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Abstract:  This report details preliminary studies towards the development of a microfluidic 
sensor that exploits ferromagnetic resonance, excited in magnetic bead labels, for signal 
transduction. The device consists of a microwave circuit in which a slotline and a coplanar 
waveguide are integrated with a biochemically activated sensor area. The magnetic beads are 
immobilized in the sensor area by bio-specific reactions. A microwave signal applied to the 
slotline is coupled to the coplanar waveguide only in the presence of magnetic beads at the 
functionalized sensor area. Ferromagnetic resonance in the beads further enhances the coupling. 
This inductive detection technique lends itself to miniaturization, is inexpensive to fabricate and 
can be adapted for the detection of a wide range of molecules for which bio-specific ligands are 
available.  

Experimentally, the variation of the output signal as a function of the location of magnetic beads 
was studied for the proposed technique. Subsequently, a prototype device was constructed by 
biotinylation of the sensor area and integration with a microfluidic chip fabricated in 
polydimethyl siloxane (PDMS). Preliminary experiments were conducted on this prototype using 
streptavidin-functionalized magnetic beads as labels. It was shown that the magnetic beads, 
immobilized at the sensor area by streptavidin-biotin linkage, produced a distinct ferromagnetic 
resonance response easily discernable from the background signal. 
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  1. Introduction  

An important step towards the development of a portable, standalone, point-of-use diagnostic 
device involves integration of a highly sensitive transduction system with the sensing module. 
Typically, immunoassay-based techniques employ a label attached to a biochemical probe for 
detection. Labels may be molecules such as radioisotopes, fluorescent dyes or enzymes, or may 
be particulate in nature, such as quantum dots and nanoparticles. Label-free methods of 
detection, such as surface plasmon resonance (SPR) and quartz crystal microgravimetry (QCM) 
are gaining popularity as they bypass the traditional labeling steps to provide a rapid and highly 
specific means of identifying and quantifying analytes. While these label-free techniques offer 
advantages in terms of reduced assay time, which is essential in the field of rapid-onset-illness 
diagnostics, they cannot at present match the detection limits of traditional labeled assays such as 
ELISA or radioimmunoassay (RIA) [1]. SPR can only detect molecules in close proximity of the 
sensing surface, which is not suitable for typical microfluidic devices since they have channel 
heights much greater than 200 nm [2]. Also, instrumentation based on QCM and SPR are not as 
amenable to miniaturization and batch fabrication [3]. Conventional techniques for detection of 
labeled molecules are highly sensitive but suffer from certain drawbacks. Radioactive labels 
have a limited shelf life and stringent waste disposal requirements. Optical detection requires the 
use of instrumentation that is bulky and difficult to miniaturize [4]. Thus, there is a need for 
investigation into alternative methods of transduction that are highly sensitive, conducive to 
miniaturization and suitable for mass production.  
   
This report presents a novel high-sensitivity inductive detection technique for potential 
immunosensing applications using magnetic beads as labels: a microwave circuit, designed for 
operation at frequencies from 2 GHz to 4 GHz, was used to excite ferromagnetic resonance 
(FMR) in beads immobilized at the sensor area and detect the resulting signal. The biotin-avidin 
pair was employed to demonstrate the potential of this technique for bio-specific detection. High 
sensitivity was achieved both by operating at high frequency and matching the microwave 
excitation to the ferromagnetic resonance frequency in the beads. To our knowledge, this is the 
first report that demonstrates inductive detection of FMR excited in magnetic bead labels for 
biosensing applications. In contrast to commonly proposed magnetoimpedance [5-11] or Hall-
effect [12-13] sensors, the microwave circuit requires no specialty thin films or complex 
processing. The circuit was implemented in a single metal layer and fabricated using standard, 
inexpensive, integrated circuit (IC) processes.This report establishes the feasibility of using 
FMR-based detection of magnetic labels towards an inexpensive, mass-producible, hand-held 
sensor for biomolecules. In the following sections, the principle of operation, fabrication 
techniques, experimental setup and results are elaborated. 

 

 

 

 



2.  Description of Sensor Operation  
 
[Insert figure 1 here] 

 

As shown in Fig.1, the microwave circuit consists of a slotline and a coplanar waveguide (CPW). 
The junction between the slotline and coplanar waveguide is the active sensor area, which may 
be functionalized with analyte-specific ligands such as antibodies or aptamers. In this study, the 
avidin-biotin pair was employed to demonstrate biospecific interactions due to unique properties 
such as (i) the exceptionally strong interaction between biotin and avidin (Ka = 1015 M-1)  (ii) 
availability of multiple sites on avidin for binding biotin, so that it can act as a cross-linker 
between two biotinylated moieties (iii) easy commercial availability of a wide variety of 
biotinylated antibodies and aptamers, which allows incorporation of these bio-specific ligands in 
the device in future. The waveguides were patterned in thin-film aluminum, thermally 
evaporated on a glass substrate. The active sensor area was defined using a facile method of 
photo-activated patterning of biotin.  

When the slotline is excited by a microwave signal, ac magnetic fields are generated at the 
junction. These fields are orthogonal to the electromagnetic wave modes allowed in the coplanar 
waveguide. Consequently, no signal couples from the slotline into the coplanar waveguide. 
When magnetically labeled moieties are immobilized at the junction, the field distribution is 
perturbed resulting in the input signal being inductively coupled to the output at the coplanar 
waveguide. The output signal is proportional to the frequency of microwave excitation and is 
further enhanced by stimulating ferromagnetic resonance in the beads. The design of the 
microwave waveguides has previously been reported in [14] and is based on equations found in 
[15-16]. The condition for FMR is described as follows [17]:   
 

ωFMR=γµ0HDC                                                         (Eq. 1) 
   

where ωFMR is the FMR frequency;  γ,  the gyromagnetic ratio (~175 GHz/Tesla); µ0, the 
permeability of free space and HDC, a dc magnetic field bias. The bias field must be adequate to 
saturate the magnetic beads to ensure that their magnetization precesses in phase at resonance.  
   
 
3. Materials and methods  
 
 

  3.1. Materials and reagents    

Superparamagnetic beads, 1 µm in diameter, were obtained from MagSense Life Sciences (West 
Lafayette, IN, USA). Streptavidin coated magnetic beads (nanomag-D, 250 nm) were purchased 
from Micromod (Rostock-Warnemuende, Germany). Bovine serum albumin (BSA), (3-
aminopropyl) triethoxysilane (APTS) and dimethyl sulfoxide, anhydrous (DMSO) were obtained 
from Sigma Aldrich (St. Louis, MO, USA). A photoactivable form of biotin with 
tetrafluorophenyl azide moiety, EZ-Link TFPA-PEG3-Biotin, and fluorescein labeled 
Neutravidin were purchased from Pierce Biotechnology, Inc. (Rockford, IL, USA). SU-8 3050, a 



negative tone, epoxy based Photoresist was purchased from Microchem (Newton, MA, USA). 
Sylgard® 184 (Silicone elastomer kit) comprised of polydimethyl siloxane (PDMS) prepolymer 
and curing agent was obtained from Dow Corning Corp. (Midland, MI, USA). Corning 1737 
(Corning, NY, USA) one inch square glass slides were used as the substrate for the detection 
circuit.  

All general reagents and solvents were procured from Sigma Aldrich or VWR (West Chester, 
PA, USA). The phosphate buffer solution (PBS) consisted of 10 mM phosphate-buffered saline 
and 149 mM NaCl (pH 7.4). The blocking buffer used was a 1% (w/v) solution of BSA in PBS 
(pH 7.4). All chemicals were used as received, without further purification. Ultrapure water, with 
specific resistance of 18 MΩ-cm, was obtained from a Barnstead™ E-Pure™ deionization 
system (Waltham, MA) and was used for rinses and the preparation of buffers throughout the 
experiments. An Axiotron Inspection Microscope (Carl Zeiss MicroImaging, Germany) with an 
attached camera (Model TCA-3.0C from Tucsen Imaging Technology, Fujian, China) was used 
for acquiring the images shown in Fig. 7.   
   
   

3.2. Microwave circuit fabrication 
   

The microwave circuit was fabricated using photolithography and wet chemical etching. A 500 
nm film of aluminum was deposited onto a one inch square glass slide by thermal evaporation. 
The waveguides were then patterned using a 1:1 chrome mask and Karl Suss MJB3 (Garching, 
Germany) contact aligner to expose positive photoresist (Shipley 1818, Microchem) spin coated 
onto the slide. The exposed aluminum was etched in a standard aluminum etchant (16:2:2:1 
solution of H3PO4, H20, HNO3, CH3COOH) to form the waveguides. The remaining photoresist 
was removed with acetone. Finally, a 500 nm layer of silicon dioxide was sputtered onto the 
sensor surface for insulation and subsequent functionalization with biotin (as detailed in section 
3.5.1.). 
 

The waveguides were designed to allow propagation of frequencies in the 2-4 GHz range. 
As determined by Eq. 1, these frequencies correspond to the dc bias field required to saturate the 
magnetic beads. The microwave circuit was modeled for Corning 1737 glass substrate. Details of 
the modeling parameters used and the results obtained were published in an earlier report [14]. 
Briefly, both the slotline and CPW were designed to have a 50 Ω characteristic impedance to 
match available instrumentation (section 3.3.and depicted in Fig.2). The slot line is 78 µm wide 
and the CPW has a 78 µm center conductor separated from the ground plane on both sides by 28 
µm gaps. The distance from the end of the slotline to the CPW is 50 µm providing an active 
sensor area of approximately 50 µm by 78 µm (Fig. 5a). In order to allow the slotline to be 
driven from a coaxial cable, a ¼-wave stub, CPW-to-slotline transformer was also patterned on 
the glass slide. External electrical connections were made to the waveguides by wire bonding to 
a printed circuit board having coaxial cable connectors. 

 
 
 
 
 



 3.3. Electronic Instrumentation  
 
 

[Insert figure 2 here] 
 
 

The laboratory instrumentation used to measure the magnetic bead response of the sensor is 
shown in Fig. 2. A network analyzer (ENA5071C, Agilent Technologies, Santa Clara, CA) was 
used to excite the slotline with a microwave signal and monitor the signal coupled to the CPW. 
The excitation frequency, chosen to be 2.7 GHz in these experiments, lies within the designed 
range of operating frequencies for the microwave circuit. The network analyzer measures the 
transmission parameter, S21 - i.e. the ratio of microwave power received at the CPW to the power 
input at the slotline. The detected S21 signal depends on the number and location of magnetic 
beads present at the junction area and peaks when the excitation frequency matches the 
ferromagnetic resonance frequency set by the dc bias field (Eq. 1).  
 
The bias field was applied using a C-shaped iron core wound with two independent wire coils. 
The first winding is used to generate a dc field using a programmable power supply (Model 
2400, Keithley Instruments, Cleveland, OH). The microwave circuit was placed within the gap 
of the C-core so that the magnetic fields were perpendicular to the plane of the device. The 
second winding on the C-core was used to modulate the dc field at 160 Hz to allow lock-in 
detection of the signal.  Since the FMR response is a strongly non-linear function of the bias 
field, the modulation results in a second harmonic (320 Hz) variation in the amplitude of the 
microwave signal coupled to the CPW. Detection of this second harmonic component uniquely 
identifies the FMR effect of the magnetic beads and distinguishes the signal from stray, field-
independent coupling as well as possible feed-through of the modulation signal. The current in 
the modulation coil, supplied by an arbitrary waveform generator (N8242A, Agilent 
Technologies, Santa Clara, CA) and audio amplifier, provided an ac field amplitude of 42 mT.  
 
The S21 signal, at 2.7 GHz, was measured as the dc bias field was varied from 0 to 0.2 T. The 
second harmonic (320 Hz) modulation in the 2.7 GHz carrier was then extracted from the S21 
data using custom software implemented in MATLAB and plotted as a function of the dc bias 
field (Fig. 6c). 
 

3.4. Characterization of variation in sensitivity 
   

The spatial variation in sensitivity was characterized by measuring the output signal from a fixed 
number of beads placed at varying locations on the sensor area. Approximately 40 MagSense 
beads, glued to the end of a fine-tipped glass probe, were rastered across the active sensor area 
using an x-y stage. The signal obtained at each location was then mapped as shown in Fig. 4.  

 
 
 
 
 
 



3.5. Sensor area functionalization and characterization   
 

3.5.1. Photo-activated patterning of biotin on sensor area  
 

[Insert figure 3 here] 
 

The active sensor area (the area between the slotline and CPW where detection will occur) is 
approximately 50 µm by 78 µm. However, a much larger area (about 500 µm by 1000 µm) was 
deliberately chosen for biotin patterning. This was done in order to facilitate easy alignment of 
the sensor area with the pattern for UV exposure, within the limitations imposed by our 
exposure system. The waveguide substrate was passivated with silicon dioxide prior to biotin 
patterning both for electrical isolation and to provide a compatible layer for functionalization.  
The reaction scheme for the functionalization of the sensor area is depicted in Fig. 3. The silica-
coated device was rinsed with deionized water followed by isopropanol. The sensor area 
between the slotline and co-planar waveguides was treated with 50 µL of 2% (v/v) aqueous 
solution of APTS for 1 hour. The device was rinsed with deionized water and dried overnight in 
an oven at 100°C. 20 µL of a 10 mg/mL solution of EZ-Link TFPA-PEG3-Biotin in DMSO was 
deposited on the sensor area and allowed to dry at 40°C for about 2 hours. A maskless exposure 
system, SF-100 (Intelligent Micro Patterning, LLC, St. Petersburg, FL), was used to align and 
pattern a 500 µm by 1000 µm area encompassing the sensor using UV light. An exposure time 
of 30 minutes was used. Immediately after UV exposure, the slide was rinsed with PBS to wash 
away any unconjugated biotin. The sensor area was incubated with 100 µL of the blocking 
buffer for 15 minutes followed by rinsing with a copious amount of PBS.  
 

3.5.2.  Verification of biotin patterning by fluorescence microscopy  
 

For verification of the biotin patterning by fluorescence microscopy, the sensor area was treated 
with 200 µL of a 2 mg/mL solution of Neutravidin-fluorescein in PBS for 30 minutes. The 
devices were rinsed with PBS prior to imaging by an inverted fluorescence microscope, Olympus 
IX-71 (Olympus, Center Valley, PA) equipped with a PIXIS-512 cooled CCD camera (Princeton 
Instruments, Trenton, NJ). The camera was controlled by WinSpec32 software (Princeton 
Instruments, Trenton, NJ). A 300 Watt xenon arc lamp was employed as the light source. The 
setup used for imaging was: a 40x/0.17 objective (UplanSApo, Olympus, Center Valley, PA), a 
450/50 nm excitation filter and a 515 nm long pass emission filter.  
   

3.6. Fabrication of microfluidic chip  
   
The microfluidic chips used in this study were fabricated by replica molding of PDMS from a 
SU-8 master. The SU-8 master, containing negative-relief of the microchannel, was fabricated 
employing standard photolithographic techniques as described in an earlier study [18]. To obtain 
a PDMS replica, a 10:1 (w/w) mixture of the prepolymer and curing agent was mixed thoroughly 
and allowed to degas under vacuum. The SU-8 master was placed in a mold and the degassed 
prepolymer-curing agent mixture was poured on it. The assembly was then placed overnight in 
an oven at 65 °C to cure the polymer. Subsequently, the assembly was removed from the oven 
and allowed to cool to room temperature, prior to gently peeling off the PDMS replica from the 
SU-8 master. The chip thus obtained was a single, straight flow-through channel ~ 100 µm wide, 



~ 100 µm deep and ~ 2 cm in length. Inlet and outlet holes were punched into the PDMS chip 
using a belt-puncher.  
 
 

 3. 7. Demonstration of detection technique  

The detection technique was demonstrated by measuring the output signal obtained from beads 
immobilized at the sensor area due to biotin-avidin binding. The microchannel fabricated earlier 
in PDMS was carefully aligned, under an optical microsope, to the biotin-patterned sensor area. 
In all subsequent steps, fluid was introduced into the microchip using a syringe and drawn out 
using tubing connected to house-vacuum. Prior to experiments, the PDMS chip was conditioned 
with a solution of 1% BSA (w/v) in PBS for 30 minutes to minimize non-specific binding of 
magnetic labels. The chip was thoroughly rinsed by flowing copious amounts of PBS. 
Subsequently, 10 µL of a 1mg/mL suspension of nanomag-D streptavidin-coated magnetic beads 
was introduced into the chip. A magnetic field gradient, to attract the beads to the junction area, 
was created by applying a dc current (160 mA) at the terminals of the CPW. After 15 minutes, 
the current was switched off and the unbound beads removed by rinsing with PBS. The chip with 
the immobilized beads was placed in the gap of the C-core and the FMR signal measured. For a 
control, the experiment was also repeated on a second device without biotin patterning.  
 
 
4. Results and discussion  

 
 
4.1. Characterization of spatial variation in sensitivity  

   
[Insert figure 4 here] 

 
 

MagSense beads affixed to a glass probe were scanned over the active sensor area. The output 
signal varied with the location of the beads, as illustrated by the color map in Fig. 4. The highest 
sensitivity, shown in dark red, was observed around the inner tips of the CPW. The spatial 
variation in sensitivity arises due to non-uniformity in the microwave magnetic field within the 
active sensor area. The distribution of the field depends on the geometry and layout of the 
waveguides, and was discussed in [14]. Intuitively, a larger output signal can be expected if the 
beads are immobilized closer to the pickup waveguide (CPW). These measurements enable 
placement of the fluidic channel and the bio-chemically activated area to coincide with regions 
of highest detection sensitivity. 
 
Additionally, it should be noted that the data in Fig. 4 represent the signal obtained from 
approximately 40 beads. The variation of the output signal has also been studied with respect to 
variation in the number of magnetic beads (ranging from 60 to 900) at the sensor area (data not 
shown). A lower output signal was observed with fewer beads or with beads placed further away 
from the coplanar waveguide (the pickup waveguide). Further, at the lowest number of beads 
measured (approximately 60 beads), the observed signal to noise ratio was approximately ten.  
These measurements characterize the sensitivity of FMR detection and will enable optimization 



of the microwave waveguide design for single bead detection in subsequent studies.As reported 
in [14], single bead sensitivity may be achieved with optimization of the junction geometry, in 
particular, the spacing between the slotline (source) and CPW (pickup).  
 

4.3. Sensor area functionalization and characterization   
 

[Insert figure 5 here] 
   
The method of photo-activated patterning was chosen to biotinylate the sensor area as it enabled 
better spatial control of the area to be functionalized compared to other methods such as 
microcontact printing. As discussed in Section 3.5.1. , the silica-coated sensor area was 
functionalized with EZ-Link TFPA-PEG3-Biotin, a photoactivable biotin containing the 
tetrafluorophenyl azide group. Upon UV irradiation, TFPA forms a highly reactive perfluoroaryl 
nitrene group that covalently bonds with the primary amino groups on the silica surface, 
previously introduced by treatment with 2% (v/v) APTS solution. The region where biotin is 
conjugated to the amine groups defines the active sensor area.  
 
The photo-patterning protocol was verified by then treating the biotinylated area with 
fluorescein-neutravidin and imaging under a fluorescence microsocpe. As can be seen from Fig. 

5b, the technique produces homogeneous biotin coverage at the sensor area.  
      

4.4. Demonstration of detection technique 

[Insert figure 6 here] 
 

Streptavidin-coated beads were flowed in the microchannel over the biotinylated junction. 
Simultaneously, a dc current was applied to the CPW. The resulting magnetic field gradient 
attracted the beads to the tips around the CPW – coincidentally, also the region of highest 
sensitivity. The efficiency of biomolecular reactions in immunosensing techniques is typically 
limited by the diffusion rate of the molecular species. Applying a magnetic field gradient draws 
the beads from solution and enhances the likelihood of streptavidin-biotin interactions and 
thereby improves the binding efficiency. Fig. 6a shows the immobilized beads remaining on the 
junction after thorough rinsing with PBS. For comparison, the control device without biotin is 
also shown (Fig. 6b). As expected, no beads were retained after rinsing. The signal measured 
from the immobilized beads was plotted in Fig. 6c and is easily discerned from the control. 
These data demonstrate the proof-of-concept of inductive detection of magnetic labels using a 
sensor implemented with standard semiconductor processing techniques. Further experiments are 
underway to adapt the sensor for detection using antibodies and aptamers and to fully establish 
the analytical figures of merit for this sensor. 

   
5. Conclusion  
   

 



To summarize, a new microfluidic immunosensing technology using FMR-enhanced, inductive 
detection of magnetic bead labels has been demonstrated. The key advantage of this approach 
lies in the use of materials and processes compatible with and standard in integrated circuit 
manufacture. The sensor can thus be readily integrated with electronic circuitry for a low-cost, 
immunosensing platform amenable to a wide range of biosensing applications. 
 
The variation of the output signal as a function of the location of magnetic beads on the sensor 
area was studied to determine regions of highest detection sensitivity. Proof-of-concept 
experiments were conducted using biotin-avidin binding. An integrated PDMS microfluidic 
channel was used to introduce streptavidin-functionalized magnetic beads. The resulting binding 
of the beads produced a distinct sensor output compared to a control.The use of magnetic fields 
to enhance the interaction of the beads with the biochemically functionalized surface was also 
demonstrated. The beads were attracted to the most sensitive regions of the sensor. This 
enhancement of the interaction rate between the analyte and sensor will be essential for the 
detection of very low concentrations of analyte. Experiments are currently under way to 
determine the ultimate chemical sensitivity of this approach. 
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