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Chapter 1: Introduction

The methods used to sell software over the last decade changed dramatically. Software
distribution platforms (such as Application Stores) toppled brick and mortar stores as
the default means of acquiring software. Among software distribution platforms, mobile
Application Stores host applications developed by a wide variety of companies. As of
2015 the iTunes App Store surpassed 100 billion application downloads [1] and the Google
Play Store exceeded 175 billion downloads [2].

The services provided by Application Stores help lead to their success. Application
Stores provide developers a location to host and manage their applications while the
Application Store handles payments. For users, Application Stores offer a large selections
of applications in one location presented in a ranked order with application reviews to
guide users when making a purchasing decision. Acting as an third-party, Application
Stores moderate both the applications and application reviews provided to ensure ethical
treatment of both developers and users.

Not only is using an Application Store more convenient for both users and develop-
ers, but it has also affected the way developers interact with their users. Third-party
moderation of reviews by the Application Stores allows all users a glimpse behind the
curtain of software maintenance. Before, anonymous feedback forms and error reports
cloaked the maintenance portion of the software development life. Users re-purpose
Application Store reviews to provide developers valuable information about bugs and
future requirements [3–5] in the free text portion of their reviews. Users can attempt
to “coax” reactions from developers through their rating (such as a star rating) of their
reviews. Using the rating as weapon provides developers with incentive to address the
users’ needs as ratings can affect the ranking of an application in the Application Store
and ultimately the developers revenue.

The user-developer relationship facilitated through Application Stores is not always
adversarial. Users also provide developers information on what features to implement
and prioritize. According to Vision Mobile’s State of the Developer Nation [6], 54% of
application developers rely on advertisements and subscription models. These financial
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models require users to use the application over long periods of time to generate profits.
This incentivizes developers to listen to feedback to both growth and maintain their user
base. But are developers listening? Current research [3, 7–9] aims to help developers
identify actionable information from application reviews, but we know little about how
developers are currently responding to users. Ignoring developer’s focus could lead to
research and the development of tools that are ill-suited to developers’ needs.

In this study we focus on feedback loops, which are instances of application reviews
where developers respond to a user concern. We determine feedback loops using release
notes and user reviews provided on the iTunes App Store [10]. We identify feedback loops
by searching for instances where users gave their feedback in the form of users reviews
addressed in the release notes of an application’s subsequent release. To conduct this
study we analyzed a corpus of 1752 applications from the iTunes App Store consisting
of 30,875 release notes and 806,209 user reviews First, we need to label the specific
statements that identify feature request and bug reports from application reviews and
release notes. To do this we use Support Vector Machine [11] classifiers. Second, we need
to determine whether the concerns expressed in the application reviews are related to
the ones described in release notes. Thus, we need to determine whether two sentences
talk about the same thing, even when they are using a rich vocabulary. To determine
relatedness we use Wikipedia Miner [12]. Additionally, we explore the sentiment users
express in application reviews to illuminate strategies users follow to elicit responses from
developers. We use SentiStrength [13] to measure the sentiment expressed by users.

Using our corpus and the automated data analysis, we answer the following research
questions:

RQ1: Are developers responding to feedback provided in user reviews? We found
feedback loops present in 331 applications which represents 18.7% of the eligible appli-
cations in our corpus. (Section 4.1)

RQ2: What are the characteristics of these feedback loops? Among the feedback
loops, Log-in Issues, Feature Requests, and Crashing information provided in application
reviews were resolved by developers more often than general reports of bugs. When
analyzing the categories of the feedback loops, we discovered developers of music and
social networking applications responded to the most user feedback. We found that the
economic model employed by the developer did not influence the likelihood of responding
to user feedback. The largest amount of feedback is addressed by developers within a
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quarter of being reported. Developers responded to a significant amount of bugs and
crashes within a week of being reported, particularly in the games category.(Section 4.2)

RQ3: What do users do that enables a feedback loop? Through analysis of user
ratings, we found Crashes and Log-in Issues elicited developer response in lower star
ratings while Feature Requests comprised most of the developer response in highly rated
reviews. Interestingly, the proportion of bug fixes addressed was similar across both
high and low star ratings. We also noted instances where users attempted to “coax”
developers for responses by withholding star ratings and claiming that they will give a
higher rating when the developer addresses their concerns. In all instances, none of the
reviewers fulfilled their promise. An exploration of sentiment revealed a majority of the
feedback addressed by developers expressed using a neutral tone. (Section 4.3)

Our study has implications for researchers, developers, users, and Application Stores.
Researchers can better align their questions with the needs of developers and can focus
on simplifying communication barriers between users and developers. Developers can
discover where to focus their energy to minimize lower ratings each release. Users can
become aware of the steps they need to increase the chances of the developers addressing
their feedback. Application stores can further construct their platforms to help developers
and users communicate.

This paper makes the following contributions:

1. Research Questions. We designed and answered three novel research questions
to understand the extent to which developers respond to feedback in Application
Stores.

2. Mining Repositories. We developed tools and metrics to identify feedback loops
in Application Stores. We applied our tools on 1752 mobile applications.

3. Implications. We present our findings from the perspectives of researchers, de-
velopers, users, and Application Stores.
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Chapter 2: Background

In order to be able to process our large corpus, comprising of 806,209 application reviews
and 30,875 release notes from 1752 mobile applications, we use several machine learning
techniques from two categories: supervised and unsupervised.

2.1 Unsupervised Techniques

SentiStrength
In RQ3 we look at the characteristics of feedback loops and one of the metrics we

use is the sentiment expressed in the user review. Sentiment analysis, also called opinion
mining, quantifies the emotion conveyed by the author in texts. Often, sentiment analysis
is a binary (positive or negative) or trinary (positive, neutral, negative) classification [13].

For our research we elected to use SentiStrength [13], a lexicon based tool that
calculates the sentiment expressed in short texts. SentiStrength performed well when
tested on online social networks [14] and has been used to detect sentiment for similarly
informal texts such as twitter, Yahoo! answers, and product reviews from Amazon
[15–17].

SentiStrength operates as a single-scale classifier and simultaneously calculates both
positive and negative sentiment in texts. When given a sentence, SentiStrength returns
two values on a scale of 1 to 5 where 1 is weakly expressed and 5 is strongly expressed
emotion. The first value returned measures the level of positive emotion expressed and
the second measures level of negative emotion expressed in the given sentence. We
simplify these values to a single score by subtracting the score for negative emotion
from positive emotion to get the net sentiment of the sentence. The net sentiment of
a sentence can have a value from 4 to -4 where 4 is the most positive sentiment and -4
is the most negative sentiment. SentiStrength addresses several features that commonly
appear in informal texts, such as application reviews, like stronger emotion denoted by
repeated letter use and repeated punctuation.

The following three sentences are examples from our corpus. The net sentiment from
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SentiStrength is shown in parenthesis at the end each sentence.

• “I looooooooooove this app!!!!!!!” (4)

• “this app is a blessing and a curse.” (0)

• “Another ridiculous update without new levels.” (-2)

Wikipedia Miner
We use a semantic relatedness tool to identify release notes and application reviews

that compose a feedback loop. Semantic relatedness quantifies the multitude of possible
relationships between concepts such as “has-a”, “is-a”, “is-part-of”, or ”is-close-to” within
a taxonomic scheme. To calculate the semantic relatedness we use Wikipedia Miner
[12], which uses the link structure of Wikipedia to determine the relationships between
concepts. Wikipedia Miner represents the relatedness between two concepts as a value
from 0 to 1, with 1 being the most related. In addition to a relatedness score, Wikipedia
Miner returns a confidence value for the relatedness score.

The confidence value exists because Wikipedia Miner must disambiguate the given
topics. Consider the concept “papyrus”; papyrus a type of paper, but it is also a typeface,
the name of a comic book series, the name of a UML2 tool, and the name of a race
horse. As Wikipedia is a large, open-source encyclopedia, disambiguation is present
when comparing most concepts. Like semantic relatedness, the confidence score is also
a value from 0 to 1, with 1 being full confidence. Occasionally, Wikipedia Miner would
not return a confidence value. We understood this to be a vote of no confidence and
returned a value of 0.

Our installment of Wikipedia Miner was built on the 7/22/2011 dump of Wikipedia.
Alternatives to Wikipedia Miner we considered included Explicit Semantic Anal-

ysis(ESA) by Gabrilovich and Markovitch [18] and a search-engine relatedness mea-
sure [19]. ESA generates a relatedness vector of two texts based on entire Wikipedia
articles and generally correlated more closely with human understanding. ESA’s use of
the entire article increase the cost of the algorithm, whereas Wikipedia Miner offered
slightly worse results but cut out expense by only using the link structure [20]. The web-
based measure of semantic relatedness also correlated more closely with human judgment
than Wikipedia Miner, but only using certain search engines [19]. Since the publishing
of the article, Yahoo, the search engine with a higher correlation, stopped reporting the
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total number of search results needed in the calculation [21]. Wikipedia Miner bases
the equation to determine relatedness between articles on the Normalized Web Distance
proposed in [19], thus making it the best compromise.

2.2 Supervised Techniques

Support Vector Machines
We use support vector machines (SVMs) [11] to classify release notes and application

reviews. An SVM uses a supervised learning model and is a binary classifier that several
other researchers [22–24] found suitable for classifying texts. To perform classifications
the SVM assumes the vectors are linearly separable by class and calculates hyperplanes
to divide the classes. Each feature is a dimension considered while calculating the hyper-
plane that creates a very high dimensional problem for which SVMs are robust enough
to handle. We use LIBLINEAR, a library developed by Fan et al. [25].

In this research we use two separate classifiers; one for the release notes and one for
the application reviews. Two classifiers are necessary due to difference in language in the
statements and classes used to label the two sets of data. To classify the sentences (in
this section referred to as documents), we represent each document as a vector of words
(in this section called features). We also weight each feature according to its significance
within the data set(Section 3.4.1).

Our implementation of LIBLINEAR does not use multiclass classification, meaning
each document is only allowed to belong to a single class [25]. Due to this restriction, we
chose to work at sentence level granularity for both release notes and reviews because
both application reviews and release notes are not restricted to atomic topics. For
example, the release notes of a single version of an application can have a section for
bug fixes and a section for new features, making assignment of the entire release notes
to a single label impractical. By breaking the release notes into sentences we classify the
sentences in the bug fixes section as bugs and in the new features section as features.

The following are examples from our corpus with the classification listed in paren-
thesis at the end of each sentence:

• Application reviews

“It gets halfway through opening, hangs for a second and closes.” (Crashing)



7

“Plz make a very easy tutorial for the app!!” (Feature Request)

“Please fix the broken badge notifications.” (Bugfix)

• Release Notes

“- Songs can now be played in a choice of 7 keys” (Feature)

“ Fixes for a number of cases where ’Save As’ could fail” (Bug)
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Chapter 3: Experimental Setup

3.1 Feedback Loops

We define a feedback loop as an instance where a user review describes a short-coming
or a request and at a later date the release notes of the mobile application addressed
the short-coming or request. Feedback loops are only found within the user reviews and
release notes of a single application.

For example, a user, Alice, installs an application on her phone. After a new update,
Alice is unable to log in to her application. Frustrated by her experience, Alice turns to
the iTunes App Store and posts a review for the application stating, ”This app always
comes up with a login error disclaimer”, and gives the application 3 stars. Alice posting
a review that identifies a bug potentially begins a feedback loop.

Bob, the developer of the application Alice downloaded, checks the iTunes App Store
and reads Alice’s review. Bob, now aware of the bug when logging in, fixes the problem.
In the next release, Bob includes ”Login issue fixes” in the release notes posted on the
iTunes App Store. Bob’s response to Alice’s concern completes a feedback loop.

Alice and other users download the new update and enjoy a better experience with
their application. Bob should no longer receive low rated application reviews for the
fixed login issues. The iTunes App Store can generate more profit from more downloads
of the now higher quality software. Completing feedback loops creates a win-win-win
situation for all parties involved.

3.2 Corpus

We divided our corpus into three main parts, application metadata, release data, and
review data. Within our corpus the submission dates of release notes range from July
7, 2008 to February 2, 2015 and the application reviews range from July 10, 2008 to
January 28, 2015. A more detailed explanation of the information stored in the corpus
can be found in Appendix A.
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3.2.1 Data Collection

This section details the methodology for obtaining the data in our corpus.

3.2.1.1 Application Metadata and Release Notes

We collected the release notes for the iOS applications in batches of 999 applications per
day from the iTunes App Store. We chose to limit the number of applications downloaded
to prevent being locked out of the iTunes App Store. We found the iTunes App Store
preferable to the Google Play Store [26] in this research because the iTunes App Store
saves the release notes for up to the previous 25 releases while the Google Play Store
only displays the most up-to-date release. The algorithm works in five steps.
Step 1: The algorithm generates a list of application ids that will be downloaded for
the day. In this list we store:

1. The id number of the application on the iTunes App Store

2. The total number of reviews the application received last time we collected its
information

3. The date we last collected the application’s information

4. The number of new reviews submitted since the last time we collected the appli-
cation’s information

The algorithm chooses the top 999 id numbers with the earliest date previously down-
loaded and generates a daily id file.
Step 2: The collection algorithm then retrieves all the information from the iTunes App
Store using the id numbers provided in the daily id file.
Step 3: After collecting the daily application information, the algorithm stores the
application metadata in the database. The algorithm then extracts the release notes
from each of the daily application and compares them with the existing release notes
file. We add any new release notes to the data base and ignore release notes previously
collected.
Step 4: This is the “growing” stage. The iTunes App Store often recommends addi-
tional applications to customers on each page; the recommended applications are one or
more of the following categories:
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1. The top iPhone applications

2. The top iPad applications

3. Other applications by the same developer

4. Applications that customers who bought this application also bought

Our algorithm collects all of the recommend application ids and queues them to the id
bank with other applications the algorithm not yet scraped.
Step 5: The final step of the algorithm updates the complete list of ids by changing the
last read date and the number of reviews. Our mining algorithm was originally seeded
with the top 50 iOS applications as determined by Distimo 1 on December 30, 2014.

3.2.1.2 Application reviews

The iTunes App Store does not store a significant number of reviews on each page
accessed by the release notes scraper so we deemed it necessary to create a second scraper
to accomplish this. Using the number of new reviews as determined by the release notes
algorithm, we use a modified version of Kent Bye’s script 2 which scrapes a number of
reviews for a single application from the iTunes App Store.

The iTunes App Store stores reviews on separate pages, with each page containing 10
reviews. Our scraper collects a maximum backlog of 100 pages of reviews per application
each run, up to 1000 reviews at one time. Each day the review mining algorithm runs
until it reaches 14500, a limit implemented to prevent the iTunes App Store from blocking
requests, or until the request times out five times. As a result, reviews are a limiting
factor in the size of our corpus. Presently, we have collected reviews for 1752 applications
for a total of 806,209 application reviews.

This section details the methodology for annotating release notes and application
reviews for training and test data for the SVM classifiers.

1http://www.distimo.com (now part of App Annie)
2https://gist.github.com/kentbye/3740357
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3.3 Data Annotation

Training and test data for the SVM classifiers requires the creation of human annotated
sets of data. We followed a separate procedure for release notes and application reviews
due to differences in language and purpose.

3.3.0.1 Release Notes

The author and a graduate student in Computer Science completed the classification of
a sample of release note statements using qualitative thematic coding [27] to build the
data for training the classifier.

We took a random sample across a corpus consisting of release statements from 29
mobile applications and classified the same data in isolation to compare for agreement.
The classifications were validated by reaching 79% agreement on 20% of the sample
corpus using the Jaccard Coefficient [28]. The sample corpus contains 3667 release note
statements.

We identified each document as belonging to one of the four classes:
Bugs: This class describes statements in release notes that correct flaws within the
application. An example of a statement belonging in the bugs category is “Fixed a crash
when closing documents while there was an active text insertion point.”
Enhacements: This class describes statements in release notes that build on previously
introduced features or improve application performance, but do not correct overt flaws
like those in the bugs category. An example of a statement belonging in the enhancement
category is “Improved the performance of the Stroke and Fill layer styles.”
Features: This class describes statements in release notes that introduce new func-
tionality or properties to an application. An example of a statement belonging in the
features category is “Added preference setting for prompting to save session information
on close.”
Miscellaneous: This class describes text we do not analyze that contains titles, head-
ers, punctuation, signatures, or other organizational type text that are not considered
in our analysis. Statements such as “thank you to all our fans!” also fall into the miscel-
laneous category.
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3.3.0.2 Reviews

We divided user reviews into more diverse classes than release notes as the text has
more varied purposes, such as admonition, praise, or requests, compared to release notes
which generally only inform the readers of software changes.

We began with the set of twelve classes from Khalid et al. [4] and then adjusted the
classes as we saw trends in the data to a total of 16 classes. The labels used and their
description are found in Table 3.1.

When labeling the reviews we treat them similarly to unstructured interviews as
application reviews are more open-ended than release notes. Instead of using inter-
annotator agreement, we trained two computer science students on randomly selected
reviews from the corpus and allowed them to label the reviews in isolation. In the event
of disagreement, the labels were resolved by the annotators and the author using the
negotiated agreement technique [29]. The author moderated the negotiation process
to ensure that one coder was not incorrectly disproportionately deferred to, one of the
threats recognized in [29]. The coders reached an agreement of 97% through negotiation
over 6 iterations from an average inter-rater agreement using the Jaccard Coefficient [28]
of 62% agreement.

The login class is one of the labels we added to our original list through the negotiation
process. Amongst the data it was often hard to distinguish if a login problem was the
result of network issues or just a general implementation bug. Login issues appeared so
frequently in our training set of reviews that we decided to create a separate class for it
rather than guess what was most appropriate in each instance.

In our corpus, we found no reviews concerned about privacy, but six concerned about
business ethics or cheating. We feel the lack of privacy concerns in our data compared
to [4] may be the result of the Khalid et al. focusing on more reviews of a smaller number
of applications.

We adopted the “user is always right” philosophy when assigning a class to eliminate
bias stemming from the labelers tech background. For example, one user complained:

Horrible. I got the game and it was fun but when I waited too lomg[sic] the
internet played for me and I lost the game. That is so stupid. Everybody in
the game waited for some time but that did not happpen[sic] to them. Needs
to be fixed.



13

Category Label Description

Fixes

Bugfix A general category for errors that do not
fit in the more specific types of bugs listed
below.

Response Time Mentions of slowness within an applica-
tion. This does not include complaints
about network problems.

Resource Heavy Mentions of battery, energy, or memory
consumption.

Crashing Mentions of crashing or freezing within an
application.

Network Issues Mentions of connections or slowness of
a network. This include problems with
multi-player features on game applica-
tions.

User Interface Mentions of UI.
Log-in Issue Mentions of problems with login.

Fixes & Requests Update Related Mentions of problems due to updates, re-
quests for updates, transfer problems, lost
data after update.

Requests Feature Request Mentions of things that developers should
add to applications.

Crowdsource Q & A Requests seeking to get answers for how
to do things or to meet other people inter-
ested in the same things on reviews.

General Information Content Related Mentions of things related to what the ap-
plication has or does that does not fall in
the other categories.

Not Specific Statements that don’t tell much about the
application. Often very short.

Economic Models
Ad Removal Complaints about the presence of ads

and/or their interference with the func-
tioning of the application.

Additional Cost Complaints about having to pay for things
in the application.

Use Limit Complaints about limitations on use, such
as can play for free 3 times every hour, etc.

Ideological Privacy and Ethical Issues Mentions that the application invades pri-
vacy or does/allows something objection-
able, such as cheating.

Table 3.1: Labels used to tag review statements. The left columns shows the larger
theme that the label falls under, the middle the label, and the right a description of the
label.
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From a developer’s point of view, one can infer that the auto-play feature in question is
both necessary and, most likely, functioning properly. However, the user felt that their
version of the application malfunctioned resulting in a sub-par experience.

An automatic classifier may not differentiate between a buggy feature and a feature
that upset a customer. We also recognized that users have more experience with the
application than the people annotating the user reviews. We chose to err on the side of
the user and therefore classified the above example as a bug.

3.4 Text Analysis

This section explains our approach to finding feedback loops.

3.4.1 Preprocessing the Data

Before classifying any of the data we first convert the raw text into vectors for the SVM
classifier.

Our first step breaks the release notes or reviews into sentence-level documents. Then
we remove formatting noise in the documents that make it easier for humans to read
but serves no purpose for a computer. The linguistic noise our preprocessing focuses on
removing is topic headers, distinct bullet points, different word forms, and stop words.
The following are the steps executed to prepare the data for classification.

If the data source is release notes, we removed the text related to section headers
within the release notes. Figure 3.1 contains an example of a section header in release
notes found in the application Afterlight. The statement “BUG FIXES” should not
be considered for classification under the Bug label because it does not represent a
change made to the application, while the phrase “bug fixes” in “Other small bug fixes
and improvements” should be considered as valid for classification. User reviews do not
usually follow the list format common in release notes, therefore we skip removing section
headers when processing user reviews.

When creating a vector, the algorithm considers the words “fixed”, “fixes”, “Fixed”,
and “fix” as four different features. The next steps standardizes language.

First, the algorithm converts all of the text to lowercase and expunges non-alphanumeric
characters. This gets rid of the distinction between “fixed” and “Fixed” as well as re-
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Before preprocessing

BUG FIXES

-A crash that occured when an image is sent to
Afterlight from another app has been fixed.
-Other small bug fixes and improvements.
-Fixed a small saving bug.
-a small fix to a location data bug

After preprocessing

crash occur imag fix
small bug fix improv
fix small save bug
small fix locat data bug

Figure 3.1: A sample of release notes. Notice the two different uses of the phrase “bug
fixes” before preprocessing: one as a divider and one as something shipped in the release.
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moving any extra bullets or symbols such as “ä”.
Next we remove stop words. Stop words are words that are necessary for the mechan-

ics of natural languages, but do not further understanding of concepts such as “to”, “at”,
or “the”. Stop words commonly include prepositions, articles, pronouns, and adverbs.

In addition to a general language stop word list, we also created a mobile stop word
list. This list contains all the non-English names of the applications in our corpus (e.g.
Facebook, TriviaCrack, and Afterlight) but does not remove the names of applications
that use existing English words (e.g. Color Splash, Planets, and Alarm Clock Free) as
these words may appear elsewhere in the corpus.

Removing non-English names prevents over-fitting the classifier on applications as-
sociated with a label and over-matching the semantic relatedness score, described in
Section 3.6.1. For example, application “BuggyApp” has many reviews or release notes
that mention “bug” or “fix” in the form of “BuggyApp has too many bugs. Don’t buy it!”
or “fixed a bug that made BuggyApp slow”. When generating a model with the training
set the classifiers will associate “BuggyApp” with the “bugfix” class. When classifying
another application not in the training set, “AnotherApp”, the classifier will more weakly
connect a bugfix and the “bugfix” class because the documents from “AnotherApp” do
not contain references to “BuggyApp”.

The final step in standardizing the language stems the words using the Porter Stem-
ming Algorithm [30] (Porter stemmer) from the Natural Language Toolkit (NLTK) [31].
The Porter stemmer transforms words from their conjugated or inflected forms to a re-
duced form of the word. Stemming the words allows the classifiers to make associations
on the concepts conveyed by the words, not based on the tense or variation of the word.
After transformation by the Porter stemmer the words “fixed”, “fixes”, and “fix” are all
reduced to “fix” as shown in Figure 3.1.

3.4.2 Converting to Vectors

After cleaning the documents, the next step is to convert the documents into vectors
for the SVM classifier. We use the GenSim libraries for creating dictionaries, storing
corpora, and generating a tf-idf model [32].

First we need to make a Term Frequency-Inverse Document Frequency (tf-idf)
model for the entire corpus which will give each feature in the vector a weight [33].
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1 Original “Bug fixes and improvements”
2 Preprocessed “bug” “fix” “improv”

3 Create dictionary “bug” “fix” “improv”
dict. index 21 163 262

4 MM Corpus (21,1) , (163,1) , (262, 1)
5 Tfidf Transform (21, 0.429), (163, 0.662), (262, 0.614)
6 Liblinear SVM Format “0 21:0.429 163:0.662 262:0.614”

Table 3.2: The steps for transitioning a release note into a corresponding tf-idf-scaled
vector for use in the SVM classifier.

As a running example in this first section we use the common release note statement
“Bug fixes and improvements”. The progress of this sentence through the next steps is
shown in Table 3.2. At this point in our document preparation algorithm our example
document is in the form of Table 3.2 Row 2.

We begin converting the documents to vectors by creating a dictionary from the all
documents in the text corpus (either for release notes or reviews, the corpora remain
separate). The dictionary maps all features to unique numeric identifiers.

In the example, we now have a dictionary that contains “bug”, “fix”, “improv” where
the numeric identifiers of the features are 21, 163, and 262, respectively (Table 3.2 Row
3).

Making the initial corpus large is crucial because the dictionary will define the number
of dimensions for the SVM Classifier. Words excluded from the dictionary will not be
considered features the SVM classifier. If you want to add documents that have new
features to the corpus, the new features will either be ignored or the process to convert
the statements to vectors will have run from the beginning.

After creating the dictionary, the algorithm transforms the documents using the
dictionary to a matrix market (MM) formated corpus. The MM formatted corpus stores
the sparse text data efficiently [34].

The algorithm represents documents retrieved from the MM formated corpus using
the GenSim library as tuples. The first value in the tuple is the index of the feature in
the dictionary and the second value is the number of times that feature appears in the
document (Table 3.2 Row 4). In the example, each feature appears once in the document
so the second value in each tuple is 1.
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Label precision recall f1-score support
Bug 0.78 0.92 0.84 62

Feature Request 0.45 0.55 0.49 33
Enhancement 0.80 0.75 0.77 84

Misc. 0.41 0.28 0.33 40
avg / total 0.67 0.68 0.67 219

Table 3.3: Evaluation metrics of the release note SVM classifier by class.

Next, the algorithm uses the GenSim libraries on the numerical corpus to generate a
tf-idf model. After the tf-idf model transforms the corpus, each tuple contains the index
of the feature and the tf-idf real-value weights (Table 3.2 Row 5).

With each additional document added to the corpus the tf-idf model and the pro-
cessed corpus must be updated; this also means the algorithm must recalculate the tf-idf
for each document in the processed corpus.

The final step in preparation for classification converts the vectors of tuples into a
string vectors for use by the SVM Classifier (Table 3.2 Row 6). We add a field to the
beginning of the string that indicates the class to which the document belongs. The
SVM classifier considers the class when training and testing on the data, but will ignore
the class when predicting classes for documents.

3.4.3 Classifier Evaluation

Release Notes SVM We trained the release notes SVM classifier on some of labeled
release notes discussed in Section 3.3.0.1. To prevent the classifier from over-fitting the
data we divided the documents to include 80% of each application’s documents in the
training data and 20% in the testing data. The training data consisted of 889 documents
and the testing data consisted of 219 documents.

The release note SVM classifier reached 67% precision over 4 classes summarized in
Table .
Application reviews SVM We trained the application reviews SVM classifier on la-
beled reviews discussed in Section 3.3.0.2. Unlike the release notes, the labeled docu-
ments represent a random selection from all of the applications, not from a set of selected
applications. To balance the training and testing data for the user reviews, we chose
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Label precision recall f1-score support
Not Specific 0.62 0.70 0.66 205

Privacy & Ethical Issues 0.00 0.00 0.00 2
Bug Fix 0.55 0.42 0.48 40

Update Related 0.65 0.79 0.71 14
Content Related 0.50 0.48 0.49 120
Feature Request 0.44 0.26 0.33 27

Network Problem 0.29 0.50 0.36 4
Additional Cost 0.33 0.43 0.38 14
Response Time 0.50 0.50 0.50 6

Ad Removal 0.86 0.67 0.75 9
Compatibility Issues 0.67 0.33 0.44 6

Resources Heavy 0.50 1.00 0.67 3
Crashing 0.74 0.74 0.74 23

User Interface 0.33 0.20 0.25 10
Not English 1.00 0.86 0.92 21
Use Limit 0.00 0.00 0.00 2

Login Issue 0.00 0.00 0.00 2
avg / total 0.58 0.58 0.57 508

Table 3.4: Evaluation metrics of application reviews SVM classifier by class.

80% of the labeled documents of each class for the training data and the other 20% for
the testing data to prevent over-fitting or exclusion of some classes. The training data
consisted of 1996 documents and the testing data consisted of 508 documents.

The user review SVM classifier reached 58% precision over 17 classes summarized in
Table . Our results are on par with Panichella et al. [7], who achieved 59% precision
following similar methods.

3.5 Sentiment Analysis

This section describes the additional processing on the raw data to maximize the ef-
fectiveness of SentiStrength [19]. Subsection 3.5.1 details the handling of emoji and
subsection 3.5.2 explains how we correct spell to include the presence of repeated letters.
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Emoticon Emoji
:D
>:(

’- -

Table 3.5: A sample mapping of emoji to emoticons.

3.5.1 Emoji

Emoji are pictures used to convey emotions available for use in electronic messages, like
less abstract emoticons. Originally from Japan, technology providers such as Microsoft,
Apple, and Google added emoji as default characters sets to their mobile devices as their
popularity grew and eventually standardized the Unicode codes for a set of common
emoji in 2010 [35]. As a result, emoji appear in many application reviews. Due to the
platform-dependent meaning of emoji before standardization in October 2010, we discard
all emoji used in reviews before standardization.

SentiStrength includes emoticons in its sentiment calculations, but, unfortunately,
does not include emoji. Nevertheless, research [36, 37] has shown that emoticons con-
tribute to more accurate sentiment analysis and as emoticons and emoji serve similar
purposes, we created a mapping between common emoji and emoticons to improve sen-
timent analysis.

Our mapping matches each emoji to a similar emoticon from SentiStregth’s emoti-
con library as shown in Table 3.5. If the emoji did not correspond to SentiStrength’s
emoticons we added a new entry from Wikipedia’s list of emoticons3 if the sentiment and
appearance were similar. At the same time we also expanded the emoticons parsable by
SentiStrength. Finally, if an emoji did not correspond to any emoticons in Wikipedia’s
list we created three general categories to encapsulate “generally positive”, “generally
neutral”, and “generally negative” sentiment. Table 3.6 shows some examples of each of
the general categories. In SentiStrength’s original library emoticons only have trinary
values (-1, 0, and 1) as opposed to the single-scale values possible in text. We followed
this template and therefore do not distinguish different degrees that may appear to be
present between and , for example.

3https://en.wikipedia.org/wiki/List of emoticons
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Emoticon Unmatched Emoji
∼:)
∼:(
∼:|

Table 3.6: A sample mapping of unmatched emoji to emoticons. A ’∼’ precedes each
emoticon to indicate the emotion attached with that emoji is equivalent to a positive,
neutral, or negative sentiment.

SentiStrength allows for multiple emotional associations between words and so most
emoji tend to be either positive, negative, neutral, positive or neutral, or negative or
neutral. There was one emoji that did not fall into this scheme. The “face with look
of triumph” emoji, , appears in both a positive and negative context. Unable to
initially place this emoji, we looked through tweets and found usage split between those
using it to express a triumphant emotion and those using it to express an angry emotion
(as a person with steam coming off of their head). Due to the extreme duality of the
triumph/anger emoji, we decided the textual context that this emoji should represent a
neutral value, not affecting the sentiment of the text.

3.5.2 Sentiment Spell Check

Research in sentiment analysis [38] shows that increased levels of sentiment relates to
repeated letters. SentiStrength operates under the assumption that a single repeated
letter indicates a misspelling, but two or more repeated letters denote an intensification
of the sentiment. For example, when calculating the sentiment of “I love this app!”, “I
loove this app!”, and “I looooooooooove this app!” , the first two sentences represent a
net sentiment of +3 and the last, a net sentiment of +4.

As part of processing the data, we needed to correct spelling mistakes, particularly for
user reviews, because misspellings are common and may interfere with the classification
and sentiment calculation. Correcting misspellings becomes more complicated when
repeated letters for sentiment because we want to retain the sentiment and ensure, apart
from the extended letters, the word is spelled correctly.

Consider the word “Hirribbbble”, a misspelling and elongation of the word “Horri-
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Spelling Hirribbbble Horrible Horribleness Horribbbble
Net Sentiment 1 -3 -3 -4

Table 3.7: Different sentiment based on the spellings and miss-spellings of “Horrible”

ble” which unaltered has a sentiment of -3. When run corrected in its original form
“Hirribbbble” becomes “Horribleness”, which is both a different word and has the same
sentiment of “Horrible”. When corrected with our spell check “Hirribbbble” becomes
“Horribbbble” which has the corrected net sentiment of -4 (Table 3.7).

To retain the sentiment information, we developed a spell checker based on the
PyEchant Dictionary, an open source spell-checking library4, that allows for more than
one repeated letter. In the sentiment spell checker algorithm, we used the PyEnchant
United States English Dictionary that has some added non-standard mobile-related
words such as “OS”, “iPhone”, and “WiFi” as well as all of the acronyms and ab-
breviations recognized by SentiStrength such as “ttyl”, “g2g”, and “ur”.

The algorithm for the sentiment spell checker starts by removing any “?”, “!”, or
“.” attached to the word. The algorithm stores the punctuation and replaces it after
correcting the word. The spell checker also removes any non-English characters. Next,
the dictionary checks the word to see if it is a correctly spelled word. If the word is
spelled correctly or the dictionary has no suggestions for correctly spelling the word, the
algorithm will return the word with its original punctuation back in place. If the word
is not spelled correctly, we store the best match to the given word as the suggestion.

Then, the spell checker determines the number of duplicate character sets that the
word contains. For example “Horrible” contains one group of duplicated characters
“rr”) and “Hirribbbble” contains two groups “rr”, “bbbb”). The spell checker stores
the location of the duplicated character set by index. The algorithm then generates
two versions of the string, one with only single instances of the duplicated character
groups and one with double instances of the duplicated characters groups and chooses
the best match among the two. When checking “Hirribbbble” the generated strings are
“Hirribble” and “Hirible”.

The best match at this stage is one of the two generated strings if it appears in
the dictionary. If neither string is a correctly spelled word, the algorithm queries the

4https://pythonhosted.org/pyenchant/
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Spell Checker the sentiment spell checker PyEnchant
Correct 3397 3380

Incorrect 871 888
Percent Correct 79.2% 79 .2%

Table 3.8: Results for the sentiment spell checker and default PyEnchant on Wikipedia’s
list of common misspellings.

dictionary for new spelling suggestions for both generated strings. If there are no spelling
suggestions the generated string remains unchanged. In the example, the suggestions for
each generated string are “Scribbler” for “Hirribble” and “Horrible” for “Hirible”. The
new suggestions are then compared to the original string using a Levenshtien distance
[39] similarity ratio from the FuzzyWuzzy Python library5. The algorithm selects the
generated string with the highest ratio of similarity to the original string.

After choosing the correctly spelled word the duplicated letter groups are restored to
their original location. However, if a repeated letter group was part of the misspelling, for
example if the word had been “Hiirribbbble”, the duplicated letter group is not replaced.

The sentiment spell checker was evaluated with the lists of common misspellings from
Wikipedia6. Table 3.8 shows that results of the sentiment spell checker did not degrade
the quality of the PyEnchant spell checking.

3.6 Finding Feedback Loops

To find feedback loops we begin by selecting the earliest release we stored for an appli-
cation. Next we pull all the reviews for the application with a submission date earlier
than that of the selected release. Then, we iterate through the sentences of the release
notes, comparing each to the user review sentences with our text comparison algorithm
described in Section 3.6.1.

Here we pose three restrictions on the comparison of the sentences. First, our al-
gorithm only compares statements in equivalent classes; bugs with bugs, crashes with
bugs, feature requests with features requests, etc. This not only reduces false positives,
but also reduces the computational cost of comparison across the corpus.

5https://github.com/seatgeek/fuzzywuzzy
6https://en.wikipedia.org/wiki/Wikipedia:Lists of common misspellings
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Second, our algorithm excludes general classes from comparison as they do not con-
tain concrete actionable items for developers. General classes include the “Not Specific”,
“Privacy and Ethical Issues”, “Content Related”, “Additional Cost”, and “Crowdsource
Question and Answer”.

Finally, we restrict each review statement to only be included in a single feedback
loop. This restriction limits the feedback loop to the soonest response to a user and
assumes the developer then completes the mentioned short-comings or requests within
a single release. The limitation applies to the first set of release notes if they describe
a feature or bug in more than one sentence, which sometimes occurs when developers
categorize their release notes. For example, release notes that contain: “Two new fea-
tures: AUTO-FRAMES and TEXTURES” and “APPLY TEXTURES to your Photos
for FREE - When applying effects, there is now a toolbar option to apply an additional
texture”. If a user review requests textures in the application our algorithm would only
identify a feedback loop with the first release note sentence, but not the second.

After comparing the release note statements with all the selected review statements,
the algorithm pulls the next release and selects all the reviews submitted between the
dates of the previous release and the current release as well as all the reviews from before
previous release. Pulling all previous reviews allows the algorithm to capture feedback
loops that are fulfilled in more than one release.

The algorithm repeats for all releases stored for the application.

3.6.1 Text Similarity

To determine the similarity of a release note sentence and a review sentence we begin by
once again removing stop words and converting the statements to lowercase. Unlike the
preprocessing for labeling classification, we do not stem the words as this invalidates the
words for the semantic relatedness tool later in the algorithm. We consider a sentence a
bag of words, where the text similarity algorithm ignores word order and grammatical
structure.

Next we filter the bags of words based on their length. If either bag of words contains
less than 3 words after preprocessing, we do not calculate the semantic relatedness.
Sentences with less than 3 non-stop words are unlikely to provide meaningful information
in both reviews and release notes.
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We then compare each word with all the words in the other bag using a semantic
relatedness algorithm based on Wikipedia Miner [12] (Section 2.1). Wikipedia Miner has
been used to determine the relatedness between words and short phrases [12, 40], but
not for sentences. We developed an equation to score the relatedness between bags of
words so we could determine the relatedness of application reviews and release notes.

To formulate this equation, we selected four applications from outside the corpus
with at least eight releases and reasonable distribution of application reviews across
the releases. We then manually labeled application review and release note pairs that
created feedback loops. We then preprocessed the manually labeled application reviews
and release notes using the steps detailed above. Our sentence semantic relatedness
equation then scored the labeled sample. Finally, we compared the relatedness scores
with the human-labeled set.

We began with equation presented by Mihalcea [41] and adjusted to compare short
texts using Wikipedia Miner over our test data. The final version of our sentence semantic
relatedness equation is shown in Equation 3.1. We cubed semantic relatedness score and
the confidence score because when we looked at the distribution scores of the labeled
sample the feedback loops, though on average higher than then not-feedback loops, were
not a distinct group. We capitalized on the difference in Wikipedia Miner scores by
cubing them to polarize the data and introduce fewer false positives.

We multiply the Wikipedia Miner Scores by the tf-idf of each word to ensure more
important words are given a stronger weight in the sentence relatedness score. Finally, we
divide the result by the total number of semantic relatedness computations performed,
giving us a value between 0 and 1.

Rrev,rn =

n∑
i=0

m∑
j=0

WMrel(reli, revj)3 ∗ WMconf (reli, revj)3 ∗ tfidf(reli) ∗ tfidf(revj)

len(rev) ∗ len(rel)
(3.1)

3.6.1.1 Evaluation

We evaluated our sentence relatedness equation using three human reviewers. The re-
viewers backgrounds included two graduate students and one undergraduate student in
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Computer Science.
We generated random set of 74 review statement-release note pairs. Using our relat-

edness equation, our algorithm identified 34 of these pairs as feedback loops.
We gave the human reviewers a user review and the set of release notes pair and

asked “Do the release notes address a concern or request expressed in the user review?”
We gave the reviewers 4 options: “Yes, the release notes address a concern or request
in the user review.”, “No, the release notes do NOT address a concern or request in
the user review.”, “No, there is no concern or request expressed in the user review, but
they mention a similar feature or functionality.”, and “No, there is no concern or request
expressed in the user review, they are about completely different things.”

We then created a single answer for each question based on the reviewers’ agreement.
If all three reviewers selected a different response for a pairing, then no answer was chosen.
All three reviewers disagreed on 3 of the pairs. Of the 74 pairs, the reviewers selected
all the same choice for 38 of the pairs.

We use the Rand Index [42] to calculate the accuracy of our sentiment relatedness
equation. Among the choices given to reviewers, we consider only the first statement a
true positive as it indicates a feedback loop. Our sentence relatedness equation has 55%
accuracy in identifying feedback loops.
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Chapter 4: Results

We applied the tools and methodology presented in Chapter 3 on our rich corpus. In
this chapter we present the main results, as driven by answers to our research questions.

4.1 RQ1: Are developers responding to feedback provided in user re-
views?

First, we wanted to determine if developers were responding to feedback submitted in
application reviews. We found feedback loops present in 331 applications which repre-
sents 18.7% of the eligible applications in our corpus. We set the threshold for sentence
semantic relatedness intentionally high to reduce false positives. Therefore the number
of feedback loops we show here is a lower bound to the feedback loops that exist. Ad-
ditionally, when discussing number of application reviews, we remove all reviews with a
non-actionable label “Not Specific”, “Content Related”, and “Use Limit”). This removes
close to 75% of the application reviews from analysis, but is similar to findings by Chen
et al. [3], who report a majority of application reviews are not informative for developers.

4.2 RQ2: What are the characteristics of these feedback loops?

Now that we established the presence of feedback loops, we begin our analysis of the char-
acteristics of feedback loops on the application level. This research question is divided
into several sections based on focus: category of the application, label of the application,
economic model of the application, and length of time for developer to respond.

4.2.1 Feedback Loops by Category

We looked at the distribution of feedback loops by category of the application, summa-
rized in Table 4.1 and shown in Figure 4.1. We found “Games”, “Photo & Video”, and
“Social Networking” to have the highest absolute number of feedback loops.
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Figure 4.1: The composition of the corpus and the feedback loops by category. The left
bar represents the composition of the corpus by category of application, the middle bar
the composition of applications found to have at least one feedback loop by category,
and the right the composition of absolute feedback loops by category. We normalized
the data in each bar to use the same percentage scale. The “Photo & Video” and “Social
Networking” have the largest application to feedback loop ratio. “Games”, “Navigation”,
and “Education” have the smallest application to feedback loop ratio
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Category Total Apps Apps with
Feedback
Loop

Number
Feedback
Loops

Games 731 101 348
Photo & Video 187 44 173

Social Networking 124 34 172
Music 137 46 126

Entertainment 116 24 103
Navigation 188 25 84

Business 21 6 43
Utilities 37 10 42

Education 79 10 38
Productivity 40 7 31

Lifestyle 47 12 24
Travel 23 6 18
News 7 2 10

Reference 12 3 7
Finance 1 1 1

Books 4 0 0
Health & Fitness 8 0 0

Medical 2 0 0
Sports 3 0 0

Weather 1 0 0
Total 1768 331 1220

Table 4.1: The distribution of feedback loops by category of application. The 2nd column
shows the absolute number of applications in a category. The 3rd column shows the
absolute number of applications containing at least one feedback loop in a category. The
4th column shows the absolute number of feedback loops completed in a category.
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However, in comparison to the category composition of the entire corpus, the num-
ber of game applications with feedback loops are underrepresented. The “Education”
and “Navigation” category also had a smaller ratio of applications with feedback loops
compared to other categories.

One reason “Games” may be underrepresented may involve developers incentivizing
reviews by offering in-game power-ups and additional content in exchange for reviews.
This practice could encourage less thoughtful reviews. The “Education” category may be
underrepresented due to the target audience. We looked over the top 10 paid applications
in the category and found 9/10 of the applications we targeted at children under the age
of 12. Our results suggest that children are less likely to provide a critical review of an
application.

“Navigation” applications may have fewer feedback loops because “Navigation” ap-
plications often rely on information or functionality outside of the software and tend to
use GPS as part of the services provided. For example, an application that shows public
transportation routes will rely on information from the public transportation company
for scheduling or location, something the developer may not be able to control. To illus-
trate this one user review complains, “This app never has current and correct info. It
didn’t even update the schedule on MLK day and I was late for work.” If the company
does not post changes where the application draws its data or the application does not
dynamically update it’s information, then users could encounter problems if developers
are not vigilant. “Navigation” applications not only encounter external complications,
but also contend hardware limitations. “Navigation” applications application reviews
contain 15.72% of Resource Heavy complaints, second only to the “Games” category.
Many of the “Navigation” applications in our corpus make use of GPS, such as an ap-
plication that gives real time directions or a phone tracker. While developers can take
steps to mitigate the battery consumption due to GPS, “Navigation” applications will
consume resources at a faster rate than applications that do not provide services with
GPS.

We found the “Music”, “Business”, and “Social Networking” applications to contain
a higher proportion of applications with feedback loops. One reason for this may be the
dominance of certain applications in these categories, such as Facebook, Twitter, and
iTunes. Familiarity with well-known applications may provide users with expectations
for applications with similar functionality.
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The “Business” Category not only contains a larger percentage of applications that
have feedback loops, but also has the largest ratio of feedback loops to application at 7.2
: 1. The applications responsible for this high ratio are Citrix Receiver, Genius Scan,
and SignEasy with feedback loops numbering 15, 12, and 9 respectively. Further analysis
of the feedback loops in Citrix Receiver found that 11 of the feedback loops were tied
to a single release. The users had encountered a bug that caused the Citrix Receiver
application to show a black screen shortly after starting the application. This bug was
both critical, as it prevented users from using the application, and easy to describe which
is likely the reason that so many feedback loops are connected to this bug.

The high number of feedback loops in Genius Scan demonstrate a limitation in our
current implementation for finding feedback loops. Genius Scan is an application cen-
tered around scanning, organizing, and sending documents from smart phones. Genius
Scan saw a spike of 7 feedback loops in one of its releases, unfortunately this was caused
by a number of false positives in our algorithm. For example, the release notes state
“[Added ability] to scan from the Photos when adding a page to a document” which
our semantic relatedness algorithm mistakenly connected to “I have to scan many doc-
uments and email them to different vendors.” and “This was the only app to scan all of
my documents clear without any problems.” EasySign suffered from the same language
problem.

EasySign and Genius Scan are both applications with specific functionality that fo-
cuses the language used by developers and users. The problems caused by language usage
in niche purpose applications could be fixed in future work by restricting the tf-idf used
in the semantic relatedness algorithm to each application. This would limit the impact
words like “scan” and “document” would have on the relatedness score in an application
whose main service is scanning documents.

4.2.2 Feedback Loops by Label

Next we looked at the trends in feedback loops by the labels assigned by the application
review SVM classifier (Section 3.4). Table 4.2 shows bug fixes are the most frequent
type request and type of feedback loop, followed by Feature Requests and Crashing. All
other types of feedback loops comprised a small portion of the total number of feedback
loops (less than 25%).
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Label Number
Reviews

Number
Feedback

Loops

Number
Completed
Loops per

10,000 reviews
Bug Fix 121573 (40.24%) 505 (41.39%) 42
Feature Re-
quest

57781 (19.13%) 308 (25.25%) 53

Crashing 51949 (17.20%) 323 (26.48%) 62
Compatibility
Problems

24617 (8.15%) 5 (0.41%) 2

User Inter-
face

18028 (5.97%) 3 (0.25%) 2

Response
Time

11056 (3.66%) 14 (1.15%) 13

Network
Problem

10459 (3.46%) 22 (1.80%) 21

Resource
Heavy

3949 (1.31%) 3 (0.25%) 8

Log-in Issue 2703 (0.89%) 37 (3.03%) 137
Total 302115 1220 339

Table 4.2: The distribution of feedback loops by the type of feedback the user provided.
The 2nd column shows the number of times feedback with a label appeared in the ap-
plication reviews in the corpus. The 3rd column shows the number of feedback loops
completed of a label. The 4th column shows the number of feedback loops completed
relative to 10,000 statements of feedback with that label.
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We suspect the reason most of the labels are so infrequently completed is due to users’
familiarity with the type of problem. Bugs and crashing have crept into the vernacular
such that most people can understand how to describe the error. Far fewer users will be
able to attribute their short battery life or slow response time to a specific application,
and may just assume their phone or battery is old. However, the expansion of bugs
and crashing terms into general English could cause over-reporting of general bugs and
crashes when other problems to be under-reported. For example, an application takes
several minutes to download something from the Internet and the developer provides
no indicator that the application is currently working (such as a progress bar), the user
then thinks that the application has frozen and crashed because nothing is happening.
The user could report this as a crash, when in reality the problem was Network Issue.

Compatibility issues encompass performance across different types of iPhones (e.g.
4s, 5S, IOS8) and different platforms (e.g. iPhone, iPad, Macbook). One reason the
response to compatibility issues is so low may be due to cross platform compatibility.
Some applications, such as Evernote, maintain a single application for the iPhone, iPad,
and iTouch versions of their applications. Other applications maintain different applica-
tions for different platforms, such as CNN’s “CNN App for iPhone” and “CNN App for
iPad”. Reviews that complain about issue for the application on the other platform will
not be updated in the release notes for the application the user is submitting a review
for. In the (now defunct) application “HopStop Transit Directions for iPhone” one user
asks “I wish it would enlarge when used on an iPad/have landscape view.” The changes
made would be reflected in the release notes for “HopStop Transit Directions for iPad.”

User Interface feedback loops are also sparse. The low number of completed loops
could be attributed to the classification of User Interface statements, which included both
positive and negative mentions. A filter all User Interface application review statements
shows that just by searching for “clean”, “simple”, “easy”, and “friendly” and excluding
the word “not” returns 2,500 statements; close to 14% of the User Interface statements.
Compliments such as this review from “Mobile Mouse Pro”, “Crisp, clean interface, easy
to use, and so much fun.” are not actionable for developers.

Next we determined the number of feedback loops completed compared to the total
number of feedback with the same label provided in application reviews (shown on the
far right of Table 4.2) We found that both Log-in Issues and Feature Requests were
almost twice as likely as bug fixes to be addressed by developers. Log-in Issues may have
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a high response rate because they are both high on the triage list and can be quickly
localized to the bug. Users being unable to login would preclude their use of application
which could raise the importance to developers. Crashing problems are also more likely
than Bug Fixes to be addressed by developers. One reason for this may be severity, small
bugs may be tolerable to users whereas crashing would greatly inhibit users’ ability to
use the application.

Finally, developers may not want to admit how many bugs they have introduced and
simply add a blanket statement along the lines of “fixed some bugs”. Being vague allows
the developer to both please the customer, who will find that the bug they experienced
is gone when using the application, and save face. These vague Bug Fixes are ignored
by our semantic relatedness algorithm and thus under-report the number of Bug Fix
feedback loops.

4.2.3 Feedback Loops by Economic Model

We originally suspected the developers of paid applications or applications with in ap-
plication purchases would be more responsive to user requests than in free applications.
So we checked to see if the number of feedback loops was skewed to a certain economic
model. However, Figure 4.2 shows that the ratio of feedback loops to the corpus loosely
equivalent.

We were surprised that completely free applications did not suffer from lack of re-
sponse from developers, but the meta-data provided by the store does not list whether
advertisements are present. Using advertisements for revenue would give incentives to
improve the application. Also, some free applications are connected to paid services,
such as the previously mentioned Citrix Receiver application. Citrix provides services
purchased by businesses for secure cloud management, to meet the needs of their users
they publicly provide an application for free on the iTunes App Store. Without the paid
service behind the application, it would not function on a users’ phone. Having a paid
service connected to the application would contribute to incentive to address the users’
concerns.
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Figure 4.2: The composition of the main corpus and feedback loops by economic model.
The figure shows they the presence of feedback loops does not significantly vary between
models.

4.2.4 Feedback Loops by Time to Completion

The length of time in days that developers took to complete a feedback loop is the
final feature of application-feedback loop characteristics we analyze. Figure 4.3 shows
the number of feedback loops completed within a certain period of time (e.g. “within
1 week”, “within a month”, and “within a quarter”). We found that the number of
feedback loops completed remained fairly static over the time periods. We also observed
developers had the highest number of most feedback loops completed within the 30-
90 day period (within a quarter). Surprisingly, a large number of feedback loops were
completed within a 7 day time period, even more than within 90-180 day time period.
Later in this section we look at the characteristics of feedback loops completed within a
week.

To gain a better understanding of what type of feedback loops are completed over
time we broke each of the time periods up by type. Figure 4.4 shows that although still
composing a significant portion of the feedback loops, in general Bug Fix feedback loops
decrease over time. This could be because developers eradicate found bugs over time so
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Figure 4.3: The time in days it takes for developers to complete a feedback loop. Comple-
tion is fairly consistent across all time periods. Surprisingly, a large number of feedback
loops are completed in a week.
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there are less to fix later. The exception for this trend is feedback loops completed in
more than 1 years time. The reason for this behavior could be that as new releases are
pushed, newer, more visible bugs take priority over old bugs.

Unlike Bug Fixes, Crashing feedback loops comprise roughly the same percentage of
feedback loops in all time periods except for those over 1 year in length. One of the
reasons crashes may be so prevalent across all time periods can be attributed to the
description provided by the user. For example, in the application “Slow Down Music
Trainer”, one user submitted “It crashed once in a while, but functioned perfectly.” The
developer now knows that their application crashes, but is not provided information on
when or where the crash occurs. This could make it difficult to locate the crash until
another user provides more information on where the crash is occurring. Crashes can
also be the result of Compatibility Issues or problems interacting with other applications
running on the same phone. One user of the “NYC Subway Map” application states
“This app, if kept running in the background, may crash the iPhone4 running iOS 4.1.”
In this case, there could be several sources of the crash; the application could have
compatibility problems with iOS 4.1, the application could have compatibility problems
with other applications concurrently running on the phone, or the application could be
crashing due to any problem in its programming. Finally, though crashes are a critical
problem, they may only occur when the user takes certain actions. If those actions
are not central to the functionality of the application, they may be placed on lower
level of triage than other reported problems. For example, in the application reviews
of the application “Muzy”, one user commented “Only crashes when I pick a photo.”
and another user submitted “It crashes when I click on my camera roll...” If choosing
a photo from the camera roll is not the only way to import pictures to the application,
the developers at Muzy may give this crash bug a lower priority than other bugs. The
feedback loop mentioned by the two users was completed in just over 180 days.

As the time from submission grows, Feature Request feedback loops comprise a larger
portion of the feedback loops as the time between application review submission and
developer completion grows. This is not very surprising, features can be complex and
take longer to implement and may have lower priority than fixing bugs. Additional
features may also be planned according to development calendar. For example, a team
plans to release new content for their application every quarter, but release every few
weeks for maintenance on existing features.
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Feeback Loops Completed Within 7 days
Due to the developers’ surprisingly quick response some feedback loops we provided

further analysis of feedback loops completed within a week. Figure 4.4 shows that Bug
Fixes and Crashes compose most of the feedback loops completed within a week of being
submitted. The types of feedback loops completed within a week suggests quick releases
of versions following a large release that was not thoroughly tested and introduced a
number of smaller or critical bugs. We filtered the data to get a closer look at the
behavior by looking at release date of the release the application review was for instead
of the submission date of the application review. 78% of Bug Fix feedback loops were still
addressed while only 21% of Crashing and 6% of Feature Requests were still addressed
from the previous release. The prevalence of Bug Fix feedback loops emphasizes that a
majority of feedback loops completed in less than 1 week perform maintenance to the
previous release.

Next, we looked at the category distribution of the applications that completed feed-
back loops within 7 days shown in Figure 4.5. Applications in the “Games” category far
exceeded any other category, composing 61% of the feedback loops completed within 7
days. We added the percentage of total feedback loops to Figure 4.5 to compare with
the corpus at large. Despite “Games” applications composing a majority of the feedback
loops, “Games” feedback loops completed within 7 days are more than twice as com-
mon than in all of the feedback loops. The prevalence of quickly completed feedback
loops may point to poor testing practices or higher complexity in “Games” applications.
It could also indicate gaming application development is competitive to the point that
releasing new content faster is more important than releasing well tested content slower.

4.3 RQ3: What do users do that enables a feedback loop?

Our third research question looks for what users can do to encourage developers to
respond to their feedback. We divide this research question into three parts: feedback
loops by star rating, coaxing the developer, and feedback loop by sentiment.
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4.3.1 Feedback Loops by Star Rating

First we looked at the distribution of star ratings given by users across the corpus and
throughout feedback loops. Figure 4.6 shows that across the corpus (left) the majority
of the user ratings are 5-star ratings. The number of 5-star ratings may seem high, but
our corpus formed by collecting information from the top ranking applications from the
iTunes App Store, so the ratings are probably slanted towards the higher end. The star
distribution also agrees with findings in Fu et al. [43].

Feedback loop user ratings (right) are significantly more negative in comparison to
the corpus. We observed the number of 1-star reviews to be the most frequent user rating
in feedback loops. When considered with distribution of type of feedback loop we found,
this is not surprising as Bug Fixes and Crashing comprised a majority of feedback loops
observed. More surprising was the number of 5-star ratings. In theory, the 5-star rating
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should be used for perfect applications, not applications that are in some way lacking.
To further explore the user ratings discrepancy, we looked at the distribution of

feedback loop type within star ratings, shown in Figure 4.7. We noticed that as the
star rating increases the percentage of Feature Requests feedback loops completed also
increases.

Conversely as the star rating decreases the number of Crashing feedback loops also
increases. Log-in Issue feedback loops follow the same trend as Crashing feedback loops.
These two types of feedback loops may follow such a strong trend because they are issues
that will prevent the user from using the application. We further examined the Crashing
feedback loops with 5-star ratings. Of the 27 application review statements, 6 mentioned
the application “never crashing”, 2 thanked the developers for fixing crashes in previous
releases, and the remaining reviews discussed crashes experienced by users. One user
states, “Luv it, BUT. It crashes a lot and has too many ads.” but gives “Breakfast
Maker” a 5-star rating. We suspected 5-star ratings for Crashing feedback loops may
be an anomaly for “Games” applications, but found that games comprised 37% of the
5-star which is consistent with the distribution of feedback loops by category.

Surprisingly, Bug Fixes remain a noticeable percentage of the feedback loops across
all star ratings where we expected them to follow the same trends as Crashing and Log-in
Issue feedback loops. However, Khalid et al. [4] found that while users complain about
bugs in different star ratings, other issues eclipse the presence of bugs. In addition to
Khalid et al.’s findings, our survey of reviews suggests that if users are provided the
functionality they want, they will be able to overlook small problems. A 4-star rated
application review illustrates this phenomena:

Very nice when it involves studying. It does glitch, though. Sometimes it
deleted your stuff, or just randomly shuts down. If they could improve those
minor glitches, this would have five stars, and this would be a pretty nice
app. No major glitches for me, though!

Sporadically deleting data and shutting down, may or may not be considered “minor
glitches”, but this user is willing to overlook these problems because the application,
“Flashcards*”, fulfills the purpose the user downloaded it to fulfill.
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Figure 4.6: The overall star distributions of between the corpus and the feedback loops.
The left graph displays the star distribution for all reviews and the right graph displays
the star distribution for feedback loops.

4.3.2 Coaxing Developers

Among the reviews, we noticed instances where the users would use star ratings as
bartering chip with the developers. When trying to coax the developer, the user will
claim that if the developer adds or fixes some feature of the application then the user
will return and replace the low rated review with a higher one. We wanted to see if the
user made good on their promises, so we searched the reviews found in feedback loops
for the words “star”, “update”, “edit”, or “ rat” (for “rate” or “rating”) and compared
the request in the review with the rating. In searching for coaxing reviews, we only
selected those that explicitly mention changing their rating, not what the application
would “be worth”. For example, the following application review has a user rating of 3
stars:

They need to add more dogs like Chihuahuas, German Shepherds, Box-
ers, Dalmatians, Shih Tzus, Cocker Spaniels, Huskies, Jack Russel Terriers,
Pinchers, Bulldogs, Pugs, Great Danes,Poodles, Foxhounds, Beagles, Rot-
tweilers, Collies, Bloodhounds, &Schnauzers!!!!!!!!! GIVE ME A BIG SE-
LECTION OF DOGS THEN I WILL GIVE YOU 5 STARS!!!!!! I think
EVERYONE would like a bigger selection of dogs!!!!! !Shetland Sheep Dogs,

The developer answers:

3D room has been added
New puppies have been added
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ment, while feedback loops are mostly neutral in tone.

The kinds of Dog Clothes has been added

It is possible that the user did not feel that the developer added enough to the
application to warrant a rating change, but of the 15 coaxing reviews we found in the
feedback loops, none of the users returned to change their ratings. In addition to the
developer not doing enough for the user, it is also possible that the user forgot or did
not care enough to return to update their review.

Not returning to change ratings could indicate that developers have no reason to
acquiesce to users’ demands as none of the users updated their reviews.

4.3.3 Feedback Loops by Sentiment

The final user dimension we examined is sentiment expressed in the application reviews.
Figure 4.8 shows the distribution of application review statements by net sentiment.
Similar to the star ratings, application review statements in the overall corpus (left) ex-
press more positive than neutral or negative sentiment; i.e. if you summed the number
review statements with a sentiment score greater than one, it contain the majority of
sentiment expressed. However, neutral sentiment describes the largest portion appli-
cation reviews in the corpus. Many users keep the head when writing a review, they
describe the benefits or short-comings of the application in level tones. Only a small
subset users write reviews in all capital letters with excessive exclamation points, which
would represent the extreme ends of the sentiment scale.
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The sentiment expressed in feedback loops followed similar trends to total corpus;
most of the application reviews statements in feedback loops were neutral with a larger
number of positive reviews than negative ones. However, while the total corpus could
be described as overall positive in sentiment, feedback loops are overall neutral. The
neutrality of statements can be attributed to users communicating enough information
for developers to act on. For example, a user of the application “SKI TRACKS” posed a
feature request in the application review,“Always use this when I ski. Only could want
two things:1. iCloud Backup for tracks 2.Maps for popular ski resorts. Even without
these features it’s a great app.” The user gave the application 5 stars, but any emotion
expressed was in the final sentence, which has a net sentiment of 2, while the first
sentence and the feature request in the second sentence have a neutral net sentiment of
0. Feedback loop application reviews with extreme sentiment contained colorful words
such as “despise” or “unbearable”, multiple exclamation points as in “loved it!!!”, or
repeated letters as in “When i try to play all i see is a black screen ughhhhhhhhhhhhhh”.

To further our understanding, we divide each level of sentiment into the label of the
feedback loop (Figure 4.9). Feature Requests follow the same trend as in star rating,
increasing in proportion as the sentiment becomes positive. Log-in issues also follow the
trend established in star rating, increasing in proportion as sentiment becomes negative.
Bug Fixes seem to follow a more downward trend as sentiment becomes more positive,
which is different from the star ratings which remained more static across ratings. This
shows that while users may be willing to overlook bugs in their rating, they will not be
happy about it.

Crashing feedback loops seem to increase with the positivity. However, crashing
feedback loops illustrate a limitation of SentiStrength, which was developed using com-
ments from a social networking site. The sentiment scores given by SentiStrength is not
calibrated for mobile applications. For example, the word “crash” has a sentiment score
of 0. In the mobile application world, crash has a more negative connotation than “can
I crash on your couch?” Addressing the domain limitations of languages is part of our
future work to improve the accuracy of sentiment analysis for mobile applications.
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Figure 4.9: The distribution of net sentiment across Feedback Loops by label.
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4.4 Implications

Here we present several implications for developers, end users, application stores, and
researchers.
For Developers: Communication with users does matter; users want to know that
they count. Developers need to create an infrastructure for managing the feedback in
user reviews to handle the sheer volume of application reviews some applications receive.
The presence of bugs at all star ratings in feedback loops suggests that developers should
handle exceptions as users are more tolerant of application’s unexpected behavior than
of an application that crashes.
For End Users: We found evidence that developers are indeed responding to user
requests, thus users should continue to provide information. Addressing the developers
in a neutral and professional tone is more likely to elicit a response than ranting and
raving. If the user is very frustrated, they may benefit by waiting a few minutes to
cool off before submitting their problem in a application review. Users who chose a 1-
or 5-star rating had the highest likelihood of the developers addressing their concerns.
Users should not be on the fence with their reviews when trying to make their voice
heard.
For Application Stores: We found that users have hijacked the application reviews
as channels to report bugs and request new features. This calls for a dedicated channels
to enable feedback and communication between users and developers. This would not
only allow users to highlight what they want, but could concentrate the information for
developers such that they can process volume of feedback received. Application Stores
could also create more accountability for developers by visibly showing users how likely
a developer is to address their feedback. If Application Stores can detect when a user
is reporting an issue as they are typing a application review, it could be beneficial to
prompt the user for more information. Finally, the Application Stores may be able to
trace power users who provide developers informative, actionable feedback.
For Researchers: There is room for HCI research on alternative models for structuring
casual users to submit feedback to developers. Additionally, there is another dimension
to feedback loops not addressed in this paper, how other users respond to the presence
of feedback loops.
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Chapter 5: Threats to validity

Construct Threats Are we asking the right questions?
Our goal was to examine the developer-user interaction facilitated by applications

stores and try to provide some characteristic of the effects of this relationship of the
development of mobile applications. Thus, we think our research questions are able to
provide insights of value to developers, researchers, users, and Application Stores.
Internal Threats Is there something inherent to our processing of data that could skew
results?

The accuracy on the classifiers and sentence semantic relatedness are not perfect. The
examples given in the paper show very clear cut classes, but the lines between classes
are very blurred. For example, “Minor changes for improved application compatibility”
could be a bug if the compatibility was not functioning properly to begin with or it could
be an optimization of certain facets of the different platforms. The training and testing
data was created through many renegotiating and refinements of classes. However, the
accuracy of the classifiers is similar to the initial untrained agreement of humans, which
was 71.6% for the release notes and 56% for the review statements in comparison to the
68% and 58% accuracy achieved by the SVM Classifiers, respectively. The reviewers of
sentence semantic relatedness equations all agreed (by selecting the same choice) on only
38 out of 74, or 51%, the release notes-application review pairings.

Additionally, we use an older build of Wikipedia to construct the taxonomy for
Wikipedia Miner from 2011, however we do not expect the jargon used to change dra-
matically in 4 years.

In gathering the applications and application reviews there was often a time delay
because reviews had to be collected at a slower pace. As a result, popular applications
could have had an excess of 1000 reviews submitted between the last release and the
time the application reviews were collected. The most successful applications for our
algorithm were those of modest popularity where application reviews were spread across
several releases.

We recognize when labeling the training data for the application reviews considering
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the user as omniscient can introduce some error into the classifications, but instances
where users were discernibly complaining about features as bugs were rarely found in
the training data.

Wikipedia miner can calculate the relatedness of short phrases, but we only gave it
individual words, this caused us to miss thing like “sign in”. Also, specialty apps, like a
moon phase watching app had higher than average scores likely because there was less
disambiguation to be done
External Threats Are our results generalizable to general mobile applications and Ap-
plication Stores?

We conducted our research on iOS mobile applications and the iTunes App Store. We
cannot guaranteed that the results will generalize to Android applications and the Google
Play Store because it adds a dimension to the developer-user interaction by allowing
developers to directly respond to user reviews. The ability to respond to application
reviews could allow developers to extract extra information from users to better address
their needs. However, we took a broad sample of applications and the iTunes App Store
is one of the largest Application Stores on the market so the results could be generalizable
for a large portion of mobile applications.
Reliability Threats Can others reproduce our results?

We will provide the code used to complete our process on Github. We will not be
able to provide all of the data used in the experiment, but may provide a small sample
for others to use.
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Chapter 6: Related Work

We group the related work in three parts: (i) studies on text analysis, (ii) studies on
Application Stores, and (iii) studies on user feedback.

6.1 Studies on Text Analysis

This section describes alternate methods that could be applied in our experimental meth-
ods or in future work.

Garg [44] developed an equation to extrapolate the number of downloads of an appli-
cation in the iTunes App Store based on its rank in the top paid lists. The iTunes App
Store doesn’t allow users to see the total number of downloads for an application unless
said user is the owner of that application. This measure could be used to compare our
feedback loops with number of downloads for applications that fall in the top ranking
category.

Novak et al. [45] developed an Emoji Sentiment Ranking using tweets to find a
language independent resource for measuring the sentiment. The study is conducted
across multiple languages and ranks 751 emoji with a sentiment score between -1 and
1. In our study, we just mapped emoji to emoticons based on their appearance or sense
based on tweets for use in SentiStrength.

Mihalcea et al. [41] provide an equation to compare short texts using corpus based
measures. Their equation was the inspiration for our sentence semantic relatedness
equation. However, unlike the corpus measures used by Mihalcea et al., Wikipedia
Miner was not bi-directional in assigning relatedness scores and provided a confidence
score that needed to be considered. The examples provided by Mihalcea et al. showed
an overlap in many words when comparing text pairs. Our purpose in using Wikipedia
Miner was to compensate for the different language used by developers, which could
result in fewer overlapping words.
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6.2 Studies on Application Stores

Most prior work focuses on identifying and managing actionable feedback in application
reviews, while our research focuses on how that feedback is used. This section is divided
into prior empirical studies and tools to manage applications.

6.2.1 Empirical Studies of Application Reviews

Pagano and Maalej [46] performed an empirical study on user feedback found in Appli-
cation Stores. Like our research, Pagano and Maalej look at the type of feedback users
provide and relate it to star-ratings. They found that more than 50% of application
reviews contain a mixture of topics in text, supporting our choice to use sentence level
granularity. Despite looking at the distribution of reviews across categories of applica-
tions, they did not look at the type of feedback by category. Additionally, Pagano and
Maalej did all of their classification manually where we use SVMs. Our research goes
one step further than looking at the composition of application reviews by correlating
them with release notes with developers.

Sarro et al. [47] use release notes to track feature migration through applications. The
paper found that features tend to spread within similar categories. Like our research,
Sarro et al. are able to track software evolution through Application Stores. However,
our research focuses uses both release notes and application reviews to track changes
on the application level. As future work, a combination of our research presents the
opportunity to trace features as they spread through release notes and user requests.
For example, when an application adds a popular feature, do users of other applications
take notice and make requests? Do characteristics for a viral feature in an application
exist?

Panichella et al. [7] develop an algorithm to classify the content of application reviews
in Application Stores. Unlike our approach, their classifier uses a combination of text
analysis, natural language processing, and sentiment analysis to derive a class. Our
classifiers only consider text analysis. Panichella et al. achieved a higher precision of
75.2% using the combination of methods. However, when using only text analysis alone
Panichella et al. reached similar precision to our classifiers (59.2% vs. 58.1%). The
similar precision measures show that using text analysis is too naive and future work
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should look beyond text analysis.

6.2.2 Tools to Manage Application reviews

Several tools [3,5,8,43] have been introduced to help developers source their user reviews
for features. Paloma et al. [5] showed an increase in user ratings when the developers of
Android applications responded to requests by users. This research included using issue
tracking systems, which users of Application Stores lack. Chen et al. [3] focus on extract-
ing informative application reviews from Application Stores. While highly accurate, the
A.R. Miner only divides the application reviews into non-informative (equivalent to our
“Not Specific” and “Content Related” label) and informative reviews. WisCom [43] is
a tool that traces user sentiment on three levels and helps identify sources of user com-
plaints. Most of the tools focus on helping developers find actionable items within user
reviews while our research focuses on what feedback the developers act on. Vu et al. [8]
propose MARK, a tool designed to help analysts sift through a large volume of reviews.
MARK focuses on the expansion and clustering of keywords in application reviews. Our
research examines feedback loops classified with an SVM, but as shown by Panichella et
al. [7] is naive. MARK [8] could be used in future work to help automatically classify
reviews using keywords.

Iacob and Harrison [9] developed the tool MARA, which identifies feature requests in
application reviews. MARA uses a set of 237 linguistic rules to classify reviews where our
research uses a text analysis approach, comparing text content to classify. The results
of MARA are of interest because both the precision and recall of our SVM classifier is
low for feature requests (0.44 and 0.26). MARA was able to achieve 0.85 precision for
identifying feature requests. This suggests that in the future, a rule-based classifier may
help labels that are more difficult to identify through text analysis alone.

6.3 Studies on User Feedback

Several studies explore untrained users’ ability to document software requirements both
in situ and through social networking sites [48,49]. Both Seyff’s and our research explore
user’s competence in communicating with developers, though our research looks at a
more ad hoc method of communication. Their research found that given opportunity,
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the users were able to provide understandable requirements to software engineers.



54

Chapter 7: Conclusions and Future Work

In this paper, we analyzed a corpus of 1752 applications by comparing 30,875 release
notes with 806,209 application reviews to find feedback loops. We found developers
responded to feedback provided by their users in 18.7% of the applications. Our most
surprising findings include (i) log-in Issue, feature requests, and crashes had the highest
likelihood of being addressed by developers, (ii) applications in the “Games” category
comprise 61% of the feedback loops completed within a week of receiving feedback,
(iii) users attempt to coax developers using star ratings as bartering chips, but do not
return to fulfill the promised rating change. We hope that this initial study of developer
response to user feedback can provide information to facilitate the growth of developer-
user interaction in Application Stores.

Future work includes refining the current semantic relatedness algorithm to better
handle niche applications. We also plan to expand the accuracy of results provided by
WikipediaMiner by identifying and comparing key phrases found in application reviews
and release notes.

Another direction for future work is tracing the source and life cycle of bugs using
user reviews. User reviews could also be used to trace the tolerance of users for certain
bugs before they ultimately remove the application from their devices.

Following the social network line of research, future work could examine the users
providing the reviews. We could track users who provide actionable information for de-
velopers and use their acuity to map the flow of features in mobile applications. Studying
the flow of features by user could lead to the discovery of power reviewers in Application
Stores whose feedback may be of greater use for developers.

As this paper show, developers are listening to feedback provided by users in Ap-
plication Stores, but as reviews are unstructured it can be hard for developers to find
the useful information needed to address the feedback. We need to provide assistance
for both developers and users to continue to improve developer-user interaction for the
benefit of both parties.



55

Bibliography

[1] T. Cook. Apple’s worldwide developers conference keynote address. [Online].
Available: https://developer.apple.com/videos/wwdc2015/

[2] A. A. Index, “App annie index–market q31 2015,” Online
at:(http://blog.appannie.com/app-annie-index-market-q3-2015/), 2015.

[3] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-Miner: mining informa-
tive reviews for developers from mobile app marketplace,” in 36th International
Conference on Software Engineering, 2014, pp. 767–778.

[4] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile app users
complain about?” IEEE Software, vol. 32, no. 3, pp. 70–77, 2015.

[5] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta, D. Poshy-
vanyk, and A. De Lucia, “User reviews matter! tracking crowdsourced reviews to
support evolution of successful apps,” in IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2015, pp. 291–300.

[6] M. Wilcox and C. Voskoglou. State of the developer nation q1.

[7] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall,
“How can i improve my app? classifying user reviews for software maintenance and
evolution,” in 2015 IEEE International Conference on Software Maintenance and
Evolution, 2015, pp. 281–290.

[8] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining user opinions
in mobile app reviews: A keyword-based approach,” CoRR, vol. abs/1505.04657,
2015.

[9] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature requests
from online reviews,” in 10th Working Conference on Mining Software Repositories,
2013, pp. 41–44.

[10] Apple. itunes store. [Online]. Available: https://itunes.apple.com/us/store

[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.



56

[12] D. N. Milne and I. H. Witten, “An open-source toolkit for mining wikipedia,” Artif.
Intell., vol. 194, pp. 222–239, 2013.

[13] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Sentiment strength
detection in short informal text,” Journal of the American Society for Information
Science and Technology, vol. 61, no. 12, pp. 2544–2558, 2010.
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Appendix A: Data Stored

This appendix outlines the information used from the iTunes App Store for each of the
three divisions of the corpus: metadata, release notes, and application reviews.
Metadata:

1. The name of the application

2. The id number of the application in the iTunes App Store

3. The overall star rating of the application

4. The total number of application reviews submitted for the application

5. Whether the application provides in-app purchases

6. The price of the application

7. The first category to which the application belongs (e.g. “Games” and “Sports”)

Release Notes:

1. The date that the release was published

2. The version number of the release

3. The list of sentences that describe the release

Each of the release notes sentences also store a label (Section 3.3.0.1).
Reviews:

1. User rating as number of stars

2. The date that the user submitted the review

3. The percentage of people who thought the review was helpful

4. The number of people who thought review was helpful
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5. The user who submitted the review’s name and id number

6. The id number given to the review by the iTunes App Store

7. A list of the sentences in the review which contain:

(a) A version of the sentence we corrected for spelling mistakes

(b) The net sentiment of the statement (Section 3.5)

(c) A label (Section 3.3.0.2), and potentially

(d) An id number for the release note addressing a concern or request expressed
in the sentence (Section 3.6)




