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SIMPLE MODELS FOR THE STRUCURE AND DYNAMICS OF POLYATOMIC FLUIDS

CHAPTER 1
INTRODUCTION

There exists no well-developed molecular theory which is able to

predict the macroscopic properties of liquids and dense gases,

primarily because of the difficulty of analyzing the collisions between

molecules which characterize the liquid state. Such theories do exist

for crystalline solids and for dilute gases since the intermolecular

interactions in these materials can be simplified. In dilute gases,

molecules are far apart and experience few collisions. The collisions

which do take place are separated by relatively long periods of free

translation. Because of this, dilute gas theory is based on the action

of independent molecules. In crystalline solids, the individual

molecules do not translate and the intermolecular interaction is

dominated by long-range positional and orientational order.

Interactions in solids are therefore effectively treated as a

collective or an average phenomenon. The behavior of a molecule in a

liquid or dense gas is governed by its not-quite-random interaction

with other molecules. It is not practical to describe the complicated

behavior of molecular liquids analytically or to simulate a real liquid

on a macroscopic time scale, so the theory of liquids must rest upon

the use of models. This thesis is a report of the investigation of

three problems using models for the liquid state.
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The modelling of molecular behavior can involve the consideration

of a collection of molecules, each of which is simplified or the

consideration of a single, fairly realistic molecule and the

simplification of the surrounding molecules into an effective medium.

Each of these types of models is used in work that is reported here.

The first problem that is considered is the change in equilibrium

structure that is produced in a fluid of isotropic molecules by the

introduction of a low concentration of anisotropic molecules. The

packing in an isotropic fluid will, in the absence of external forces,

by spherically symmetrical. At densities below the fluid-solid

transition, the packing appears as a lack of spatial order. The

presence of even a single anisotropic molecule will disrupt the normal

packing of the fluid and introduce, at least in its immediate vicinity,

orientational order. The extent of the order and its dependence on the

density of isotropic molecules for a model system should provide some

indication of the extent of orientational order in real solutions.

The model used to investigate this question represents a drastic

simplification of a true liquid, but retains the features necessary to

understand structural changes. A Monte Carlo computer simulation of a

two-dimensional fluid of hard disks is used to model the fluid of

isotropic molecules and the anisotropic molecule is taken to be a hard

ellipse. The approximations of this model are the use of a

two-dimensional, rather than a physically realistic three-dimensional

system; the use of a Monte Carlo computer simulation to represent an

equilibrium ensemble; the round or elliptical shape to represent

molecules which may be irregular in shape; and the substitution of a
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hard potential for a true intermolecular potential. The usefulness of

each of these approximations will be considered.

The hard intermolecular potential is one for which the interaction

energy is zero unless two molecules are in contact. For two molecules

in contact, the interaction energy is infinite. This use of this

potential ignores altogether the attractive part of a real

intermolecular potential. This is a reasonable simplification to make

for the problem considered here because the repulsive part of the

potential is primarily reponsible for the structure of a fluid (1).

Molecules which can be represented by spheres in three dimensions

include the rare gases, as well as more complicated molecules such as

methane and some proteins. Linear molecules like nitrogen and carbon

dioxide and even larger molecules such as butane are roughly elliptical

in shape. The use of smooth convex bodies as models for the

investigation of the structural changes occurring in an medium of

isotropic molecules into which an anisotropic molecule has been

introduced is sensible, because the model molecules have the necessary

charcteristic of interest (either isotropy or anisotropy) and yet the

analytic and numerical work is considerably simpler than it would be

for more realistic molecular representations.

The Monte Carlo method (2) of computer simulation was chosen to

mimic the equilibrium behavior of the fluid. An equilibrium average of

a molecular property is determined by calculating its value for a large

number of configurations of a collection of particles. The use of the

Monte Carlo method for systems with hard potential forces is

particlarly simple because any non-overlapping arrangement of particles
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constitutes an equilbrium configuration and all of the non-overlapping

configurations have equal weight. The concern in this work was with

equilibrium averages of easily-calculated structural parameters such as

the angle of each of the disk particles with respect to the semi-major

axis of the ellipse and the average number of disk particles

surrounding the ellipse at a given distance. The Monte carlo method

provided a reasonable vehicle for the calculation of these quantities.

The use of a two-dimensional fluid in place of a three dimensional

liquid appears to be unrealistic, however, many of the properties of

three dimensional liquids are reproduced by a two-dimensional

representation and a two-dimensional liquid is also useful for testing

the predictions of theories which are valid for systems of general

dimensionality. For the particular problem of the disruption of the

hard disk fluid structure by an elliptical particle, the computer

simulation of the two-dimensional system was used to examine the extent

of the disruption and to compare to analytic scaled particle theory

(SPT) predictions of the structure. A knowledge of the extent and

nature of the disruption of the isotropic packing in two-dimensions can

be extended to give at least a qualitative view of the same phenomenon

in three dimensions. Furthermore, agreement or disagreement with the

SPT predictions in two dimensions can provide an idea of the credibilty

of the theory in three dimensions.

The second problem which was considered was molecular transport in

liquids, specifically self-diffusion. The self-diffusion coefficient

for liquids has been shown via kinetic theory to contain a non-analytic

dependence of the density of the fluid at low densities. That is, the
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density dependence becomes undefined as the density goes to zero. In

addition, computer simulations of liquids have shown the initial

velocity of a molecule to relax in an unexpected way. The expected

decay of a molecule's velocity is by way of random collisions with

other molecules in the fluid; this expectation leads to a prediction of

exponential relaxation of the velocity. The exponential relaxation

would leave a molecule with virtually no memory of its initial velocity

after 10-20 mean collision times. In simulations, correlations between

a molecule's initial velocity and its velocity at times even longer

than 20 collision times have been demonstrated. Because the

self-diffusion constant is the integral of the velocity correlation

function, the anomolous velocity decay and the non-analytic density

dependence are believed to be related.

The model which was used to investigate this problem is the

two-dimensional Lorentz gas. The Lorentz gas (LG) is a collection of

stationary scatterers traversed by non-interacting light particles.

The model was originally developed by Lorentz for the description of

conduction electrons in metals (3). It has proven to be a popular

theoretical model because it exhibits a non-analytic density dependence

of the diffusion constant and a non-exponential velocity relaxation,

yet represents a considerable simplification of a molecular liquid.

For this work, the scatterers were taken to be non-overlapping,

i.e., there exists a hard potential force between them which governs

their arrangement. The overlapping LG has been studied as well (see

references in ch. 4), but it was felt that the non-overlapping LG was a

better model for a molecular liquid.
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The interaction between the scatterers and the light particle is by

way of the hard potential described previously, and the light particle

is considered to be so light that it is massless. The two facts allow

one to use simple elastic collision dynamics to describe the passage of

a light particle through the arrangement of scatterers. The light

particles do not interact with one another so that the behavior of only

one particle need be considered and the behavior of an ensemble

obtained by averaging over the equilibrium velocity distribution.

This model includes the approximations of three dimensions by two,

and of an intermolecular potential by a hard potential which were used

in the previous Monte Carlo study. The dynamics of the Lorentz model,

that of a single massless, volumeless particle moving through an array

of stationary scatterers was not intended to represent the dynamics of

a molecular fluid. Rather, this model was used because it gives rise

to properties analogous to those of fluids and because there was a

greater chance of understanding the origin of these properties in the

simpler Lorentz model than there is for a molecular liquid.

The simulation method chosen for the Lorentz model was the method

of equilibrium molecular dynamics. In an equilibrium molecular

dynamics simulation, the molecules are provided with initial positions

and velocities from an appropriate equilibrium distribution function.

The system is then allowed to evolve in time by the solution of the

equations of motion for each particle. For the LG, only one particle

has velocity, and because of the nature of the collisions with the

stationary scatterers, the magnitude of the velocity is constant. This

means that the velocity of the moving particle can be chosen to be
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convenient computationally, and actual consideration of the velocity

distribution need not be included. The equilbibrium distribution of

the hard stationary scatterers is just the number of scatterers divided

by the available volume. Their configuration can be obtained as any

non-overlapping arrangement. The equations of motion for classical

elastic collisions between a point particle and a stationary disk are

also simple. The equilibrium molecular dynamics method is thus easily

implemented in the case of the LG.

The third problem which was considered concerned the distance

between the two ends of linear alkane chains. This distance will

depend upon the equilibrium distribution of chain conformations and

upon the flexibility and the rate of change between equilibrium

conformations. Experiments have been performed which have determined

the rate of electron exchange and flouresence quenching between chain

ends. Whether this rate is determined by equilibrium considerations or

by dynamical considerations cannot be ascertained from the experimental

data and it was hoped that a theoretical study could provide some

insight. The alkane chains were investigated using both analytic and

computer techniques.

The analytic study utilized the Rouse-Zimm model (4); this model

treats the alkane as a chain of beads connected by Hooke's Law springs.

The motion of the molecule is represented by the normal modes of the

collection of springs. The Rouse-Zimm mode has been successful in

treating orientational motion in alkane chains (5) and should be useful

in the understanding of chain motion required here.

Two different types of computer simulation were used. One, the

rotational isomeric state model of Flory (6), was directed at an
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analysis of the equilibrium distribution of chain conformations. In

the model, molecules are considered to have constant bond lengths, bond

angles and a three-fold symmetric torsional potential. All allowed

conformations are constructed and weighed evenly in the calculation of

an equilibrium average.

The model which was chosen to mimic the time-dependent properties

of alkane chains represents a single, reasonably realistic molecule

under the action of an effective field. This is the Brownian dynamics

model. In the Brownian dynamics model, the solvent provides a

frictional drag on each of the atoms and random 'kicks' at random

points on the molecule. A bead and stick model is used for the alkane

itself. The molecule is subject to a torsional potential forces and to

constraints on bond length and bond angle.

Because the interest in the chain end problem was on single

molecule behavior, realistic, three-dimensional models such as the

Rouse-Zimm, the rotational isomeric state and the Brownian dynamics

models were approproate and accessible.

Chapter 2 is a discussion of some of the fundamentals of

statistical mechanics which will be used throughout the rest of this

work. Each of Chapters 3-5 is a report of work directed towards one of

the problems discussed above. The structure of a dilute solution of an

anisotropic molecule in a solvent of isotropic molecules is considered

in Chapter 3. The molecular dynamics of the Lorentz gas is in Chapter

4 and the study of the chain end separation of alkanes is given in

Chapter 5.
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CHAPTER 2
BASIC THEORY

A. Introduction Phase space distribution functions

The statistical mechanics of liquid state behavior utilizes the

concepts of phase space and distribution functions. Because the idea

of phase space is central to the computational details discussed in

later chapters, a review of the general concept of phase space

distribution functions, their connection with equilibrium and

non-equilibrium properties and their time evolution is provided.

The theoretical development will use the classical mechanical

canonical ensemble(1). In the canonical ensemble, the number of

particles N, the system volume V and the temperature are held

constant. An N-molecule, single-component system in three dimensional

space has 3N degrees of freedom which describe the positions ri of

the N molecules and 3N degrees of freedom which describe the momenta

of the particles pi. The possible states of the system may be

described by the specification of the positions and momenta of each of

the molecules. The phase space for the system is defined as the

N-dimensional space in which each point

(r1,...,rN,p1,...,pN) represents one of the possible

states of the system. For polyatomic molecules, rotational or

vibrational degrees of freedom are included and, accordingly, the

number of dimensions of phase space is increased to accomodate the

increase in the number of possible system states.

The distribution of points in phase space will be controlled by the

convective free flow of molecules and by the forces which act upon the
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molecules in the system, i.e., the intermolecular potential and any

external forces which may be present. A distribution function(1) may

be defined which describes the probability of finding the system at any

particular point in phase space, that is, with molecule 1 at r1

with momentum p1, molecule 2 at r2 with momentum p2,...,

molecule N at rN with momentum pN at time t:

P(N)(e,pN,t)dedpN (1)

where (rN,pN) represents the phase space point

(r1,...,rN,p1,...,pN) and drNdpN is the

differential volume element dri...drNdpi,...dpN. This

function is known as the Nth order probability density function. The

function P(N)(e,pN,t)drNde tracks the positions and

momenta of all the particles in the system and requires more

information than can be easily obtained. Lower order distribution

functions which describe the probability of finding a subset of the N

molecules in a given state may be obtained by integration of the full

probability density function over the positions and momenta of some of

the particles. Lower-order or reduced distribution functions are

useful in the determination of system parameters which can be

calculated in terms of the positions and momenta of a few of the N

particles or as a sum over the coordinates of a few particles. The

probability of finding molecule 1 at r1 about molecule

n at r
n
about dr at time t regardless of the configuration of

the n+1 through Nth molecules will be

p(n)(rn,pn,t) f...f drN-nde-nP(N)(rN,pN,t) (2)

p(n)(rn,pn,t) is the n particle reduced distribution
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function.

The more general case of the probability of the system being found

with any molecule in dr1 about r1,..., and any molecule in

drN about rN may be treated by multiplying the specific

probablility above by the number of ways the n molecules can be

selected from the total N molecules

f(N)(rn,pn,t) (N.N.:)1 p(n)(rn,pn,t)

f(n)( rn ,pn, 0 is the n particle generic reduced distribution

function. When n is equal to one, the function
f(1)(ri,p1,0

is known as the singlet distribution function. Likewise,

f(2)(r2,p2, t) is the pair distribution function. The

(3)

distribution functions may be written as a function of the velocity,

rather than the momentum, indicated by f(n)(rn,vn,t).

The time-dependent phase space distribution function for an

N-particle system will obey the Liouville equation

at

8
P(N) + [P(N),H) = 0 (4)

where H is the Hamiltonian for the system. The expression within the

Poisson brackets may be written explicitly as

ap(N)

at +

8P(N) 8HE
j ar. 4.1

E
aP(N) 8H+Tap '. ar

0 (5)

where the sum over j is to be performed over the 3N cartesian

coordinates of the positions and of the momenta of the molecules. The

evaluation of the derivatives of the Hamiltonian gives

ap(N) Pj

07 P(N) + E F.07 P") = 0.
at m. r. j PO

3 3
3

(6)



where F. is the total force acting on the jth particle, V
3 r

is the gradient with respect to the position of particle j, V
p3

is the gradient with respect to the momentum of particle j, and the

sums are over the N molecules in the system.

This equation can be expressed more succintly as

with

13

"
.50(x)
1-at = LP") (7)

P
E

j

- i ( + F3.07 )
j P.

The Liouville equation has the formal solution

p(N(rx,px,t) e-iLtp(x)(rx,pN,0)

(8)

(9)

which may be used to describe the evolution in time of the phase space

distribution function.

The distribution functions, particularly the singlet and pair

distribution functions, play a key role in the analysis of the equilibrium

behavior of liquids and in the kinetic theory treatment of non-equilibrium

phenomena and will be used throughout this work. The equilibrium pair

distribution function is proportional to the radial distribution function

which is important in the Monte Carlo study described in Chapter 3. A

discussion of the radial distribution function will be followed by an

analysis of the use of the non-equilibrium distribution functions in the

Boltzmann-Enskog equation and in the treatment of macroscopic liquid

properties via the time correlation function formalism. These techniques

will be utilized in the interpretation of the molecular dynamics results

of Chapter 4.
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B. Equilibrium distribution functions

For a system of molecules at equilibrium, the phase space

distribution function will be independent of the time and can be

written P(N)(rN,pN). The interest in this work will be in

the positional distribution of the particles at equilibrium and not in

the distribution of momentum; consequently the discussion of

equilibrium distribution functions will focus on the positional

distribution. The configuration distribution function P(N)(e)

indicates the probability of finding the molecules at specific

positions independent of the momentum distribution and is defined by

the integration of P1N)(rN,pN) over the momenta of the N

particles,

p(N)(rN) dpN p(N)(rN,pN) (10)

The form of the distribution function may be determined from its

definition as the probability of finding the system in a given state

and from the principles of equilibrium statistical mechanics. If U,

the intermolecular potential energy function is U = U(rN), a

function of the positions of the N particles, the method of the most

probable distribution gives the probability of finding the system in a

given state in the form

p(N)(r) ec-pulizN

where ZN is the configuration integral f drN F(N)(rB)

Lagrange's method of undetermined multipliers and comparison with

macroscopic thermodynamics are used to find that the constant 0

appearing in the distribution function is equal to 1/kBT, where kB

is Boltzmann's constant and T, the absolute temperature. When this
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function is integrated over the coordinates of the n+1 through Nth

particles de- ndpN-n , a lower order distribution

P(h)(rh,t) analogous to P(n) (rn,pn, t) in eqn. (2) is

obtained. As with P(h)(rh,ph,t), the function is multiplied

by a factor of N!/(N-n)! to give a generic configuration distribution

function

N!

)!
p (n)( rn

' (N-n
P(n)(In). (12)

When n is equal to one, the distribution function p(1)(ri),

is the probability that a molecule will be found in drl. In a gas

or a liquid, a molecule is as likely to occupy one point as it is to

occupy any other, so p(ri) is independent of r1 and

,1-"fp(1)(r1)dr1 = p(1) =
V

= p. (13)

The above expression agrees with the conclusion that if N particles are

arranged randomly in a volume V the probability that a particle will be

found with its center in any volume element dr will be equal to the

number of particles divided by the available volume.

An n-particle correlation function, g(h)(e), is defined from

p(n)(rn) by

g (n) ( rn p(n)(14)/pn.

The value of g(h) will be one when there are no correlations in the

(14)

fluid, as in a dilute gas system; deviations from one reflect

correlations between the particles when they are present. An example

is the correlation in position of two particles introduced by the

excluded volume of a third particle which would cause a deviation from

one in g(2)(r2). Substitution from eqn. (3) gives



VAN! f...fe-sudr

en)(rn)
N-n

Nn(N-1)! ZN

= Vn(1 0(N-1))
f...fe-"drN-n

ZN

16

(15)

When n is equal to 2, the function is referred to as the pair

distribution function and when this function is averaged over all

angular degrees of freedom, it becomes the radial distribution

function(rdf). The rdf will be indicated by the abbreviated notation

g(r)

The importance of the radial distribution function is due, in part,

to the practice of defining the system energy UN as the sum of

pairwise interactions;

UN = F5U(rij). (16)

where rij is Iri-rjl, the distance between particles i and j

and U(rjj) is a function of this distance only. If UN is defined

in this way, the averages of some equilibrium property A(r) of a

three-dimensional fluid may be determined by

< A > = fv4nr2dr g(r) A(r). (17)

The assumption of pairwise additive potentials has proven to be valid

under many conditions and represents a considerable simplification of

the three-body problem which would be encountered in a higher-order

approximation. For the rigid systems examined in this work, the

forces are exactly pairwise additive and a knowledge of g(r) or the

angle-dependent g(r) will lead to information about all the

equilibrium properties of interest.
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C. Non-Equilibrium Distribution Functions - The Boltzmann-Enskog
Equation

The knowledge of the distribution function at some arbitrary time T

can be used to obtain the average of a dynamical variable A(t) at time

T via

< A(T) > = 1...f drNdpN f(N)(rN,pN,T) A(rN,pN,T)

The full time-dependent distribution function f(N)(rN,pn,t)

requires detailed knowledge of all particles in the system and their

evolution in time. The reduced distribution functions described in

part A. are of more practical value. The Bogoliubov, Born, Green,

Kirkwood and Yvon (BBGKY) hierarchy which relates a reduced

distribution function f(n)(rn,pn,t) to the next highest-order

distribution function f(n+1)(rn+1,pn+1 ,t) can be obtained

from the Liouville equation(1). The first step in the derivation of

the BBGKY hierarchy is to write the force Fj as the sum of the

forces of the other particles acting upon particle j, namely,

EiFii. No external forces will be considered. The next step is

to multiply the Liouville equation by N!/(N-n)! and to integrate over

the position and momentum variables drN-n

(18)

dpN-n:

+
J .
E
' m.

V
r,

(n) n pi
!

---- f(n) + (N-Nn)!
i,jE=1

f...1 drn-ndpN-n F. .. V
j
f(N)=o.

a 13 P

Members of the sum in the second term on the left were eliminated
(19)

because f(N) vanishes when pi = + .... The last term on the left

hand side is the sum of two parts

E F. V f(n) N!

j j
P. 4(n) drN-ndpN-ni,j=1 1j Pj (N-n)! i=1 i=n+l lj Pi j

(20)

and the second part of the above is just
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iE1
ff F jn+1 'Vp.

(n+1) drn+1 dpn+1

18

(21)

The use of this term in eqn. (19) above gives an exact equation for

f(n) in terms of an intergral over f(n+1),

apn )

at

n

+ Z

Pi
V f( n) + Z F. .V f(

3
j=1 m. r, 4 i,j=1 13 P

j

n

E j
SS F . V ,(n+1)

i=1 n+1 p drn+idpn+1 = 0. (22)

This is the BBGKY hierarchy.

The BBGKY hierarchy can be used to generate an approximate

equation, the Boltzmann-Enskog equation for the time evolution of the

pair distribution function f(2)(r2,p2,0(2). The singlet

distribution function f(1)(r1,p1,t) for some particle 1, the

singlet distribution function f(1)(r2,p2,t) for some particle

2, and the pair distribution function for particles 1 and 2

f(2)(r1,r2,p1,p2,t) will be indicated by the

abbreviated notation f(1)(1,0,f(1)(2,t) and f(2)(1,2,t),

respectively.

The lowest member of the BBGKY hierarchy relates f(1)(1,0 to

f(2)(1,2,0 by

atf(1)(1,0 iLif( 1)(1,0 -ff dr2dp2 F12.Vpf(2)(1,2,t) (23)

where L1 is the one particle Liouville operator vVr; the

next member of the hierarchy is

3t1(2)(1,2,t) + iL2f(2)(1,2,t)

= -ff dr3dp3 (F13.Vp1 + F23Vp2) f(3)(1,2,3,0 (24)

where L2 is the two particle Liouville operator v -V +
r1

v1'/7r
+ F12 p

-V + F
21 -V P . This equation

1 2
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can be solved for F
12 "g Pf(2)(112,0

F12.
w

f(2)(1,2,t) = -(Bt + v.Vr viVr, F2I'Vp2)f(2) (1,2,t)
l 1

- ff dr3dp3 (F13 pi + F23 p2) f(3)(1,2,3,0 (25)

Both sides of this equation are now integrated over the position

and momentum coordinates of particle 2; the left hand side of eqn. (25)

becomes

ff dr2dp2 F12-9,1 f(2)(1,2,t). (26)

The BBGKY hierarchy given by eqn. (22) and eqns. (23)-(26) are

general equations which can be applied to any system, the development

of the Boltzmann-Enskog equation which follows will be specialized to a

system of hard convex particles with axial symmetry. For such

particles, all interparticle forces will be delta functions, 6(R),

where R represents the minimum distance between the surfaces of two

particles; the delta function will be equal to zero unless the two

particles are in contact.

Because F12 is a delta function on the contact surface of the

particle, the integral over r2 can be converted to an integral over

the infinitesimal volume just inside and just outside the convex body.

The origin of the coordinate system is first changed such that r2

is replaced by r21 where r21 is 1r2-r11. The set of

coordinates k and t will now be introduced to represent the

surface-to-surface distance between arbitrary convex particles. The

surface normal or apse vector k is the unit vector perpendicular to

the surface of the particle at a given point; for a convex body, each

point on the surface is associated with a unique vector k. The

scalar distance along the apse vector will be indicated by 1. The
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surface-to-surface distance between two particles, 1 and 2, can be

represented by ki (Figure 2.1), where k is the surface normal to

particle 1 in the direction of the point on the surface of particle 2

which is closest to particle 1 and t is the minimum distance between

the surfaces of the bodies. Since k is unique to a point on the

surface of the particle, the specification of ki provides an

unambiguous description of the the location of particle 2 with respect

to particle 1 and f dr21 can be replaced by an appropriate integral

over k and 1. The Jacobian of the transformation is indicated by J,

drn
dr21 = II

dkdi I I
dkdl Jdkdl.

The implementation of the volume integral in eqn (26) gives

f dr
2

F12... = ffi
=o

+Jdkdl. F
12

....
t=0-

(27)

(28)

The first term on the right hand side of eqn. (25), viz.,

8tf(2)(1,2,0 will vanish upon integration because the

distribution function will be effectively constant in time over the

infinitesimal volume element. The last term on the right hand side

involves contact between particles 1 and 3 and particles 2 and 3;

contributions to the integral from such contact will disappear as the

volume of integration becomes infinitely close to the surface of

particle 1. The term

-ff dp2Jdkdldp2 F21.Vp2f(2)(1,2,t) (29)

will vanish because of the momentum boundary conditions.

The integrated form of the second member of the BBGKY hierarchy is

now
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Figure 2.1 Definition of the surface-to-surface coordinate system.
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-ff dp2Jdkdi 1712.Vp1 f(2)(1,2,t)

ff dp2JdkdIfyiVrvi.vr)f(2)(1,2,t). (30)
1

If the above result is substituted into eqn. (23) for the lowest member

of the BBGKY hierarchy, then

(8t + iL1)f(2)(1,2,t) = ff dp2Jdkd1{1/1-Vr1 +vi.Vri)f(2)(1,2,t). (31)

The operator in the integral on the right hand side (viV +
ri

V
1
V

r
) is equivalent to the streaming operator 8/at for a

two particle system. The positions of particles 1 and 2 may be

described in terms of center of mass (R = (r1 + r2)/2) and

relative (r21 = r2 - r1) coordinates and the relative

coordinate r21 may be expressed in terms of the apse vector k and

the surface-to-surface distance t previously described. The chain rule

gives

8t(r1,r2) = r117 + r2Vr
2

= V 'V + V
1
'V

r1 r
1 1

= at(R,k,1)

+ Vk + 1.8,.

where the derivative of a variable with respect to time has been

indicated by placing a dot over the variable. The center of mass

variable R makes no contributions to the integrals given above and

will be neglected.

The equation for the time evolution of f(1)(1,0 is

(32)

(at + iwf(1)(1,0 = ff dp2Jdkdi + kvdf(2)(1,2,0. (33)

Integration over the t coordinate gives
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(8t + ii)f(1)(1,t) = ff dp2Jdk[if(2)(1,2,01:++ i-Vkf(2)(1,2 t)}. (34)

Because the systems of interest are isotropic, the divergence theorem

can be used to eliminate the second term on the right hand side. At

the lower limit 0-, the first term on the right hand side of eqn. (34)

will vanish since the distribution function f(2)(1,2,0 is zero

for overlapping particles.

What is left is a reduced form of the BBGKY hierarchy

(8t + iL)f(1)(1,t) = ff dp2Jdk.1 f(2)+(1,2,t) (35)

where f(2)+(1,2,t) indicates that the pair distribution function

is to be evaluated just off the surface of the particle of interest. A

vector t can be defined and examined to provide an alternate

expression for the time derivative of 1. If t is defined in the

direction of k, then 1 = kl. The time derivative 80 is the

change in the vector separating the surfaces of the particles; for two

particles in relative motion the change will be g, the relative

velocity

g = v2 - y2 + (42 x a2 - W1 x a1) = 20. (36)

with wi the angular velocity of particle i and, ai the lever arm

from the center of particle i to the point of contact. If both sides

of this equation are multiplied by k, ati is

ati = kati = kg. (37)

It will be seen that kg is a useful quantity; it measures the

velocity of the particle surfaces relative to each other. Immediately

before a collision, the surfaces will be moving towards each other and



kg will be less than zero; after collision when the particles are

traveling away from each other, kg will be greater than zero.

The BBGKY hierarchy is now written as

(at + mf(1)(1,0 = ff dp2Jdk (kg) f(2)'(1,2,t).

24

(38)

This is an exact equation for the relationship between the singlet and

the pair distributions for hard convex bodies in dilute gas systems; at

this point approximations are introduced to treat the dynamics of

collisions between particles.

The assumption of molecular chaos is made; it is assumed that in

the past (before collison, t.0) the particles are uncorrelated, but

that in the future (after collision, t ='t) the particles will be

correlated. This assumption breaks the time reversal symmetry of the

system. If the particles are uncorrelated in the past, then the pair

distribution function f(2)(1,2,0) can written as the product of

two single particle distribution functions

f(2)(1,2,0) = x(r.,0)f( 1)(1,0)f(1)(2,0). (39)

The function X(rs,0) represents the spatial distribution function

of the rigid bodies for t.0; rs indicates the function at the

surface of the particle. This function was introduced into the

traditional Boltzmann analysis by Enskog; for an equilibrium fluid of

spherical molecules X(rs,t) will be the radial distribution

function.

It is further assumed that the time dependence of the reduced

distribution functions f(2)(1,2,T) and f(1)(1,0) can be

written in terms of the one particle Liouville operator L1 and the

two particle Liouville operator L2, respectively. The complete
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time evolution of these distribution functions is determined by the

full Liouville operator which may be expressed as L = L +

L
2

+ L
3

+ ... where L
1

is the one particle Liouville

operator, L2 is the two particle Liouville operator, L3 is

the three particle Liouville operator... The assumption of the reduced

form for the Liouville operator neglects the influence of events

involving three or more particles and serves to limit the validity of

the Boltzmann-Enskog equation to the dilute gas regime.

The time evolution can be written as

f(2)(1,2,t) = e-iL2Tf(2)(1,2,0)

= e-IL2 TX(r.,0):(1)(1,0)!" ) (2,0). (40)

If all the distribution functions can be expressed as functions of the

same time t, the equations relating them will involve only the time t

and will be much easier to solve. The time evolution of the single

particle distribution function is

f(1)(1T) = e-iL1T1(1)(1,0)

and correspondingly

f(1)(1,0) e+iL1Tf(1)(1,T).

(41)

(42)

Upon substitution for the zero-time singlet distribution function, eqn.

(40) above becomes

e-iL2Te+iLiTe+iL T
f(2 )(1,2,T) 1 X(rs,T)f(1)(1,T)f(1)(1,T). (43)

An operator S(2) is defined such that

Ste) e-iL2te+iLlte+iLl.t. (44)

This operator is equal to one for times before the collision. The

effect of applying this operator for a time t following a collision is

to convert post-collisional momenta to pre-collisional momenta.
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Explicitly, the particles with momentum determined by the

post-collisional distribution function f(1)(1,T) are acted upon

such that they are translated back in time traveling a distance

-V.T (rotations are neglected in this simple example) and then are

allowed to evolve forward in time with momentum from the

pre-collisional distribution (Figure 2.2). The net result is

f(2)(1,2,T) = X(rs,t)i(1)*(1,T)f(1)*(1,T) (45)

where the asterisk represents the pre-collisional distribution

function.

This form for the pair distribution function following collision

can be substituted into the BBGKY hierarchy to give

(at + iL)f(1)(1,t) = ff dp2Jdk g)s(2)f(2)(1,2,T)

= ffkg<o dp2Jdk (k.g)x(rs,T)f(1)(1,T)f(1)(2,T)

+ fikg,0 dp2Jdk (kg)x(rs,T)f(1)*(1,T)f(1)*(2,T). (46)

If k is changed to -k in the second integral and the last two

integrals are combined, the result is the familiar form of the

Boltzmann-Enskog(B-E) equation:

(at + iL)1(11(1,t) = ffit.g03 dp2Jdk (k.g)X(rs,x)

cf(1)(1,T)f(1)(2,T) f(1)*(1,T)f(1)*(2,T)). (47)

This equation differs from the Boltzmann equation in that the finite

size of the molecules is taken into account.

In addition to the assumption of molecular chaos mentioned earlier,

this derivation rests upon two other important assumptions. One is

that only binary collisions will be important. The action of a third

particle has been ruled out by the choice of the Liouville operator
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Figure 2.2 The action of the operator So at a time x
following a collision. The solid line indicates the trajectories
of particle 1 and 2 before and for time T after collision. The

broken lines represent the trajectories which result from the
application of So.
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L
2 for the pair distribution function as a function of two particle

dynamics.. The use of L1 = vic for the singlet Liouville

operator includes the assumption that interparticle interactions do not

contribute to the time evolution of a specific particle. Both of these

assumptions serve to restrict the validity of the Boltzmann-Enskog

equation to low densities. Treatment of the behavior of more dense

gases requires the inclusion of terms involving contributions from

L3, L4, etc. which represent the dynamics of three-particle

and higher order interactions. The inclusion of thses terms is the

basis of ring-expansion techniques.

D. Time Correlation Functions

An important link between macroscopic experiment and microscopic

theory is the time correlation function formalism. Time correlation

functions may be used to represent transport coefficients such as the

diffusion coefficient, the viscosity and the thermal conductivity, as

well as spectral line shapes and other experimental observables. The

relationship between the time correlation functions and macroscopic

behavior which can be used to treat the general use of the formalism

has been provided by Onsager(4) in his response-relaxation analysis.

The interest here is in the specific case of the diffusion of a tagged

particle in a fluid medium. This particular phenomenon can be easily

related to the correlation function formalism without recourse to the

Onsager methods(5); accordingly the discussion will be restricted to

self-diffusion.

A time correlation function measures the relation of some property
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A(t) at some time to to some property B(t) at a later time T. It is

written as an average over an equilibrium distribution function

<A(to)B(T)> = ff drNdpN f:gA(to)e"L('-to)B(to). (48)

If the time to is taken to be t=0, the notation for the correlation

function can be abbreviated as <A B(T)> and the Liouville operator

becomes e-i''; this convention will be used throughout this work.

The self-diffusion coefficient, that is, the coefficient which

describes the motion of a single tagged particle, can be obtained using

Fick's law of diffusion

at P(1)(r 1,vi,t) = D2V P(1) 0.1011,0 (49)

where P(1)(r1,v1,t) is the specific probability distribution

function for the tagged particle. The self-diffusion coefficient is D

and it is assumed that D does not depend on the position of the

particle. The solution to this equation is

p(1)(r1,v1,0
p(1)(r1,v1,0)

2(nDt)312
e-(r(t)-r(0))

2 /4Dt (50)

If an average of the change in position squared (r(t)-r(0))2 =

Ar(t)2 is performed using P(1)(r1,v1,t), the result is

< Ar(t)2 > = 2dDt (51)

where d is the dimensionality of the system.

Fick's law is a macroscopic law and the time t must be considered

to be much larger than the microscopic time scale associated with the

Liouville equation. The self-diffusion coefficient D can be determined

by differentiating the above equation and taking the long-time limit
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D
2dt

lim 1 < (r
1
(t)-r1(0))2 >

t4.

. 1
li4. m

2d
< v

1
.(r (t)-r

1
(0))>

t

. 1 t
lim ---f

o
dT < v(t)1v(T)1 >

t4. 2d

irodT < vivi(T) > (52)

The correlation function given above is the velocity

auto-correlation function. The integral of a self-correlation function

over all time gives rise to a relaxation time or correlation time for

the correlation function variable. If the variable relaxes

exponentially in time, with a relaxation time of thethe time

dependence is given by e-ttre. The self-diffusion coefficient is

seen to be directly related to the velocity relaxation time.

For non-spherical molecules, an angular velocity 611 will be

present along with the linear velocity. A rotational diffusion

constant DR analogous to the self-diffusion constant can be defined

as

D
R d

lf
o
dT < col(0)w1(t) >. (53)

The correlation times used in the diffusion coefficient definitions

can be calculated using the B-E equation and a moment expansion of the

distribution function. The specific case of the velocity relaxation

time will be considered.

The time-dependent distribution function f(1)(1,t) is expanded

about the singlet equilibrium distribution function f.q(1)

d v
(*)

.1)(t)

f(1)(*)(1,t) = f.q(1) ( 1 + v 3. (54)



where v(t) represents J dridvi v1f(1)(1,0; the

parenthetical asterisks indicate the form of the expansion of the

pre-collisional singlet distribution function and d remains the

dimensionality of the system. The function f(1)(2,0 is

approximated by the equilibrium singlet distribution function

feq(2) and X(r.,T) becomes the equilibrium configuration

distribution function at the surface of the particle g(r.). The

B-E equation, as given by eqn. (47), is multiplied by v1 and

integrated over the velocity of particle 1 to give

ffdvidri (at + iL1)f(1)(1,t)vi = iffik.g<o dvidridv2Jdk

(k.g)g(r. )f(1)(1,..0f(1)(2,.ovi

+ ffffk.vodvidr/dv2Jdk(k.g)g(rdf(1)*(1,T)f(1)*(2,T)vi.

Note that in this equation f(1)(1,0 is written as a function of

velocity rather than momentum; the B-E equation is equally valid in

this form. The integral on the left hand side results in

atv(t) + Vriffdvidri v1v1f(1)(1,t) .ffffkg<odvidridv2

Jdk (kg)g(r. ):(1)(1,c)f(1)(2,T)v1

+ ffffk.g>odvidridv2Jdk (kg)g(rs)f(1)*(1,T)f(1)*(2,T)vi.

The second term on the left hand side will vanish under the r1

integration. The moment expansion for f(1)(1,0 can be substituted

into the above equation

atv(t) .ffffkg<odvldridv2Jdk (k.g)g(r.)feci(1)feq(2)

d vi .v(t)

vil 1 <v
1
.v

1
>

+ iffik.vodvidridvvIdk

*

d v1 .v(t)
(k.g)g(rs)feq(1)feq(2)v1( 1 + 3.
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(55)

(56)

(57)



If icg is replaced by -kg in the first integral, the result is

equivalent to integration of the pre-collisonal velocities over

kg>0. The two integrals can be combined to give

80)(t) =fffk.vodvidv2Jdk (k.g)g(rdfag(1)feq(2)

d u(t) * * *,

<v
1
.v

1
> 11"1"r1 Vl.V1i.

The quantity (viv, - Nvi) can be written as

'/1(V
1
+ V

2
+

1
V

2
)(V

1
V1 )s
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(58)

(59)

The velocity of particle 2 has been added and subtracted; this produces

no net change but will aid in the simpification of the integral in eqn.

(58). The quantity within the first set of parentheses is the sum of

the total linear momentum of the two particles and the relative

velocity of the two particles in the absence of angular momentum. Note

that the neglect of angular momentum will limit the application of

further simplification to spherical particles. Upon integration, the

total linear momentum will vanish because it is a collisional

invariant. The relative velocity is g and the difference between the

pre- and post-collisional velocities of particle 1 is -2k(k.g).

The substitution of these relations into eqn. (58) yields

aty(t) -iffk.vodvidv2Jdk (kg)3 g(r.)feq(1)feg(2)11(t)/<v12>. (60)

The B-E equation prescribes that the velocity decay exponentially with

a relaxation time Tv, that time can be determined from the above

equation using

1 /Tv = fffk.g,odvidv2Jdk (k.g)3 g(rs)feq(1)feq(2)/<v12>. (61)

This equation can be used to describe velocity relaxation and, hence,

the self-diffusion coefficient in systems of hard spheres which can be
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treated under the conditions applicable to the Boltzmann-Enskog

equation. It will be used in Chapter 4 in an analysis of diffusion in

a Lorentz gas.

In this chapter, a number of general relations have been obtained

for the equilibrium and non-equilibrium behavior of systems made up of

rigid convex bodies. These general expressions will be evaluated for

the specific materials of interest as the need arises.
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CHAPTER 3
STRUCTURE OF THE ELLIPSE-DISK FLUID

A. Introduction

Liquid structure is often described in terms of the radial

distribution function g(r) given by eqn (15) of chapter 2. For a

liquid in which all the particles are spherical, the packing about an

arbitrarily chosen particle is isotropic and an orientation-independent

radial distribution represents the structure. The simplest system that

could be expected to display an orientation-dependent distribution

function would be one in which a single anistropic particle was

surrounded by spherically symmetric particles. The presence of the

anisotropic particle will cause a disturbance of the normal isotropic

arrangement of the particles in the liquid. A Monte Carlo study on a

two-dimensional liquid consisting of a single ellipse in a bath of

disks was undertaken to investigate packing in anisotropic molecular

liquids. For this system, information about the radial distribution

function and the angle-dependent distribution of disks about the

ellipse was combined to provide an indication of the disruption of the

isotropic packing of the disk particles in the neighborhood of an

anisotropic particle.

This chapter describes a Monte Carlo investigation of a

two-dimensional fluid comprised of an ellipse in a bath of disks. An

introduction, primarily a review of previous simulations of hard convex

body fluids, is given, followed by a discussion of the Monte Carlo

technique itself, scaled particle theory, the details of this

simulation study and a discussion of the results of the study in
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relation to scaled particle theory predictions.

The present Monte Carlo study is an investigation of the angular

correlations of the positions of the disk particles in the vicinity of

the ellipse expressed in terms of the surface-to-surface distance

between the particles rather than the center-to-center distance.

Angular correlations in fluids are often investigated via a spherical

harmonic expansion about the distance between molecular centers (1).

This method has proven useful because the harmonics may be used to

calculate physical properties and can be easily determined in computer

simulations. However, for anisotropic molecules the convergence of the

spherical harmonic expansions is slow for small center-to-center

distances. This is because the center-to-center distance between two

nonspherical particles in surface contact will vary with the relative

orientation of the particles and the rdf of a given relative

orientation may be discontinuous for some values of the

center-to-center distance. For example, for two ellipsoidal molecules

of semimajor axis b and semiminor axis c in a head-to-head

configuration, the rdf must have a value of zero when the

center-to-center distance r is less than 2b, however, for such

molecules in a side-to-side configuration, the rdf may be greater than

zero when r is less than 2b but larger than 2a. In terms of the
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distance between molecular surfaces, the rdf will be a smooth,

continuous function even for particles in contact, regardless of the

relative orientation of the particles; expansion of the rdf about the

surface-to-surface distance should provide a convergent series.

B. Literature survey

Previous Monte Carlo simulations of fluids of hard convex bodies

have focused on neat fluids of ellipses(2), of spherocylinders(3-8), or

on equimolar mixtures of spherocylinders and spheres(9,10). When

angular correlations have been determined by these studies, they have

generally been couched in terms of a spherical harmonic expansion in

the center-to-center distance and the relative orientation of two

spherocylinders, in contrast to the relative coordinates to be used in

the present study.

Vieillard-Baron (2) has studied a two-dimensional liquid of highly

anisotropic ellipses. The axial ratio of these ellipses was 6. The

study was directed toward properties related to the phase transitions

of a nematic liquid crystal. Three density-dependent phases were

observed, a high-density solid-like phase, a nematic phase which

exhibits orientational order, but no translational order, and a liquid

phase. The pressure and the free energy of the system were also

calculated. To facilitate these calculations, Vieillard-Baron was able

to derive a 'contact function' which is zero only when two ellipses are

in contact.

Monte Carlo studies of three-dimensional systems of hard

spherocylinders have been carried out by Few and Rigby (3),
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Vieillard-Baron (7), Monson and Rigby (8,9) and Boublik, Nezbeda and

Trnka (4,5,6). The initial studies of these fluids by Few and Rigby

(3) were shown to be incorrect by Boublik, et al (4) and more recent

studies (4-9) should be consulted for correct data.

Vieillard-Baron (7) determined the equation of state for

spherocylinders with a total length-to-breadth ratio,y, of 3 and

compared his results to existing scaled particle theory. Agreement

between the computations and the SPT predictions was good for low and

moderate densities; SPT is less accurate at high densities and

underestimates the density at which the nematic transition occurs. The

study of the y = 3 system at high densities and a study of

spherocylinders with y = 6 at a moderate density proved impractical

because of the amount of computer time required for these systems to

reach equilibrium.

Boublik, Nezbeda and Trnka (4) and Boublik and Nezbeda (5) studied

systems of spherocylinders with y = 2 and 3. They determined the

compressibility factors, P/nkBT (where P is the pressure, n is the

number of molecules and kBT is Boltzmann's constant times the

absolute temperature) and radial distribution function for these

systems. Computer-calculated compressibilities were found to be

systematically smaller than values predicted by SPT, but in good

agreement with the data of Vieillard-Baron (7). As expected, the rdf

displays features similar to those observed in the rdf of fluids

comprised of spheres as determined using the Percus-Yevick equation(11)

with corrections due to Verlet and Weiss (12). The two rdf differ,

however in the position and width of the minima and maxima, even when
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the spherocylinder rdf is converted to units analogous to those used in

the spherical case.

The angular correlations in systems of spherocylinders were studied

by Nezbeda (6) and by Monson and Rigby (8). Nezbeda's simulations

involved particles with y equal to 1.4,1.6 and 2.0; Monson and Rigby

investigated spherocylinders with y equal to 2 and 3. The angular

correlations were expressed in terms of a series of spherical harmonics

in R, the center-to-center separation, and the relative orientation of

two spherocylinders. Both groups observed poor convergence of the

series at distances less than the length of the spherocylinder. This

lack of convergence is due to the discontinuity of the rdf in terms of

the center-to center distance.

The radial distribution function and the compressibility for

equimolar mixtures of spheres and spherocylinders with y = 2 have been

obtained in Monte Carlo studies by Monson and Rigby (9). Two types of

mixtures were studied, one in which the volume of the spheres was equal

to the volume of the spherocylinders and one in which the diameter of

the hard spheres was equal to the breadth of the spherocylinders. The

results of the compressibility calculations were compared to existing

SPT predictions; agreement with the work of Pavlicek, et al. (10) was

found to be good. From a calculation of the excess volumes of the

mixture the authors concluded that the excess free energy of such

mixtures is dependent upon the relative volumes of the components

rather than on shape differences. Three kinds of rdf, based upon

center-to-center particle separations, were calculated: a sphere-sphere

rdf, a spherocylinder-spherocylinder rdf and a sphere-spherocylinder
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rdf. The sphere-sphere rdf was similar to the distribution function of

a pure hard sphere fluid, but some portions of the mixture rdf were

observed to be out of phase in comparison to a hard sphere rdf. The

spherocylinder-spherocylinder rdf was expanded in a series of spherical

harmonics. For the mixture in which the particles were of equal

breadth, the terms in the expansion are nearly identical to those

observed in pure spherocylinder fluids at the same density. In

contrast, the expansion in spherical harmonics of the

spherocylinder-spherocylinder rdf for the mixture in which the

particles are of equal volume gives rise to leading term different than

that observed in the other mixture and in the pure fluid. The authors

attribute this difference to the disruption in packing caused by the

greater breadth of the spheres in relation to the spherocylinders. The

sphere-spherocylinder rdf was expressed as a series of Legendre

polynomials. The resummation of this series is well-behaved for

configurations in which the spherocylinder and sphere are located in a

'head-on' arrangement, but for configurations in which the sphere is

located closest to the cylinder portion of the spherocylinder, the lack

of convergence and other anomolous behavior displayed in spherical

harmonic rdf expansions is observed.

The angular distribution of disk particles in the simple dilute

system studied here will be examined in terms of the surface-to-surface

distance 1, described in Chapter 2. The Monte Carlo method of computer

simulation will be used to determine the orientation of disks in

contact with the ellipse particle with respect to the semi-major axis

of the ellipse , along with the rdf in terms of 1, the
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surface-to-surface distance.

C. The Monte Carlo Method

The basis of the Monte Carlo method is the use of random variables

to solve mathematical problems. The method can be illustrated by the

integration of an irregular function f(x). The integral I is defined

by

I = fo f(x)dx

The function f(x) can be scaled such that the integration can be

performed over the interval from 0 to 1

f'(x) = f(x)/f...(x)

where X is the maximum value of x and f...(x) is the maximum value of

f(x). The new integral

I' = f'(x)dx'

can be solved by a series of trials using random numbers supplied by a

pseudorandom number generator. For each trial two random numbers

between 0 and 1.0, ql and q2, are chosen. The function is

evaluated at x = q1. The trial is counted as a success or a failure

based on the value of q2:

f(q1) < q2 failure

f(q1) > q2 success.

The value of the integral is then simply

I' _
number of successes
number of trials.

The Monte Carlo method is superior to other numerical methods of
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integration for functions with discontinuous derivatives or for

multidimensional integration.

Although the use of Monte Carlo principles in problem solving was

documented in 1873 (13) and in 1901 (14), the first systematic use of

the technique was in 1944 by von Neumann and Ulam (15) to investigate

the random diffusion of neutrons through fissile material. The code

word Monte Carlo was coined for this project. In 1948 Metropolis,

Fermi and Ulam (16) obtained Monte Carlo estimates of eigenvalues of

the Schrtidenger equation. The widely-used Metropolis algorithm was

developed in 1953 by Metropolis, Rosenbluth, Rosenbluth, Teller and

Teller(16) and applied to a simulation of a two-dimensional liquid of

hard disks. This same algorithm was used in this work in a simulation

of a two-dimensional liquid consisting of a single hard ellipse in a

bath of disks.

The Metropolis algorithm models the behavior of a system governed

by classical mechanics and pairwise-additive potentials. The system

used is a square containing N particles. Because a finite number of

particles is used, some consideration must be given to the edges of the

sample region. The effect of the edges can be minimized, even for a

sample containing a fairly small number of molecules, if periodic

boundary conditions are employed. Periodic boundary conditions dictate

that the square be surrounded by an infinite number of identical images

of itself. A particle which leaves the defined region enters into

another identical region of space. This can be viewed as the particle

leaving from one side of the square and reentering from the opposite

side. If N particles are placed within the square, the energy of the
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where rij is the separation between particles i and j and U(ril) is

the separation dependent potential. For a canonical ensemble,

statistical mechanical averages of an equilibrium system property F are

defined by

< F > =
f F exp(-E/kBT)drNdpN

f exp(-E/kBT)drNdpN

where k
B
T is the Boltzmann constant times the absolute temperature

and (rN,pN) are the position and momenta coordinates of the N

particles. The momentum coordinates may be integrated out if the

properties of interest are dependent only on position and not on

velocity. The integral which is left may be solved by the Monte Carlo

technique; the integration is performed over a large number of

computer-generated configurations. The averaging may be effected in

either of two ways: the N particles may be placed in positions at

random and each configuration given a weight exp(-UN/kBT) or the

configurations may be chosen with a probability exp(-UN/kBT) and

weighed evenly in the average.

The latter method is chosen for the hard particle system studied

here. An initial lattice configuration of particles is altered by the

movement of each of the particles by some random number. For systems

with only hard potentials, the energy change AE following each move

will be either 0 (when no two particles overlap) or co, (when two

particles overlap). Moves which result in an overlap are discarded;
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when this process has been completed for all of the particles, the

resulting configuration is used in determining the desired average.

The systematic movement of all the particles is repeated until a large

number of configurations (105-106 in this case) have been included

in the average.

D. Monte Carlo simulations of ellipse -disk fluid

The Monte Carlo calculations were undertaken on the OSU Chemistry

Department VAX and the Boeing Computer Services Cray 1S. A run at

moderate density typically required about 1 hour of time on the Cray

and about 60 hours on the VAX. Because of the central role that the

system-supplied pseudorandom number generator plays in MC, the library

random number generator on each of the machines was tested for

uniformity and randomness. The tests performed were a X2 test for

uniformity, a serial test to determine the period of the random number

generator and a runs-up test for randomness (17). These are considered

to be the minimum tests which should be performed on a random number

generator (17). The results of these tests on the library random

number function on both the Cray and VAX were satisfactory.

The MC simulations were carried out on systems containing one

ellipse in a bath of 89 disks. The ellipse was described by its

semimajor and semiminor axes b and c, respectively. The disks had a

radius of a. Three different ellipse geometries were studied; these

were defined by axial ratios of 2,5 and 10. In all cases, the ellipse

was of the same area as the disk, i.e., be = a2. Solvent density is

measured in terms of the packing fraction p = na2N/A where A is
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the area available to the N particles. The packing fraction of the

systems studied covered a range from 0.05 to 0.60. At the lowest

density the properties of the system should compare to those of a

dilute gas and at the highest, the behavior should correspond to that

of a dense liquid.

The Metropolis algorithm (16) was used to control the selection of

configurations for averaging. For each new configuration an attempt

was made to move each disk by an amount determined by two random

numbers, ql and q2, uniformly distributed on [-1.,1.]. The

original coordinates of the particle (x0,y0) become (x0 +

yo + aq2) where the parameter a is chosen for expediency. If

approximately one-half of the moves are rejected (17), the initial

lattice state will reach an equilibrium configuration quickly; a is

chosen so that the rejection rate approaches one-half as nearly as

possible. One of the aims of MC averaging is to maximize the amount of

phase space which is sampled by the chosen configurations; thus for

each new configuration rotation of the ellipse by an angle It0q2 was

alternated with translation. The parameter 0 was arbitrary and was

chosen the same way a was chosen; q3 is a random number between -1.0

and 1.0. The determination of overlap between disk particles was based

on the distance between the centers of the particles, but for the

ellipse, overlap was determined by the calculation of the

surface-to-suface distance.

The calculation of the surface-to-surface distance t between two

convex figures is an analytic function only when figures are disks, so

the calculation of the distance between the ellipse and the disk
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required a numerical solution. The method selected for the present

study involved the iterative determination of the minimum distance

between the surface of the ellipse and the center of the disk. When

the point on the surface of the ellipse which is closest to the disk is

known, the surface normal at that point is also known. One of the

properties of interest in this calculation was the angle e that this

surface normal makes with the director axis of the ellipse (See Figure

3.1). That quantity is easily calculated using this algorithm. The

equation derived by Vieillard-Baron(2) which analytically determines

whether there is overlap between two ellipses was not used in this work

because it does not provide any information about the distance between

two bodies not in contact and the focus of this work is on the

orientational packing and the full radial distribution function for the

ellipse.

At each density and for each of the differing ellipse geometries

the MC program was used to generate 5 x 106 of the configurations

described above. Averages were calcualated based on the last 4 x 105

configurations so as to minimize the effects of the initial lattice.

Because of the smaller number of disk particles in the near vicinity of

the ellipse particle, the averages for low density runs will provide

results which are less accurate than those for high densities. For

this reason runs at the lowest density used as many as 1 x 106

configurations.

The results of the simulations will be compared with predictions of

Scaled Particle theory. Toward this end, a description of Scaled

Particle Theory (SPT) and, in particular, the theory as it has been
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Figure 3.1 Definition of the angle O.
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developed for arbitrary convex bodies will be provided.

E. Scaled Particle Theory

Scaled particle theory was developed Reiss, Frisch and Lebowitz

(18) in 1959 for the calculation of the equation of state for hard

sphere fluids. It has since been applied to a number of materials,

including two-dimensional rods and disks (19), liquid crystals (20) and

general convex body systems (21,22,23). Most recently, SPT has been

extended to the study of the orientation-dependent contact properties

of convex bodies by She and Evans (23). The idea behind SPT is the

addition of a virtual particle to a fluid using a coupling parameter

related to the strength of the interaction between the virtual particle

and the other particles in the system. The work required to include

such a particle can be calculated and, from the work, a function G(r)

which is related to the rdf can be determined.

A solution of N particles of diameter d, subject only to hard

forces is considered. A virtual particle is added to the system; the

total potential U, after addition of the virtual particle, will be the

SUM

U = UN+1

N N

=
2

U(r. .) + E U(r1j,&)
i <j

where the first term represents the interaction potential of the intial

N particle system and the second term is the potential due to the

virtual particle. U(r..) is the separation-dependent potential and

will be a Heaviside function on the contact surface for hard bodies.

The potential for the scaled particle is defined such that
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U(r13, &) =

The coupling parameter is also known as a scaling parameter and is

the source of the term scaled in the name scaled particle theory. For

the hard systems considered here, the use of the scaled interaction

potential is equivalent to introducing an virtual particle with a

radius X dictated by, but not equal to, the scaling parameter.

The volume available to the virtual particle can be determined by

considering the volume from which is excluded by the N particles of the

system. An excluded volume surface of radius d + X can be drawn about

the center of each of the system particles. The space which is not

within any of the excluded volume surfaces is the free volume Vo

which the new particle might occupy. The probabilty of finding a

cavity in this free volume which is large enough for the virtual

particle will be given by

Po(X) = Vo/V

where V is the total volume of the system. From fluctuation theory, it

is known that the probability of finding a void of appropriate volume

is Po(X) = exp(-W(X)/kBT)

where W(X) is the work required to introduce the virtual particle into

the system. The two equations can be combined to give an expression

for the reversible work necessary to add the virtual particle of radius

A to the fluid.

W(X) = -kBT ln(Vo/V).

The work may be related to a function G(X) where G(X) is a measure

of the number of particles on the excluded volume surface of the

virtual particle. The quantity pG(X), where p is the number density of
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particles in the N particle fluid, is the concentration of particles on

the excluded volume surface. The probability that a molecule will be

found within the spherical shell of differential volume 4nX2dX

enclosing the excluded volume of the virtual particle is then

4nX2pG(X)dX and the probability that the differential volume element

will not contain a molecule is 1 - 41tX2pG(X)dX. The probability that

both the excluded volume of the virtual particle itself and the

differential volume element surrounding it will be empty is

Po(X + dX) = Po(X)(1 4nX2pG(X)dX) = Po + (aPo/aX)dX

which is equivalent to

a in 130

ax
- 4nX2 pg( X)

This leads to an integral equation for Po(X):

Po(X) = exp( 4nE2pG(2)dE )

where the probability is normalized by the condition that P0(0) be

equal to one.

It should be noted that G(X) is closely related to the radial

distribution function g(r) and, in fact, when X is equal to d, the

radius of the fluid particles, G(d) will be equal to g(d), the radial

distribution function at contact. Constraints on G(X) and on its

derivatives are used to obtain the value of G(X) and, hence, g(X).

Among the constraints on G(A) are those introduced by the macroscopic

pressure when X = co and those imposed by the excluded volume for

A < d. Approximate contact radial distributions have been obtained in

this fashion for spherical particles.

Modifications to traditional SPT described above have been made
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to accomodate general hard convex bodies (HCB). Angle-averaged

distribution functions for HCB have been obtained (21,22) by the

replacement of the spherical volume used in the determination of the

cavity size by an appropriate convex body volume along with similar

adjustments to the surface area and radius of curvature. She and Evans

(23) have provided a version of SPT which can be used to obtain

orientation-dependent properties of a single convex body in a fluid of

spheres. The predictions of this theory will be compared to the MC

calculations discussed in this chapter.

The modifications that She and Evans made to existing SPT had as a

central point the concept of differential bulging. The work required

to introduce an arbitrary scaled convex body into a system of N

spherical particles is determined. An infintesimal bulge is then

created at a specific locale on the surface of the particle and the

additional work required to create the bulge calculated. Constraints

on g(r) at the location of the bulge, found from the consideration of

the required work and from geometric arguments, provide a method for

the determination of the orientation-dependent contact position

distribution function of the spherical particles. This theory has been

applied to the calculation of properties of the dilute ellipse-disk

fluid (24) which is the subject of the Monte Carlo investigation

reported here. The simulation and SPT results will be discussed in the

next section.
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F. Results and discussion

Monte Carlo computer simulations were performed on systems

containing a single ellipse in a bath of spheres. Three different

ellipse geometries were considered; the axial ratio of the ellipse,

that is, the ratio of the semi - major ellipse axis to the semi-minor

ellipse axis was either 2, 5, or 10. The density was varied from the

dilute gas range (packing fraction = 0.05) to the liquid range (packing

fraction = 0.60). For each system, the full rdf out to three disk

particle diameters was calculated and an average of the orientation of

disk particles in contact with the ellipse was determined. The

specific orientational variable considered was the cosine of the angle

that the vector normal to the surface at the point of contact makes

with the semi-major or director axis of the ellipse, referred to as cos

e. Averages of this variable and its even moments cos2' were

calculated for m = 1 to 10. These g(t) and cos 8 results were combined

in a polynomial expansion about the even moments of cos 0 to give an

expression for the angle dependent distribution of disk particles

g(t,k).

The angle-averaged rdf determined for the ellipse particle was

found to be quite similar to the rdf for a liquid of disks at the same

density. Examination of Figures 3.2-3.4 demonstrates that at low

densities the pure disk rdf is superimposable upon the ellipse-disk rdf

except in the vicinity of the ellipse itself. Differences in the two

distribution functions are apparent only when the surface-to-surface

distance is less than 0.3 of a disk diameter and then only for the most
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Figure 3.2 The radial distribution function g(t) as a function of the

surface-to-surface distance t at a packing fraction p
*

of 0.20 as

calculated by MC simulation. The asterisks represent the rdf for a

single ellipse of axial ratio 2 in a bath of disks of like area. The

line is the rdf for an analogous pure disk fluid. The inset is a

blow-up of the rdf in the region closest to the particle surface.
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Figure 3.3 The same as figure 3.2, but the axial ratio of the ellipse

is 5.
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Figure 3.4 The same as figure 3.2, but the axial ratio of the ellipse

is 10.
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Figure 3.5 The radial distribution function g(i) as a function of the

surface-to-surface distance i at a packing fraction p
*

of 0.60 as

calculated by MC simulation. The asterisks represent the rdf for a

single ellipse of axial ratio 2 in a bath of disks of like area. The

line is the rdf for an analogous pure disk fluid. The inset is a

blow-up of the rdf in the region closest to the particle surface.
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Figure 3.6 The same as figure 3.5, but the axial ratio of the ellipse

is 5.
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Figure 3.7 The same as figure 3.5, but the axial ratio of the ellipse

is 10.
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anisotropic of the ellipses. At the highest density considered

(packing fraction = 0.6, Figures 3.5-3.7), the differences between the

two distribution functions, although slight, are visible at

surface-to-surface distances greater than a disk diameter and as

expected, increase in magnitude as the axial ratio of the ellipse

increases. The contact value of the distribution function would be

expected to be greater for an ellipse than it would for a disk of equal

volume because of the greater amount of surface area available on the

ellipse. The discrepancy between the pure disk rdf and the

ellipse-disk rdf at low densities is due to this effect alone and hence

localized to the regions very close to the ellipse. At higher

densities, it is clear that the packing of the disks is affected well

away from the ellipse. The maxima and minima of the rdf for the

ellipse-disk are more pronounced than those of the disk rdf, perhaps

indicating a more solid-like configuration and what might be considered

the earliest stages of orientational order.

The values obtained for the contact value of g(t), g(0), are given

in Table 3.1. The agreement between the SPT results and the MC results

is good at low densities and for the least anisotropic of the

ellipses. Values for g(t) for t not on the surface of the ellipse were

obtained by counting the number of disk molecules whose centers were

within a distance t ± 61 where t for t ranges from 0.05 to 2.95 disk

diameters in intervals of 0.1 disk diameters and 6 = 0.05 disk

diameters and then using appropriate numerical differentiation

formulas. The contact values g(0) were determined by fitting the first

three g(1) values to an exponential ae-cl where a and c are arbitrary
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axial ratio

Table 3.1. g(0) SPT and MC Results

packing fraction g(0) SPT g(0) MC

1 0.05 1.083 1.066

1 0.20 1.422 1.439

1 0.35 1.995 1.989

1 0.50 3.09 1 3.071

1 0.60 4.510 4.581

2 0.05 1.086 1.081

2 0.20 1.435 1.404

2 0.35 2.010 1.972

2 0.50 3.066 3.097

2 0.60 4.354 4.613

5 0.05 1.107 1.044

5 0.20 1.551 1.392

5 0.35 2.319 2.005

5 0.50 3.814 3.178

5 0.60 5.767 4.852

10 0.05 1.139 1.349

10 0.20 1.735 1.837

10 0.35 2.806 2.639

10 0.50 4.998 4.157

10 0.60 8.001 5.371

constants determined by the curve fitting procedure.

It should be noted that the MC number given here is five percent

greater than the value determined by Chae, Rae and Rae (CRR) (25) for

the identical system. The SPT predictions are in better agreement with

the CRR number than with the present value; this should be considered a

reflection of the inaccuracy in the determination of the value of

g(0). As the density of the liquids increases, the agreement between

the SPT predictions and the MC results would be expected to deteriorate
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and this is borne out by the data. Agreement is fair, however, for

most of the densities studied. The SPT predictions seem to

consistently overestimate the MC values at high densities and the

difference between the SPT and MC values is largest for the most

anisotropic of the ellipses.

The orientational properties of the fluid are expressed as the

averages of the cos of the angle between the director axis of the

ellipse and the surface normal at the point of contact between an

ellipse and a disk. The averages of the moments of cos 0 given in

Figures 3.8 3.10 are

T2m = <COS2m(0)>/<COS2m(0)x=0

where x is the packing fraction and the denominator represents the

average value of the moment at zero denstiy. From strictly geometrical

considerations, these zero-density orientational averages for an

ellipse would be expected to be lower than they would be for a disk.

This can be illustrated using the surface normals to a convex body

which lie in the first quadrant and recognizing that the average values

of cos2m 0 and its moments will be the same for all quadrants. In

the first quadrant are surface normals for which 0 will be between 0

and n/2. For a disk particle, the angle 0 will be evenly distributed

about n/4, but for an ellipse, a greater portion of the surface normals

will correspond to 0 greater than n/4 than to 0 less than n/4. Surface

normals with 0 greater than n/4 lie on the 'flat' portion of the

ellipse. The average value of cos2m will be accordingly reduced in

comparison to the same average over a disk surface; this reduction is

reflected in the Jacobian J used to effect the transformation from
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Figure 3.8 The moments T2m = <cos2m(8)>/<cos2m(8)>p..0

as a function of the packing fraction p* for an ellipse with an

axial ratio of 2. The lines are the values as calculated using SPT;

m for each line is indicated at the right. The MC results are given by

the squares (m=1), diamonds (m=2) and asterisks (m.10).
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Figure 3.9 The same as figure 3.8, but the ellipse has an axial ratio

of 5.
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Figure 3.10 The same as figure 3.8, but the ellipse has an axial

ratio of 10.
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center-to-center coordinates to the coordinates k, the surface

normal, and t, the surface-to-surface separation. The expression for

the Jacobian is given in eqn. (26) of chapter 2. All averages reported

here are given relative to the exact zero-density values. The latter

can be computed directly and without approximation from purely

geometric arguments. The variations of T2m from unity will then be a

measure of multi-particle correlations rather than a function of the

geometric factor J.

The moments of cos a from the MC simulations are plotted along with

the SPT result in Figures 3.8 - 3.10. For all of the ellipse-disk

systems studied, the values of T2m decrease as the density of the

system increases. This trend indicates that at the higher densities,

the disks which come into contact with the ellipse are likely to be

aligned along the regions of the ellipse surface with the least

curvature. The effect is amplified for the more anisotropic ellipses.

The SPT predictions are in agreement qualitatively for all of the

ellipses and quantitatively for the ellipses with axial ratios of two

and five.

The information about the angular correlations in the fluid may be

combined with the contact radial distribution function g(0) to give an

orientation-dependent g(0). This can be accomplished through an

orthogonal function expansion of the radial distribution function. The

expansion in terms of a set of polynomials, ei(8) can be written

g(0,0) = gis.(0)f 1 + E ei(e)wi(x) )

where giso(0) is the isotropic contact rdf given by Table 3.1 and

wi(x) are the density dependent expansion coefficients. The
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Table 3.2

Coefficients of the polynomials el and e2

Axial Ratio packing fraction wi(x) w2(x)

2 0.05 0.0419 0.0052

2 0.20 -0.0244 0.0072

2 0.35 -0.0502 0.0139

2 0.50 - 0.085 9 0.0155

2 0.60 -0.1231 0.0238

5 0.05 0.0124 0.0052

5 0.20 -0.0132 0.0178

5 0.35 -0.0575 0.0260

5 0.50 -0.1360 0.0570

5 0.60 -0.2134 0.0206

10 0.05 -0.1162 -0.0036

10 0.20 -0.1519 0.0688

10 0.35 -0.2063 0.0798

10 0.50 -0.2428 0.0854

10 0.60 -0.2519 0.0831

coefficients wi(x) were found to be small, only wi(x) differed

significantly from 0.0. The coefficients wi(x) and w2(x) are given

in Table 3.2. The first of the orthonormal polynomials

el(8) = { cos20 - <cos28 >0 }/[ <cos40>0 - <cos40>02 (1)

was used to calculate the values of T (x) given in Table 3.3. The

good agreement between the MC results and the polynomial results

indicates that the contact rdf can be approximated by a small set of

orthogonal functions expressed in terms of the surface-to-surface

distance and orientational polynomials orthogonal with respect to the

Jacobian, J. Expressed in this way, the rdf is nearly isotropic even

for highly elongated molecules, in contrast to the rdf in terms of the



Table 3.3. Values of T2m(x) from Monte Carlo (MC) calculations and

those from Eqn. (1) with one orientational polynomial(Poly) .

Axial Ratio packing fraction MC

m = 1

Poly MC

m = 2

Poly MC

m = 10

Poly

2 0.05 1.004 1.007 1.007 1.005 1.007 1.007

2 0.20 0.977 0.977 0.971 0.970 0.964 0.960

2 0.35 0.953 0.953 0.942 0.937 0.930 0.917

2 0.50 0.920 0.920 0.898 0.893 0.880 0.858

2 0.60 0.885 0.885 0.854 0.846 0.823 0.796

5 0.05 1.017 1.017 1.019 1.021 0.981 1.026

5 0.20 0.982 0.982 0.985 0.977 0.970 0.971

5 0.35 0.923 0.923 0.912 0.901 0.880 0.878

5 0.50 0.817 0.817 0.791 0.767 0.761 0.710

5 0.60 0.713 0.713 0.642 0.634 0.472 0.546

10 0.05 0.803 0.803 0.785 0.761 1.165 0.708

10 0.20 0.739 0.739 0.721 0.682 1.056 0.621

10 0.35 0.643 0.643 0.614 0.572 0.879 0.485

10 0.50 0.584 0.584 0.539 0.499 0.788 0.398

10 0.60 0.583 0.583 0.538 0.493 0.770 0.389
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center-to-center distance. This is consistent with the results of

studies of the spherical harmonic expansion of the rdf for

non-spherical molecules using a Gaussian overlap model for the

intermolecular potential and the distance between equipotential

surfaces(26,27) or the distance between the repulsive cores(27) of the

molecules as expansion variables which resulted in convergent

expansions series.

In additon to the systems listed, a single fluid of moderate

density (packing fraction = 0.50) containing an ellipse of axial ratio

2 with an area one-half the area of the disks was simulated. The

contact rdf for this system was smaller than the contact rdf of the

corresponding pure disk fluid, reflecting the smaller surface area of

the ellipse relative to the disk. The full radial distribution

function reverted to that of the pure disk fluid within a few tenths of

a disk diameter (Figure 3.11). The angular correlations for this

system were similar to those observed for the analogous system in which

the ellipse was of the same area as the disks.

The MC simulations of a dilute ellipse-disk fluid in two dimensions

have provided insight into the orientational and structural properties

of isotropic fluids perturbed by the presence of a single anisotropic

particle. The ellipse particle significantly disrupted the normal

isotropic packing of the disk particles only in the region close to the

ellipse particle itself. An analysis of the packing in the region of

the ellipse indicates that the disk particles tend to arrange

themselves along the least-curved portions of the ellipse surface. The

radial distribution function was obtained in terms of 1, the surface
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1

Figure 3.11 The radial distribution function g(t) as a function of the

surface-to-surface distance t at a packing fraction p
*

of 0.50 as

calculated by MC simulation. The asterisks represent the rdf for a

single ellipse of axial ratio 2 in a bath of disks; the ellipse has an

area equal to one-half the area of a disk. The inset is a blow-up of

the rdf in the region closest to the particle surface.
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separation of the particles, and an orthogonal polynomial expansion of

the contact rdf employed; demonstrating the utility of the

surface-to-surface coordinate system in the analysis of convex particle

fluids. The MC results compared favorably with the SPT predictions for

the system and with previous simulations of convex body fluids (2-10).
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CHAPTER 4
THE NON-OVERLAPPING LORENTZ GAS

A. Introduction

The Lorentz Gas (LG) provides an interesting problem from a purely

theoretical standpoint as well as serving as a model for diffusive

phenomena such as neutron transport in dense materials(1) and the

motion of electrons in impure metals(2). The model was initially

formulated by Lorentz(3) as a description of the diffusion of

conduction electrons in metals. The LG follows the classical motion of

a volumeless light particle through a matrix of randomly-placed

stationary scatterers. The ratio of the mass of the light particle to

that of the heavy particle is considered to be small enough to be

effectively zero. This system is an attractive candidate for numerical

modelling and analytic study because of its simplicity yet it acts as

an effective test for analytic theories of the more complex liquid

state(4-7). The work reported here involves the computer simulation of

a two-dimensional LG with non-overlapping scatterers; this corresponds

to the motion of a point particle through a 2-d hard disk fluid which

has been frozen in time. The work will be compared to previous

simulation of the overlapping LG(8-10), previous simulations of the

non-overlapping LG at low densities (11,12) and to existing analytic

work, much of which has been done for the overlapping LG(13-23).

There are three aspects of the Lorentz gas which are of interest

from a theoretical point of view. One of these is the percolation

problem in the overlapping Lorentz model. As the density of scatterers

is increased, the likelihood of the the light particle being trapped by
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a configuration of the overlapping scatterers is also increased. A

density is eventually reached where the probability of the particle

being trapped is great enough that the self-diffusion coefficient

vanishes. This density is known as the percolation threshold. For the

non-overlapping Lorentz gas, which is the focus of this work, there is

no percolation threshold and no further mention will be made of

percolation.

The other two problems of interest for the Lorentz gas arise in the

theory of both the non-overlapping and overlapping versions of the LG,

in models of molecular liquids and in some simple stochastic models.

In the early 1960's, based on the work of Bogoliubov(23) and

Zwanzig(25), it was believed that transport coefficients of dense gases

could be expressed as power series in density. However, Dorfman and

Cohen(25) demonstrated that there existed a logarithmic divergence in

the density dependence of the transport coefficients, i.e., D (p +

pin(p))-1. Other calculations on dense gases confirmed the

divergences (26). Weijland and van Leeuwen(13) undertook an

investigation of the density dependence of the diffusion coefficient in

a Lorentz model in an effort to elucidate the origin of the anomalous

density dependence. A logarithmic divergence similar to that seen in

dense gas theory was observed. This topic will be discussed fully in

the next section.

The second problem is to provide an explanation for the

non-exponential decay of the velocity autocorrelation function C(t),

where

<vv(0>i<172>



and v is the velocity of the light particle. The velocity

autocorrelation function (VAF) is related to the self-diffusion

coefficient by

D =
1
-I dt < vi.vi(T) >
d o

(1)
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Equation (1) is identical to eqn. (52) of Chapter 2 and relates the

macroscopic diffusion constant in Fick's law to the microscopic time

scale considered here. In the Lorentz gas, the relaxation of the the

velocity is controlled by the collisions of the light particle with the

stationary scatterers; because the scatterers are randomly placed, at

low density all collisions are expected to be completely uncorrelated

with previous collisions and simple kinetic theory predicts that the

velocity relaxes via a single exponential function. Simulations of the

LG indicate that even at very low densities the velocity

autocorrelation function in two dimensions decays with a negative long

time tail which goes as 1/t2. Figure 4.1 shows a velocity

autocorrelation function for a two-dimensional non-overlapping Lorentz

gas at a packing fraction of 0.1; plotted alongside is the exponential

decay predicted by kinetic theory.

A positive tail is observed in the velocity autocorrelation

function of hard disk liquids at low densities, for high density, a

negative tail is observed(26,27). The origin of the positive tail is

thought to be hydrodynamic or vortex modes in the liquid; theoretical

predictions based on this assumption are in reasonable agreement with

computer simulation of hard-disk fluids(28). The tail observed in the

liquid simulations was the impetus for the initial kinetic theory

investigation of the LG VAF by Ernst and Weijland(14). The origin of
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Figure 4.1 The velocity autocorrelation function for the

non-overlapping Lorentz gas at a packing fraction Nna2/V = 0.1.

The time, s, is given in units of the Enskog mean free time,

ma/(p*<v>g(r.)). The lower, solid line is the difference

<v.v(s)> - exp(-4s/3), the broken line is <v.v(s)> and the

uppermost, dotted line is the Enskog prediction exp(-4s/3). Error

bars are one standard deviation above and one standard deviation

below the simulation values.
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the long time tail is related to the source of the logarithmic density

dependence of the self-diffusion coefficient. The long-time tail in

the LG has generated a large volume of theoretical work, primarily

devoted to the overlapping Lorentz gas (14-21).

The focus of this work is the diffusion constant in the

non-overlapping LG; only the work of van Leeuwen and Weijland(13) has

centered on this problem. In the next section the calculation of the

diffusion constant in the non-overlapping LG using Boltzmann-Enskog

kintic theory and the methods of van Leeuwen and Weijland(13) will be

discussed. In Section C the theoretical work on the long-time tail

(14-22) will be discussed briefly. In Section D, the results of the

simulation of the non-overlapping Lorentz gas will be presented and

compared to existing theory.

B. Kinetic Theory for the Diffusion Constant

1. Boltzmann-Enskog Kinetic Theory

The Boltzmann-Enskog equation will be used to first analyze the

velocity relaxation and self-diffusion coefficient for the

non-overlapping Lorentz gas. Equation (61) of Chapter 2 gives an

expression for the inverse of the velocity relaxation time

1/T, = -112iffic.vodvidv2JdIc (Kg)3 g(rs)feq(1)feg(2)/<v12>. (2)

In eqn. (2), vi is the velocity of particle i, K is the surface

normal between the surfaces of particles 1 and 2, J is the Jacobian

for the transformation between center-to center coordinates and

surface-to-surface coordinates given by eqn. (27) in Chapter 2, g is

the relative velocity of particles 1 and 2, g(rs) is the
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equilibrium pair distribution function in terms of the

surface-to-surface distance rs, feq(i) is the singlet equilibrium

distribution function for particle i, i. e., f(1)(ri,vi3O),

and <v12> is the average square velocity of particle 1. The

variable K, rather than the k used in chapter 2, is used to

represent the surface normal vector to prevent confusion with the

Fourier space variables k which will be introduced shortly.

Equation (2) can be simplified for the Lorentz gas considered here

by taking into account the disk shape and the fixed position of the

scatterers and the constant speed of the moving particle. Throughout

this chapter, the moving particle will be indicated by particle 1, the

static disks will be particles 2 through N. The positions of all

particles will be indicated, as they were in chapter 2, by the set

rN = (r2,r3,...,rN). Because the scattering particles

have no velocity, the distribution function feq(2) will be a6(0) and

the integral f dv2 feq(2) will be equal to p. Notation can be

simplified if it is recognized that this will be true for any

integration over dvi for i not equal to one and dropping all

references to the particle velocities for particles 2 through N. The

unsubscripted variable v can then be used to indicate the velocity of

particle 1. For an interaction between a point particle and a disk, J

will be a, the radius of the scattering particle. The surface normal

K will always point in the direction of r12 with r12 the

vector between the light particle and the center of the stationary

disk. Because there is no rotation in this system and the scatterers

do not move, the relative velocity g will be equal to the velocity of
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particle 1. Equation (2) becomes

1/T, = -ap ffic.v<odvdK (Kv)3 g(rs)feq(1)/<v2>. (3)

The LG consists of a single particle colliding elastically with N

stationary scatterers, following each collision, the moving particle's

initial velocity will change in direction, but not in magnitude.

Because the velocity of the moving particle is of constant magnitude,

but can point in any direction, the singlet equilibrium distribution

function will a be delta function for the magnitude of the velocity

divided by 2n;

feq(v) = 6(v <v>)/2n (4)

where vl = lvil. The use of the delta function is equivalent to

taking an ensemble average over a microcanonical ensemble. The

integral in eqn. (3) can be carried out to give

1/T, = 8pa<v>g(rs)/3

in which p is the density, N/V, of scattering particles.

The collision frequency Tc, where tc is the mean free time or

the average time between successive collisions, for the Lorentz gas can

be determined from a similar integral;

1/Tc = -Ifficevodv1dv2Jft (K11) g(rs)feq(1)feq(2).

to be

1/Tc = 2pa<v>g(rs). (5)

This leads to the observation that the velocity relaxation time Tv

will be equal to 4/3 times the mean free time, that is, 4Tc/3. All

of the results given above apply to the overlapping Lorentz gas if

g(rs) is taken to be 1 and to the non-overlapping Lorentz gas if a

hard-disk fluid value is used for g(rs). The time t can be scaled by



the mean free time to provide a convenient reduced time unit; time

given in these units will be indicated by s = t/tc.

The diffusion coefficient predicted by Boltzmann-Enskog kinetic

theory can be determined using eqn. (52) of chapter 2

1 .
D = Jf0dt < vv(t) >
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(6)

and the relaxation times calculated above. The time correlation

function is predicted to be

-(4/3)s;
< vv(t) > = < v2 (7)

then the self-diffusion coefficient can be written

DE = .375 <v>2.rc = 3<v>/(16pag(r.)). (8)

The subscript E indicates that this result is the prediction of Enskog

kinetic theory. The effect of increasing the density of the scatterers

enters T through the radial distribution function and as an explicit

factor of the density; both of these serve to lower the diffusion

constant as the density increases. The assumptions of molecular chaos

and the inclusion of only bimolecular collision events limit the

validity of eqn. (8) to the dilute gas regime. In fact, in computer

simulations of even very dilute (nna2 = 0.01) arrangments of

scatterers, the VAF is exponential only at very short times.

2. Higher-order Kinetic Theory

The divergent density dependence of the self-diffusion coefficient

arises when an attempt is made to include the effects of three-body and

higher correlations into the theory. For a two-dimensional Lorentz gas
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the three-particle events give rise to the divergence and in three

dimensions the three-body term is well-behaved, but the inclusion of

four-body effects leads to divergence. The present development of the

density expansion will, for the most part, follow Zwanzig's derivation

of the density expansion for molecular liquids(24), but will take into

account simplifications which can be made for the Lorentz gas. Only

the portions of the derivation which are necessary for the

consideration of the two-dimensional hard disk LG will be discussed.

The expression for the diffusion constant given by eqn. (6) can be

written explicitly as

D = Y2f dt If drNdv f(N)(e,v)v. eiLtv.
(9)

eq

Note that for the LG the distribution function is listed as a function

of the positions of all the particles (both static and moving) and of

the velocity of the moving particle. The distribution function can be

separated into two parts, the configuration distribution function for

all the particles and the velocity distribution for particle 1,

)(rNor) p(N)(rN)feq(v)
e

(10)

where P(N)(rN) is given by eqn. (11) of chapter 2 and feq(v)

is the delta function given in eqn. (4) above.

The long time limit of the integral of the correlation function can

also be obtained using the Laplace transform and taking the limit of

z40,

D lim ff drNdv f dt exp(-zt) P(N)(rN)feq (v) veiLtv. (11)
z4o

Time integration gives rise to the resolvent operator G(z), defined by



G(z) = f dt exp(-zt)exp(iLt) (z - iL)-1. (12)

The equation for D becomes

D % urn ff drNdv P(N)(rN)feq(v) vG(z)v.
z40

The notation <...>, will be used to indicate a variable which has

been averaged over the configuration distribution function

p(N)(rN), but not over the velocity distribution of particle 1,

...> drN p(N)(rN)

Since the velocity of particle 1 is independent of position, the

diffusion constant can be written as
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(13)

D = 1/2 sir f dv feri(v) v-<G(z)> v. (14)
z40

The focus of the problem is now the specification of the operator

<G(z)>r which includes the effects of all the particles in the system

yet operates only on the velocity of the moving particle. Because it

is a function of all the system particles, a well-behaved series

expansion of G(z) in terms of the density of static particles would be

expected to exist

<G(z)>r = ri(z) + pr2(z) + p2r3(z) + (15)

The first operator in the expansion, ri(z), is 1/z which diverges for

z01. The rest of the members of the series also diverge for small z

rendering the expansion useless for the calculation of the diffusion

coefficient.

The reciprocal of <G(z)>r,

B(z) <G(z)>r-1,

will be used to obtain a new density expansion; this is accomplished by

inverting the density expansion of <G(z)>r,



B(z) = B1(z) + pB2(z) + p2B3(z) +
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(16)

The inverse of the diffusion constant will be given by

D-1 = fdv feq(v) v01(z) + pB2(z) + p2B3(z) + ...)v.

The first three operators in this series are found to be

B1(z) = [r1(z)]-1 = z

B2(z) -z2r2(z) (17)

B3(z) = -z2F3(z) + z3[r2(z)]2.

In two dimensions, the operator B3(z) leads to a term non-analytic in

density, so only the first three terms in the B(z) expansion need be

considered. The evaluation of these terms is accomplished using the

binary collision expansion of the resolvent operator G(z).

The Liouville operator L given by eqn. (8) of chapter 2 can be

separated into two parts, a free-streaming operator Lo and a

collision operator L1,

L = L
0

+ L
1

The free-streaming operator for the LG will just be v8/8r1. The

collision part of the operator is formally defined by

L1 = E.L. = Ej Fij.8/8p

where p is the momentum of particle 1. For a LG the definition given

above is useful only in that it makes it possible to represent L1

as the sum of operators for the interaction between the moving particle

and each of the stationary particles.

The free-streaming resolvent operator is Go = (z - iL0)-1.

The expansion of the full resolvent operator uses the binary collision

operator T. defined as the solution to the equation

T
a

= -iL
a

+ iL aGOTa . (18)
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This operator is related to the Boltzmann collision operator via

llw
vim

VT12F(v*) -fic.v<o JdK (K-v) [F(v) - F(v*)] (19)

where F(v) is a function of the velocity v and the superscript

asterisk indicates precollisional velocity. The rhs is a simplified

form of eqn. (47) of chapter 2 applicable to LG collision dynamics.

Note that the collision operator is the simple Boltzmann operator and

does not contain the radial distribution function. To treat accurately

the dynamics of the non-overlapping LG, the radial distribution

function would have to be included at this point.

The binary collision expansion G is

G = Go - EaGO TaGO +Ece E
pi
GTGT13 G-Oa 0 a 0 0

ESL Ey#0G0 Ta G0 TG0 Ty G0 +... (20)
fifia

The exclusions )40, etc., exclude only the pair specified and no

others. Note that all pairs include particle 1. This gives rise to

terms such as

GoT12G0T13G0T12Go.

A Fourier expansion in space can be used to simplify the terms

B.(z). The set of orthonormal functions

V-Nl2exp(ikN-rN)

will be used; kN represents the set of wave vectors

(k1,k2,...,kN). The matrix representation in k-space of an

operator 0 will be

0(kIk') = V-NfdrNexp( -ikN.rN)0exp(ik,N.rN) (21)

The representation of the averaged resolvent operator in k-space



requires the configuration distribution function and the unaveraged

resolvent operator in k-space. The form of the configuration

distribution function will be

P(kN) = f drNexp(ikNrN)p(rN).

Because G(z) operates only on functions which are independent of

position, k' can be set to 0 and only one matrix element G(k10) of

G(klk') will appear in the expression for the averaged resolvent

operator,

<G(z)>r = fdkNP(kN)G(k10)

The Fourier expansion of the streaming part of the resolvent

operator is

Go(kIk') = y(k)d(k-k')

with

y(k) = (z - ivkN).
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(22)

Equation (20) can be written

G(k10) = z-ld(k) z-1Z,,y(k)Tcc(kj0) (23)

+ Z -1E
a
E0#m k'

y(k)Tu(kIkr)y(k')T (k'10) -

The factor of z-1 in front of each term is the result of the

rightmost Go's which appear in eqn. (20).

This expression for the resolvent operator, equation (20) can now

be written as

<G(z)>, = to + t1 + t2 + (24)

where each of the ti represents the partially averaged form of the

terms which appear in the series of eqn. (23). A heuristic approach

will be used to obtain the correspondence between terms in the binary

collision expansion eqn. (23) and the density expansion, eqn. (15).
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Equations (16) and (17) can then be used to get the coefficients Bn

of the inverse expansion and eventually a finite expression for D as a

function of density. Equation (23) gives the resolvent operator as a

sum of sums with the terms grouped as a function of the number of

binary collisions which each one represents. The term to corresponds

to no binary collisions, t1 to one binary collision, and so forth.

Equation (15) is a power series in the density and it is reasonable to

expect that the terms of the expansion of eqn. (23) which will

contribute to each of the rn of eqn. (15) will be determined by the

number of scatterers involved, rather than the number of collisions.

That is, r1, which is density-independent, will be comprised of

contibutions which result from the the free motion of the moving

particle, r2, which is linear in the density, will be the result of

the interaction of the moving particle and one scatterer, r3, which

is quadratic in the density of scatterers, will arise from collision

sequences involving two stationary disks and the moving particle, and

so on. It is then necessary to regroup the terms of eqn. (24)

according to the number of scatterers involved in the collision

sequences.

The first term of the series r1 will involve the free propagation

of the moving particle and will correspond to to in eqn. (24). The

next term r
2
which involves the collision of particle 1 with one of

the stationary scatterers can also be represented by a single term for

eqn. (24), t1. It is impossible for particle 1 to recollide with the

original static disk without the intervention of a third particle so

t1 representing one binary collision will be the sole contribution to
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r1. There are a number of collision sequences which involve the

moving particle and two of the scatterers. The simplest of these are

included in t2 of the ti expansion of G(z) and involve the

collision of the moving particle with one of the stationary scatterers

followed by a collision with a different stationary scatterer. In

addition to the two-scatterer collision events described by t2, the

just-described collision sequence can be followed by a recollision of

the moving particle with the initial scatterer. This sequence is

illustrated in Figure 4.2b. When the possiblity of recollision is

considered, a large number of events can be conceived of which involve

two static scatterers and are not included in t2.

Figure 4.2 (6) illustrates four types of collision sequences which

can occur in a Lorentz gas. Collision events may be reducible or

irreducible; a reducible collision event is one for which there exists

a point at which the trajectory can be cut to produce two sequences

which will both involve fewer particles than the original collision

sequence. An irreducible event is then a trajectory which when cut at

any point will produce two sequences, at least one of which will

involve the same number of particles as the original collision

sequence. Additionally, collision sequences may be classified as

non-ring, ring or repeated ring. A ring collision event involves the

collision of the moving particle with an intial scattering particle,

its further collision with different particles followed by recollision

with the initial particle in the sequence. Repeated ring events

include an intial ring sequence followed by additional ring sequences

resulting in collision with the initial particle of the initial ring.
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a. irreducible ring collision

b. irreducible repeated-ring

c. irreducible non-ring collision

1

d. reducible collision

Figure 4.2 (ref 6) Classification of
Collisions in the Lorentz Gas.
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This system of classification is useful for describing the collision

events which are considered in the following development.

The third term, r3, of eqn. (15), the density expansion of the

resolvent operator, will be composed of terms which correspond to

collision events of the moving particle with two scatterers. This

includes t2 plus irreducible ring events between the moving particle

and two of the static disks included in t3. The latter are

represented in T.G0 language as

E.E00.G0T.G0T0G0T.G0. (25)

The operator of eqn. (25) will be denoted by t3,2 to distinguish it

from other three collision sequences. There are other binary collision

sequences which appear in t4 and higher terms which involve particle

1 and two of the static scatterers; these are repeated ring events and

reducible and irreducible non-ring events consisting of four or more

collisions. The density dependence and divergence of r3 and hence

the diffusion constant will be dominated by the relatively more

frequent events of t2 and t3 (24).

The parts of the resolvent operator expansion which are necessary

for the calculation of the first three terms of the density expansion

eqn. (15) will now be evaluated.

The first term, to, is simply l/z and is independent of the

density.

The second term t
1
will be

t1 = z-lEkP(k)E.y(k)T.(100)

There are N-1 equivalent pairs a which contain molecule 1, so the sum

over a may be replaced by a multiplicative factor of N-1,
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ti = z-1 (N-1) EkP(k)y(k)T.(100).

The binary collision operator will be diagonal in wave vectors not

involved in the collision(24), that is,

N

T12(klk') = 6(k1 + k.2 - - k29n1136(kn - k.'). (26)

The wave vector dependence of T12 is then written explicitly as

T12(k0) = T12 (k1 0E210) = T12 (k1 °)

This can be substituted into t1 to give

ti z-1 (N-1) EkiP(ki,-ki)(z-iv-ki)- 1T12(k19-kJO'
At this point, the representation of configuration distribution

function in terms of a cluster function will further simplify the

equation for tl. If the distribution function P(RN) is

integrated over dr3...drN, the result is a reduced distribution

function P(2)(r2) (N-2)! p2g(r12)/N! where g(r12) is

the pair correlation function given by eqn. (14) of chapter 2. For a

large system P(2)(r2) can be written as

P(2)(r2
) (1/V2)(1 + h12)

where h12 is a short-ranged cluster function which is dependent upon

the separation between particles 1 and 2, r12 = r2 rl.

The Fourier integral of this function will be

P(k1, -k1) = 6(k1) + V-1 J dr12exp(ik1 .1.12) h12. (27)

The rightmost term of equation (27) will be indicated by the

abbreviated notation h(ki).

The equation for t1 separates into two parts

ti = z-2V-1(N-1) VT12(OI0)

z-1V-1(N-1) E
ki

v-1 h(ki)(z - iv-1(1)-1VT12(kl,-k110) (28)

Further reduction of this term is not possible without
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consideration of the variable which it is to operate upon and its

relationship to the rn and Bn expansions. The terms t2 and t3

will now be considered; in a later section the action of tl, t2 and

t
3
on v and the consequent contributions to the diffusion

coefficient will be evaluated.

The reduction of the term t2 can be accomplished using the

procedure that was applied to tl. Two binary collision operators

appear in t2,

t2 = z-lEkEk,E.E13.P(k)iy(k)Tc((kik')y(k')To(k'10) (29)

The sum over 0 can be replaced by a factor of (N-1) times the pair (12)

and only kl' and k2' will appear from the set k'. The pair

a must also include molecule 1 and the sum may be eliminated by a

factor of (N-2) times the pair (13). Equation (26) can be used to

eliminate k4,k5,...kti to give

t
2
= (N-1)(N-2)z-1 E ,P(k3) y(k3)T13(k1,k2,k31k1',k2',0)

x y(k,' /k2')T12(ki''k2'1°) (30)

where k3 represents the set (k1,k2,k3). Conservation

of wave vectors requires that

k
1

+ k
2

+ k = 0

and

k
1

' + k
2

= 0.

Equation (26) sets k2 = k2' following the action of T13.

This leaves only two of the original five k sums which appear in eqn.

(30),

t2 = (N-1)(N-2)z-1 Ek ,P(k3) y(k3)T13(k1,-k1',k1'+ k1lk1',-k1',0)

x y(k1' ,-k1' )1'12(k/ ' ,-k/ '10). (31)
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As in the reduction of ti, the Fourier transform of the

distribution function is now considered. The reduced distribution

function which will appear in t2 will be

P(3)(ri,r2,r3) = f...f dr4...drN P(N)(e).

This function is expanded as

P(3)(ri,r2,r3) (1/V3)(1 + h12 + h23 + h13 + h123);

for the present purposes, it is sufficient to combine all of the

cluster functions into one term indicated by h(3)(r3). The

Fourier transform of the triplet distribution function can then be

written as

F(3)(ki,k2,k3) = 8008(k2)8(k3) + h(3)(k3)

and t
2
separates into two parts

t2 = (N-1)(N-2)V-21-3 VT13(010) VT12(010)

+ (N-1)(N-2)z-lk Ek ,h(3)(k3) y(k3)T13(ko-ki',k,'+ kilki',-k1',0)
1' 1

x y(k1',-kii)T12(ki',-k1'10). (32)

The other contribution to the term quadratic in density in the

expansion of the resolvent operator will be t3,2 given by the partial

average of the operator of eqn. (25). This is written in Fourier space

as

t32 = -(N-1)(N-2)z-1
k'k
k P(k) y(k)T12(kIk'),,

y(k')T13(k'1lc")y(k")T12(k"lki).

This expression can be treated as was the expression for t2 using the

k-space representation of the distribution function to give

t 32 = -(N-1)(N-2)z-1
k k k"E P(k) y(k)T12 (kik')

y(IV)T13(k'lk")y(k")T12(k"Ik'). (33)
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The distribution function necessary for the evaluation of eqn. (33)

is the triplet distribution function. The cluster function expansion

of the triplet distribution function can be substituted into eqn. (33)

and the sum over the Fourier transform variable k1 converted to an

integral to give

t32 = -(N-1)(N-2)V-2z-2(2n)-2,1d2k1 T12(011(1,-k1)(z-ivk1)-1

x T13(k1,-k1,01k1,-k1,0)(z-iv.k1)- 1T12(kit-kil°)

-(N-1)(N-2)z- 1V-3k,j,k-11(3)(k3) Y(k)T12(kIk')

x y(k')T13(k' kf )Y(k" )ri 2 (k' 1 ) (34)
The form of the terms from the ti expansion of the resolvent

operator which will be needed for the determination of the first three

terms in the expansion of the inverse resolvent operator as a function

of density has been established and the next step is the explicit

evaluation of the contributions to B(z) and finally D-1.

The first term, B1(z), is independent of the density; eqn. (17)

gives B1(z) equal to jr1(z)]-1 which is equal to z. This is

confirmed by the binary collision analysis in which the only term

independent of density is the free propagation term to which gives z

for B (z).

The coefficient of the series linear in density B2(z) is

equivalent to -z2r2 where T2(z) is the coefficient of the density

expansion of <G(z)>, also linear in density. This corresponds to

terms in the binary collision expansion involving one stationary

scatterer; only t1 will contribute. Equation (28) gives the

expression for t1. There appears in the second term on the rhs of

eqn. (28) an integral over the short-ranged cluster function; this

function will serve to keep integrand finite as z40. In front of the



integral is a factor of z-1. Since eqn. (17) indicates that r2(z)

is to be multiplied by z2 to give B2(z), the second term of t1

will not contribute to B2(z) in the limit z40. r2(z) is then given

by

r2(z) = tl/p = z-2 VT12(OI0)

and, consequently, the correction to the inverse diffusion constant

will be

dv fee (v) v.11 2
(0)v lim f dv feq (V)V*Z2r2

(Z)V
z40

= I dv feg(v) v. fK.v<o JdK (KAr) (v-v*).

16a /(3 <v >).

The third term in the series arises from the action of of t2 and

parts of t3. Equation (32) gives an expression for t2. The second

term on the rhs will vanish for the same reasons given for the

vanishing of the cluster function part of t1. The first term on the

rhs will be divergent as z-0 even when multiplied by z2 because of

the factor of z-3,

t2/p2 Z-3 VT13(OIO) VT12(010)

The coefficient B3(z) includes, however, a contribution
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(35)

-z3r2(z)2 and

r2(z)2 = z-4 VT12 (010)VT13(010).

This will exactly cancel the divergent t2 and B3(z) will be given

by z2t32/p2. As with the previous terms ti, the portion of

t32 containing the cluster function will vanish in the limit z40

leaving

B3(z) = (2n)-2 fdki T12(01k1,-ki)(z-iv-ki)-1 (36)

x
1T12(k1t-k110)
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Physically, eqn. (36) describes the collision of the moving particle

with one of the stationary scatterers, followed by free propagation at

its new velocity, collision with a different stationary scatterer and a

concommitant change of velocity, and finally free propagation until

recollision with the original scatterer. The contribution to the

diffusion coefficient will be of the form

f dv feq(v) v. B3(0)v. (37)

This equation was evaluated for the Lorentz gas by van Leeuwen and

Weijland. The procedure is lengthy and will not be reproduced here,

although the general method will be outlined.

The integral given by eqn. (36) and required for eqn. (37) is

evaluated using the correspondence between the T12 operators and the

Boltzmann collision operator given in eqn. (19). The Boltzmann

collision operator is first interpreted in terms of real and virtual

collisions. The operator acting upon any function of v, F(v) is

-fic.v<0 JdK (K-v) (F(v)-F(v*)).

This is a difference of two events, one in which the velocity changes

(indicated by v if v* is precollisional velocity) due to

collision with another particle and one in which the velocity does not

change (v*). The first of these is referred to as a real collision

and the latter as a virtual collision. The virtual collision is one in

which the particle penetrates the scatterer and continues with its

original velocity. To evaluate eqn. (37), one notes that while the

first and last collisions may be either real or virtual and hence

require the full B-E operator, the middle collision must be real in

order to cause the change in velocity required to return the particle
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to the original scatterer. This allows one to use only the portion of

the B-E operator which describes a real collision. van Leeuwen and

Weijland use the Fourier transform of the 8-function condition for

collision on the positions of the moving particle and the scatterer and

the explicit application of the Boltzmann operators to obtain the

action of the collision operators on v. For a two-dimensional

Lorentz gas the result is

f dv feq(v) v B3(0)v = -(8/3)2(a3lnz)/<v>.

This quantity posseses a singularity at z = 0.

The inverse density expansion thus does not give the desired finite

coefficients in the z40 limit. The physical explanation for the

divergence is that t32 includes collision sequences in which

scatterers 2 and 3 are very far apart. In the limit of z40 (or t4c0),

the distance between the scatterers diverges. Weijland and van Leeuwen

(13) converted the singularity as a function of z to a function of the

density using a renormalization technique which effectively damped the

possible distance between successive collisions using the mean free

path. Their method will be outlined below.

The first step in removing the divergence for z90 is the summation

of the ring diagrams. The ring sum, tR, is defined in terms of the

ti operators as

(1)
t = E.t
R i+1,i

(1)
the expression ti+1,i refers to the operator in the series ti given

by eqn. (24) which contains i+1 collisions involving i scattering

(38)

centers. This is just, as the name implies, the sum over irreducible
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ring collision sequences. The superscript (1) indicates that only the

first term of the cluster expansion of the distribution function is

included; higher terms will vanish for the same reasons as were given

for the elimination of the second terms of eqns. (28), (32) and (34).

The contribution to the inverse diffusion coefficient from each of the

ring events can be written as

c i+1 = fdv feq(v) vfdeit,1,iv
,

= fdv feq(v) vfdrN Ta[GoT]i-lGoTc, (39)

where T without the subscript indicates fdrn Tn. Equation (39)

is written in r-space rather than k-space for notational simplicity.

The use of r-space will be maintained for the remainder of the

discussion. It can be seen from eqn. (20) that

Ei [GoT]i-1G0 = G - Go.

Following substitution from eqn. (20), the contribution of all the

rings to the inverse diffusion constant becomes

cR =pfdv feq(v) v-fdrN t R
V

= pfdv feq(v) vfdr2 TJG - GolT.v. (40)

The traditional method of solution of a ring sum such as eqn. (40) is

to use the following equation to obtain successively higher order

approximations to G:

G = Go + pG0TG. (41)

For the LG the result is the same as that obtained from eqn. (37), a

singularity of the form ln(z). To eliminate the divergence, Weijland

and van Leeuwen separated T into its real and virtual components,

G = Go + pG0(Tr Tv)G. (42)

and rearranged eqn. (42) to give



(G0-1 +
Tv)G 1 + pTrG.

The virtual portion of T serves only to multiply functions of the

velocity by 2va; it is Tr which accounts for the effects of a

collision. Equation (43) can be written as

(z + 2pva - iL0)G = 1 + pTrG.
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(43)

(44)

and this expression used to obtain succesively higher appoximations to

G. The net effect of this procedure is to damp the free propagation

which occurs between collisions.

The zeroth order approximation will be

G(°) = (z + 2pva - L0)-1.

If this is inserted into eqn. (40) for the ring sum, the result is

cR = pfdv fel(v) vfdr2 T=[(z+2pva-iL0)-1-(z-iL0)-1]T.v. (40)

The first and last operators indicate the collision of particle 1 with

the same scatterer, but the operator in the middle does not prescribe

any change in the velocity between the two collisions. It is not

possible for the particle to recollide with the same scatterer without

an intervening change in velocity, so this integral will vanish and the

next approximation to G must be considered.

The next approximation will be

G(1) [z + 2pva - iLo]- 1 r [z + 2pva -

If this is substituted into the ring sum, the result is an expression

nearly identical to the r-space version of the contribution of t32

to the inverse diffusion coefficient (eqns. (36) and (37)),

cR p2fdv feg(v) vfdr2

x [z + 2pva iL ]-lar[z + 2pva - iL
0
]-1Ta v. (41)

Each appearance of z in B3(z) is replaced by z + 2pva. Weijland and
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van Leeuwen calculate this contribution to the inverse diffusion

coefficient by setting z equal to 0 and taking the lim 00. The

contribution of the ring sum to the inverse diffusion constant is

cR = -(8/3)2(a<v>)-1pa21n(pa2).

It can be demonstrated that this is the principal contribution to the

diffusion coefficient from the ring sum. Further contributions to the

expansion have been calculated (8) and the most complete expression, in

the form which is most useful for comparison with later results is

D /DB = ( 1 - (4/3)pa21n(pa2) - .8775pa2 + 4.519 [pa21n(pa2)]2 )-1 (42)

where D
B

is the Boltzmann diffusion constant 3<v>/(16pa).

The absence of any factor of the rdf in the expression given here

for the diffusion constant prescribes that this result makes no

distinction between the overlapping and non-overlapping LG. The rdf

was eliminated when the higher-order terms of the cluster expansion of

the ti's were taken to vanish. In fact, the careful analysis of van

Leeuwen and Weijland indicates that some of the cluster expansion terms

do contribute to the diffusion -constant. They calculate only the

contibutuion to t2 of lowest-order in density and find that it is

equal to 16a3g("(a)/(3<v), where g(1) is the lowest order

density correction to the rdf. This is also the lowest-order Enskog

correction to the diffusion constant; use will be made of the

relationship between this contribution and the Enskog correction to

Boltzmann kinetic theory, but not of the actual value.

At low densities, eqn. (42) is in good agreement with the results of

Bruin (8) and of Alder and Alley (9,10) for the overlapping LG but

overestimates D/D
B
at higher densities. Efforts to improve on
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estimates of the diffusion constant for the specific case of the

overlapping LG will be reviewed in the next paragraphs.

Masters and Keyes (19) used the repeated-ring approximation of

kinetic theory and a self-consistent repeated ring theory to calculate

the diffusion constant for the overlapping LG. Their results are the

product of numerical analysis and are presented graphically in Figure

4.3a(19). For the repeated ring theory, agreement with the results of

Alder and Alley (9,10) and of Bruin (8) is good at low densities, but

poor for high densities. The self-consistent theory provides good

agreement with the simulation results at low and high densities, but

overestimates the diffusion constant at intermediate density.

Gotze, Leutheusser and Yip used a self-consistent mode-coupling

theory to determine the density dependence of the diffusion constant

for two-dimensional (21) and three-dimensional (22) overlapping

scatterers. They report that the leading non-analytic low-density

correction to the reduced diffusion constant for the two-dimensional

case is equal to the result of van Leeuwen and Weijland to within a

factor of 8/3n (21). For the three-dimensional LG (23), the reduced

diffusion constant is given in graphical form rather than as an

analytic expression (Figure 4.3b); agreement with the computer

simulation results of Bruin (8) is good, particularly at low

densitites; the Alder and Alley simulation results are not included.

Gotze, Leutheusser and Yip (22) do not make a comparison with the

results of van Leeuwen and Weijland, but it appears that they are quite

similar and that the lowest order density correction is the same.

The next section will provide an overview of calculations of the
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a. The density dependence of the diffusion constant for the 2-d
non-overlapping Lorentz Gas as calculated by Masters and Keyes(19).
The squares are the molecular dynamics results of Bruin(8) and of

Alder and Alley(9,10). The dashed line is the repeated ring
approximation result and the solid line is the self-consistent

result. The diffusion constants are normalized by the Boltzmann
value of the diffusion constant, DB = 3<v>/(16pa). (ref. 19)
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b.The density dependence of the diffusion constant for the 2-d
non-overlapping Lorentz Gas as calculated by GOtze, Leutheusser and
Yip. The molecular dynamics results of Bruin(8) are given by the
closed circles and the data of Alder and Alley (9,10) are given by

the open circles. The solid line is the mode-coupling result.
Normalization is the same as in a. The density is reduced by the

percolation density pa
2

0.37. (ref. 21)

Figure 4.3
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long-time behavior of the VAF for the LG.

C. Calculation of the Long-time Tail

In contrast to the diffusion constant which has only been

completely analyzed by van Leeuwen and Weijland in 1968, the long-time

tail of the VAF for the non-overlapping LG has recently been calculated

by Machta, Ernst, van Beijeren and Dorfman(18) (MEvBD). Several

calculations for the overlapping LG have also appeared; a brief review

of each of the methods and a summary of the results as they might apply

to the non-overlapping LG will be provided.

The origin of the long-time tail can be explained on physical

grounds using the following scheme(5): Consider the moving particle at

traveling with an initial velocity in the positive x-direction; at

time T.To, it collides with a scatterer at position 0. The point of

collision will be chosen as the origin of the coordinate system, but

the position of the center of the scatterer need not be specified.

Because the scattering mechanism is isotropic, the post-collisional

velocity of the light particle, averaged over the configuration of the

scatterers, will be uncorrelated with the inital velocity and

subsequent collisions should not act to 'recorrelate' the velocities.

However, since the first collision occurred at the origin, there can be

no scatterers in the volume Vo, indicated by the shaded area in

Figure 4.4, and therefore if the particle returns to Vo, it will

maintain its velocity for a longer than average length of time. For a

two-dimensional LG, the long time probabilty density of the moving

particle will be given by a Gaussian of the form of eqn. (50) of
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V

Figure 4.4 The origin of the long-time tail in the VAF of the

Lorentz gas. The particle is initially (t=0) at r traveling with

velocity v. Collision with a scatterer occurs at time T and the

origin of the coordinate system is taken to be the point of contact.

The probability of the particle returning to the area Vo from

the right is greater than the probability of its returning from the

left. (ref. 5)
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P(1)(r,t) -

P(1)(r,O)
e-(r(t)-r(0))2/4Dt

2(nDt)
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(43)

Because this distribution function is a Gaussian centered at the

origin, the particle will have a greater chance of entering Vo from

the right rather than from the left. In that case, the velocity would

be in the opposite direction of and negatively correlated with the

inital velocity.

The long-time values of the VAF in simulations of the overlapping

(8-10) and non-overlapping (12) LG and in the present work on the

non-overlapping LG are found to be proportional to -t-2. All of the

theoretical predictions (14,19-22) are in agreement with this result

and only the magnitude of the tail is in dispute.

The first attempt at calculating the long-time VAF was that of

Ernst and Weijland (14). They applied the model of van Leeuwen and

Weijland for the LG diffusion constant to a calculation of the

long-time behavior of the VAF. The Laplace transform of the VAF can be

written as the sum

<vv(z)> = [ z + v[t1 + tR] v }-1

{ z + vt, + T.G(z,k)T.] v )-1

where t1 is defined by eqn. (28), G(z,k) is [z-ikv-t1] -1 and

T
a is defined by eqn. (18). The VAF at long times will be dominated

by the leading singularity of eqn. (44) in the limit of small z. The

leading term of the second term on the rhs can be determined using the

hydrodynamic eigenvalues and modes of the Boltzmann-Enskog equation.

The Fourier transform of the B-E equation may be written as an

(44)
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eigenvalue equation,

(ikv + ti)*k(v) = wk*k(v) (45)

Because number density is conserved, in the limit of k40 there exists

an eigenfunction *0(v) with eigenvalue wk equal to zero. For

small k, the eigenvalue wk is small and negative and the

eigenfunction is referred to as a hydrodynamic mode. In liquids, each

of the variables which appear in the hydrodynamic equations associated

with a transport coefficient: the number density, momentum, and energy,

constitutes a hydrodynamic mode. For the Lorentz gas, the only

hydrodynamic mode is diffusion which corresponds to changes in number

density. The eigenvalue wk and eigenfunction *k(v) for small k

can be determined from a perturbation expansion of eqn. (45) in powers

of k. The eigenvalue is -k2DB and the eigenfunction is 1 +

ik-v(2DB) where DB is the Boltzmann value of the diffusion

coefficient (2vt1v)-1 = 3<v>/(16pa). A projection operator,

Pk, can be defined which projects a function F(v) along the

hydrodynamic mode *k(v),

PkF(v) - *k(v)fdvok*(w)F(v)/fdviok2(w) (46)

Then, in the limit of small k, the operator G(z,k) can written as

G(z,k) = (z - wk)-1P = (z + k2DB)-1P (47)

Equation (47) can be substituted into eqn. (44) for the Laplace

transform of the correlation function and T. replaced by t1 to give

<vv(z)> = z + (2DB)-1 + (8pn2-1) fdk k2/(z + k2DB) )-1 (48)

Ernst and Weyland then invert the Laplace transform using a power

series expansion and evaluate the k integral to give the asymptotic

expression, to lowest order in density as
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<vv(t)>Rw -1/(pt2). (49)

for two dimensions and more generally

<vv(t)>Rw = -(2ndDR2/p)(4nDRO- (10+1) (50)

when d is the dimensionality of the system. As in the calculation of

the diffusion constant of van Leeuwen and Weijland, the result could be

applied equally to the overlapping or non-overlapping LG.

Keyes and Mercer (20) made a similar analysis of the VAF at long

times using a more recent version of the higher order kinetic theory

(29) than that used by Ernst and Weijland. The new version differs

from the old version in that the first collision operator T. which

appears in the ring expression tR in eqn. (44) is replaced by its

complex conjugate T.. This gives rise to additional terms in the

memory function which produce a correction to the Ernst and Weijland

results. The results are given explicitly for the three-dimensional

case,

<vv(t)> = (1 + 4oa3E/3)2<vv(t)>Rw. 3 dimensions (51)

Masters and Keyes (19) determined a repeated ring correction for a

two-dimensional overlapping LG to be

<vv(t)> . (1 + ocr2OR/DR)2<vv(t)>Rw (52)

where DR is the repeated ring diffusion constant obtained by Masters

and Keyes and given by Figure 4.3a and DB is the Boltzmann diffusion

constant DB = 3<v>/(16pa).

Keyes and Masters (19) also analyzed the VAF for the two- and

three-dimensional overlapping LG in the limit of high and low densities

using a self-consistent repeated ring equation and the variational

principle. At low densities, the calculated value is the same as that



107

obtained by van Leeuwen and Weijland. As the density approaches the

percolation threshold, an additional tail is predicted to exist.

Gotze, Leutheusser and Yip (21) calculated the correction to the

Ernst and Weyland long-time tail for the two-dimensional LG as

<vv(t)> (DN/DNc)(DNc/DN + pa2n)2<vv(t)>NN (53)

with Dmc the mode-coupling value of the diffusion coefficient

obtained by GLY and presented in Figure 4.3b.

The most recent attack on the problem of the long-time behavior of

the VAF for the LG was by Machta, Ernst, van Beijeren and Dorfman in

1984 (18). They provided a mode-coupling theory for the motion of a

single particle in a static random medium applicable to variety of

models. MEvBD applied their work to the non-overlapping as well as the

overlapping LG in two dimensions.

The basis of the theory is the definition of a fluctuating

diffusion tensor K(r,X) and a spatially varying free volume

fraction T(r,X) where X is the set containing the number of

scatterers N-1 and their positions (r2,r3,...,rN). The

current J(r,t) of the diffusing particles is given by

J(r,t) -K(r,X).11(c(r,t)/T(r,X)) (54)

where c(r,t) is the concentration of moving particles. For the

Lorentz models, T(r,X) is set to unity when r is outside the

stationary scatterers and vanishes otherwise. The integral of T(r,X)

over the volume of the system, ;0(X), will then be equal to the free

volume available to the moving particle for a given configuaration X.

Spatial correlations are considered to be short-ranged with a

correlation length of Lo and an average over cells in configuration
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space with sides of length Lc >> Lo is used to coarse grain space.

This coarse-graining is applied to K(r,X), c(r,t), and V(r,X)

in eqn. (54).

The Fourier transform of the correlation function for the

fluctuation of the concentration from equilibrium is the intermediate

scattering function,

F(k,t) = <e_k(0)8k(t)>/<a_k(0)ak(0)>. (55)

The average in eqn. (55) is performed first over the configuration X

with a weight function W(X) which is defined for each specific model

and then over a grand canonical ensemble containing a distribution

Pm(rm,vx) of moving particles in r and v for

configuration X. The fluctuation ek is Ck - <Ck>x, the

difference between the value of ck and the average value for a

given configuration X. The average of eqn. (55) can be written as the

symmetrical average over a single moving particle

F(k,t) = < Ei
eiklAxi(t)>/<8,..kmakop

(56)

with Ax(t) = x(t) - x(0) where the x-axis is taken to be in the same

direction as k. Equation (56) can be used to generate the moments

<[6x(t)]n> and the first derivative of the first moment <[Ax(t)J2>

will be the time-dependent diffusion constant D(t),

D(t) = (d/dt)%<[Lx(t)]2>.

The time derivative of the diffusion constant will be the VAF

<vx(0)vx(t)> in which vx is the x component of the velocity of

the moving particle. Using these formulas and mode-coupling theory,

MEvBD arrive at a form for the long-time behavior of the VAF,

<vx(0)v.(0> = -2nDB2AK(40t) -2
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where AK is the mean square fluctuation

<8K0(X):8K0(X)>/[2V(DY)2] (57)

and

81(0" = f dr [K.0(r,X) - DT6.0].

The magnitude of the long-time tail can be determined once AK is

specified.

For the non-overlapping LG, the calculation of AK would require

an extensive kinetic theory analysis of the fluctuations in

<9G.0 where G. is the resolvent operator. Rather than carry

out such calculations, MEvBD approximate AK based on the density

and arrangement of scatterers. The fluctuation of a function 6A0 is

split into two parts, one caused by fluctuations in the number of

scatterers and the other, orthogonal to the the first, caused by the

arrangement of scatterers,

6A0 = (a<A0>/a<N>)8N 81A0

where <8N8 K
o
> = 0. The mean square fluctuation will be

<(8,A)2> = (a<A0>a<N>)2<(6N)2> + <(61A0)2 >.

The number fluctuation <(6N)2> can be written in terms of the

compressibilty of a hard disk fluid at a temperature T,

<(8N)2> = VS0(p) = VpkBT(ap/ap)T

(58)

(59)

(60)

Equation (54) and the definition of the diffusion constant in terms of

the time correlation function of v can be combined to give an

expression for K0

K, = urn T
0
<1,G

z X,1z-->o

with <...>X1 indicating the average over a single configuration X.

Now Ko can replace Ao in eqn. (59) to give
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1 dDT \2 1
AK DT dP 1

So(p) + -5757 <8i1(0:62(0>. (61)

The above equation is exact for AK, but the second term on the rhs

has not been calculated. MEN/BD approximate Am by the first term on

the right hand side of eqn. (61). This gives for the long time tail:

D p dD
--EEE

2
-, )2(4100 -2.<Vx(0)Vx(t) = -2n -t-So(p)(

D dp 1- pna-P

The D which appears in eqn. (62) is the density-dependent diffusion

constant as calculated by van Leeuwen and Weijland(13) and given by

eqn. (42). The authors also provide an expression for the long-time

tail of the overlapping LG, it is

DB2 p dD
<vx(0)v.(t)>., = -2111p)( 5 a; Pna2)2(4nDt)-2. (63)

(62)

All the above calculations of the magnitude of the long-time tail

have been shown (18) to underestimate the tail as calculated by the

computer simulation of a low-density non-overlapping LG by Lewis and

Tjon (12) and low-density overlapping LG by Alder and Alley (9,10).

The long-time tail of the VAF has also been studied using the

Burnett coefficient (9,10,19) which is defined by

B(t) (d/dt)[<[Ax(t )]4> 3<[Ax(t)]2>2)/4!

where Ax(t) is the displacement of a single particle from its initial

positon Ax(t=0). The calculation of the Burnett coefficient from

theoretical grounds will not be given here.

The long-time limit of the VAF has been also been studied near the

percolation threshold (15), in periodic lattices (16) and disordered

hopping models which mimic the behavior of the LG(17).
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In the next section, the method of simulation of the

non-overlapping LG will be discussed and the results of the simulation

compared to the theoretical predictions of Sections B and C.

D. Molecular Dynamics Simulation of the Non-overlapping Lorentz Gas

The simulation of the non-overlapping LG was performed by following

a point particle placed at random in a configuration of hard disks. An

initial velocity was altered by the classical elastic collision of the

particle with the stationary scatterers. The particle was followed

through a configuration for a specified number of mean collision times

and a large number of configurations (600-2000) were used to ensure

that the results were representative of a true average over random

configurations. As the particle moved through the disks, the program

calculated the velocity autocorrelation function, the mean-square

displacement of the moving particle and the distribution of collision

times.

The description of the simulation will refer to the density of

scatterers in terms of the packing fraction, p* = Nitc2 /V. All times

are scaled by the Enskog mean free time given in eqn. (5) and written

as a function of the packing fraction as

lc = na/(2p*<v>g(r.)).

Times are given as s = t/tc in units of Tc.

The configurations through which the particle moved consisted of a

number of scatterers N with radius a placed in a square of side length

L and volume V. Periodic boundary conditions were used when the

particle reached the edge of the box. For packing fractions of 0.2 and
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above, 500 scatterers were used. At low density, 2000 particles were

used to reduce the possible effects of the periodic boundary conditions

and to reduce the chance of the particle traveling completely across

the system without encountering another particle. The positions of the

scatterers were determined in one of two ways, depending on the density

of the system. For high densities, p* > 0.5, a traditional MC

algorithm was used (30). An initial regular lattice was allowed to

evolve for a large number of MC cycles to obtain a random

configuration. Further configuations were obtained by altering the

random configuration by a smaller number of MC cycles. The MC method

proved to be time-consuming and, at the high densities for which it was

used, to constitute a significant portion of the simulation time. For

low and intermediate densities, configurations were obtained by direct

generation. Scatterers were placed randomly in the system one at a

time and checked for overlap with previously placed scatterers. If

there was overlap, a new random position was tried, if not, the

particle was left in position and an attempt made to add another

particle. This process was repeated until the required number of

particles had been included in the system. The method of random

placement was originally to have been used only for the very lowest

densities, but its utility at higher densities was examined because of

the time required by the MC algorithm. It was found to be an effective

method for generating random configurations for packing fraction up to

0.5. Above p* = 0.5, there was a sharp increase in the amount of time

required by the method of random placement.

In each configuration, the path of the moving particle was followed
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for 1300Tm for densities of p* < 0.5 or 650Tm for higher

densities. Although a single trajectory was run for each

configuration, a number of correlation functions were obtained. The

average VAF from single trajectory was an average of 2500 correlation

functions given by

<v(0)v(C)> (2500)-1 Ei (v(si)v(si+ C))/v2 (64)

where the sum over i goes from one to 2500. The starting times for the

trajectories were separated by an interval Asi = Si +1 - si, Asi

was taken to be 0.5Tm. Correlation functions are calculated with C

zero to Cm.. at intervals of 0.1Tm. The intervals Asi and AC

were chosen based on the work of Bruin (8) on the overlapping LG. The

maximum time Cm.. was 50.0Tm for packing fractions < 0.5 and

25.0T for higher packing fractions. The mean square displacement

was averaged in the same manner as the VAF. The mean square

displacement at time C averaged for a single configuration given by

<(hr)2> (2500)-1 Ei [r(si + C) - r(si)12a2.

In addition to the VAF and the displacement, the functions required to

obtain the standard deviations of the VAF and the displacement from

trajectory to trajectory were calculated.

The distribution of collision times was also determined. The time

elapsed between each set of successive collisions was used to calculate

the proportion of collision sequences corresponding to time intervals

ranging from 0 to 8.0Tc in intervals of 0.04Tc. Standard

deviations for the collision time distribution were calculated. Each

trajectory provided -1300 (650 for high densities) collision sequences

which could be included in the collision time distribution.
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The number of configurations (a number of trajectories) used to

obtain the averages given in Table 4.1 varied with the packing

fraction. For p* < 0.3, 1000 configurations were used; for 0.3 < p* <

0.5, 2000 configurations were used and for the highest densities, p* >

0.5, 600 configurations were used. The small number of configurations

utilized for high densities is a reflection of the large amount of time

required to generate the MC configurations as well as doubts about the

ability of the MC method to provide configurations which differ

significantly from one another at these densities. The highest density

chosen, p* = 0.8, is above the first-order fluid-solid phase transition

observed in simulations of two-dimensional fluids(31).

The diffusion constant was calculated from the VAF and from the

mean square displacement. The diffusion constant can be determined by

the numerical integration of the VAF. The mean square displacement

value of the diffusion constant is determined from the slope of a plot

of mean square displacement versus time for long times. The two

calculations are in good agreement with each other. The ratio of the

diffusion constant to the Boltzmann diffusion constant (D/DB) is

given in table 4.1. Also given in table 4.1 is the ratio

(D /DB)VLW, as calculated using eqn. (42)., and (1/g(rs)(D/DB),Lw.

Plotted in figure 4.5 are the VAF calculation of D /DB and

(1/g(rs))(D/DB),Lw. The rdf at contact for the moving particle

in a bath of disks is given by g(rs) = 1/(1-p*) (32).

It can be seen from both the figure and the table that the

simulation results are in excellent agreement with

(1/g(rs))(D/DB),,,w, even at the highest density studied. The
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Figure 4.5 The reduced diffusion coefficient for the

non-overlapping Lorentz gas plotted as a function of the packing

fraction. The points are D/DB as calculated by the simulation.

The error bars are one standard deviation above and one standard

deviation below the average value. The line is

[1/g(rs)](D/DB)vim (ref. 13).



116

1.0

0. 9

0. 8

0.7

.0. 6
CD

0.5

0. 4 -=

O. 3 -FT

0.2 -=

O. 1 -=

1 1 1 1 1 1 11111111111111IIIIIIIIIIIII

x

x
X

.....

....... . X
x -

,,
.....'Ay(

0.0 111111-11111111
O. 0.30 60 0.90

P*

E
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Table 4.1

The diffusion constant for the non-overlapping LG

P*4 D/DB(v)b D/DB(r)' (D/DB),Lwd (1/g(r.))(D/DB),Ial*

0.01 0.97(1) 0.95(1) 0.98 0.97

0.05 0.86(1) 0.88(1) 0.91 0.87

0.10 0.76(1) 0.78(1) 0.85 0.77

0.20 0.62(1) 0.63(2) 0.76 0.61

0.30 0.49(1) 0.50(1) 0.69 0.48

0.35 0.46(1) 0.47(1) 0.67 0.43

0.40 0.40(1) 0.40(1) 0.65 0.39

0.45 0.37(1) 0.38(1) 0.63 0.34

0.50 0.32(1) 0.33(1) 0.61 0.30

0.60 0.23(1) 0.23(1) 0.59 0.23

0.65 0.19(1) 0.19(1) 0.58 0.20

0.80 0.13(1) 0.14(1) 0.56 0.11

ap* is the packing fraction 1tNa2/V where N/V is the number density

of scatterers and a is the scatterer radius. bThe value given is

D/D
B

as calculated by Simpson's rule integration of the velocity

autocorrelation function; the number given in parentheses is the

uncertainty in the last digit. DB is the Boltzmann value of the

diffusion constant 3<v>na/8p*. 'The value given is D/DB as

calculated from a least sqaures fit of <(Ar)2> versus t. For

densities p* < 0.5, the fit was over 40 to 50 mean collision times.

For densities p* > 0.5 the fit was over 20 to 25 mean collision times

from the origin. dThe value given is D/DB as determined by van

Leeuwen and Weijland (ref. 13) and given by eqn. (42). 'The value

given is the van Leeuwen and Weijland result given in the previous

column divided by the contact value of the radial distribution function

(1/(1-p*)).
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(1/g(r.))(D/DB)vLw, even at the highest density studied. The

derivation of eqn. (42) did not make a distinction between the

overlapping and non-overlapping LG's, so the result should be

applicable to either. The agreement between (D/DB)vim and the

overlapping LG diffusion constant results, shown in figure 4.6, is

reasonable for low density , but (D/Ds)vLw overestimates the

diffusion constant for the non-overlapping LG at all but the very

lowest densities. One of the primary differences between the

overlapping and non-overlapping LG's is the structure of the

non-overlapping LG represented by the radial distribution function.

There is no rigorous basis for the inclusion of the radial distribution

function in the denominator of (D/DB)vi,w, but the idea is supported

by the fact that the Enskog diffusion coefficient which takes into

account the structure of the fluid differs from the Boltzmann diffusion

coefficient by a factor of g( .). The diffusion coefficient

(D /DB)VLW was also divided by the radial distribution function of

the overlapping LG, exp(-p*) (18), and compared to the results of

Bruin, but the agreement between theory and simulation was not

significantly improved, as can be seen from figure 4.6.

The VAF's displayed the expected behavior for all densities except

p* . 0.8. For densities other than 0.8, the VAF displayed an initial

rapid decay to nearly zero, followed by a more gradual decay to below

zero and a gradual return to near zero. Plots of the VAF's are shown

in figures 4.1 and 4.7-17. The VAF is plotted, along with the Enskog

prediction for the VAF, <vv(t)> = exp(-4s/3), and the difference

between the the two. The error bars are one standard deviation above
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Figure 4.7 The velocity autocorrelation function for the

non-overlapping Lorentz gas at a packing fraction Nita2 /V = 0.01.

The time, s, is given in units of the Enskog mean free time,

na/(p*<v>g(r.)). The lower, solid line is the difference

<v v(s)> - exp(-4s/3), the broken line is <v v(s)> and the
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bars are one standard deviation above and one standard deviation

below the simulation values.
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and one standard deviation below the value. The error in the

simulation values of the VAF is large compared to the magnitude of the

negative portion of the VAF for the lowest densities and calculations

based on the VAF tail for densities p* < 0.1 are the least reliable of

those reported here. At higher densities, the tail becomes more

well-defined and results can be considered more reliable.

Figure 4.17 shows the VAF for the density p* = 0.8. The VAF shows

two, and perhaps three minima rather than the one seen at other

densities. Because the packing fraction of 0.8 is above the density at

which the phase transition takes place (31), it was expected that the

VAF would be different then the lower density VAF's. The presence of

multiple minima may be due to trapping of the moving particle. The

error bars for the short-time VAF at this density and at p* = 0.6 and

.65 are much larger than those observed at other densities.

Additionally, at p* = 0.6 and 0.65, the VAF shows a different short

time decay than other densities; a shoulder is apparent on the left

side of the function <vv(t)> exp(-4s/3). It is unclear whether

this is the result of inadequate sampling of phase space or of

clustering in the system. For these densities, the traditional Monte

Carlo procedure was used to generate configurations rather than the

random placement method used at lower densities and it is possible that

this results in repeated analysis of similar configurations. This

inadequate sampling would, however, be expected to lead to smaller

error bars than a true sample. During the testing of the random

placement algorithm, there was a dramatic increase observed in the

amount of time required to generate random placement configurations at
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packing fractions greater than 0.5. All of this information suggests

the gradual onset of a change in the normally homogeneous arrangement

of scatterers at densities of p* > 0.5, but more investigation would be

required to prove that such a change is taking place.

The magnitude of the long-time tail of the VAF was determined by a

least squares fit of the difference between the VAF and exp(-4s/3) for

times ranging from 5s to 13s to the equations

<vv(t)> = AsB (65)

and

<vv(t)> = as-2. (66)

The results of the fit to s-2 are given in table 4.2. The exponent B

calculated from the free fit (eqn. (65)) ranged from -1.5 to -4 for all

but the lowest density, although in most cases it was within ±0.2 of

-2; these results are given in table 4.3 along with details of the

simulation itself. For the lowest density studied, p* = 0.01, the

exponent of the tail of the free fit for times of 5 to 13 Enskog

collision times was positive, but the results of the fit of the same

points with the exponent constrained to be -2 appear to give a

resonable indication of the behavior of the correlation for times

ranging for 3 to 20 Enskog collision times. This is shown in figure

4.18.

The magnitude of the tail from the simulation was obtained in units

corresponding to an Enskog reduced time and the theoretical magnitude

is usually given in units corresponding to the Boltzmann reduced time.

The Enskog and Boltzmann reduced time units differ by a factor of

g(rs). The magnitude obtained first is converted to units



132

O. 002

A

U)

O. 000
>
V

.002

-. 004
0. 5. 0 10.0 15.0

Figure 4.18 Curve-fitting of the VAF for the non-overlapping

Lorentz gas with a packing fraction p* = 0.01. The time, s, is

given in units of ne(p*g(r.). Error bars are one standard

deviation above and one standard deviation below the simulation

values. The dotted line is <v v(t)> = -0.02s-2.
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Table 4.2

Velocity autocorrelation function analysis for the non-overlapping LG

p* -aa -Ab -a.

0.01 0.02(1)d 0.02(1) 2(1)x102

0.05 0.04(2) 0.04(2) 8(4)

0.10 0.05(2) 0.04(2) 4(2)

0.20 0.08(3) 0.05(2) 2.5(9)

0.30 0.20(4) 0.10(2) 3.2(6)

0.35 0.21(4) 0.09(2) 2.5(5)

0.40 0.23(4) 0.08(2) 2.0(4)

0.45 0.29(5) 0.09(1) 1.9(3)

0.50 0.40(5) 0.10(1) 2.0(2)

0.60 0.51(4) 0.08(1) 1.3(1)

0.65 0.61(3) 0.08(1) 1.1(1)

as is the coefficient in the fit of the VAF to <vv(t)) = asE-2

where sE is the Boltzmann collision time. bA is ag(r5)-2.
cm is losi[p*g(r.)21.

The number in parentheses is the

estimated error in the last digit given. This number is the standard

deviation of points from 5 to 13 sE from the line ln<vv(t)> =

ln(a) - 21n(sE) for the first column. The deviation is multiplied by

the appropriate factors to obtain the error for the other two columns.
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corresponding to the Boltzmann reduced time by division by the radial

distribution function 1/(1-p*),

<v-v(t)> = as-2 = a[g(rds0-2 = AsB2 (67)

where sB = 2p*<v>t/(na). The basic kinetic theory treatment of Ernst

and Weijland (14) predicts that the VAF at long times will be

<v-v(t)>Bw = p*(nsB)-2. (68)

The coefficient, a, defined in eqn. (67) is further reduced to

facilitate comparison with theory; the reduced magnitude a is defined

by the relation

<v-v(t)> = ap*/(nsB)-2, (69)

then

n2A/p* loai[p*g(rs)2].

Plotted in figure 4.19 are the values of the coefficient a. If the

theory of Ernst and Weijland is correct, then the coefficient a will be

independent of the density and the points should form a straight line

of slope zero and intercept one. The predictions of more sophisticated

theories (18-21), given by eqns. (52), (53), and (62), all dictate

that the coefficient a should increase with density. Also plotted in

the figure are the results of Masters and Keyes (19) and of MEvBD

(18). It should be noted that only the work of MEvBD is directed

explicitly at the non-overlapping LG; nevertheless it is clear that the

simulation results are qualitatively different from the theoretical

predictions. The simulation results indicate that a is a decreasing

function of density. The large error bars on the low density points

allow for the possibility that the actual behavior is independent of

density, in accord with the theory of van Leeuwen and Weijland, but it

(70)
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Figure 4.19 The magnitude of the long-time tail of the velocity

autocorrelation function for the non-overlapping Lorentz gas as a

function of the packing fraction. The points are the values a from

the curve-fitting of <v v(s)>,

<v v(s)> m[p*g(r.)2/(ens8 -2. Error bars are one

standard deviation above and one standard deviation below the

simulation values. The single square is the value given by Lewis

and Tjon (ref 12). The lower broken line is the prediction of

Masters and Keyes (ref. 19), eqn. (52). The upper broken line is

the result of Machta, Ernst, van Beijeren and Dorfman (ref. 18),

eqn. (62).
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Table 4.3

LG molecular dynamics simulation parameters

p* Na N
t
b NMCc Cmaxl "Cre -At Bg Rch

0.01 2000 1000 50 40-50 -0.26 4x10-3 -0.009

0.05 2000 1000 50 40-50 0.61 -2.25 -0.61

0.10 2000 1000 50 40-50 0.02 -1.51 -0.36

0.20 2000 1000 50 40-50 4.7 -3.88 -0.90

0.30 500 1000 50 40-50 0.21 -2.02 -0.93

0.35 500 2000 50 40-50 0.69 -2.58 -0.98

0.40 500 2000 50 40-50 1.6 -2.91 -0.99

0.45 500 1600 50 40-50 0.45 -2.19 -0.98

0.50 500 2000 50 40-50 0.54 -2.13 -0.99

0.60 500 600 200 25 20-25 0.66 -2.11 -0.99

0.65 500 600 200 25 20-25 0.48 -1.83 -0.98

0.80 500 600 200 25 20-25

aN is the number of scatterers. bNt is the number of

trajectories (a configurations) included in the averages. climc is

the number of Monte Carlo cycles between successive trajectories. A

cycle consists of an attempt to move each of the scatterers once.

dc,max is the maximum time in units of Enskog collision times for

which correlation functions were calculated. eTr gives the lower

and upper limits of the times in units of Enskog collision times

included in the calculation of the diffusion constant from

d <(Ar)2 > /dt. to is the magnitude of the tail determined from a

least squares fit of <vv(t)> = AsEB. gB is the exponent

determined from a least squares fit of <vv(t)> = AsEB. hRc

is the correlation coefficient for the line ln(<1.,v(t)>) = ln(A)

Bln(sE).
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is unlikely that a is an increasing function of the density.

The results given here are in agreement with the single published

low density result of Lewis and Tjon (12). An interesting point to

note is that the values for the low density simulation results in units

of Enskog collision times compare very favorably with the results of

Alder and Alley for the low-density overlapping LG in units of

Boltzmann collision times. This is illustrated in table 4.4.; the

numerical values for similar densities are in agreement within

experimental error. The density dependence of the low density results

of Alder and Alley have been found to agree with kinetic theory

results, although at high density the coefficient is underestimated by

theory. The agreement of the results in table 4.4 with each other

allows for the possiblity that the conversion of the theoretical

predictions to a form which applies to the non-overlapping Lorentz gas

Table 4.4

Comparison of VAF results

This work

p* -a

Alder and Alley(9)b

P* -A

0.10 0.05(2)c 0.0942 0.026(5)

0.20 0.08(3) 0.157 0.060(5)

0.30 0.20(4) 0.314 0.20(5)

'These are the same results reported under a in table 4.3. bThe

coefficient of the fit <vv(t)> = AisB2 for the overlapping LG.

Note that the units are different that those of a. 'the number in

parentheses is the uncertainty in the last digit.
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involves g(rs),as was the case with the diffusion constant. However,

the inclusion of factors of g(rs) or of g(rs)2 does not serve to

bring the results and the theory into agreement.

Previous calculations of the magnitude of the long-time tail in the

LG (9,10,12) have fit the value of the VAF to the t_2 decay at times

greater than those considered here. The fit of Lewis and Tjon (12),

for example, was from 8.5 to 19.0 collision times and Alder and Alley

(9,10) did not consider points below ten collision times. It is

possible that when the tail is fit over 5 to 13 collision times, the

long-time tail itself is not being considered, but rather some

intermediate decay.

The distributions of collision times for some representative

systems are given in figures 4.20-4.22. For the lowest densities

studied the distribution is nearly exponential. For higher densities,

the distribution is still roughly exponential, but the maximum of the

collision time distribution moves to greater collision times. At the

highest density studied, a second maximum is observed at -4.3 sE. The

average collision time and the position of the maximum are given in

table 4.5. The average collision time, in all cases, is effectively

the same as the Enskog collision time even though the distribution of

collision times differs from the exponential predicted by Enskog kintic

theory.
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Figure 4.20 The distribution of collision times P(s) for the

non-overlapping Lorentz Gas with a packing fraction Nna2/V of

0.01. The time is given in units of na/(2p*<v>g(rs)). Error bars

are one standard deviation above and one standard deviation below

the simulation values. Also plotted is the exponential Texp(-s/t)

where t is the actual mean time between collisions. At this

density it is difficult to distinguish the actual distribution from

the exponential.
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Figure 4.21 The same as figure 4.20, but the packing fraction is

P* = 0.4.
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Figure 4.22 The same as figure 4.20, but the packing fraction is

p* = 0.8.
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Table 4.4

Collision time distribution

p* actual collision

time t/tEa

position of maximum

units of T
E

units of ab

0.01 1.00071 0.06(4)c 9.9

0.05 1.00036 0.06(4) 1.8

0.10 1.00141 0.10(4) 1.4

0.20 1.00206 0.14(4) 0.88

0.30 1.00013 0.22(4) 0.81

0.35 0.98660 0.26(4) 0.76

0.40 1.00096 0.26(4) 0.61

0.45 0.97953 0.26(4) 0.50

0.50 0.97867 0.22(4) 0.35

0.60 1.00190 0.34(4) 0.26

0.65 1.00419 0.30(4) 0.25

0.80 1.00437 0.42(4) 0.16

aTE is na/(2p*g(r.)). bThis column gives the position of the

maximum of the collision time distribution function in terms of the

hard disk radius. 'The number in parentheses is the estimated

possible error in the last digit.
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E. Conclusions

Computer simulation of the two-dimensional non-overlapping Lorentz

gas has provided new information for comparison with existing analytic

theory. Some of the puzzles which arise in liquid state theory are

reproduced in the study of the LG; of interest in this work are the

non-analytic dependence of the diffusion constant upon density and the

production of a long-time negative tail for the VAF. Because the LG is

much simpler than a liquid, it should be easier to determine the

origin of these phenomena in the LG.

The diffusion constant was determined from the simulations for

densities ranging from p* = 0.01 to 0.80. The lowest density studied

is comparable to a dilute gas and the highest density is above the

fluid-solid phase transition which has been observed in simulations of

hard disk fluids(32). It was found that the predictions of van Leeuwen

and Weijland for the diffusion constant of the LG divided by the radial

distribution function for the system were in remarkable agreement with

the simulation values over this wide range of densities.

This result is significant for two reasons. The first of these is

that a result which was derived with no provision for the structure of

the non-overlapping arrangement of the scatterers could be brought into

agreement with the simulation results by including the radial

distribution function in the simplest manner possible. The radial

distribution function was eliminated from the kinetic theory treatment

of the diffusion coefficient by separating it into 1 and g(r) 1.

Terms including g(r) - 1 were taken to vanish using the rationale that
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these terms would not contribute in the long time limit. The VAF's

shown in figures 4-7-4.17 display the most significant differences from

exponential behavior at short times and it is reasonable to assume that

this difference will appear in the deviation of the diffusion constant

from its low-density value. It is easy to see that a piece has been

left out. Because the short time behavior will be dominated by the

arrangement of scatterers very close to the moving particle and the

terms involving g(r) were removed because they were finite in the long

time limit, it is also reasonable to think that the left-out piece is

related to the radial distribution function. Although the presence of

the radial distribution function in the expression for D/Do has no

rigorous basis, its inclusion is intuitively appealing and in accord

with the corrections of Enskog to Boltzmann kinetic theory. van

Leeuwen and Weijland obtained a first order density correction to the

inverse diffusion constant which contains the rdf and also corresponds

to the first order Enskog correction. This first order contribution

suggests the inclusion of the full rdf in the denominator of the

inverse diffusion constant. That the results using g(r) are in

agreement with the simulation values supports the above reasoning.

The agreement between the kinetic theory result and the simulation

values for the diffusion constant is also significant because of the

wide range of densities to which the equation was found to apply. The

density expansion of the diffusion constant obtained by van Leeuwen and

Weijland included contributions from the free travel of the moving

particle, the collision of the moving particle with one scatterer and

the most frequently-occurring correlated collision sequences between
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the moving particle and two of the stationary scatterers. Bruin (8)

later calculated additional terms in the density expansion by

considering less-frequent correlated collision sequences between the

particle and the scatterers. The result is an equation which is

nominally third order in density, yet represents the macroscopic

behavior of the system even at high densities. It should be noted that

the renormalization procedure which replaced each appearance of z-1

by (z + 2pva)-1 obscured the physical relationship between the order

in density of the coefficients of the expansion and the number of

particles which are involved in the collison sequences. In a normal

virial expansion of an intensive property, one particle effects appear

as zeroth order in density, two particle effects as linear in density,

three particle effects as quadratic, and so on. That relationship will

no longer hold because the renormalization procedure introduces a

factor of density into the denominator with each free propagation

operator Go. This means that although eqn. (42) is nominally a

maximum of third order in density, it contains contributions from

collision sequences involving a larger number of particles than is

indicated by its order in density. The success of this equation, which

is of fairly low order in density, in explaining the behavior of

systems in which the scatterers are quite dense indicates that all of

the correlated events which contribute significantly to the density

dependence of the diffusion constant in the non-overlapping LG have

been taken into account.

The analysis of the VAF of the non-overlapping LG did not provide

results which are as clear-cut as the diffusion constant results. The
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size of the deviation of the simulation VAF from the exponential

predicted by Enskog kinetic theory was, as expected, found to increase

with density. However, the increase was found to be less than that

predicted by kinetic theory. In units of Enskog collision time, there

is a significant increase in the magnitude of the sE -2 tail, but in

terms of the more common Boltzmann collision time, the coefficient

increases with density only in the range p* = 0.01 to 0.3 and appears

to be linear at higher densities. This behavior is radically different

from the theoretical predictions. The simplest of the theories, Ernst

and Weijland's kinetic theory treatment, suggests that the coefficient

in units of Boltzmann collision times should be linear in density, and

the more complex theories that it should be of higher order in density.

It is possible that the results reported here are in agreement with the

results of Ernst and Weijland and that the simulation runs were not

long enough to establish accurate averages of the VAF. It seems

unlikely, however, that the errors are large enough to mask a density

dependence corresponding to that predicted by Keyes and Mercer(20),

Masters and Keyes(19), Gotze, Leutheuser and Yip (21,22), or MEvBD(18).

It was hoped that a factor of the radial distribution could be

introduced into the results to bring the theory and simulation values

into agreement as was possible with the diffusion constant. This did

not work for the VAF. The disagreement between the theoretical values

for the magnitude of the long-time tail and the non-overlapping LG

simulation results reported here is considerable, yet it is unclear

whether this disagreement stems from a failure of the theory or from

insufficient averaging or improper curve-fitting.
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The distribution of collision times was observed to conform to

those previously obtained by Lewis (11). The distributions were nearly

exponential. The deviation of the simulation distributions from

exponential was largest at short times and the deviations incraesed

with increasing density. At all densities, the average time between

collisions was very close to the Enskog collision time. These results

are in agreement with the simulation results of Lewis(11) and his

conclusion that the extension of low-density fluid theory to higher

densities by simply including the non-exponential distribution of

collision times is not correct.

The conclusions of this study, particularly those relating to the

diffusion coefficient, can be used to guide the direction of similar

studies of the more complex liquid state. The results of the VAF

probably give rise to new questions, rather than answering the ones to

which it was directed. Further study, involving longer computer

simulations directed exclusively towards the VAF in the region of

interest would probably be needed to answer these questions.
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CHAPTER 5
RING CLOSURE DYNAMICS IN ALKANE CHAINS

A. Introduction

The relative motion of the chain ends of a series of polymethylene

chains was investigated through analytic techniques and Brownian

dynamics simulation and applied to the prediction of the rate of ring

closure-like reactions for short hydrocarbon chains. The primary

functions of interest in this work are the distance between chain ends

and functionals of this end-to-end distance. The magnitude of the

end-to-end distance for a single chain at a given time will depend on

both the static and the dynamic properties of the molecule. That is,

the end-to-end distance will be determined by the rate of

conformational change for the molecule, as well as by the equilibrium

distribution of chain conformations. The prediction of the rate of

ring closure-like reactions requires knowledge of the contributions of

the dynamic and static properties of the molecule; toward this end, the

Wilemski-Fixman (WF) theory(1) for intramolecular diffusion-controlled

reactions was reinvestigated. The equilibrium distribution of chain

end separations was determined numerically using the rotational

isomeric state model (RIS) of Flory(2) and dynamic properties were

examined using Brownian dynamics simulation(3). Shimada and Szwarc(4)

have determined rates of electron transfer between terminal

alpha-napthyl groups separated by from 5 to 20 methylene units; these

rates are compared to the theoretical predictions.

Shimada and Szwarc (4) determined that the rate of electron

transfer k for the reaction
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6N-(CH2)n-aN 7aN-(CH2)n-aN ,

where aN- represents an alpha-napthyl substituent and n the number of

methylene units in the chain, depended on n via

k m (n+1)-3/2 for n = 5 to 20.

The rate of electron transfer is a reflection of the proximity of the

chain ends to each other and computer simulation of chain molecules

provides insight into whether static or dynamic processes control the

chain end behavior and, in turn, the reaction rate.

B. Derivation of the Wilemski-Fixman expression for the reaction rate

The work of Wilemski and Fixman(1) and of Doi(5) provides the

framework for the analytic approach to the study of the rates of

intramolecular ring-closure type reactions. The reactions of interest

are reversible diffusion-controlled reactions. The expression for the

rate of the reversible reaction differs from that of the irreversible

reaction by a factor of 2(6); attention will be focused on the

equations describing the rate of irreversible reactions and the factor

of 2 will be restored at the end of our analysis.

For a general intramolecular reaction, a diffusion equation for a

space- and time-dependent distribution function f(R,t) may be written

which describes the irreversible removal of molecules from the pool of

reactive molecules,

tat L)f(R,t) = -KS(R)f(R,t). (1)

In Eqn. (1) L is the Liouville operator, K is the rate constant and

S(R) is a sink function which describes the probability of reaction for
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molecules in which the ends are separated by a distance R. Typically,

S(R) decreases with increasing R reflecting the low probability of a

closure-type reaction when molecule ends are far apart.

The diffusion equation can be used to determine the first order

reaction rate k in the equation for the time evolution of the fraction

of unreacted chains

atcp(t) -kW). (2)

The route to k will follow Wilemski and Fixman(1) in a general sense.

Equation (1) is integrated over R space and an equation is obtained

for the fraction of unreacted molecules left at time t

at.(t) -Kv(t) (3)

where +(t) is defined by

+(t) = f dR f(R,t),

and v(t) by

v(t) = f dR S(R)f(R,t).

The Laplace transforms of eqns. (2) and (3) can be used to define v(t)

and provide a route to k. The Laplace transform of eqn. (2)

z+(z) - 1 = kif)(z)

can be solved for k to give

k = (1 /$(z)) - z (4)

where

4(z) = f; dt e-zt+(t).

The Laplace transform of eqn. (3) is

z +(z) - 1 = Kv(z)

or
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+(z) = (1/z) - (Kv(z)/z). (5)

and

v(z) = r: dt e-ztv(t).

The route to k, the experimental reaction rate, involves the

determination of v(z) using resolvent and projection operator

techniques. The starting point is the Laplace transform of eqn. (1):

(z + iL)f(R,z) = f(R,t=0) - KS(R)f(R,z).

If the system is assumed to be initially at equilibrium, f(R,t =O) =

feq. The solution of eqn. (6) for f(R,z) yields an equation

(6)

f(R,z) = (1/z)feg - KG(z)S(R)f(R,z) (7)

where G(z) is the resolvent operator

G(z) E 1/(2 iL)

and eqn. (7) makes use of the identity iLfeg = 0. Equation (7)

can be multiplied by S(R) to give the equation

S(R)f(R,z) = (1/z)S(R)feg - KS(R)G(z)S(R)f(R,z)

to which the projection operator P,

(8)

P = feg[S(R)/<S(R)>] f dR... (9)

can be applied. The notation <...> represents the equilibrium average

of a variable as defined by f dR fog = <...>. The projection

operator given in eqn. (9) is a hybrid of the Mori(7) and Zwanzig(8)

forms in that it introduces the sink function as a "vector" in a

Mori-type projection operator and it also involves integration over

phase space as in a Zwanzig-type projection operator. This particular

projection operator was chosen because it generates the WF results with

correction terms and thereby implements an exact closure of the set of

equations. The operator P is applied to eqn. (8) followed by the



insertion of P + Q where Q = 1 - P. The last step is

equivalent to multiplication by 1. The resulting equation is

PS(r)f(R,z) = (1/z)PS(r)feg - KPS(r)G(z)PS(r)f(R,z)

-KPS(r)G(z)0S(r)f(R,z).

The process is repeated with the application of Q to eqn. (8) and

insertion of P + Q to give

QS(r)f(R,z) = - KQS(r)G(z)PS(r)f(R,z)
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(10)

-KQS(r)G(z)QS(r)f(R,z). (11)

Equation (11) is simpler than eqn. (10) because the initial condition

term vanishes when it is acted upon by Q. Equation (11) is solved

for QS(r)f(R,z) in terms of PS(r)f(R,z) and substituted back

into eqn. (10) yielding

{1 + KPS(r)G(z)[1 + KQS(r)G(z)]-1)PS(r)f(R,z) = (1/z)PS(r)feq (12)

Equation (12) may be written using v(z) and the bra and ket notation

for the equilibrium averages:

K<S(r)G(z)[1 + 81-1S(0>
{ 1 + }v(z) = (1/z)<S(R)>,

<S(R)>
(13)

where B = KQS(r)G(z). The sink function S(R) can be written

as the sum of its equilibrium average <S(R)> and the fluctuation 6S(R)

about that average

S(R) = <S(R)> + 8S(R). (14)

The substitution of eqn (13) into eqn. (14), the elimination of terms

which vanish because of the action of the projection operator on

equlibrium averages and some algebra lead to

)

K<SS(r)G(z)[1 + B]-18S(r)> + K<S(r)>
1v(z)(1 + (1/z)<S(R)>. (15)

<S(R)>

Equation (15) is solved for v(z) which is substituted into eqn. (5) for



(1)(z) to give

0(z) =
1 + 1(<8S(r)G(z)[1 + B]-185(r)>/<S(R)>

z( ic<8S(r)G(z)[1 + B]-18S(r)> + K <S(r)> )

<S(R)> z )

which is in turn substituted into eqn (4) to give

k K <S(R) >{ 1 +
K<8S(r)G(z)[1 + B]-18S(0> -1

<S(R)>

The WF result is reclaimed by setting B and z to zero,

k -
x<S(R)>

[1 + (K/<S(R) >)J: dt<8S8S(t)>)
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(16)

(17)

Equation (17) gives the rate for an irreversible reaction, for a

reversible reaction, the above must be multiplied by two. The rate for

a reversible reaction will be indicated by kr,

kr = 2k.

Following Doi(5), eqn. (17) can be written as the sum of two relaxation

times

where

and

Tr = (1/kr) = T. + Td

T
e

1/(2K<S(R)>)

Td = %I; dt <6S6S(t) > / <S(R) >2.

(18)

(19)

(20)

Physically, te measures the fraction of conformers in the reactive

region and is an equilibrium property, whereas Td is the correlation

time for the fluctuation of conformers and has dynamic as well as

static contributions.

In the next section, the times in eqn. (18) will be evaluated

utilizing the Rouse-Zimm model for flexible chains.
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C. Rouse-Zimm dynamics

Low frequency motion in alkane chains of five carbon atoms or more

has been successfully modelled by the Rouse-Zimm(9) normal polymeric

modes(10). The use of the Rouse-Zimm modes is equivalent to the

consideration of the alkane chain as a chain of beads with friction

coefficient joined by Hooke's Law springs. The Rouse-Zimm modes

provide a convenient language for the interpretation of chain

flexibility and because the Green's function G(R,R0,t) for the time

evolution of end-to-end distance is known(5), the Rouse-Zimm chain will

be employed for the evaluation of the time correlation function in eqn.

(20) and the equilibrium average in eqn. (19).

The time correlation function given in eqn. (20) is written in

terms of a Green's function as

<686S(0> = f; dRdRo fel6S(R0)G(R,R0,08S(R). (21)

Doi(5) has determined the Green's function for the Rouse-Zimm chain to

be

G(R,R0,t) -

where

and

E(t)2(r2 + r02) 2rroE(t)8rr
o

exp [ - sinq
nE(t)(1-E(t)2)1/4 (1-E(t)2) (1-E(t)2)

r2 = 3R2/LA"'2 with A2 = <R2>

E(t) = <rr(t)>/<r2> = <RR(t)>/<R2>. (22)

The correlation function for the end-to-end vector for a Rouse chain

with N segments is given by (11)

E(t) (2/MA2)jE1 ctn2(jn/2M)<F)32>exp(-t/ij) (23)
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where

M = N + 1

pi = Ei (2/M)4sin(ijn/M)bi

and bi is a bond vector connecting adjacent atoms. The relaxation

times in eqn. (23) are given by

ti = (Cb2/kBT)(1-X)/[12sin2(jE/2M)(1+X)]

in which C is the friction constant (6nrib/2 for a backbone atom of

radius b/2), kBT is Boltzmann's constant times the absolute

temperature, and X is the cosine of the bond angle supplement for the

chain (in this case, X = cos(70°)). Equation (23) is strictly valid

only for the long wavelenth orientational modes of polymers, however,

Brownian dynamics calculations have demonstrated(10) that the

relaxation time for the slowest mode, Ti, is calculated accurately

for chains with constant bond lengths and constant bond angles and as

few as five or six bonds. The higher modes, j=2 and above, are not

well-represented by the Rouse-Zimm analysis(10) because

higher-frequency modes are sensitive to the torsional potential which

is absent in eqn. (23).

The Green's function G(R,R0,t) may be written in terms of a sum

over the associated Laguerre polynomials,

n!E(02°8r2r
0
2

G(R,R0,t) - exp( -r.,2_r

0

2)
nE0

L
n

h(r2)L
n
k(r

0

2)
, (24)

=
Mk (n + %)!

where L
n
k(r2) is the nth rank Laguerre polynomial of order

one-half defined by

L
n
4(X) =

ex dn (xn+e

n!,lx dxn

The Laguerre (or Sonnine) polynomials are eigenfunctions of the
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diffusion operator for a Rouse-Zimm chain and dynamical variables such

as the sink function may be expanded in terms of these orthogonal

polynomials. An arbitrary sink function S(R) would be expressed as

S(R) E
n=

a
n
L
n
4(r2),

0

and <S(R)> = ao leaving

8S(R) ..ElanLn1/4(r2).

The correlation function for the fluctuation of the sink function then

reduces to

(n+%)!
<6S6S(t)> = E a 2 E(02117

n=0 n n!
(25)

This is a general result valid for any form of the sink function. For

the particular case of a Gaussian sink function, defined by

S(R) = exp(-3 ER2/2A2) = exp(-42), (26)

with

.(2/3)(A/R.b)2

and R is a distance in units of bond length at which reaction may be

expected to take place, the expansion coefficients are

an = (1 + )-3/2a/(1 + ))n. (27)

The insertion of eqn. (27) into eqn. (25) followed by the execution of

the sum yields

<6S6S(t)>
1

(1 + ,)3 [ (1 - XE(t)1)3 /2 1]

where X . (&/(1 + E))2. The equilibrium average of a Gaussian sink

function is given by

(28)
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<S(R)> = 1/(1 + &)3/2 (29)

Equations (28) and (29) are in agreement with the analysis of Doi(5)

and provide analytic expressions for the times Td and Te in eqn. (18).

D. Numerical calculations

Computer simulations of flexible chains were carried out to provide

values for the correlation functions and the averages used in eqn. (18)

for the reaction rate and to compare to the Rouse-Zimm mode predictions

of the previous section. Equilibrium averages were calculated using

the rotational isomeric state (RIS) model (2). Brownian dynamics

simulation was used to determine the correlation functions for the

end-to-end distance and the sink functions. The equilibrium

calculations will be described first and the results compared to the

Rouse-Zimm mode predictions. The Brownian dynamics simulations and

results will then be considered and predicted reaction reaction rates

compared with the experimental values.

1. Equilibrium properties

Equilibrium averages were determined for molecules with fixed bond

lengths, bond angles and a three-fold symmetric potential energy

function for the torsional potential; in accord with the RIS model, all

allowed configurations were generated and weighed equally in

determining the averages. The properties calculated were <S(R)> and

q8S(R))2>/<S(R)>2 for chains ranging in length from three to ten

bonds with a series of Gaussian sink functions of the form

S(R) = exp(-3R2/2b2R.2).
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The series included values of 1, 1.5, 2, 3, and 5 bond lengths for the

reduced reactive distance R . The average <S(R)> can be interpreted

as the fraction of conformers for which the chain ends are within the

reactive distance R. of each other. The fluctuation average can be

considered an equilibrium constant Keg = <(SS(R))2>/<S(R)>2 for

the number of open rings versus closed rings. The Rouse-Zimm analysis

predictions, obtained from eqns. (28) and (29), can be further

simplified for long Gaussian chains and short reactive distances. In

that limit, A2 is given by Flory(2) as

A2 = Nb2(1 + X)/(1 X)

which is of the order of Nb2, thus

(A/R.b)2 = N/R.2

and consequently,

<S(R)> = 0(N-3/2)

and

Keg = (1-X)-3/2 = ( 2)-3/2 = [N(1 + x)]3/2/[27R.2(1 x113/2. (30)

It can be seen that, for long chains, the chain length dependence of

both Te, which is defined by eqn (19) as Te = (2K<S(R)>)-1, and

K is N3/2.
e q

The results of the RIS calculations for these variables are shown

in figures 5.1 and 5.2. Figure 5.1 shows that in the limit of long

chains and short reactive distances, that is, for chains of six through

ten bonds and reactive distances of one bond, the values of <S(R)>

diminish as N3/2. For shorter chains and for sink functions with the

larger values for the reactive distance, the N dependence of <S(R)> is

weaker than expected. In figure 5.2, the plot of Keq versus log N
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Figure 5.1 The equilibrium value of the reactive sink function S(R)

as a function of the number of bonds. The closed cirles indicate a

reactive distance, R., of one bond, open circles an R. of two

bonds, diamonds an R. of three bonds and triangles an R. of

five bonds.
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Figure 5.2 The equilibrium constant Keg = <(6S(R))2 > / <S(R) >2

as a function of the number of bonds. The symbols are the same as in

figure 5.1
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indicates an N dependence of Keg that ranges from N312 to N5/2

with some scatter. As with <S(R)>, the Rouse-Zimm/Gaussian chain

prediction of a 3/2 power law dependence on N is borne out for short

reactive distance sink functions and the longest of the simulated

chains.

2. Dynamical properties

The Brownian dynamics simulations which are reported here were

undertaken using a program developed by Marshall Fixman(3), modified to

provide the information of interest. In Fixman's algorithm a single

chain molecule is modelled as a bead and stick structure subject to

torsional forces and bond angle and bond length constraints. The

solvent is included as a series of random forces acting on this bead

and stick molecule. This is equivalent to utilizing the Langevin

equation to follow the time evolution of the molecule. Because the

interest is on the behavior of an isolated chain in solution, the

Brownian dynamics model is well-suited for this study. The simulations

are used to determine the time dependence of the end-to-end vector, the

end-to-end distance and functionals of the end-to-end distance for

hydrocarbon chains containing 5 to 15 carbon atoms.

For this work, the simulated chains were considered to have rigidly

fixed bond lengths and nearest-neighbor bond angles; the torsional

potential was

U(9) 'E(1-cos(39).

The barrier height E. was taken to be 5kBT or 3 kcal /mole at room

temperature, a value representative of the trans-gauche energy barrier
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for normal alkanes(12). Chains of four, seven, eight, ten and fifteen

bonds were included in the simulation study.

Self-correlation functions were determined for the variables R,

&R2, and the series of Gaussian sink functions of the form used in

the equilibrium calculations. The correlation functions were

normalized and fit piecewise to a power law for short times and an

exponential for long times,

1 - ats short t

1
C(t)

a e
-bt

long t.

(31)

Correlations times were then calculated analytically by integration of

the functions arising from the piecewise fit. The trajectories used

were typically twice as long as those employed for previous

orientational relaxation problems(13). One hundred equally weighted

trajectories were used to calculate the reported averages; each

trajectory consisted of 1000 to 3000 time steps of 0.0025 reduced time

units. One time unit is defined as Cb2/ksT where b is the bond

length (1.54A for polymethylene chains) and C is the friction constant

for a backbone atom. For a polymethylene chain at 25°C in a solvent

with a shear viscosity of 1 cp, each time unit corresponds to 8.4 ps.

The easiest correlation functions to understand should be

<RR(0> and <6R26R(t)2>. Because R is a vector, it should

relax as a result of overall rotation of the molecule as well as

internal conformation changes. Equation (23) for E(t) can be

intergrated over time to give an expression for the correlation time of

<RR(t)>,
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TE = f; E(t)

= (2/MA2) j
E

1 3 3 3
T. ctn2(jn/2M)<p.2>T. (32)

=

The average value of pj2 is given by

<pj2> = Ei (2 /M)'sin(ijn /M) E. (2/M)1/4sin(njn/M) <bib.> (33)

where the sums are taken over the N chain segments. The average

correlation between bond vectors <bib.> will be approximated by

the expression for the correlations in a freely-rotating chain(11) as

Xii-n1, where X is the cosine of the bond angle supplement. In the

limit of long chains, <pj2> is given by

<pj2> = (1 X2)(I - 2Xcos(jm/M) + X2)-1.

For short chains, the sum can be written as a complicated analytic

expresion of X and jn/M; the expression will not be reproduced here,

but will be evaluated explicitly for each of the chains studied as the

need arises. If the long chain limit of <pj2> is substituted into

eqn. (32) and the result evaluated in the limit of large N, the

correlation time TE is predicted to be proprtional to N2. Figure

5.3 indicates that for the short chains studied in this work, TE

scales linearly with N rather than quadratically. The results of the

explicit evaluation of eqn. (32) for short chains are given in Table

5.1 along with the Brownian dynamics results. The analytic predictions

consistently underestimate the Brownian dynamics correlation times by a

factor of -6; however, the N dependence of the Rouse-Zimm model

correlation times is in good agreement with the simulation results.

Figure 5.3 is a plot of the Brownian dynamics and Rouse-Zimm

correlation times; the Rouse-Zimm predictions have been scaled so that

the two models are in exact agreement for the 15-bond chain. It is
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N

Figure 5.3 The correlation time for the relaxation of the

end-to-end vector. The line is TE as calculated for the

Rouse-Zimm model using eqn. (32) and A2 from the RIS model

calculations for all but the 15-bond chain. For the 15-bond chain

A2 is from the BD simulation. The time units for the Rouse-Zimm

numbers are 02/k5T. The squares represent TE as calculated

using the BD simulation; the time units are scaled such that the BD

and Rouse-Zimm results are in exact agreement for the 15-bond chain.
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evident that the N dependence is quite similar.

Table 5.1

E
from Brownian dynamics and Rouse-Zimm calculations

# of T
E

bonds Brownian dynamics Rouse-Zimm model

4 2.409 0.407

7 6.016 0.987

8 8.142 1.236

10 12.835 1.819

15 23.943 3.974

Correlation times are reported in units of Cb2/kB.

The relaxation of SR2, unlike that of R which can relax with

overall chain rotation as well as internal isomerization, will be

governed only by internal chain motions. In small molecules, internal

and overall rotations are fast and take place on a comparable time

scale; hence the relaxation of R and 8R2 should occur at a similar

rate. For longer chains, overall rotation becomes very much slower

than internal isomerization and R should therefore relax more slowly

than the scalar 8R2. The Rouse-Zimm model Greens's function given by

eqn (24) can be used to estimate the difference in the rates of

relaxation. The relaxation of R is described by E(t) defined in eqn.

(22). It can be shown that SR2 is identical to the first order

Laguerre polynomial L1h(r2); the correlation function can then be

written as

<SR2SR(t)2> <1, h(r2)1, k(r(02)>
[E(012. (34)

<(L11/4(r2))2>
<0%2) 2>

Equation (34) indicates that if the vector relaxation E(t) is dominated
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by a single exponential, 6R2 will decay at twice the rate of R.

Figure 5.4 is a plot of the correlation times calculated from Brownian

dynamics values of <RR(t) and <6R26R(t)2>; it can be seen that

the difference between the correlation times is small for the shortest

chains and remains small for all but the longest molecule, the fifteen

bond chain. The difference between the correlation times for the

fifteen bond chain, the largest chain studied and the one which would

be expected to conform most closely to a Rouse-Zimm model is a factor

of 2.3, rather than the predicted value of 2. For shorter chains, the

relaxation of <6R26R(t)2> is not well-described by the Rouse-Zimm

analysis. This is somewhat surprising in light of the good qualitative

agreement between the analytic and simulation results for <R-R(0>

relaxation.

The determination of the reaction rate requires information about

dynamic properties of the chosen sink function as well as the

equilibrium properties determined in the RIS simulations.

Specifically, eqn. (20) calls for the correlation time for the

fluctuation of the sink function, that is, the time integral of the

normalized self-correlation function <6S6S(t) > / <(6S)2 >. This

correlation time will be defined as ts;

is = f; dt <8S&S(t)>/<(8S)2> (35)

Shown in figure 5.5 are representative Brownian dynamics time

correlation functions for the seven bond chain for several values of

the reactive distance R. for a Gaussian sink function. Some of the

time correlation functions display a plateau region like that of the

lowermost curve of figure 5.5 and occasionally, there appear to be



169

24

18

N 12

6

0
0 8 16

Figure 5.4 The correlation times for the relaxation times of the

end-to-end vector, <RR(0> (crosses), and the end-to-end

distance, <6R2S112(0> (diamonds), as calculated from the BD

simulation. The times are given in units of 02/kaT.
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oscillations in the functions. Increasing the length of time of each

run did not affect these features indicating that they are not the

result of insufficient sampling. The unusual features are most

prominent and most obviously oscillatory for the longest chains and the

shortest reactive distances. As the chains become shorter or the

reactive distance longer, the oscillations appear to be damped to

plateau-like regions and for the shortest molecule, the four bond

chain, it is unclear whether the correlation function exhibits a

plateau region or decays exponentially. (See plots of the correlation

functions in Appendix A.) The time of onset of the oscillations or

plateaus in the correlation functions appears to be consistent for a

given length of chain and to increase with chain length; for the seven

bond chain, the feature is a plateau at -1.2 reduced units of time, for

the 15 bond chain, an oscillation is observed with a maximum at -4

reduced units of time. The curves were fit using the power law and

exponential functions given in eqn. (31). For the correlation

functions displaying plateaus and oscillations, the use of such a fit

introduces error into the calculation of the correlation times. The

calculation of the end-to-end distance functionals proved to be more

costly and to yield much larger error bars than previous calculations

of orientational correlation functions(13).

It is easy to speculate that the anomalous features are the result

of a collective mode oscillation; the simplest of the collective

isomerizations in alkanes gives rise to the Kramer's rate. The

Kramer's rate 1/TK is the rate of isomerization for three bond

hydrocarbon segments from the trans- conformation to either of the
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Figure 5.5 Time correlation functions C(t) for the seven-bond chain

for several reactive distances. The time is given in reduced units.
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gauche- conformations and depends weakly on chain length (14,15). For

a butane chain with tetrahedral bond angles, TK is (16)

TK = 0.106D2exp(E/kBT)/E, (36)

where E is the barrier height for isomerization from the trans- to the

gauche- conformers. For butane with the same torsional potential as was

used in the simulation, the Kramer's correlation time is 3.15 reduced

units of time. It appears that the oscillations in the sink function

correlation functions are occurring on approximately the same time

scale as the isomerizations which control the Kramer's rate. Further

investigation of the sink function correlation functions, including

simulations aimed at elucidating the unusual features observed in this

work, will have to be undertaken before their shape is understood.

Figure 5.6 is a plot of the correlation times for various reactive

distances as a function of chain length. The data has been smoothed by

drawing curves through the irregular array. Despite the scatter, for

the sink functions with the longest reactive distances, a decrease in

the correlation times with increasing chain length is evident. It is

reasonable to expect this trend since a reactive distance of three or

four bonds spans a sizable portion of the allowed relative separation

of the chain ends. The 6S correlation function measures the time

dependence of the fluctuation of the number of conformers for which the

end separation is within the appropriate volume; the larger the

appropriate volume is relative to the total volume available, the

slower the fluctuation in time of the number of 'closed' conformers.

For the shortest reactive distance sink functions. a clear trend is

difficult to ascertain, but it appears that the correlation times are
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Figure 5.6 The correlation times, x, for the sink functions

plotted against the number of bonds, N. The correlation times for

the Kramer's rate for butane as given by eqn. (36) are indicated on

the right. The sink function with the reactive distance, R., of

1.0 bond lengths is indicated by +, 1.5 by* ,2.0 by +, 3.0 by 21,

and 5.0 by x.
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independent of chain length. Plotted on the right hand side of figure

5.6 are multiples of the inverse of the Kramer's rate 1/TE for

butane. The correlation times Ts of the shortest reactive distance

sink functions studied approach the Kramer's correlation time and can

be approximated by

Ts = RsTE. (37)

The application of the Rouse-Zimm analysis to the correlation time

T requires the integration of the correlation function <6888(t)>.

This is most easily accomplished using the expression for the

correlation function given by eqn. (25). The assumption is made that

the decay of E(t), the correlation function for the vector between the

chain ends, is exponential,

E(t)2n exp(- 2nt /tE) (38)

where TE = roE(t). From eqns. (25), (35), and (36), the correlation

time is

1 a 2 (n %)! f: exp(-2nt/TE).T _
2 (39)

<(8S)24n n=1 n!

The integration can be performed and eqn. (27) for the expansion

coefficients used to give

2 m 1

)

I2n TE (n + %)!

n=1
T

<(SS)2>411 (1 + )3 1 + 2n n!

E
I2n (n + %)!

(

<(SS)2>4n(1 + 03 n=1 1 + n(n!)

T
E

co Xn(11 + lb)!

E (40)

<(8S)2An(1 + E)3 n=1 n(n!)
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where X (E./(1+ ))2. Equation (40) has been evaluated numerically

for the 4, 7, 8, 10 and 15 bond chains using the TE given by eqn.

(32) and eqn. (28) with t = 0 for <(6S)2 >. The results are given in

Table 5.2 , along with other explicit calculations of the Rouse-Zimm

mode predictions. There is a consistent increase in Ts with

increasing chain length and increasing reactive distance. This trend

is not in agreement with the Brownian dyanmics results shown in figure

5.6. If eqn. (40) is evaluated in the limit of long Gaussian chains,

T is predicted to increase with increasing chain length as N. As

with the relaxation of R2, the Rouse-Zimm mode explicit predictions

of the sink function correlation times are not in agreement with the

Brownian dynamics.

The dynamical variable of interest in this work is Td defined in

eqn. (20); Td will figure directly in calculations of the reaction

rate. Figure 5.7 is a plot of the Brownian dynamics results for Td;

no simple dependence on N can be determined from this plot. If Ts is

multiplied by %Keg = 'h <(6S)2 > / <S >2, the result is Td as given

by eqn. (20). For the long chain limit of the Rouse-Zimm modes, Keg

has been shown to vary with chain length as N3/2 and Ts as N; this

leads to a dependence of Td on N5/2. Explicit evaluation of the

Rouse-Zimm equations for short chains reveals a similar N5/2

dependence for Td (table 5.2). Because of the lack of agreement

between the Rouse-Zimm and Brownian dynamics trends for Ts, the

discrepancy between the results for Td is expected.

In the next section, the numerical results reported above will be

utilized in a calculation of the reaction rate and the application of



Table 5.2

Explicit Evaluation of Chain-End Variables Using the
Rouse-Zimm Modes

# of bonds R. <S(R)> <( 6S)2>/<S>2 't s d

4 1.0 0.0753 4.4203 0.0922 0.2028

4 1.5 0.1880 1.4605 0.1363 0.0996

4 2.0 0.3168 0.6593 0.1635 0.5043

7 1.0 0.0317 11.0559 0.1451 0.8014

7 1.5 0.0897 3.6167 0.2433 0.4370

7 2.0 0.1711 1.6557 0.3186 0.2638

7 3.0 0.3541 0.5380 0.4101 0.1103

7 5.0 0.6311 0.1147 0.4716 0.0270

8 1.0 0.0258 13.6635 0.1629 1.1108

8 1.5 0.0746 4.4473 0.2788 0.6199

8 2.0 0.1457 2.0345 0.3742 0.3807

8 3.0 0.3148 0.6667 0.4955 0.1652

8 5.0 0.5923 0.1460 0.8379 0.0426

10 1.0 0.0184 19.2137 0.1987 1.9368

10 1.5 0.0547 6.2264 0.3532 1.1014

10 2.0 0.1105 2.8435 0.4899 0.6968

10 3.0 0.2551 0.9411 0.6803 0.3200

10 5.0 0.5259 0.2143 0.8379 0.0898

15 1.0 0.0107 33.3828 0.3197 5.3052

15 1.5 0.0332 10.5150 0.5980 3.1534

15 2.0 0.0700 4.7694 0.8694 2.0741

15 3.0 0.1770 1.5832 1.2996 1.0243

15 5.0 0.4203 0.3874 1.7325 0.2278

Correlation times are reported in units of Cb2/kB.
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Figure 5.7 The relaxation time, td, for the sink functions

plotted against the number of bonds, N. The legend is the same as

for figure 5.6.
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this work to the study of alkane chain dynamics will be discussed.

E. Discussion

The correlation times Ts and the average values of the sink

functions <S> can be used to determine a reaction rate for ring

closure-type reactions using eqn. (18). The calculation of the

reaction rate for electron transfer requires the nearest neighbor

reaction rate, that is, the rate of electron transfer for groups within

the reactive region. The rate chosen was 1 x 1012 seconds. This

corresponds to rates obtained from Arrhenius plots of experimental data

for intermolecular transfer of electrons between a-napthyl groups on

linear alkanes(4). The results of the reaction rate calculation,

scaled to conform to the experimental conditions of Shimada and

Szwarc(4) (HMPA at 0° C, n = 6.23 cp) are given in figures 5.8 and

5.9. Figure 5.8 was obtained from the Brownian dynamics data for both

the dynamic and equilibrium contributions; figure 5.9 gives reaction

rates derived using the Brownian dynamics data for the correlation time

T and the RIS data for the equilibrium properties <(6S)2> and

<S>. Because RIS simulations were not undertaken on the 15 bond

chain, the rates given for that molecule are the same on both plots and

involve the Brownian dynamics data for the correlation time and the

equilibrium properties. It can be seen that the experimental trend is

not well-modelled by the simulation results although the actual values

of the reaction rates are in fair agreement. Since the simulation

model did not include the bulky napthyl moieties or possible

orientational dependence of the reaction, it is surprising that the
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Figure 5.8 The reaction rate for electron transfer as a function

of chain length. The solid line indicates the experimental results

of Shimada and Szwarc (ref 4). The points indicate the rate as

calculated using eqn. (18) and the results of the BD simulation.

The reactive distance R. was taken to be 1.0 (0), 1.5 (x), 2.0

(s), 3.0 (+) and 5.0 (0) bond lengths.



S.

C

24.

21.

18.

180

h u l l ttt 11111111111111/11111111IIIIIIIIIIII

15.
3. 0

-I I VIIIII11
6.0 9.0

N

12.0 15.0

Figure 5.9 The reaction rate for electron transfer as a function

of chain length. The BD results are used for the correlation times

and the RIS model results for equilibrium contributions in eqn.

(18). The legend is the same as figure 5.8.
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experimental and simulation rates are at all close. The simulation

correlation times for the longest chains involve the largest

uncertainty because of the unorthodox decay observed in the sink

correlations functions, and it is the longest chains which show the

greatest divergence from the experimental values; further investigation

of the sink correlation functions could result in calculated reaction

rates more in agreement with the experimental values.

The Rouse-Zimm mode predictions of the reaction rate can be

determined from eqn. (18) which gives the reaction rate as comprised of

an equilibrium part and a dynamic part. In the calculations of the

reaction rates from the simulation results, the dynamic part td was

observed to dominate the rate because of its magnitude relative to

te. The substitution of the long chain limit of the Rouse-Zimm mode

results for <S> and td into eqn (18) gives

k = (N3/2/K + N5/2)-I

Whether the equilibrium contribution which goes as N3/2 or the

dynamic contribution proportional to N5/2 will control the reaction

rate predicted by the Rouse-Zimm model will depend upon the size of the

nearest neighbor reaction rate. For a slow reaction, when K is small,

the rate will be dominated by the equilibrium term and show a chain

length dependence of N-3/2. When K is large, as it is for electron

transfer, or N is larger than K-1, the rate will be dominated by the

dynamic contribution and vary with chain length as N-5/2. Explicit

calculations using the Rouse-Zimm predictions for <S>, <(&S)2> and

is are plotted in figure 5.10. The actual values of the reaction

rates are larger than the experimental numbers by 2-4 orders of
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<(6S)2> and xo in eqn. (18). The legend is the same as figure

5.8.
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magnitude and the chain length dependence is observed to be N-512

indicating that the major contribution to the calculated reaction rate

is from the dynamic behavior of the chain. The N-5/2 dependence of

the reaction rate agrees with the analysis of Doi(5).

There have been several calculations of the frequency of chain end

contact in terminally substituted alkane chains. Sisido and Shimada(6)

have computer-simulated the intramolecular electron transfer reaction

of aN-(CH).-aN using a rotational isomeric model in which the

electron transfer probability was expressed as a step function. The

critical reactive distance determined in the simulation was between 5.2

and 6.5 C-C bond lengths (8-10 A). Calculation of the rate was

effected using a static model and a dynamic model. The static model

provided the equivalent of <S>, but for a Heaviside step function form

of S(R) rather than the Gaussian probability function employed in this

work. To obtain the results of the dynamic model, the results of the

static model were multiplied by a factor related to the mean lifetime

of reactive conformations. Because the dynamic factor was assumed to

be chain-length independent, the authors found that the static and

dynamic terms displayed the same chain-length dependence, N-3/2.

Nairn and Braun(17) have undertaken a similar investigation using a

rotational isomeric model in conjunction with a series of bond jumps to

determine the rate of intramolecular end-to-end contact in alkanes.

The rates were determined as first passage time, i.e., an intial Monte

Carlo-generated conformation was allowed to undergo a series of bond

motions until the ends came within contact distance. The process was

repeated with other Monte Carlo-generated initial conformations to
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obtain a first order rate constant for the disapearance of chains.

There are several approximations made in this type of simulation and

these are discussed by Nairn and Braun. This method calculates a true

first-order rate constant and their findings are in accord with the

N-3/2 power law observed experimentally.

The results of the Brownian dynamics simulations are not as

clearcut as the results of the work of Sisido and Shimada(6) and of

Nairn and Braun(17). The agreement between the calculated rates

reported here and the experimental rates is fair. If the large error

bars associated with the sink function correlation times are taken into

account, and it is assumed that is is independent of chain length,

then eqns. (36), (37) and eqn. (30) evaluated for a tetrahedral chain,

Keg = 8.24N3/2/R
x
3

can be combined to give the rate of the reversible diffusion-controlled

reaction as

kr . (2kBT/3Talb3)N-
3/2Rx2 (E/kBT)exp(-E/kBT) (41)

Although eqn. (41) is approximate, it should represent the functional

dependence of the reaction rate on the torsional barrier, E, the number

of bonds in the chain, N, the solvent shear viscosity, 11 and the

reactive distance R. measured in units of C-C bonds. Calculations of

the reaction rate for the chains examined in the experimental work of

Shimada and Szwarc(4) indicate that if the reactive distance is taken

to be one carbon-carbon bond, the results of eqn. (41) are within a

factor of three of the experimental rates.
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F. Summary and Conclusions

The focus of this work was an understanding of the origin of the

chain length dependence of the rate of reaction for ring-closure type

reactions of substituted alkane chains. For electron transfer between

terminal m-napthyl groups, this rate has been found to be proportional

to the (n+1)-3/2 where n is the number of methylene units in the

alkane chain(4).

The Wilemski-Fixman expression for the diffusion-controlled

reaction rate was derived using projection operator techniques. The

expression for the rate constant is comprised of a contribution from

the equilibrium behavior and a contribution from the dynamic behavior.

For a rapid reaction such as electron transfer the dynamic contribution

is expected to dominate the reaction rate.

The Rouse-Zimm normal modes were used to obtain explicit

expressions for the quantities appearing in the WF rate and compared to

the results of Brownian dynamics and RIS simulation of short alkane

chains. The overall success of the Rouse-Zimm model in mimicking the

chain end behavior studied in this work is limited. Equilibrium

properties are described adequately by the Rouse-Zimm predictions in

the Gaussian limit because the equilibrium properties of the chain are

approximately Gaussian rather than because of properties of the

Rouse-Zimm model itself. The Rouse-Zimm analysis did provide results

in agreement with the simulation results for E(t), the relaxation of

the end-to-end vector. The Rouse-Zimm description of the time

dependence of scalar quantities such as functionals of the end-to-end

distance, R2 and S(R) was not in agreement with the simulation
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results nor were Rouse-Zimm reactions rates in aggreement with the

simulation or experimental results. The Rouse-Zimm modes have proven

successful in describing some orientational correlations in short

alkane chains such as the vector relaxation E(t) and those described in

reference 10, however, it appears that they do not provide an accurate

assessment of the time evolution of chain properties which depend only

on internal chain isomerization and not on alterations of the overall

molecular orientation.

The Brownian dynamics simulations were used to obtain information

about the time evolution of the end-to-end vector R, the fluctuation

in the end-to-end distance squared 6R2 and the Gaussian sink

functions S(R). Rotational isomeric model simulations were used to

provide equilibrium properties of the chains. The results of the

dynamics simulations indicate that the sink correlation functions do

not decay exponentially, but rather exhibit unexpected plateaus or

oscillations. It is reasonable to assume this behavior is the result

of a collective mode oscillation, but its exact nature is unclear;

further simulation focussed on these unusual features is indicated.

The Rouse-Zimm analysis and the simulation results were combined to

form eqn. (41), an approximate relation for the rate constant for

ring-closure type reactions. Although this expression contains the

'dynamic' contribution to the WF reaction rate, the chain length

dependence arises from the equilibrium factor Keg rather than the

purely dynamic correlation time Ts. This implies that it is in fact

the static properties which control the reaction rate.
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APPENDIX

This appendix contains plots of the correlation functions of

functionals of the the end-to-end distance of short alkane chains.

The correlation functions were calculated using Brownian dynamics

simulation and are discussed in Chapter 5.

The figure captions are self-explanatory. All times, T, listed in

this appendix are in units of Cb2/(kaT), where C is friction

constant for a single bead and b is one C-C bond length. The quantity

k
B
T is Boltzmann's constant multiplied by the absolute temperature.

For a polymethylene chain at 25° C in a solvent with a shear viscosity

of 1 cp, each time unit corresponds to about 8.4 ps.



194

1.00

0.90

O. 80

^ O. 70

0. 60

O. 50

0.40

a

a

a

a

a

a

0. 0. 25 O. 50 0. 75

T

.00 1.25

Figure A.1 The correlation functions <R R(T)> (open squares) and

<M26R2(T)> (closed squares) for an alkane chain with four

C-C bonds. All times, T, are given in units of Cb2/(kBT).
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Figure A.2 The same as figure A.1, but the alkane chain has seven

C-C bonds.
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Figure A.4 The same as figure A.1, but the alkane chain has ten

C-C bonds.
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Figure A.5 The same as figure A.1, but the alkane chain has 15

C-C bonds.
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Figure A.6 The correlation functions for the sink functions

<8SE.S(t)>/<(6S)2>, where S(r) = exp( -3R2/2b2R.2), for a

methylene chain with four C-C bonds. The reactive distances R. are

1.0 bond lengths (plusses), 1.5 bond lengths (squares), 2.0 bond

lengths (asterisks), 3.0 bond lengths (diamonds). All times, T, are

given in units of (b2/(kBT).
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Figure A.7 The same as figure A.6, but for a chain of seven

C-C bonds. Additional points for R. = 5.0 bond lengths are

included (crosses).
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Figure A.8 The same as figure A.7, but for a chain of eight

C-C bonds.



1.00

O. 80

I

15Z:
0 0

a IN s *

XXXXX X x

O. 60
F-

0. 40

O. 20

111

IN a

4.

x

O. 00 - . , r_ , ,

0. 0. 50 1. 00 1. 50 2. 00 2. 50

T

Figure A.9 The same as figure A.7, but for a chain of ten

C-C bonds.
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Figure A.10 The same as figure A.7, but for a chain of 15

C-C bonds.


