
E�cient Data-Parallel Files via Automatic Mode Detection

Jason A. Moore, y Philip J. Hatcher,yy and Michael J. Quinny

yDepartment of Computer Science
Oregon State University

Corvallis, Oregon 97331-3202
(503) 737-5128, FAX: (503) 737-3014

moorej,quinn@cs.orst.edu

yyDepartment of Computer Science
University of New Hampshire

Durham, NH 03824
(603) 862-2678
pjh@cs.unh.edu

Abstract

Parallel languages rarely specify parallel I/O constructs, and existing commercial systems provide
the programmer with a low-level I/O interface. We present design principles for integrating I/O into
languages and show how these principles are applied to a virtual-processor-oriented language. We show
how machine-independent modes are used to support both high performance and generality. We describe
an automatic mode detection technique that saves the programmer from extra syntax and low-level
�le system details. We show how virtual processor �le operations, typically small by themselves, are
combined into e�cient large-scale �le system calls. Finally, we present a variety of benchmark results
detailing design tradeo�s and the performance of various modes.

1 Introduction

Parallel computing o�ers great potential for speeding up a wide variety of applications. Unfortunately,
parallel software has not matured enough to support mainstream developers and users. They will not
embrace parallelism until the tedious low-level details of parallel programming are abstracted away from
the programmer and high-level languages and environments support the construction of portable, high-
performance applications. To this end, many parallel languages have been proposed. Few of these languages
have been adopted by applications programmers.

One signi�cant reason parallel languages have not been accepted is their lack of support for parallel
I/O, which is critical for real applications. Parallel language designers must incorporate into their languages
I/O operations which support high-level I/O integrated with the language's style of computation, which
can be implemented with high performance, and which are portable. Although many portable parallel �le
systems have been proposed in recent years, their interfaces are relatively low-level, and their details require
signi�cant programmer e�ort to master. A more abstract interface, perhaps built on top of one of these
systems and utilizing its optimizations, is needed.

In this paper, we describe a high-level and intuitive �le interface for virtual-processor-oriented languages.
The interface is presented in the context of the SIMD language C* [22]. The C* user's view is of an abstract
parallel machine consisting of a front-end scalar processor combined with a back-end collection of virtual
processors (VPs). The number of VPs matches the data-parallelism of a given program; each VP maintains
its own element of every parallel variable. Parallel operations are programmed from the viewpoint of what
each VP does with its data. Using the VPs' view makes parallel programming easier than less abstract
methods [10]. We apply the same view to parallel �les: a parallel �le consists of one stream per VP, and
each VP operates on its own stream within a �le, as shown in Figure 1. Therefore, a parallel �le may
contain millions of streams, each under the control of a di�erent VP. We call our implementation of this
abstraction Stream* (\Stream-star"). In addition to maintaining consistency of the C* programmer's view,
Stream* enhances programmability through its interface, which consists of parallel versions of familiar C �le
operations. At the VP level, these operations have the same semantics as their sequential counterparts.

The use of C �le operations as the Stream* interface provides the programmer with great
exibility.
Therefore, our implementation must support general �le operations. However, parallel computers are used
for speed, and support for general operations must not hamper the performance of frequently occurring,
structured operations. Stream* addresses this dichotomy by accessing parallel �les in three modes which use
di�erent techniques for managing VP �le data. Two modes support simple, regular I/O operations and have
little overhead, while a third mode supports complex, irregular I/O operations.

The selection of modes and the Stream* design were guided by the following principles, which can be
applied to languages other than C* as well.

1

2 X 4 Array of Virtual ProcessorsFront-End
Processor

Figure 1: The C* model of computation combined with the data-parallel �le abstraction in which each
virtual processor in the SIMD machine's back end has its own I/O stream.

� Automatic mode detection by the run-time system maintains a high-level interface|the programmer
is not burdened with speci�cation of modes.

� Modes depend only on the program, not the underlying �le system, so their management is completely
portable.

� Modes change the performance of �le operations, not their semantics.

� Common operations are performed using high-performance modes.

� High-performance modes are designed so they can exploit redistribution optimizations such as disk-
directed I/O [13] and the two phase access strategy [6], where available.

� Whenever possible, �ne-grained VP �le operations are combined into large-grained �le system opera-
tions.

� The system must be able to read and write external �les (e.g., from sequential programs or other
data-parallel programs).

The remainder of the paper describes how we have applied these principles to the implementation of
Stream*. We �rst discuss related work and follow that with a brief discussion of C*. Next is a general
discussion of Stream*modes, followed by detailed descriptions of their implementation. Throughout this sec-
tion, we illustrate design tradeo�s by presenting results from C* programs compiled and run using Stream*.
We �nish by describing how Stream* interfaces with external programs and how the C* programmer can,
without knowing implementation details, ensure high performance modes are used.

2 Related Work

The �rst C* �le system was built by Thinking Machines. Its interface, similar to that for VP-oriented
CM-Fortran on both the CM-200 and CM-5, includes limited functionality in which all VPs transfer data
to or from a single stream [23, 24]. Virtual processor streams for C* were proposed by Hatcher [9], whose
results with a general implementation are reported in [1]. Moore et al [18] point out the shortcomings of the
single-stream approach to VP �les and suggest the use of high-performance modes for parallel streams. Here
we extend this work to include automatic mode detection, design details and tradeo�s, and optimizations.

Most proposed parallel �le systems for MIMD machines give the programmer one view of a �le, namely as
a single stream of bytes. Some systems, including Vesta [3], PIOUS [19] and others [12] support \multi�les",
in which a parallel �le is broken into multiple sub�les or segments, typically one per physical processor. The
CM-200 supports parallel �les, in which each physical processor accesses its own sub�le [23]. The notion
of parallel VP streams is a large-scale generalization of this idea, which can simplify I/O programming
signi�cantly. Unfortunately, one cannot simply implement VP streams as segments or sub�les on top of
these systems. PIOUS would require the opening of many thousands of �les, and array-oriented Vesta
assumes all sub�les are accessed in the same manner, so it does not store EOF for each sub�le. The parallel
�les of the CM-200 are too closely tied to the physical machine size to manage streams for a larger virtual

2

machine. Further, if each VP explicitly accesses its own sub�le, many �ne-grained �le operations are required.
Performance su�ers signi�cantly when this approach is used.

Modes were introduced with the earliest parallel �le systems [20, 25], and some more recent systems
use modes [2, 11]. The systems provide a limited number of operations whose synchronization requirements
and �le access semantics vary depending on the current mode. The implementations of modes on these
systems have several drawbacks. They are machine-dependent. They give a single �le operation multiple
meanings; this leads to poor code readability. Finally, modes complicate the parallel programmer's task with
low-level details. In contrast, Stream* modes are machine-independent and a�ect only the performance of
�le operations, not their semantics within C*.

3 C*

3.1 Programmer's Model

The C* data-parallel language is targeted for a logical SIMD machine consisting of a front-end sequential
processor and a back-end processor array. C* programs contain scalar variables and parallel variables. Scalar
variables reside on the front-end processor. Parallel variables are associated with a shape, whose left indices
de�ne the layout of virtual processors along any number of dimensions. The declarations in Figure 2(a)
illustrate several language features. The shape S is logically laid out as a 256 � 128 array of VPs. Stored at
each VP is a single integer x and an array y containing 10 doubles. The variables i, sum, and scalarFile

are scalars. The pointer parFile is a scalar which will point to a parallel �le variable when it is allocated
upon opening of a �le.

shape [256][128]S;

int:S x;

double:S y[10];

FILE:S *parFile;

int i;

double sum;

FILE *scalarFile;

sum = 0; /* Scalar code */

for (i = 0; i < 10; i++) { /* Also scalar */

with (S) { /* Perform in parallel */

x += y[i];

where (x > 100) { /* Only some VPs will do this */

x = x % 100;

}

}

}
(a) (b)

Figure 2: (a) Sample C* declarations. (b) Scalar and parallel C* code.
Sequential, or scalar, code is logically executed by the front-end processor. Parallel code, contained in

the with statement, is executed by the back-end array of VPs. When not all VPs need to work, some can be
masked o� using the where statement. The sample code segment in Figure 2(b) demonstrates these features.

Finally, parallel data can be manipulated using two di�erent types of functions. The �rst of these can be
passed parallel arguments and can return a parallel variable. We call such a function a parallel function. The
second type of function with which parallel data can be manipulated is an elemental function. Elemental
functions are an important extension to C* formulated by ANSI X3J11.1 [8]. Elemental functions allow VPs
to invoke scalar functions by passing individual elements of parallel variables as arguments. A good example
of the need for elemental functions is the sin function. This C library function cannot receive a parallel
variable as an argument. We need not write our own version of sin; a header �le simply speci�es that sin
is CS__elemental. Users can write their own elemental functions, but some operations must be avoided in
elemental functions. In particular, elemental functions cannot have side e�ects; they can read only local VP
data and scalars, and they can write only local VP data.

3.2 C* Implementation on MIMD Machines

Although C* provides the programmer with a simple SIMD view of computation, the University of New
Hampshire (UNH) C* compiler, with which this work is integrated, has e�cient implementations for a
variety of MIMD machines. We brie
y describe how key SIMD features are modeled on a MIMD machine.
For more details see [10, 15]. Scalar variables, and operations on them, are replicated on all compute nodes.

3

Scalar I/O operations are intercepted so only one compute node physically performs I/O and broadcasts
the results to the others. Parallel data are distributed among the compute nodes of a MIMD computer.
Parallel code is implemented through the use of VP emulation, in which each physical processor performs
the operations of the VPs assigned to it. Parallel functions are implemented using a single function call on
each compute node, while elemental functions are called once for each VP being emulated by a compute
node.

4 File Modes

Parallel �le systems ought to be fast. In a production system, though, general operations must be supported
with consistency and robustness. Tension exists between the need for speed and generality. Modes are a
reasonable solution: high speed is o�ered by less
exible modes, and more general operations are supported
by slower modes.

4.1 Stream* Modes

In our Stream* virtual processor �le implementation, we rely on three �le modes. Two modes limit the
available operations in exchange for speed, while one mode supports more general operations. The restrictions
on operations for the high-performance Stream* modes are shown in Table 1. We say an operation meeting
the restrictions for a given mode are compliant with that mode. All three modes break the �le into small
(usually less than 64 bytes), �xed-sized VP blocks, from which VP streams are built. The Stream* modes
lay out VP blocks in the �le in di�erent ways. The high-performance modes, which require that all VPs
move the same amount of data during an operation, lay VP blocks out in a structured, array-oriented fashion
that is independent of the number of compute nodes. That is, assuming N total VPs, VP i's stream consists
of the ith block and every N th block after that. Although a VP block logically has a small size, data are
moved in large, contiguous chunks between the regularly laid out �le and compute node memory.

The highest performance mode is No Bu�ering (NB) mode. In this mode, VP-level �le operations
are implemented in parallel using a single, collective �le system operation. This operation moves VP data
directly between the �le system and the desired parallel variables on the compute nodes with no intermediate
bu�ering. Figure 3(a) shows how the array-oriented layout of data on compute nodes matches the desired
layout in the �le. Note that, to maintain the regular �le layout with no intermediate bu�ering, all NB-
compliant operations must transfer the same amount of data.

Collective Bu�ering (CB) mode supports more general operations such as transfer of strided data, in
which the layout of data in compute node memory does not directly match the structure of the �le. In
this case, a VP-level �le operation is implemented by copying data between �xed-sized VP bu�ers on the
compute nodes and the desired parallel variables. The CB bu�ers themselves are contiguous, so their layout
in memory matches the array-oriented layout of data in the �le. Because the restrictions on CB guarantee
that all VPs read or write the same amount of data during a given operation, all VP bu�ers become full
(when writing) or empty (when reading) at the same time. An example showing the bu�ers �lling with VP
data during a write is shown in Figure 3(b)-(d). As with NB, all the data are moved between compute nodes
and the �le system in a single, collective large-grained operation that can take advantage of optimizations
such as disk-directed I/O [13] and the two phase access strategy [6]. The size of the VP bu�ers on the
compute nodes de�nes the VP block size for the �le; this value is not dependent on �le operations, while the
VP block size for NB is.

It is important to point out that Stream* does not su�er the problems of a general-purpose �le system
when bu�ering VP data on compute nodes. A more general �le system must immediately perform writes to
a parallel �le to ensure that other processors see the update. If compute nodes cache prefetched data for
reading, they must ensure the data remain consistent with the physical �le contents. With Stream*, however,
each VP accesses only its own stream, and only the compute node emulating a VP can update its blocks
in the �le system. Therefore, each compute node is guaranteed to have the most up-to-date information for
the VPs it emulates.

Independent Bu�ering (IB) mode is the most general, supporting any C �le operations at the VP level.
Because some VPs may be inactive during a �le operation, or VPs may move di�erent amounts of data,
the collective, shared-o�set, array-oriented implementation of NB and CB cannot be used for IB. Although

4

Collective Bu�ering (CB) Mode Restrictions:
1. All VPs are active during every operation
2. All VPs transfer the same number of bytes in a given operation

3. No elemental �le operations are performed
4. All VPs choose the same �le o�set in a given seek operation

No Bu�ering (NB) Mode Restrictions:
1. All of the above restriction, plus
2. All operations transfer b bytes per VP
3. VP data are contiguous (unstrided) in compute node memory
4. All seek o�sets are an integral multiple of b

Table 1: VP operations which allow use of Stream* high-performance modes.

CB buffer for

CB buffer layout in compute node memory

. . .

. . .

. . .

. . .

CB buffer for
last local VP

CB buffer for
local VP 0

(a)

(b)

(c)

(d)

last local VP

Simple parallel variable layout in compute node memory

local VP 1

local VP 0 local VP 1

Figure 3: VP-level writes implemented using high-performance modes. (a) In NB, the parallel variable can
be moved directly from its location in memory to the �le system with a single, collective �le system call.
Collective Bu�ering (CB) mode is shown in (b){(d). In this example, the VPs collectively write two 8-byte
values to their own 10-byte CB �le bu�ers. The state of the bu�ers, each containing 8 bytes after the �rst
write, is shown in (b). The second write takes two steps. The VP bu�ers are �lled with 2 bytes each and
written to the �le system as a single unit, as shown in (c), then the remaining 6 bytes for each VP is copied
into the bu�ers (d).

5

NB CB IB

Figure 4: The segmented nature of a Stream* �le. The �rst segment is written using NB mode, and VP
blocks of size bNB are regularly laid out in the �le. The second segment is written using CB mode. This
segment has a structure similar to that of NB; the VP block size bCB may di�er from that of NB. The last
segment consists of VP blocks of size bIB with an unstructured layout. The IB segment is read with two
directory �les which describe which blocks make up which VP streams.

the regular layout of data created by NB and CB eases the job of distinguishing individual VP streams,
such a layout cannot be e�ciently utilized in IB mode. VPs using IB may not �ll their bu�ers at the same
time or in any speci�c order. If, when IB is used, blocks making up VP streams are laid out in regular
fashion as in NB and CB, each VP bu�er must be written individually using an expensive, �ne-grained
�le operation. An early prototype showed the cost of these operations is prohibitive. Our solution, which
combines �ne-grained VP �le operations into large-grained calls to the �le system, writes VP data to the
�le on a �rst-come-�rst-served basis and manages it using a directory. A description of the implementation
is in Section 5.

In our �rst VP �le system implementation [18], the user wanting high-performance must specify the
desired mode when declaring a parallel �le variable. This approach has several drawbacks. First, the
programmer must understand implementation details to choose the correct mode. Second, unfamiliar syntax
must be added to the language to specify mode hints. Finally, the single mode assigned to a �le must be
the most general with which it is accessed, even if many of the operations on the �le could be performed
using less general, higher performance modes. Our current design, which relies on dynamic mode detection,
addresses these drawbacks.

4.2 Automatic Mode Detection and File Segments

Stream* dynamic mode detection uses an optimistic scheme that divides a parallel �le into three distinct
segments. The �rst segment contains VP data written using NB mode, the second contains data written
using CB mode, and the last contains data written using IB mode. We name the segments after the modes
in which they were written (NB, CB, and IB). The scheme is optimistic because it assumes the program
writing a �le will use NB, the highest performance mode available. Recall from Table 1 that NB requires
that all operations move the same amount of VP data. The �rst NB write establishes the VP block size bNB
for the NB segment of the �le. If a program writes only one data type to the �le, as is frequently done in
data-parallel applications, the �le will consist entirely of an NB segment. When a non-NB-compliant write
operation, or an NB-compliant operation relying on a di�erent value of bNB is used, the NB segment of the
�le is complete. A transition to CB or IB takes place.

The CB segment of the �le is written using a VP block size of bCB, whose value is determined by the run-
time system, until an operation requiring IB is encountered.1 The remaining writes, assuming no backwards
seeks, are performed using IB to the IB segment of the �le, even if subsequent operations are NB or CB-
compliant. A scheme could be developed to allow unlimited switching between modes, but the costs of this
approach potentially outweigh the bene�ts. The volume of metadata describing the mode switches and VP
activity in every IB segment potentially would be huge. IB's performance relative to the other modes' is
good enough that the extra overhead for allowing more �le segments is not justi�ed. Finally, �les used by
most data-parallel applications would remain in NB or CB modes during their lifetimes [5, 7, 14, 16, 17, 21],
and Stream*'s optimistic approach matches their needs without becoming overly complex.

5 Implementation

Stream* is implemented as part of the C* run-time library. Machine-independent routines make up a majority
of the Stream* implementation, while a few routines make calls to the machine-dependent �le system. We

1Note that operations allowed in NB mode form a subset of those allowed in CB.

6

assume the underlying �le system manages a parallel �le in the traditional manner, as a single stream of
bytes. Therefore, Stream* can be implemented on top of PFS [11], Thinking Machines' CMMD I/O [2],
and the single stream views of more
exible �le systems like PIOUS [19] and Vesta [3]. Knowledge of the
underlying implementation of the �le system (e.g., programmable I/O nodes, disk arrays, etc.) may be used
to optimize the machine-speci�c portions of the Stream* run-time system, but our discussion is independent
of the �le system. All of the features of Stream* are implemented on the compute nodes.

For our experiments, we built a simple striped �le system using varying numbers of nodes on a Meiko
CS-2 multicomputer. Although a parallel �le system is available with the CS-2, it is not installed on our
machine. Instead, speci�c nodes are selected as I/O nodes, and they read from and write to their local SCSI
disks using Unix �le operations. File operations are requested and ful�lled through messages on the CS-2's
low-latency, high-bandwidth network. For the experiments shown in subsequent sections, eight compute
nodes were used with one to four I/O nodes and a striping unit of 32K bytes.

Associated with each Stream* data �le is a second meta�le, whose name is the data �le name with the
su�x .meta. This �le contains information about the �le such as bNB ; bCB; bIB, mode transition points,
distribution information, and shape. Files whose IB segment is not empty also have �les with su�xes .first
and .dir to hold directory information. Their function will be described in section 5.2.2. In the remainder
of the paper, we refer to the meta �les by their su�xes (e.g., the .meta �le).

5.1 Opening a File

When a parallel �le is opened, a parallel FILE variable is allocated and a pointer to the parallel variable
is returned. A sequential C FILE has a corresponding Unix �le descriptor, or fd, an integer. Our Stream*
implementation also associates an fd with a FILE variable. The fd is an index into a structure containing the
data needed to manage the parallel �le. Our system reserves a �xed number (0-63) of fd values for sequential
�les, and fd values higher than that correspond to parallel �les. The typical implementation of a FILE struct
allocates a byte to the fd �eld, so 256 fd values are available to represent both sequential and parallel �les,
although the underlying operating system may not support that many open �les simultaneously.

5.2 Writing

Although C provides several ways to write to a stream, our examples below are based on the parallel
overloading of the function fwrite:

int:current fwrite(char:current *buf,int:current size,int:current nitems,FILE:current *fp);

Note that the C* keyword currentmatches the current shape, so the fwrite function can be used for any
shape. Depending on whether or not all VPs are active, and depending on the parameters for an invocation
of fwrite, this function can comply with any of NB, CB, and IB modes. The mode detection performed at
the start of fwrite is based on the current mode, �le segment, and the characteristics of the parameters.
The goal is to use the best mode possible, with IB being selected if NB and CB tests fail. To use NB or

CB for fwrite, the mode detection logic checks the following:

1. NB requires that the current mode be NB. CB allows a current mode of either NB or CB.

2. The �le segment to which the write will occur must be compatible with the mode to be used. CB can
be used to write to the NB segment of the �le using a bu�er size of bNB (after a backwards seek, for
example), and only in rare instances|the current implementation does not check for these|can NB
be used to write to the CB segment of the �le.

3. All VPs must be active. Two tests are used to determine VP context. The C* compiler emits code
to manage a
ag called CS__everywhere. The
ag is true when VPs are not masked o� by a where

clause. If the
ag is false, meaning a where clause is in e�ect, each compute node can directly test
whether or not all its VPs are active.

4. size * nitems is the same for all VPs.

In addition to the above, the following conditions must hold to use NB:

7

1. size * nitems is equal to bNB for all VPs (if this is the �rst write to the �le, bNB is established for
subsequent tests).

2. The stride of the parallel data being written is equal to size * nitems. That is, the data are contiguous
in compute node memory. The UNH C* compiler stores the stride as part of each parallel variable.

Di�erent compute nodes may get di�erent results from the above tests. For example, on exactly one
compute node, a VP may have performed a �le operation in an elemental function. That compute node will
come into the fwrite with a current mode of IB. All others will have a current mode of NB. To guarantee
that all compute nodes are using the proper mode, a reduction is performed. The processors exchange the
calculated mode, number of bytes transferred per VP, and all-active status of VPs with each other. After the
reduction, all compute nodes agree on the mode. The reduction operation is cheap relative to �le operations,
and it can act as the synchronization for a collective �le operation, since both NB and CB can take advantage
of collective operations.

If NB is the agreed-upon mode, the compute nodes perform an e�cient, array-oriented transfer of data
directly from the parallel variable to the �le system. If CB is chosen, the compute nodes copy from the
speci�ed parallel variable to the VP bu�ers. If the VP bu�ers become full, an e�cient array-oriented
transfer, like that for NB, moves data from the contiguous VP bu�ers to the �le system. As shown in Figure
3, the VPs may write more bytes than their bu�ers can hold. In this case, the bu�ers are �lled to capacity
and sent to the �le system. This copy-and-write cycle continues until the VP bu�ers can store the remaining
VP data.

5.2.1 Enhancing Interface and Performance

The version of fwrite presented above o�ers general functionality that may be rarely exploited. For instance,
the size and nitems parameters are most often constants, with the size often denoted using the sizeof

operator. With the general fwrite prototype, the programmer must cast constants to parallel values:

fwrite(&parVar,(int:S)sizeof(double),(int:S)1,parFile);

Further, the run-time system must allocate and initialize parallel arguments for the call to fwrite. Finally,
these arguments must be checked, element-by-element, during mode detection to ensure that all VPs write the
same amount of data. To eliminate these frequently unnecessary costs, Stream* provides another overloading
of fwrite (and, correspondingly, fread), in which size and nitems are scalars:

int:current fwrite(char:current *buf,int size,int nitems,FILE:current *parFile);

With this version, no parallel arguments must be built, and checking for size consistency among VPs is
unnecessary. We expect this to be the normal usage of fwrite, so this is the version we use when comparing
performance in subsequent experiments.

Because NB is performed using the fastest �le operations, it is the standard against which other modes
are measured. Figure 5 shows that the di�erences between NB and CB modes, despite the extra bu�ering
required by CB, is negligible when repeatedly writing a simple parallel double. The results shown in Figure
5 are with a CB block size of 8 bytes. A block size of 32 bytes takes more compute node memory and may
result in ine�cient cache usage, but the larger bu�ers result in fewer �le operations. Our experiments show no
statistically signi�cant di�erence between CB performance with 8 and 32-byte bu�ers, so the current default
bCB is a space-saving 8 bytes. The mode detection cost of Stream*, that is, the bandwidth di�erence between
Stream* with mode detection and without, is also negligible on all I/O node con�gurations. Statistically,
NB bandwidth without mode detection is greater than with mode detection with only 40% con�dence.

5.2.2 Writing in IB Mode

If IB is the selected mode, a VP emulation loop performs the write for each active VP by moving data
from the parallel variable being written to the VP's IB bu�er. VPs may �ll their compute-node bu�ers at
di�erent times, which is why they are managed individually, but our goal is to avoid �ne-grained writes of
individual VP blocks. Figure 6 shows the steps taken when a VP �lls its bu�er. The contents are moved
to a superblock, a collection whose size would typically be the size of a striping unit in the underlying �le

8

2

4

6

8

10

1 2 3 4
B

an
dw

id
th

 in
 M

B
/s

Number of I/O Nodes

NB

CB

IB

Figure 5: Comparison of NB, CB, and IB modes on the Meiko CS-2. 64K VPs each output 64 double values
for a total of 32MB. 95% con�dence intervals are shown.

IB Block Size
64 bytes 32 bytes 16 bytes

I/O Nodes Bandwidth Bandwidth % Relative to 64 Bandwidth % Relative to 64

1 1.37 1.17 85 0.85 62
2 2.89 2.36 81 1.87 65
3 4.14 3.44 83 2.55 62
4 4.96 4.47 90 3.59 72

Table 2: Comparison of achieved I/O bandwidth when writing in IB mode with di�erent IB block sizes. All
bandwidth values are distinct at the 95% con�dence level.

system. When a superblock is �lled, the data contained in it are sent to the �le system as a single chunk.
VP directory information is also managed using the notion of superblocks. By combining VP �le writes
into superblocks, our implementation avoids many �ne-grained writes of VP data, which would signi�cantly
degrade performance. To support IB superblock writes without processor synchronization (recall that the
superblock may be �lled from an elemental function, in which no synchronizations may occur), each compute
node must know where in the IB segment of the �le to write its data. We allocate superblocks in the data
�le and directory �le to compute nodes in round-robin fashion; the pth processor among P total processors
writes to the pth superblock, followed by every P th superblock. This does mean that the structure of the
data in the �le changes with the number of physical processors, but alternative �le layouts relying on virtual
processor instead of physical processor con�guration require expensive �ne-grained �le system operations to
write VP blocks.

Figure 5 shows that the bandwidth achieved by IB is approximately 60% of NB's bandwidth. Note that
the times shown include closing the �le in IB, an operation with considerable overhead discussed in Section
5.2.4. With a faster �le system, the time for the extra work done on compute nodes limits the achievable
bandwidth. This explains the
attening of the IB curve as the number of I/O nodes increases.

Several variables play a part in IB performance. The �rst of these is IB block size. A large block size
requires more compute node memory, but the bu�er management overhead becomes a smaller percentage
of work done on compute nodes. In the benchmark shown in Figure 5, the block size is 64. Table 2 shows
the relative performance with smaller block sizes. Reducing the block size to 16 or 32 has an impact on
bandwidth, but the cost of these block sizes is not prohibitive. Our tests with a block size of 8 bytes show
that little work is done moving data relative to managing it, and the cost becomes prohibitive at this point.
Another variable is the number of data block pointers in a single directory entry. The benchmarks shown
were run with only two pointers per directory entry. By increasing that number to six2, the bandwidth
increases on all I/O node con�gurations by approximately 7%. Increasing the number to fourteen provides
negligible additional bandwidth.

2With 2 other values in a directory entry, these block pointer counts (2, 6, and 14) ensure a power-of-2 total size in bytes.

9

256 257 258 259

256 257 258 259

21

3

When a VP fills its
local buffer, the
contents are copied to
the file superblock.

Next directory block pointers are NULL.
They will be updated on file closure.

VP Buffer The VP then updates
its directory info

When the directory info
is full, it is copied to a
directory superblock and
labeled by VP.

VP Buffer

272 274 275273

Global block number in
IB segment of data file

File Superblock

258... ...

VP

File Superblock

File Superblock

Then, global block numbers are
updated for subsequent writes.
Compute node p of P processors
writes to the pth superblock in
the IB segment and every Pth
subsequent superblock.

When a superblock (data or
directory) is full, it is written
to the file system.

4 VP blocks per superblock, so

node is 256 + 4 * 4 = 272.
the next block for this compute

This example assumes P=4, with

Data block pointers

Figure 6: Using superblocks for VP writes in IB mode. Each VP has its own active �le bu�er. When it is
�lled, the bu�er is copied to the superblock. When the superblock is �lled, it is written as a unit to the �le
system. The VP keeps track of which data blocks its data has been written to, and this directory information
is written to the directory �le using superblocks.

10

.dir file:

.first file contents: 0 1 3 4 -1 5 7

0 1 2 4 5 63VP:

Dir Block #: 0 5 10 15 20 25

2 22

Next Dir BlockVP

-5

-1

2

-1... ...

...

Data block ptrs: 9 10 27 35

A negative Next pointer indicates
the end of the list of dir blocks and
tells how many bytes, in this case 5,
are available in the last data block.

The last nonnegative data
block pointer points to the
last block in the VP’s stream.

A negative value here indicates an empty VP stream.

Dir Block 22Dir Block 3

Figure 7: Directory structure for VP data blocks in a single �le. The .first �le contains a pointer to the
�rst directory block for each VP. Each directory block contains pointers to a single VP's data blocks in the
IB segment of the data �le. The Next pointer in a directory block is used to build a linked list containing
all of a VP's directory blocks.

5.2.3 Mode Transitions During Writing

A mode transition may occur on all compute nodes in parallel or, when an elemental �le operation is
performed, on individual nodes. A transition to CB occurs on all compute nodes at once and entails
allocation of CB bu�ers. A transition to IB may require
ushing and deallocation of CB bu�ers, if they
are not empty. Then, IB bu�ers, superblocks, directory superblocks, and VP directories must be allocated.
The parallel FILE variables, used to manage individual VP streams, are initialized. The IB transition is now
complete, and the requested operation is performed, either for an individual VP (in an elemental function),
or in a VP emulation loop (in a parallel function like fwrite). Note that when a compute node transitions
a �le to IB due to an elemental �le access, the other compute nodes may remain in NB or CB mode. The
compute node using IB must participate in the next parallel �le operation's reduction to ensure that all other
nodes are aware that an IB transition has occurred. No compute nodes can perform CB or NB operations
without the other compute nodes participating.

5.2.4 Closing a File

When a �le is closed, housekeeping work must be performed. Regardless of the mode(s) used to write a �le,
the sequential .meta �le is written by compute node 0. A �le closed while in CB must have its VP bu�ers

ushed if they aren't empty. The total_CB_data �eld in the .meta �le lets the reader know how many
bytes of the last CB block are valid.

A �le written using IB requires more work on closing. First, the VP bu�ers are
ushed to superblocks.
Then, the superblocks are written to the parallel �le. Note from Figure 6 that the directory information
written so far contains VP values but NULL next values. These are updated by reading directory superblocks
in reverse order, updating next pointers, and writing the data back again. A linked list is formed, with the
head of each list stored in the .firstmeta�le. Although this directory patching step incurs extra overhead, it
is performed using large-grained �le operations. An earlier prototype updates the directory in a small-grained
fashion as VP blocks are written; this approach reduces e�ective bandwidth by an order of magnitude. One
might consider omitting the patching step, since the VP values in the directory blocks allow the streams
to be reconstructed again. However, we chose to eliminate the need for a reading program to search the
directory. As parallel applications' �le needs become more well-understood, we may �nd it necessary to

11

2

4

6

8

1 2 3 4
B

an
dw

id
th

 in
 M

B
/s

Number of I/O Nodes

NB

CB

IB

Figure 8: Comparison of NB, CB, and IB modes for reading on the Meiko CS-2. 64K VPs each read 64
double values for a total of 32MB. 95% con�dence intervals are shown.

change the directory structure entirely, or to perhaps use a doubly-linked list. All the performance �gures
presented for IB include the extra cost of updating the directory upon closing of the �le.

5.3 Reading

A �le may be opened for reading using one of two fopen overloadings:

FILE:current *fopen(char *name, char *type);

FILE:void *fopen(char *name, char *type, shape *s);

The �rst of these requires that the existing �le be of the same shape as current. The second, the only
Stream* operation whose usage is not analogous to that of traditional C, returns a parallel FILE variable
whose shape is de�ned at run time from the .meta �le. The void shape of the return value speci�es that it
can match any shape, while the actual shape of the �le opened is returned via the s parameter.

The mode detection performed for reading is essentially the same as for writing described in section 5.2.
NB can be used to read only from the NB segment of the �le3. CB can be used to read data from the NB
and CB segments, because their structure is identical aside from the VP block size. IB can be used to read
from any of the �le segments.

Reads in NB move data directly from the �le system to parallel variables. In CB, data are moved to
VP bu�ers on the compute nodes; VP-level reads then move data from the bu�ers to parallel variables. As
shown in Figure 8, bandwidth achieved by CB scales well with the number of I/O nodes but slightly lags
NB bandwidth.

Reading in IB mode was designed to emphasize movement of collections of VP blocks rather than in-
dividual blocks between compute nodes and the �le system. The design is based on the fact that most
programs read a �le in the same way it was written. In this case, VP blocks written to the �le system in the
same superblock will be needed in the reading program at approximately the same time. Therefore, when
a VP block (data or directory) is needed from the �le system, a superblock containing the desired block
and subsequent blocks is read. Like all prefetching schemes, this one may actually hurt performance when
a particularly ill-behaved read pattern is used. However, if no prefetching is done, or if prefetches ful�ll
soon-to-be-emulated VPs' requirements, �le accesses are �ne-grained and guaranteed to be slow. We feel
that prefetching based on VP write patterns is a good heuristic for avoiding �ne-grained �le accesses.

The reading process for IB mode is detailed in Figure 9. Several variables impact the IB reading perfor-
mance. As with writing, one of these is VP block size. Table 3 shows the relative performance when several
VP block sizes are used. Reducing the block size from 64 to 16 or 32 has an impact on bandwidth, but not
as much as for IB writes. The size of a directory entry a�ects reading performance as it does for writing.
That is, moving from two to six data block pointers per directory entry increases performance by about

3If the VP block sizes for the NB and CB segments are identical, NB could be used to read the CB segment. We have not
implemented this optimization.

12

IB Block Size
64 bytes 32 bytes 16 bytes

I/O Nodes Bandwidth Bandwidth % Relative to 64 Bandwidth % Relative to 64

1 1.50 1.49 99 1.21 81
2 2.54 2.07 81 2.15 85
3 2.93 2.45 84 2.05 70
4 4.24 3.97 94 3.52 83

Table 3: Comparison of achieved I/O bandwidth when reading in IB mode with di�erent IB block sizes.
Bandwidth values are distinct at the 95% con�dence level for 3 and 4 I/O nodes.

Copy data to VP’s buffer,
updating amount available.

IB No

No

NB,CB
No

Get next data
block # from dir

Segment of
File

Block?
Desired VP

VP
directory data

unread or
exhausted?

VP directory
Is next

block in read
cache?

Read block from dir

for subsequent VPs
file, including dir blocks

Read block from file, including
data for subsequent VPs.

Copy directory info
from cache to VP fd.

Is
desired data
block in read

cache?

Yes

Yes

Yes

Figure 9: Simple decision
ow for reading a single VP block in IB mode. This sequence may be repeated
several times to satisfy a user-level request.

6%, but increasing that value to fourteen data block pointers makes negligible additional impact. Finally,
the number of read bu�ers impacts performance. For the results presented in Figure 8, the compute nodes
use only two read bu�ers of 32K bytes each. During the reads, one bu�er holds the directory information
while another holds data. Because the data are read exactly as written, no more read bu�ers are needed.
In other cases, more read bu�ers may be needed to cache data for extended periods. Unfortunately, our
current implementation uses a simple linear search of bu�ers to satisfy a given request; the search becomes
expensive as the number of bu�ers increases. We shall update the search to a more e�cient scheme; until
then, our implementation handicaps reads relying on more than a few read bu�ers.

5.3.1 Mode Transitions During Reading

Mode transitions can either be forced by the segmented nature of the �le (e.g., when the CB segment has
been exhausted, a transition to IB must occur), or through the parameters of the requested operation. For
example, data in the NB segment of a �le may be read using CB if the parallel variable being �lled has a
stride. A transition to CB requires allocation of CB bu�ers on the compute nodes. The size of the CB bu�ers
is based on the bCB value stored in the .meta �le. If the NB segment is being read, and if bNB < bCB, bNB
is the e�ective block size until the CB segment of the �le is reached.

Transitions to IB occur in two steps. The �rst step allocates and initializes the read bu�ers. If the NB or
CB segment of the �le is being read, directory information is not needed. When the IB segment of the �le is
reached, the second step of the transition takes place. The .first �le is read to get the �rst directory block
pointer for each VP. Actual directory blocks are not read until individual VPs perform read operations.

13

5.4 I/O with Elemental Functions

As shown in [18], a single-stream �le model for C* cannot support �le output in elemental functions. Here we
show that, to maintain a familiar programmer's interface, formatted input and output, critical when debug-
ging at the VP level, must be performed using elemental functions. The functions fprintf, vfprintf, and
fscanf receive a variable number of arguments whose type is speci�ed in a format string. The programmer
writes, for example:

fprintf(parFile,"Variable someVar is %d\n",someVar);

and wants the semantics to match someVar's type (scalar or parallel). Unfortunately, the run-time system
must rely exclusively on the type speci�er in the format string to determine the type of fprintf's arguments,
and %d dictates a single integer, not a parallel variable. Two obvious solutions present themselves: allow
a new parallel type speci�er in the format string, or call fprintf once per VP so the values passed in are
logically scalars. The former solution does not maintain the familiar C programming interface, while the
latter, namely implementation of formatted output via elemental functions, does.

The above example shows a �le operation implemented as an elemental function. A �le operation may
also be called from within an elemental function. The Stream* library includes its own versions of the scalar
C �le operations; these are called from within elemental functions. They check the fd value for the FILE

variable used. If the fd represents a scalar �le, the original scalar version of the routine (now renamed) is
called. Otherwise, the Stream* handler performs the requested operation in IB mode, forcing a transition
to IB on that compute node if necessary. Other compute nodes will be informed of the transition during the
reduction in the next collective �le operation.

5.5 Seeking

The Stream* fseek operation, in its most general form, allows each VP to seek to a di�erent location in
its stream. Whether reading or writing, typical data-parallel applications will have all VPs seeking to the
same position in their streams. When this is the case, and the seek is to the NB or CB segment of the
�le, NB or CB mode may be used, even if IB was the previous mode. To save space, we simply point out
some implementation concerns. When writing to a �le, seeks may require
ushing of bu�ers beforehand
and read-modify-write sequences afterward. These operations can be supported in all three modes, although
updates in IB mode may require that VP blocks be written individually, since each VP block's position is
dictated by the earlier writing pattern. Our implementation does not yet support this type of operation,
which does not appear frequently in data-parallel applications.

6 Interfacing Stream* to External Programs

Stream* utilizes a unique �le format; thus, the �les are \internal" [4]. Ideally, Stream* could exchange �les
with external applications using little or no �ltering of �les. With NB mode, this is the case. Files consisting
of a single NB segment are laid out exactly as an array-oriented program would write them. These �les can
be used without conversion by external programs. External data �les can be treated as �les containing only
an NB segment. If the �rst overloading of fread in Section 5.3 is used, an external �le lacking a .meta �le
simply takes on the current shape and is assumed to consist of a single NB segment. A .meta �le may have
to be built using a simple utility program in some situations (e.g., if a �le has a di�erent distribution than
the program that will read it). Because most data-parallel applications rely on regular array-oriented I/O,
the use of NB as an interface to the outside world should work in most situations [5, 7, 14, 16, 17, 21].

Files with CB and IB segments require explicit conversions. A �le containing a CB or IB segment can
be converted to one containing a single NB segment using a high-level C* program. The program has each
VP reading its existing stream and writing its data, or a �xed value upon reaching EOF on its input, in NB
mode. Following three rules guarantees that an output �le will consist of only an NB segment, which means
it will be written at top speed and will be readable by external applications.

� Use the simple form of fwrite with all VPs active.

� Don't output �elds of structs or individual parallel array elements.

14

� Output the same number of bytes per VP during every operation.

Note that these rules are at the language level, so the programmer does not need Stream* implementation
knowledge to get high performance.

7 Conclusions

We have shown that the programmer's I/O interface can be seamlessly integrated with C*'s virtual proces-
sor programming paradigm using data-parallel streams. Their implementation using machine-independent,
automatically detected modes lets the most common �le operations found in data-parallel programs run at
the top speed supported by the �le system. The high-performance modes, because of their array-oriented
nature, can also take advantage of �le redistribution optimizations developed for languages such as HPF.
The general mode supports a wide variety of �le operations while achieving bandwidth over half that of the
high-performance operations by combining �ne-grained virtual processor operations into large-grained �le
system operations.

Acknowledgements

This research was supported by NSF grants ASC-9208971 and CDA-9216172.

References

[1] S. Batra, P. J. Hatcher, and R. Russell. The design and implementation of data-parallel �les. In Workshop on
Modeling and Speci�cation of I/O, 1995. Publication via http://www.cs.duke.edu/~dev/msio95.

[2] M. L. Best, A. Greenberg, C. Stan�ll, and L. W. Tucker. CMMD I/O: A parallel Unix I/O. In Proceedings of
the Seventh International Parallel Processing Symposium, pages 489{495, 1993.

[3] P. F. Corbett and D. G. Feitelson. Design and implementation of the Vesta parallel �le system. In Proceedings
of the Scalable High-Performance Computing Conference, pages 63{70, 1994.

[4] T. W. Crockett. File concepts for parallel I/O. In Proceedings of Supercomputing '89, pages 574{579, 1989.

[5] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural requirements of parallel scienti�c applica-
tions with explicit communication. In Proceedings of the 20th Annual International Symposium on Computer
Architecture, pages 2{13, 1993.

[6] J. M. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel I/O via a two-phase run-time access
strategy. In IPPS '93 Workshop on Input/Output in Parallel Computer Systems, pages 56{70, 1993. Also
published in Computer Architecture News 21(5), December 1993, pages 31{38.

[7] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O. In Proceedings of Supercomputing
'93, pages 462{471, 1993.

[8] P. J. Hatcher. Elemental functions. Technical Report X3J11.1/92-076, Numerical C Extensions Group (ANSI
X3J11.1), 1992.

[9] P. J. Hatcher. Extending C* for data-parallel I/O. Technical Report TR 94-16, University of New Hampshire
Department of Computer Science, 1994.

[10] P. J. Hatcher and M. J. Quinn. Data-Parallel Programming on MIMD Computers. The MIT Press, Cambridge,
Massachusetts, 1991.

[11] Intel. Paragon OSF/1 User's Guide, 1993.

[12] D. Kotz. Multiprocessor �le system interfaces. In Proceedings of the Second International Conference on Parallel
and Distributed Information Systems, pages 194{201, 1993.

[13] D. Kotz. Disk-directed I/O for MIMD multiprocessors. Technical Report PCS-TR94-226, Dartmouth College
Department of Computer Science, July 1994.

[14] D. Kotz and N. Nieuwejaar. Dynamic �le-access characteristics of a production parallel scienti�c workload. In
Proceedings of Supercomputing '94, pages 640{649, November 1994.

15

[15] A. J. Lapadula, K. P. Herold, and P. J. Hatcher. A retargetable C* compiler and run-time library for mesh-
connected MIMD computers. Technical Report TR 92-15, University of New Hampshire Department of Computer
Science, 1992.

[16] E. L. Miller and R. H. Katz. Input/output behavior of supercomputing applications. In Proceedings of Super-
computing '91, pages 567{576, 1991.

[17] J. A. Moore. Parallel I/O requirements of four oceanography applications. Technical Report 95-80-1, Oregon
State University Department of Computer Science, 1995.

[18] J. A. Moore, P. J. Hatcher, and M. J. Quinn. Stream*: Fast,
exible data-parallel I/O. In Parallel Computing
'95, September 1995.

[19] S. A. Moyer and V. S. Sunderam. PIOUS: a scalable parallel I/O system for distributed computing environments.
In Proceedings of the Scalable High-Performance Computing Conference, pages 71{78, 1994.

[20] P. Pierce. A concurrent �le system for a highly parallel mass storage system. In Fourth Conference on Hypercube
Concurrent Computers and Applications, pages 155{160, 1989.

[21] A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and M. Best. Characterizing parallel �le-access patterns
on a large-scale multiprocessor. In Proceedings of the Ninth International Parallel Processing Symposium, April
1995.

[22] Thinking Machines Corporation. C* Programming Guide, June 1991.

[23] Thinking Machines Corporation. Connection Machine I/O System Programming Guide, October 1991.

[24] Thinking Machines Corporation. CM-5 I/O System Programming Guide, September 1993.

[25] A. Witkowski, K. Chandrakumar, and G. Macchio. Concurrent I/O system for the hypercube multiprocessor.
In Third Conference on Hypercube Concurrent Computers and Applications, pages 1398{1407, 1988.

16

