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Many animals detect prey or enhance their locomotion with information

from hair-like receptors that are activated by local fluid flows. The util-

ity of biological hair receptors has motivated the design of artificial hair

sensors (AHS) for flow control applications where aerodynamic or hydro-

dynamic forces play a significant role in the dynamics of a body. Among

the potential applications for AHS are low-Reynolds number flyers for

enhanced maneuverability and underwater vehicles for greater efficiency

while navigating. For such applications, how flow phenomena related to

aerodynamically or hydrodynamically important forces can be detected

through the mechanical response of AHS must be understood. In this

collection of manuscripts, we investigate the utility of AHS for detecting

flow phenomena pertinent to these applications.



One aerodynamically adverse phenomena of low-Reynolds number flight

is boundary layer separation. By modeling each hair as a viscoelastic

beam coupled to its local flow environment, the dynamic and mechanical

response of a hair sensor array was simulated in unsteady flow separation.

We show that the resultant moment at the base of each hair sensor in the

array provides a space and time accurate representation of the onset and

span of reversed flow, the location of the point of zero wall shear-stress,

the formation and relative position of near wall vortices, and the spatial

development and evolution of boundary layer flows.

The shape of a boundary layer flow is another means of detecting flow

separation and is also related to the local wall shear-stress. Here, we

determine the hair lengths relative to a general measure of boundary layer

thickness that maximizes output sensitivity to changes in boundary layer

shape. The range of computed optimal hair lengths is in close agreement

with the range of hair receptor lengths measured on three bat species. A

tapered hair profile is shown to provide larger sensitivities over a wider

range of flow conditions compared to hairs of uniform cross section.

The feedback of surface mounted AHS measurements for accurate flow

state estimation away from the wall is important for effective flow control

design. A linear quadratic Gaussian observer is designed for an unsteady

viscous incompressible flow with hair sensor arrays. Here, the Riccati

equation was numerically solved using the modified Kleinman-Newton

method combined with a snapshot procedure for solving Lyapunov equa-

tions. We show that measurements provided by two patches of hair sensor

arrays significantly contributes to the estimation of a nearby region of the

flow velocity field.



The results herein support artificial hair sensors as an effective means of

detecting flow phenomena important to the dynamics of bodies in fluid

flows. Within the following manuscripts, contributions are also made to

biology, artificial hair sensor design and application, and linear control

theory.
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Detecting Fluid Flows with Bioinspired Hair Sensors

1 GENERAL INTRODUCTION

The effective use of artificial hair sensors (AHS) for the detection and feedback of

information related to aerodynamically or hydrodynamically important fluid flows

will require an understanding of the relationships between mechanical quantities of

hair-like structures and the particular phenomena or physical quantities specific to

the flows of interest. In this collection of manuscripts, we investigate hair-like struc-

tures for the detection and feedback of information related to aerodynamically and

hydrodynamically important flows. Specifically, we will 1) determine that an AHS

array can provide a space and time accurate representation of laminar unsteady flow

separation, 2) characterize how hairs physically respond to unsteady viscous incom-

pressible flows and how the mechanical moment and shear force at the base of the

hair is related to local flow velocity, 3) determine how hair geometry influences the

hair sensitivity in boundary layer flows, 4) develop a tractable mathematical model of

hair-like structures for flow control applications, and 5) provide evidence that limited

wall measurements from hair sensor arrays can effectively estimate the regions of the

flow velocity field through model-based observer design.

Many animals use hair-like structures to detect their flow environments. For

example, bats exhibit super-maneuverability in low-Reynolds number regimes of flight

and acrobatic-like behavior when landing. While this is likely largely an outcome

of the bat’s articulated wing structure, bats also possess distributed arrays of hair

receptors growing from their wing surfaces. It has been hypothesized that the hair

receptor arrays provide instantaneous feedback on the airflow environment over the
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wing [1, 2, 3] allowing the bat to adjust its kinematics or wing shape during flight.

Cartilaginous and bony fishes also use mechanosensor arrays of hair-like structures

known as the lateral line. By detecting changes in flow environment surrounding the

fish, the lateral line has been implicated in prey detection and tracking, collective

schooling behavior, and maintaining position and orientation in strong currents [4, 5].

Other examples of biological hair receptors may be found on the legs of crickets [6, 7]

and spiders [8, 9].

Inspired by the biological hair receptor, flow feedback provided by AHS is one

potential means of detecting aerodynamic or hydrodynamic forces on a body. For

example, micro-air-vehicles (MAV) operate in low-Reynolds number flight regimes

(Re ∼ 105) with inherent flow unsteadiness and flight stability issues caused by gusts

of wind or separation bubbles (see [10] and the references therein). One potential

solution to the challenges associated with low-Reynolds number flight is a closed-loop

flow control system integrated into the MAV and designed to mitigate the effects

of such destabilizing flows. Airflow feedback to controller would be likely provided

by measurements of the flow field made from the MAV surface. For this purpose,

a suite of surface mounted hair sensor arrays is one potential means of flow detec-

tion. However, the successful application of AHS requires an understanding of the

relationship between their local flow environment and physical response. This is a

general requirement for any AHS application and is addressed here by the 5 research

objectives listed above.

The article in Chapter 2 [11] contributes to the first research objective: the me-

chanical characterization of a hair sensor array in unsteady flow separation. Here,

each hair sensor is modeled as a viscoelastic Euler-Bernoulli beam and coupled to the

flow with empirical drag coefficients for cylinders in cross-flow. With finite element

simulations of the hair-fluid model we found that the moment at the base of the hair
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(taken as the hair output signal) provided a time and space accurate representation of

the phenomena associated with unsteady flow separation. A linear algebraic hair sen-

sor model was then derived and shown to provide an output similar to the viscoelastic

hair simulations.

Chapter 3 [12] contributes to the first and second research objectives. In addition

to further characterization of an AHS array in unsteady flow separation, the effect

of the hair material properties on its dynamic response and how the hair dynamics

influence the resultant moment at the base of the hair is studied. Here, we show that

the hair output is independent of the hair dynamics and dominated by the surface

forces from the viscous flow. This result indicates that inertial forces of the hair, and

thus the hair dynamics, may be neglected in modeling the relationship between the

flow velocity incident on the hair and the resultant mechanical response at its base.

These results also justified the similarity between the linear algebraic hair model and

finite element simulations presented in Chapter 2.

The third objective, the effect of hair geometry on output sensitivity, is presented

in the manuscript contained in Chapter 4. Based on the physical analysis contained

in Chapter 3, a simplified quasi-steady model of the hair is developed. The relative

hair length to any boundary layer flow that maximizes hair output sensitivity is

determined. The range of computed optimal hair lengths are shown to be in close

agreement with measured biological values. These results support the hypothesis that

bats use hair sensors for boundary layer detection and provide geometric guidelines

for artificial hair sensor design.

The article in Chapter 5 contains a proof-of-principle study for the fifth objective:

flow observer design with hair sensor arrays. Observer (and control) design for flow

problems (in general distributed parameter systems) is not without its own set of

theoretical and computational challenges. Here we use a new algorithm [13, 14]
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to compute linear quadratic control laws for an unsteady Stokes-type flow. This

methodology is successfully applied to an observer design with hair sensor arrays as

an addendum to this thesis in Chapter 6. This work is concluded in Chapter 8 with

a summary of the results and conclusions of each manuscript.
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THE DETECTION OF UNSTEADY FLOW SEPARATION WITH BIOINSPIRED
HAIR-CELL SENSORS

B. T. Dickinson, J. R. Singler, B. A. Batten

Proceedings of the 26th AIAA Aerodynamic Measurement Technology and Ground
Testing Conference, 2008, AIAA paper number 2008-3937
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2.1 Abstract

Biologists hypothesize that thousands of micro-scale hairs found on bat

wings function as a network of air-flow sensors as part of a biological

feedback flow control loop. In this work, we investigate hair-cell sen-

sors as a means of detecting flow features in an unsteady separating flow

over a cylinder. Individual hair-cell sensors were modeled using an Euler-

Bernoulli beam equation forced by the fluid flow. When multiple sensor

simulations are combined into an array of hair-cells, the response is shown

to detect the onset and span of flow reversal, the upstream movement of

the point of zero wall shear-stress, and the formation and growth of eddies

near the wall of a cylinder. A linear algebraic hair-cell model, written as

a function of the flow velocity, is also derived and shown to capture the

same features as the hair-cell array simulation.

2.2 Introduction

Numerous reconnaissance and surveillance applications exist for autonomous micro-

air-vehicles (MAV). However, the utility of the MAV is limited due in part to poor

resistance to adverse pressure gradients and the formation of laminar separation bub-

bles that occur in their low-Reynolds number flight regimes. To mitigate the effects

of such destabilizing flow phenomena, some researchers have sought to design closed-

loop flow controllers, which when implemented on an MAV will require novel flow

sensors due to payload and power limitations. In this work, we investigate a means

of flow detection by drawing biological inspiration from the extraordinarily complex

and extremely maneuverable flight of the bat.

Biologists have recently provided new evidence to suggest that thousands of hair-
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cells (see Figure 2.1), scattered across the bat wing surface are actually a distributed

sensing network that provides boundary layer feedback as part of a biological flow

control loop [2]. The hair-cells shown in Figure 2.1 belong to the grey-headed flying-

Figure 2.1: Scanning electron micrograph of hair cells on the wing of the grey-headed
flying-fox (Reproduced by permission of CSIRO PUBLISHING, from the Australian
Journal of Zoology vol. 42(2):215-231 (GV Crowley and LS Hall). Copyright CSIRO
1994. http://www.publish.csiro.au/nid/91/issue/2300.htm)

fox and are thought to be air-flow sensors [1]. The hairs are on the order of 1 mm

tall, and protrude from dome structures which contain touch-sensitive cells. Apart

from the bat, hair-cell arrays are also found in cartilaginous and bony fishes, where

they are implicated in prey detection and tracking, collective schooling behavior, and

maintaining position and orientation in strong currents [4]. Interestingly, hair-cells

are also thought to play a role in boundary layer detection for locomotion control in

fish. Other examples of hair cell use include movement sensitive touch detection in

spiders [15] and sound vibration detection in mammals.

For controller implementation, new micro-electro-mechanical manufacturing tech-

nology is changing the hair-cell from a biological curiosity into an available sensor.

Inspired by the biological hair-cell, the Micro Nano Technology Research (MNTR)
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group1 has designed, manufactured, and tested high sensitivity artificial hair-cell

(AHC) sensors [16, 17, 18]. One AHC design is composed of an all-polymer hair

attached to a force sensitive resistor base, as shown in Figure 2.2. Additionally, the

Figure 2.2: Photo of polymer artificial hair cell sensor (left) and force sensitive resistor
(FSR) at base of polymer AHC (right). Figures courtesy of C. Liu and group, MNTR
lab, Northwestern University

AHC may be manufactured as small as 10 µm in diameter.2

The design of a model-based controller with an array of hair-cell sensors will

require an accurate model of the sensor array. In our previous work [19], a physical

model for an individual AHC was developed, based on those manufactured by the

MNTR group [17]. Here, we will investigate the response of an AHC array to unsteady

flow separation and derive a linear algebraic model for a hair-cell array for application

in linear control designs.

In the next section, we develop our model of the hair-cell sensor and state its

assumptions. The flow and sensor array problem statement is presented in Section

2.4, followed by the results of the flow and hair-cell simulations in Section 2.5. In

Section 2.6, a linear sensor model is derived and its response is compared to our sensor

array simulations. Finally, we summarize our findings and outline avenues of future

research in Section 2.7.

1Formerly at the University of Illinois at Urbana Champaign (UIUC), now at Northwestern
University

2Private communication with Chang Liu, Northwestern University
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2.3 Hair-Cell Model

When placed in an air flow, the biological hair-cell is subject to a net drag force that

acts normal to its length, causing the output of bioelectrical signals from the hair-

cell dome. With similar function, artificial hair-cell (AHC) designs have integrated

micro-electro-mechanical mechanisms in their base [16, 17, 18]. In this work, we take

the sensor’s output as the bending moment at its base and note that future mod-

els of particular AHC designs may require additional modeling of electromechanical

mechanisms.

To describe the relationship between the external flow around a hair-cell and

the resulting bending moment, we use an Euler-Bernoulli beam equation coupled to

a constitutive drag force equation. Viscoelastic material damping is also included

with the Kelvin-Voigt material model. This leads to the following partial differential

equation to describe the dynamics of each hair sensor

ρsArtt(t, ξ) + γIrtξξξξ(t, ξ) + EIrξξξξ(t, ξ) = g(t, ξ), 0 < ξ < L, 0 < t < T, (2.1)

with boundary conditions

r(t, 0) = 0, rξ(t, 0) = 0,

EIrξξ(t, L) + γIrtξξ(t, L) = 0, EIrξξξ(t, L) + γIrtξξξ(t, L) = 0,
0 < t < T,

and initial condition

r(0, ξ) = r0, 0 ≤ ξ ≤ L,

where r(t, ξ) denotes the deflection of the hair at time t and position ξ, L is the hair’s

length, d is its diameter, ρs is the density of the hair-cell, A is its cross-sectional

area, E is Young’s modulus of the hair material, I is the moment of inertia, γ is the
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Kelvin-Voigt coefficient of material damping, and g(t, ξ) is the load intensity, with

units of force per unit length. Additionally, the subscripts (·)ξ and (·)t denote partial

derivatives.

To express the load intensity, g(t, ξ), due to the flow we use the drag force equation

g(t, ξ) = sgn(un(t, ξ))
1

2
Cf (un) ρa d un(t, ξ)2, (2.2)

where un(t, ξ) is the fluid velocity field projected normal to the length of the hair,

sgn(un) accounts for the direction of un(t, ξ), ρa is the density of air, and Cf is the

drag coefficient for a cylinder in cross flow, which was computed pointwise along the

length of the sensor to account for the nonuniform velocity boundary layer.

A relationship between Cf and un was determined by fitting a first-order poly-

nomial to the logarithm of empirical drag coefficients for an infinite cylinder versus

Reynolds number as

lnCf (un) ≈ −0.67 ln Re`(un) + 2.51, (2.3)

where the Re(un) is a function of un(t, ξ) and based on the hair’s diameter as

Re`(un) =
un(t, ξ) d

ν
. (2.4)

The drag coefficient equation (3.7) is an accurate approximation for Re` < 7.

Finally, the moment at the base of the hair-cell may be computed as

M(t) = EIrξξ(t, 0) + γIrtξξ(t, 0). (2.5)

In constructing the hair-cell model (2.2), we neglect any forces on the sensor from



11

flow phenomena on its free end, such as recirculation at the tip. Additionally, we do

not account for any flow effects at the base of the sensor, such as a horseshoe vortex.

By examining orders of magnitude in the Reynolds number expression (2.4), we find

that for air passing over a hair-cell with L = 1 mm and d = 10 µm (the dimensions

used herein), | un(t, ξ) | ∼ Re`. Thus, for un << 1, we have Re` << 1 and the flow

over the sensor will be very smooth. By limiting the sensor’s height to 1 mm, so that

it remains submerged within the boundary layer of our simulations, we ensure that

un(t, ξ) << 1 m/s. Additionally, the immersion of the sensor in the boundary layer

may help ensure its sensitivity to the boundary layer flow while the hair’s protrusion

into the freestream may saturate its response.

We also assume the effect of the sensor on the surrounding flow field is negligible.

Thus, we couple the sensor to the flow through the load intensity, g(t, ξ), but do

not couple the flow to the sensor in the Navier-Stokes equations. Although, the

true extent of the sensor’s effect on the flow is unknown, preliminary wind tunnel

experiments performed at Oregon State University with hair-cells mounted on the

surface of micro-air-vehicle wings have supported this assumption.3

Finally, we assume that the velocity of any point on the sensor is much less than

the flow velocity acting at that point, that is rξ(t, ξ) << un(t, ξ) for 0 ≤ ξ ≤ L and

0 ≤ t ≤ T . To this end, we do not compute a relative normal flow velocity due to the

sensor’s motion.

2.3.1 Discretization of Sensor Model

In this section, we describe the discretization of the hair-cell sensor model (2.1) with

the finite element method. To compute approximate solutions, r(·, ·), we multiply

3Private communication with Dan Morse, Oregon State University
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the sensor model (2.1) by a test function φ(·) and integrate by parts twice to look for

solutions r(·, ·) ∈ L2(0, T ;X(0, L)) such that

ρA (rtt , φ) + γI (rtξξ , φξξ) + EI (rξξ , φξξ)− (g , φ) = 0, ∀φ ∈ X(0, L), (2.6)

where X(0, L) = {φ ∈ H2(0, L) |φ(0), φξ(0) = 0}, and (f, g) =
∫ L

0
f(x) g(x) dx

denotes the standard L2 inner product. In the finite element discretization of (3.12),

we look for approximate solutions rh ∈ Xh such that

ρA
(
rhtt , φ

h
)

+ γI
(
rhtξξ , φ

h
ξξ

)
+ EI

(
rhξξ , φ

h
ξξ

)
−
(
g , φh

)
= 0, ∀φh ∈ Xh, (2.7)

where Xh ⊂ X(0, L) is a finite dimensional space spanned by cubic B-splines on a

grid defined over (0, L) and

r(t, ξ) ≈ rh(t, ξ) =
N∑
i=1

Ri(t)φi(ξ).

Substituting rh into the finite element form (3.13) gives the second-order system of

ordinary differential equations (ODE)

M R′′ + AR′ + C R = F (t) (2.8)

to be solved for R = [R1(t) . . . RN(t)], where (·)′ denotes a time derivative. The ODE

system (3.14) was set up as a system of first order equations in [R,R′] and solved

using a backward differentiation formula (BDF) method. Implementation details are

presented in Section 2.4.



13

2.4 The Problem Definition

The flow problem described here follows the impulsively started cylinder problem

described by Gresho and Sani [20] (pages 794-845). Figure 2.3 illustrates the artificial

flow domain, Ω, for a cylinder in cross flow used our simulations. Let u(t,x) =

Figure 2.3: Fluid domain for unsteady fluid separation simulations performed in this
analysis.

[u(t, x, y), v(t, x, y)] denote the two-dimensional velocity field and p(t,x) denote the

pressure field which describe the fluid dynamics in Ω, modeled by the nondimensional

viscous, incompressible Navier-Stokes equations

ut + u · ∇u = ∇p+
1

Re
∇2u

∇ · u = 0
(2.9)

with the following initial and boundary conditions,

u = (1− e−λ t), v = 0 on Γi × (0, T ],

−pn +
1

Re

∂u

∂n
= 0 on Γo × (0, T ],

∂u

∂n
= 0, v = 0 on Γt,b × (0, T ],

u = 0 on Γc × (0, T ],

u(0,x) = 0 in Ω,
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where the Reynolds number, Re, is

Re =
U D

ν
, (2.10)

U is a maximum inlet velocity, D is the diameter of the cylinder, and ν is the kinematic

viscosity of air.

The time dependent boundary condition at the inlet accelerates the uniform in-

let flow to a maximum velocity U according to the parameter λ. A “do nothing”

boundary condition was selected at the outlet [21], symmetry boundary conditions

were imposed on the top and bottom boundaries, and a no-slip condition was defined

on the surface of the cylinder.

To solve the fluid problem, we used the two-dimensional Freefem++ finite element

software [22]. We entered the fluid properties of air at 300K with ρ = 1.161 kg/m3

and µ = 184.6×10−7 N · s/m2. The cylinder diameter, D, was 0.10 m and the steady

inlet velocity value, U was selected as 0.03972 m/s for a Reynolds number of 250.

The inlet acceleration parameter was λ = −15, which accelerated the inlet uniform

flow from 0 to U m/s in approximately 0.5 seconds.

The Navier-Stokes equations were discretized with the Taylor-Hood pair and inte-

grated with a constant time step of 1/10000 seconds over the time interval 0 ≤ t ≤ 5

seconds with a first-order backward-step method. The domain was meshed with an

unstructured triangulation containing 30532 elements in the pressure grid, and 59943

elements in the velocity grid. Grid independence of the flow simulation was supported

after the above simulation was performed with approximately half the elements with

identical results.

Following the fluid simulation above, the response of 179 equally spaced hair-cells

on the surface of the cylinder was simulated. Sensors were numbered 1 through 179
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Figure 2.4: Illustration of hair-cell numbering scheme where 179 sensors were placed
at n = 1, 2 . . . , 179 degrees measured from the horizontal plane (sensors not shown to
scale)

corresponding to their angular positions on the cylinder, as illustrated in Figure 3.3.

The finite element discretization of the sensor model (see Section 2.3.1) was im-

plemented in MATLAB with 64 equally spaced nodes (verified grid independent)

along the sensor with cubic B-splines used for basis and test functions. We integrated

the resulting ODE system with MATLAB’s built in solver ode15s for 0 ≤ t ≤ 5 s.

The ode15s package is a numerical differentiation formula routine with relative and

absolute error tolerances set to 10−3 and 10−6, respectively.

For each sensor, the load intensity, g(t, ξ), was determined before the sensor sim-

ulation, by computing un(t, ξ) for each hair-cell at 100 equally spaced points for

0 < ξ ≤ L and 501 equally spaced points in time for 0 ≤ t ≤ 5. During the integra-

tion of the discretized sensor model (2.8), g(t, ξ) was interpolated with cubic splines

to reconstruct the forcing vector, F (t), at each time step.

Material parameters of the sensor for density, ρs, and Young’s modulus, E, were

chosen based on tabular values for polymers [23]. Table 2.1 lists the geometric and

material parameters used herein. To our knowledge, tabular data for Kelvin-Voigt

material damping, γ, of polymers is not available. However, our experiments with

individual sensors show that while the deflection, r(t, ξ), and velocity, rξ(t, ξ), of the

sensor are sensitive to changes in γ; the moment at the base, M(t), gives virtually

the same response for 1× 105 ≤ γ ≤ 1× 109. Additionally, the sensor output M(t) is
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Table 2.1: Geometric and material parameters of the hair-cell sensor model (2.2)

Parameter Value

L 1× 10−3 m

d 1× 10−5 m

ρs 1× 103 kg/m3

E 1× 108 N/m2

γ 1× 108 N·s/m2

shown to closely follow the tip load intensity g(t, L), for 1× 105 ≤ γ ≤ 1× 109, which

in this flow, generally represents the shape of g(t, ξ), at for 0 ≤ ξ ≤ L for all time.

2.5 Results and Discussion

In this section, we discuss the response of the hair-cell sensor array to the flow simu-

lation described in Section 2.4. In the flow simulation, an initially quiescent flow field

is accelerated across the cylinder from the impulse-like inlet condition. Flow reverses

direction on the downstream side of the cylinder in a initially very thin region near

the wall. As time increases, a counterclockwise rotating eddy forms near the wall and

convects downstream.

Figures 2.5, 2.6, 2.7, and 2.8 are nondimensional velocity magnitude plots of this

simulation at t = 0.50, 2.00, 3.50, and 5.00 seconds, respectively. Figure 2.5 shows

the boundary layer still fully attached at t = 0.50 s; however, at t = 0.55 s, the onset

of flow reversal is observed in a thin layer near the wall on the order of 1×10−4 meters

thick. As time increases from 0.50 to 2.00 s, the span of reversed flow at the cylinder

wall increases to 66.5◦ (angles presented here are measured from the horizontal plane

at the downstream side of the cylinder, as shown in Figure 2.4). Flow reversal near

the wall is associated with a clockwise rotating eddy that forms during separation.
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Figure 2.5: Nondimensional velocity magnitude snapshot at t = 0.50 s with the flow
attached everywhere

Figure 2.6: Nondimensional velocity magnitude snapshot at t = 2.00 s with reversed
flow and point of zero wall shear at 66.5◦

Figure 2.7: Nondimensional velocity magnitude snapshot at t = 3.50 s with reversed
flow and point of zero wall shear at 68.3◦

Figure 2.8: Nondimensional velocity magnitude snapshot at t = 5.00 s with reversed
flow and point of zero wall shear at 68.6◦



18

S
en

so
r 

P
os

iti
on

 N
um

be
r

Time  s

 

 

0 1 2 3 4 5

1

20

40

60

80

100

120

140

160

179

3

2

1

0

−1

−2

−3

−4

−5

−6

x 10
−8

Figure 2.9: Image plot of the 179 hair-cell sensor array response to the separating
flow simulation plotted against sensor position number and time showing

The eddy is shown to convect downstream as time increases. At t = 5.00 s, the

reversed flow at the cylinder wall spans 66.8◦.

We now present the 179 hair-cell sensor array response to the unsteady separating

flow. Figure 2.9 is an image plot of the moments M(t) for the sensor array versus

sensor position and time. The vertical axis contains the sensor position number with

position 1 and 179 located at the top and bottom of the axis, respectively. Thus, the

top half of the plot represents the sensor array output on the downstream side of the

cylinder. To observe features in the array response to the unsteady separating flow,

we limit the colorscale map of moment values to −6.0 × 10−8 ≤ M(t) ≤ 3.0 × 10−8

mN·mm.

Close examination of the data in Figure 2.9 reveals the onset of reversed flow from

the negative moment values on the order of 10−11 mN·mm near sensor 5 at t = 0.59

s, indicating the formation of an eddy on the downstream side of the cylinder. The

reversed flow grows to span approximately 65 sensors at t = 2.00 s. Just beyond
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the 65th sensor, we observe an interface between positive and negative moments,

which corresponds to flow reversal or the instantaneous point of zero wall shear. The

reader can verify that points of zero wall shear-stress noted in the fluid simulation

snapshots, Figures 2.6, 2.6, 2.7, and 2.8, are in agreement with positive-negative

moment interface, shown in the hair-cell array response, Figure 2.9.

The values of negative sensor moment come to a global minimum of −7.5× 10−8

mN·mm at t = 2.45 s at sensor 19, which is due to the growth of the clockwise

eddy. As time increases, minimum sensor moment increases and shifts toward sensor

1. At t = 5.00 s, the minimum sensor output is −3.5 × 10−8 mN·mm at sensor 14.

The increase in minimum negative moment with time is a result of the downstream

convection of the eddy.

Interestingly, at t = 2.5 s, a region of increasing moment near sensor 40 emerges

and continues to increase until the sensor outputs a positive moment of 1.6 × 10−10

mN·mm at t = 2.99 s. From sensor 42 at t = 2.99 s, a region of positive moment grows

to span sensors 38 to 44 at t = 3.55 s where a local maximum moment of 6.7× 10−10

mN·mm by sensor 41 is observed. For t > 3.55 s, both the span and value of the

positive moment region decreases, until the last positive moment is output by sensor

40 at t = 4.59 s. Although, not observed in the original postprocessing of the flow

simulation, this region of positive moment indicates a small counterclockwise eddy

centered near sensor 41, as shown in Figure 2.10.

Figure 2.10 is a vector velocity plot superimposed on nondimensional velocity

magnitude spanning 30◦ to 70◦ near the cylinder wall at t = 3.50 s. Here, we observe

a region of counterclockwise recirculation between the 35◦ and 50◦ mark. Upstream

of the 50◦ mark, the flow is again reversed, which is part of the large downstream

clockwise eddy that manages to flow over the small clockwise eddy. At the 68◦ mark,

the reversed flow comes to the point of zero-shear and its trajectories are guided in
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Figure 2.10: Vector velocity and velocity magnitude for t = 3.50 s near the cylinder
wall spanning approximately 30◦ to 70◦ and showing the presence of a clockwise
rotating eddy between the 35◦ and 50◦ marks that is trapped by the large downstream
counterclockwise eddy

the downstream direction.

In closing this section, we remark that the hair-cell sensor array has revealed

features of the unsteady separating flow with a surprising level of accuracy and detail.

Both the onset and span of reversed flow were detected and were consistent with

observations made in the flow simulation. The interface between positive and negative

moments were also found to indicate points of zero wall shear stress. Additionally,

the downstream motion of the eddy was observed from the sensor array response.

Finally, the sensor array detected an unexpected counterclockwise eddy upstream of

the large clockwise eddy, which was verified with subsequent reinspection of the flow

simulation.

While a single hair-cell sensor can indicate flow direction; as hair-cells are as-

sembled into a large array, a picture is painted from which we can observe detailed

information on flow phenomena from measurements at the wall. On the basis of the
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Figure 2.11: Load intensity, g(t, ξ), acting on left sensor causing moment, M(t), and
equivalent point-load, Ft(t), acting on the right sensor at the center of mass of g(t, ξ),
ξ̄(t), to produce the equivalent moment M(t)

above results, a hair-cell array appears to be a promising choice for detection of the

boundary layer.

2.6 Linear Algebraic Sensor Model

Linear control theory is well developed with many tests available to verify the stability,

robustness, and overall effectiveness of the controller. Although most fluid flows

we wish to control are nonlinear, this does not necessarily preclude the successful

application of a linear control design. For example, linear optimal control designs

with linearized Navier-Stokes equations have been shown to successfully reduce wall

shear in a turbulent flow [24].

In this section, we present a linear algebraic model of the hair-cell sensor array

for application in linear flow controllers. Our derivation of an algebraic sensor model

for the hair-cell sensor begins by expressing the load intensity g(t, ξ) as a resultant

drag force, Ft(t), acting at height ξ̄(t) on the sensor, so that an equivalent moment

M(t) is produced at the base, as illustrated in Figure 2.11.

Following the point-load representation in Figure 2.11, we compute the output
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M(t) as

M(t) = Ft(t) ξ̄(t) (2.11)

where Ft(t) is the total drag force acting on the sensor,

Ft(t) =

∫ L

0

g(t, ξ) dξ (2.12)

and ξ̄(t) is determined by the center of mass of the load intensity g(t, ξ) as,

ξ̄(t) =

∫ L
0
g(t, ξ) ξ dξ∫ L

0
g(t, ξ) dξ

. (2.13)

The substitution of (2.12) and (2.13) into (2.11) gives the following equation for

moment

M(t) =

∫ L

0

g(t, ξ) ξ dξ. (2.14)

Recall the expression for g(t, ξ) (2.2), presented in Section 2.3 as

g(t, ξ) = sgn(un(t, ξ))
1

2
Cf (un) ρa d un(t, ξ)2. (2.2)

where

lnCf (un) ≈ −0.67 ln Re`(un) + 2.51 (2.3)

and

Re`(un) =
un(t, ξ) d

ν
. (2.4)

When equations (2.2), (2.3), and (2.4) are combined, the sensor moment output M(t)

may be written as

M(t) = 6.15 ρa d
0.33 ν0.67

∫ L

0

sgn(un(t, ξ)) | un(t, ξ) |1.33 dξ. (2.15)
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Note that the integrand appearing in (2.15) is nonlinear. To linearize (2.15), a least

squares fit with a first-order polynomial was performed for −0.0075 ≤ un(t, ξ) ≤

0.0075 m/s to obtain the linear expression for moment

M(t) = 1.12 ρa d
0.33 ν0.67

∫ L

0

un(t, ξ) dξ. (2.16)

The interval −0.0075 ≤ un(t, ξ) ≤ 0.0075 m/s was chosen through trial-and-error to

give the most identical results to the hair-cell sensor array simulation in Figure 3.16

of the previous section. To compute with (2.16), the integral may be approximated

with quadrature or some other numerical integration procedure. Here we used the

Riemann sum so that

M(t) =
N∑
i=1

ci un(t, ξi) (2.17)

and

ci = 1.12 ρa d
0.33 ν 0.67 ξi ∆ξ (2.18)

where ξi is the ith position along the sensor.

To assemble a linear algebraic model for an array of hair-cell sensors, equation

(2.17) may be applied to each sensor and assembled in matrix form as,


M1(t)

...

MN(t)

 =


c1,1 . . . c1,M 0 . . . 0

...
. . .

...

0 . . . 0 cN,1 . . . cN,M





u1
n(t, ξ1)

...

u1
n(t, ξM)

...

uNn (t, ξ1)

...

uNn (t, ξM)



, (2.19)
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Figure 2.12: Sensor array response com-
puted with linear algebraic model
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Figure 2.13: Sensor array response from
finite element simulation

where Mi(t) is the moment output of the ith sensor, ci,j is the coefficient computed

for ith sensor at ξj, and uin(t, ξj) is the normal velocity component acting on the ith

sensor at the jth position.

Figure 2.12 is the sensor array response to the unsteady separating flow simulation

computed with the linear algebraic model (2.19). Here, we also limit the colorscale

map of moment values to −6.0×10−8 ≤M(t) ≤ 3.0×10−8 mN·mm. For comparison,

the hair-cell array response described by partial differential equation model (2.1)

and presented in Section 2.5 is reproduced to the right of the Figure 2.12. Based

on the similarity between Figures 2.12 and 2.13, the linear algebraic sensor model

accurately captures the hair-cell array input-output relationship of the finite-element

simulations.

Future work will see the use of the above hair-cell model in model based flow-

control designs with the Navier-Stokes equations. In particular, linear quadratic

Gaussian (LQG) and extended LQG observers will be used estimate the flow field

from the partial state information provided by a hair-cell array at the wall.
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2.7 Summary

Biologists hypothesize that the thousands of hairs scattered across the bat wing is

actually an air-flow sensing network and part of a biological feedback flow control

loop. Here, a simulation of a hair-cell sensor array placed on a cylinder wall in an

unsteady separating flow was performed.

Finite element simulations of a 179 hair-cell array revealed features of the unsteady

separating flow with a surprising level of accuracy and detail. Observations between

the output of the hair-cell array and the flow simulation showed that the hair-cell

array detected both the onset and span of reversed flow, the movement of the point

of zero wall shear, the downstream convection of an eddy, and the formation of a small

counterclockwise eddy upstream of the larger clockwise eddy. Additionally, a linear

algebraic sensor model was derived and shown to accurately reproduce the hair-cell

array response from the finite element simulations.

Future work will see the application of the linear hair-cell model to linear control

designs with the Navier-Stokes equations. In particular, linear quadratic Gaussian

(LQG) and extended LQG observers will be constructed and the ability of a hair-

cell array to estimate the flow features in the boundary layer from limited velocity

information at the wall will be investigated.
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3.1 Abstract

Many animals use hair-like structures to detect fluid flows. Bats fly at low

Reynolds numbers so they must be able to detect and react to unsteady

flows across their wings to maintain control. Studies have shown that bats

have arrays (0.10 to 4.0 mm in length) of hair receptors distributed across

the wing membrane surfaces. The hair array is hypothesized to detect flow

fields near the wing, enabling the bat to adjust its wing shape and kine-

matics to maintain stability during flight, and while performing complex

maneuvers. Micro air vehicles (MAV) are also low Reynolds number flyers

and subject to unsteady flow structures that can determine flight stability.

This work was inspired by the bat hair receptor array as a potential sens-

ing system to control destabilizing flows over a MAV wing. Our objectives

were to characterize hair receptor dynamics to unsteady viscous flows and

determine what features of laminar unsteady flow separation could be de-

tected by an array of hairs. Finite element simulations of a viscoelastic

hair model showed that surface forces from the viscous airflow dominated

the hair dynamics, and the moment at the base of the hair provided a

time accurate indication of local flow direction and magnitude. The set

of moments from an array of hairs in unsteady flow separation accurately

indicated the location of the point of zero wall shear stress, the formation

and movement of near wall eddies, and the span of reversed flow. These

results support the utility of artificial hair sensor arrays for flow controller

designs in the MAV, and are consistent with the hypothesis that bats use

hair receptor arrays to detect unsteady flow patterns.
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3.2 Introduction

Many animals use hair-like structures to detect their environments. Cartilaginous

and bony fishes use hair sensory arrays for prey detection and tracking, collective

schooling behavior, and maintaining position and orientation in strong currents [4].

Mammals and non-mammalian vertebrates detect sound aided by bundles of hair cells

contained in the cochlea [25]. Other examples of hair sensors include flow detection

in crickets [26] and movement sensitive touch detection in spiders [15].

Recent studies have shown that bats also have hair receptors, 0.10 to 4.0 mm in

length, growing from the dorsal and ventral wing surfaces [1, 2, 27, 3]. Figure 3.1

shows hair receptors belonging to the gray-headed flying fox (Pteropus poliocephalis)

which protrude from hair receptor domes that contain touch sensitive cells. Biologists

Figure 3.1: Scanning electron micrograph of hair receptors on the wing mem-
brane of Pteropus poliocephalis (the grey-headed flying-fox) (Reproduced by
permission of CSIRO PUBLISHING, from the Australian Journal of Zoology
vol. 42(2): 215-231 (GV Crowley and LS Hall). Copyright CSIRO 1994
.http://www.publish.csiro.au/nid/91/issue/2300.htm)

hypothesize that the hair receptors are used to sense airflow patterns from the wing

surface as part of a biological closed loop flow control system [3]. The bat is thought

to change its wing shape in response to detected flow patterns in their highly unsteady

low Reynolds number regimes of flight.
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Like the bat, the micro air vehicle1 (MAV) is low Reynolds number flyer. Although

numerous reconnaissance and surveillance applications exist for the autonomous MAV,

its overall utility is limited due to destabilizing aerodynamic forces that occur in low

Reynolds flight regimes [28, 29, 30]. One approach to improving flight stability is the

integration of a flow control system in the MAV wing to detect and mitigate the effect

of destabilizing flows. Such control designs are inherently limited to incomplete flow

information, likely provided by a suite of surface mounted sensors.

In this work, we investigate the mechanical and dynamic response of an array of

hairs to unsteady flow separation, which has important aerodynamic consequences

for flight. Our objective was to determine if the mechanical responses output by an

array of hair receptors were sensitive in space and time to characteristic phenomena of

unsteady flow separation. By understanding how hair receptors detect unsteady lam-

inar airflows, we aim to provide groundwork for the effective integration of artificial

hair receptors [16, 17, 18, 31, 32, 33] (Figure 3.2) in flow control designs.

Figure 3.2: Photo of polymer artificial hair sensor (left) and force sensitive resistor
(FSR) at base of polymer AHC (right). Figures courtesy of C. Liu and group, MNTR
lab, Northwestern University

While limited information is available on bat wing hair receptors, the modeling

and simulation of cochlear hair cells has been performed [34, 35]. Cochlear hair

cells are smaller than bat hair receptors (up to two orders of magnitude in length

1A micro air vehicle is loosely defined as an aircraft with wingspan on the order of 10−1m or less
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and diameter) and exist in a fluid known as endolymph. Estimates of the Reynolds

number for endolymph flow over a cochlear hair cell range from 10−2 to 10−3, leading

to models of the endolymph fluid environment with Stokes equations. Based on

measurements of bat flight speeds [36] (∼ 10m/s) and bat hair receptor diameters [1]

(∼ 10µm), we estimate hair receptor Reynolds numbers on the order of 100, which

violates the “massless” flow assumption of Stokes equations.

To investigate the dynamic response of hair receptors to laminar unsteady flow

separation we modeled each hair with an Euler-Bernoulli beam equation coupled to

the flow with solution data from the Navier-Stokes equations. Simulations of hair

receptors indicated that hair receptor dynamics were dominated by surface forces

from the flow. A similar result has been reported for cochlear hair cells [34, 37, 35].

Since the forces on the hair were dominated by the flow, the moment at the base

(output) of the hair provided a reasonably time accurate indication of local flow

direction and magnitude. As a result, hair receptor arrays provided a surprisingly

accurate picture of the flow from the wall. Specifically, the hair array was shown to

detect the onset and span of regions of reversed flow, the location of the point of zero

wall shear stress, and the formation and movement of a near wall eddies. These results

support the utility of artificial hair receptors for engineered flow control designs and

are consistent with the hypothesis that bats use hair receptors for flow detection.

3.3 Mathematical Modeling of the Hair/Fluid Problem

Here we consider an array of hairs placed at angles 1◦, 2◦, . . ., 179◦ on a cylinder

(Figure 3.3) that is impulsively started from rest in quiescent air. Unsteady flow sep-

aration is known to occur on the downstream side of the impulsively started cylinder

[38].
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Figure 3.3: Illustration of hair sensor array position and numbering where sensors are
placed at n = 1◦, 2◦ . . . , 179◦ measured from the horizontal plane (sensor length and
diameter are not shown to scale)

A reasonable diameter for hair receptors found on bat wings (and used for simu-

lations herein) is 1 × 10−5m. Given the hair is subject to airflows up to 10m/s, the

local hair Reynolds number is on the order of 100. To experience this ratio of inertial

to viscous forces, we would need to immerse ourselves in a pool of glycerin and swim

at speeds on the order of 10m per hour! From this perspective we anticipate that

inertial forces in the hair will be small. However, we include inertial terms in the hair

model and let the results justify this expectation.

Each hair is modeled as a viscoelastic cantilever beam with uniform diameter

and material properties; although, biological hair receptors observed on bat wings

are tapered (Figure 3.1). Material damping and air damping from the viscous flow

environment are included in the hair model.

We take the output of each hair as the resultant moment at its base because, as

a cause of mechanical stress in the bat wing membrane, the resultant moment at the

base of the hair could activate touch sensitive cells in the hair receptor dome [2]. The

moment at the base of the hair could also activate micro-electro-mechanical devices

in artificial hair sensors, such as the force sensitive resistor at the base of the polymer

hair shown in Figure 3.2.

Although the true effect of the hair on the flow is unknown, we assume that the

effect of the hair on the flow is negligible. Preliminary wind tunnel experiments
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performed at Oregon State University with artificial polymer hairs mounted on the

surface of micro-air-vehicle wings support this assumption2.

The problem of computing the output of an array of hairs from a viscous unsteady

airflow contains three main parts and is similar in approach to simulations performed

for cochlear hair cells by [34]:

1. The simulation of the flow environment and the calculation of the flow velocity

incident on the hair

2. The computation of the force per unit length acting on each hair and the dy-

namic response of the hair in the viscous flow

3. The calculation of the moment at the base (output) of the hair.

3.3.1 Flow Over an Impulsively Started Cylinder From Rest

Figure 3.4 illustrates the artificial flow domain, Ω, for the half-cylinder in cross-

flow simulated herein. Let u(t∗,x∗) = [u(t∗, x∗, y∗), v(t∗, x∗, y∗)] denote the two-

Figure 3.4: Fluid domain for unsteady fluid separation simulations performed in this
analysis.

dimensional velocity field and p(t∗,x∗) denote the pressure field that describes the

fluid dynamics in Ω, modeled by the nondimensional viscous, incompressible Navier-

2Private communication with Dan Morse, Oregon State University
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Stokes equations

ut + u · ∇u = ∇p+
1

Re
∇2u

∇ · u = 0
(3.1)

with the following boundary and initial conditions,

u = (1− e−λ t∗), v = 0 on Γi × (0, T ],

−pn +
1

Re

∂u

∂n
= 0 on Γo × (0, T ],

∂u

∂n
= 0, v = 0 on Γt,b × (0, T ],

u = 0 on Γc × (0, T ],

u(0,x) = 0 in Ω,

and Reynolds number,

Re =
U D

ν
, (3.2)

where U is a maximum inlet velocity, D is the diameter of the cylinder, and ν is the

kinematic viscosity of air.

The time dependent boundary condition at the inlet Γi accelerates the uniform

inlet flow to a maximum velocity U according to the parameter λ. The “do nothing”

boundary condition [21] was imposed at the outlet Γo, symmetry boundaries were

specified on the top Γt and bottom Γb of the domain, and a no-slip condition was set

on the surface of the cylinder Γc.

3.3.2 Viscoelastic Hair Forced by a Viscous Flow

To describe the relationship between an external flow around a hair and the hair

output, taken here as the moment at its base, we used a viscoelastic model of an

Euler-Bernoulli beam coupled to flow with drag coefficients for a circular cylinder in
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crossflow. Material damping was included with the Kelvin-Voigt model. This led to

the following nonlinear partial differential equation to describe the dynamics of each

hair receptor

ρsArtt(t, ξ) + γIrtξξξξ(t, ξ) + EIrξξξξ(t, ξ) = g(rt), 0 < ξ < `, t > 0, (3.3)

with boundary conditions for a cantilever beam

r(t, 0) = 0, rξ(t, 0) = 0,

EIrξξ(t, `) + γIrtξξ(t, `) = 0, EIrξξξ(t, `) + γIrtξξξ(t, `) = 0,
t > 0,

and initial condition

r(0, ξ) = r0(ξ), 0 ≤ ξ ≤ `,

where: r denotes the deflection of the hair from the neutral axis; ` is the hair length;

ρs is the density of the hair; A is its cross-sectional area; E is Young’s modulus of the

hair material; I is the moment of inertia; γ is the Kelvin-Voigt coefficient of material

damping; g is a force per unit length acting on the hair, known as the load intensity;

and the subscripts (·)ξ and (·)t denote partial derivatives.

To compute the load intensity due to the flow we used the drag coefficient for a

circular cylinder in crossflow as

g(t, ξ) = sgn(un(t, ξ))
1

2
Cd(Reξ) ρa d ur(t, ξ)

2, (3.4)

where d is the hair diameter (constant), ρa is the fluid density, and ur(t, ξ) is the

relative flow velocity acting normal to the length of hair computed as

ur(t, ξ) = un(t, ξ)− rt(t, ξ) (3.5)
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where un(t, ξ) is the projection of the Navier-Stokes velocity data normal to the length

of the hair sensor and rt(t, ξ) is the hair velocity.

Figure 3.5, contains a freebody diagram of the hair subject to a nonuniform inci-

dent flow profile.

Figure 3.5: Nonuniform incident flow velocity (a) and corresponding freebody diagram
(b) of a hair

To account for the nonuniform relative flow velocity, the drag coefficient, Cd, was

computed as a function of the local Reynolds number

Reξ =
ur(t, ξ) d

ν
. (3.6)

We developed a relationship between Cd and Reξ by fitting a first-order polynomial

to the logarithm of empirical drag coefficients for a circular cylinder in crossflow [19]

for 0 < Reξ ≤ 10, as

lnCd(Reξ) ≈ −
2

3
ln Reξ +

5

2
. (3.7)

Based on the hair model (3.3), the moment at the base of the hair (output) is

given by the following expression

M(t) = EIrξξ(t, 0) + γIrtξξ(t, 0). (3.8)

We nondimensionalize the hair model (3.3) by introducing the following nondi-
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mensional variables

ξ∗ =
ξ

`
, t∗b = τ t, r∗ =

r

`
, d∗ =

d

d0

, u∗r =
ur
U

where d0 is a reference hair diameter. The parameter τ = E/γ is known as the

rate of relaxation and governs the rate that strain in a Kelvin-Voigt material with a

constant applied stress comes to equilibrium [39]. Note that the inverse of the rate

of relaxation, 1/τ = γ/E, is a time scale of the Kelvin-Voigt material.

When the above nondimensional variables are substituted into the hair sensor

model (3.3) we obtain the following nonlinear partial differential equation

τ 2mr∗t∗b t∗b +
EI

`3

(
r∗t∗bξ∗ξ∗ξ∗ξ∗ + r∗ξ∗ξ∗ξ∗ξ∗

)
= gr · g∗(r∗t∗b ) (3.9)

where m = ρsA` is the mass of the hair, gr = ρa d0 U
2 is the reference load intensity,

and

g∗(r∗t∗b ) =
g

gr
=

1

2
Cd (d∗, u∗r,Re0) d∗ u∗r

2. (3.10)

is the nondimensional load intensity. Recall that u∗r depends on r∗t∗b due to equation

(3.5). Also, Cd (Reξ) in (3.4) has been replaced with Cd (d∗, u∗r,Re0) in (3.9) since

Reξ = d∗ u∗r Re0

where

Re0 =
U d0

ν

so that the forcing on the hair due to the flow may be written as a function of the

nondimensional variables d∗, u∗r, and Re0.
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In nondimensional form, the hair output becomes

M∗ =
M

Mr

= r∗t∗bξ∗ξ∗(t
∗
b , 0) + r∗ξ∗ξ∗(t

∗
b , 0) (3.11)

where Mr = EI/`.

3.4 Simulation Details

3.4.1 Finite Element Solution of the Fluid Model

Solutions to the flow problem (3.1) were approximated using the characteristic Galerkin

finite element method [40] with the software package FreeFEM++ [22]. We set the

cylinder diameter, D = 0.10m and maximum inlet velocity, U = 0.0794m/s for Re

=500. The inlet acceleration parameter was λ = 15. We discretized in space with

the Taylor-Hood pair and integrated with a constant time step of 10−5 seconds over

the time interval 0 ≤ Ut/D ≤ 3.97 with a first order backward-step method. The

domain was meshed with an unstructured triangulation and refined at the cylinder

wall to help resolve the flow velocity near the hair. The final grid was composed of

30532 elements in the pressure grid, and 59943 elements in the velocity grid.

3.4.2 Finite Element Solution of the Hair Model

To compute approximate solutions to r∗(t∗b , ξ
∗), we multiplied the nonlinear hair

model (3.9) by a test function φ(ξ∗) and integrated by parts twice to look for so-
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lutions r∗(t∗b , ξ
∗) ∈ L2(0, T ;V ) such that

τ 2m
(
r∗t∗b t∗b , φ

)
+
EI

`3

(
r∗t∗bξ∗ξ∗ + r∗ξ∗ξ∗ , φξ∗ξ∗

)
−

gr

(
g∗(r∗t∗b ) , φ

)
= 0, ∀φ ∈ V,

(3.12)

where V = {φ ∈ H2(0, L) |φ(0), φξ(0) = 0}, and (f, g) =
∫ L

0
f(x) g(x) dx denotes the

standard L2 inner product. In the finite element discretization of (3.12), we looked

for approximate solutions r∗h ∈ V h such that

τ 2m
(
r∗ht∗b t∗b , φ

)
+
EI

`3

(
r∗ht∗bξ∗ξ∗ + r∗hξ∗ξ∗ , φ

h
ξ∗ξ∗

)
−

gr

(
g(r∗ht∗b ) , φh

)
= 0, ∀φh ∈ V h,

(3.13)

where V h ⊂ V is a finite dimensional space spanned by cubic B-splines {φ(ξ∗)}Ni=1 on

a grid defined over (0, L) and

r∗(t∗b , ξ
∗) ≈ r∗h(t∗b , ξ

∗) =
N∑
i=1

Ri(t
∗
b)φi(ξ

∗).

Substituting r∗h into the finite element form (3.13) gave the second-order system of

nonlinear ordinary differential equations (ODE)

M R′′ + AR′ + C R = F (t∗b , R
′) (3.14)

to be solved for R = [R1(t∗b) . . . RN(t∗b)], where (·)′ denotes a time derivative.

The finite element discretization of the hair model was implemented in MATLAB

with 64 equally spaced nodes (verified grid independent) along the hair. The resulting

ODE system (3.14) was integrated with MATLAB’s built in solver ode15s over 0 ≤

t∗b ≤ 5 where F (t∗b , R
′) was reconstructed at each time step. The ode15s package is

a numerical differentiation formula routine. Relative and absolute error tolerances
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were both set to 10−10.

Material parameter values of the hair for density, ρs, and Young’s modulus, E,

were chosen based on tabular values for polymers [23], as listed in Table 3.1. The

length and diameter of the hair were selected to be representative of hair receptor

dimensions found on bat wings [1]. Due to a lack of tabular data for Kelvin-Voigt

Table 3.1: Geometric and material parameters used in the simulation of each hair

Parameter Value

` 10−3 m

d 10−5 m

ρs 103 kg/m3

E 108 N/m2

γ 104 − 1010 N·s/m2

material damping, γ, we investigate the dynamic response and output of a hair for

γ = 104 − 1010 N·s/m2 in the following section.

3.5 Simulation Results and Discussion

3.5.1 Simulation of the Flow Over an Impulsively Started Cylinder

Figures 3.6, 3.7, and 3.8 are respective velocity magnitude plots of the flow simula-

tion at t∗ = tU/D = 0.064, 0.40, and 1.19 showing the unsteady separation of the

boundary layer on the downstream side of the impulsively started cylinder.

At t∗ = 0.064, the flow is attached and symmetric (Figure 3.6). As t∗ increases,

an adverse pressure gradient forms, leading to the onset of reversed flow at t∗ = 0.25

at the trailing edge of the cylinder. As the span of reversed flow at the cylinder wall

grows, a clockwise eddy forms, as shown in Figure 3.8.

During the unsteady separation of the boundary layer, the point of zero wall shear

stress is located at the point on the cylinder wall where the wall normal velocity
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Figure 3.6: Nondimensional velocity magnitude snapshot at t∗ = 0.064 with the flow
attached everywhere

Figure 3.7: Nondimensional velocity magnitude snapshot at t∗ = 0.40 with point of
zero wall shear stress at 59.9◦

Figure 3.8: Nondimensional velocity magnitude snapshot at t∗ = 1.19 with point of
zero wall shear stress at 73.7◦

gradient vanishes. The point of vanishing wall shear originates at the trailing edge

of the cylinder and travels quickly upstream to 74.9◦. More information on unsteady

flow separation may be found in [41] or in [38].

3.5.2 Dynamic Response and Output of Hair at 15◦

Here we describe the dynamic response of hair 15 (placed at 15◦ on the cylinder

wall) to the flow over the impulsively started cylinder. For the following results,
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Kelvin-Voigt material damping was set to 108 Ns/m2.

The incident flow velocity, un, on hair 15 was four orders of magnitude larger

than the hair velocity, rt, so that the relative flow velocity, shown in Figure 3.9, was

identical to the incident flow velocity computed from the Navier-Stokes data.

Figure 3.9: Relative flow veloc-
ity for hair 15

Figure 3.10: Load intensity act-
ing on hair 15

Figure 3.9 shows the initial flow impulse, followed by flow reversal, which indicates

the point of zero wall shear stress has moved upstream of 15◦ on the cylinder wall.

Oscillations shown in the reversed flow are a result of the movement of the large

clockwise eddy within the flow domain.

The load intensity (Figure 3.10) was in phase with the relative flow velocity (Fig-

ure 3.9). This result was expected since g∗ ∝ u∗r
4/3, which was obtained with the

substitution of equation (3.7) into (3.4). The deflection of hair 15 due to the load

intensity (Figure 3.10) is shown in Figure 3.11.

The hair output, M∗ (Figure 3.12) followed changes in the tip load intensity

in time (Figure 3.10). Since the load intensity was in phase with the relative flow

velocity, the moment of hair 15 provided a reasonably time accurate indication of the

incident flow velocity direction and magnitude.

Due to the similarity between the load intensity and hair output, it appears that

the hair output was dominated by surface forces due to the surrounding viscous
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Figure 3.11: Deflection of hair
15
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Figure 3.12: Output of hair sen-
sor 15

airflow. However, the material damping, γ, and the modulus of elasticity, E, may

also determine the hair dynamics thereby affecting the output through inertial forces

present in the hair.

To this end, we asked if changing the rate of relaxation could change the in-

ertial forces in hair 15 enough to significantly affect the hair output. To answer

this question, hair 15 was simulated for γ = 104, 106, and 1010 Ns/m2 while hold-

ing E = 108 N/m2 (τ = 104, 102, 10−2 s−1). Results from the above simulations

γ = 108 Ns/m2 (τ = 100 s−1) were also included in this analysis.

As τ increased from 10−2 to 104 s−1 the maximum hair deflection increased from

0.01% to 0.23%, as shown in Figure 3.13. Note that for τ ≥ 102, the hair deflection
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Figure 3.13: Tip deflection of sensor 15 versus time for various τ
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converges to a shape similar to the tip load intensity (Figure 3.10), so that it moves

in phase with changes in the relative flow velocity.

If the applied load intensity is time dependent, as in our hair/fluid problem, then

the dynamic response depends on the relative size of the material time scale, 1/τ , and

the time scale of the forcing on the hair, further denoted η. For 1/τ < η, strain in the

hair will relax at a higher rate than the load intensity changes in time so that the hair

will deflect in phase with changes in the load intensity. In contrast, for 1/τ > η, the

strain from past forces linger in the hair as the load intensity changes. As a result, the

hair deflection will move out of sync with the load intensity, being slower to respond

to changes in the surrounding viscous flow.

Since the load intensity (Figure 3.10) was in phase with the flow incident on

the hair (Figure 3.9), we take the time scale of the load intensity as the inverse

of the impulse inlet parameter, η = 1/λ = 6.7 × 10−2 s (see equation 3.1, Section

3.3). Tip hair deflections (Figure 3.13) for 1/τ = 10−2 and 10−4 s (1/τ < η) were in

phase with changes in the tip load intensity (Figure 3.10), while hair deflections for

1/τ = 100 and 102 s showed a longer time periods for strain relaxation and increasingly

smaller deflections in time.

Increasing in the rate of relaxation also increased the hair velocity. Still, the

largest hair velocity, which occurred during an impulse like response for 1/τ < η

(Figure 3.14), was three orders of magnitude less than the incident flow velocity.

Despite the different dynamic hair responses above (Figure 3.13 and 3.14), the

corresponding hair moments, shown in Figure 3.15, differed by values on the order of

10−6 and thus were identical when plotted.

In summary, we have shown that the moment at the base of a hair in unsteady

flow separation at Re=500 provided a time accurate indication of the incident flow

velocity direction and magnitude. The dynamic response was shown to have neg-
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Figure 3.14: Tip velocity of sensor 15 versus time for various τ
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Figure 3.15: Moment output of sensor 15 versus time for various τ

ligible influence on the hair moment, which was dominated by surface forces from

the surrounding viscous airflow. Although it remains to be shown, we expect these

results will extend to higher Reynolds number flows due to the low Reynolds number

environment of the hair receptor described in Section 3.3.

3.5.3 Detection of Unsteady Flow Separation with Hair Array Moments

We now present the set of moments from the complete hair array response to the flow

over an impulsively started cylinder simulation, described in Section 3.3.1.

Figure 3.16 is plot of the hair moment, M∗(t), versus hair position and nondi-

mensional time, t∗ = tU/D. For reference, iso-moment contours are superimposed in
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Figure 3.16: Hair array output to flow over an impulsively started cylinder simulation

Figure 3.16 including the zero moment contour.

Figure 3.16, shows the initial flow impulse during which a global maximum mo-

ment of 2.60×10−1 occurs at 96◦ and t∗ = 0.074. At t∗ = 0.27 and 1◦, the zero-moment

contour indicates the onset of unsteady flow separation by providing the location of

the point of zero wall shear stress, which was observed in the flow at t∗ = 0.25. From

the zero-moment contour, the location of zero wall shear stress quickly moves up-

stream to 72◦, a phenomena consistent with past numerical studies of flow over an

impulsively started cylinder [42].

Within the separated boundary layer, a global minimum of−9.3×10−3 at t∗ = 1.02

at hair 20 occurs due to the growth of the large clockwise eddy. At t∗ = 0.97 and

hair 45, the beginning of another zero-moment contour is observed that grows to

contain positive moments, indicating forward flow spanning its boundaries. In fact,

this response is due to a small counterclockwise eddy upstream of the larger clockwise

eddy. The counterclockwise eddy is paired with a third clockwise eddy represented

in the array output between the upstream boundary of the zero valued contour of

the counterclockwise eddy and the zero wall shear stress contour, where hair outputs

are negative. This scenario is illustrated in Figure 3.17 with a vector velocity plot

spanning 33◦ to 74◦ at t∗ = 1.50.
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74°

50°

33°

Figure 3.17: Vector velocity at t∗ = 1.50 near the cylinder wall showing the counter
rotating eddies detected by the hair array between 33◦ and 74◦

For t∗ > 1.50, the span of the zero-moment contour due to the counterclockwise

eddy is shown to contract, then grow again. Concurrently downstream, the values

and span of the negative moments due to the large clockwise eddy are shown to vary.

These fluctuations are an outcome of both the growth and movement of the near wall

eddies within the flow domain. Due to the apparent sensitivity of the hair moment to

near wall eddies, we anticipate that the moments from hair arrays are also a means

to detect vortex shedding and its periodicity.

3.6 Summary

Biologists hypothesize that the thousands of hairs scattered across the bat wing are a

sensing network for detecting airflow patterns and part of a biological feedback flow

control loop. In this work, we investigated the hair array as a means for flow detection

by simulating their output to the flow over an impulsively started cylinder.

Observations of a single hair response to the flow showed that its output provided

a time accurate indication of the incident flow velocity and direction, including flow

reversal due to separation. A brief parameter investigation showed surface forces from
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the external airflow dominated the inertial forces of the hair.

An array of 179 hairs placed on the cylinder wall revealed features of the flow

impulse and subsequent unsteady flow separation with impressive accuracy and detail.

Observations between the output of the hair array and the flow were in agreement

with the onset and span of reversed flow, the movement of the point of zero wall

shear stress, the movement of eddies away from the wall, and the formation of a

small counter-rotating pair of eddies upstream of the larger clockwise eddy. These

results support the utility of artificial hair sensor arrays for flow controller designs in

the MAV, and are consistent with the hypothesis that bats use hair receptor arrays

to detect unsteady flow patterns.

Future work will focus on the sensitivity hair receptors in boundary layer flows.

Through an investigation with the boundary layer, we aim to determine the best hair

geometry (e.g., profile, length) and placement for boundary layer detection on an

aircraft wing.
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4.1 Abstract

Biologists have shown that bats possess hair sensors scattered over their

wing surfaces. It is hypothesized that the hair sensors provide airflow

feedback over the bat wings for enhanced stability and maneuverability

during flight. Here, we consider hair-like structures, such as those found

on the bat wings, as boundary layer transducers. A quasi-steady model

that relates the flow velocity profile incident on the hair to the resultant

moment and shear force at the hair base is developed. The hair length rel-

ative to the boundary layer momentum thickness that maximizes resultant

moment and shear-force sensitivity to boundary layer shape is determined

for hairs with uniform and linearly tapered cross-section. Resultant mo-

ment and shear-force sensitivity is shown to be highly dependent on hair

length. Hairs that linearly taper to a point are shown to provide more

sensitivity over a larger range of flow conditions than hairs of uniform

cross-section. On an order of magnitude basis, the computed optimal hair

lengths are in exact agreement with the range of biological hair sensor

lengths measured on individual bat species. These results support the

hypothesis that bats use hair sensors for boundary layer detection and

provide geometric guidelines for artificial hair sensor design and integra-

tion into micro-air-vehicles.

4.2 Introduction

Recent histological studies of bat wings have found distributed arrays of hair receptors

(Figure 4.1) on the dorsal and ventral wing surfaces [1]. The hair receptors are smaller

than pelagial hair and found growing from domes that contain touch sensitive cells [2].
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Figure 4.1: Scanning electron micrograph of hair cells on the wing of the grey-headed
flying-fox (Reproduced by permission of CSIRO PUBLISHING, from the Australian
Journal of Zoology vol. 42(2):215-231 (GV Crowley and LS Hall). Copyright CSIRO
1994. http://www.publish.csiro.au/nid/91/issue/2300.htm)

Forces on the hair from the airflow environment create afferent bioelectrical signals

in the hair dome; however, how this information is used and the specific flow features

or quantities being detected is unknown. Inspired by the hair receptor array on bat

wings, here we investigate hair-like structures for the detection of boundary layer

flows.

The detection of the spatial development or evolution of boundary layer flows

over aircraft wings could be used to maintain a laminar attached boundary layer

flows and reduce skin friction drag. For these purposes, linear optimal model-based

control methodologies have been applied to boundary layer flows with promising re-

sults [43, 44]. In these (and many other) studies the focus is on control design and the

estimation of the boundary layer from limited pressure and shear-stress information

at the wall.

In the real application of flow control and estimator designs, pressure and wall

shear-stress information is provided by a suite of surface mounted sensors. A hair

sensor array is one potential suite of sensors for wall shear-stress measurement through

the detection of boundary layer shape. The effective integration of hair sensors (or
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other sensor types) into flow control and estimator designs requires an understanding

of the interaction of the sensor with the flow and an accurate mathematical model

that relates flow state information (e.g. velocity field) to sensor output. Sensor

placement and the number of sensors necessary for acceptable estimator and controller

performance is also a design issue and generally an open question. Still, before hair-

like structures may be integrated as sensors in flow control and estimator designs,

boundary layer detection leads to geometric considerations of the hair for optimal

sensor performance.

In this work, our goal is to determine the hair length that provides the maximum

output sensitivity to changes in boundary layer shape. Based on hair and flow time

scales, we develop a quasi-steady hair sensor model relating the incident flow velocity

(the sensor input) to the resultant moment and shear force at the base of the hair

(sensor output). Hair output was computed for a set of boundary layer flows mod-

eled by the Falkner-Skan equation. The hair lengths relative to the boundary layer

thickness that provided the maximum output sensitivity were determined for hairs

with uniform and linearly tapered cross section.

For both hair profiles, hair output sensitivity is highly dependent on hair length

with the optimal hair lengths for maximum output sensitivity ranging from 43.0%

to 115% of δ99, depending on the hair shape and output quantity (moment or shear

force). The optimal lengths of linearly tapered hairs were approximately 10% longer

than hairs with uniform cross section. Additionally, linearly tapered hairs provided a

slightly increased output sensitivity over a larger range of boundary layer thicknesses

than hairs with uniform cross section.

By estimating the range of boundary layer thicknesses over bat wings during flight,

an approximate range of optimal hair lengths for boundary layer detection over the

bat wing was determined. On an order of magnitude basis, the ranges of measured
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hair lengths on three different bat species were in exact agreement with the ranges of

computed values.

The following section contains a description of the flow environment surrounding

the hair and presents our approach to the development of a quasi-steady hair model.

In Section 4.4 the hair output is reported for various hair lengths and boundary layer

shapes and the optimal hair length for maximum output sensitivity is determined.

We conclude with a summary of our approach and findings.

4.3 Hair Sensor Model

Although electrical signals are the form of the actual output of both biological and

artificial hair sensors, we take the hair sensor output as the resultant moment and

shear force at the base of the hair. This choice of output is made with the assumption

that the resultant moment and shear force is related to the electrical output signal

with additional modeling of the biological mechanism or MEMS devices.

The goal in modeling the hair receptor is to develop a relationship between the

nearby flow that applies surface forces to the hair, further referred to as the sensor

input (Figure 4.2a), and the resultant shear force and moment at the base of the hair,

further together referred to as the hair output (Figure 4.2b).

We begin our development of a mathematical hair sensor model with a conceptual

discussion of the forces in the airflow over a hair. Let the Reynolds number for flow

normal to the hair longitudinal axis (the axis normal to the hair cross section) be

defined as

Re0 =
U d0

ν
(4.1)

where U and d0 are the characteristic flow velocity and characteristic hair diameter,

respectively. Setting U ∼ 1m/s as a characteristic speed of bat and MAV flight,
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Figure 4.2: Nonuniform flow velocity profile incident on hair receptor (left) and cor-
responding free body diagram of hair (right)

(the symbol ∼ is used here to mean on the order of magnitude) and d0 ∼ 10−5m,

a characteristic diameter of bat hair sensors, gives Re0 ∼ 1. Although not quite a

Stokes flow environment, Re0 ∼ 1 illustrates the importance of viscous forces from

the airflow over the hair. Previous studies also found that hair motion is driven by

surface forces (see [34, 37] or [35] and the references therein).

Relative hair motion due to deflection with or against the flow velocity hair may

also affect the surface forces acting on the hair. To understand the importance of

relative hair motion on surface forces we compared the hair and flow time scales. The

time scale of a hair’s dynamic response to an applied stress may be quantified with

the ratio of the coefficient of material damping, γ, to the modulus of elasticity, E [39].

Although experiments to determine these material properties of bat hairs have yet

to be performed, mammalian hair is composed of keratin for which many mechanical

and dynamic properties are known. For example, the dynamic time scale of keratin

wool fibers ranges from ∼ 101 to ∼ 105 seconds, depending on the relative humidity

of air [45]. Here, we use this range of time scales as an estimate for bat hair sensor

dynamics.

As a time scale of flow over the hair we take the ratio of the characteristic hair
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diameter, d0, to the characteristic flow velocity U , d0/U . Using the above character-

istic values for d0 and U , the micro-scale hair diameter leads to time scales of ∼ 10−6

seconds. Clearly, for keratin and potentially a wide range of viscoelastic materials,

γ

E
>>

d0

U
.

To this end, the hair is effectively motionless from the perspective of the flow and

will exhibit quasi-steady behavior.

Given the statically determinate situation of the hair (Figure 4.2) and making the

assumption of quasi-steady behavior leads to the following expressions for resultant

moment and shear force

M(t) =

∫ `

0

g(t, ξ) ξ dξ (4.2)

and

F (t) =

∫ `

0

g(t, ξ) dξ. (4.3)

where g(t, ξ) is the instantaneous load intensity that acts normal to the longitudinal

axis having units of force per unit length.

For hairs with circular cross section, we approximate the load intensity at any

longitudinal position, ξ, along the hair as

g(t, ξ) =
1

2
Cd(Reξ) ρ d(ξ)u(t, ξ)2 (4.4)

for 0 ≤ ξ ≤ ` where ` is hair length, ρ is the fluid density, d is the hair diameter, u is

the flow velocity incident on the longitudinal axis, and Cd is the drag coefficient for an

infinite circular cylinder in cross-flow. Due to the nonuniform boundary layer profile

and a potentially nonuniform hair diameter, the drag coefficient, Cd, is determined



55

as a function of the local Reynolds number,

Reξ =
u(t, ξ) d(ξ)

ν
, (4.5)

with a least squares fit to empirical data for the drag coefficient of infinite circular

cylinders in crossflow over 10−1 ≤ Reξ ≤ 101 found in [46] and routinely contained in

most fundamental texts on fluid mechanics. Close agreement with experimental data

was observed with the following linear logarithmic expression

logCd ≈ −
2

3
log Reξ +

5

2
. (4.6)

Note that the use of the drag coefficient in the expression for the load intensity

(4.4) does not account for flow phenomena due to its free end or the surface where the

hair is mounted. Although end effects will be present, we anticipate their influence

on the surface forces acting on the hair will be negligible due to the low Reynolds

number environment (Re0 ∼ 1 or less).

When the expression for load intensity (4.4) is substituted into the equations for

resultant moment (4.2) and shear (4.3) we obtain

M(t) =

∫ `

0

1

2
Cd(Reξ) ρ d(ξ)u(t, ξ)2 ξ dξ (4.7)

and

F (t) =

∫ `

0

1

2
Cd(Reξ) ρ d(ξ)u(t, ξ)2 dξ. (4.8)

Equations (4.7) and (4.8) relate the velocity profile of a viscous incompressible flow

normal to the longitudinal axis of a hair-like structure having circular cross-section

to the mechanical response at its base. In the following section we proceed with a
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nondimensionalization of equations (4.7) and (4.8) to length and velocity scales of the

boundary layer.

4.3.1 Nondimensional Form of Hair Model

For analysis within the context of boundary layer flows, we now recast equations (4.7)

and (4.8) with the following nondimensional variables

d∗ =
d

d0

, ξ∗ =
ξ

δ2

, `∗ =
`

δ2

, u∗ =
u

U
, (4.9)

where d0 is a characteristic hair diameter (taken here as the base diameter d(ξ =

0) = d0), δ2 is the boundary layer momentum thickness, and U is the external flow

velocity.

The application of (4.9) to the resultant moment (4.7) results in an equivalent

expression that is the product of a nondimensional coefficient of moment,

Cm =
1

`∗2

∫ `∗

0

Cd(u
∗, d∗,Re0) d∗ u∗2 ξ∗ dξ∗ (4.10)

the dynamic pressure, Q = 1
2
ρU2, the frontal area, A = d0 `, and the characteristic

length, `, as

M(t) = CmQA`. (4.11)

With a similar application of the nondimensional scales in (4.9) to the resultant shear

force (4.8) we obtain the product of a nondimensional coefficient of shear force,

Cs =
1

`∗

∫ `∗

0

Cd(u
∗, d∗,Re0) d∗ u∗2 dξ∗, (4.12)
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the dynamic pressure, Q, and frontal area, A, as

F (t) = CsQA. (4.13)

The coefficients of moment (4.10) and shear force (4.12) are primarily a function of the

nondimensional variables u∗, d∗ and `∗ and are secondary functions of the reference

Reynolds number, Re0 (4.1). The dependence on Re0 is obtained by applying (4.9)

to local Reynolds number (4.5) as Reξ = u∗ d∗Re0.

4.3.2 Boundary Layer Model

Computing hair output sensitivity requires an adequate description of changes in

boundary layer shape. Here, we chose the Falkner-Skan equation which describes

boundary layer flows over a wedge (accelerated flows), corner (retarded flows), and flat

plate (Blasius flow). The Falker-Skan equation is obtained from Prandtl’s boundary

layer equations with the assumption of self-similar solutions and is written as

f ′′′ + f f ′′ + β (1− f ′2) = 0,

f(0) = f ′(0) = 0,

f ′(η →∞),= 1

(4.14)

where f = f(η) is a similarity variable, f ′ = u∗ = u/U , η = y/δ is a dimensionless wall

normal coordinate and U is the outer flow. The boundary layer thickness measure,

δ, is

δ =

√
2

m+ 1

ν x

U
(4.15)
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where m = β/(2 − β) and the parameter β determines the corresponding geometry

of the flow (i.e. plate, corner, wedge, etc.).

Since no analytical solution of (4.14) is known, solutions of the Falkner-Skan

equation must be approximated numerically. Here, we used a second-order accurate

central-difference scheme known as the Keller box-method [47]. Figure 4.3 contains

grid independent boundary layer profiles from the solution of (4.14) for β ranging

from β = −0.199 (separation over a corner) to β = 1.0 (flow to a plane stagnation

point).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

η = y/δ

u
/U

−0.124

0.000

0.110

0.330

1.000

β = −0.199

Figure 4.3: Solutions of the Falkner-Skan equation ranging from separation (β =
−0.199) to plane stagnation (β = 1.0)

Boundary layer shapes, such as those shown in Figure 4.3, are further quantified

herein with the Hartree shape factor,

H =
δ1

δ2

,

where δ1 is displacement thickness,

δ1 =

∫ ∞
0

(
1− u

U

)
dη,
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and δ2 is the momentum thickness,

δ2 =

∫ ∞
0

u

U

(
1− u

U

)
dη.

In terms of the Hartree shape factor, separation occurs when H=4.029, H=2.591

corresponds to Blasius flow (flow over a flat plate), and H=2.216 indicates flow to

a plane stagnation point (Heimenz flow). For more information on the Falker-Skan

equations and Hartree profiles see Schlichting and Gersten [38].

4.4 The Optimal Hair Length for Boundary Layer Detection

Any portion of a hair protruding from the boundary layer will have a corresponding

portion of its output represented by the external flow. Hairs that extend too far

into the external flow will be insensitive to changes in the boundary layer. Thus, for

maximum output sensitivity to changes in boundary layer shape we propose that the

hair length be limited by a measure of the local boundary layer thickness.

We search for the hair length of largest output sensitivity over 0.01 ≤ `∗ ≤ 6 and

boundary layer shapes over 2.216 ≤ H ≤ 4.029. To specifically examine sensitivity

to boundary layer shape, hair moment (4.11) is nondimensionalized by the reference

moment, QA`, and normalized by the dependence of Cm on the external flow, U ,

through Re0 leading to the following nondimensional expression

M∗ = Cm Re
2/3
0 =

1

`∗2

∫ `∗

0

d∗1/3 u∗4/3 ξ∗ dξ∗. (4.16)

Similarly, the resultant shear force (4.13) is nondimensionalized by the reference force,
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QA, and normalized by its dependence on U to give

F ∗ = Cs Re
2/3
0 =

1

`∗

∫ `∗

0

d∗1/3 u∗4/3 dξ∗. (4.17)

Equations (4.16) and (4.17) are general nondimensional expressions for laminar bound-

ary layer flows. Note that for the direct application of (4.16) and (4.17) to Falkner-

Skan solutions, we may rescale hair length and wall normal distance by δ (4.15),

a specific measure of boundary layer thickness for Falkner-Skan flow, to obtain the

following expressions that are equivalent to equations (4.16) and (4.17) above,

M∗ =

(
δ

`

)2 ∫ `/δ

0

d∗1/3 f ′
4/3
η dη (4.18)

and

F ∗ =

(
δ

`

) ∫ `/δ

0

d∗1/3 f ′
4/3

dη. (4.19)

Equations (4.18) and (4.19) are used in the following sections to compute the hair

output and sensitivity.

4.4.1 Hairs with Uniform Cross-Section

This section contains the output and sensitivity of hairs with a uniform cross-section of

d = d0 = 10µm. Figures 4.4 and 4.5 are contour plots of M∗ and F ∗ versus `∗ = `/δ2

and H, respectively. The lines in Figures 4.4 and 4.5 represent iso-moment and iso-

shear contours, which trace paths of increasing `∗ as H increases from 2.216 to 4.029.

The direction of the iso-output contours is an outcome of the flow changing from a

situation where motion in the downstream direction is accelerated by a decreasing

pressure gradient, to one where downstream motion is impeded by an increasing



61

H

`∗

 

 

2.5 3 3.5 4
0

1

2

3

4

5

6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4.4: M∗ as a function of `∗ and
H for a hair sensor with uniform cross
section
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Figure 4.5: F ∗ as a function of `∗ and
H for a hair sensor with uniform cross
section

pressure gradient. For a hair mounted within the boundary layer, an increase in H

corresponds to a decrease in nondimensional incident flow velocity, u/U (see Figure

4.3). It follows that the iso-output contours follow paths of increasing length to

supplement the output loss as H increases.

For all hair lengths, maximum outputs occur for the most accelerated flows (Hiemenz

flow, H = 2.216). As the flow decelerates (H increases from H = 2.216), all hair

outputs monotonically decrease to minimum values at H = 4.029. This monotonic

behavior leads to a convenient quantification of hair output sensitivity: the values

spanned by M∗ and F ∗ over 2.216 ≤ H ≤ 4.029 or

SM∗ = M∗
max −M∗

min (4.20)

and

SF ∗ = F ∗max − F ∗min. (4.21)

When the above sensitivities, (4.20) and (4.21) are plotted against `∗ (Figure 4.6)

distinct values of maximum sensitivities for moment and shear occur at `∗ = 0.93
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and `∗ = 1.17, respectively. We shall further refer to lengths of maximum sensitivity
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Figure 4.6: Sensitivity of hair, SM∗ and SF ∗ , with a uniform diameter as a function
of `∗

as optimal and denote their values for output moment and shear with the subscript

(·)M∗ and (·)∗F , respectively.

Nondimensional hair lengths scaled by the Falkner-Skan boundary layer thickness,

δ (4.15), result in optimal values of (`/δ)M∗ = 2.07 and (`/δ)F ∗ = 2.41. As H

decreases from H = 4.029 to 2.216 the optimal hair lengths increase from 43.0% to

86.3% of δ99 for moment and from 50.1% to 100% of δ99 for shear force.

Finally, we note that as the relative hair lengths moves from their optimal values

in Figure 4.6, output sensitivity sharply decreases, indicating that hair length is a

critical geometric parameter for the detection of boundary layer profiles.

4.4.2 Hairs with Linearly Tapered Cross-Section

Bat hair receptors have nonuniform cross-sections that are thickest at their base and

taper to smaller diameters toward the tip. To this end, the above computations were

also performed for hairs with a constant base diameter of 1 × 10−5m (also taken as
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the reference diameter d0) that linearly taper to a point.

Hair outputs versus length `∗ and Hartree profile H∗ showed similar trends to

hairs with uniform cross-section (Figures 4.7 and 4.8). Again, the output sensitivities
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Figure 4.7: M∗ as a function of `∗ and
H for a hair sensor with tapered cross-
section
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Figure 4.8: F ∗ as a function of `∗ and
H for a hair sensor with tapered cross-
section

(4.20) and (4.21) showed distinct optimal hair lengths (Figure 4.9) with points of

maximum moment and shear sensitivity of `∗M∗ = 1.05 and `∗F ∗ = 1.34. In terms
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Figure 4.9: Sensitivity of hair, SM∗ and SF ∗ , with a linearly tapered diameter as a
function of `∗

of the Falkner-Skan boundary layer thickness, δ, the optimal hair lengths occur at
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(`/δ)M∗ = 2.27 and (`/δ)F ∗ = 2.75. As H decreases from H = 4.029 to 2.216 the

optimal hair lengths increase from 47.2% to 94.6% of δ99 for moment and from 57.2%

to 115% of δ99 for shear force.

The 15% extension of the optimal tapered hair length past δ99 for H = 2.216 is

not completely unexpected. Although increasing a tapered hair length beyond the

boundary layer thickness creates an output contribution from the external flow, an

increase in the diameter subject to the boundary layer profile also occurs (note that

this cannot be said for hairs with uniform cross-section). Thus, for a certain length

beyond the boundary layer, loss of output sensitivity from the contributions by the

external flow is outweighed by the advantage of an increase in hair diameter within

the boundary layer.

Close comparison Figure 4.9 with Figure 4.6 also shows slightly less penalty in

output sensitivity as hair lengths move away from their optimal points. To this end,

it appears that a tapered hair profile may be a means of preserving sensor sensitivity

as flow conditions change near the hair.

The results in Sections 4.4.1 and 4.4.2 provide insight into artificial hair sensor

design and integration into micro-air-vehicles. For the detection of the boundary

layer (as opposed to the external flow) hair length should be chosen based on a pri-

ori knowledge of the boundary layer thickness. The optimal values of `∗ determined

herein serve as guidelines for ensuring hair output sensitivity. These values are sum-

marized in the first two columns of Table 4.1 below. Included in the third and fourth

Table 4.1: Summary of optimal relative hair lengths determined herein for hairs with
uniform and linearly tapered cross-section

Hair Shape (`/δ2)M∗ (`/δ2)F ∗ (`/δ)M∗ (`/δ)F ∗ (`/δ99)M∗ (`/δ99)F ∗

Uniform 0.93 1.17 2.07 2.41 0.430-0.863 0.501-1.00

Tapered 1.05 1.34 2.27 2.75 0.472-0.946 0.572-1.15
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columns of Table 4.1 are the optimal hair lengths with respect to δ (4.15). However,

because δ depends on m and x, the meaning of these values is limited to self-similar

flows where these parameters have meaning. Finally, the ranges of hair length relative

to δ99 for 2.216 ≤ H ≤ 4.029 are listed in the last two columns.

4.4.3 Comparison of Optimal Hair Lengths with Biological Data

We now estimate the range of optimal hair lengths over the bat wing and compare

these results to the range of hair receptor lengths measured on three different bat

species. For each bat, the range of optimal hair lengths are computed by estimating

the range of boundary layer thicknesses over the wing given flight-speed and chord-

length data. The range of boundary layer thicknesses over the bat wing is estimated

with the range of boundary layer thicknesses of Falkner-Skan solutions having surface

lengths, L, equal to bat wing average chord-lengths and boundary layer shapes over

2.216 ≤ H ≤ 4.029 and at equal Reynolds numbers.

A Reynolds number for the forward flapping flight of the bats [10] is

Reb =
Vf Lc
ν

, (4.22)

where Vf is the forward flight speed and Lc is the mean wing chord-length, defined

as the wing area divided by the wing span. For the Falkner-Skan flow we use the

following Reynolds number

Re =
V L

ν
, (4.23)

where V is a reference velocity taken as the external flow velocity evaluated at the

trailing edge (x = L) of the no slip surface and L is the streamwise surface length.

We then take V = Vf and L = Lc so that Reb = Re.
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Recall that the optimal hair lengths relative to δ, for linearly tapered hairs were

computed as (`/δ)M∗ = 2.27 and (`/δ)F ∗ = 2.75, as listed in Table 4.1. With equation

(4.15) for δ and Vf and Lc substituted for V and L, the dimensional optimal hair

lengths are evaluated as

`o,M = 2.27

√
2

m+ 1

ν x

U
and `o,F = 2.75

√
2

m+ 1

ν x

U
, (4.24)

respectively, where U = Vf (x/Lc)
m and m = β/(2− β).

The bat species, their range of forward flight speeds, values of their mean wing

chord-lengths, and available data for their hair receptor lengths are listed in the

first four respective columns of Table 4.2. The fifth column contains the range of

Table 4.2: Measured bat wing hair receptor lengths and optimal hair lengths com-
puted from bat wing and flight measurements

Species
Air Speed Average Wing Measured Hair Computed Hair

(m s−1) Chord (m) Length (µm) Length (µm)

Pteropus 4-8.6 [48]
0.151 [49]

4000
100-3100

poliocephalus (enclosed) (max observed [1])

Glossophaga
2.7-7.8 [50] 0.079 [51] 150-10001 100-2600

soricina

Eptesicus
3.6-9.2 [36] 0.102 100-20001 100-2600

fuscus

optimal hair lengths for both moment and shear outputs for −0.199 ≤ β ≤ 1.0,

Vf,min ≤ Vf ≤ Vf,max, and 0.01Lc ≤ x ≤ 0.99Lc. On an order of magnitude basis,

the range of computed hair lengths are in exact agreement with the range of measured

values for each bat. Considering that bat wing hair receptors are distinctly smaller

than pelagial hair, the agreement between computed and measured hair lengths is at

the most compelling evidence, and at the least contributing evidence to the idea that

1Data courtesy of The Auditory Neuroethology Laboratory at The University of Maryland
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bats use hair receptors to detect boundary layer flows.

Note that the dimensional optimal hair lengths (4.24) is a function of boundary

layer shape (represented through β), flight speed Vf , and hair position on the wing.

While flight speed and boundary layer shape can vary during flight, hair position on

the wing remains constant. Thus, for a given position on the wing the optimal hair

length for both biological and man made flyers may be determined based on a priori

knowledge of the boundary layer flow.

The detection of boundary layer flows with multiple sensors located at different

locations leads to a distribution hairs with varying lengths over the lift surface. The

equations for dimensional hair length in Falkner-Skan flows provide an expression for

length distribution, ` ∼ x1/2. Furthermore, the hair sensor length and distribution

for any aircraft where flight performance relies on attached boundary layer flows

could be determined with knowledge of the momentum thickness over the wing. This

information is presently available through numerous computer programs, such as the

XFOIL software [52], and through existing data in the literature.

The actual three-dimensional low-Reynolds number flows (Ref . 105) over bat

wings during flapping flight exhibits other aerodynamically important flow phenom-

ena that are not boundary layers. One such phenomena is the leading edge vortex

which has been identified as a lift enhancement mechanism (see [10] and the refer-

ences therein). Near the bat wing leading edge hair lengths may not correspond to

the attached boundary layer thicknesses. Although attached laminar boundary layer

flows will surely be present at times during bat flight, determining the hair lengths

that should be distributed over the bat wings for regions of non-boundary layer flows

may require a separate analysis of hair sensitivity for these particular flows.
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4.5 Summary

The stability and maneuverability of low-Reynolds number flyers may be enhanced

with the detection of boundary layer flows over its lift surfaces. Hair sensor arrays are

one potential means for boundary layer detection. In this work, we studied the optimal

length of hair sensors for the detection of boundary layer flows. By considering

disparate time scales between the hair dynamics and air flow environment, a quasi-

steady model relating the boundary layer shape to the resultant moment and shear

force at the base of the hair was developed. The hair model was nondimensionalized

using momentum thickness as a length scale and the resultant moment and shear

force at the base of the hair (output) was computed in Falkner-Skan boundary layer

flow. Based on the resulting hair sensor output maps, hair sensitivity was quantified

as the total output range for moment and shear as the boundary layer profile changed

from wall stagnation (H = 2.216) to flow separation (H = 4.029).

When sensitivity was plotted against hair length, distinct lengths of maximum

sensitivity (optimal lengths) were observed. Hair length was also shown to be a

critical design parameter, as both hair shapes experienced a sharp decay in output

sensitivity as length moved away from the optimal values. However, the linearly

tapered hair showed slightly less penalty in output sensitivity for suboptimal lengths.

Finally, the boundary layer thickness over a bat wing was approximated with

Falkner-Skan flow using physical and flight data of bats. On an order of magnitude

basis, the range of optimal hair lengths computed from the analysis herein was in

exact agreement with the range of measured hair receptor lengths on bat wings (∼

100− 1000µm). This result supports the hypothesis that bats uses hair receptors for

boundary layer detection.

Future work will focus on determining the optimal hair shape for boundary layer
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detection. Additionally, the optimal placement and density of a hair sensors for

various low-Reynolds number flows of aerodynamic importance should be studied for

their effective integration into micro-air-vehicle control system designs.
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5.1 Abstract

The control of fluid flows has many applications. For micro air vehicles,

integrated flow control designs could enhance flight stability by mitigating

the effect of destabilizing air flows in their low Reynolds number regimes.

However, computing model based feedback control designs can be chal-

lenging due to high dimensional discretized flow models. In this work,

we investigate the use of a snapshot algorithm proposed in Ref. [14] to

approximate the feedback gain operator for a linear incompressible un-

steady flow problem on a bounded domain. The main component of the

algorithm is obtaining solution snapshots of certain linear flow problems.

Numerical results for the example flow problem show convergence of the

feedback gains.

5.2 Introduction

Controlling fluid flows has many potential applications. For example, robust feedback

control of the air flow around micro air vehicles could lead to enhanced flight perfor-

mance, stability, and maneuverability. Recent research has shown that a linear feed-

back controller (or a nonlinear extension thereof) has the potential to delay or even

eliminate the onset of turbulence (e.g., see Refs. [53, 54, 55, 56, 57, 24, 58, 59, 60, 61]).

Furthermore, there is evidence that it is beneficial to use a linear feedback controller

as a nominal stabilizing controller, which is then extended to further treat nonlinear

effects (see, e.g., Refs. [62, 63, 64, 65]).

In this work, we consider the problem of computing an optimal feedback control

law for a linear incompressible flow problem on a bounded domain. The spatial dis-

cretization of flow problems often leads to a very large system of equations. Standard
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algorithms to compute the feedback control gain are only feasible for small systems

of equations. Much recent research has focused on solving the resulting large-scale

matrix equations (see, e.g., Ref. [66] and the references therein), however there are

still many difficulties and open questions. First, approximating discretization ma-

trices needed for existing numerical algorithms can be difficult (if not impossible)

to extract from existing simulation code. Also, the incompressibility condition re-

quires special numerical methods. Little is known about how such methods affect

the convergence of existing control gain algorithms as the computational mesh is re-

fined. Furthermore, there is no known method to adaptively refine the mesh to ensure

accuracy.

An alternate approach to computing feedback control laws for distributed pa-

rameter systems is to first reduce the model and then solve the resulting low or-

der matrix equation to construct the feedback gain. Proper orthogonal decomposi-

tion is a model reduction procedure that has been used for this purpose (see, e.g.,

[62, 67, 68, 69, 70, 65]), however there are no known guarantees of accuracy or con-

vergence for feedback gain computations.

We investigate the use of a snapshot algorithm proposed in Ref. [14] to approxi-

mate the feedback gain operator for a linear flow problem. The algorithm is related to

snapshot-based balanced model reduction methods proposed by Wilcox and Peraire

[71] and Rowley [72] for finite dimensional systems. The main computational cost

of the algorithm is computing solution snapshots of linear unsteady flow problems.

These computations can be performed with existing software and one can also take

advantage of existing techniques such as special discretization schemes, domain de-

composition methods, adaptive mesh refinement, and parallel algorithms. Also, since

the algorithm is based on simulation data, we bypass the potential difficulty of ex-

tracting matrices from existing simulation code.
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The snapshot algorithm is also similar in spirit to computing feedback gains for

infinite dimensional control problems using the Chandrasekhar equations (see, e.g.,

Refs. [73, 74, 75, 76]), which are a nonlinear system of differential equations whose so-

lution approaches the gain when integrated to steady state. In contrast, the snapshot

algorithm considered here computes the gain using a sequence of linear differential

equations arising from the Lyapunov equations in the Newton-Kleinman iteration for

the relevant operator Riccati equation. As discussed in Ref. [77], it can be difficult

to compute the gain accurately when integrating the Chandrasekhar equations to

steady state; therefore, we expect that the snapshot algorithm discussed here may

be preferable for many problems. We note however that the Chandrasekhar equa-

tions have been used to compute feedback gains for linear flow problems (see, e.g.,

Ref. [73]); also, they can be used to provide a good stabilizing initial guess for the

Newton-Kleinman iteration [77].

The remainder of this work proceeds as follows. We begin by describing the linear

unsteady flow control problem. In Section 5.4, we discuss the snapshot algorithm to

compute the feedback gain and its implementation for the flow problem. We then

present numerical results in Section 5.5, and close with conclusions and avenues for

future work.

5.3 Problem Description

We consider the control of an unsteady Stokes flow in a lid driven cavity with an open

bottom. The equations of motion are given by

vt = −∇p+ µ∆v + b u(t), ∇ · v = 0, (5.1)
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where v = [v1(t, x, y), v2(t, x, y)]T is the flow velocity vector, p = p(t, x, y) is the

pressure, b = [b1(x, y), b2(x, y)]T is a given control distribution function, and u(t) is a

scalar control input. We consider the following boundary and initial conditions

v1 = 1, v2 = 0 on Γt × (0, T ],

v = 0 on Γl,r × (0, T ],

−p n+ µ
∂v

∂n
= 0 on Γb × (0, T ],

v(0, x, y) = v0(x, y) in Ω,

(5.2)

where Ω is the unit square [0, 1] × [0, 1], and Γt, Γl, Γr, and Γb denote the top, left,

right, and bottom walls of Ω. Also, n denotes the outward normal to the boundary.

The goal of the control is to bring the state (v, p) to an equilibrium state, (V, P ),

faster than would occur in the uncontrolled system. We assume the equilibrium state

(V, P ) is a solution of (5.1), and we define the velocity and pressure fluctuations by

(v′, p′) = (v−V, p−P ). Making this change of variables transforms the above Stokes

flow system (5.1) and (5.2) to the following “fluctuation” Stokes equations

v′t = −∇p′ + µ∆v′ + b u(t), ∇ · v′ = 0, (5.3)

with boundary and initial conditions

v′ = 0 on Γ× (0, T ],

−p n+ µ
∂v′

∂n
= 0 on Γb × (0, T ],

v′(0, x, y) = v′0(x, y) in Ω,

(5.4)

where Γ is the union of Γt, Γl, and Γr.
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5.3.1 An Abstract Formulation

For the control problem and algorithm considered below, we place the above fluctu-

ation Stokes problem in an abstract form. Our presentation follows Ref. [78], which

considers the Dirichlet problem. See Ref. [21] for variational formulations of the re-

lated Navier-Stokes equations with both Dirichlet and outflow boundary conditions.

First, we define the function spaces relevant to the problem. Let L2(Ω) be the

Hilbert space of square integrable vector-valued functions over Ω with standard inner

product

(f, g) =

∫
Ω

f(x, y) · g(x, y) dx dy,

and corresponding norm ‖f‖ = (f, f)1/2. Define X to be the Hilbert space of weakly

divergence free functions (with the above L2 inner product and norm) given by

X =
{
f ∈ L2(Ω) : ∇ · f = 0 in Ω, f ·n = 0 on Γ

}
.

Also let Hm(Ω) be the Hilbert space of functions in L2(Ω) with m distributional

derivatives that are all square integrable. Finally, let V be the Hilbert space

V =
{
f ∈ X : f ∈ H1(Ω), f = 0 on Γ

}
,

with inner product (f, g)V =
∑

(∇fi,∇gi) and norm ‖f‖V = (f, f)
1/2
V .

Now we place the fluctuation Stokes system (5.3) and (5.4) in a variational form.

Taking the inner product of the fluctuation Stokes equations (5.3) with any vector ϕ

in V gives

∂

∂t
(v′, ϕ) = −µ(v′, ϕ)V + (b, ϕ)u(t).
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This can be derived by integrating by parts as follows:

−(∇p, ϕ)+µ(∆v′, ϕ) =

∫
∂Ω

(
−pn+ µ

∂v′

∂n

)
·ϕ dx dy+(p,∇ ·ϕ)−µ(v′, ϕ)V = −µ(v′, ϕ)V .

The boundary integral is zero since ϕ is zero on Γ and due to the boundary condition

on Γb in Eq. (5.4); the term (p,∇ ·ϕ) must also be zero since ϕ is in V and therefore

must be divergence free.

Define the operator A : D(A) ⊂ X → X as follows:

Af = g if (g, ϕ) = −µ(f, ϕ)V for all ϕ ∈ V .

Here, the set D(A) consists of all functions f in V so that Af is in X. Roughly, for

f ∈ D(A), Af is the projection of µ∆f onto X, and functions in D(A) are twice

differentiable, divergence free, and satisfy the boundary conditions of the fluctuations

Stokes problem. The control input operator B : R→ X is defined by

[Bu](x, y) = b(x, y)u.

With these operators, the above fluctuation Stokes system (5.3) and (5.4) can be

written abstractly as the following differential equation over the Hilbert space X:

ẇ(t) = Aw(t) +Bu(t), w(0) = w0, (5.5)

where w(t) = v′(t, ·, ·) is a function in X for each t.
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5.3.2 The Control Problem

Now we consider a specific control objective, namely to find u ∈ L2(0,∞) that mini-

mizes the cost function

J =

∫ ∞
0

[Dw]2(t) + u2(t) dt, (5.6)

where w(t) satisfies the abstract fluctuation Stokes system (5.5). Here, the controlled

output operator D : X → R is defined by Dw = (w, d), where d is a state weighting

vector in X.

Under certain assumptions, the solution to the above linear quadratic regulation

(LQR) problem is given by the feedback control law

u(t) = −K w(t), K = B∗Π, (5.7)

where Π : X → X is the minimal, nonnegative definite, self-adjoint solution of the

algebraic Riccati equation

A∗Π + ΠA− ΠBB∗Π +D∗D = 0. (5.8)

Here, the asterisk (∗) denotes the Hilbert adjoint operator.

In this work, we focus on computing the feedback gain operator K : X → R.

5.4 Computational Approach

We now describe the snapshot algorithm to compute feedback gains for infinite di-

mensional systems. We provide a description of the snapshot algorithm in a general

infinite dimensional setting and then provide implementation details for the current

problem.
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5.4.1 A Snapshot Algorithm for Feedback Gains

Consider the approximation of the feedback gain operator K = B∗Π, where Π : X →

X is the solution of the algebraic Riccati equation (5.8). We consider the following

general framework. Let X be a Hilbert space with real-valued inner product (·, ·)

and corresponding norm ‖x‖ = (x, x)1/2. Assume the operator A : D(A) ⊂ X → X

generates a C0-semigroup, and the control input operator B : Rm → X, and the

controlled output operator D : X → Rp are both bounded and finite rank.

The assumptions on B and D imply that the operators must take the form

Bu =
m∑
j=1

ujbj, Dx = [ (x, d1), . . . , (x, dp) ]T ,

for some vectors b1, . . . , bm and d1, . . . , dp in X (see [79, Theorem 6.1]). For simplicity

we focus on the case of a single input and single output, i.e., m = 1 and p = 1;

the algorithms are easily modified for m > 1 and p > 1. As with most large-scale

algorithms for feedback control gain computations, the snapshot algorithms require

m and p to be relatively small.

For the case m = 1, we have Bu = bu where b is a vector in X. This assumption

implies that the feedback operator K : X → R given by K = B∗Π has the representa-

tion Kx = (x, k), where k = Πb is a vector in X known as a functional gain. This rep-

resentation holds since B∗x = (x, b) and therefore Kx = B∗Πx = (Πx, b) = (x,Πb),

since Π is self-adjoint. Below, we concentrate on approximating this functional gain.

We first apply a Newton-Kleinman iteration as modified by Banks and Ito [77] to

obtain a sequence of Lyapunov equations. The solutions to the Lyapunov equations

are then approximated using a snapshot algorithm. The details are as follows.

Modified Newton-Kleinman iteration [77] for the algebraic Riccati equa-

tion (5.8)
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1. Chose an initial guess K0 so that A − BK0 generates an exponentially stable

C0-semigroup.

2. Compute K1 = B∗S0, where S0 solves the Lyapunov equation

(A−BK0)∗S0 + S0(A−BK0) +K∗0K0 + C∗C = 0.

3. For i = 1 until convergence, compute Ki+1 = Ki − B∗Si, where Si solves the

Lyapunov equation

(A−BKi)
∗Si + Si(A−BKi) + E∗iEi = 0, (5.9)

and Ei = Ki −Ki−1.

This algorithm is a reformulation of the standard Newton-Kleinman iteration, which is

known to converge with a quadratic rate for the class of infinite dimensional problems

considered here [80].

In the above modified Newton-Kleinman iterations, we need to compute K1 =

B∗S0 and Ki+1 = Ki−B∗Si for i ≥ 1. In the same manner as above, these operators

can be represented as follows: Kix = (x, ki), where k1 = S0b and ki+1 = ki − Sib for

i ≥ 1. Therefore, in each iteration we do not need to compute the entire Lyapunov

solution Si, we only need the product Sib. We compute this product using a snapshot

algorithm below.

Consider a general infinite dimensional Lyapunov equation

A∗S + SA+ C∗C = 0, (5.10)

where we assume C : X → R is given by Cx = (x, c) with c ∈ X. It is well known
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that the solution S : X → X is given by

Sx =

∫ ∞
0

eA
∗tC∗CeAtx dt.

Using the above representation of C, it can be shown [81, 14] that the solution may

also be represented by

Sx =

∫ ∞
0

(x, z(t))z(t) dt, (5.11)

where z(t) = eA
∗tc is the solution of the infinite dimensional linear differential equation

ż(t) = A∗z(t), z(0) = c. (5.12)

This representation leads to the following snapshot algorithm.

Snapshot algorithm [13, 14] to approximate Sx, where S solves the Lya-

punov equation (5.10)

1. Compute an approximation zN(t) of the solution z(t) of the differential equation

(5.12).

2. Replace z(t) with zN(t) in the integral representation of Sx in (5.11) and ap-

proximate the integral (by quadrature or some other method).

In Ref. [14] it is shown that if
∫∞

0
‖zN(t)− z(t)‖2 dt→ 0, then the resulting approxi-

mation converges to Sx .

The approximate solution zN(t) of the differential equation (5.12) need not be

stored to approximate Sx. Instead, a time stepping method can be used to approxi-

mate the differential equation and the approximation to the integral can be updated

while simultaneously integrating the differential equation. For example, using a piece-

wise linear approximation to z(t) in time leads to the trapezoid rule to time step the
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differential equation and the following approximation to the integral.

Trapezoid snapshot algorithm [14] to approximate Sx, where S solves the

Lyapunov equation (5.10)

1. Approximate the solution of the differential equation (5.12) with the trapezoid

rule:

(I −∆tA∗/2)zn+1 = (I + ∆tA∗/2)zn,

where I is the identity operator.

2. Update the approximation to Sx:

[Sx]n+1 = [Sx]n + ∆t[(x, zn+1)/3 + (x, zn)/6]zn+1

+∆t[(x, zn+1)/6 + (x, zn)/3]zn.

This updating procedure can be stopped when the norm of the update to Sx (possibly

unscaled by ∆t) is below a certain tolerance. We note that we used a constant time

step for simplicity; this is not necessary in general.

For the computations presented below, we used a “stabilized” trapezoid rule [82,

83] which starts with two backward Euler steps and continues with the standard

trapezoid rule. For the two backward Euler steps, we updated Sx as follows:

[Sx]1 = ∆t(x, z1)z1, (I −∆tA∗)z1 = c,

[Sx]2 = [Sx]1 + ∆t(x, z2)z2, (I −∆tA∗)z2 = z1.
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5.4.2 Implementation Details for the Stokes Control Problem

To use the above snapshot algorithm to approximate the solution of the Lyapunov

equations (5.9) arising in the modified Newton iteration for the Riccati equation, we

must approximate differential equations of the form

ż(t) = (A−BK)∗z(t), z(0) = z0.

We now present details on approximating the solution of this differential equation in

the context of the above Stokes problem. Approximating the solution can be done

using a variety of methods; here, we first discretize in time using the trapezoid rule

and then discretize in space using a mixed finite element method.

For the above Stokes problem, A is the Stokes operator, B is the control input

operator given by Bu = bu for b ∈ X, and K is of the form Kx = (x, k) for some

k ∈ X. Since A = A∗, we have (A − BK)∗ = A − K∗B∗, where K∗u = ku and

B∗x = (x, b). Therefore, the above abstract differential equation is a representation

of the following partial differential equation

zt = −∇q + µ∆z − k(z, b), ∇ · z = 0, (5.13)

with boundary conditions

z = 0 on Γ, − qn+ µ
∂z

∂n
= 0 on Γb. (5.14)

As described above, we use the trapezoid rule for the time integration to obtain

[I − (∆t/2)(A−BK)∗] zn = [I + (∆t/2)(A−BK)∗] zn−1,
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where zn ≈ z(tn). This can be rewritten as

(As −BsKs) zn = [I + (∆t/2)(A−BK)∗] zn−1,

where As = I − (∆t/2)A∗, Bs = −(∆t/2)K∗i , and Ks = B∗. Then

zn = (As −BsKs)
−1g, g = [I + (∆t/2)(A−BK)∗] zn−1.

To compute this inverse, we formally apply the Sherman-Morrison-Woodbury formula

(see, e.g., Ref. [84]):

(As −BsKs)
−1g = (I + A−1

s Bs(I −KsA
−1
s Bs)

−1Ks)A
−1
s g.

Since B∗x = (x, b) and K∗u = ku, the above inverse can be computed once we

approximate A−1
s g and A−1

s k. Thus, we need to solve the problems Asyi = fi, for

i = 1, 2, where f1 = g and f2 = k. In the context of the above Stokes problem, these

abstract steady problems take the form

yi −
∆t

2

(
−∇pi + µ∆yi

)
= fi, ∇ · yi = 0, (5.15)

with boundary conditions

yi = 0 on Γ, − pin+ µ
∂yi
∂n

= 0 on Γb, (5.16)

where f2 = k, and f1 = g is given by

f1 = g = [I + (∆t/2)(A−K∗B∗)] zn−1 = zn−1 +
∆t

2

(
−∇qn−1 +µ∆zn−1−k(zn−1, b)

)
.

(5.17)
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Here, qn−1 ≈ q(tn−1) and q = q(t, x, y) is the pressure in the above PDE (5.13) and

(6.13).

For the spatial discretization of the above steady problems, we used a mixed

formulation. The approximate pressures will be constructed in the Hilbert space

X0 = L2(Ω) of scalar-valued square integrable functions. The approximate velocities

will be in the Hilbert space of vector-valued functions V0 defined by

V0 =
{
f ∈ H1(Ω) : f = 0 on Γ

}
.

Note that unlike the function space V considered in Section 5.3.1, the vector-valued

functions in the space V0 are not required to be weakly divergence free.

The above steady problem (5.15) and (5.16) can be formulated weakly as follows:

Find yi ∈ V0 and pi ∈ X0 such that

(yi, φ)− ∆t

2

(
(pi,∇ ·ψ)− µ(yi, φ)V

)
= (fi, ψ), (∇ · yi, χ) = 0,

for all ψ ∈ V0 and all χ ∈ X0. Here, (·, ·) denotes the scalar-valued or vector-valued

L2 inner product, and (·, ·)V denotes the V inner product defined in Section 5.3.1.

Also, recall f2 = k, and for f1 = g we reformulate (f1, ψ) weakly using Eq. (5.17) as

follows:

(zn−1, ψ) +
∆t

2

(
(qn−1,∇ ·ψ)− µ(zn−1, ψ)V − (k, ψ)(zn−1, b)

)
.

The above variational problems were discretized with the Taylor-Hood finite el-

ement pair. This finite element pair satisfies the inf-sup condition, is second order

accurate in the velocity variables, and is first order accurate in the pressure variables.
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5.5 Numerical Results

For the numerical experiments of the Stokes flow problem we set µ = 1 and applied

control to the bottom half of the domain in the horizontal velocity component by

taking

b1(x, y) =


100, for y ≤ 0.5

0, otherwise

, and b2(x, y) ≡ 0.

In the performance index, the state weight function d was also applied to the bottom

half of the domain:

d1(x, y) = d2(x, y) =


5, for y ≤ 0.5,

0, otherwise.

All computations were performed in FreeFem++, a free two-dimensional finite ele-

ment package available online [22]. The cavity domain was discretized with a uniform

triangulation containing 32 elements in each coordinate direction. This corresponds

to 4225 and 1089 nodes in the velocity and pressure grids for a total of 9539 degrees

of freedom. We set the time step size to ∆t = 10−4. The tolerance for convergence of

the modified Newton-Kleinman algorithm and the snapshot Lyapunov solution were

both set to 10−4. For the initial Newton iteration, we chose initial guess K0 = 0.

Six Newton iterations were required for convergence of the functional gain. The

number of time steps required for the corresponding snapshot Lyapunov solution is

listed in Table 5.1.

Figures 5.1 and 5.2 contain contour plots of the functional gain for the horizontal

and vertical velocity components, respectively. We demonstrated the convergence of

the functional gain by repeating the above experiment on a grid of 64 elements in

each coordinate direction (for a total of 37507 degrees of freedom) with a time step
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Table 5.1: Lyapunov iteration number and time steps for convergence of correspond-
ing Lyapunov solutions

Lyap. Iter. Time Steps

1 1426
2 302
3 368
4 279
5 33
6 2

of 10−5. The resulting functional gain changed on the order of 10−2 by measure of

the global relative norm.
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Figure 5.1: Functional gain for horizon-
tal velocity, k1
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Figure 5.2: Functional gain for vertical
velocity, k2

We note that the small time step was likely required due to the nonsmooth nature

of the functions b and d. An adaptive time stepping algorithm may be advantageous

to use for these computations. This will be considered in future work. Also, numerical

experiments on a less complex partial differential equation control problem showed

that the computational speed could be improved with a good initial guess K0 to the

Newton-Kleinman iteration [85]. One can use the result of one Newton iteration as

the initial guess in another Newton iteration with a finer spatial grid (see, e.g., Ref.



87

[86]) or time step for the snapshot algorithm. Also, as mentioned in the introduction,

the Chandrasekhar equations can also be used to provide an initial guess.

5.6 Summary

We determined the feedback control gain operator for a linear incompressible flow

problem using a snapshot Lyapunov equation solver in conjunction with a modified

Newton-Kleinman iteration for the operator Riccati equation. The main computa-

tional cost of this approach was the numerical approximation of solutions of linear

unsteady flow problems. With a sufficiently refined grid and time step, the algorithm

produced a converged functional gain for the linear flow problem.

This preliminary work was intended as a proof-of-principle for computing control

operators for linear flow problems without using matrix approximations of the infi-

nite dimensional operators. In future work we will consider the performance of the

closed loop system. Preliminary numerical experiments show that, as expected, the

solution of the closed loop system is regulated to the equilibrium flow faster than

the uncontrolled system. Other remaining problems are to consider control inputs on

the boundary, include sensor measurements, and develop robust low order feedback

controllers for the linearized Navier-Stokes equations.
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Addendum: Observer Design for an Unsteady Stokes-Type Flow using
Bioinspired Hair Sensor Arrays

In this addendum, the quasi-steady hair sensor model of Chapter 4 is combined with

the control design methods of Chapter 5. The problem studied here is to build a

linear quadratic Gaussian observer for an unsteady fluctuation Stokes-type flow over

a square block in a channel (Figure 6.1). The observer design objective is to estimate

the fluctuation Stokes velocity field in square region shown in Figure 6.1 from wall

measurements provided by the horizontally and vertically mounted hair sensor arrays.

Figure 6.1: Illustration of the flow observer problem with hair sensor arrays

Recall that the linear quadratic optimal control problem presented in Chapter 5

is to find the control signal u ∈ L2(0,∞) that minimizes the cost function

J =

∫ ∞
0

[Dw]2(t) + u2(t) dt, (5.6)

where w(t), the fluctuation velocity field, satisfies the abstract fluctuation Stokes

system

ẇ(t) = Aw(t) +Bu(t), w(0) = w0. (5.5)

Here, the controlled output operator D : X → R is defined by Dw = (w, d), where d
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is a state weighting vector in X.

Under certain assumptions, the solution to the above LQR problem is given by

the feedback control law

u(t) = −K w(t), K = B∗Π, (5.7)

where Π : X → X is the minimal, nonnegative definite, self-adjoint solution of the

algebraic Riccati equation

A∗Π + ΠA− ΠBB∗Π +D∗D = 0, (5.8)

and the asterisk (∗) denotes the Hilbert adjoint operator.

The LQG problem solved here is dual to the above LQR problem. The problem

is to estimate the state w(t) (or a portion thereof) of the uncontrolled fluctuation

Stokes system

ẇ(t) = Aw(t), w(0) = w0, (6.1)

where the state is available only through indirect measurements

y(t) = C w(t) (6.2)

and the measurement operator C : X → Rm is defined by

C w(t) = [(w(t), c1), . . . , (w(t), cm)]

where each ci ∈ X, i = 1, . . . ,m, is a measurement function to be determined from

the sensor models for state measurement.
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The observer equations are given by

˙̂w(t) = Aŵ(t) +G (y − ŷ), ŵ(0) = ŵ0, (6.3)

where ŵ(t) is an estimate of the system state w(t) and

ŷ(t) = C ŵ(t). (6.4)

The state estimate ŵ(t) is to be driven to the true state w(t) through the observer

gain G : Rm → X that has the form

Gy =
m∑
j=1

gj yj

where y ∈ Rm and each gj ∈ X, j = 1, . . . ,m is called an observer functional gain.

Under certain assumptions, the operator gain is determined as

G = P C∗ (6.5)

where P : X → X is the solution to the dual Riccati equation

AP + P A∗ − P C∗C P + E E∗ = 0, (6.6)

and E is a weighting operator. We take E : Rm → X as

E a =
m∑
i=1

ei ai.

where, a ∈ Rm and each ei ∈ X, for i = 1, . . . ,m, is a user-specified function that

weights where it is important to account for disturbances in the state estimate.
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6.1 Computational Approach

We now apply the snapshot algorithm used in the previous feedback functional gain

computations (Chapter 5) to the observer design problem described above. The fol-

lowing presentation follows Section 5.4 of Chapter 5 with dual operators and functions

used in place of the control problem.

6.1.1 The Snapshot Algorithm for Observer Functional Gains

Consider the approximation of the observer gain operator G = P C∗, where P :

X → X is the solution of the dual algebraic Riccati equation (6.6). We consider the

following general framework. Let X be a Hilbert space with real-valued inner product

(·, ·) and corresponding norm ‖x‖ = (x, x)1/2. Assume the operator A : D(A) ⊂ X →

X generates a C0-semigroup, and the measurement operator C : X → Rm, and the

observed output operator E : X → Rp are both bounded and finite rank.

The assumptions on C and E imply that the operators must take the form

Cx = [ (x, c1), . . . , (x, cm) ]T , Ea =

p∑
j=1

ejaj

for some vectors c1, . . . , cm and e1, . . . , ep in X (see [79, Theorem 6.1]).

For the case m = 2, we have Cx = [(x, c1), (x, c2)] where c1 and c2 are vectors

in X. This assumption implies that the observer operator G : R2 → X given by

G = P C∗ has the representation Gy = g1 y1 + g2 y2, where gi = P ci for i = 1, 2

are vectors in X known as observer functional gains. This representation holds

since C x = [(x, c1), (x, c2)] and therefore G∗ x = C P x = [(P x, c1), (P x, c2)] =

[(x, P c1), (x, P c2)], since P is self-adjoint. Below, we concentrate on approximating

the observer functional gains.



92

We first apply the Newton-Kleinman iteration as modified by Banks and Ito [77]

to obtain a sequence of Lyapunov equations. The solutions to the Lyapunov equations

are then approximated using a snapshot algorithm. The details are as follows.

Modified Newton-Kleinman iteration [77] for the dual algebraic Riccati

equation (6.6)

1. Choose initial guesses {g0
j}mj=1 so that (A − G0C) generates an exponentially

stable C0-semigroup.

2. Compute g1
j = P 0 cj for j = 1, . . . ,m where P 0 solves the Lyapunov equation

(A−G0C)P 0 + P 0 (A−G0C)∗ +G0G0∗ + E E∗ = 0.

3. For k = 1 until convergence of {gkj }mj=1, compute gk+1
j = gkj − P k cj, where P k

solves the Lyapunov equation

(A−Gk C)P k + P k (A−Gk C)∗ + (Gk −Gk−1) (Gk −Gk−1)∗ = 0. (6.7)

This algorithm is a reformulation of the standard Newton-Kleinman iteration, which is

known to converge with a quadratic rate for the class of infinite dimensional problems

considered here [80].

As shown in Section 5.4 of Chapter 5, at each iteration of the above modified

Newton-Kleinman iteration, the entire Lyapunov solution P k is not required. Instead,

it can be shown that the jth observer functional gain gj is updated with the product

P k cj for j = 1, . . . ,m. We compute this product with the application of snapshot

algorithm applied in Chapter 5 to the operator Lyapunov equation below.
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Consider the general infinite dimensional Lyapunov equation

AS + S A∗ + E E∗ = 0, (6.8)

where we assume E : Rm → X is given by

E a =
m∑
i=1

ei ai

with each ei ∈ X and a ∈ Rm. It is well known that the solution P : X → X is given

by the observability grammian

P x =

∫ ∞
0

eAtEE∗eA
∗tx dt.

Using the above representation of E, it can be shown [13, 14] that the solution may

also be represented by

P x =

∫ ∞
0

m∑
j=1

(x, zj(t))zj(t) dt, (6.9)

where zj(t) = eAtcj is the solution of the infinite dimensional linear differential equa-

tion

żj(t) = Azj(t), zj(0) = ej. (6.10)

This representation leads to the following snapshot algorithm.

Snapshot algorithm [13, 14] to approximate P x, where P solves the Lya-

punov equation (6.8)

1. Compute an approximation zNj (t) of the solution zj(t) for j = 1, . . . ,m of the

differential equation (6.10).

2. Replace zj(t) with zNj (t) for j = 1, . . . ,m in the integral representation of P x
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in (6.9) and approximate the integral (by quadrature or some other method).

In Ref. [14] it is shown that if

m∑
j=1

∫ ∞
0

‖zNj (t)− zj(t)‖2 dt→ 0,

then the resulting approximation converges to P x .

The approximate solution zNj (t) for j = 1, . . . ,m of the differential equation (6.10)

need not be stored to approximate P x. Instead, a time stepping method can be used

to approximate the differential equation and the approximation to the integral can

be updated while simultaneously integrating the differential equation. For example,

using a piecewise linear approximation to zj(t) in time leads to the trapezoid rule to

time step the differential equation and the following approximation to the integral.

Trapezoid snapshot algorithm [14] to approximate P x, where P solves the

Lyapunov equation (6.8)

1. Approximate the solution of the differential equation (5.12) with the trapezoid

rule:

(I −∆tA∗/2)zn+1
j = (I + ∆tA/2)znj , for j = 1, . . . ,m

where I is the identity operator.

2. Update the approximation to P x:

[P x]n+1 = [P x]n +
m∑
j=1

{∆t[(x, zn+1
j )/3 + (x, znj )/6]zn+1

j

+∆t[(x, zn+1
j )/6 + (x, znj )/3]znj }.

This updating procedure can be stopped when the norm of the update to P x is below

a certain tolerance. Here, we used the following inequality to test convergence of the
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Lyapunov solution

1

∆t
‖[P x]n+1 − [P x]n‖X ≤ Lyapunov Tolerance. (6.11)

Note that although a constant time step was used to compute the Lyapunov solution

this is not necessary in general.

For the computations presented below, we used a “stabilized” trapezoid rule [82,

83] which starts with two backward Euler steps and continues with the standard

trapezoid rule. For the two backward Euler steps, we updated P x as follows:

[P x]1 =
m∑
j=1

∆t(x, z1
j )z

1
j , (I −∆tA)z1

j = ej,

[P x]2 = [P x]1 +
m∑
j=1

∆t(x, z2
j )z

2
j , (I −∆tA)z2

j = z1
j .

6.1.2 Implementation Details for the Stokes Observer Problem

To use the above snapshot algorithm to approximate the solution of the Lyapunov

equations (6.7) arising in the modified Newton iteration for the dual Riccati equation,

we must approximate differential equations of the form

żj(t) = (A−GC)zj(t), zj(0) = z0
j , for j = 1, . . . ,m.

We now present details on approximating the solution of this differential equation in

the context of the Stokes problem. Approximating the solution can be done using a

variety of methods; here, we first discretize in time using the trapezoid rule and then

discretize in space using a mixed finite element method.

For the above Stokes problem, A is the Stokes operator, C is the measurement
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operator given by Cx = [(x, c1), (x, c2)] for c1 and c2 ∈ X, and G is of the form

Gy = g1 y1 + g2 y2 for g1 and g2 ∈ X. Therefore, the above abstract differential

equation 6.3 is a representation of the following partial differential equation

zj t = −∇q + µ∆zj − g1(zj, c1)− g2(zj, c2), ∇ · zj = 0, (6.12)

with boundary conditions

zj = 0 on Γ, − qn+ µ
∂zj
∂n

= 0 on Γb. (6.13)

for j = 1, . . . ,m. The jth equation above (6.12) was discretized in time with the

trapezoidal rule and then rewritten using the Sherman-Morrison-Woodbury identity

(see, e.g., Ref. [84]), as detailed in Section 5.4.2 of Chapter 5. For each j, this leads

to the numerical solution of two sparse Stokes-type systems of the form (5.15). Each

Stokes system was discretized with the Taylor-Hood finite element pair. This finite

element pair satisfies the inf-sup condition, is second order accurate in the velocity

variables, and is first order accurate in the pressure variables.

6.2 Numerical Results

For the numerical experiments of the Stokes flow problem we set µ = 1 and attempt

to estimate the fluctuation flow velocity components in the square region left of the

block, denoted in Figure 6.2 as R1 and R2.

As in Chapter 5, Section 5.3 we use the fluctuation form of the Stokes equation so

that the observer is designed to estimate the fluctuations from the steady flow state.
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Figure 6.2: Flow observer problem schematic showing estimation regions and sensor
arrays

Recall the fluctuation Stokes equations,

v′t = −∇p′ + µ∆v′, ∇ · v′ = 0, (6.14)

with boundary and initial conditions of the channel domain (Figure 6.2)

v′ = 0 on Γ× (0, T ],

−p n+ µ
∂v′

∂n
= 0 on Γo × (0, T ],

v′(0, x, y) = v′0(x, y) in Ω,

(6.15)

where Γ is the union of Γt, Γb, and Γi.

The estimation of the fluctuation velocity field is based of measurements from hair

sensors mounted normal to the no-slip surface with uniform lengths occupying the

regions labeled S1 and S2. The values of the observer weight functions are

e11 =


500 (x, y) ∈ R1

0 otherwise

e12 = 0 and e21 = 0, e22 =


500 (x, y) ∈ R2

0 otherwise

where eij corresponds to the ith measurement of the jth vector component of the
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fluctuation velocity. These observation weights correspond to the measurement of

horizontal and vertical velocity fluctuations by respective arrays of horizontally and

vertically mounted hair sensors.

We now determine the vector valued measurement functions ci, i = 1, . . . , 2 using

the quasi-steady hair sensor models. Recall the quasi-steady hair sensor models for

moment M(t) and shear force F (t) developed in Chapter 4, Section 4.3,

M(t) =

∫ `

0

1

2
Cd(Reξ) ρ d(ξ)u(t, ξ)2 ξ dξ (4.7)

and

F (t) =

∫ `

0

1

2
Cd(Reξ) ρ d(ξ)u(t, ξ)2 dξ. (4.8)

where Cd is a local drag coefficient computed as

logCd ≈ −
2

3
log Reξ +

5

2
, (4.6)

Reξ is the local Reynolds number,

Reξ =
u(t, ξ) d(ξ)

ν
,

u(t, ξ) is the flow velocity incident on the longitudinal axis of the hair, d(ξ) is the

hair diameter, ν is the fluid kinematic viscosity, ρ is the fluid density, and ` is the

hair length. The substitution of (4.6) into (4.7) and (4.8) leads to the following

relationships for moment and shear

M(t) = p

∫ `

0

u(t, ξ)4/3ξdξ (6.16)
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and

F (t) = p

∫ `

0

u(t, ξ)4/3dξ (6.17)

where p = 6.07 ρ d1/3 ν2/3 is a constant factored from the integrand of (4.7) and (4.8),

assuming a uniform hair diameter.

Here, we base the measurement for the Stokes observer design on the moment

equation (6.16). For consistency with the linear measurement operator, C : X → Rm,

the hair output is linearized by approximating u(t, ξ)4/3 with u(t, ξ). For simplicity,

a single output is determined for each sensor array by integrating the moment equa-

tion (6.16) over the direction tangential to the wall. This leads to the measurement

equations

y = C v′ =

[ ∫
Ω

c1 · v′ dx ,
∫

Ω

c2 · v′ dx
]

(6.18)

where c1 and c2 are vectors with components

c11 =


10 y (x, y) ∈ S1

0 otherwise

, c12 = 0

and

c21 = 0, c22 =


10 (3− x) (x, y) ∈ S2

0 otherwise

where cij denotes the ith measurement and jth vector component and the factor of

10 was chosen arbitrarily.

All computations were performed in FreeFem++, a free two-dimensional finite

element package available online [22]. The cavity domain was discretized with an un-

structured triangulation containing 10225 and 2617 nodes in the velocity and pressure

grids for a total of 23067 degrees of freedom. We set the time step size to ∆t = 10−4.

The tolerance for convergence of the modified Newton-Kleinman algorithm and the
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snapshot Lyapunov solution were both set to 10−3. For the initial Newton iteration,

we chose initial iterates of g1 = g2 = 0.

Six Newton iterations were required for convergence of the functional gain. The

number of time steps required for the corresponding snapshot Lyapunov solution is

listed in Table 6.1.

Table 6.1: Lyapunov iteration number and time steps for convergence of correspond-
ing Lyapunov solutions

Lyap. Iter. Time Steps

1 14360
2 10244
3 10080
4 7499
5 1806
6 2

Figures 6.3 and 6.4 contain plots of the observer functional gains for the horizon-

tal and vertical velocity components of the horizontally mounted hair sensor array,

respectively. The nonzero values shown in Figures (6.3) and (6.4) show that the

Figure 6.3: Observer functional gain for horizontal velocity measurement of horizon-
tally mounted hair sensor array, g11

observer gains contribute to the state estimate through regions to the left of the

block. In both plots, the scalar fields shown are similar to horizontal velocity fields
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Figure 6.4: Observer functional gain for vertical velocity measurement of horizontally
mounted hair sensor array, g12

of a counterclockwise rotating vortex in front of the block. Since both observer gains

correspond to the horizontally mounted sensor array, it appears that the observer

gains reflect the detection of the horizontal velocity component. This observation is

consistent with the function of the hair sensors mounted on the horizontal wall since

they are also activated by the horizontal component of velocity.

Figures 6.5 and 6.6 contain plots of the observer functional gains for the hori-

zontal and vertical velocity components of the vertically mounted hair sensor array,

respectively. The nonzero values shown in Figures (6.5) and (6.6) also show that

Figure 6.5: Observer functional gain for horizontal velocity measurement of horizon-
tally mounted hair sensor array, g21
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Figure 6.6: Observer functional gain for vertical velocity measurement of horizontally
mounted hair sensor array, g22

the observer gains contribute to the state estimate through regions to the left of the

block. Here, the observer gains are similar to vertical velocity fields of a counterclock-

wise rotating vortex in front of the block and correspond to the vertically mounted

hair sensor array. Since the vertically mounted sensor array is forced by the vertical

component of velocity, it appears that the observer gains reflect the detection of the

vertical velocity component. This is also consistent with the function of hair sensors

mounted on a vertical wall as they are forced by the vertical component of velocity.

With the computation of the observer functional gains, the observer design is

complete. We now test the effectiveness of the Stokes flow observer design to estimate

the velocity fields in the square region in front of the block. Recall the abstract form

of the fluctuation Stokes observer system,

ẇ(t) = Aw(t), w(0) = w0, (5.5)

y(t) = C w(t), (6.2)

˙̂w(t) = Aŵ(t) +G (y − ŷ), ŵ(0) = ŵ0, (6.3)

ŷ(t) = C ŵ(t). (6.4)
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The error between actual state w(t) and state estimate ŵ(t) may be computed as

w̃(t) = w(t) − ŵ(t), so that ˙̃w(t) = ẇ(t) − ˙̂w(t). Then, subtracting (5.5) from (6.3)

leads to a set of error equations

˙̃w(t) = (A−GC)w̃, w̃(0) = w̃0 (6.19)

where w̃0 is an initial state estimate error.

Note that the fluctuation Stokes problem is exponentially stable. That is, there

exists constants M ≥ 1 and ω > 0, so that ‖w(t)‖ ≤ M e−ω t ‖w(0)‖. As a result,

for any initial state estimate error, sensor feedback in the observer equation (6.3)

is not necessary for state estimation in the steady state. For the fluctuation Stokes

for system, the performance of the Stokes observer design must be evaluated as the

system comes to equilibrium. To this end, we compared the performance of the

observer without sensor feedback

˙̂w(t) = Aŵ(t), ŵ(0) = ŵ0,

to that with sensor feedback using the observer gain (6.3) for a common initial error.

Figures (6.7) and (6.8) contain plots of the L2-norm of the flow state estimate

error w̃ in R1 and R2 (see Figure 6.2) for an initial error, w̃0 = [−U,−V ], where U

and V are the time-independent mean velocity fields of the Stokes flow problem over a

block. Using LQG designed observer functional gains, the flow feedback provided by

the hair sensor arrays is shown to significantly contribute to the estimation of the flow

velocity field. In this first attempt at flow estimation we anticipate that estimator

performance may be further improved by tuning the LQR design parameters and by

including multiple measurements within each sensor array.
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Figure 6.7: Evolution of state estimate
error of horizontal velocity in R1 with
and without hair sensors
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Figure 6.8: Evolution of state estimate
error of vertical velocity in R2 with and
without hair sensors

6.2.1 Summary

In this addendum, the snapshot Lyapunov solver (explored in the flow control design

in Chapter 5) was applied to a linear quadratic Gaussian (LQG) observer design for a

Stokes-type flow over a block in a channel. Here, flow measurement was accomplished

with a horizontally and vertically mounted patch of hair sensors, where a single mea-

surement was computed for each array based on the quasi-steady hair sensor model

developed in Chapter 4. The resulting observer functional gains reflected the velocity

components detected by each hair sensor array. In conjunction with the LQG design,

the flow feedback provided by the hair sensors was shown to significantly contribute

to the estimation of the flow velocity field away from the wall. These results support

the application of artificial hair sensors in flow control designs. In addition, these

results exhibit the utility of the snapshot Lyapunov solver for linear quadratic control

design. Future work should test the efficacy of linear and extended LQG flow ob-

server designs for the estimation of unsteady and spatially developing flows at higher

Reynolds numbers.
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8 Conclusions

Many animals use hair-like receptors that are activated by fluid flows for prey detec-

tion and tracking or enhancing locomotion. For flow control applications where aero-

or hydrodynamic forces play a critical role in the dynamics of a body, artificial hair

sensors (AHS) are one means of flow detection for the feedback of flow information

related to the fluid forces. The collection of papers in this thesis investigated the de-

tection of aero- and hydrodynamically important fluid flows with hair-like structures.

A distributed parameter model of a hair coupled to flow data was developed and

simulated in unsteady flow separation using the finite element method. Observations

of a single hair response to the flow showed that the moment at the base of the

hair provided a time accurate indication of the incident flow velocity and direction,

including flow reversal due to separation. A parameter investigation showed surface

forces from the external airflow dominated the inertial forces of the hair. Observations

between the output of the hair sensor array and the flow simulation showed that the

hair-cell array detected both the onset and span of reversed flow, the location of the

point of zero wall shear stress, the movement of eddies away from the wall, and the

formation of a small counter-rotating pair of eddies upstream of the larger clockwise

eddy. For this research, future work should include validation of the hair sensor

models proposed here. Although physical experimentation may be the best approach

to validation, high fidelity simulation of the fluid-structure interaction between the

hair and flow could also be used.

By considering disparate time scales between the hair dynamics and air flow en-

vironment, a quasi-steady model relating the boundary layer shape to the resultant

moment and shear force at the base of the hair was developed. The hair model was

nondimensionalized using momentum thickness as a length scale and the resultant
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moment and shear force at the base of the hair (output) was computed in Falkner-

Skan boundary layer flow. Based on the hair output, distinct lengths of maximum

hair output sensitivity (optimal lengths) were determined. Hair length was also shown

to be a critical design parameter, as both hair shapes experienced a sharp decay in

output sensitivity as length moved away from the optimal values. However, the lin-

early tapered hair showed slightly less penalty in output sensitivity for suboptimal

lengths. On an order of magnitude basis, the range of optimal hair lengths was

in exact agreement with the range of measured hair receptor lengths on bat wings

(∼ 100− 1000µm). This result supports the hypothesis that bats use hair receptors

for boundary layer detection and give length guidelines for artificial hair sensor design

and application. The optimization of hair shape in boundary layer flows is a topic of

current research.

Having developed an understanding of the hair sensor behavior in fluid flows, lin-

ear quadratic control methodologies for observer designs were developed in Chapter

5. Here, we determined the feedback control gain operator for a linear incompress-

ible flow problem using a snapshot Lyapunov equation solver in conjunction with a

modified Newton-Kleinman iteration for the operator Riccati equation. The main

computational cost of this approach was the numerical approximation of solutions of

linear unsteady flow problems. With a sufficiently refined grid and time step, the

algorithm produced a converged functional gain for the linear flow problem. This ap-

proach was then extended to an infinite dimensional observer design for an unsteady

Stokes-type flow with hair sensor arrays. Two patches of surface mounted hair sensor

arrays were shown to effectively contribute to the estimation of the flow field away

from the wall. This result supports the use of hair sensors for flow field measure-

ment and estimation. Additionally, these results exhibit the utility of the snapshot

Lyapunov solver for linear quadratic control design of distributed parameter systems.
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Here, our future work will see the use of adaptive time-stepping algorithms and adap-

tive grid refinement with the snapshot Lyapunov solver to study their effect on the

convergence of feedback and observer functional gains.
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[44] M. Chevalier, J.Hœpffner, E. Åkervik, and D.S. Henningson. Linear feedback
control and estimation applied to instabilities in spatially developing boundary
layers. J. Fluid Mech., 588:163–187, 2007.

[45] M. Feughelman. Mechanical Properties and Structure of Alpha-Keratin Fibres.
University of New South Wales Press, 1997.

[46] R.L. Panton. Incompressible Flow. Wiley, 2005.

[47] H.B. Keller and T. Cebeci. Accurate numerical methods for boundary layer flows.
I: Two dimensional laminar flows. In Lecture Notes in Physics: Proc. Int. Conf.
Numer. Meth. Fluid Dyn., 2nd, Berkley, Calif. Springer-Verlag, pages 92–100,
1971.

[48] R.E. Carpenter. Flight physiology of flying foxes, Pteropus poliocephalus. J.
Exp. Biol., 114:619–647, 1985.

[49] S.M. Swartz, M B. Bennett, and D.R. Carrier. Wing bone stresses in free flying
bats and the evolution of skeletal design for flight. Nature, 359:726–729, 1992.

[50] J.B. Akins, M.L. Kennedy, G.D. Schnell, C.Sánchez-Hernández, M. Romero-
Almaraz, M.C. Wooten, and T.L. Best. Flight speeds of three species of neotrop-
ical bats: Glossophaga soricina, Natalus stramineus, and Carollia subrufa. Acta
Chiropterol., 9:477–482, 2007.

[51] U.M. Norberg. Allometry of bat wings and legs and comparison with bird wings.
Philosophical Transactions of the Royal Society of London. Series B, Biological
Sciences, 292:359–398, 1981.

[52] M. Drela. An analysis and design system for low Reynolds number airfoils. In
Proceedings of the Conference on Low Reynolds Number Aerodynamics, pages
1–12, 1989.

[53] V. Barbu, I. Lasiecka, and R. Triggiani. Tangential Boundary Stabilization of
Navier-Stokes Equations. Mem. Amer. Math. Soc., 181(852), 2006.

[54] J.A. Burns and J.R. Singler. Feedback control of low dimensional models of
transition to turbulence. In Proceedings of the 44th IEEE Conference on Decision
and Control and European Control Conference, pages 3140 – 3145, 2005.



113

[55] J.A. Burns and J.R. Singler. Modeling transition: New scenarios, system sensi-
tivity and feedback control. In Transition and Turbulence Control, pages 1–37.
World Scientific, 2006.

[56] L. Cortelezzi and J.L. Speyer. Robust reduced-order controller of laminar bound-
ary layer transitions. Phys. Rev. E, 58(2-A):1906 – 1910, 1998.
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