant ,

and the size of the pumping plant, control is returned t o

STEPMAIN (Level II) . The next operation, to calculate th e

transport energy for the system, is performed in the sub -

routine TRNSPRT (Level III), which is called by STEPMAI N

(Level II) .
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Transport energy is divided into two areas, manufacturin g

energy for the pipe trailer, and fuel for the tractor t o

pull the trailer . The trailer is assumed to be made o f

steel and to weigh an amount specified in the input dat a

(TRWT) . The energy to manufacture the trailer (ETRMFT) i s

calculated according to a process similar to those describe d

above . The trailer is needed to move two laterals the length

of the field once during each irrigation cycle, requiring tw o

hours at three gallons of diesel fuel per hour . The trailer

manufacturing energy is prorated over the trailer's operatin g

life (assumed to be 20 years), so that the total transpor t

energy per season (ETTRP) can be given as a single figure (b y

summing trailer manufacturing energy and fuel necessary t o

pull the trailer) . Tractor manufacturing energy is no t

included, as the amount expended in moving irrigation pipe s

is assumed to be of negligible magnitude when compared to it s

other primary jobs .

When the transport energy is printed, control is agai n

returned to subroutine STEPMAIN (Level II), which call s

subroutine INSTALL1, to calculate installation energy . Fo r

a hand move system, installation energy is assumed to b e

negligible unless some of the pipelines are buried . The

operator has the option of specifying burial of pipes . If

pipes are buried, they are assumed to be in a trench requirin g

approximately one quarter of a gallon of diesel fuel pe r

cubic yard to excavate and back fill . Pipes are assumed t o

have two feet of cover over them, and to require a width o f

four inches greater than their nominal width . The product of

the total volume of excavated trench and energy per uni t

volume yields the total installation energy .

After the installation energy is printed, contro l

returns to STEPMAIN (Level II) . The total energy for sea -

sonal operation (TOTSEN) is calculated by summing the following :

1. Total seasonal pumping energy (TE'NPS )

2. Total seasonal transport energy CETTRP )
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3. Energy to manufacture mainlines (EMMFT), lateral s

(ELMFT), and installation energy (ENINST), all pro -

rated over their expected life (20 years )

4. Energy to manufacture pumping plant (ENPPMFT), pro -

rated over its expected life (15 years )

5. Energy to manufacture sprinklers (ENSPMFT), prorate d

over their expected life (10 years) .

Dividing total seasonal energy by number of irrigated acre s

yields seasonal energy per acre (SENPA) . Seasonal energy pe r

acre is divided by total seasonal application (TNA) to yiel d

seasonal energy per acre-inch (ENPAI) .

After all energy totals are printed by STEPMAIN (Level II) ,

control returns to the main program, IRRIGATE (Level I) . The

operator may then consider another system or terminate th e

execution of the model .

All other systems are modeled in a similar fashion, wit h

a few alterations to allow for basic differences betwee n

system types . For example, when a center pivot system i s

being modeled, the first subroutine called is CIRCIRR (Level II) .

In this system, the mainline is assumed to be of constan t

size, and to run to the center of a square field . The

lateral is seven inches in diameter ; with its support towers ,

it is assumed to weigh 35,000 pounds, for a system used in a

160-acre field . The lateral and towers are assumed to b e

made entirely of steel . The lateral for a 160-acre field i s

1280 feet long, with ten support towers, each powered by a

one horsepower electric motor . Tower motors are assumed t o

operate at three quarters of their rated capacity, and thei r

power consumption is calculated accordingly . Sprinklers on

the lateral are spaced at non-constant intervals to allow fo r

uniform application . There are no big gun sprinklers fo r

irrigating corners, and the system is assumed to irrigat e

125 acres in a 160-acre field . Lateral hydraulics ar e

simulated using the Hazen-Williams friction head loss equation ,

with a manifold flow factor for variably-spaced outlets o f

0 .543, as measured by Shu and Moe (1972) .
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The subroutine SOLIDSET (Level II) is called by th e

main program when a solid set irrigation system is bein g

simulated . One difference between this system and the han d

move system is that there are enough laterals to cover th e

entire field, but only a portion of them operate at any on e

time . The segment of the mainline where laterals are i n

operation must be considered as a manifold flow situation .

Transport energy includes only that required to lay out an d

pick up the pipe network at the beginning and end of eac h

irrigation season .

When a side roll sprinkler system is being modeled ,

subroutine SIDEMOVE (Level II) is called by the main pro -

gram. The group of subroutines controlled by SIDEMOV E

functions almost exactly as that which models a hand mov e

system. One of the notable exceptions is that only fou r

and five inch diameter laterals are considered . The lateral

walls are of heavier gauge material than standard laterals ,

and each section has a wheel as an integral part . Movement

of laterals in the field is different, in that a pair o f

laterals, one on either side of the mainline, moves a s

a single unit . Each of these pairs of laterals is propelle d

by a moving device powered by a four horsepower engine . The

moving unit is assumed to require 10,000 kilowatt-hours o f

energy to manufacture, and to consume one half gallon o f

diesel fuel per hour of operation . It is further assume d

that 15 minutes of operation per pair of laterals per mov e

are required for transport .

The subroutine TRICKLE (Level II) is called by the mai n

program when a drip irrigation system is being simulated .

This system is simulated in much the same manner as th e

solid set system . The major differences are that all lateral s

operate at once, and that the system is a permanent instal-

lation with buried pipelines and no required transportatio n

energy . The operator may choose either a micro-tube typ e

emitter or an emitter with a spiral restricting path, whic h

are two of the more widely used emitters in Oregon .
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For modeling a permanent type sprinkler system, th e

subroutine SOLIDSET (Level II) is again called by the mai n

program. When SOLIDSET is called through the permanen t

sprinkler system branch, a "flag" is set which eliminate s

the TRNSPRTS subroutine (Level III) since no transpor t

energy is required . Installation energy is calculated fo r

both buried lateral and mainline pipes . With these ex-

ceptions, the subroutines function exactly the same as whe n

modeling a solid set sprinkler system .

For the simulation of a surface irrigation system, th e

subroutine FURROW (Level II) is called by the main program .

This subroutine first calculates the energy required t o

level the field, where required yardage per acre and averag e

length of haul for leveling equipment are inputs . The

operator has the option of selecting one of three levelin g

units (125 horsepower crawler with a 10 cubic yard carry-all ,

200 horsepower crawler with a 14 cubic yard carry-all ,

300 horsepower crawler with a 20 cubic yard carry-all) .

The average hauling rates are estimated using data publishe d

by Caterpillar Tractor Company (1955a) . After determining

total time required for field leveling, the energy require d

to perform the operation is calculated using fuel and lubrican t

consumption estimates made by Caterpillar Tractor Compan y

(1955b) . After calculating leveling energy, the energy t o

make the distribution network in the field is estimated . Tw o

types of networks are considered, furrows with a three foo t

spacing and corrugations with a 20-inch spacing . The estimate s

of the energy required per acre to form furrows and corru-

gations were provided by local farm operators (Namba an d

Teramura, 1975) . In estimating the energy required to mak e

the field head ditch, three types of structures are con-

sidered. The available options are an unlined earthen ditch ,

a concrete lined ditch, or a gated aluminum pipe . Th e

earthen ditch is assumed to require a minimal amount o f

energy, rated at one hundredth of a kilowatt-hour per linea l
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foot of ditch . The concrete lined ditch is assumed to have a

trapezoidal cross section with a lining two inches thick .

The gated pipe is assumed to require approximately the sam e

energy as aluminum mainlines of equal size, as defined in th e

hand move sprinkler system model . When an open head ditch i s

considered, devices for releasing water onto the field fro m

the ditch can be siphon tubes, or either earthen or concret e

turnouts . The siphon tubes are assumed to be aluminum, fou r

feet long and one inch in diameter, requiring about te n

kilowatt-hours per tube to manufacture . Earthen turnouts ar e

assumed to require a negligible amount of energy, since huma n

energy (shoveling) is the major input . Concrete turnout

devices, such as gated spiles, were assumed to require 12 6

kilowatt-hours per structure to manufacture . It is assume d

that one siphon tube is used for each furrow or corrugation ,

but each turnout or spile is assumed to supply water fo r

three furrows or corrugations . The operator also has th e

option of using a water source that cannot be applied to th e

field by gravity flow . In this case, the pumping energy t o

apply the necessary amount of water at any specified stati c

lift was calculated . When a gated pipe is used, the frictio n

loss in the pipe is included .

The total of all calculated energy requirements pe r

acre irrigated and per acre-inch of water applied is printed .

Control of the model functioning is then returned to the mai n

program. For all systems considered, the water is assumed t o

be available at the edge of the field, and any energy ex -

penditure for main canals or pipelines to deliver water t o

that point is not included .
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IV. MODEL INPUTS

The completion of this computer model has created a

tool capable of simulating the total energy consumption fo r

several types of irrigation systems . The inputs necessary

for the model to function are fairly simple and should b e

available to anyone considering installation of an irrigatio n

system. The area and dimensions of the field to be irrigate d

must be known . This model considers only fields of simpl e

rectangular shape . The total amount of water to be applied ,

the maximum rate of application, and the frequency of irrigatio n

required to meet peak consumptive use requirements are function s

of both crop and climate . Any remaining inputs are basi c

information about the system type . Dimensions, type o f

material, and friction coefficients of pipelines must b e

known . Spacing and operating pressure of sprinklers are dat a

the system designer can easily provide . Static pumping lift ,

minor friction losses through fittings, and pumping efficienc y

can be estimated or measured .

For the purpose of this study, the model used inpu t

values that approximate irrigation systems generally use d

in Oregon today . The efficiency of irrigation for each

type of system was approximated assuming that each wa s

operated with good management practices . Surface systems

were rated at an efficiency of application of 50 percent ,

while drip systems were rated as 90 percent efficient .

Center pivot sprinkler systems were assumed 75 percen t

efficient, and all other sprinkler systems were rated at 7 0

percent efficiency .

Pumping units were assumed electrically powered, sinc e

the vast majority of pumping units in Oregon are powered b y

electric motors . Motors were assumed to have a conversio n

efficiency of 88 percent and pumps were rated as 70 percen t

efficient ; this yields an over all pump and motor uni t
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efficiency of approximately 62 percent . As was the case wit h

manufacturing energy, a generation efficiency of 30 percen t

was assumed for coal-fired generating plants . Although

electricity in Oregon is primarily generated hydroelectrically ,

this assumption is justified by the knowledge that any powe r

not consumed in Oregon can be transmitted to areas where

fossil fuel is the major power source for electric generation .

The configuration of individual systems and the practice s

used in modeling them were intended to reproduce situation s

that typically exist in Oregon's irrigated agriculture . Th e

systems modeled were designed to meet net irrigation require-

ments of 10, 20, and 30 inches of water per season . Th e

different applications can be thought of as representin g

crops with short, medium, and long growing seasons, respectively .

They were further designed to meet consumptive use condition s

of 0 .1, 0 .2, and 0 .3 inches per day . The amount of availabl e

moisture to be replaced at each irrigation was assumed to b e

1 .8 inches . This is equivalent to maintaining 50 percen t

available soil moisture for a plant with a rooting depth o f

two to two and one half feet in a medium textured soil . Thi s

would require the irrigation frequencies of the three consumptive

use conditions (0 .1, 0 .2, and 0 .3 in ./day) to be 18, 12 ,

and 6 days, respectively, and would be representative of a

grain crop growing in a cool humid climate, a moderat e

climate, and a high desert climate, respectively .

The characteristics of each individual system will b e

enumerated so that the results of the simulation can b e

judged accordingly . The hand move sprinkler system, a s

defined for this study, had a sprinkler spacing of 30 fee t

by 50 feet, one foot long riser pipes, 40 pounds per squar e

inch average sprinkler pressure, aluminum mainlines an d

laterals, and was operated 22 hours out of every 24 hours .

The side roll sprinkler system had a sprinkler spacing of 4 0

feet by 60 feet, one half foot long riser pipes, 40 pound s

per square inch average sprinkler pressure, aluminum mainline s

25



and laterals, and was operated 22 hours per day . The soli d

set sprinkler system had a sprinkler spacing of 30 feet b y

50 feet, one foot long riser pipes, 40 pounds per square inc h

average sprinkler pressure, aluminum mainlines and laterals ,

and was operated 24 hours daily . The permanent sprinkle r

system had a sprinkler spacing of 30 feet by 50 feet, 14-foo t

long riser pipes, polyvinylchloride mainlines and laterals, a

40 pounds per square inch sprinkler pressure, and was operate d

24 hours daily . The center pivot sprinkler system ha d

variable sprinkler spacing, no riser pipes, ten tower s

powered by electric motors, 125-foot spans between towers ,

12-foot pipe clearance, polyvinylchloride mainlines and a

steel lateral, 60 pounds per square inch end sprinkler pressure ,

and could operate automatically for a maximum of 144 hour s

continuously . The drip irrigation system had an orchar d

plant spacing of 25 feet by 25 feet, multiple polyethylen e

micro-tube emitters, polyvinylchloride mainlines and laterals ,

an emitter pressure of 15 pounds per square inch, and operate d

18 hours per day . The surface irrigation system was th e

corrugation type, using aluminum siphon tubes with a n

unlined earthen head ditch . Field leveling was done by a

200 horsepower crawler, with a 14 cubic yard carry-all ,

moving 400 cubic yards of soil per acre, with an averag e

haul distance of 600 feet .

Water was available at the edge of the field at groun d

level for all the systems . Therefore, there was no pumpin g

required for the surface system, and no static pumping lif t

required for the pressurized systems . All pressurize d

systems had a ten foot miscellaneous friction head los s

included in the total dynamic head to account for losse s

in special fittings, such as pump adapters and valve -

opening elbows .
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V. MODEL OUTPUT AND INTERPRETATION

The results of the model simulation with input dat a

listed in the previous section are presented graphically in a

group of charts in this section . The data are presented in

three different ways . First, the relationships betwee n

irrigation system energy requirement and consumptive use rat e

on a given acreage, for a selected seasonal application, ar e

presented in Figures 2-10 . Next, the relationships betwee n

system energy requirement and total seasonal application on a

given acreage, for selected consumptive use rates, ar e

presented in Figures 11-19 . Finally, the relationships be-

tween system energy requirement and acreage irrigate d

for a given seasonal application, at a selected consumptiv e

use rate, are presented in Figures 20-28 . The center pivo t

system was considered on only 160-acre fields . All othe r

types of systems were considered on 20-, 80-, and 160-acr e

fields .

Several points become immediately evident from the data .

First of all, surface irrigation consistently requires th e

least energy in all cases . Second, drip irrigation, whil e

requiring approximately five to ten times the energy require d

by surface irrigation in the cases considered, was always the

second lowest user of energy . There is a substantial jump i n

required energy between the drip system and the remainin g

systems, and the order in which these follow is not constant .

The acreage irrigated and the amount and rate of appli-

cation appeared to have a considerable effect on the energ y

requirement of some systems . Some of these effects appeare d

valid for the systems concerned, while others could b e

attributed to short-comings in the model .

Considering Figures 20-28, the hand move system would b e

expected to exhibit behavior similar to the side roll system .

In fact, the hand move system would be expected to require a
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(7 .6 mm) per day .
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(2 .5 mm) per day .
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slightly lower level of energy input, since it requires les s

equipment in the form of wheels and moving devices, and th e

side roll laterals are of heavier gauge material . Instead ,

Figures 21 and 22 show the hand move system requiring mor e

energy than the side roll system . Figure 20 and Figure s

23-28 show the hand move system requiring less energy o n

larger acreages and at higher application levels than th e

side roll system, but more energy on smaller fields and a t

lower application levels . , This behavior appears due t o

insufficient detail in the approximation of transport energ y

for the hand move system . A single energy requirement pe r

lateral per irrigation was assumed for transportation . Thi s

value appears to have been somewhat too liberal for th e

shorter laterals used in small fields . The error does no t

appear to greatly affect the system at higher applicatio n

levels, as the other energy parameters involved are large i n

those cases to make transport energy insignificant . At lowe r

application levels, transport energy is proportionally a muc h

larger input, and significantly affects results .

There is an interesting relationship among the cente r

pivot, solid set and permanent sprinkler systems for th e

160-acre field, shown in Figures 17-19 . For lower tota l

applications and lower consumptive use rates, the cente r

pivot system requires less energy than the two stationary

systems, but requires more energy at higher levels of applicatio n

and consumptive use . This relationship is probably a vali d

one, and could logically be expected . The solid set an d

permanent sprinkler systems initially require substantial

energy expenditures due to the large number of laterals i n

these systems . The center pivot system requires less energ y

initially for its single lateral, even though it is mor e

sophisticated equipment than'-found in other systems . The

center pivot system requires more energy to operate on a n

annual basis, because of its higher pressure requirement .
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For a 10-inch seasonal application, with a consumptive us e

rate of 0 .3 inches per day, pumping energy requires 82 percen t

of a center pivot system's total energy requirement ; whereas ,

pumping energy is responsible for only 39 percent of a soli d

set system's total energy requirement . Since only pumpin g

and transport energies increase with increasing total appli-

cation, it is plausible that the energy requirement of th e

center pivot should increase at a greater rate than othe r

systems .

The relationship between energy requirement and acreag e

irrigated, shown in Figures 20-28, indicates that changin g

acreage has little effect in most cases . For the solid se t

and permanent sprinkler systems, however, there appears t o

be a substantial increase in energy requirements with in -

creasing acreage irrigated . The increase appears significan t

between 80 and 160 acres . The most probable cause for thi s

increase is manufacturing energy for lateral lines . The

systems on smaller acreages are able to operate satisfactoril y

with two inch lateral lines . But with increased acreage, th e

laterals become of sufficient length that friction loss in a

two inch line becomes larger than the recommended level of 2 0

percent of the lateral inlet head . The only acceptabl e

course of action for the system designer is to use lateral s

of larger diameter . Attempts to reduce flow rate in th e

laterals, and thereby reduce friction head loss, require th e

use of sprinkler nozzles of such sizes that the coefficien t

of application uniformity is less than satisfactory . Th e

size of laterals must, therefore, increase in a simila r

manner in other types of systems . However, the excessivel y

larger number of laterals in the solid set and permanen t

sprinkler systems results in a substantial increase in th e

energy requirements of these two systems, while no noticeabl e

effect is observed in other types of systems .
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VI . CONCLUSION

A computer model has been developed which simulates th e

total energy requirement to develop and operate variou s

irrigation systems . The model simulates each system b y

modularizing its energy needs into four basic energy areas :

manufacturing, installation, operation, and transportation .

The model considers the total, non-renewable energy resource s

used in the form of fossil fuel .

This simulation model has exhibited that, for the case s

considered, there is a fairly consistent energy consumptio n

hierarchy among irrigation systems . Surface irrigation

requires the least energy per acre of land irrigated, wit h

drip, side roll, and hand move sprinkler systems followin g

in order of increasing energy requirement . At lower applicatio n

levels, center pivot, permanent, and solid set sprinkle r

systems follow in order, with center pivot requiring the mos t

energy at the highest application levels considered . Th e

surface irrigation system required no pumping energy, and al l

other energy expenditures were prorated over the expecte d

system life of 25 years . Even with substantial energy cost s

for leveling, it was by far the most energy-conservativ e

method . The drip irrigation system, though requiring a

considerable amount of apparatus in the form of laterals an d

emitters, needed only moderate energy inputs due to the lo w

pumping rate and pumping head necessary for operation . Th e

side roll and hand move sprinkler systems required approxi-

mately the same level of energy inputs, as would be ex-

pected due to the similarity in their configurations . The

permanent and solid set sprinkler systems, though quit e

similar, used substantially different amounts of energy .

This difference was largely due to the materials used i n

each system . The permanent system used polyvinylchloride ,
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which has a lower manufacturing energy and a more favorabl e

friction coefficient . The center pivot sprinkler syste m

occupied the upper portion of the energy spectrum, spannin g

the range of the solid set and permanent systems . (Th e

size and number of laterals in the solid set and permanen t

systems appear to make these systems more susceptible t o

energy requirement increases with increases in irrigate d

acres .) The sizable amount of energy required for pumping by

the center pivot system made it the most susceptible t o

increases in total application and consumptive use rate .

Another trend evident in the output related to mainlin e

pipe economy . In the past, a rule of thumb generally use d

by systems designers stated that the most economical main -

line size, in terms of operating cost, was one that produce d

approximately one foot of friction head loss per hundred fee t

of pipe . This energy analysis of systems seems to show that

much larger pipelines produce the most energy-efficien t

systems . For the aluminum mainlines used in this model, a

friction loss of approximately one foot per four hundred fee t

appeared to be the level at which the most energy-efficien t

system was found .

In conclusion, the model is a valuable tool, adaptabl e

to a wide variety of operating situations . However, th e

validity of its results are dependent upon a few critica l

pieces of information . As a result, the operator of th e

model should exercise care in making comparisons between an d

drawing conclusions about irrigation system energy require-

ments . Currently, the results of this study will be o f

limited value to the designer of irrigation systems, whos e

major concern is still economic . As the cost of energ y

continues to rise, the economic and energy considerations o f

irrigation system design should become more and more closel y

aligned .
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APPENDIX B .

A COMPUTER MODEL TO SIMULATE FARM

IRRIGATION SYSTEM ENERGY REQUIREMENTS

Program Listing and Documentatio n
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Title : A Computer Model to Simulate Farm Irrigatio n

System Energy Requirement s

Authors : J . W . Wolfe, R . B . Wensink and M . A . Kize r

Installation : CDC 3300 at Oregon State University

Programming Language : Standard FORTRAN I V

Date Written : Fall, 197 5

Remarks : This computer model simulates energy requirement s

for the following irrigation systems : hand move ,

center pivot, drip, side roll, solid set, surfac e

and permanent systems . All major variables and

inputs are defined at the beginning of each sub -

routine .

PROGRAM INPUT :

Data Files :

*XINSTEP - data for Hand Move Sprinkler Syste m

*XINCENT - data for Central Pivot Sprinkler Syste m

*XINDRIP - data for Trickle Irrigation Syste m

*XINSIDE - data for Side Roll Sprinkler Syste m

*XINSOLID - data for Solid Set Sprinkler System

*XINPERM - data for Permanent Sprinkler Syste m

*MAINLNS - basic mainline dimensions

*LATERAL - basic lateral dimensions

(diameter, lateral and coupler weight)
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Inputs :

Type of system under consideration :

(1) Hand move sprinkler syste m

(2) Center pivot sprinkler system

(3) Trickle irrigation syste m

(4) Side roll sprinkler syste m

(5) Solid set sprinkler syste m

(6) Surface irrigation syste m

(7) Permanent sprinkler syste m

(1) Hand Move, input :

(a) number of system lateral s

(b) diameter of laterals and mainline segment s

(c) diameter, flow rate and length of each mainlin e

segment

(d) whether or not mainline or laterals are buried .

(2) Center Pivot, input :

(a) whether or not mainline is buried .

(3) Trickle Irrigation, input :

(a) number of emitters - length, flow and pressur e

(b) emitter type - dripeze or microtub e

(c) whether or not mainline and laterals are buried .

(4) Side Roll, input :

(a) number of system lateral s

(b) diameter of laterals and mainline segment s

(c) diameter, flow rate and length of each mainlin e

segment

(d) whether or not mainline or laterals are buried .

(5 or 7) Solid Set or Permanent Sprinklers, input :

(a) number of system lateral s

(b) diameter of laterals and mainline segments

(c) diameter, flow rate and length of each mainlin e

segment

(d) whether or not mainline or laterals are buried .
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(6) Surface Irrigation system, input :

(a) tractor used in field levelin g

(1) D7 and 10 cubic yard carryal l

(2) D8 and 14 cubic yard carryall

(3) D9 and 20 cubic yard carryal l

(b) irrigation typ e

(1) furrow s

(2) corrugation s

(c) whether or not pumping is required to irrigate

(d) static lift, source to fiel d

(e) head ditch typ e

(1) unline d

(2) concrete lined

(3) gated line d

(f) diameter of gated pip e

(g) control type use d

(1) siphon tube s

(2) earth turnouts

(3) concrete turnout s

Outputs :

(1) Prelininary results

mainline friction loss, installation energy, etc .

(2) Final result s

(a) Total Seasonal Energy

(b) Seasonal Energy per Acr e

(c) Energy per Acre-Inch

69



PROGPAM IRRIG A
C
C
C
C
C
C

	

MODEL TO SIMULATE IRRIGATION SYSTEM ENERGY RE"OUIREM :EMT S
C
C
C
C

	

THIS MODEL SIMULATES TOTAL ENERGY REQUIREMENTS FOR :
C
C

	

2 CENTER P IVOT SPRINKLER SYSTEM S
C

	

3 TRICKLE IRRIGATION SYSTEM S
C

	

L SIDE ROLL SPRINKLER SYSTEMS
C

	

S SOLID SET SPRINKLER SYSTEM S
C

	

G SURFACE IRRIGATION SYSTEM S
C

	

7 PER1ANENT SPRINKLED SYSTEM S
C
C
C
C

	

ALL VARIABLES ARE DEFINED AT THE BEGINNING O F
C

	

SUBROUTINE STEPPAI N
C
C

	

ANY NEW VARIABLE NAMES OR CHANGES IN VARIABLE NA'F S
C

	

FOR SUBSEQUENT SUBROUTINES ARE GIVEN AT THE BEGINNIN G
C

	

OF THE SUBROUTINE IN WHICH THE INPUT DATA IS READ FO R
C

	

EACH IRRIGATION SYSTEM TYPE .
C
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r

C

COMMON SPOH,HFL,HFM,STL,FLEVOF,HFSL,HFMISC,SPRNO ,

1OSP ., EFPP,FFGP, IPTY, THHP,XNLTS,XLNLT,TOLT,EFMf ,

?XL'N'MN,I'OMN,RIHT,CHWM,CHWL,XNLT,OHP,MLTY,MMTY ,

3SPONF,TRWT,MNRO,ILTPO,XNIPS,ACR!,3MNF,OLTF,TXLNMN,TLNLT ,

4QM, XL M, IOM, NMS, HPO, 3NA, T NA, FREQ, EF IR, W 13E ,NIPS ,

5EL AFT, ENINST,EPPMF T, Ti= NPS, TEM!1FT, E TTRP, ENSPMFT , NOSP R
OI!ENSION OM(10),XLI(1O),I0M(10 )
DATA (VNAME=t*XINSTEPt )

6101 FOR'IAT(8F1O .2 )
6102 FORMAT(3I?,2I3 )

CALL E`UIP(21,VNAME )

RE,A7 9ASIC INPUT OAT A
READ(?1,6002) IPTY,MLTY,MMT Y
REAO (21, 6 001) SPOH,CHWM, CH'r(L, STL,ELEVOF, HFSL FMIS C
RFAO(21,6001) TNA,ONA,XLNLT,xLNMN,RIH T
RFA3(21,6001) EFPP,EFGP,EFIR,EFM O

REAO(21,6001) FPFO,H0O,TRWT,ACRE,WIO E
CALL UNEQUTP(21 )
CALL OPRATE 1
CALL MANFC T 1
CALL TRNSPRT 1
CALL INSTALL 1

C

C

	

PRINT TOTAL ENERGY DATA FOR SYSTE M
TOT SFtai=TE'NPS+ETTRPf(TEMMFT}ELMFT+ENINST) /20 .

1+EPPMFT/1S .+ENSPMFTI10 .
WRITE(51,6100)TOTSE N

6100 FORMAT(5)(,#TOTAL SEASONAL ENERGY=t,F26 .2,t KWWHt )

SFNPA =TOTSFN/ AC E
WRITE (61,6131) SENP A

6131 FQRMAT(5X,tSEASONAL ENERGY PER ACRE=t,F15,2,t KWHt )

ENPAI=SFNPA/TN A
WRITE (61, 6196) ENPA I

6196 FORMAT (5)(, t ENERGY PER ACRE-INCH=t, F1U . 2, t KWH/ACRE-INCH t )

RETUP N

EN D

SUDROl1TINE STFPMAT N
C
C

	

HAND MOVE SPRINKLER SYSTEM ENERGY REQUIREMENT S
C

C

	

SPDH = S P RINKLER PRESSURE (P'SI )

C

	

HFL = LATERAL FRICTION LOSS (FT )
C

	

HFM = MAINLINE FRICTION LOSS (FT )
C

	

STL = STATIC LIFT (FT )
C

	

FLEVDF = ELEVATION DIFFERENCE PUMP-TO-FIELD (FT )
C

	

HFSL = SUCTION LINE FRICTION LOSS (FT )
C

	

H EMISC = MISCELLANEOUS FRICTION LOSSES (FT )

C

	

SPYNO = NUMBER OF S°RINKLERS p ER LATERA L
C

	

OSPR = SPRINKLER DISCHARGE (GAL'MIN )
C

	

E FRR = PU'1e EFFIENCY
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EFr = GENERATING PLANT EFFIENC Y
I PTY = POWER UNIT TY P E

0 = ELECTRIC MOTO R
1 = INTERNAL COMBUSTION ENGIN E

THHP = FUEL POTENTIAL (HP )
XNLTS = NUMBER OF LATERAL LINE S
XLNLT = LENGTH OF LATERAL PIPE SECTION (FT )
IDLT = LATERAL LINE DIAMETER (IN )
FFMO = MOTOR EFFIENC Y
XLAMN = LENGTH OF MAINLINE PIPE S E CTION (FT )
ID4N

	

OTAMETER OF MAINLINE (IN )
RIHT = HEIGHT OF RTSER PIPE (FT )
CHWM = HAZEN-WILLIAiS COEFFICIENT, MAINLINE
CHWL = HAZEN-WILLIAMS COEFFICIENT, LAT E RA L
BHP = REQUIRED BRAKE HORSEPOWER OF MOTOR (HP )
MLTY

	

TYPE OF LATERAL MATERIA L
MMTY = TYPE OF MAINLINE MATERIA L

1 = STEEL

	

3 = PV C
2 = ALUMINUM

	

4 = TRANSIT E
SPOHF = SPRINKLER PRESSU RE HEAD (FT )
TRWT = WEIGHT OF PIPE TRAILER (L3 )
MNPD = MAINLINE LOCATIO N
ILTPO = LATERAL LINE LOCATIO N
XNIPS = NUMBER OF IRRIGATION CYCLES PER SEASO N
ACRE = FIELD AREA (ACRES )
OMJF = MAINLINE DIAMETER (FT )
DLTE = LATERAL LINE DIAMETER (FT )
TLNLT = TOTAL LENGTH OF LATERAL LINE (FT )
QM = FLOW RATE IN MAINLINE SEGMENT (GAL/MTN )
XLM = LENGTH OF MAINLINE SEGMENT (FT )
TOM = DIAMETER OF MAINLINE SEGMENT (IN )
NMS = NUMBER OF MAINLINE SEGMENT S
HP3 - HOURS OF SYSTEM OPERA T ION PER DAY (HR)
TNA = SEASONAL APPLICATION (IN )
FREQ = FREQUENCY OF IRRIGATION (DAYS/IRRIGATION )
FFIR = IRRIGATION EFFIENC Y
WIDE = NARROW DIMENSION OF FIELD (FT )
NIPS = NUM3ER OF IRRIGATION CYCLES PER SEASON (FIXE} )
FLMFT = ENERGY TO MANUFACTURE LATERAL LINES (KWH )
ENINST = ENERGY FOR INSTALLATION (KWH )
EPPMFT _ ENERGY TO MANUFACTURE PUMPING PLANT (KWH )
TFNPS = TOTAL PUMPING ENERGY PER SEASON (KWH )
TE M MFT = ENERGY TO MANUFACTURE MAINLINE (KWH )
ETTRP = ENERGY FOR TRANSPORT (KWH )
ENSPMFT = ENERGY TO MANUFACTURE SPRINKLERS (KWH )
NOSPR = NUMBER OF SPRINKLERS PER LATERAL LINE (FIXED )
SENPA = SEASONAL ENERGY PER ACRE (KWH/ACRE )
ENRAI = SEASONAL ENERGY PER ACRE INCH (KWH/ACRE-1 )
DNA = NET IRRIGATION PEDUIREMENT (IN/IRRIGATION )
DUMPHP(I) = DESIGN PUMP HORSEPOWER (HP )
ISYSTY = IRRIGATION TYP E
OLT = LATERAL PIPE LINE FLOW PATE (GAL/MIN )
QLTF = LATERAL PIPE LINE FLOW RATE (€'FS )
OMF = MAINLINE FLOW RATE (CFS )
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C

	

HE? = FRICTION LOSS TN PARTIAL. MAINLINE SEGMENT (FT )

C

	

OPUMP = PUMP CA 0 ICITY (GAL/MIN )
C

	

TTOT = TOTAL SEASONAL OPERATING TIME (HR )
C

	

Mil = MAINLINE DIAMETER FROM DATA FILE `(IN )
C

	

AMW = ALUMINUM MAILIME WEIGHT (L3/FT )
C

	

AMCW = ALUMINUM MAINLINE COUPLER WEIGHT (LR )
C

	

SMW = STEEL MAINLINE WEIGHT (LR/FT )
C

	

ARMW = TRANSITE MAINLINE WEIGHT (L9/FT 1
C

	

A91CW = TANSITE MAINLINE COUPLER WEIGHT (L9 )
C

	

PVMN = PVC MAINLINE WEIGHT (L9/FT )
C

	

IL) = LATERAL DIAMETER FROM DATA FILE (TN )
C

	

ALW = ALUMINUM LATERAL WEIGHT (LD/FT 1
C

	

ALCW = ALUMINUM LATERAL COUPLER WEIGHT (LO )

C

	

SL`s = STEEL LATERAL WEIGHT (L9/FT )
C

	

SLOW = STEEL LATERAL COU PLER WEIGHT (L'3 )

C

	

PVLW = PVC LATERAL WEIGHT (L3/FT )
C

CO1MOM/TAGIISYST Y
DATA(NYES=IYES t )

C
C

	

SELECTION OF SYSTEM TO SIMULAT E
10'

	

WRITE(51
1
6191 )

6191 FORMAT(5)(,tCHOOSE TMt TYPE OF SYSTEM YOU WISH TO t

it CONSIOFRT t, /1X, t 1. 1 HANOMOVE SPRINKLERt,11Y ,
2t ? : CENTER PTVOTt,/1K,t 3 ; DRIP IRS?TGATTONt,11X ,

?t 4 t SIDE ROLL SPRINKLER#,/IX,t 5 3 SOLID SET #

4t SPRINKLER(,/1X,t 6

	

SURFACE (FURROW < CORRUGATE) (
5t IRRIGATIONt,11X,t 7 : PERMANENT SPRI~)KLF? ,l1X ,

5t

	

ENTER THE NUMBER OF THE SYSTEM OFSIREO .t )
REA3(6(1,5{191) ISYST Y

6091 FORNIAT(I1 )

GO TO (101,102, 1U3,1U4,105,i(16,107)ISYST Y

101 CALL STEPMAI N
GO TO 10 8

102 CALL CIRCIR R
GO TO 1I !

10 3 CALL TRICYCL E
GO TO 10 1

104 CALL SIDEMOVE
GO TO 10 P

10 F CALL SOLIOSET
GO TO 108.

106 CALL FURRO W

GO TO 1 0

107 CALL SOLIOSE T
1U

	

CONTINU E
WRITE (F,1, 6192 )

6192 FOR,1AT(5)(,tDO YOU WISH TO CONSIDER ANOTHER. SYSTEMr t
it (YES-NO) t )

READ (60, 60'12) N?U N
60192 FORMAT(R4 )

IF('1PUN .EO .MYES) GC TO 10 0
STO P
ENO
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SUBROUTINE OPPATE I
C
C

	

CALCULATE BUMPING ENFRG Y
C

COMMON SPOH,HFL,'HFM,STL,ELEVOF,HFSL,HFMISC,SPPNO ,
1QSPR .FFPP,EFGP,IPTY,THHP,XNLTS,XLNLT,IOLT,EFMO ,
2XLNMN, IJMN, RIHT, CHWM, CHWL, XNLT, Rf4P,MLTY, MMTY ,
3SPOHF, TRWT, MNPO, ILTPO, XN IP S, ACRE, DMNF, OLTF, T XL NMN, TL TILT ,
40M,XLM,TOM,NMS,HPO,DNA, TNA,FREQ,EFIR,WIOE,NIPS ,
5ELMFT,ENINST,EPPMFT,TENPS,TEMMFT,}TTRP,ENSPMFT,NOSP'
DIMENSION

	

t1O),XLM(10),?DM(1f )

READ NUMBE? OF LATERALS IN THE SYSTE M
READ(60,6 0 1 )XNLT S

611

	

FORMATIF1O .2 )
QLT=OPUMF/XNLT S
QS°=(LT/NOSP P
DNOZ= tQSPR/ 125 . at+*POH** ,5)) " . 5
XNIPS=(TNA/DNA)+ .9 9
NI B'S=IFIX(YNIPS )
TTOT=NIPS*FREQ*HP P
OLTF=OLT* .O 22 3
WRITE(61,6195)OL T

6195 FQR`)AT(5X,tQLATERAL=4,F7 .2,# GPM# )
WRITE(611611 )

611

	

FORMAT(5X,2ENTER NUMBER OF MAIN STEPS, LATERAL SIZE,/ ,
IIIX,t UNO.ER -1,2-RESPECTIVELYt ,
2/1X,/123/ )

C
C

	

RF'A3 DIAMETER OF LATERALS AND NUMBER OF MAINLINE SEGMENT S
REA3{60,601) P'MS,TDL T

611

	

FORMATt2I1 )
WRITE (61, 61 55 )

6158 FOPMAT(1X,tOIAETER-FLOW RATE-LENGTH/ )
P

C

	

READ DIAMETER, FLOW RATE, AND LENGTH OF EAC H
C

	

MAINLINE SEGMENT .
READ(60,6021)(IOM(I),QM(I),XLM(I),I=1,N M S )

6021 FORMATtI2,F11 .2,F1O .2 )
OLTF=IOLT/12 . 0
SPOMF=SPOH*2 .30 7
HFA=n . l

C
C

	

CALCULATION OF PUMPING RAT !
TLVL T =WIOE/2 .
SPRNO=TLNLT/XLNL T
NOSPR=IFIX(SPRNO )
OPUMP=ACRE*DNA*453 ./IFREQ4HPO EFI0 )
WRIT' (61,61 R7) OPU M P

6157 FORMAT (5X, /{)PUMP=t, F1O .2,t GPM/ )
WRITE(61,611 )

611

	

FORMAT(5)(,tENTER NUMBER OF SYSTEM LATERALS . XX .t l
C
C
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(.

C

	

CALCULATE FRICTION HEAD IN MAINLIN E
DO 500 I=1,NM S
DMNF=I0MtI)f12 .0

	

-

QMF=OMtI1/448 .8 3
HFP=((QMF"XLM(I)"" .54)/(((3.14"OMNF""21/4 ) f

1 t (DMNF/4) " .63) *t1 .318"CHWM)) )"1.8 5
WRITE(61,61811I,HF P

6181 FORMAT(5X,tHFM(INCREMENTAL)t,I2,t =t,F10 .2 )
HFM=HFM+HF P

500

	

CONTINU E
C

	

-
C

	

CALCULATE FRICTION HEAD IN LATERAL
NFL=(t(QLTF"TLNLT*" .54)1(((3 .14 4 DLTF""2)/4)"((OL.TF/4 )
1" .631"(1'.318"CHWL)))"' 1 .85) "( .351+( .5/SP'NO) +
2SQRT ( . 1417/SPRNO-"21 . )

C
C

	

CALCULATE TOTAL DYNAMIC HEA D
TDH=SPOHF+HFL+HFM+STL+ELEVDF+HFSL+HFMISC+RIH T
WH P =QPUM P"TOH/3960 .
BHP=WHP/FFP P

C

	

CALCULATE TOTAL POWER AND ENERGY REQUIREMENTS FOR PUMPIN G
IFtIPTY .GT .0) GO TO 10 0
THHP=BHP/ (EFGP4 EFMO)

GO TO 10 1
1~0

	

THHP=BHP/EFM O
101

	

TENPS=TTOT*THHP" .745 7

C
C

	

WRITE RESULT S
WRITE 161,6101) THH P

6101 FORMAT(10X,tTHE THERMAL HORSEPOWER=t,F10 .2 )
W?ITE(61,6201) HFM,HFL,TD H

6201 FORMAT(5X,tHFM=t,F10 .2,/5X,tHFL=t,FID .2,/5X ,

1#TOH=t,F10 .2 )
WRITE(61,6189)DNO Z

6189 FORMAT(5X,tSPRINKLER NOZZLE DIAMETER=t,F8 .6,* TN ..t )
WRITE(61,6190)TENP S

6190 FORMAT(5X,tSFASONAL PUMPING ENERGY=t,F12 .2,# KWHt )
RETUR N
END

SU9ROUTTNE MANECT I
C
C

	

CALCULATE MANUFACTURING ENERG Y
C

COMMON SPO4,HFL,HFM,STL,ELEVOF,HFSL,HFMISC,SPRNO ,
1QS P R,EFPP,EFGP,IPTY,THHP,XNLTS,XLNLT,IOLT,FFMO ,
2XLN'1N,IDMN,RIHT,CHWM,CHWL,XNLT,BHP,MLTY,MMTY ,
3 S P OHF,TRWT,MNPO,ILTPO,XNIPS,ACREsOMNF,DLTF,TXLNMN,TLWLT ,
40M,XLM,IDM,NMS,HPD,DNA,TNA,FREQ,EFIR,WIDE,NIPS ,
5EL1FT,ENIVST, EPPMFT,TEMPS, TEMMFT,E TTPP, ENSPMFT, NOSPR
DIMENSION QM(10),XLM(10),IOM(1Q )
DIMENSION MD(9),AMW(9),AMCW(9),SMW(9),ABMW(9),AIMCW(9 )
O T_IENSION PVMW(9),PUMPHPt20 )
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r

k

{

DIMENSION ILO(r),ALW(5),ALCW(5),SLW(5),-S .LCW(5) , P V L W (5 )

DA T A(XNA t 'F=1 MAINLNSf )

OATA(YNAME=# 4 LATF0.AL/ )

CATA (P11M€'HP=0 .75, 1 .0, 1 . 5, 2 . 0, 3 . 0,5 .0,7 .5, 10 .0, 15 .0 ,

120 .0, 25 .0,3 0 .0,40 . 0,50 . 0,617 . 0,75 .0, 100 .0, 125 .0 ,

2150 .0,200 .0 )

CALL FOUI P (12,XNAME)

C
C

	

PEAR BASIC MAINLINE DIMENSIONS
REAOt12,6012) ('4D(J),AMW(J),A-1''W(J),SMW(J),A"MW(J) ,

1 AI3M :,W (J) , PVMW (J) , J=1, B )
6012 FOR"tPT (I3,6F6 .2 1

CALL UNEOUIP (12 )
T r mMFT= 0 . 0

C
G

	

CALCULATE TOTAL WEIGHT OF MAINLINE MATERIAL AND ENERG Y

C

	

F07 MANUFACTURE .
DO 9a I=1,NM S
O n 69 J=1 0
IF(TOm(I) .EO .Mn(J1) GO TO 6 0

69

	

CONTINU E
60

	

GO TO(201,202,203,204),tiMT Y
2.71

	

TMNWT=YL"'+(I)/XLNMN*(XLNMN*St1W(J) )
EMMFT=TMNWT*1 . 5
GO TC ?1 C

2 1 2

	

T""NWT=XLM(I)/XLNNN*(XLNMNq-A-MW(J)+AMCW(J) )
' EH•1 E T=TMNWT'3E .

Gn TO 71 C
293

	

TMNWT=XLM(I)/XLNM.N (XLN'N*PV''!W(J) )
EM4FT=TMNWT' 1 5 . 2

GO TO 21 C
29.4

	

TM'JWT=XLM (I) / XLN M N* (XL NMN* A9MW (J) + A3MG'4 (J) )

EMM E T=TmNW+ 4 9 . 0

21C!

	

TE`1FT E :1'1FT+EMMF T
99

	

CONTINU E
C
C

	

WRITE MAINLINE MANUFACTURING ENERG Y
WRITE (51, 5112) T E 'MMF T

.611? F07M4T(5)(, EN RGY TO MANUFACTURE MAINtINFS=#,F10 .2 ,
1# KILONATT-HOURS# )

CALL EOUI 7 (13,YNA*1 E )

C

C

	

READ BASIC LATERAL DIMENSION S
RF41t13,6013) (ILO(I),ALW(I),ALCW(I),SLW .(I),SLCW(I') ,

1PVLW(I),I=1,5 )
6013 FO ?MAT(I3,5F5 .? )
C
C

	

CALCULATE TOTAL WEIGHT OF LATERAL MATERIAL AND ENERGY -

C

	

FOR MANUFACTURE :
DO 50 1=1, 5
TF(IOLT .EO .ILD(I), GO TO 5 9

50

	

r'ON T INU T
59

	

GO TO(301,332,303),`ILT Y

301

	

RIWT=(RIHT*C .4)+0 .2
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TLATWT=XNLTS B̀ SPR O (XLNLT`SLW(I)+SLCW(I)+R IWT )
EL'MFT=TLATWT P . E
GO TO 31 P

302

	

RIWT=R.IHT*^ . 6
TLATWT= XNLTS 4 SPRNO (XLNLT*ALW(I)+ALCWtI)+RI WT )
EL'1FT=TLATWT*3 6 .
GO TO 31 0

313

	

RIWT=PIHT'*O .1 5
TLATWT=XNLT S +`SPRN O c (XLNLT*°VLW (I)+RIWT )
ELMFT=TLATWT*16 . 2

313

	

CONTINU E
CALL UNFQUTP(13 )

C
C

	

WRITE LATERAL MANUFACTURING ENERG Y
WRITE t 61, 6113) ELMF T

6113 FORMAT(5X,1ENFRGY TO MANUFACTURE LATERALS=#,FID .2 ,
It KILOWATT-HOURS# )

C
C

	

CALCULATE MANUFACTURING ENERGY FOR PUMPING UNI T
00 TC I=1,' '
IF(3HP .LE .PUMPHP(I)) GO TO ' U

7P

	

CONTINU E
41

	

O 1P=PUMPH7(I )
WRIFE(61,6121)09H D

6121 FORMATt5X,tOESIGN POWER UNIT CAPACITY=t,F7 .2,t HPt )
EPP ;`4F T=ORH R * 1163 . 0
W?ITF(61,6111)EPPMF T

6111 FORMAT(SX,tENERGY TO MANUFACTURE PUMPING ! S LANT=t ,
1F1 .2,t KILOWATT-HOURSt )

C
C

	

CALCULATE MANUFACTURING ENERGY FOR: SPRINKLER' S
WTSPR=NOSPR 4 X NLTS*i . 1
FNS .MFT=WT zPR*19 .7 7
WRITE(61,6117)ENSPMF T

6117 FORMAT(5X,tENFRGY TO MANUFACTURE SPRINKLERS=t,F12 .2 ,
1# KWHt )

RETUR N
FN O

SU?ROUTINE TRNSPRT I
COMMON SPOH,HFL,HFM,STL,ELEVOF,HFSL,HFMISC,SPRNO ,

1OSPR, EF PP,FFGQ,IPTY,TIHP,XNLTS,XLNLT,Ir)LT,EFMO .,
2YLNMN, TIMN, RIHT, CHWM, CHWL, X*ALT, 3HQ, MLTY, MMTY ,
3SPOHF,TRWT,MNPO,ILTP0,XNIPS, ACRE,OMNF,OLTF,TXLNMN,TLNLT ,
kQM,XLN,IOM,NMS,HPOOMA,TNA,FREQ,EFIR,WIOE,NIP f
5ELMFT,E NINST, Ep PMF T,TEMPS, TEMMFT,ETTRP, FNS2MFT, NOS PR
DIMENSION rlM(1 ),XLM(1O),IOM(1O )
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CALCULATE E NERGY FOR TRANSPORTING PIPE S
YTRMFT=TP..WT*8 .721 .
EFTRP=6 . YNTPS*39 .4 1
E_TTRP=ETPMFT+EFTRP
WRITE (51, 6116) ETTR °

6116 FORMAT(5X,#ENERGY FOE T?ANSPORT=t,F10 .?. ,
It KILOWATT-HOURS PER SEASON1 )

RETUR N
EM C

SUFROUTINE IN`'TALL 1
COMMON SPOWtHEL,HFM ' STL I FLEVOF I HESLiMF m ISC,SPRNO ,

105 °R, EFPP, EFGP, IPTY, THHP, X NL TS, X LNLT, IDLT, EFMO ,
?XLNMN, IDMN, 9IHT, CHWM, CHWL, XNLT, +3HP, `7LT Y, MMTY ,
3SPOHF, TRWT,MNPO, ILTPO, XNIPS,ACRE, DMNF, OLTF,TXLNMN, TLNLT ,
4ON,XLM,IOM,NMS,HPD,DNA,TNA,FREQ,EFIR,W13E,NIPS ,
FEL4FT , ENINS T, E PPMFT,TENDS, TE. MMFT, E TTRP, ENSPMFT, NOSP P

DIWENSTON QM(10),XL4110),IOM(1O )
DATA(IXES=#YES t )

C
C

	

CALCULATE ANY INSTALLATION ENERGY FOR PURYING PIPELINE S
WRTTF(61,6162 )

6162 FORMAT(SX,±IS MAINLINE CURIEOAt )
PE A C) (6 O, 6O6 2) MNP O

6162 FORMAT(R4 )
WRITE 151, 6163 )

6163 FORMAT(5X,tAR'E LATERALS ';URIEDAt )
RFAJ(60,6063)ILTP O

6163 FORMAT(R4 )
IF(MNPO.EQ .IYES)GO TO 60 0
IF(ILTPO .EO .IYES) GO TO 661 1
ENINST=O .0 0
WRITE (61,6161 )

6161 FORMAT(5X,#INSTALLATION ENERGY IS NEGLIGIDLE .t )
GO TO 90 0

610

	

IFtILTPO .EO .IYES)GO TO 70 1
C
C

	

CALULATE VOLUME OF EXCAVATION AND ENERGY REQUIREMEN T
EMTNST=Q, 0
DO 650 I=1,NMS
OMNF=TOM(I)/12 . 0
EMINST=XL"! (I) * (2 .+7MNF) * ( . 33+DMNF) * . 3

650

	

FNINST=ENINST+EMTNS T.
GO TO 30 0

611

	

ENTNST=TLNLT*(2 .+OLTF)*( .33+nLTF)* . 3
GO TO 30 0

771

	

ENINST=TLNLT*(2 .+DLTF)*( .33+OLTF)+TXLN4N*(? .+VMNFI *
If .33+OMNF) * . 3

800

	

WRTTF(61,6164)ENINS T
6164 FORMATt5X,tINSTALL . TION ENERGY=t,F10 .?,t KILOWATT-HVURSt )
917

	

RE TU RN,

ENO
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C
C

SUBROUTINE CI°CIR P
C
C

	

C E ',NTER. PIVOT SPRINKLER SYSTEM ENERGY REQUIREMENT S
Cu

COMMON SPOH,HFL,HFH,STL,ELEV f3F,HFSL,HF'a ISC,EFM0 ,
1EFRP,FFGp,IPTY,THHP,10LT,XNMNS,NIPS,FPFO,EFIR ,
2XL'MN, T_DMN, RIHT,CHWM, CH#L, 9HP, MLTY, MMTY,TNA, DNA ,
3SPONF,MNPO, XNI''S, ACRE, C)MNF,OLTF, TXLNMN, TLNLT,XNTOW ,
4XFNPT,'EMMFT,ELMFT,EPPMFT,TETRPT,ENINS T

C
C

	

NEW VARIABLES IFFINFO FOR SUBROUTINE CIRCIR R
C

XNMS = NUMBER OF MAINLINE SECTION S
C

	

XNTOW = NUMBER OF LATERAL SUPPORT TOWER S
C

	

TETRPT = TRANSPORT ENERGY (KWH )
C

	

XENPT = SEASONAL PUMPING ENERGY (KWH :)
C

	

FRET) = ROTATION TIME FOR SYSTEM (MR )
C

	

BG'M = PUMP ING RATE (GP M )
C

DATA(WNAME=t*XINCENT . )
6101 FOPMAT (4F 10 .2 )
6002 FORMAT(3121213 )

CALL EQUIPt41,WNAMF )

READ BASIC INPUT DATA
REAi(41,5002) IPTY,MLTY,MHTY,IDLT,ID MN
READ(41,6001) SPOH,CHWM,CHWL,STL,ELEV 'OF,HFSL,HFmiS C
REAO(41,5001) TNA,CNA,TLNLT,XLNMN,RIHT
RFA0(41,600i) EFP P ,FFGP,E F IP,FFMO,XNMN S
PEAD(41,6001) FREO,ACPE,XNTO W
CALL UNEQUIP(41 )
CALL OPRATr 2
CALL MAN F CT 2
CALL TRNSPRT 2
CALL INSTALL ?

C
C

	

CALCULATE ANO WRITE SEASONAL ENERGY REQUIREMENT S
TOTSEN=XENPT+TETRPT+ tEMMFTtELMFT+EPPMFT+ENINST)/20 .
WRITF(61,6100)TOTSE N

6100 FORMAT(SX,fTOTAL SEASONAL ENERGY=x,F20 .',# KWHt :)
SENPA=TOTSEN/ACP F
WRITE(61,6110)SENP A

6110 FORMAT(5X,#SEASONA(_ ENERGY PER ACRE=t,F20 .2,t KWHI )
ENPAI=SENP A/TN A
WRITE(61,6190)"NPA I

6190 FORMAT(5X,#ENFRGY P E R ACRE-INCH=t,F10 .2,t KWH/ACRE-INCHt )
PET U N
ENS)
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SU` RoUTTNE OPPATE P
C
C

	

CALCULATE °UM TNG ENERG Y
C

COMMON SPOH,HFL,HFM,STL,E'LEV'JF,HFSL .HFMISC,F V MO ,
1EF°P, E FGP, IPTY,THHP, IOLT,XNHNS,NIPS,FREO,EFIR ,
2 XLNMN, IOMN, RIHT,CHWM,CHWL,t HP,SILTY,MMTY,TNA,04A ,
3SP')HF,MNPO, XNI P S, ACRE, O "NF,OLTF, TXLNMN, TLNLT, XNTOW ,
4XENPT ,EMMFT,EL MFT, EPPMF T, TETRp T, ENINS T

C
C

	

CALCULATE PUMPING RAT E
QGPM=ACRE*1NA*453 . / (FREO*EFIR )
XNIPS=TNA/1NA+ .9 4
NI P S=IFIX(XNIPS )
Q=)GPM*0 .0`?222 R
TTOT=NIPS*FRE D
OMNF=TOMN/12 . 0
OLT F =IOLT/12 . 0
SPOHF=SPOH*2,30 7
TXLNMM=XLNMN*XNMN S

C
C

	

CALCULATE TOTAL HEAQ REQUIREMENT S
HFM=((Q*TXLMMN** .54)/(((3 .14*OMNF**2)/4) *

It ( :O INF/4) ** .63) *(1 . :31V*CHW M ))) * 4 1 . t 5
HFL = (((*TLNtT** .541 / (( (3 .14* .5521**2) /4) * (( .5521!4 )
1** .63) *(1 .'(13*CHWL))) **1 . R5) * . 533 3

TOH=SPOHF tHFL+MFM+STL+FLE►IOF+HFSL+HFMISC+PIH T
C
C

	

CALCULATE DOWER REQUIREMENT AN0 PUMPING ENERG Y
WH°=0*TOH/ g . 3 1
BH°r WHF',FFP P
IF(IPTY .GT .0) GO TO 10 0
THH P=€ H°1(FFGP-*FFMO )
GO TO 10 1

110

	

THRP=RHP/E FMO
101

	

XENPT=TTOT*THHP*( .7457 )
WPITF(61,6191) THH P

6101 FORMAT(117X,#THE THERMAL HORSEPOWER=t,F10 .2 )
WRITF(61,6201) HFM,HFL,TOH

6201 FORMAT(SX,tHFM=t,F10 .2,/5X,*HFL=t,F10 .2,/5X ,
1 tTJFl=t, F 1 3 . 2)
WRITE (61,6221) XENP T

6221 FOR'1 T(5X,tTOTAL PUMPING ENERGY PER SEASON=t,F15 .? ,
It KWHt )
WRITE(61,6?27)TTn t

6227 FORMAT(5X, F 10 .2 )
WRITE (61, 6222) OGP M

6222 FD2MAT(5X,tPUMP DELIVERY CAPACITY=t,F10 .2,t GPMt )
WR,I TE (61, 6'31) NIPS

6231 FOR1AT(5X,tNUMRER OF IRRIGATIONS PER SEASON=t,I{+ ,
it CYCLFSt )

RE TUR N
F M7)
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SUB°OUTTNE MAMFCT 2
C
C

	

CALCULATE 1ANUFACTt)RING ENERG Y
C

COMMON SPOH,HFL,HFM,STL,FLEVDF,HFSL,HF M ISC,EFMO ,
1EF°?,EFGP,I'TY,THHP,I0LT,XNMNS,NIPS,FREO,EFI'? ,
2XL 1'1N,IOMN,RIHT,CHW'1,CHWL,9HP,MLTY,MMTY,TNA,DNA ,
3SPOHF,MNPO,XNIPS,ACRE,DMNF,DLTF,TXLNMN,TLNLT,XNTOW ,
4XENPT,FMMFT,ELMFT,EPPMFT,TETRPT,ENINS T
DIMENSION MO(9),AMW(9),AMCW(9),SMW(9),ABMW(9),AMCW(9 )
DIMENSION PUMW(9),°UMPH p (27 )
DIMENSION ILO(51,ALW(5),ALCWI5),SLW(51,SLGW(51,°VLW(F )
DATA{XNAME=#*MAINLMSt )
DAT .A(PtD4PHP=0 .75,1 .3,1,5,? .0,3017,5,0,7 .5,10 .0, 15 .{s ,

120 .0,., 2 5 . 0, T U . 0, 40 .0, 50 .0, 6O . 0 ,75 . O,10t3 . 0,125 .0 ,
2150 .0,200 .3 )
CALL EQUIP (12, X NAME )

C
C

	

READ BASIC MAINLINE OTME_NSION S
REAOt1?,6012)('MD(I :),AMW(I1,AMCWtI),SMW(I),A MW(I) ,

1ABMCW(I1,PVMW(I),I=1,9 )
6712 FORMAT(I3,5F6 .? )

CALL UNFOUIP(12 )
10 69 1=1, 9
IF(IDMN .EQ .MD(I)) GO TO 6 0

69

	

CONTINUE
60

	

GO TO1201, 7 02,203,2041

	

MT Y

C

	

CALCULATE MAINLINE MANUFACTURING ENERG Y
231

	

TMNWT=XNMNS 4 (XLNMNSMW(I) )
EMIFT=TMNWT*90 F
GO TO 21 0

202

	

TMN 4T=XNMNS V. (YLNMN c AMW(I) +AMCW (I) )
EM1FT=T4NW T x`36 .
GO TO 21 0

2113

	

TMNWT=XNt1NS 4 (XLNMN M PVMW(T) )
E MMFT= TMNWr c 1 5 . 2
GO TO 21. 0

204

	

TMNWT=XNMNS* (XLNMNY ADMW (Il }APMCW (I) )
EM1FT=TMNWT* 8 . 0

210

	

WRITE (51,61123 EM±F T
6112 FORMAT(5Y,tENERGY TO MANUFACTURE MAINLINES=t,F10 .2 1

It KILOWATT-HOUPSt l
WRITE(61,4) I

4

	

FO?MAT(5X,tT=t,I2 )
C
C

	

CALCULATE MANUFACTURING ENERGY FOR LATERA L
TLTWT=5000 . +3t? 00 . *XNTO W
ELM F T=TLTWT*9 . 5
WRITE (61, 6113) *LIF T

6113 FDRMATtEX,+ENERGY TO MANUFACTURE ROTATING LATERAL=t ,

1F10 .2,t KWHt)
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C
C
C

C

	

CALCUL A TE MANUFACTU TNG r'NERG t FOR PUMP UNI T

nO 7C 1=1+2 0

I F (3HP .LE . P UMPH(l)) GO TO 4

71

	

CONTINU E

1+1

	

DoU R=: fR UM cmI P (l )

WRTTF(61 1 6121)09H P
6121

	

FOPIAT(F X I t')PSIGM POWER UNIT C A R ACITY=t,F7 .2,t HPt )
EPPm FT=ORH E *11 P)7 . C
WITF(61,E)III)EPPMP T

6111 F OR IAT(7)( I tFN7R G ( TO MANUFACTURE PUMPING PLAMT=t ,
IP11+21t KILOWATT-HIUSt l
RFTUP N
FN )

SUTRo UTIME TRNSP R T R

CALCULATE T RANS PORT ENE R G Y

COMMON

	

. 111FLOFM I STL,ELEVOF,HFSL,HFMISCIFFMO ,
IEF -1D ,F,FGP,IFTY,THHP,19LTO(NMNS I NIPS,FRE0,17FI ,
2)(LNAN,10NNIRIHT,CHWI,CHWL+3HP I MLTY 1 4MTY, T NA,f)NA ,
3FPOHFONFO,XNIPS I AF l OmNF,DL7F,TXLNN,TLNITlYNTW ,
4YEMPT,EmMFT,ELIFT I EPP mFT,TET?PT,ENINS T

N T n0=1FIX(XMT ( 4 )
TTM=0+ 1
OO 7P 1=10TO W
P TIME=2 .* 1

PNTPT=I .F7P*TI mF
TEIPT=ENTRPT*MIP S
WRT17161 l e:144)T 7 T ; p T

6144 FORMAT(5X,tTRAMSPORT EMERGY=t T rI8 .2, � KILOWATT-HOUR S
It P EP SFASOMt )
:RETU R N.
EM n

SURROUTIME INSTALL 2
C

C

	

GALCUt AT AN Y ANY INSTALL>ATTCN ENERGY'

C

OmMON SPOH,HFL,HF m I STL,ELFVOF OFSL,HFIISC I FFmO l
1EF PP ,7FGP,I 2TYITHH P ,1OLT,YMM5 I MIPS,FR EQ,EF1 2 ,
2)(LNAVITImM,RIHT,CHWM-1 OHWL,3HP,MLTYOMTY,TMA I DMA ,
37PIlF,HMPO,XMIPSIAC R F IOMF+OLTF,TXLmMM I TLMITONTnt'l l
4XENPT I EA mFT I ELMPT I EPP m FT,TFIPPT,ENIMS T
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C

C
C

C
C
C
C
C
C
C

• C
C

DATA (IY S=TYES t )
WFITE(61, 6 162 1

6162 FOPMAT (5X,tIS '1AINLINE BURIEOAt )
READ(E0,6062)MNPO

6062

	

FO?MA,T(R4 )
IFtMNPO .EO .IY=S)GO TO 60 0
FN T NST=0 .0 ^
WRITE(61,6161 )

616'1 FO?.MAT(E X,tINSTALLA T ION ENERGY IS NEGLIGI(?LE .t )
GO TO 90 0

C
C

	

CALCULATE VOLUME OF EXCAVATION AND ENERGY RE(}UIREMEN T
600

	

ENIAST=TXL N MN*(2 .+OMNF)*( .33+0MNF)* . 3
WRITF (61,6164)ENIN`' T

6164 FO?MAT(5X , t INSTALLATTON ENERGY=t,F10 .2,t .KILOWATT-HOU.RSt)
900

	

RE T tJP M
ENO

SUPROUTT E TRICKL E
C

	

,
C

	

TRICKLE IRPIGA.TION S Y STEM ENERGY RE`IUIPEMENT S
C

CO°'1ON SPOH,HFL,HFM,STL,FLEVDF,H .FSL,•HFMISE,SPRNO,NYPEM ,
1%ML N, EFPP, FFGP, IPTY, THHP,XNLTS, XLNLT, I DLT, 4FSM, I0511, EFM O ,
2XLN,IN, IOVIN, CH WM, C'1WL, XLNSM, 3HP, MLT Y, MMTY, ROW, PLT, T LSM ,
3SPr)HF, TtNMN, MNPO, ILT PO, OSMF, ACRE, O MF, DLT F, TXLNMN, TL N .LT ,
'+O M,XLM,ID.M,NMS,HR3,DNA,TNA,EMGPH,EFIR,!WIDE,NIPS,XLFN,ANLT S
5, TENPS, ETTRP, ESMMFT, EMMFT, FLMFT, ENINST, EPPMFT, E NFMFT

NEW VA?IABLES DEFINED FOR SUBROUTINE TRICKLE :
NOPEs = EMITTERS PER PLAN T
EMLN = LENGTH OF MICRO TUPE EMITTER tFT )
XLIS M = LE`JGTH OF SU?MATNLINE PIPE SECTIONS (FT )
RC!'d = S PACING OF PLANT ROWS (FT )
PLT = S°ACING OF PLANTS IN ROW (FT )
TLSM = LENGTH OF SU.BMAIMLINE (FT )

DSMF = DIA'1EETEP OF SUBMINLINE .(FT )
I!)SM = DIAMETER OF SUBM .AINLINE (IN )
DNA = DAILY AP PLICATION (I .N/DAY )
XLE N = L O NG DIMENSION OF FIELD (FT )
EMGPI4. = EMITTER DISCHARGE CAPACITY (GAL/HR )
EMSMMFT = ENERGY TO MANUFACTURE SUBMAINLINE (KWH )

01 1 NSIO1.' OM(liJ),XLM (10) ,IDM (10 )
DATA(UNAME=t*)(INPRIPt l

6001

	

FORMAT(8F11 .2 )
6002 Fn?9AT(3I2,3I3 )

CALL EQUIP11,UNAmE)
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f

	

C

	

RrA) PASIC INPUT DAT A
READ (1 , 500?) I P TY, N'LTY, MMTY, If1LT, ID"!N, TDS '
° E .D(1,60'71) CHWM,CHW'L,STL,ELFVOF,►+FSL,HFMIS C
R EADt1,6001) TNA,ONA,XLNMN,XLNLT,XLNS' 1
REATh,6001) FFPP,EFGP,FFIR,EFMO,ROW,PL T
PEAS1(1,6001)H P 91ACRE,WIDE ,XLE M
CALL U N E QUIP(1 )
CALL r'P'..A7. 3
CALL NANFCT 3
CALL TRNSPRr 3

CALL INSTALL 3
C

	

• C

	

CALCULATE AND W°ITE S E ASONAL ENERGY REQUIPEMENT S

TnTSEN=TENPS+ETTPP+ t FSM"'FT+EMIFT+E LIFT+ENINST) /20 .
1+E2 ',10 FT/15 . +ENE"4FT/10 .
SFN R A=TOTSEN/ACRE

WRITE (61,6157) TOTSE N
6157 FOP'1AT (5X, #TOTAL SEASONAL ENERGY=f, F15 .2, t KWHt 1

WRITE (61,5158) SENPA

	

_
•6158 FO?'1AT(5X,1SEASONAL ENERGY PER ACRE=t, F 10 .2,t KWH/ACRE# )

ENRAI=SFNP 1/TN A
WRITE (61,61.43) ENPA I

6113 F O2 MAT(5X,#ENERGY PEP ACRF-INCH=#,F1O .2,# KWH/ACRE-INCHt )

PETURP +
E"} rl

SI)IROUTINE OPRATF 3
C.

	

C

	

CALCULATE PUMPING ENERG Y
C

COAMf"! SPOH,NFL,HFDt,STL,FLFVDF,HFSL,HF mIFC,SPPNO,MOPF'! ,

1EIL',EFPP,'=FGP,IPTY,THHP,XNLTS,XLNLT,IDLT,HFSM, IfSM,EFMO ,
2XLNIN,I7)MN,CHWM,CHWL,XLNSMOHP,"1LTY,4MTY,ROW,PLT,TLSM ,
3 S f'1HF,TLM MM , M NPO, ILTPO, DSMF, ACRE, DMF,DLTF,TXLNMN,TLNLT ,

40M,XLM,IOM,NMS,HP0,0NA,TNA,EMGPHsEFTRi4IDF,NIPS,XLEN,ANLT S
, T ENPS,ETTRP,FS"MET,EMMFT,ELMFT,ENINS T I EPPMFT,ENEh+F T

DI-' ='NSION OM(101,XLMtIO),I)M(10 )
C

	

C

	

CALCULATE ^UMPI''JG P AT E
QPU :1P=!)NA*453 . *ACPE/ (HPD*EFIR )
PLT'JO=ACPF*4356n . / (RC's*PLT )
XNLTE=? .*WTDE,RO W
0 P L .At''T=OPU'"P/PLT"I0
GP9?LT=R0W At PLT 4 1!,A* . f'2 g
EMG'C=PLTNO/X!''LT S
TTOT=TNA*24 .IDN A

WPITF(61,61R7) GPHPLT,OPU M P
6187 F0?'1AT(5X,1r)PLANT=t,F7 .3,t GPH#,5X,tOPUMP=t ,

1F1' .?,± GPI)
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1

C
C

WRITE(51',613R )
618 P ' FORMAT(1X,tFMI T T ERS-LENGTH-FLOW GPH- P P ESSURFT I

r 7AO(63,6021) "O P EM,E'ALN,EMGPH,SPOH

6021

	

FORMAT t-I1,F14 .?,F8 .2,F10 .2 )

DLTF=IDLT/12 . 0

SPO1F=SPPH*2 .30 7

TLSm=WIDE/? .
TLNMN=XL EN/2 .
TLNLT=XLEN/2 .
Q M:F=Q PUM P/ 3 97 . 6F

DSMF= I OSM/12 .
DMF=IDMN/12 . 0

QLTF= C. PUM°! (XNLT S* 44 5 .31 )

CALCULATE TOTAL HEAD REQUIREMENT S
HFI= (((OPUmP/448 .31)* (WIDE/2 .)** .54) / (( (3 .14*0MF" 29 =

1/4 .) * ((DMF /4 .) ** .53) * (1 .31 8*CHWM11) **1 . R 5
H F S 'M= (((OMF* (XLEN/2 .) ** . 54) f (((3 .14*DSMF**2) /4 . ) *

1 ((7SYtF/4 .) " . 6' )''(1 .31 * CHW M))) **1 .85) * ( . 351 }
2(1 ./XNLTS)+SQ?T( .1417/(XNLTS/2 .)}"2) )

HFL=(((Q•LTF*TENET** .54)/(((3 .14* .58**21/4 .)*(( .59/4 . 1

1** .631*(1 .318*CHWL)))"1 .°51*( .351+( .5/E4GRO) +

2SDRT ( . 141 7 /EMGRR". ?) )
T'1H=SPOHF+HFL+HEM+HFS""+STL +ELEVDF•+HFSL+HFMIS C

C
C

	

CALULATE POWER REQUIREMENT AND PUMPING ENERG Y

WHP=OPUMP*TOH/3960 .
8H?=WHPfFEP ¢
IF(IPTY .GT- .C) GO TO 11 0
THHP=PHP/ (EFG°*FF'A O )

GO TO 10 1
100

	

THHP=BHP/EF' O
111

	

T E NPS=TTOT*THHP* .745 7

WRITF(61,6101) THH P

6101 FORMAT(1X,tTHE THERMAL HORSEPOWER=t,F10 .2 )
WRITE(61,6?01) HF P?,HFL,HFSM,TD H

6201 FD: MAT(SX,/HFL"=t,F10 .2,/SX, � HFL=f,F10 .2,/5X ,

itHFSM=t,F10 .2,/FX,tTD.H=t,F10 .2 )
WRITF (61, E190) TENP S

6190 FORMAT (5X, tSEA.SONAL PUMPING .ENERGY=t,F12 .2,t KWHt )

R E TUR N
EN D

SURRGUTINE MANFCT 3

C
C

	

CALCULATE MANUFACTURING ENERG Y
C

CO'IMON SPOH,HFL,HFM,STL,ELEVOF,HFSL,HFMISC,SPRNO,NOPE M ,

1EMLN, EFPP,FFGP, IPTY, THHP, XNLTS, XLNLT, IOLT,HFSM, IOS M,-EFMO ,

2XLNMN,IDMN, CHWM,CHWL,XLNSM,7H Q , MLTY, MMTY,ROW,PLT,TLSM ,

3SP3HF, TLNMN, MNPO, ILTPO, USMF, ACRE,OMF, DLTF, TXLNMN, TLN1T ,

+QM,XLI,IOM,NMS,HPD,ONA,TNA,=mGPH,=FIP,WIDE,NIPS .XLEN,ANLT S

5, T E NPS, E TT^P, ES M F1-FT, * MMFT, ELMFT, ENINST, EPPMFT,E NE 'F T
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.C
C

DIMENSION OM(20•),XLM(10)',IDM(10 )
DIMENSION WD(9),AMW(91 1 AMCt•J(9),SMW(9),ABMWt9),4eMGW(Q )

DI'•MENSION PVMW(9),PU M PHP(20 )
DIMENSION+ ILO(9),ALW(9),ALCW( 9_),SLWt9),SLCW(9), 0 VLW(9) -

T)ATA(XNAME=t*MAINLWS#) •
DATA(`YNAME=t*LATERALt )
DATA(PU MPN?=0 .75,1 .0,1 .5,2 .1,3 .0,5 .0,7 .5,10 .9,15 .0,. :

120 . 0,25 .0,30 .0,40 . 0, 50 . 0,60 . 0, 75 .0, 100 .0,1T•5 .0 ,
2150 .0,200 .0 )
CALL EQUIP(12,XNAMF )

C
C..

	

REA 7- PASIC MAIMLINF DAT A

'RFAD(12,6012) (MD(J),AMW(J),AMCW(J),SMW(J),ABMW(J) ,
1AR .`1CW (J),PVMW (J),J=1,R )

6012 FORMAT(I3,0F6 .? )
CALL UNECUTP(12 )

C
G

	

CALCULATE MAINLINE_' MANUFACTURING ENERG Y

OO 69 J=1, R
IFtIOMN.FQ .'MD(J)) GO TO 6 0

59

	

CONTIPU E
6 1

	

GO Tn (201, 2_ L 2, 2! 3, 204) , MMT Y

201

	

TMNWT=TLNMN/XLN:4-N 4 (XLNMN*SMW (Al •
EM'1FT=T'1NWT~` Q . 5
GO TO 21 0

202

	

T tINWT-TLNMN/Y.LNMN 4 (XLNMN*AMW (J) *AMCW (J) )

EM'I'T=T'1NW T 36 .
GO TO 21 0

203

	

TMNWT=TLNMN/XLNf1t`1•'F tXLNMNIPVMW (J) )
EM -1FT=TMNW T# 15 . 2
GO TO 2.1 0

204

	

TMNWT=TLNMN/XLNMN-* tXLNMN4 A .MW (I) +A°'1CW1'I) )

EM1IFT=T .MNWT*01 . 0
210

	

CONTTNU F
WRITE (51, 611 2) EMMF T

6112 Ft)?"IAT(5Y, ENERGY TO MANUFACTURE MAINLINES=t,F10 .2 ,
it KILCWATT-HOURSI )
CALL EQUIP (12, Y NAME)

	

i .

FF:AO BASIC SUBMAINLINE DAT A

c

	

Jt1-.2,5012) (MO(J),AMW(J),AMCW(J),SMW(J),AB'*t(„J) ,
1A q '4CW(J),P!/MW(J),J=1,F )

•

	

CALL UNEi.)(JIP (12 )
C

C

	

CALCULATE SUP9AINLINE MANUFACTURING ENG=Y
00 64 J=1, M

I F (ICS'1 .EQ .MD(J)) GO TO 6 7
6++

	

CONTINU E
67

	

GO TO (411, 402, 403, 404) ,MMT Y
411

	

TS`1NWT=2 .*TLSMIXLNS M # (XLNSM'*SMWtJ) )
ES'11FT=TSMNWT*8 .5 -
Gn TO 41 0

412

	

TS'1NWT=2 .*TLSt'1XLt•JS"1*tXLNS'1*AMW(J)+AMCW(J) 1
ES""MFT=TSMNWT*36 .

8 6



GO TO 41 0
403

	

TS.MNWT=2 . * T LSM/XLNS M ''4 (YLNSM*PUMW(J) )
E 7'"'►MFT=TSMNWT +"15 . 2

GO TO 410

	

-404

	

T5'1NW7=20`TLSM/XLNSM 4 1XLNSM"ARMW(J)+AP.MCWt..J) )

ESMMF T=T SMN WT 4 '3 . 0

410

	

WRITE(61,6141)ESMMF T

6141 FORMAT(5X,tENERGY TO MANUFACTURE SUBMAIN=t, .W12' .2,t KW:Ht)'
CALL EOUIP(13,YMAME )

C
C

	

REA 3 DASIC LATERAL DAT A

REAO(13,6013)(ILDtI),ALW(T),ALCW(I),SLW(I),SLCW(I) ,

1PVLW(T),I=1,5 )
6013 FORMAT(I3,5 E 6 .? )
C
C

	

CALCULATE LATERAL MANUFACTURING ENERGY
Or1 .5t 1=1, 5
IF(IDLT .EO .ILO(I)) GO TO 5 9

5n

	

CONTT NU =

5q

	

GO TO(301,3O2,303),MLT Y
301

	

TLATWT=YNL TS'~TLNLT/XLNLT*(XLNLT*SLWtI)+SLCW(I) )
EU'4FT=TLATWT*9 . 5
GO TO 31 O

302

	

TLATWT= XNLTS-*TLNLT/XLNLT*(XLNLT*ALW(I)*ALCW(I) 9

ELMFT=TLATWT*36 .

GO TO 31 0
303

	

TLATWT=XNLT S 4 TLNLT/XLNLT*(XLNLT*PVLW(I) )
ELMFT=TLATWT"15 . 2

310

	

CONTINU E
CALL UNE'CUIP(13 )
WRITE(61,6113)ELMF T

6113 FORMATt5X,tENERGY TO MANUFACTURE LATERALS=#,Fi0 .2 ,
it KILOWATT-HOURSt )

C

	

CALCULATE PUMPING UNIT MANUFACTURING ENERG Y

00 70 I=1,2 0
IF(BHP .LE .PUMPHP(I)) GO TO 4 0

7O

	

CONTINU E
40

	

D 9HP= r)U PN''?(I )
W?T.TF (61, 6121) OBH P

5121 FOR i/•T(5X,tOESIGN POWER UNIT CAPACITY=t,F7 .2, t HPt )
EPPMFT=D3H^; 11634 0
WRITE(61,%111)EPPMFT

6111 F0R`!AT(5X,tENERGY TO MANUFACTURE PUMPING PLANT=t ,
_1F10 .2 ;t KILOWATT-H'1URSt )

r

	

CHOOSE EMITTER TY P E

WPITE(61,6100 )
6100 FORMAT (5)(,tENTEP NUMPE'R OF EMITTED TYPE.t,/5X ,

1*1 . ORIPEZE

	

2 : #)ICROTUPEt )
RFAD(60,600O) IE'T Y

6000

	

FORMAT(II)
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I

'I .

C

	

rALCULPTF F'1ITTE.t' MANUFACTURING FNER( Y
IF(IFMTY .E0 .1,GO TO 1 . 0
WTEM=NOPFM*ACRE*75 .71*EMLN1(ROW*PLT )
E^"-'1FT=WTFM*20 .
GO. TO i i

11

	

WT ="1=NOPEM*A.CRE*6262 .451(ROW* A LT )

EN Z MFT=WTE m *20 .
11.

	

WF ITE (61,61 01) ENEMF T
6101 F07i1AT (5X, t ENERGY FO Q E M ITTFRS=t, F10 .2, * KWHf )

RETUR N

EN')

SUaROUTINE TRNSPPT 3

C

	

NO TPANSPU'TATION ENERGY FOR TRICKLE SYSTE M
r

	

-

COMMON SPOH I FIFL,HFM ' STL,EL7VOF,HFSL,HF m ISC,S'PRN0,NOP EM ,

1EMLN,I=FPP, EFGF,IPTY,THHP,XNLTS,XLNLT,IDLT,HFSm,IDSM,FFMO ,

2XLNIN,IOMN,CHWM I CHWL,XLNSM,3HP,MLTY,M m TY,F.,OW,PLT,TLS H ,

3SPOHF,TLNM-N,MNPO, ILTPO,DSMF, ACRE,OMF,OLTF,TXLNMN,TL"JLT ,
. 40M, XLI, TOM, NMS, HP!, DNA, TNA, E MGPH, FFIR, W IDE, NIPS , XL FN, ANLT S

6,T74PS,ETTRP,ESMMFT,EMMFT,ELMFT,ENINST,EPP`1FT,ENEm rTol ,IENSIoN 09(10),XLM(10),IOM(10 )
FT T RP=0 . 0
WRITE(6i,6116)ETTPP

	

_

6116 FOR .1l;T (X,±ENERGY FOR TRANSPORT=#, F10 .2 ,

it KILOWATT-HOURS PER SFASON# )
RE T UR N
Pni D

SU?'OUTINE INSTALL 3

C
C

	

CALCUL A T E INSTALLATION ENERG Y

C
COMMON SnO H ,HFL,HF ~,STL,FLEVDF,HFSL,HFMISC•,SQ RNO,NOPE*1 ,

1E LN,F F DP,EFGP,TPTY,THHP,XNLTS,XLNLT,IDLT,HFSM,IDSM,E F M O ,
2XLNIN, IOMN, CHWM, CHWL, XLNSM, 0HP, MLTY, MMTY, ROW, PLT, TLSY ,
3 SP')HF , TLNH N, MNPO, I L TP0, 0 SMF, ACRE . D MF, DLT F, TXLNM N, TL•NLT ,
40M,XLP,IOM,NNS,HPO SIP'A,TNA,EMGPH,EFIR,WIDF,NIPS,XLEN,ANLTS
5, TENPS,ETT•?P, ESMMFT, EMMFT, ELMFT, ENINST, EPPMFT, ENENF T
DI1ENSION O'M(10),XLM(10),IOM(10 )
DATA(IYES=±YES 1 )
WOITE(61,6162 )

6162 F^`1AT(5Y,±IS MAINLINE 4 URIEf't )
PEA)?(F fl,6O62)MNP O

6162 FORMA'TtR4 )
WRITE(51,6163 )

6163 FORMAT(EX,tARE LATERALS RURIEDAt )
R'"AC(E0,6063) TLTP P

6063 F0 1tTfR4)
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TF(MNP3:E0 .IY E S)GO TO 60 0
IF(IL T 'O .EO .IYES)GO TD 60 1
ENI'(ST=0 .0 0
WRTTE(61,6161 )

6161

	

FOZ44T(5)(,IINSTALLA.TION ENERGY IS NEGLIGIOLE .t )
GO TO 1IC .

600

	

IFtILT P O .EO .IYFS)GO TO 70 1
r

C

	

CALCULATE VOLUM7 OF FXCAVATION AN') EN E R GY RFOUIR`'"FNT
ENINST= (TL`JMN* (2 .+DMF) * ( . 33 4-OMF) +2 .*TLSM Y

1(2 .+fS'F)*( .37} '

	

F))* . 3
GO TO 90 0

601

	

c NINST=XNLTS -I`TLNLT*( .5+DLTF)*( .33+OLTF 1 4 . 3
GO TO 80 0

701

	

F NI ;JET=(XNLTS*TLNLT" ( . S+OLTF) * ( . 33+OLTF1 + T LNH N 4 (2 . +DMF )
1( . .33+0 MF)+2 .*TLSM 4 (2 .+DS""F)'f ( .33+DSMF) )* . 3

830

	

'4RIT' (61, 6164) ENINS T

6164 FOR'iAT(SX, I INSTALLATION ENE R GY=#, F 10 .2,t KILOWATT-HOU°.S# )
q 0~

	

RE T UR N
7 N I

SUP D OUTTNE SIDF M OV E
C
C

	

EIIE TOLL SPRINKLER SYSTEM", ENERGY REQUIREMENT S
C

COM MON SPOH,H F L,HFM,STL,-LEVOF,HFSL,HFMISC,S PRNO ,
1OSP ;,EFPP,EFGP,IPTY,'HHP,XNLTS,XLNLT,IDLT,FF"1n ,
2XLN1N, IJMN, RIHT,rHW`1,CHWL, XNLT, PHP,'1LTY, MMTY,I W`l ,
3SPJHF,'`1NPO, XNI PS, ACRE,OMNF,DLTF, TXLNMN, TLNLT ,

4O `', XL M , I O M, NMS, HPD, DNA, T NA, F RE Q., EF I Z, W I DE, NIPS ,

5T E'1PS, TEN m r-. T, =E L MFT ,EPPMFT, ETTRP, ENINST, ENSPMFT, NOSPR
C
C

	

TWn = WHEEL DIAIETER (IN )
C

	

WOF = WHEE L 0144ETER (FT )
C

	

WWT = WHEEL W^TGNT (LP )
C

	

EL P MFT = ENERGY TO MANUFACTURE LATERAL P I PE (KWH )
r

	

E N CIFT = ENE R GY TO MANUFACTURE MOVING UNIT (KWH )
C

nIMENFION OM(10),XLM(10),IDH(10 )
OATA( P NAME=t*XINSIOE1 )

611i

	

FOR"1AT(RF1^_. .2 )

6002 FORIAT(3I2,3I3 )
CALL FOUiP(31,RNAmE 1

REA] PASIC INPUT OAT H

PEAD(31,ft'32) T PT Y,MLTY,MMTY, T_W O
R r AD(31,6001) S fOH,CHWM,CHWL,STL,ELEVOF,HFSL,HFMIS C

PFAD (31, 6001) TNA, DNA, XLNLT, XLNMN, RIH T
READ(31,6001) EFPP,EFGP,EFIR,E F M O

REA1(31,6001) FREO,HPD,ACRE,WID E
CALL U17OUI 0 (31 1

C
C

1
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CALL OPRATE 4
CALL MANFCT 4
CALL TRNSPRT 4
CALL INSTALL 4

CALCULATE AND WRITE SEASONAL ENERGY VALUE S
TOTSE'N=TEMP S+ETTR P +(TEMMFT+ELMFT+ENINST)/20 .

1+EPPMFT/15 .+ENSPMFT/10 .
WRITE(61,6100)TOTSEN

6100 FOR'1AT(5X,tTOTAL SEASONAL ENERGY=t,F20 .2,* KWH/ )
SENPA=TOTSTN/ACR E
WRITE(61,6110)SENP A

6110 FORMAT(5X,#SEASONAL ENERGY PER ACRE=t,F15 .2, . KWHf )
ENPAI=SENPA/TN A
WRITE(61,6198)ENPA T

6198 FORMAT(5X,#ENERG•Y PER ACRE INCH= ,F10 .2,# K•WHIACRE-,IN� 3
RETURN _ ,
END

SUBRO.UT'INE OPRATF 4
C
C

	

CALCULATE PUMPING ENERG Y
C

COMMON SPOH,HFL,HFM,STL,ELEVOF,HFSL,HFMISC,SPRNO ,
1QS P R,EF PP,EFGP,IPTY,THHP,XNLTS,XLNLT,IDLT,EFMO ,
2X L NMN ,ITMN,RIHT .,CHWM,CHWL,XNLT,e3HP,MLTY,MMTY,IWO ,
3S P OHF,MNPO,XNIPS,ACRE,DMNF,DLTF,TXLNMN,TLNLT ,
4OM , X L M ,IOM,NMS,HPD,DNA,TNA,FRE0,EFIR,WIDE,NIPS ,
5T E ND S,T E M MFT,FLMFT,EPPMFT,ETTRP,F.NINST,ENSPMFT,NOSPR
DIMENSION 04(10),XLM(YO),IOM(] .0 )

C
C

	

CALCULATE PUM P ING RAT E
TLNLT=WIOE/2 .
SPRNO=TLNLT/XLNL T
NOSPR=IFIX(SPRNO )
QP IJMP=ACRE# DNA s 453 .1 (FREO 4 HP.D*EFIR )
WRITE(61,617) OPUMP

617

	

FORMAT(5X, . QPUMP=/,F10 .2,t. GPM# )
WRITE(61,611 )

611

	

FORMAT(5X,tENTER NUMBER OF LATERALS IN SYSTEM . (XX .)# )
READ(6'0,601) XNLT S

601

	

FORMAT(F10 .2 )
QLT=QPUMP/XNLT S
WRITE(61,614)OL T

614

	

FORMAT(5X,•#QLATERAL=t,.F7 .2,1 GPM# )
OS P R=QLT/NOSP R
ONOZ= (QSPR/ (28 .94*SPOH** .5)) +` . F.
DLTF=OLT'o .1022 3
XNIPS=(TNA/DNA) f .9 9
NIPS=IFIX(XNIPS )
TTOT=NIP S 4F REQ.*HP[)

. SPOHF=SPOH*2,307
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E

C

	

DETERMINE MAINLINE CONFIGURATIO N
WRITEt61,613 )

613

	

FORMAT(5X,tENTEP NUM!ER OF MAIN STE f'S,LATERAL SITE,t ,
1/IX,tUNDER -1,2- RESPECTIVELYt,/1X,t12t )
READ(60,603) N:MS,IDL T

693

	

FORMAT(2I1 1
OLTF=IDLT/12 . 0

WRITE(61,6198 )
6198 FORMAT(1Y,tDIAMETER-FLOW RATE-LENGTH# )

PFAD(60,6021) (IOt1(I) ' ,Q0I),XLM(I),I=1,NMS )
6021 FORMAT(I2,F18 .2,F15 .2) .
C
C

	

CALCULATE TOTAL HEAD REQUIREMEN T
HFM-=0 . 0
00 500 I=1,NM S
DMNF=IDM(I)/12 . 0
QMF=OMtI)/448 .8 3
HFP=( (©MF*XLM(I),* .54)/t ((3 .14*OMNF* 4 2)/41 *

1 ((D`1NF/4) " .63)*t1 .318 4 CHWM) )) ""1 .85

WRITE(61,6181)I,HF P
6181 F'ORMAT(5X,tHF_M(INCREMENTAL)t,I2,t =t,F10 .2) '

HFM=HFM4-HF P
590

	

CONTINU E
HFL= t t t-QLT'F"TL.NLT"" .54)/ t ((3 .14*0LTF 4 21 /4)" ((OLTF/4 )

1 .4' .63•) * (1 .318C•HWL))) F "1 .85) { ( . 3'51+( .5/SPRNO) +
2SURT( .1417/SPRN0' 2) )
WDF=IWD/12 . 0
TDH = SPOMIF+HFL+HFM+STL+€LEVDF+HFSL+H'FMTSC+RIHT+WOF/2 . 0

C
C

	

CALCULATE POWER AND SEASONAL ENERGY REQUIREMEN T
WHP=OPUMP"TOH/39F0 .

BH p=WHPIEFP P
IFtIPTY .GT .0) GO TO 10 0
THHP=B=HP/ (EFGP*EF.m0 )
GO TO 10 1

1'10

	

THHP=BHP/EFM O
101

	

TENPS=TTOT*THHP/1 .34 1
WRITE(61,6101) THH P

6101 FORMAT(10X,tTHE THERMAL HORSEPOWER=t,F1t3 .2 )
WRITE(61,6201) HFM,HFL,'TOH

6201 FORMAT (5X, #HFM=t, F10 .2, /5X,.#NFL=t, F10 . 2, /5X ,
1tTDH=t,F10 .2 )
' WRITE(61,6159)TENP S

6159 FORMAT(5X,*SEASO,NAL PUMPING ENERGY=t,F15 .2,* KWHt )
WRITE(61,6116)DNO Z

6116 FORMA.T(5X,tNOZZLE DIAMETER=S F10 .6,$ IN .* )
RETUR N
END
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C
C

SUBROUTINE MANFCT 4
C
C

	

CALCULATE MANUFACTURING ENERG Y

C
COMMON SPON,HFL,HFM,STL,ELEVDF,HFSLrHFMISC,SPRNO ,

10S 0R,EFPP,FFGP,IPTY,THHP,XNLTS,XLNLT,I0LT,EFMO ,
2XLNMN,IDMN,RIHT,CHWM,CHWL,XNLT,BHP,MLTY,MMTY,IWD ,
3SPOHF,MNPO,XNIPS,ACRE,OMNF,DLTF,TXLNMN,TLNIT ,
40M,XLM,IOM,NMS,HPD,DNA,TNA,FREQ,EFIR,WIDE,NI"S ,

5TENPS,TEMMFT,ELMFT,EPPMFT,ETTRP,ENINST,ENSPMFT,NOSP R
DIMENSION DM(10),XLM(10),IDM(10 )
DIMENSION MD(91,AMW(9),AMCW(9),SMW(9),A3MW(9),A9MCW(9 )
DIMENSION PVMW(9),PUMPHP(20 )

DIMENSION ILO(5),ALW(5),ALCW(5),SLW(5),SLCW(5) , 0 VLWt5 )
DATA(XNAME=t*MAINLNSt )

DATA(YNAME=t*LATERAL( )
OATA(PUMPHP=0 .75,1 .0,1 .5,2 .0,3 .0,5 .0,705,10 .0,15 .0 ,

120 .0,25 .0,30 .0,40 .0,50 .0,60 .0,75 .0,100 . 0,125 .0 ,
2150 .0,2.00 .0 )
CALL EQUIPt12,XNA4E )

C
C

	

READ BASIC MAINLINE DAT A

READ(12,6012) (MO(J),AMW(J),AMCW(J),SMW(J),A8MW(J) ,
1AR4CW U),PVMW(JI,J=1,8 )

601? FORMAT(I3,6F6 .2 )
CALL UNEQUIP(12 )

C

C

	

CALCULATE ENERGY TO MANUFACTURE MAINLINE S
TEMMFT=0 . 0

.00 98 I=1 ,NM S
DO 69 J=1, 9
IFtIDM(I) .EQ .MD(J)) GO TO 6 0

69

	

CONTINUE
63

	

GO TP (201, 202, 2133, 204), MMT Y
201

	

TM'JWT=XLM(I)/XLNMN*(XLNMN*SMWtJ1 )
EMMFT=TMNWT*8 . 5
GO TO 21 0

202

	

TMNWT=XLM(I)/XLNMN*(XLNMN*AMW(J)+AMCW(J) )
EM1FT=TMNWT*36 .
GO TO 21 0

203

	

TM"JWT=XLMUI)/XLNMN # (XLNMN*PVMW(J) )
EM1FT=TMNWT*15 . 2
GO TO 21 0

204

	

TMNWT=XLM(I)/XLNM N # (XLNMN*ABMW(J)+ABMCW(J) )
EMMFT=TMNWT # 8 . 0

210

	

TEMMFT=TEMMFT+EMMF T
98

	

CONTINUE
WRITEi61,6112)TFMMF T

6112 FORMAT(EX,tFNERGY TO MANUFACTURE MAINLINES=t,F10 .2 ,
it KILOWATT-HOUPSt )

CALCULATE LATERAL MANUFACTURING ENERG Y
IFtIOLT.EQ .4) GO TO 4 7
IF(IDLT.EQ .5) GD TO 57
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WPITEt61,6135 )
613= FORMAT (5X,tLATF'AL SIZE IS NOT STANDARD( )

GO TO 9 9
IF(IWD .E0 .+8) GO TO 4 1
IF(IWf .EO .50) GO TO 42
IF(IWC .Ef .F4) GO TO 4 3
IF(IWD .EO . 76) GO TO 4 4

45

	

WPITFt61 1 5145 1
6145 FORMAT (SX, WHEEL SIZE IS NOT STANOA+RO# l

GO TO 99
41

	

WWT=38 .
GO TO 4 8

42

	

WWT=41 . 5
GO TO 4 8

43

	

WWT=46 .
GO TO 4 8
WWT=60 .
LTWT=XLNLT*(1 .05)+5 .44-WW T
GO TO 6 1
IF(IWD .EO .43) GO TO 5 1
IF(IWO .EO .FU) GO To 5 ?
IF(IWO .EQ .64) GO TO 5 3
I 5 t I WO . EQ . 76) GO TO 5 4
GO TO 4 5

51

	

WWT=3Q .
GO TO 5 1

52

	

WWT=42 . 5
GO TO 5 8

53

	

WWT=4 7 .
GO TO 5 8

54

	

WWT=64 .
53

	

LTWT=XLNLT* (1 .42) f7 .4#WW T
61

	

TLTWT=LTWT*XNLT S
ELPMFT=TLTWT'35 .
EM!OMFT=5000 .*XNLT S
ELMFT=ELPMFT+EMOMF T
WRITE(51,6113)ELMF T

5113 FORMAT(5,X,tENERGY TO MANUFACTURE LATERALS=#,F1ti .2 ,
It KILOWATT-HOURSt )

C
C

	

CALCULA T E PUM .PTNG UNIT MANUFACTURING ENERG Y
C

DO 7C I=1,? 0
IFt3HP .LE .PUMPH'(I)) GO TO 4 0

70

	

CONTINU E
41

	

OBHP=PUMPH P t l )
WRITE(61,6121)OBH P

6121 FORMAT(5X,tOESIGN POWER UNIT=I,F7 .2, H' CAPACITYf l
F P 9 MFT=OBH P*1163 . 0
WRITE(61,6111)EPPAF T

6111 FORMAT t5X,2ENERGY TO MANUFACTURE PUMPING PLANT=t ,
iF1O .2,t KILOWATT-HOURSf l

44

57
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C

	

CALCULATE SPRINKLER MANUFACTURING ENERGY .
WTS'R=MOSPR*XNLTS c t . 1
ENS PMF T=WT PR * 1 P . 7 '
WPITE (61, 6117)ENSP4F T

6117 FORMAT (5X, tENERGY TO MANUFACTURE SPRINKLERS=t, Fit. 2 ,
It k 4Ht )

9D

	

RETUR N
EN O

SUIROUTINE TRNSPR T 4
C
C

	

CALCULATE TRANSPORT ENERG Y
C

COMMON SPOM,HFL,,HFM,STL,ELEVOF,HFSL,HFMISC,SPRNO ,
1QS'R,EFPP,EFGP 1 IPTY,THHP,XNLTS,XLNLT,IIILT,EF M O ,
2XLNIN, IJMN, R.IHT, C,;HWM, CHWL, XNLT, HHP,MLTY, MMTY, IWD ,
3SPOHF , MNPO, XNI PS, ACRE, O MNF, DLTF, TXLMMN, TIKILT ,
4OM,XLM,IOM,NMS,HP?,OMA,TNA,FREQ,EFI',WIDE,NIPS ,
5TENPS,TEMMFT,ELMFT,EPPMFT,ETTRP,ENINST,ENSPMFT,NOSP R

DI M ENSION OM(1O),XLMAi0),IOM(10 )
FTTRP=(339332 .',',ACRE*NIPS)1tXLNMN*XLNLT*S °RNO )
WRITE (61, 6116) E'TTR P

6116 FOR IAT(SX,tENERGY FOR T 'ANSPORT=#,F1O .? ,
it KILOWATT-HOURS PER SEASONt )
RETUR N
EM I

SU'ROUTIME INSTALL 4
C
C

	

CALCULATE INSTALLATION ENERG Y
C

COMMON SPOH,HFL,HFM,STL,ELEVOF,HFSL,HFMISC,SPPNO ,
1QS PP,EFPP,EFGF, IPTY,THHP,XNLTS,XLNLT,IDLT,EFMO ,
2XL NMN . 10MM, RIHT, CHWM, CH WL, XNL T, 3 HP, 'ILT Y, MM T Y, I WO ,
3SPOHF,MNPO,XNIPS, ACRE,DMNF,iDLIF,TXLNMN,TLNLT ,
4OM,XLM,IOM,NMS,HPU,ONA,INA,FREQ,EFIR,WTDE,NTPS ,
5TENPS, TEMMFT, ELMFT, E PPME T, ET TRP, EN INST, EMSPMFT, NOSP R
DIMENSION OM(10),XLM(10),I0M(1O )
DATAtIYES=tYES t )
WPIT€(61,5162 )

6162 FORMAT(SX,tIS MAINLINE 9URIEOAt )
R'AF (F0, 6062) MNPO

6062 FORMAT(P4)
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TF(MNPO .EO .IYES)GO TO 60 0
ENTNST=0 . 0
WRITE(61,6161 )

616 1

C

FOR1AT(

	

X,tINSTALLATIfN

	

ENE'GY

	

IS

	

NEGLIGIBLF,f )
Gn TO R0 0

C CALCULATE VOLUME OF EXCAVATION AND ENERGY REQUIREMEN T
600 ENINST=O . ?

DO

	

670

	

I=1 .NM S
O m NF=IDMtT) /12 . 0
EMINST=XLM(I)*t2 .+DMNF)*( .37+0MNF) * . 3

658 ENINST=ENINST+EMINS T
WRITE (51,6164) ENINS T

6164 FORMATt5X,1INSTALLATION ENERGY=t,F18 .2,t KILOWATT-HOURS# )
90 0

C

RETURN
EN O

SUBROUTINE SOLIISE T

C
C

SOLID SET AND PERMANEN T

COMMON/TAG/ ISYST Y

2XLNMN, IDMN, RIHT, CHWM ,
3SPOHF,TRWT, MNPO ., ILTPO,XMIPS ,

5T7NPS, TEMMFT, EL MFT, E

CHWL ,

PfM F

COMMON SPOH,HFL,HFM,STL,ELEVDF,HFSL,HFMISC,SPRNO,IOSM ,
10SPR,FFPP,EFGP,IPTY , T HHP,XNLTS,XLNLT,IQLT,ESMMFT,FFMO ,

404,XLM,IDM,NMS,HPD,RICA,TNA,FRFQ,EFIR,WIOE,NIPS,XLEN,ANLTS ,

SPRINKLER SYSTEM ENERGY REQUIREMENT S

XNLT, RHP, MLTY, MMTY, HFSM, XLSM ,
ACRE,O MNF, DLTF,TXLNMN, TLNLT ,

T, FT T RR P, EN INST, EN SPMFT, NOSP Q
C ANLTS = NUMBER IF LATERAL S

OATA(BNAME=/*INSOLI'1I )
BATA (GNAME=#*XTNPERMt)

OPERATING SIMULTANEOUSL Y

C
DIMENSION

	

OMt101,XLM(101,IOmt10 )

C CHECK FLAG FOR SOLID SET OR PERMANENT SYSTEM
IF(ISYSTY .E0 .7) GO TO 4 2
CALL EQUIP (5i, BNAMF 1
GO TO 46

	

42

	

CALL EQUIP(51,GNAME )

	

46

	

CONTINUE
6001 FORMA t 9F10 , 2 1
6102 FORMAT(3I2,2I3 )
C

READ BASIC INPUT DAT A
REAO (51,6UC2) IPTY,MLTY"1 T1"
READ(51,60+11) SPDH,CHWM,CHWL,STL,ELEVDF,HFSL•H F M I .S C
RE4D(51,6O01) TNA,ONA,XLNLT,XLNMN,PIH T
READ(51,6001) EFPP,EFGP,EFIP,EFM O
RFA)(51,6011)FRFt,HPD,TPWT,ACRE,WIDE,XLE N
CALL UNEOUI D t51 )
CALL OPRATE F

CALL MANFCT 5
CALL TRNSPRT5

	

'
CALL INSTALLS
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C

	

CALCULATE AND WRITE SEASONAL ENERGY VALUE S
TOTSEN'=TENDS+ETTR 0 +-(TEM' .FT*ESM4FT+ELMFT+#ENINST) /2] .
1+EPPMFT/15 . +ENSPMFT/10 .
WRITF(61,6100)TOTSEN

6100 FORMAT(5X,tTOTAL SEASONAL ENERGY=t,F20 .2,# KWHt )
SEMPA=TOTSEN/ACD E
WPITE (61,6110) SENP A

6110 FOR'AT(SX,fSEASONAL ENERGY PER ACRE=t,F15 .2,t KWHt )
ENPAI=SEND AITN A
WRITE (61, 6166)EWPA T

6166 FORMAT(5X,tENERGY PER ACRE-INCH=4,F10,2,t KWHtACRE-INCH'' )
RETUR N
EN O

SUBROUTINE OPRATF 5
C
C

	

CALCULATE PUMPING ENERG Y
C

COMMON SPOH,NFL,HFM,STL,ELEVOF,HFSL,HFMISC,SPRNO,TOSM ,
10SPR,EFPP,FFGP,IPTY,THHP,XNLTS,XLNLT,IOLT,ESMMFT,EFMO ,
ZXLN1N,IOMN,RIHT,CHW' ,CHWL,YNL ,3HP,MLTY,MMTY,HFSM,XLSM ,
3SPOHF,TPWT, MNPO, ILT'O, XNIPS, ACRE,DMNF, OLTF, TXLNMN, TLNLT ,
'#QM, XL M,IOM, NMS, HPD, DN,A, T MA, FRE Q, EF IR, W IDE, NI PS, XLE N, ANL TS ,
5TENPS,TEMMFT, ELMFT, EPPMFT, ETTRP, ENINST, NSPMFT, NOS 0R

DI'(ENSION OM(1J),XLM(10),ID M (10 )
C
C

	

CALCULATE P UMPING PAT E
TLNLT=WIOEl2 .
SPRNC=TLNLT/XLNL T
XNLTS=.2 .*XLEN/XLNM N
NOSPP=IFIX (SPRNO)
QPUMP=ACRE*ONA*453 .1(FREO.*HPD*EFIR )
XNIPS=(TNA/ONA) + .9 9
NI P S=IFIX(YNI PS )
TTO T=NIPS*FREQ*HP O
WPITE(61,6187)XNLTS,OPU M P

6187 FORMAT(5X,t> OF LATERALS=t,F7 .2,5X,tQPUMP= #
1F1 .2, t GP' t )

C
C

	

OETERmTNE NUMOER OF LATERALS OPERATING SIMULTANEOUSL Y
WRITE(6i,619 )

619

	

FORMAT(5X,t OF LATS . OPERATING SIMULTANEOUSLYA(XX .)t )
RE .AO(€ 0,699) ANLT S

609

	

FORMAT (F10 . 2 )
QLT=OPUMP/ANLT S
QSPR= OLTINOSPR
ONOZ= (DSPR/ (28 .9t'`SPOH** .E)) *'` . 5
XLSM=XLNMN*ANLTS/2 .
WRITE(61,610)OL T

6tn

	

FOR' AT(SX,tQLATFR,AL=t,F7 .2,t Ga'1t l
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C

	

DETFP M INF MAINLINE CONFIGURATIO N
WRITE(611612 )

612

	

FORMAT(5X,tENTER NUMBER OF MAIN STE S,LATFRAt SIZE,( ,
1/1X,tUNOER -1,2- RES°ECTIVELYt,/1X,(12 0
R AO(F0,60?) NMS,IIL T

612

	

FORmATt2I1 )
WPITE(6t,6188 )

618

	

FORMAT(1X,t0IAMFTE7-FLOW PATE-XLEMGTHt )
RFAO(60,6021) (IfM(I),QM(I),XLM(I),I=1,N MS )

6021 FORMAT(I2,F18 .2,F11 .2 )
ILTF=IDLTl12 . 0
OLTF=QLT*,0022 3
SP1HF=SPOH'w 2 .30 7

CALCULATE T OTAL HEAD RE!)UIREMENT S
HF'M=n . 0
DO 500 I=I, NM S
D"'`1F=IDMtI) /12 . 0
IDSM=IOM(I )
OFMNF=IOS'4/12 . 0
QH=QMtI) ./448 . A 1
HFP=((QMF*XLM(I)** .54)/(((3 .14*DMNF**2)/4) *

1((OMNF/4)** .63)*(1 .318* HWM)))**1 .85
WRTTE (61,6181) I,HF P

6181

	

FORMAT(5)(,/HFM(INCREMENTAL)t,I2,t =/,F10 .2 )
HF 1=HFM+-HF °

500

	

CONTINUE
HFL=(t(()LTF*TLMLT**.54)/t((3014*OLTF**21/4)*((OLTFf4 )

1** .63)*t1 .318*CHWL)))**1 .85)*( .351+( .5ISPRNC) +
2SORT1 .14.171SPRNO**2) )
HFSM=(t(O,L T F*ANLTS*(XLNMN*AMLTS/2 .1 c * .54)/(((3 .14 *

10SINF**2l/4 .) *((f)SMNF/4 .)** .63) *(1 .318*OHWM) )) **1 .85) *
24 .333}(1 ./ANLTS)+SORTt .1417/(ANLTS/2 .)'**2) )
TOH=SPOHF+HFL+HFM+HFSM*STL+-ELEVOF+HFSL}HFMISO4-RIH T

C
C

	

CALCULATE POWER AN] PUMPING ENERGY REOUIREMENT S
WHD=L PUMP*TOH13960 .
BHa=WHPIEFP P
IF(IPTY .GT .0) GO TO 10 1
T HHP= ¢HP/ t E FGP*EFMO )
GO TO 10 1

100

	

THHP=BHP/EFM O
101

	

TEMPS=TTOT*THHP* .745 7
WRITE(61,6101) TH H

6101 FORMAT(10X,(THE THERMAL HORSEPO'i4ER=t,F10 .2 )
W?ITE(61,620i) HFM,HFL,HFSH,TD H

6201 FORMAT(FX,tHF!=t•F10 .2,/5X,tHFL=t,F1U .2,/5X ,
ItHF S '=1,F11 .2•/5X, tT!lH=t,F10 .2 )
WRITE(61,6189)ONO Z

6189 FORMATt5X,tSPPINKLER NOZZLF DIAETE=t,F8 .6,# I m .t )
W p ETF(61 1 6190) r ! NP S

6190 FORMATt5X,(SEASONAL PUM0 ING ENERGY=f,FI2 .2,# KWHt )
RETUR N
END
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SU3ROUTINE MANFCT F
C
C

	

CALCULATE MANUFACTURING ENERG Y
C

C 0MMON SPOH,HFL,HFM,STL•FLEVOF,HFSL,HFUISC,S PQNO,TOS? ,
10PR, EFPP,EFGP, TPTY, THHP, X NL TS, XLNLT, IOL T, FSMMFT, EFMO ,
2XLNIN, TrImN, RIHT, OHWM, CHWL, XNLT, BHP, MLTY, M?4TY, HFSM, XLSM ,
3SP )HF, TRWT, MNPO, ILT D o, XN ID'S, ACRE, 0MNF, OLTF• T XL NMN, TLNLT ,
4QM, XLM, IDM, NMS, HPD, ONf, TNA,FRFO, EF IR,WIDF, NIPS, XLEN, ANLTS ,
6TENPS,T!MMFT,ELMFT,FP P MFT,ETTRP,ENINST,'NSPMFT,NOSPR
DIMENSION r)M(10),XLM(10),IDmfiO )
0I""7NSIO1v "`?(9),A! W(P),AMCW(9),SMW(9),AR'i'I(9),A? C'W(9 )
DIMENSION PVMW(9),PUMPHP(20 )
DIMENSION ILD(9),ALW(9),ALCW(9) SLW(9),5LCW(9),PVLW(9 )
OATA +(XNA iF=t MAINLNSt )
0ATA(VNAMF=t*I TERALf )
DATAtPUMPH9=0,75 1 1 .(1 1 4,5 1 2 .0 1 3 .0,5 .1 1 7 .5,10 .0,15 .1 ,

120 . 0,25 .0,3(0 .0,40 .0,50 .0,60 .0,75 .0,100,0,125 .0 ,
2150,0,200 .0 )
CALL F':)UI° (12, XNAME )

C
C

	

READ 9ASIC MAINLINE OAT A
RFAO(12,6012) (MD(J), AMW(J) ,AMCW(J),SM~W(J),ABMW(J) ,

1AIMCW(J),PVMW(J),J=1,3 )
6012 FORMAT(I3,5F6 .2 )

CALL t3NEOUTP(1? )
TE4'FT=0, L

C
C

	

CALCULATE MAINLINE MANUFACTURING ENERG Y
DO 99 I=1, NMS
00 69 J=1, 3
IF(ID M (I), Q.MD(J)) GO TO 6 0

69

	

CONTINUE
50

	

GO TO(201,202,203,204),M4T Y
211

	

TMNWT=XLM(I) ./XLNMN'(XLNMN*SM14(J) )
EMMFT=TMNWT*3 . 5
GO TO 21 0

212

	

TMNWT=XLt1(I)/XLNMN*LXLNMN `AMW(J)+AMCW(J) )
FMMFT=TMNWT* :36 .
GO TO 21 0

203

	

TMNWT=XLmTI)/XLNMN"F (XLNMN'`PVMW(J) )
EM4FT=TMNWT*1S . 2
GO TO 21 1

204

	

TMNWT=XLM(I)/XLNMN ,)(LN'MN*ARMW(J)+A8Mrw1J) )
EMMFT=TMNWT*8 . 0

210

	

TEMMFT_TFMMFT#EMMF T
99

	

CONTINU E
WRITF (61, 6112) TF MMF T

6112 FORMATIFX,tENEPGY TO 4ANUFACTURE MAINLINES=#, 10 .2 ,
1/ KILOWATT-HOURS/)
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C

	

CALCULATE SU9MAINLINF MANUFACTURING ' RG Y
OO 64 J=1, 0

IF(IO-SM .El . 00)) GO TO 6 7
6:'

	

CONTINU E
67

	

GO TO(401,402,403,414),`14T Y

401

	

TS44WT=XLSM/XLNMN* (XLNMN*SMW (J) )
F SM'1FT=TSMNWT . 5
GO TO 41 1

402

	

TS^1t'414T=XLSM/XLNMN*(XLNM I'AMW(J)+At'CW(J) )
ESMMFT=TSMNWT" 36 .
GO TO 41t?

403

	

TS1NWT=XLSM/XLNMN*XLNMN*PVMW(JI )
ESMMFT=TSMNWT*15 . 2
GO TO 41 0

414

	

TSMNWT=XLSM/XL MN*tXLNMN*A3MW(J)+A9MCW(J) )
ESMMFT=TSMNWT*8 . 0

410

	

WRITE(51,6141)FSMF T
6141 FORMAT(5X,tENERGY TO MANUFACTURE SUBl TN=t,F12 .2,t KWHt )

CALL EOUIP(i3,YN MF )

C

	

READ BASIC LATERAL DAT A
REAO(13,6013) (IL0(I),ALW(I),ALCW(I),SLW(I),SLCW(T) ,

1PVLW(I),I=1,5 )
6017 FOR1AT(I3,5F6 .2 )
C
C

	

CALCULATF LATERAL MANUFACTURING ENERG Y
5V I=1, 5

IF(IDLT .EO.ILO(I)) GO TO 5 9
50

	

CONTINUE
59

	

SO TO (301, 30 2, 3(t 3) , 1LT Y
301

	

RI'4T= (RIHT* 0, 41 +0 . 2
TL A TW T =XNLTS*SPR.ND*(XLNLT*SLW(I)+SLOWIT)+RIWT )
E1MFT=TLATWT*R . 5
GO TO 31 0

302

	

PIWT=RIHT*f . 6
TLATWT= XNLTS*SPRNO*(XLNLT*ALW(I)+ALCWIT_)+PIWT )
ELMFT=TLATWT* 36 .
GO TO 31 0

313

	

RIWT=RIMT*0 .1 5
TLATWT=XNLTS*SPRNO* XLNL T* PVLW (I) +RT_WT )
ELMFT=TLATWT*15, 2

310

	

CONTINUE
CALL UNEOUTP(13 1
WRITS (61, 6113) ELMF T

6113 FOR` AT(SX,tENERGY TO MANUFACTURE LATEPALS=t,F15 .2 ,
it KILOWATT-HOURSt )

C
C

	

CALCULATE SPRINKLER MANUFACTURING ENERG Y
TSPRWT=SPRNO*XNLTS*1 . 1
ENSPMFT=TS'RWT'' 1 Q . 7 ?
WRITE (61, 614?) ENS P `"F T

6149 FORMAT(SX+tFNFRGY TO ?ANUFACTURE SPRIMKLERS=t,F15 .2 ,
it KWHt)
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C

	

CALCULATE PUMPING UNIT MANUFACTURING ENERGY
DO 70 T=1,2 0
IF(3HP .LE .PUMPHP(I)) GO TO 4 0

70

	

CONTINUE
40

	

03HP=PUMPHP (I )
WPITE(61,6121)DH P

6t21 FOR.'1AT(5)(,tOESIGN POWER UNIT CAPACITY=t,F7 .?,t HP# )
EPPMFT='1OHP's i163 . 0
WPTTE (51,6111)FPPMFT

5111 FOQMAT(FX,t E NERGY TO M
♦ )
ANUFACTURE PUMPING PLANT=t ,

1F1f .21t KILOWATT-HOUR S
RETU P
EM I

SUIROUTINE TRNSPRT S
C
C

	

CALCULATE TRANSPORT ENERG Y
C

COMMON./TAGOISYST Y
COMMON SPOH,HFL,HEM,STLsE'LEV'DF,HFSL,HFMISC,SPRND,IoSM ,

1NS P 2,E FPP,EFGP,IPTY,THHP,XNLTS,XLNLT,IDLT,ESMMET,EFMO ,
?XLNMN, I!01'!N, RIHT, CHWM, CHWL, XMLT, 9HP, MLTY • MMTY, HFSM, XLSM ,
3SPOHF,TRWT,MNPO,ILTPO,XNIPS,ACRE,DMNF,OLTF,TXLNMN,TLNLT ,
40M, XLM, IOM, NMS, HPD, DNA, T NA, FRE O, EF IR., WI OE, NI PS , XLEN, ANL TS ,
5TFNPS, TE MIMF T, ELMFT , EPPMF T, ET TRP, EN INST, ENSPMFT, "IOS P R
DIMENSION !0M(10),xLM110),IDM110 )

C
C

	

CHECK FLAG? IF A PERMANENT SYSTEM, TRANSPORT ENERG Y
C

	

IS NEGLIGIBLE
IF(ISYSTY .EQ.71 GO TO 4 3
ETRMFT=TRWT 4 8 .5/2 .
EFTRP'=WIDE*XNLTS/235 ,
ETTRP=ETRMFT+EFTR P
GO TO 49

43

	

ETTRP=111 . 0 0
49

	

WRITE161,6116)ETT p o
69.1E FOR1A T 15X,tENFRGY FOR TRANSPORT=t,Fi0,? ,

It KILOWATT-HOURS PER SEASONt )
RETUR N
ENO
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SU3ROUTINE INSTALL S
C
C

	

CALCULATE INSTALLATION ENERG Y
C

COMMON/TAG/ISYST Y
COMMON SPOH,HFL,HFM,STL,ELEVDF,HFSL,HFMISCsSPRNO,IOS ,
1QSPR,EFFP,EFGP,IPTY,THHP,XNLTS,XLMIT10 IOLT,ESM4FT,EF'MO ,
2XLNHN, IDMN, RIHT,CHWM, CHWL, XNLT, IHP, MLTY, M+TY,HFSM, XLSM ,
3SPOHF,TQWT, MNPO, ILTP O. ., XNIPS, ACRE OMNF, OL T F , TXLNMN, TLNL T ,
40M, XLM,IOM,NMS,HPD,DNA,TNA,FREQ, EFIR,WIOE,NIPS, XLEN, ANLTS ,
STENRS, TEMMFT, ELMFT, EPPMFT, ETTPP, ENINST, ENSPMFT, NOSP R

DIMENSION OM(10),XLM(10),I14t10 )
DATA (IYES=IYES t )

C
C

	

CHECK FLAGS IF A SOLID SET SYSTEM, INSTALLATION ENE R G Y
C

	

IS NFGLIGIPL E
IF(TSYSTY .E0 .5) GO TO 7 2

C
C

	

CALCULATE VOLUME. OF EXCAVATION AND ENERGY REOUIREMEH T
EMTNST=0 . 0
DO 65a I=1,NM S
DDMNF=104(I)/12 .13
PMINST-=XLM (I) * (2 . +DMNF) * 1 .33+DMNF) * . 3

650

	

PMINST=?MINST+EMINS T
ELIVST=XMLTS*TLNLT*(2 .+OLTF)*( .33+0LTF)* . 3
ESMINST=XLSM* (2 .+IDSM/12 .) x'( .33+IfSM/12 .) * . 3
WRITFt61,6162 )

6162 FOR.MAT(SX,tIS MAINLINE PURIEOAfl
READ (E 0, 606 2) MNPO

6062 FORMAT(R4 )
WRITE 161,6163 )

6153 FORIATtSX,tARE LATERALS `3URIEOAt )
READ(60,6063)ILTP O

' 61363 FORMATiR4 )
IF ("1NPO . EQ . IYES) GO TO 60 0
IFtILTPO .EO .IYES)GO TO 60 1

72

	

ENINST=0 . 0
WRITF(61,6161 )

6161 FCRMATt5X,tINSTALLATION ENERGY IS NEGLIGIILE .t )
GO TO 9'0 C

610

	

IF(ILTPO .EO .IYES)GO TO 70 1
ENTNST=EMINST}ESMINS T
GO TO 80 0

7131

	

ENINST=EMI`1ST+ESMINST+FLINS T
GO TO 30 0

611

	

ENINST="LINS T
GO TO 80 0

800

	

WRITE (61, 6154) ENINS T
6164 FOR MAT(5X,tINSTALLATTON =NERGY=t,F18 .2,t KILOWATT-HOURS` )
900

	

RETUR N
EMI
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C
C

SUBROUTINE FURRO W

C

	

SURFACE IRRIGATION SYSTEM ENERGY REQUIREMENT S
C

DATAIPUMPHP= .75,1 . ,1 .5, 2 ., 3 .,5 ., 7 .5,1! ., 15 .,20 . ,2r .,3C . ,
140 .,5 1 .,60 .,75 ., 1CO .,125 ., irC . 1 7ne . )
?ATA ( XNAMF=t*MATNLNSt )
OATA(IYES=tYES t i
DIMENSION MD(9),AMW(9),AMCW(9 ) 1 DU' PHP(21 )
DATA(QNAME=t*XINSURF# )

C
C.

	

HAUL = AVERAGE LENGTH OF HAUL FOR LEVELER (FT )
C

	

YARD = LEVELER HAUL CAPACITY (CU .YD .
C

	

DE TH = NET APPLICATION (IN/IRRIGATION )
I'

	

X50AYS = IRRIGATION FREQUENCY (DAYS )
C

	

TOTAL = SEASONAL APPLICATION (IN/SEASON )
C

	

ITRTY = LEVELING TF'ACTOR TYP E
C

	

ENPYD = LEVELING ENERGY PER YARD (KWH/CU .YD . )
C

	

EN'AC = LEVELING ENERGY PER ACRE (KWH/AC )
C

	

TOLEN = TOTAL LEVELING ENERGY (KWH )
C

	

IRTY = TYPE OF SURFACE IRRIGATIO N
C

	

ENON = ENERGY TO MAKE DISTRIBUTION NETWORK (KWH/AC )
C

	

TENON = TOTAL ENERGY TO MAKE DISTRIBUTION NETWORK (KWH )
C

	

TPUMP' = FLAG INDICATING PU MPING REQUIREMEN T
C

	

STL = STATIC PUMPING LIFT (FT )
C

	

IHOTY = FLAG INDICATING HEAD DITCH TYPE
C

	

ENHJ = ENERGY TO MAKE HEAD DITCH (KWH )
C

	

ENHDPA = ENERGY TO MAKE HEAD DITCH PER ACRE (KWH/AC )
C

	

IMO = DIAMETER OF GATED PIPE (IN )
C

	

ENGP = ENERGY TO MAKE GATED P IPE (KWH )
C

	

ICOTY = FLAG INDICATING TYPE OF CONTROL DEVIC E
C

	

ENST = ENERGY TO MAKE SIPHON TUBES (KWH )
C

	

XNOTO = NUMBER PE TURNOUTS REQUIRE D
C

	

ENTO = ENERGY TO MAKE TURNOUT S
C

	

ENOPA = ENERGY TO MAKE CONTROL DEVICES °ER ACRE (KWH/ACRE )
C

CALL EOUIP(6,QNAME )

READ BASIC INPUT DAT A
READ(6,600n)HAUL,YARf,WIOF,XLEN,DEPTH,XDAYS,TQTA L
CALL UNEQU T P(E )

CALCULATE ENERGY FOR FIELD LEVELIN G
ACRE=WIDE*XLEN/43E60 .

F000 FORIA T (7F3 .2 )
WRITE (61,61 01 )

6101 FORYAT(SX,tENTEP NUMBER OF TRACTOR USED IN FIELD LEVELING t
1,15X,11= 07 AND 10 CU .Yr . C.ARRYALLt,/X ,
212 : DC AND 14 CU .YD, CARRYALL1,15X ,
313 . 09 AND 20 CU .YD . CARRYALLt )
RrAI(60,6001) ITPT Y

6001 FORMAT (II )
GO TO(11,12,13)ITRTY
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11

	

ENPY0=29 ./(151 .36-00736*HAUL ,
GO TO 20

12

	

ENR Y0=450 .x'(200 .- .1025*HAUL )
GO TO 2 0
ENPYO=675 ./1284 .5- .1393*HAUL )

20

	

ENPAC=ENPYO*YARil/25 .
TOLEN=ENPAC*AC P
WRITE (61,61 it2)EMPA C

6102 FORMAT(5X,±LEVELIt'G ENERGY=t,F10 .2,t KWH/AC°.Et )

C

	

CALCULATE ENE RGY FOR MAKING FURROWS OR CORRUGATION' S
WRITE(61,6103 )

6103 FORMAT15X,tENTER NUMREP OF IRRIGATION T YPE1,/5X ,leis FURROWS

	

2 : CORRUGATIONSt l
READ(60,6Of2)IRTY
IFI IRTY . EQ . 1) Gil TO 3 0
FNDN=51) .21
TENDW=EMON `ACRE_
SP CE=1 .6 7
WRITE (61,6123) ENO M

6123 FORMAT(5X,tENERGY TO MAKE CORRUGATES=t,F10 .2,t KWH!ACRE )

GO TO 4 1
30

	

FNIN=49 .513
TENON=ENON*ACR E
S P ACE=3 .
WRITE(51,6104)ENO N

6104 FORMAT(SX,tENERGY TO MAKE FURROWS=t,F10 .2,t KWH ./ACRE* l

C
C

	

CHECK IF PUMPING IS REQUIRED AND CALCULATE PUMPIN G

C

	

ENERGY IF NECESSAR Y
41

	

WAITF(61,6110 1
6110 FORMAT(5X,tIS PUMPING REQUIRED TO IRRIGATE*tYES-NO)t )

READ 460, 6010) IPUMR

6010 FORMAT(R4 )
TF(IPUMP .EO .IYES)GO TO 7 0
FNPUMP=0 . 0
WRITE(61,6111 )

6111 FORMATt?X,tNO PUMPING ENERGY REOUIRED t )
GO TO 6 3

70

	

WRITEt61,6112 )
6112 FORMAT(5X,tENTER STATIC LIFT,SOURCE-TO-FIELO,(FT) t )

REAO(60,6012)ST L
6912 FORMAT(F10 .2 )
C
C

	

CALCULATE ENERGY TO MAKE HEAD DITC H
63

	

WRITE(61,6107 )
6107 F ?RMAT(SX,tENTER NUMBER OF HEAD DITCH TYPFt,/5X ,

111t UNLINED

	

21 CONCRETE LINED

	

31 GATED PTPEt )
READ(60,6005)THPT Y
GO TO131,32,33)IHDI Y

31 -

	

ENHI= .01*WID E
E MHOPA=ENHOYACR E
GO TO 60
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ti

3?

	

ENH0=111 .65 4 WIO E
ENHOPA=EMHD/'IACRF 25 . l
GO TO 6 0

33

	

CALL E. UIP (16, XNAMF )
REA'1(16,6016) (MD(JA,A M W(J),A MCW(J),i=1,0 )

6016 FORMAT(I3,,'_F6 .? )
CALL UN='OUTP (16 )
WRITE(61,6108 i

6158 FORIAT(5X,tENTER DIAMETER OF GATED PIPE IN INCHES #
it (RIGHT JUSTIFY) XXf )
READ ( 6 01 6001) I M O

6008

	

FOR4AT(I?.. )
00 57 J=1, 3
IFUIMO .FO .Mf (J) )G0 TO 5 1

57

	

CONTINU E
58

	

EMGP=(WIOE130 .) x`(30 .*AMW(J)+AMCW(J) )
ENH3PA=ENGP/(ACPF*20 . )
WRI T E (61, 6119)ENHOD A

6119 FORNAT(5X,tENERGY FOR GATED PIPE=t,F10 .2 1 t KWH/ACRE# )
GO TO 6 9

60

	

WRITF(61,6109)ENHDP A
6109 FOR`IAT(5X,tENERGY FOR DISTRIBUTION STRUCTURF=t ,

2F1f? .2,t KWH/ACRE# )
C
C

	

CALCULATE ENERGY FOR MAKING SIPHON TU5ES ,
C

	

TURNOUTS, OR SPILLS .
WRITE (61,61 05 )

6105 FOR''►AT(5X,tENTEP NUM9ER OF CONTROL TYPE USEO2,/SX ,
i I t SIPHON TURESt, :/5)(,#2 : EARTH TURNOUTS*,/5X ,
2t7 : CONCRETE TURNOUTS( )
READ(60,E005) ICOT Y

6005 FORMATKI1 )
GO T0(21,2?,23)TCOT Y

21

	

XNOST=WTOF/SPAC E
ENST=XNOST*10 .3 4
ENCPA==NST/(ACRE'20 . )
GO TO 5 0

2?

	

ENCPA=0 . 0
GO TO 5 0

2

	

XNOTO=WIDE./ (SPACF"3 . )
ENTO=XNOTO `126 .2 6
ENCPA=ENTO1(ACRE*25 . )

50

	

WPTTc (61 .61136) FT.'CP A
610E FORMAT(5X,tENERGY FOP CONTROL O-VICES= ,F1" .2,# KWH/ACRE( )

GO TO 73
69

	

W RITE(61,6113 )
6113 FORMAT(5)(,tENTER Ni)MBFR OF ROWS IRRIGATED SIMULTANEOUSLY( ,

It XXX .t 3
READ (6 0, 6'0 i 2) XNRO W
IF(IRT Y .E0 .1)G' TO 7 1
XL=XNP0 :4* 1 . 6 7
XM=WIPE-X L
GO TO 7?

104



71

	

XL=XN PEOW*3 .
XM=WIPE-XL

7?

	

AR'A=XL*XLFN/++3%e .
0=453 .*ABTA*OED TH/(24 .*X9AYS* .5 )
O=IMO/12 . 1
HF=(((Q/441 .33)*(X"** .5L+))/t(t3 .14*3*9)l4 .)*tIO/4 .1** .63)
1*158 .16))**I .8 5
NFL.=(((O/443 .33)*(XL**,5411lt(t3 .14*0*0)/40)*((1/40 * 4 063 )
1*153 .16)1* 4 1,3 5
2* ( . 351 + I .5/ XNROW) +SORT ( . 1417/ (XNRON 4 YNROW)) )
TOH=HF+HFL+ST L
GO TO 3 1

73

	

IFtIPt1MP.NF,IYFS)GO TO 9 0
0=453 .*ACRE*DEPTH'(24.*XOAYS* .5 )
TO'9=ST L

8U 9HP=40*TOH) /2593 .
FH?= ( 0*TOH)/710 . 9
EMF!JEL=((TOTAL*ACRE*FHP) / (453 . *Q)) * . 746
OO 78 1=1, 2 0
IF(1HP .LE . P UMPHP(I))GO TO 7 9

73

	

CONTINUE
79

	

09HP=PUMPHP(I )
ENPP=O1HP*58 . 1
EM P '1MP= (ENFUEL+ENPP) IAC D
WRITE(61,6124)O,OEH p ,ENPU P

6114 FOR4AT(5X,IPUMPING RATE=I,F1) .2,# GAL/MTN .t,/SX ,
11MOTOk' CAPACITY=I,F11 .2 1 # 9HP .t,/5X ,
2#SEASONAL DUMPING ENERGY=t,F10 .i,t KWH/ACREt l

C
C

	

WRITE OUT SEASONAL ENERGY VALUE S
91

	

TOTEN=FNPAC+ENON+ENCPA+ENHOPA+ENPU P
TENPAI=TOTEN/T0TA L
W 9 ITE(61,6115)TOTFN,TENPAI:

6115 FoRMAT(cX,#ToTAL ENERGY PER ACRE=t,F12 .2,# KWH/AC?E #
1,/SX,ITOTAL ENERGY PER ACRE-INCH=I,F12 .? ,
?tKWH/ACRE-INCHt )
RETUR N
END

105
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