


AN ABSTRACT OF THE THESIS OF
 

Noppadon Wichitsongkram for the degree of Doctor of Philosophy in Mathematics 

presented on March 13, 2013. 

Title: Representations of Fractional Brownian Motion 

Abstract approved: 

Mina E. Ossiander 

Integral representations provide a useful framework of study and simulation of frac­

tional Browian motion, which has been used in modeling of many natural situations. In 

this thesis we extend an integral representation of fractional Brownian motion that is sup­

ported on a bounded interval of R to integral representation that is supported on bounded 

subset of Rd . These in turn can be used to give new series representations of fractional 

Brownian motion. 



c©Copyright by Noppadon Wichitsongkram
 

March 13, 2013
 

All Rights Reserved
 



Representations of Fractional Brownian Motion
 

by
 

Noppadon Wichitsongkram
 

A THESIS
 

submitted to
 

Oregon State University
 

in partial fulfillment of
 
the requirements for the
 

degree of
 

Doctor of Philosophy
 

Presented March 13, 2013
 
Commencement June 2013
 



Doctor of Philosophy thesis of Noppadon Wichitsongkram presented on March 13, 2013 

APPROVED: 

Major Professor, representing Mathematics
 

Chair of the Department of Mathematics
 

Dean of the Graduate School 

I understand that my thesis will become part of the permanent collection of Oregon State 

University libraries. My signature below authorizes release of my thesis to any reader 

upon request. 

Noppadon Wichitsongkram, Author
 



ACKNOWLEDGEMENTS
 

There are many people who I owe gratitude. First of all, I would like to express my 

deep gratitude to Professor Mina E. Ossiander, my research supervisors, for her patient 

guidance, enthusiastic encouragement and useful critiques of this research work. Without 

her careful attention, encouragement and guidance I would not be able to succeed. 

I would also like to thank the members of my Graduate committee, Professor David 

Finch, Yevgeniy Kovchegov, Donald Solmon and Thinh Nguyen for their advices and 

comments on my work. 

I would also like to extend my thanks to faculty and administrative staff of the Math­

ematics department for their contribution to my study and development as a Mathemati­

cian. Thanks to Professor Enrique Thomann, Holly Swisher, Robert Higdon, Christine 

Escher, Thomas Schmidt, Edward Waymire, Robert Burton, Dennis Garity, Ralph Showal­

ter and Malgorzata Peszynska who taught me various Mathematical subjects throughout 

the years. Also thanks to Deanne Wilcox, Karen Guthreau and Kevin Campbell who help 

me various kinds of things. 

I would like to thank Thai Government for giving me a great opportunity and 

financial support throughout the years while I was studying here. 

Finally, I wish to thank my parents for their support and encouragement throughout 

my study. 



TABLE OF CONTENTS
 

Page
 

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 

1.1. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 

1.2. Statement of problem and result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 

1.3. Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 

2. MATHEMATICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 

2.1. Inner product space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 

2.2. Spherical measure and Spherical Coordinate in Rd . . . . . . . . . . . . . . . . . . . . . . 12
 

2.3. General concepts of the probability measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 

2.4. Stochastic convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 

2.5. Stochastic process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
 

2.6. Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 

2.7. Brownian motion and Brownian sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
 

2.8. Wiener integral in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 

2.9. Wiener integral in Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
 

3. FRACTIONAL BROWNIAN MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 

3.1. Fractional Brownian motion and its definition . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 

4. SERIES EXPANSIONS OF GAUSSIAN PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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REPRESENTATIONS OF FRACTIONAL BROWNIAN MOTION
 

1. INTRODUCTION 

1.1. Preliminary 

The fractional Brownian motion was first studied by Kolmogorov in 1940. He called 

it the Wiener Helix. Then it was further studied by Yaglom in [27]. The name fractional 

Brownian motion was given by Mandelbrot and Van Ness, who showed a Wiener integral 

representation of this process in terms of a standard Brownian motion in [20]. The aim of 

this thesis is to search for new representations of fractional Brownian motion and study 

their properties. 

In this section, the history and some well-known theorems that motivate the idea 

of this thesis will be given. We define a standard fractional Brownian motion on R with 

index H ∈ (0, 1) to be a mean zero real-valued Gaussian process with 

Cov(BH (s), BH (t)) = 1/2(|s|2H + |t|2H − |s − t|2H ). 

More generally, a fractional Brownian motion has 

Cov(BH (t, )BH (s)) = CH (|s|2H + |t|2H − |s − t|2H ). 

where CH is a constant. 

Fractional Brownian motion can be written in the term of integral representations 

and series representations. We will see that the representations of fractional Brownian 

motion are not unique. This fact allows us to be able to find new representations that 

might be suitable for some particular mathematical framework. In this thesis, we will 
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study the methods to extend representations of a fractional Brownian motion in R to 

representation of fractional Brownian motion in Rd . Here are some examples of known 

representations of Gaussian processes that motivate the idea. 

Example 1. Let {B(t), 0 ≤ t ≤ 1} be a Brownian motion. This is the case that 

H = 1/2. Then we have the covariance 

R(s, t) = E(B(s)B(t)) = min(s, t), s, t ≥ 0. 

This corresponds to fractional Brownian motion with index H = 1/2 on T = {t : 0 ≤ t ≤ 

1}. The eigenfunctions X of the covariance operator given by 1 

min(s, t)x(t)dt = λx(s) 
0 

satisfy 

x"" (s) + λx(s) = 0, x(0) = x" (1) = 0 

It follows that the eigenvalues are given by 

1 
λn = 1(n + 2 )

2π2 

with corresponding eigenfunctions 

√ 1 
en = 2sin((n + )πt)

2

Then we have 
∞ 1√ � sin((n + 2 )πt)B(t) = 2 1 Zn 

(n + )π 
n=0 2 

This representation is called the Karhunen-Loéve expansion of Brownian motion. 

An integral representation is as follows  
B(t) = 1[0,t](s)dB(s) 

where B is a standard Brownian motion. 

The next example will be another series representation of Brownian motion. 

Example 2. From Noda(1987), we have the following theorem. 



�
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Theorem 1.1.0.1. Let X be a Brownian motion with parameter space (Sn, dG), where 

Sn is the unit sphere in Rn , dG is the geodesic distance. Then X can be written as 

X(x) = λiξifi(x). 
i∈I 

Here ξi is an i.i.d sequence of standard Brownian motion, λi is a constant and {fi} is an 

orthonormal basis for Sn . 

This representation actually is the Karhunen-Loéve expansion. We have seen from 

the previous examples that W (t) can be represented by both a series and an integral. 

This is also true for the case of fractional Brownian motion which we are going to see 

in the following examples. Some well-known integral representations shall be presented 

in the next examples. The representations are for d = 1. The first two are known as 

Molchan-Golosov and Mandelbrot-Van Ness representations of fractional Brownian mo­

tions, respectively. See Jost [15] for discussion. 

Example 3. (a). Molchan-Golosov representation of fractional Brownian motion. 

For H ∈ (0, 1), there exists ordinary Brownian motion (Bt)t∈R such that for all t ∈ [0, ∞). 

t s − t 
BH (t) = C(H) (t − s)H−1/2F (1/2, H − 1/2, H + 1/2, )dB(s) 

s0 

2H  ∞ (a)k(b)k zwhere C(H) = and F (a, b, c, z) = (c)k k

k 

! , a, b, c, z ∈ R with (a)k = Γ(H+1/2) k=0 

a(a + 1)...(a + k − 1), k ∈ N and c ∈ R/{..., −2, −1, 0}. 

(b). Mandelbrot-Van Ness representation. 

BH (t) = C(H) ((t − s)H−1/21(−∞,t)(s) − (−s)H−1/21(−∞,0)(s))dBB(s), a.s., 
R 

Here BBs represents ordinary Brownian motion. 



 

�
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(c). Another example of an integral representation is given by Lindstrom in [19]. It is 

an extension of Andreas Stoll’s Representation Theorem of Lévy Brownian motion. For 

d > 1 and p ∈ (0, 2) 

Bp(x) = kp,d (lx − yl(p−d)/2 − lyl(p−d)/2)dB(y) 
Rd 

Here B represents the Wiener process in Rd . 

Integral representations of fractional Brownian motion can be used to develop series 

representations of Gaussian process. From (a), we have that a fractional Brownian motion  t
for R can be written as BH (t) = K(t, s)dB(s). Then this integral representation can 0 

be used to develop other series expansion as follows. 

Let fn(s) be an orthonormal basis for L2([0, 1]). For fixed t ∈ (0, 1), 

K(t, s) = cn(t)fn(s), 
n≥0 

where cn(t) =< K(t, ·), fn(·) >. 

Then 

1 

BH (t) = cn(t)fn(s)dB(s) 
0 n≥0 

1 

= cn(t) fn(s)dB(s) 
n≥0 0 

= cn(t)Zn 

n≥0  1
where Zn fn(s)dB(s) is an i.i.d sequence of Gaussian random variables. = 0 

We can notice that the covariance 

1 

Cov(Zn, Zm) = fn(S)fm(s)ds = δn,m. 
0 
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1.2. Statement of problem and result 

We have seen some well known examples of representations of fractional Brownian 

motion. Notice that the Molchan-Golosov representation requires integration only on a 

finite interval. This will be useful for extending from a Gaussian process in R to Rd . In this 

thesis, we are interested in this kind of integral representations given by integration over 

compactly supported kernel functions. Roughly speaking, the extension can be achieved 

t
from R to Rd by an idea of rotating vectors in Rd . Indeed, let BH (t) = K(t, u)dB(u)0 

be a fractional Brownian motion in R. Then we will prove the following result. 

Theorem 1.2.0.2. For t ∈ [−1, 1], let BH (t) = ∞ 
K(t, u)dB(u) be a fractional Brownian 0 

motion. Then for t ∈ Rd with ltl ≤ 1 

u 1 
BH (t) = K(t · , lul) dB(u)

lul(d−1)/2Rd lul

is a fractional Brownian motion with index H on the unit disk in Rd . 

Now consider a function f : Rd × Rd → R and define
 

1
 
BH (t) = K(f(t, u), lul) dB(u)

lul(d−1)/2Rd 

Later on, we shall study the conditions on f that allow this extension to work. That is 

we shall prove the following theorem. 

∞
Theorem 1.2.0.3. Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion with 

index H on the interval [−1, 1]. Let l · l be a norm in Rd induced by an inner product. If 

the function f defined as above satisfies the following conditions 

(1) For each t such that ltl ≤ 1, f(t, u) ∈ [−1, 1] for all u ∈ Rd . 

u(2) For all t ∈ Rd , u ∈ Rd/{0}, f(t, u) = f(t, 1u1 ). 

(3) f(t, u) + f(s, u) = f(t + s, u). 

(4) For c ∈ [−1, 1], f(ct, u) = cf(t, u) for all u ∈ Rd . 
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(5) Sd−1 |f(t, u)|2H dσ(u) = CH for all ltl = 1, where CH is a constant. 

Then 
1 

BH (t) = K(f(t, u), lul) dB(u)
lul(d−1)/2Rd 

is a fractional Brownian motion with index H on the unit disk in Rd . 

We shall see some example of functions f that satisfy all 5 conditions. The method 

can be applied to Gaussian processes with stationary increments as stated below. 

∞
Theorem 1.2.0.4. For each t ∈ Rd, let Z(t) = K(t, u)dB(u), t ≥ 0 be a one dimen­0 

sional Gaussian process with stationary increments and assume 

g(t) = E(Z2(t)) 

is bounded on [−1, 1]. Then we have for t ∈ Rd , 

1 
Zd(t) = K(t · u, lul)dB(u)

lul(d−1)/2Rd 

is a Gaussian process in Rd with isotropic property and the covariance function of the 

form 

Cov(Zd(t)Zd(s)) = cd(Gd(ltl) + Gd(lsl) − Gd(lt − sl)) 

d−31
where Gd(u) = (1 − v2) 2 g(uv)dv, and cd is a constant depending only on d.−1

This can be used to develop series representation as follows. 

1
Theorem 1.2.0.5. Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion in 

[−R, R], R > 0 and gi be an orthonormal basis for L2((0, 1), dx) and ϕn,k be an ortho­

mormal basis for L2(Sd−1). Then we have 

u 1 
BH (t) = K(t · , lul) dB(u)

lul(d−1)/2lulBd(0,1) 

gi(lul) u 
= cn,k,i(t) ϕn,k( )dB(u)

lul(d−1)/2 lulBd(0,1)n,k,i 

1 1 twhere cn,k,i(t) = σd−1( K(ltlu, r)gi(r)drP n
d(u)(1 − u2)ν du)ϕn,k( ), ϑ = (d − 3)/2−1 0 1t1 

and P d is the Legendre polynomial of dimension d and degree n.n 
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1.3. Organization of this Thesis 

The mathematical background that is used in this thesis is given in Chapter 2. It 

is divided into 9 sections. The first two sections discuss inner product spaces and the 

spherical measure and coordinates in Rd and provide mathematical tools that are needed 

in this thesis. Section 2.3 describes the probability background. The definition of ran­

dom variables, expectation, variance, covariance are all given in this section. Four basic 

definitions of types of convergence for sequences of random variables are given in Section 

2.4. In section 2.5 the definition of stochastic processes and Kolmogorov’s Existence theo­

rem are given. Section 2.6 gives the definition of Gaussian random variables, multivariate 

Gaussian and Gaussian processes. Brownian motion and Brownian sheet definitions are 

stated in the section 2.7. The last two sections are concerned about the Wiener integral 

in R and Rd . We first define the integral of a step function. Then we extend the definition 

to a larger class of functions by approximation. 

Chapter 3 gives a background on fractional Brownian motion. Formal definition of 

fractional Brownian motion is given in this chapter. Some results and properties are also 

stated and proved. 

Chapter 4 describes series expansion of Gaussian process. The Mercer’s theorem 

and Karhunen-Loéve expansion are stated in the section 4.1. Examples of the Karhunen­

Loéve expansion are given in the section 4.2. These are the Karhunen-Loéve expansion of 

standard Brownian motion and Brownian bridge. 

Chapter 5 contains the main results of this thesis. There are four sections in this 

chapter. The first two sections investigate a method to extend a fractional Brownian 

motion in R to a fractional Brownian motion in Rd . The conditions that allows the 

extension to work are given and proved. Section 5.3 generalizes results of the first two 

sections. In particular it is shown that this method can also apply to the case of Gaussian 
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processes in R with stationary increments. Then we obtain a Gaussian process in Rd with 

an isotropic property. The last section investigates series expansion of fractional Brownian 

motion. It is stated and proved in this section that a fractional Brownian motion in Rd 

can be written as an infinite summation of terms using the othonormal basis of the unit 

ball in Rd 

The conclusion and future work are described in Chapter 6, the last chapter of this 

thesis. Through out the thesis, we always consider Gaussian processes with mean zero. 
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2. MATHEMATICAL BACKGROUND
 

The following section will give some basic mathematical background, including an­

alytic concepts and fact that will be used in later chapters. Most of this material can 

be found in standard textbooks on real analysis or functional analysis and it may not 

be necessary to repeat here the pertinent proofs. However, a few facts of a more special 

character and not generally known will be mentioned as lemmas and proved. 

Through out this thesis we let Rd denote the Euclidian d dimensional space. If x 

is a point of Rd the coordinates of x will be denoted by xi, that is x = (x1, x2, ..., xd). If 

u, v ∈ Rd we let u · v denote the inner product, and lul the Euclidian norm in Rd . For 

points in R, | · | is the ordinary absolute value. The Lebesgue measure of a subset S of Rd 

will usually be called the volume of S and denoted by |Sd−1|. We shall begin this chapter 

by giving some backgrounds on the inner product space of Rd . 

2.1. Inner product space 

For the background that is used in this section, we refer to [8]. 

Definition 2.1.0.1 (Friedberg[8]). An inner product on a real vector space V is a function 

from V × V → R that for any two vectors u, v ∈ V , there is a real number < u, v >, 

satisfying the following properties.: 

(1) Linearity : < au + bv, w >= a < u,w > +b < v, w >, where a, b ∈ R. 

(2) Symmetric : < u, v >=< v, u >. 

(3) Positive definite : For any u ∈ V , < u, u >≥ 0 and < u, u >= 0 if and only if u = 0. 

The vector space V with an inner product is called an inner product space. 
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For each vector u ∈ V , the norm of u is defined as the number
 

√ 
lul = < u, u >. 

If lul = 1 we call u a unit vector and u is said to be normalized. For any vector v  = 0 ∈ V , 

we have the unit vector 
v 

v̄ = . 
lvl 

This process is called normalizing v. 

Let B = {u1, u2, ..., un} be a basis of an n dimensional inner product space V . For 

vector u, v ∈ V , we can write 

u = α1u1 + α2u2 + · · · + αnun 

and 

v = β1u1 + β2u2 + · · · + βnun. 

The linearity implies that 

n n 

< u, v > = < αiui, βiui > 
i=1 j=1 

n n 

= αiβj < ui, uj > 
i=1 j=1 

we call the n × n matrix ⎞⎛ 

A =
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

< u1, u1 > < u1, u2 > · · · < u1, un > 

< u2, u1 > < u2, u2 > · · · < u2, un > 
. . . 

. . . 
. . . 

. . . 

< un, u1 > < un, u2 > · · · < un, un > 

⎟⎟⎟⎟⎟⎟⎟⎠
 

the matrix of the inner < ·, · > product relative to the basis B. Thus by using coordinate 

vectors 

[u]B = [α1, α2, ..., αn]
T , [v]B = [β1, β2, ..., βn]

T , 



11 

we have
 

< u, v >= [u]T 
BA[v]B. 

A subset S = {u1, u2, ..., uk} of non zero vectors of V is called an orthogonal set if every 

pair of vectors are orthogonal, that is, 

< ui, uj >= 0, 1 ≤ i < j ≤ k. 

An orthogonal set S = {u1, u2, ..., uk} is called an orthonormal set if we further have 

luil = 1, 1 ≤ i ≤ k. 

An orthonormal basis of V is a basis which is also an orthonormal set. For the next 

theorem, we shall give some background on diagonalizing symmetric matrix. 

Theorem 2.1.0.6 (Friedberg[8]). Any real symmetric matrix A can be diagonalized by 

an orthogonal matrix. That is there exists an orthonormal basis B = {u1, u2, ...un} of Rn 

such that 

Au1 = λiui, 1 ≤ i ≤ n, ⎞⎛ 

Q−1AQ = QT AQ = 

⎜⎜⎜⎜⎜⎜⎜⎝
 

λ1 0 · · · 0 

0 λ2 · · · 0 
. . . 

. . . 
. . . 

. . . 

0 0 · · · λn 

⎟⎟⎟⎟⎟⎟⎟⎠
 

,
 

where Q = [u1, u2, ..., un] and spectral decomposition 

T T TA = λ1u1u + λ2u2u + · · · + λnunu .1 2 n 

An n × n matrix is called positive definite if, for any non zero vector u ∈ Rn , 

< u,Au >= u T Au > 0. 
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Theorem 2.1.0.7 (Friedberg[8]). Let A be real symmetric matrix. Let < ·.· > be defined 

by 

< u, v >= u T Av, u, v ∈ Rn . 

The < ·, · > is an inner product in Rn if and only if A is positive definite. 

Theorem 2.1.0.8 (Friedberg[8]). Let A be the matrix of n dimensional inner product 

space V relative to a basis B. Then for u, v ∈ V , 

< u, v >= [u]T 
BA[v]B. 

Moreover, A is positive definite. 

The following section shall give a basic knowledge on some computations, change of 

variable and measure of spherical coordinate in Rd . 

2.2. Spherical measure and Spherical Coordinate in Rd 

For the background material in this section, we refer to [9] and [14]. 

Through out this section, we write Bd(p, r) for the closed ball in Rd of radius r 

centered at p, and Bd = Bd(0, 1) for the closed unit ball in Rd centered at 0. Furthermore, 

we let Sd−1 denote the boundary of Bd , that is the unit sphere in Rd . The spherical 

Sd−1Lebesgue measure on will be denoted by σ, the volume of Bd by |Bd|, and the 

surface area of Bd by |Sd−1|. 

We let L(Sd−1) denote the class of integrable function on Sd−1 and L2(Sd−1) the 

class of square integrable function on Sd−1 . Thus L2(Sd−1) consists of all real-valued 

Lebesgue measurable functions F on Sd−1 with the property that 

F 2(u)dσ(u) < ∞, 
Sd−1 
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where the underlying measure space is always (Sd−1 , M, σ) with M denoting the class of 

subsets of Sd−1 that are measurable with respect to the spherical Lebesgue measure σ. If 

F, G ∈ L2(Sd−1) the inner product < F,G > is defined by 

< F,G >= F (u)G(u)dσ(u). 
Sd−1 

Now we will recall the background on change of variable to spherical coordinate 

which we will benefit from in the main result section. But first, we shall give the definition 

of the Jacobian matrix and then we state the theorem giving the general change of variable 

formula. 

Let πi be the projection of the i component of Rm on to R, that is πi(x) = xi 

for x = (x1, x2, ..., xm) ∈ Rm . For a mapping T of an open set Ω in Rn into Rm , let 

(g1, g2, ..., gm) be its component functions, that is gi is a real-valued function on Ω defined 

by gi = πi ◦ T on Ω. If all of the partial derivatives ∂gi for i = 1, ..., m and j = 1, ..., n ∂xj 

exist at p ∈ Ω, then we call the m × n matrix ⎞⎛ 

JT (p) = 

⎜⎜⎜⎜⎝
 

∂g1 ∂g1· · · ∂x1 ∂xn 

. .. . . . .. . 

∂gm ∂gm· · · ∂x1 ∂xn 

⎟⎟⎟⎟⎠
 

the Jacobian matrix of the mapping T at p. 

Now we are going to state the theorem giving change of variable formula. 

Theorem 2.2.0.9 (McDonald[14]). Let (Ω, A, µ) be a measure space, (Λ, S) a measur­

able space, and T a measurable transformation from (Ω, A) to (Λ, S). Then, for any S 

measurable function f on Λ, 

f ◦ T (x)dµ(x) = f(y)dµ ◦ T −1(y), 
Ω Λ 

in the sense that if one of the integrals exists, then so does the other, and they are equal.
 

As an immediate consequence of the above Theorem, we have the following corollary.
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Corollary 2.2.0.1 (McDonald[14]). Let Ω be an open set in Rd and let T be a one to one 

mapping of Ω of class of C1(Ω) into Rd . Then for any d dimensional measurable function 

f on T (Ω), we have 

f(y)dλd(y) = f ◦ T (x)| det JT |dλd(x), 
T (Ω) Ω 

in the sense that the existence of one side implies that of the other and the equality of 

the two. In particular, the integral holds for every nonnegative real-valued d dimensional 

measurable function f on T (Ω). 

Now consider Ω = (0, ∞) × (−π, π) in R2 and a mapping T = (g1, g2) of the open 

set Ω in R2 into R2 defined for (r, θ) ∈ (0, ∞) × (−π, π) by 

x1 = g1(r, θ) = r cos θ, 

x2 = g2(r, θ) = r sin θ. 

T maps Ω one to one onto R2\A, where A = (−∞, 0] × {0} ⊂ R2 . The Jacobian matrix 

of T is given by
 ⎞⎛ ⎜⎝
 
cos θ −r sin θ
⎟⎠
JT (r, θ) = .
 
sin θ r cos θ 

Thus T is of class C1(Ω) with 

det JT (r, θ) = r for (r, θ) ∈ (0, ∞) × (−π, π). 

If f is a real-valued measurable function on R2, then since λ2(A) = 0, we have 

f(x1, x2)dλ
2(x1, x2) = f(x1, x2)dλ

2(x1, x2) 
R2 R2\A 

= f(r cos θ, r sin θ)rdrdθ 
(0,∞)×(−π,π) 

For general d ≥ 2, let (r, θ1, θ2, ...θd−1) ∈ (0, ∞) × (0, π) × · · · × (0, π) × (−π, π) = Ωd and 

define Td from Ωd to Rd by 

Td(r, θ1, ...θd−1) = (x1, x2, ..., xd), 
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where 

x1 = r cos θ1 

x2 = r sin θ1 cos θ2 

x3 = r sin θ1 sin θ2 cos θ3 

. . . 

xd−1 = r sin θ1 · · · sin θd−2 cos θd−1 

xd = r sin θ1 · · · sin θd−2 sin θd−1 

2 2 2Notice that x1 + x2 + · · · + x = r2 and the Jacobian matrix of Td is given by d 

d−2d 
d−1J(r, θ1, ..., θd−1) = r sind−i−1θi,
 

i=1
  0
where i=1 sin θi = 1. 

Hence by the change of variable formula, we have for real-valued function F ∈ L2(Sd−1), 

d−2d 
F (u)dσ(u) = F (u1, ..., ud) sind−i−1(θi)dθ1 · · · dθd−1, 

Sd−1 (0,π)×···×(0,π)×(−π,π) i=1 

where 

u1 = cos θ1 

u2 = sin θ1 cos θ2 

u3 = sin θ1 sin θ2 cos θ3 

. . . 

ud−1 = sin θ1 · · · sin θd−2 cos θd−1 

ud = sin θ1 · · · sin θd−2 sin θd−1 

The next lemma relates integration over Sd−1 to a particular integration over [−1, 1]. This 

lemma is a special case of the Funk-Hecke theorem, see [7]. 
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Lemma 2.2.0.1 (Groemer[9]). If Φ is a bounded Lebesgue integrable function on [−1, 1], 

and if p is a given point on Sd−1 , d ≥ 2, then Φ(u · p) considered as a function of u on 

Sd−1 is σ integrable and 

1 
d−3 

Φ(u · p)dσ(u) = |Sd−1| Φ(ζ)(1 − ζ2) 2 dζ. 
Sd−1 −1 

The next corollary will be a consequence of the previous lemma. 

Corollary 2.2.0.2. Let X1 = (Rd , ·) and X2 = (Rd, < ·, · >) be respectively dot product 

and inner product space in Rd, for d ≥ 2. Let {e1, ..., ed} be the usual orthonormal basis 

of X1, that is all of the components of ei are zeroes but ith is 1, and {t, f2, ..., fd} be an 

orthonomal basis of X2. Define a function f : X1 → X2 by 

f(u) = v = v(u), 

where u = α1e1 + · · · + αded and v = α1t + α2f2 + · · · + αdfd.
 

So f is isometric isomorphism from X1 to X2.
 

Then for t in Rd with < t, t >= 1,
 

1 

| < v(u)/lv(u)l, t > |dσ(u) = |Sd−1| |ζ|(1 − ζ2)(d−3)/2dζ 
Sd−1 −1 

is a constant. 

Proof. By the previous Lemma, 

| < v, t > |dσ(u) = | < v(u), t > |dσ(u) 
Sd−1 Sd−1 

= |u · e|dσ(u) 
Sd−1 

1 

= |Sd−1| |ζ|(1 − ζ2)(d−3)/2dζ. 
−1 

is clearly a constant. 

The following sections contain the mathematical backgrounds of probability and 

random process.
 



�
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2.3. General concepts of the probability measure 

Let (Ω, F , P) be a measure space, where Ω is a non-empty set and F is a σ-field of 

subsets of Ω. Then we call (Ω, F , P) a probability space if P is a measure on F satisfying 

1) 0 ≤ P(A) ≤ 1, for A ∈ F , 

2) P(∅) = 0 and P(Ω) = 1, �∞3) If A1, A2, . . . is a disjoint sequence in F and Ai ∈ F , then i=1 

∞ ∞

 
P( Ai) = P(Ai) 

i=1 i=1 

where ∅ denotes the empty set. 

We define the Euclidean norm of x ∈ Rd , d ≥ 1 by 

2 2lxl = (x1 + · · · + xd)
1/2 . 

Define a half open rectangle in Rd to be the set of the form 

I = (a1, b1] × · · · × (ad, bd], 

and denote Bd as the Borel σ algebra generated by the half open intervals in Rd . 

Now let X be a measurable function from (Ω, F) into (Rd , Bd). That is X = 

(X1, . . . , Xd), is a vector of length d, where Xi is a real-valued random variable. Then for 

every Borel set B ∈ Bd, the set 

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} 

is an element of F . Then X is called an Rd-valued random variable. When d = 1, X is 

said to be real-valued. 

We can also define a probability measure FX or simply F on Bd from the probability 

measure P by 

FX (B) = P{X−1(B)} 
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for every B ∈ Bd . We define a distribution function F of the random variable X by 

F (x) = FX ((−∞, x1] × · · · × (−∞, xd]) 

= P[X1 ≤ x1, . . . , Xd ≤ xd]. 

Denote λd, or simply λ, to be Lebesgue measure on Rd . Then for every absolutely contin­

uous function F , there exists a non-negative Borel function fX : Rd → R such that 

FX (B) = fX (x)dλ(x) 
B 

for every B ∈ Bd . The function fX is called the probability density function of the random 

variable X. 

If X is a Rd-valued random variable then we define the expectation of X by 

E(X) = X(ω)dP(ω) = xdFX (x) 
Ω Rd 

and we denote µX = E(X) to be the mean of X. 

If g : Rd → Rk is a measurable function, then the expectation of g(X) is defined as the 

Lebesgue- Stieltjes integral 

E(g(X)) = g(X)dP = g(x)dFX (x) 
Ω Rd 

provided the integral exists. Since g(X) = (g1(X), . . . , gk(X)) is Rk valued, so is E(g(X)). 

Note that E(g(X)) exists if, for i = 1, . . . ,m, E(gi(X)) < ∞. 

If X is a real-valued random variable and E(|X|) < ∞, X is said to be integrable. 

If E(|X|2) < ∞, we call X square integrable. 

We define absolute moments of order k of X by 

E(lXlk) = lxlkdFX (x). 
Rd 

Since j ≤ k implies lxlj ≤ 1 + lxlk, if X has finite absolute moment of order k, then it 

has all finite absolute moments of order 1 ≤ j ≤ k.
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The kth moment of a real-valued random variable X is defined by 

E(Xk) = x kdFX (x). 
R 

We call V ar(X) = E{|X|2} − µ2 the variance of X and Cov(X, Y ) = E{(X −X 

E(X))(Y − E(Y ))} the covariance of X and Y . 

2.4. Stochastic convergence 

There are four basic definitions of convergence for sequences Xn of random variables. 

Definition 2.4.0.2 (Billingsley[4]). 1) Xn is said to converge to X with probability one, 

or almost surely, if there exists a set N ⊂ Ω such that P(N) = 0 and, for every ω ∈ N c , 

lim lXn(ω) − X(ω)l = 0. 
n→∞ 

2) Xn is said to converge to X in vth mean (v > 0) if 

E(lXn − Xlv) → 0 as n → ∞. 

3) Xn is said to converge to X in probability if, for every E > 0, 

P(lXn − Xl > E) → 0 as n → ∞. 

4) Xn is said to converge to X weakly, or in distribution, if 

FXn (x) → FX (x) as n → ∞ 

at every continuity point x of FX (x). 

In the following lemma we will summarize a number of results relating to the types 

of convergence and giving sufficient conditions for convergence. The proofs can be found 

in [4]. First we shall give a definition of the characteristic function. 
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Let X = (X1, . . . , Xd) be a random variable with its distribution FX in Rd . Let 

dt · x = i=1 tixi denote inner product. We define the characteristic function of X over Rd 

by 

it·X )ϕX (t) = E(e 
 di i=1= e tixi dFX (x) 

Rd 

The characteristic function in nonprobability context is called the Fourier transform. 

The characteristic function has two important properties that are used in this thesis. 

1) The distribution of a random variable is completely determined by its character­

istic function, and vice versa. 

2) From the pointwise convergence of characteristic functions follows the weak con­

vergence of the corresponding distributions. 

Now we are going to state the Lemma mentioned above. 

Lemma 2.4.0.2 (Billingsley[4]). Let Xn be a sequence of random variables.
 

1) If Xn converges to X almost surely then Xn converges to X in probability.
 

2) If Xn converges to X in vth mean then Xn converges to X in probability.
 

3) If Xn converges to X in probability then there is a sequence Xnk of Xn such that Xnk
 

converges to X almost surely.
 

4) Xn converges to X in distribution if and only if ϕXn (t) → ϕX (t) for every t.
 

2.5. Stochastic process 

We start this section by recall the definition of stochastic process. 

Definition 2.5.0.3 (Billingsley[4]). A stochastic process is a collection [Xt : t ∈ T ] of 

random variables on a probability space (Ω, F , R). 
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In many standard cases, T is the set of integers and time is discrete, or else T is an 

interval and time is continuous. However, for general theory of this section we will regard 

T as an arbitrary index set. Now for each k-tuple (t1, . . . , td) of distinct elements of T , 

we define a probability measure µt1,...,td on Rd by 

µt1,...,td (H) = P[(Xt1 , . . . , Xtd ) ∈ H], H ∈ Bd . 

Then we call µt1,...,td the finite dimensional distributions of the stochastic process [Xt : t ∈ 

T ]. A natural question to ask is whether or not one can always find a stochastic process 

that has these µt1,...,td as its finite dimensional distribution. A result of Kolmogorov is 

that a necessary and sufficient condition for the existence of such a stochastic process is 

that the given family of measures satisfies the following two consistency conditions: 

1) Suppose H = H1 × · · · × Hd (Hi ∈ B), and consider a permutation π of (1, 2, . . . , d). 

Since [(Xt1 , . . . , Xtd ) ∈ (H1 × · · · × Hd)] and [(Xπ1, . . . , Xπd) ∈ (Hπ1 × · · · × Hπd)] are the 

same event. Then 

µt1,...,td (H1 × · · · × Hd) = µtπ1,...,tπd (Hπ1 × · · · × Hπd). 

2) 

µt1,...,td−1 (H1 × · · · × Hd−1) = µt1,...,td−1,td (H1 × · · · × Hd−1 × R). 

The Kolmogorov’s Existence Theorem can be stated as the following 

Theorem 2.5.0.10 (Billingsley[4]). If µt1,...,td are a system of distributions satisfying the 

consistency conditions 1) and 2), then there exists on some probability space (Ω, F , P) a 

stochastic process [Xt : t ∈ T ] having the µt1,...,td as its finite dimensional distributions. 

2.6. Gaussian process 

An important class of stochastic processes are the class of Gaussian processes. We 

shall start with the definition of a Gaussian random variable.
 

http:2.5.0.10
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Definition 2.6.0.4 (Billingsley[4]). A real-valued random variable X is said to be Gaus­

sian or normally distributed if it has finite mean µ = E(X) and variance σ2 = E(|X − 

µ|2) > 0, and its distribution function is given by 

x (x−µ)2 
−FX (x) = P(X ≤ x) = (2πσ2)−1/2 e 2σ2 dx, 

−∞ 

That is, X has the density function 

(x−µ)2 
−fX (x) = (2πσ2)−1/2 e 2σ2 , 

and characteristic function 

itµ− 1 t2σ2 
ϕX (t) = e 2 . 

We abbreviate this by writing X ∼ N(µ, σ2). For the case µ = 0 and σ = 1, we say 

that X has a standard normal distribution. So the distribution function of the standard 

normal random variable is 

x 
xϕ(x) = (2π)−1/2 e − 

2
1 2 

dx. 
−∞ 

Now consider X = (X1, . . . , Xd) with independent components each having the standard 

−x2/2/ 
√ 

normal distribution. Since each Xi has density e 2π, X has density 

1 −1x12/2f(x) = e . 
(2π)d/2 

Its characteristic function is 

d dd d 
−t2/2 −1t12/2E( e itiXi ) = e i = e . 

i=1 i=1 

Let A = [aij ] be a d × d matrix, and let Y = AXT , where XT is the matrix 

transpose of X. Since E(XiXj ) = δij , the matrix V = [vij ] of the covariance of Y has 

dentries vij = E(YiYj ) = k=1 aikajk. Thus V = AAT . The matrix V is symmetric and 

positive definite, that is ij vij xixj = lAT xT l2 ≥ 0. Thus the characteristic function of 
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AXT is 

it(AXT )) i(AT tT )T XT
E(e = E(e ) 

−1AT tT 12/2 = e 

−tV tT /2 = e . 

Define a centered Gaussian distribution as any probability measure whose characteristic 

function has this form for some symmetric positive definite V . 

If V is symmetric and positive definite, then for an orthogonal matrix U , UT V U=D 

is diagonal matrix whose diagonal elements are the eigenvalues of V . So they are non­
√ 

negative. If D is the diagonal matrix whose elements are the square roots of those of 
√ 

D, and if A = U D, then V = AAT . Thus for every positive definite V there exists a 

centered Gaussian distribution(namely the distribution of AX) with covariance matrix V 

− 1 tV tT 
and characteristic function e 2 . 

1 −1x12/2If V is nonsingular then A is as well. Since X has the density f(x) = e ,
(2π)d/2 

Y = AXT has density f(A−1xT )|det(A−1)|. Since V = AAT , |det(A−1)| = (det(V ))−1/2 . 

TMoreover, V −1 = (AT )−1A−1, so that lA−1xT l2 = xV −1x . Thus the normal distribution 

− 1 T 
2 xV −1xhas density (2π)d/2(det(V ))−1/2e if V is nonsingular. 

Next we shall give a definition of multivariate Gaussian random variable. 

Definition 2.6.0.5 (Billingsley[4]). An Rd-valued random variable X is said to be multi­

variate Gaussian if for every d-tuple of real numbers (α1, . . . , αd) the real-valued variable 

Y = d αiXi is Gaussian. i=1 

In this case, the probability density of the d-dimensional vector X is given by 

(x−µ)V −1(x−µ)T 
fX (x) = (2π)−d/2(det(V ))−1/2 e − 

2
1 

where µ is the d vector with element µj = E(Xj ) and V is the positive definite d × d 

covariance matrix with elements 

vij = Cov(Xi, Xj ) = E[(Xi − µi)(Xj − µj )]. 
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We can check that the corresponding characteristic function of X is 

itµT − 1 tV tT 
ϕX (t) = e 2 . 

By the uniqueness property of characteristic function, a Gaussian distribution is com­

pletely determined by its covariance matrix.
 

We can now define a Gaussian process.
 

Definition 2.6.0.6 (Billingsley[4]). A Gaussian process is a stochastic process [X(t) : 

t ∈ T ] possesing the finite dimensional distributions all of which µt1,...,tk are multivariate 

Gaussian. 

From the definition and above notice, we can see that all the finite dimensional 

distributions of a real-valued Gaussian process are completely determined by mean and 

covariance functions: 

µ(t) = E(X(t)) 

Cov(X(s), X(t)) = R(s, t) = E((X(s) − µ(s))T (X(t) − µ(t))). 

2.7. Brownian motion and Brownian sheet 

We start this section with the definition of increments of a stochastic process. 

Definition 2.7.0.7. Let {X(t), t ∈ T } be a stochastic process with an index set T . Then 

the increment between any two points s and t ∈ T is defined as a random variable 

X(s) − X(t). 

Definition 2.7.0.8. A stochastic process {X(t), t ∈ T } with an index set T has stationary 

increments if for any s, t ∈ T , 

{X(t) − X(s)} = d {X(t − s) − X(0)}. 
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Definition 2.7.0.9. A stochastic process {X(t), t ∈ R} has independent increments if for 

any t0 ≤ t1 · · · ≤ tk, d 
P(X(ti) − X(ti−1) ∈ Hi, i ≤ k) = P(X(ti) − X(ti−1) ∈ Hi), 

i≤k 

where Hi ∈ B for all 0 ≤ i ≤ k. 

Note that if X is a Gaussian process then the Definition 2.7.0.9 is equivalent to 

E((X(t) − X(s))(X(s) − X(0))) = 0, for 0 < s < t. 

Definition 2.7.0.10 (Billingsley[4]). A Brownian motion or Wiener process is a stochas­

tic process [B(t), t ∈ R], on some probability space (Ω, F , P), with these three properties.
 

1) P(B(0)) = 1.
 

2) The increments are independent.
 

3) B is a Gaussian process with the covariance function of the form
 

E(B(s)B(t)) = min{s, t}. 

Definition 2.7.0.11. A Brownian sheet B in Rd , d ≥ 2, is a Gaussian process with 

stationary increments and the covariance function of the form 

dd 
E(B(s)B(t)) = min{|si|, |ti|}, 

i=1 

where s = (s1, . . . , sd), t = (t1, . . . , td) are in the same quadrant in Rd . 

2.8. Wiener integral in R 

In ordinary calculus, we define the Riemann integral as following. First, we define 

the integral of a step function in a way that the integral represents the area beneath the 

graph. Then we extend the definition to a larger class of functions by approximation. 

They are called the Riemann integrable functions. We define the integral for general 

http:2.7.0.11
http:2.7.0.10
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function f to be the limit of the integrals of step functions that converge to f . So we will 

do the same for the Wiener integral. 

Let (Ω, F , P) be a probability space also let {B(t) : t ∈ R} be a Brownian motion 

on R and let {f(t) : t ∈ R} be a well-behaved function whose specific qualifications shall 

be given later. Then we shall define the Wiener integral with respect to Brownian motion 

as a random variable. 
∞ 

I(f) = f(t)dB(t). 
−∞ 

This integration may be interpreted in the same way as classical Riemann-Stieltes integral. 

However, such an interpretation is not well-defined because almost all paths of Brownian 

motion are not of bounded variation. So the definition of the Wiener integral needs some 

more subtle development to make it well-defined. 

We first let B denote the smallest σ-field that contains all of the half open subsets 

of the form (a, b]; that is, B is the set of Borel subsets of R. Now we consider the class 

L2(R, B, dt) of all measurable functions f that are square integrable in the sense that 

∞ 

f2(t)dt < ∞. 
−∞ 

For the simplicity, we will use the notation L2(dt) instead of L2(R, B, dt). 

Next if we take f to be the indicator of the interval (a, b] ⊂ R, then clearly f is an 

element of L2(dt). Then we define the Wiener integral by 

b 

I(f) = dB(t) = B(b) − B(a). 
a 

Also we want the Wiener integral to be linear so that it will determine how I(f) must 

be defined for a large class of integrands. So we let S denote the subset of L2(dt) that 

consists of all functions that can be written as a finite sum of the form 

n−1 

f(t) = ai1(ti<t≤ti+1), 
i=0 



�

 �
�
�

27 

where ai is a constant for all i and a = t0 < t1 < t2 < · · · < tn−1 < tn = b. Clearly, 

f ∈ L2(dt). We call S the subspace of all step functions of L2(dt). Then for all functions 

in S we simply define I(f) by 

n−1 

I(f) = ai(B(ti+1) − B(ti)). 
i=0 

Next step we need to extend the domain of I from S to all of L2(dt) and the key is 

to show that I : S → L2(dP) is a continuous mapping. So we have the following lemma. 

Lemma 2.8.0.3. For f ∈ S we have 

lI(f)lL2(dP) = lflL2(dt). 

Proof. Since the Brownian motion has independent increments, 

n−1 

lI(f)l2 = ( ai(B(ti+1) − B(ti)))
2dPL2(dP) 

Ω i=0 

n−1 
2 = ai |ti+1 − ti|

i=0 

n−1 

= ai 
2λ((ti, ti+1]) 

i=0 

= lfl2 
L2(dt), 

where λ is the Lebesgue measure on R. 

By the linearity of I, it implies that I takes equal distant points in S to equal distant 

points in L2(dP). Thus I maps a Cauchy sequence in S into a Cauchy sequence in L2(dP). 

The importance of this leads to the next lemma which shows that any f ∈ L2(dt) can be 

approximated arbitrarily by elements in S. 

Lemma 2.8.0.4. For any f ∈ L2(dt), there exists a sequence {fn} with fn ∈ S such that 

lf − fnlL2(dt) → 0 as n → ∞. 
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Now for any f ∈ L2(dt), this approximation lemma tells us that there is a sequence 

{fn} ∈ S such that fn converges to f in L2(dt). Before we give a formal definition it is 

necessary to check that the random variable I(f) does not depend on the specific choice 

of a sequence fn. 

Lemma 2.8.0.5. Let f ∈ L2(dt). Assume fn and gn are sequences in S such that fn → f 

and gn → f then 

lim I(fn) = lim I(gn) = I(f) a.s. 
n→∞ n→∞ 

Proof. Since fn and gn are Cauchy sequences in S and I is linear, I(fn) and I(gn) are also 

Cauchy sequences in L2(dP). Since L2(dP) is complete, I(fn) converges to F and I(gn) 

converges to G in L2(dP). Hence 

lF − GlL2(dP) ≤ lI(fn) − F lL2(dP) + lI(gn) − GlL2(dP) + lI(fn) − I(gn)lL2(dP) 

≤ lI(fn) − F lL2(dP) + lI(gn) − GlL2(dP) 

+lI(fn) − I(f)lL2(dP) + lI(gn) − I(f)lL2(dP) → 0 as n → ∞ 

Now we are ready to give a formal definition of the Wiener integral that is used in 

this thesis. 

Definition 2.8.0.12. Let f ∈ L2(dt) then there exists a sequence fn in S such that fn 

converges to f . Then we define the Wiener integral of f by 

I(f) = lim I(fn), 
n→∞ 

where the interpretation is that the random variable I(f) is the a.s. unique element of 

L2(dP) such that lI(f) − I(fn)lL2(dP) → 0 as n → ∞. 

This completes the definition of I(f). Next we will prove some basic properties of 

I(f), that is a proposition stating that limits of Gaussian random variables are Gaussian. 

http:2.8.0.12
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Proposition 2.8.0.1. If fn is a sequence of Gaussian random variables with mean zero 

and variance lfnl2 and f is a random variable such that L2(dt) 

lim fn = f in L2(dP), 
n→∞ 

then I(f) is Gaussian with mean zero and variance lfl2 .L2(dt)

Proof. Since fn is Gaussian with mean zero and variance lfnl2 , by the dominated L2(dt)

convergence theorem we get 

E(e itI(f)) = lim 
n→∞ 

E(e itI(fn)) 

= lim e 
− 1 

2 t
21fn12 

L2(dt) 

n→∞ 

= e 
− 1 

2 t
21f12 

L2(dt) 

Hence I(f) is Gaussian with mean zero and variance lfl2 .L2(dt)

For the next section, we will extend the definition of Wiener integral from R to Rd . 

2.9. Wiener integral in Rd 

We can define the Wiener integral with respect to Brownian motion in Rd in the 

similar way we did for the real line. First let J be a collection of subsets of Rd of the form 

K = {t ∈ Rd : a1 < t1 ≤ b1, . . . , ad < td ≤ bd}. Also let {B(t) : t ∈ Rd} be a Brownian 

motion on Rd . Let B be the smallest σ-field containing all of the half open subsets of J . It 

is similar to the case d = 1. We consider the class L2(K, B, dt) of all measurable functions 

f that are square integrable. That is 

f2(t)dt < ∞. 
Rd 

For the simplicity, we shall use the notation L2(dt) instead of L2(Rd , B, dt). Now consider 

an indicator function f of A = (a1, b1] × · · · × (ad, bd] ∈ J . That is f(t) = 1A(t). We 
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similarly define the Wiener integral for f by
 

I(f) = dB(t) 
A 

= B(A) 
d
 

= B(b1, . . . , bd) − B(b1, . . . , bi−1, ai, bi+1, . . . , bd)
 
i=1
 

+ B(b1, . . . , bi−1, ai, bi+1, . . . , bj−1, aj , bj+1, . . . , bd) − · · · (−1)dB(a1, . . . , ad) 
1≤i<j≤d
 

d
= B(b1 − a1, . . . , bd − ad). 

Notice that 

I2(f)dP = B2(b1 − a1, . . . , bd − ad)dP 
Ω Ω 

= (b1 − a1) · · · (bd − ad) 

= λd(A) 

= lfl2 
L2(dt), 

where λd is the Lebesgue measure in Rd . 

Now let Ai = (a1(i), b1(i)] ×· · ·× (ad(i), bd(i)] ⊂ Rd with Ai is mutually disjoint and 

we consider step function f of the form 

n−1
 

f(t) = ai1Ai .
 
i=0
 

We denote S as a subspace of all step functions f of L2(dt). Then we define I(f) by 

n−1 

I(f) = aiB(Ai), 
i=0 

So we have the following lemmas. Since some proofs are similar to the case d = 1, some 

of the proof shall be skipped. 

Lemma 2.9.0.6. For f ∈ S we have 

lI(f)lL2(dP) = lflL2(dt). 
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Proof. By the property of Brownian sheet in Rd and since Ai is mutually disjoint, we have 

n−1 

I2(f)dP = ( aiB(Ai))
2dP 

Ω Ω i=0 

n−1 

= a 2 
i B2(Ai)dP 

i=0 Ω 

n−1 

= a 2 
i λd(Ai) 

i=0 

= lfl2 
L2(dt). 

Lemma 2.9.0.7. For any f ∈ L2(dt), there exists a sequence {fn} with fn ∈ S such that 

lf − fnlL2(dt), → 0 a.s. 

Lemma 2.9.0.8. Let f ∈ L2(dt). Assume fn and gn are sequences in S such that fn → f 

and gn → f then 

lim I(fn) = lim I(gn) = I(f) a.s. 
n→∞ n→∞ 

Similarly, we define the Wiener integral for any f in L2(dt) as the following. 

Definition 2.9.0.13. Let f ∈ L2(dt) then there exists a sequence fn in S such that fn 

converges to f . Then we define the Wiener integral of f by 

I(f) = lim I(fn), 
n→∞ 

where the interpretation is that the random variable I(f) is the a.s. unique element of 

L2(dP) such that lI(f) − I(fn)lL2(dP) → 0 as n → ∞. 

Also the basic properties of I(f) can be proved similarly. 

Proposition 2.9.0.2. If fn is a sequence of Gaussian random variables with mean zero 

and variance lfnl2 and f is a random variable such that L2(dt) 

lim fn = f in L2(dP), 
n→∞ 

http:2.9.0.13
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then I(f) is Gaussian with mean zero and variance lfl2 .L2(dt)

Corollary 2.9.0.3. For f and g in L2(dt), 

Cov(I(f), I(g)) = E(I(f)I(g)) = fgdt. 
Rd 

In this thesis, we are interested in integral representations of the form 

Z(t) = K(t, u)dB(u) 
T 

where K is a function defined on T × T , T is a compactly supported subset of Rd . 
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3. FRACTIONAL BROWNIAN MOTION 

In this chapter, we review the main properties that make fractional Brownian motion 

interesting for many applications. 

3.1. Fractional Brownian motion and its definition 

The fractional Brownian motion was first introduced in a Hilbert space framework 

by Kolmogorov in 1940. It was then studied by Yaglom. In 1968, the name fractional 

Brownian motion was used by Mandelbrot and Van Ness to describe the process. It was 

Mandelbrot who named the parameter H of BH after the name of the hydrologist Hurst, 

who made a statistical study of water run-offs of the Nile river for many years. 

Next we give a formal definition of the fractional Brownian motion. 

Definition 3.1.0.14 (Embrechts[6]). Let 0 < H ≤ 1. A real-valued Gaussian process 

{BH (t), t ∈ Rd} is called fractional Brownian motion if E[BH (t)] = 0 and 

1
[ltl2HE[BH (t)BH (s)] = + lsl2H − lt − sl2H ]. 

2

For the case H = 1/2, B1/2 is the standard Brownian motion in Rd . 

Recall that the distribution of a Gaussian process is determined by its mean and 

covariance structure. That is the distribution of a process is determined by all joint 

distributions and the density of a multidimensional Gaussian distribution is explicitly 

given through its mean and covariance matrix. Thus, the condition in the above Definition 

determine a unique Gaussian process. 

Next we shall discuss the well known properties of fractional Brownian motion. 

Only important proofs shall be given. For more details, we refer to [6]. We start with the 

selfsimilar property. 

http:3.1.0.14
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Definition 3.1.0.15 (Embrechts[6]). An Rd-valued stochastic process {X(t), t ∈ Rd} is 

said to be selfsimilar if for any a > 0, there exists b > 0 such that 

{X(at)} = d {bX(t)}. 

Theorem 3.1.0.11 (Embrechts[6]). If {X(t)}, t ∈ R} is nontrivial, probabilistic continu­

ous at t = 0 and selfsimilar, then there exists a unique H ≥ 0 such that 

{X(at)} = d {a H X(t)}. 

We call H the exponent of selfsimilarity of the process {X(t), t ∈ R}. We refer to 

such a process as H-selfsimilar(or H-ss, for short). 

Proposition 3.1.0.3 (Embrechts[6]). If {X(t), t ∈ R} is H-ss and H > 0, then X(0) = 0 

almost surely. 

Proof. By the previous Theorem, 

X(0) =d a H X(0). 

Then we let a → 0. 

Theorem 3.1.0.12 (Embrechts[6]). Let X be H-ss with stationary increments in Rd and 

E(X2(1)) < ∞. Then 

E(X2(1))
E(X(s)X(t)) = (ltl2H + lsl2H − lt − sl2H ). 

2 

Next, some properties of fractional Brownian motion shall be stated and proved 

here. 

Theorem 3.1.0.13 (Embrechts[6]). A fractional Brownian motion {BH (t), t ∈ Rd} is 

H-ss. 

http:3.1.0.13
http:3.1.0.12
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Proof. We have that 

E[BH (at)BH (as)] = 
1
[latl2H + lasl2H − la(t − s)l2H ]

2

= a 2H E[BH (t)BH (s)] 

= E[(a H BH (t))(a H BH (s))]. 

Since all processes are mean zero Gaussian, {BH (at)} =d {aH BH (t)}. 

Note that from this theorem, we can conclude that the only Gaussian process with 

stationary increments and H-ss is fractional Brownian motion with index H. 

Theorem 3.1.0.14 (Embrechts[6]). A fractional Brownian motion {BH (t), t ∈ Rd} has 

stationary increments. 

Proof. Again, it suffices to consider only covariances. We have 

E[(BH (t + h) − BH (h))(BH (s + h) − BH (h))] = E[BH (t + h)BH (s + h)] − E[BH (t + h)BH (h)] 

−E[BH (s + h)BH (h)] + E[BH (t)
2] 

= 
1
[lt + hl2H + ls + hl2H − lt − sl2H 

2

−lt + hl2H + lhl2H − ltl2H 

−ls + hl2H + lhl2H − lsl2H + 2lhl2H ] 

1
[ltl2H = + lsl2H − lt − sl2H ]

2

= E[BH (t)BH (s)], 

We can conclude that 

{BH (t + h) − BH (h)} = d {BH (t)}. 

Therefore BH (t) has stationary increments. 

Theorem 3.1.0.15 (Embrechts[6]). For 0 < H < 1, a fractional Brownian motion 

{BH (t), t ∈ R} has a Wiener integral representation 

CH (t − u)H−1/21(−∞,t) − (−u)H−1/21(−∞,0)dB(u), 
R 

http:3.1.0.15
http:3.1.0.14
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where 
0 1

]−1/2CH = [ ((1 − u)H−1/2 − (−u)H−1/2)2du + . 
2H−∞ 

Proof. First we prove for the case t ≥ 0. 

Let 

XH (t) = CH (t − u)H−1/21(−∞,t) − (−u)H−1/21(−∞,0)dB(u). 
R 

We can see that 

0
 

[(t − u)H−1/21(−∞,t) − (−u)H−1/21(−∞,0)]
2du = ((t − u)H−1/2 − (−u)H−1/2)2du
 

R	 −∞ 
t 

+	 (t − u)2H−1du 
0 

∞ t2H 
2H =	 t ((1 + u)H−1/2 − u H−1/2)2du + 

2H0 
1 

2H (≤ t max((1 + u)2H−1 , u 2H−1)du 
0 

∞ u+1 t2H 

+ (H − 1/2)2( v H−3/2dv)2du) + 
2H1 u 

t2H 

≤ (max(22H − 1, 1) + 1) 
2H 

∞ 

+t2H (H − 1/2)2 u 2H−3du 
1 

t2H 

= (max(22H − 1, 1) + 1) 
2H 

2H (H − 1/2)2 

+t
2 − 2H 

≤	 ∞. (3.1) 

uSo XH is well defined. Then by change of variable (v = ), we have t 

0 t
 

E[XH (t)
2] = C2 (t − u)H−1/2 − (−u)H−1/2dB(u)]2 + [ (t − u)H−1/2dB(u)]}2
 

H {[ 
−∞ 0 
0 t 

C2 = H [ [(t − u)H−1/2 − (−u)H−1/2]2du + (t − u)2H−1du] 
−∞ 0 

2H =	 t
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Moreover, 

h 

C2E[(XH (t + h) − XH (t))
2] = H E[( ((t + h − u)H−1/2 − (h − u)H−1/2)dB(u) 

−∞ 
h+t 

+ (t + h − u)h−1/2dB(u))2] 
h 

h 

= C2 ((t + h − u)H−1/2 − (h − u)H−1/2)2duH { 
−∞ 

h+t 

+ (t + h − u)2H−1du}
h 

0 t 

C2 = H { ((t − u)H−1/2 − (−u)H−1/2)2du + (t − u)2H−1du}
−∞ 0 

2H = t . 

Hence 

1
E[XH (t)XH (s)] = {E[XH (t)

2] + E[XH (s)
2] − E[(XH (t) − XH (s))

2]
2
1 2H = {t + s 2H − |t − s|2H }
2

For the case t < 0, we can use the change of variable by letting v = t + u. Then the 

proof is similar to the case t ≥ 0. Therefore, XH (t) for 0 < H < 1 is fractional Brownian 

motion. 

Note that for the case H = 1, we have 

E[B1(t) − B1(s)]
2 = ts. 

Then 

2E[(B1(t) − t)2] = 
1
[E[B1(t)

2] − 2tE[B1(t)] + t
2

2 2 = t2 − 2t + t

= 0, 

so that B1(t) = t almost surely. 
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Theorem 3.1.0.16 (Embrechts[6]). Fractional Brownian motion is unique in the sense 

that the class of all fractional Brownian motions on Rd coincides with that of all Gaussian 

processes on Rd with stationary and selfsimilar increments. 

Proof. Assume XH (t) is H − ss and has stationary increments. Then 

E[XH (t)XH (s)] = 
1 
2
{E[XH (t)

2] + E[XH (s)
2] − E[(XH (t) − XH (s))

2]} 

= 
1 
2
{E[XH (t)

2] + E[XH (s)
2] − E[XH (lt − sl)2]} 

= 
1 
2
{ltl2H + lsl2H − lt − sl2H } 

So XH has the same covariance structure as the fractional Brownian motion. 

Since {XH (t)} is mean zero Gaussian, it is the same as BH (t) in distribution.
 

Theorem 3.1.0.17 (Embrechts[6]). {BH (t), t ≥ 0} has independent increments if and
 

only if H = 1/2.
 

Proof. For 0 < s < t, 

1 2HE[BH (s)(BH (t) − BH (s))] = {t + s 2H − (t − s)2H − 2s 2H }
2
1 

= {t2H − s 2H − (t − s)2H }. 
2

1It is easy to see that the equality equals to 0 if and only if H = 2 . 

1Therefore BH has independent increments when H = 2 . 

The Mandelbrot Van Ness representation of fractional Brownian motion is popular, 

but there is another useful representation as a Wiener integral over a finite interval. This 

attributed to Molchan-Golosov, see [21]. 

Theorem 3.1.0.18 (Embrechts[6]). When 0 < H < 1 and t ≥ 0, 

t 

BH (t) =
d CH K(t, u)dB(u), 

0 

http:3.1.0.18
http:3.1.0.17
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where 

t 1 t 
1/2−HK(t, u) = {( )H−1/2(t − u)H−1/2 − (H − )u x H−3/2(x − u)H−1/2dx}

u 2 u 

and CH is a normalizing constant. 

For the details about the proof, we refer to [21]. 
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4. SERIES EXPANSIONS OF GAUSSIAN PROCESS
 

In this chapter, we shall discuss series representation of fractional Brownian motion. 

Then we will give a well known example called the Karhunen-Loéve representation and 

some well-known results. 

Let {Zi, i ≥ 1} be an i.i.d sequence of Gaussian processes. Now let C be a compact 

subset in Rd . Then we define for t ∈ C 

 
Z(t) = λkfk(t)Zk. (4.1) 

k≥1

Then we have the following theorem. 

Theorem 4.0.0.19. Let {Zi, i ≥ 1} be an i.i.d sequence of standard Gaussian processes 

and define 

Z(t) = λkfk(t)Zk 

k≥1 

if λ2 f2(t) < ∞ then Z(t) converges and is a Gaussian process in a compact subset k≥1 k k 

C of Rd . 

Proof. Assume λkf
2f(t) < ∞. Clearly Z(t) has mean zero. So it suffices to show k≥1 k 

Z(t) has finite variance. 

E(Z2(t)) = Z(t)2dP 
Ω 

= ( λkfk(t)Zk(t))
2dP 

Ω k≥1 

≤ λk
2fk(t)

2 

Ck≥1 

< ∞ 

Therefore Z(t) converges and is a Gaussian process. 

http:4.0.0.19
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Let C be a compact subset in Rd and K be a function defined on C ×C. Now define 

an operator T on L2(C) by 

T (x)(s) = K(t, s)x(t)dt. 
C 

We say λ is an eigenvalue of T if there is a nonzero vector x ∈ L2(C) such that T (x)(s) = 

λx(s). We call the corresponding x an eigenfunction. This means that λ is an eigenvalue 

of T if and only if T − λI is not 1-1. If fk is orthonormal in (4.1) above then we have the 

following corollary. 

Corollary 4.0.0.4 (Hernandez[10]). If Z(t) = k≥1 λkfk(t)Zk with fk orthonormal then 

each fk is an eigenfunction of the operator T (x)(s) = E(Z(s)Z(t))x(t)dt.C 

Proof. Since Zk is i.i.d, 

E(Z(s)Z(t)) = ( λkfk(s)Zk)( λlfl(t)Zl)dP 
Ω k≥1 l≥1 

λ2 = kfk(s)fk(t) 
k≥1 

So 

E(Z(t)Z(s))fk(s)ds = λl 
2fl(s)fl(t)fk(s)ds 

C C l≥1 

λ2 = kfk(t) 

Hence fk is eigenfunction of the operator T . 

In the next section, we will discuss a well known series representation namely the 

Karhunen-Loéve expansion. 

4.1. Karhunen-Loéve expansion 

We start this section by the following lemma. 
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Lemma 4.1.0.9. Let T be a self adjoint compact operator on a Hilbert space H. Then H 

has an orthonormal basis consisting of eigenfunctions of T . 

Now assume K is positive definite, symmetric and continuous. Then T is self adjoint 

and compact operator on the infinite dimensional Hilbert space L2(C). By the Lemma, 

we have L2(C) has an orthonormal basis consisting of eigenfunction of T , say en, n ≥ 1. 

Since K is positive definite, all eigenvalues of T are positive, say λn, n ≥ 1. Without loss 

of generality, we assume λ1 ≥ λ2 ≥ · · · > 0. Next we shall state the Mercer’s Theorem. 

Theorem 4.1.0.20 (Hernandez[10]). If K is a continuous, symmetric and positive defi­

nite function, then 

λk < ∞ 
k≥1 

and 

K(s, t) = λkek(s)ek(t) 
k≥1 

is absolutely and uniformly convergent in both variables. 

Since all covariance functions are symmetric and positive definite, we have the fol­

lowing corollary. 

Corollary 4.1.0.5 (Hernandez[10]). If K is a continuous covariance function of a stochas­

tic process X, then 

λk < ∞ 
k≥1 

and 

K(s, t) = λkek(s)ek(t) 
k≥1 

is absolutely and uniformly convergent in both variables. 

Definition 4.1.0.16 (Hernandez[10]). A stochastic process X over S ⊂ Rd is mean 

square(m.s.) continuous at x0 ∈ S if E|X(x) − X(x0)|2 → 0 as x → x0. X is said 

to be mean square (m.s.) continuous if it is continuous at every point in S. 

http:4.1.0.16
http:4.1.0.20


�

 

 

43 

For example, fractional Brownian motion with index H is mean square continuous. 

Now we are going to state the Kahunen Loev́e expansion theorem. 

Theorem 4.1.0.21 (Hernandez[10]). [the Karhunen-Loéve Representation]A stochastic 

process X with mean zero and the continuous covariance function K on a compact set 

C ⊂ Rd is m.s continuous if and only if 

∞ 

X(x) = λkZkek(x), 
k=1 

converges uniformly in L2(C), where 

1 
Zk = X(t)ek(t)dt 

λk C 

and the {Zk, k ≥ 1} are orthogonal random variables with E(Zn) = 0, E(Z2) = 1.n

Note that in the case where {X(t), t ∈ C} is a Gaussian process, the {Zk} are 

independent standard Gaussian. The next section, we give an example of the Kahunen 

Loev́e expansion for a Gaussian process, namely standard Brownian motion. 

4.2. Karhunen-Loéve expansion of Brownian motion 

Let {B(t), t ≥ 0} be a standard Brownian motion. Then we have K(s, t) = 

E(B(s)B(t)) = min(s, t), s ≥ 0, t ≥ 0 Now let C = [0, 1]. Consider 

1 

min(s, t)x(t)dt = λx(s) ⇔ λx "" (s) + x(s) = 0, x(0) = 0 = x " (1). 
0 

So 
1 1 

x(s) = C1 cos(√ s) + C2 sin(√ s), 
λ λ 

where C1 and C2 are constant. By the boundary conditions, we get 

1 
λn = , n ≥ 1 

(n − 1/2)2π2 

http:4.1.0.21
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and
 
√ 1 

en(s) = 2 sin((n − )πt). 
2

Therefore the corresponding Karhunen-Loev́e expansion is 

√ sin((n − 1 )πt)
B(t) = 2 2 Zn 

(n − 12 )π 
k≥1 

Similarly, let {W (t), 0 ≤ t ≤ 1} be a Brownian bridge. Then we have 

K(s, t) = E(W (s)W (t)) = min(s, t) − st, 0 ≤ s, t ≤ 1. 

So the corresponding equation is 

1 

(min(s, t) − st)x(s)ds = λx(t) ⇔ λx "" (t) + x(t) = 0, x(0) = 0 = x(1). 
0 

Hence the eigenvalues and eigenfunctions are given by 

1 √ 
λk = , ek(t) = 2 sin(kπt). 

k2π 

The corresponding Karhunen-Loev́e expansion is 

√ sin(kπt)
W (t) = 2 Zk,

kπ 
k≥1 

where {Zk} are independent and standard Gaussian. 
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5. MAIN RESULTS 

5.1. An integral representation of fractional Brownian motion in R2 

In this chapter, we wish to create methods for extending integral representations 

of fractional Brownian motion in R to a representation of fractional Brownian motion 

in higher dimension of Euclidian spaces. Then we will obtain series representations of 

fractional Brownian motion from the integral representation. 

First, we shall study the case of R2 . Later we shall consider more complicated cases. 

Now suppose we have an integral representation on an interval [−1, 1] of the form 

∞ 

BH (t) = K(t, u)dB(u). 
0 

Then we want to extend this integral representation to an integral representation in R2 . 

It makes sense that we try to extend this by rotating vectors u in R2 . So we consider 

uthe dot product in R2 and define K " (t, u) = K(t · 1u1 , lul), where lul2 = u · u. Since 

u " −1 ≤ t · ≤ 1, K is well defined for all u ∈ R2 . Then we have the following theorem. 1u1 

Theorem 5.1.0.22. For t ∈ R2 and ltl ≤ 1 we define 

BH (t) = K " (t, u)
1 

dB(u),
lul1/2R2 

uwhere K " (t, u) = K(t · 1u1 , lul). Then BH is a fractional Brownian motion with index H 

on the unit disk in R2 . 

Proof. We need to check that BH is fractional Brownian motion with index H. It suffices 

to show 

E(BH (t)BH (s)) = CH (ltl2H + lsl2H − lt − sl2H ). 

Now we will need to change the integral to polar coordinate. That is for u = (u1, u2) ∈ R2 

u t ulet u1 = r cos(θ) and u2 = r sin(θ). Notice that t · = ltl( · ) = ltl cos(θ), where 1u1 1t1 1u1 

http:5.1.0.22
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θ is the angle between vectors t and u. 

So 

u 1 v 1
E(BH (t)BH (s)) = E( K(t · , lul) dB(u) K(s · , lvl) dB(v)) 

R2 lul lul1/2 R2 lvl lvl1/2 

u u 1 
= K(t · , lul)K(s · , lul) du 

R2 lul lul lul 
2π ∞ 

= K(ltl · cos(θ), r)K(lsl · cos(θ), r)drdθ 
0 0 

2π1 
= ltl2H | cos(θ)|2H + lsl2H | cos(θ)|2H − l(t − s)l2H | cos(θ)|2H dθ 

2 0 

= CH (ltl2H + lsl2H − lt − sl2H ) 

2π
where CH = 1/2 | cos(θ)|2H dθ is a constant. 0 

Therefore BH is a fractional Brownian motion with index H on the unit disk. 

In general, if we have BH (t) = ∞ 
K(t, u)dB(u) is a fractional Brownian motion 0 

on interval [a, b], are we able to obtain a fractional Brownian motion in R2 with the same 

method we did as above? We are going to answer the question now. 

∞
Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion in the interval [0, 1]. 

We shall use the same method as above to try to extend this fractional Brownian motion 

to one in R2 . Now define for each ltl ≤ 1, 

u 1 
BH (t) = K(t · , lul) dB(u) 

R2 lul lul1/2 

u uNotice that since t · needs to be a value in [0, 1] for all u ∈ R2 , K(t · 1u1 , lul) is not 1u1 
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defined for all u ∈ R2 . Now consider β be the angle between t and x-axis. Thus 

E(BH 
2 (t)) = K2(t · u

, lul) 1 
du 

u lul lul[t· lul ≥0] 

β+π/2 (cosθ,sinθ)·t 
= K2((cosθ, sinθ) · t, r)drdθ 

β−π/2 0 

β+π/2 

= |(cosθ, sinθ) · t|2H dθ 
β−π/2 

β+π/2 

= ltl2H |cosβcosθ + sinβsinθ|2H dθ 
β−π/2 

β+π/2 

= ltl2H cos 2H (θ − β)dθ 
β−π/2 

= CH ltl2H 

d β+π/2
CH does not depend on β since cosH (θ − β)dθ = 0. Thus CH is a constant dβ β−π/2 

depending only on H. 

Now we consider the covariance function E(BH (t)BH (s)) of BH . 

u u 1
E(BH (t)BH (s)) = K(t · , lul)K(s · , lul) du u u lul lul lul[0≤ lul ·t] [0≤ lul ·s] 

So we let s = −t. Then 

u u 1
E(BH (t)BH (−t)) = K(t · , lul)K(−t · , lul) du u u lul lul lul[0≤ lul ·t] [0≤ lul ·(−t)] 

= 0 

= CH (2ltl2H − l2tl2H ) 

Hence this process gives a different covariance function from fractional Brownian motion. 

We have seen that the process we defined above was not fractional Brownian motion. 

This is because the area of the integration does not overlap whenever vector s and t are 

parallel with s · t < 0. 

However, we can modify the covariance function K to move the fractional Brownian 



 
 

  
 
  
  

 

48 

motion from the interval [0, 1] to [−1/2, 1/2] by 

B̃H (t) = BH (t + 1/2) − BH (1/2) 
∞ 

= (K(t + 1/2, u) − K(1/2, u))dB(u) 
0 
∞ 

˜= K(t, u)dB(u) 
0 

˜where K(t, u) = K(t + 1/2, u) − K(1/2, u). So we have the following lemma 

˜Lemma 5.1.0.10. BH defined as above is a one dimensional fractional Brownian motion 

on [−1/2, 1/2]. 

˜Proof. Clearly, B(t) = BH (t + 1/2) − BH (1/2) is a Gaussian process. So we need only to 

check its covariance function. 

E(B̃H (t)B̃H (s)) = E( K̃(t, u)dB(u) K̃(s, v)dB(v)) 
R R 

∞ 

= K̃(t, u)K̃(s, u)du 
0 

∞ ∞ 

= ( K(t + 1/2, u)K(s + 1/2, u)du − K(t + 1/2, u)K(1/2, u)du 
0 0 

∞ ∞ 

− K(s + 1/2, u)K(1/2, u)du + K2(1/2, u)du) 
0 0 

= (|t + 1/2|2H + |s + 1/2|2H − |t − s|2H − |t + 1/2|2H 

−(1/2)2H + |t|2H − |s + 1/2|2H − (1/2)2H + |s|2H + 2(1/2)2H ) 

= (|t|2H + |s|2H − |s − t|2H ). 

Therefore B̃H is a one dimensional fractional Brownian motion on the interval [−1/2, 1/2] 

with the index H. 

∞
In general, if we have BH (t) = 0 K(t, u)dB(u) defines a fractional Brownian mo­

tion in an interval [a, b]. We could define B̃H (t) = BH (t + a+b ) − B(a+b ) as a fractional 2 2 

b−aBrownian motion in the interval [a−b ,2 2 ]. So this idea can be extended to any disk of 
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radius R = (b − a)/2 by using the kernel 

a + b a + b 
KR(t, u) = K(t + , u) − K( , u),

2 2 

where K(t, u) is a covariance function of a fractional Brownian motion in the interval [a, b]. 

Corollary 5.1.0.6. For t ∈ R2 and ltl ≤ R we define 

1 u 
BH (t) = KR(t · , lul)dB(u) 

R2 lul1/2 lul

then BH is a fractional Brownian motion with index H on the disk of radius R. 

Proof. The proof is similar to that of the Theorem 5.1.0.22, that is we need to check that 

BH is fractional Brownian motion with index H. Thus it suffices to show 

H (ltl2HE(BH (t)BH (s)) = C " + lsl2H − lt − sl2H ). 

u 1 v 1
E(BH (t)BH (s)) = E( KR(t · , lul) dB(u) KR(s · , lvl) dB(v)) 

R2 lul lul1/2 R2 lvl lvl1/2 

u u 1 
= KR(t · , lul)KR(s · , lul) du 

R2 lul lul lul 
2π ∞ 

= KR(ltl cos(θ), r)KR(lsl cos(θ), r)drdθ 
0 0
 

2π
1 
= |ltl cos(θ)|2H + |lsl cos(θ)|2H − |l(t − s)l cos(θ)|2H dθ 

2 0 

= CH (ltl2H + lsl2H − lt − sl2H ) 

2π
where CH = 1/2 | cos(θ)|2H dθ is a constant. 0 

Example 1. From [3], we can represent the fractional Brownian motion over a finite 

interval by 
t 

BH (t) = CH K(t, u)dB(u) 
0 

where 0 < H < 1/2 and t ≥ 0 

t 1 t 
1/2−HKH (t, u) = {( )H−1/2(t − u)H−1/2 − (H − )u x H−3/2(x − u)H−1/2dx}

u 2 u 

http:5.1.0.22
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and for H > 1/2 and t ≥ 0.
 

t 
1/2−HKH (t, u) = u |x − u|H−3/2 x H−1/2dx. 

u 

For the proof, we refer to [3]. 

We can also apply the method above to this fractional Brownian motion on [0, ∞]. 

We have seen some examples that we could be able to extend and could not. In the next 

step we will study what properties that allow us to be able to extend a fractional Brownian 

motion from an interval subset of R to one of a subset of R2 . 

First let BH (t) = ∞ 
K(t, u)dB(u) be a fractional Brownian motion in the interval 0 

[−1, 1]. Then we define 

BH (t) = K(f(t, u), g(t, u))h(t, u)dB(u), 
R2 

where f, g and h are functions from R2 × R2 → R. 

Now we want to study what conditions on f , g and h that allow BH to be defined as 

ua fractional Brownian motion in R2 . We have seen an example above that if f(t, u) = t· 1u1 , 

1g(t, u) = lul and h(t, u) = then BH is a fractional Brownian motion in a subset of 1u11/2 

R2 . In this thesis, we consider only the case g(t, u) = lul, where l · l is a norm induced 

by an inner product in R2 . 

Let < ·, · > be an inner product in R2 then we have ⎞⎛ 

A =
 ⎜⎝
 
< e1, e1 > < e1, e2 > ⎟⎠
 
< e2, e1 > < e2, e2 > 

as the matrix representation of the inner product < ·, · >, that is < u, v >= uT Av, where 

{e1, e2} is a basis of R2 . 

We can see that A is symmetric and 

u T Au = < u, u > 

≥ 0 
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So A is positive definite. Thus A is diagonalizable. That is there is a 2 × 2 unitary matrix 

U such that A = UT DU , where D is a diagonal matrix. Suppose ⎞⎛⎞⎛ 

D =
 ⎜⎝
 
α2 01 ⎟⎠
 and U =
 ⎜⎝
 

u1 u2 ⎟⎠
 
0 α2

2 u2 u3

Let (x, y) ∈ R2 and define 

r cos θ = α1(u1x + u2y) 

and 

r sin θ = α2(u2x + u3y). 

Then we can solve for x and y in the term of variable r and θ. That is 

r 
x = (α2u3 cos θ − α1u2 sin θ)

α1α2 det(U)

and 
r 

y = (α1u1 sin θ − α2u2 cos θ). 
α1α2 det(U)

It is easy to see that 
∂x ∂y ∂y ∂x r |J(r, θ)| = | − | = . 
∂r ∂θ ∂r ∂θ α1α2 

Then we have the following Theorem. 

Theorem 5.1.0.23. Let BH (t) = ∞ 
K(t, u)dB(u) be a fractional Brownian motion with 0 

index H on the interval [−1, 1]. If the function f defined as above satisfies the following 

conditions 

(1) For each t such that ltl ≤ 1, f(t, u) ∈ [−1, 1] for all u ∈ R2 , 

u(2) For all t ∈ R2 , u ∈ R2/{0}, f(t, u) = f(t, ),1u1 

(3) f(t, u) + f(s, u) = f(t + s, u), 

(4) For c ∈ [−1, 1], f(ct, u) = cf(t, u) for all u ∈ R2 . 

(5) S1 |f(t, u)|2H dσ(u) = CH for all ltl = 1, where CH is a constant. 
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then we have 
1 

BH (t) = K(f(t, u), lul) dB(u)
lul1/2R2 

defines a fractional Brownian motion with index H in a unit disk in R2 . 

Proof. The first condition makes K(f(t, u), lul) well defined for all ltl ≤ 1 and u ∈ R2 . 

Now we need to check the covariance function of the defined process. WLOG, assume 

α1 = α2 = 1. So 

E(BH (s)BH (t)) = 
Ω 
( 

R2 
K(f(s, u), lul) 1 

lul1/2 
dB(u) 

R2 
K(f(t, u), lul) 1 

lul1/2 
dB(u))dP 

1 
= 

R2 
K(f(s, u), lul)K(f(t, u), lul)

lul 
dB(u) 

2π ∞ 

= (K(f(s, (r, θ)), r)K(f(t, (r, θ)), r)drdθ 
0 0 
2π ∞ 

= (K(f(s, (1, θ)), r)K(f(t, (1, θ)), r)drdθ 
0 0 
2π 

= 
0 

|f(s, (1, θ))|2H + |f(t, (1, θ))|2H − |f(s, (1, θ)) − f(t, (1, θ))|2H dθ 

2π 

= 
0 

|f(s, (1, θ))|2H + |f(t, (1, θ))|2H − |f(s − t, (1, θ))|2H dθ 

= 
2π 

0 
lsl2H |f( s 

lsl
, (1, θ))|2H + ltl2H |f( t 

ltl
, (1, θ))|2H 

−ls − tl2H |f( (s − t) 
ls − tl

, (1, θ))|2H dθ 

= 
2π 

0 
|f( s 

lsl
, (1, θ))|2H dθ(lsl2H + ltl2H − ls − tl2H ) 

= CH (lsl2H + ltl2H − ls − tl2H ) 

1Therefore BH (t) = R2 K(f(t, u), lul) dB(u) is a fractional Brownian motion with 1u11/2 

index H in R2 . 

The next corollary is an example of a kind of function that satisfies the previous 

theorem. 

∞
Corollary 5.1.0.7. Let < ·, · > be an inner product on R2 . Let BH (t) = K(t, u)dB(u)0 

is a fractional Brownian motion on the interval [−1, 1] also define f : R2 × R2 → R as 
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uf(t, u) =< t, 1u1 > then  
α1α2

BH (t) = K(f(t, u), lul) dB(u) 
R2	 lul 

is a fractional Brownian motion on the unit disk in R2, where α2
1 and α2

2 are the eigenvalues 

of the matrix A. 

Proof. Notice that f obviously satisfies first 4 conditions and the condition 5 is true by 

the Corollary 2.2.0.2. 

Hence by change of variable, we can show that 

E(BH (t)BH (s)) = CH (ltl2H + lsl2H − ls − tl2H ). 

 
u α1α2Therefore BH (t) = R2 K(< t, 1u1 >, lul) 1u1 dB(u) is a fractional Brownian motion 

whose support is the unit disk in R2 . 

The next section we will extend this method to higher dimensional Euclidian space. 

5.2.	 An integral representation of fractional Brownian motion in Rd 

where d ≥ 2 

In this section we will extend the result from the previous section to higher dimen­

sional spaces. Recall that {B(u) : u ∈ Rd} represents the Brownian sheet in Rd . In 

particular, B(A) = A dB(u) is a Gaussian random measure with 

Cov(B(A1), B(A2)) = λ(A1 ∩ A2) 

where λ is d-dimensional Lebesgue measure. 

The following theorem is analogous to the case of d = 2. 
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∞
Theorem 5.2.0.24. Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion on 

the interval [−1, 1]. Then for t ∈ Rd with ltl ≤ 1 

u 1 
BH (t) = K(t · , lul) dB(u)

lul(d−1)/2Rd lul

is a fractional Brownian motion with index H on the unit disk in Rd . 

" Proof. It suffices to show E(BH (t)BH (s)) = C (ltl2H + lsl2H − lt − sl2H ).H 

u u 1
E(BH (t)BH (s)) = E( K(t · , lul)K(s · , lul) dB(u)) 

Rd lul lul luld−1 

∞ 

= C2 K(t · θ, r)K(s · θ, r)drdσ(θ)H 
Sd−1 0 

C2 
H= (|t · θ|2H + |s · θ|2H − |(t − s) · θ|2H )dσ(θ)
2 Sd−1 

= C " + lsl2H − lt − sl2H )H (ltl2H
 

u ∈ Sd−1 " t
where θ = 1u1 , r = lul and C = Sd−1 |1t1 · θ|
2H dσ(θ) is a constant for all t = 0 H 

and σ is the uniform measure on Sd−1 . 

Similarly, we can extend the result to a disk of radius R in Rd by using the kernel 

KR(t, u) = K(t + R, u)1[0≤1u1≤t+R] − K(R, u)1[0≤1u1≤R]. 

Corollary 5.2.0.8. For t ∈ Rd and ltl ≤ R we define 

1 u 
BH (t) = KR(t · , lul)dB(u)

lul(d−1)/2Rd lul

then BH is a fractional Brownian motion with index H on the disk of radius R. 

Proof. It suffices to show 

E(BH (t)BH (s)) = C " + lsl2H − lt − sl2H ).H (ltl2H 

u u 1
E(BH (t)BH (s)) = E( KR(t · , lul)KR(s · , lul) dB(u)) 

Rd lul lul luld−1 

∞ 

= C2 KR(t · θ, r)KR(s · θ, r)drdσ(θ)H 
Sd−1 0 

C2 
H = (|t · θ|2H + |s · θ|2H − |(t − s) · θ|2H )dσ(θ)
2 Sd−1 

" = CH (ltl2H + lsl2H − lt − sl2H ) 
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u t∈ Sd−1where θ = , r = lul, and C " = Sd−1 | · θ|2H dσ(θ) is a constant for all t = 0 1u1 H 1t1 

and σ is the uniform measure on Sd−1 . 

∞
Similar to the case d = 2, if we have BH (t) = 0 K(t, u)dB(u) a fractional Brownian 

motion in an interval [a, b], we could define B̃H (t) = BH (t + a+b ) − B(a+b ) as a fractional 2 2 

b−aBrownian motion in the interval [a−b , ]. So this idea can be extended to any disk in 2 2 

Rd of radius R = (b − a)/2 by using the kernel 

a + b a + b 
KR(t, u) = K(t + , u) − K( , u),

2 2 

where K(t, u) is a covariance function of a fractional Brownian motion in the interval 

[a, b]. So we have the following corollary that is analogous to the case d = 2. 

Corollary 5.2.0.9. For t ∈ R2 and ltl ≤ R we define 

1 u 
BH (t) = KR(t · , lul)dB(u)

lul(d−1)/2Rd lul

then BH is a fractional Brownian motion with index H on the disk in Rd of radius R. 

Proof. The proof is similar to the case d = 2. 

Now we are ready to state the Theorem that tells us the conditions for the extension 

to work. The proof is not only true for Euclidian norm but also true for any norm that is 

induced by an inner product. 

Let < ·, · > be an inner product on Rd . Now let A be the matrix representation of 

an inner product < ·, · > in Rd, that is < u, v >= uT Av for all u, v ∈ Rd . Consider the 

matrix representation A of the inner product < ·, · >. That is, ⎞⎛ ⎜⎜⎜⎜⎝
 

< e1, e1 > . . . < e1, ed > 
. . . 

. . . 
. . . 

< ed, e1 > . . . < ed, ed > 

⎟⎟⎟⎟⎠
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where {e1, . . . , ed} is a basis in Rd .
 

Then A is symmetric and positive definite.
 

So there exists a self adjoint and unitary matrix
 ⎞
⎛
 

Q =
 

⎜⎜⎜⎜⎝
 

q1 

. . . 

qd 

⎟⎟⎟⎟⎠
 

and a diagonal matrix
 ⎞⎛ 

D =
 

⎜⎜⎜⎜⎜⎜⎜⎝
 

α2 . . . 01 

0 . . . 0 
. . . 

. . . 
. . . 

0 . . . α2 
d 

⎟⎟⎟⎟⎟⎟⎟⎠
 

such that A = QDQ, where qi, . . . , qd are orthonomal row vectors of Q. 

Now let 

f1(r, θ1, . . . , θd−1) = r cos θ1 = α1q1x 

f2(r, θ1, . . . , θd−1) = r sin θ1 cos θ2 = α2q2x 

. . . 

fd−1(r, θ1, . . . , θd−1) = r sin θ1 · · · sin θd−2 cos θd−1 = αd−1qd−1x 

fd(r, θ1, . . . , θd−1) = r sin θ1 · · · sin θd−1 = αdqdx 

where x = [x1, · · · , xd]T is a vector in Rd . 

Then
 ⎞
⎛
 ⎜⎜⎜⎜⎝
 

f1 

. . . 

fd 

⎟⎟⎟⎟⎠
 
= DQx.
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So
 ⎞⎛⎞⎛ 
f1 

.
 .
 .
 

⎟⎟⎟⎟⎠
 
=
 

⎜⎜⎜⎜⎝
 

x1 

.
 .
 .
 

⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎠
 
QD−1 .
 

fd xd 

Then
 ⎞⎛⎞⎛ 
∂x1 ∂x1 ∂f1 ∂f1 . . .
 . . .
 ⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎠
 
= QD−1 

⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎠
 

∂r ∂θd−1 ∂r ∂θd−1 

. .. . . .
 .
 .
 .
 
. .. . . .
 .
 .
 .
Jx =
 .
 

∂xd ∂xd ∂fd ∂fd 
∂r . . . ∂θd−1 ∂r . . . ∂θd−1 

Hence ⎞⎛ 

| det(Jx)| = | det(Q) det(D−1) det 

⎜⎜⎜⎜⎝
 

∂f1 ∂f1 . . . ∂r ∂θd−1 

. .. . . .
 .. . 

⎟⎟⎟⎟⎠

| =
 

rd−1 d−2 sin θd−i−1 
ii=1 .
 

α1 · · · αd 
∂fd ∂fd . . . ∂r ∂θd−1 

Then we have a result analogous to that of the Theorem in the previous section. 

∞
Theorem 5.2.0.25. Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion with 

index H on the interval [−1, 1]. If the function f defined as above satisfies the following 

conditions 

(1) For each t such that ltl ≤ 1, f(t, u) ∈ [−1, 1] for all u ∈ Rd , 

u(2) For all t ∈ Rd , u ∈ Rd/{0}, f(t, u) = f(t, ),1u1 

(3) f(t, u) + f(s, u) = f(t + s, u), 

(4) For c ∈ [−1, 1], f(ct, u) = cf(t, u) for all u ∈ Rd . 

(5) Sd−1 |f(t, u)|2H dσ(u) = CH for all ltl = 1, where CH is a constant. 

then we have 
1 

BH (t) = K(f(t, u), lul) dB(u)
lul(d−1)/2Rd 

is a fractional Brownian motion with index H in a unit disk in Rd . 

Proof. The first condition makes K(f(t, u), lul) well defined for all ltl ≤ 1 and u ∈ Rd . 

Now we need to check the covariance function of the defined process. Without loss of 
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generality, assume α1 = · · · = αd = 1. So 

1	 1
E(BH (s)BH (t)) = ( K(f(s, u), lul) dB(u) K(f(t, u), lul) dB(u))dP 

lul(d−1)/2	 lul(d−1)/2 
Ω Rd	 Rd 

1 
= K(f(s, u), lul)K(f(t, u), lul) dB(u)

luld−1
R2 

∞ 

=	 (K(f(s, ru), r)K(f(t, ru), r)drdσ(u) 
Sd−1 0 

∞ 

=	 (K(f(s, u), r)K(f(t, u), r)drdσ(u) 
Sd−1 0 

= |f(s, u)|2H + |f(t, u)|2H − |f(s, u) − f(t, u)|2H dσ(u) 
Sd−1 

= |f(s, u)|2H + |f(t, u)|2H − |f(s − t, u)|2H dσ(u) 
Sd−1 

s	 t 
= lsl2H |f( , u)|2H + ltl2H |f( , u)|2H 

Sd−1	 lsl ltl
(s − t)−ls − tl2H |f( , u)|2H dσ(u)
ls − tl

s 
= |f( , u)|2H (lsl2H + ltl2H − ls − tl2H )dσ(u) 

Sd−1 lsl


= CH (lsl2H + ltl2H − ls − tl2H )
 

1Therefore BH (t) = Rd K(f(t, u), lul)1u1(d−1)/2 dB(u) is a fractional Brownian motion 

with index H in Rd . 

∞
Corollary 5.2.0.10. Let < ·, · > be an inner product on Rd . Let BH (t) = K(t, u)dB(u)0 

is a fractional Brownian motion on the interval [−1, 1] also define f : Rd × Rd → R as 

uf(t, u) =< t, 1u1 > then 

α1 · · · αd
BH (t) =	 K(f(t, u), lul)( )(d−1)/2dB(u) 

Rd	 lul 

is a fractional Brownian motion on the unit disk in Rd, where α2
1, . . . , α

2 are the eigen­d 

values of the matrix A. 

lv∈ Rd	 jCorollary 5.2.0.11. Define for u, v and j = 1, ..., d, f(u, v) = u · where 1v1 ,
 

"
 vj = (v1, ..., −vj , ..., vd). Then f satisfies all conditions of the theorem 5.2.0.25. 

http:5.2.0.25
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Corollary 5.2.0.12. Let < ·, · > be an inner product on Rd . Define for u, v ∈ Rd , 

vf(u, v) = r < u, >, where 0 < |r| ≤ 1. Then f satisfies all conditions of the theorem 1v1 

5.2.0.25. 

5.3. An integral representation of Gaussian processes in Rd 

Next we are going to generalize the result of the previous section to the case of 

Gaussian processes on R. Now a natural question arises that, if we have a stochastic 

process 
∞ 

Z(t) = K(t, u)dB(u) 
0 

in R with K(t, u) defined on [−R, R] × (0, ∞) for some R > 0, when do we have 

Zd(t) = 
1 

K(t · u
, lul)dB(u)

lul(d−1)/2Rd lul

as an extension of the Z(t) to a stochastic process in Rd , d > 1 with the same covariance 

properties as Z(t)? We notice that the extension works for the case of fractional Brown­

ian motion because fractional Brownian motion has stationary increments. Then it makes 

sense to consider a Gaussian process Z(t) = ∞ 
K(t, u)dB(u) with stationary increments. 0 

That is we consider the covariance function of Z(t). First we assume Z(0) = 0. Then 

E[(Z(s) − Z(t))2] = E(Z(s)2) − 2Cov(Z(s), Z(t)) + E(Z(t)2), 

So 

Cov(Z(s), Z(t)) = 
1
(E(Z2(s)) − E[(Z(s) − Z(t))2] + E(Z2(t))

2

= 
1
(E(Z2(s)) + E(Z2(t)) − E(Z2(s − t)))

2

So we start with considering
 

V ar(Z(t) − Z(s)) = 2g(t − s)
 

http:5.2.0.25
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for some function g defined on R. This corresponds to assuming that Z has stationary 

increments. Indeed, let {Z(t) : t ∈ I}, I ⊂ R be a one dimensional Gaussian process. 

∞
Assume Z(t) = K(t, u)dB(u), t ∈ R. Define0 

∞ 

g(t) = (K(t, u))2du. 
0 

Then the covariance function of Z is 

Cov(Z(s)Z(t)) = 
1
(E(Z2(s)) + E(Z2(t)) − E(Z2(s − t)))

2
∞ ∞ ∞ 

=
1
( (K(t, u))2du + (K(s, u))2du − (K(s − t, u))2du 

2 0 0 0 

= 1/2(g(t) + g(s) − g(s − t)) 

Since g(t − s) = 1 V ar(Z(t) − Z(s)), we have the following corollary. 2 

Corollary 5.3.0.13. g is symmetric, that is 

g(r) = g(−r) 

Next we will define a Gaussian process in Rd in the same way we did to fractional 

Brownian motion. Now we are ready to state the Theorem as we mention earlier. 

Theorem 5.3.0.26. For each t ∈ [−1, 1], let Z(t) = ∞ 
K(t, u)dB(u), t ≥ 0 be a one 0 

dimensional Gaussian process with stationary increments and Z(0) = 0. Then we have 

for all t, ltl ≤ 1, 
1 

Zd(t) = K(t · u, lul)dB(u)
lul(d−1)/2Rd 

is a Gaussian process in the unit disk and the covariance function of the form 

Cov(Zd(t)Zd(s)) = cd(Gd(ltl) + Gd(lsl) − Gd(lt − sl)) 

d−31
where Gd(u) = −1(1 − v2) 2 g(uv)dv, and cd is a constant depending only on d. 

http:5.3.0.26
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Proof. By the Lemma, we obtain 

1 1
E(Zd(t)Zd(s)) = E( K(t · u, lul) dB(u) K(s · u, lvl) dB(v))

lul(d−1)/2 lvl(d−1)/2Rd Rd 

u u 1 
= K(t · , lul)K(s · , lul) du 

Rd lul lul luld−1 

∞ 

= K(t · θ, r)K(s · θ, r)drdσ(θ) 
Sd−1 0 

= (g(t · θ) + g(s · θ) − g((t − s) · θ))dσ(θ) 
Sd−1 

1|Sd−1| d−3 
= (1 − v 2) 2 (g(ltlv) + g(lslv) − g(lt − slv))dv 

2 −1 

|Sd−1|
= (Gd(ltl) + Gd(lsl) − Gd(lt − sl))

2 

d−31
where Gd(u) = (1 − v2) 2 g(uv)dv.−1

Next we consider the case Z(0) = 0. Then the covariance function of Z is 

E(Z(t)Z(s)) = 
1
(E(Z2(t)) + E(Z2(s)) − E((Z(t) − Z(s))2)

2

= 
1
(E(Z2(t)) + E(Z2(s)) − (E((Z(t − s) − Z(0))2)

2

= 
1
(E(Z2(t)) + E(Z2(s)) − (E(Z2(t − s)) + E(Z2(0)) − 2E(Z(t − s)Z(0))

2

1
 

= (g(t) + g(s) − g(t − s) − g(0)) + E(Z(t − s)Z(0))
2

Then we have the following theorem. 

Theorem 5.3.0.27. For each t ∈ [−1, 1], let Z(t) = ∞ 
K(t, u)dB(u), t ≥ 0 be a one 0 

dimensional Gaussian process with stationary increments. Then we have for all t, ltl ≤ 1, 

1 
Zd(t) = K(t · u, lul)dB(u)

lul(d−1)/2Rd 

is a Gaussian process in the unit disk and the covariance function of the form 

Cov(Zd(t)Zd(s)) = cd(Gd(ltl) + Gd(lsl) − Gd(lt − sl) − Gd(0)) + cdHd(lt − sl) 

d−3 d−31 1
where Gd(u) = (1 − v2) 2 g(uv)dv, Hd(u) = (1 − v2) 2 (E(Z(lt − slv)Z(0)))dv−1 −1

and cd is a constant depending only on d. 

http:5.3.0.27
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Proof. We consider 

1 1
E(Zd(t)Zd(s)) = E( K(t · u, lul) dB(u) K(s · u, lvl) dB(v))

lul(d−1)/2 lvl(d−1)/2Rd Rd 

u u 1 
= K(t · , lul)K(s · , lul) du 

Rd lul lul luld−1 

∞ 

= K(t · θ, r)K(s · θ, r)drdσ(θ) 
Sd−1 0 

= 1/2(g(t · θ) + g(s · θ) − g((t − s) · θ) − g(0)) + E(Z((t − s) · θ)Z(0))dσ(θ) 
Sd−1 

1|Sd−1| d−3 
= (1 − v 2) 2 (g(ltlv) + g(lslv) − g(lt − slv) − g(0))

2 −1 

+E(Z(lt − slv)Z(0))dv 

|Sd−1|
= (Gd(ltl) + Gd(lsl) − Gd(lt − sl) − Gd(0)) + |Sd−1|Hd(lt − sl)

2 
d−3 d−31 1

where Gd(u) = (1−v2) 2 g(uv)dv and Hd(u) = (1−v2) 2 (E(Z(lt−slv)Z(0)))dv.−1 −1

Since Z has stationary increments, Zd is as the following corollary. 

Corollary 5.3.0.14. Zd has stationary increments. 

Proof. For simplicity, we will drop the constant cd. In order to show this we need to check 

E((Zd(t1) − Zd(s))(Zd(t2) − Zd(s))) = E((Zd(t1 − s) − Zd(0))(Zd(t2 − s) − Zd(0))). 

Indeed, 

E((Zd(t1) − Zd(s))(Zd(t2) − Zd(s))) = E(Zd(t1)Zd(t2)) − E(Zd(t1)Zd(s)) − E(Zd(t2)Zd(s)) + E(Zd 
2(s)) 

= Gd(t1) + Gd(t2) − Gd(t1 − t2) − Gd(0) + Hd(t1 − t2) 

−(Gd(t1) + Gd(s) − Gd(t1 − s) − Gd(0) + Hd(t1 − s)) 

−(Gd(t2) + Gd(s) − Gd(t2 − s) − Gd(0) + Hd(t2 − s)) 

+2Gd(s) − 2Gd(0) + Hd(0) 

= Hd(t1 − t2) − Hd(t1 − s) − Hd(t2 − s) + Hd(0) 

−Gd(t1 − t2) + Gd(t1 − s) + Gd(t2 − s) − Gd(0) 

http:5.3.0.14
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On the other hand 

E((Zd(t1 − s) − Zd(0))(Zd(t2 − s) − Zd(0))) =	 E(Zd(t1 − s)Zd(t2 − s)) − E(Zd(t1 − s)Zd(0)) 

−E(Zd(t2 − s)Zd(0)) + E(Zd 
2(0)) 

=	 Gd(t1 − s) + Gd(t2 − s) − Gd(t1 − t2) − Gd(0) 

+Hd(t1 − t2) − (Gd(t1 − s) + Gd(0) − Gd(t1 − s) 

−Gd(0)) + Hd(t1 − s)) − (Gd(t2 − s) + Gd(0) 

−Gd(t2 − s) − Gd(0) + Hd(t2 − s)) + Hd(0) 

=	 Hd(t1 − t2) − Hd(t1 − s) − Hd(t2 − s) + Hd(0) 

−Gd(t1 − t2) + Gd(t1 − s) + Gd(t2 − s) − Gd(0) 

Therefore 

E((Zd(t1) − Zd(s))(Zd(t2) − Zd(s))) = E((Zd(t1 − s) − Zd(0))(Zd(t2 − s) − Zd(0))). 

Before we continue we would like to state a definition. 

Definition 5.3.0.17. A stochastic process X(t), t ∈ Rd is isotropic if for each rotational 

matrix A ∈ Rd×d . 

X(t) =d X(At). 

Notice that if X is a Gaussian process. Then this definition is equivalent to 

E(X(t)X(s)) = E(X(At)X(As)). So we have the following corollary. 

Corollary 5.3.0.15. The Gaussian process Zd as defined as above is isotropic. 

http:5.3.0.15
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Proof. 

1 1
E(Zd(At)Zd(As)) = E( K(At · u, lul) dB(u) K(As · u, lvl) dB(v))

lul(d−1)/2 lvl(d−1)/2Rd Rd 

u u 1 
= K(At · , lul)K(As · , lul) du 

Rd lul lul luld−1 

∞ 

= K(At · θ, r)K(As · θ, r)drdσ(θ) 
Sd−1 0 

= 1/2(g(At · θ) + g(As · θ) − g(A(t − s) · θ) − g(0)) 
Sd−1 

+E(Z(A(t − s) · θ)Z(0))dσ(θ) 
1|Sd−1| d−3 

= (1 − v 2) 2 (g(lAtlv) + g(lAslv) − g(lA(t − s)lv) − g(0))
2 −1 

+E(Z(lA(t − s)l)v)Z(0))dv 
1|Sd−1| d−3 

= (1 − v 2) 2 (g(ltlv) + g(lslv) − g(l(t − s)lv) − g(0))
2 −1 

+E(Z(lt − sl)v)Z(0))dv 

|Sd−1|
= (Gd(ltl) + Gd(lsl) − Gd(lt − sl) − Gd(0)) + |Sd−1|Hd(lt − sl)

2
 

= E(Zd(t)Zd(s))
 

Hence Zd is isotropic. 

The Ornstein-Uhlenbeck process satisfies this. First we shall give the definition of 

the Ornstein-Uhlenbeck process. 

Definition 5.3.0.18. A mean zero Gaussian process U(t), t ∈ R is called Ornstein-

Uhlenbeck process with parameter α > 0 if its covariance function is of the form 

1 −α|t−s|E(U(t)U(s)) = e . 
2α
 

From Kaarakka [16], U can be written as
 

2αt ∞ e−αtB( −αtU(t) = e ) = e 1 2αt dB(u), t ∈ R,
[u≤ e ]2α 2α0 

where B is the standard Brownian motion. Then we have the following corollary. 
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Corollary 5.3.0.16. Let U(t) be an Ornstein-Uhlenbeck process in R. Then for ltl ≤ 1,
 

u 1 
lul uUd(t) = e −αt· 

1 2αt· dB(u). 
lul lul(d−1)/2Rd [u≤ e 

2α ] 

is a isotropic and Gaussian process with stationary increments in the unit disc with the
 

covariance function of the form. 

E(Ud(t)Ud(s)) = 
|Sd−1|
(2α) 

1 

−1 
(1 − v 2)(d−3)/2 e −α1t−s1vdv 

. 

In the case d is odd, we have 

−α1t−s1P d α1t−s1P dE(Ud(t)Ud(s)) = (e (1) − e (−1)),1t−s1 1t−s1

where 

2n 2n−1x 2nx 2n(2n − 1) n 2n(2n − 1)(2n − 2) n(2n − 2)
Pβ

n(x) = + + x 2n−2( − ) + x 2n−3( − )
β β2 β3 β β4 β2 

(2n)! n(2n − 2)!2n−2k(+ · · · + x − 
β2k+1(2n − 2k)! (β2k−1(2n − 2 − 2k)! 

· · · (n − k + 1) (2n)! n(2n − 2)! (−1)n 

+ · · · + (−1)k n(n − 1) 
) + · · · + − + · · · + 

β2n+1 β2n−1β β 

This is a good place to summarize what we already did before we continue to investigate 

for further generalization of representations of stochastic process. First we showed that if 

we have 
∞ 

BH (t) = K(t, u)dB(u) 
0 

with K(t, u) defined on [−R, R] × (0, ∞) then we can show that for t ∈ Rd with ltl ≤ R 

and d > 1, 
1 u 

Bd 
H (t) = K(t · , lul)dB(u)

lul(d−1)/2Rd lul

is also a fractional Brownian motion in Rd . Later we showed that if we have Z(t) = 

∞ 
K(t, u)dB(u) with the covariance function 

Cov(Z(s)Z(t)) = g(|t|) + g(|s|) − g(|t − s|), 

0 
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where g is bounded and Lebesgue integrable on [−1, 1] and K(t, u) defined on R × (0, ∞) 

for some R > 0. Then for t ∈ Rd , 

1 u 
Zd(t) = K(t · , lul)dB(u)

lul(d−1)/2Rd lul

is also a Gaussian process in Rd with the covariance function of the form 

Cov(Zd(t)Zd(s)) = cd(Gd(ltl) + Gd(lsl) − Gd(lt − sl)). 

For the next section, we will investigate on series representation of fractional Brownian 

motion. 

5.4. A series representation of fractional Brownian motion in Rd 

In this section we will discuss on series representation of fractional Brownian motion. 

We know that the Karhunen-Loéve expansion is one of the powerful tools for studying 

Gaussian process. However solving for eigenvalues and eigenfunctions are not always easy. 

With this reason the Karhunen-Loéve expansion of fractional Brownian motion in Rd is 

still not known. This section will show another way to express Gaussian processes as 

an infinite series, especially fractional Brownian motion. The idea of doing this can be 

summarized as follows. 

Suppose we have BH (t) = K(t, u)dB(u) is a fractional Brownian motion in Bd(0,1) 

a subset of Rd . Then we can write K(t, u) = cn(t)fn(u), where fn is an othonormal n 

basis for L2(Bd(0, 1)). Then this gives us BH (t) = cn(t) fn(u)dB(u) as a series n Bd(0,1) 

representation of fractional Brownian motion in a subset of Rd . The key that allows us 

to do this is that the fractional Brownian motion has an integral representation which its 

support is compact. As we have seen earlier the Molchan-Golosov representation is an 

example of this. Before we continue we need the following lemma. 
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Lemma 5.4.0.11. If {gi(x), i ≥ 1} is an othonomal basis for L2((0, 1), dx) then 

{gi(x)/x(d−1)/2, i ≥ 1} is also an orthonormal basis for L2((0, 1), xd−1dx). 

Proof. Assume gi, i ≥ 1 is an orthonomal basis for L2((0, 1), dx). Then 

1 1gi(x) gj (x) 
x d−1dx = gi(x)gj (x)dx = δi,j . 

x(d−1)/2 x(d−1)/2 
0 0
 

1 gi(x)
Let f ∈ L2((0, 1), xd−1dx) and f(x) xd−1dx = 0 for all i. Then(d−1)/20 x

1 
(d−1)/2f(x)x gi(x)dx = 0, for all i. 

0 

1 1 f(x) )2Since f ∈ L2((0, 1), xd−1dx), f2(x)dx = ( xd−1dx < ∞.0 0 x(d−1)/2 

That is f ∈ L2((0, 1), dx). Since gi is orthonormal basis for L2((0, 1), dx), f(x)x(d−1)/2 = 0. 

That is f = 0 a.e. 

Hence {gi(x)/x(d−1)/2, i ≥ 1} is also an orthonormal basis for L2((0, 1), xd−1dx). 

Now let {gi(r)} be an orthonomal basis for L2((0, 1), dx) and Hd be a set of spher­n 

ical harmonics {ϕn,k(θ)} of degree n in Rd, where k = 1, ..., N(d, n) and θ ∈ Sd−1 and 

(n+d−2)!N(d, n) = (2n+d−2 ) is the dimension of Hd (Groemer [9]). n+d−2 n!(d−2)! n

Then {ϕn,k, n ≥ 0, k = 1, ..., N(d, n)} forms an orthonormal basis for L2(Sd−1, σ). 

Define 
gi(lxl) x 

fn,k,i(x) = ϕn,k( ). 
lxl(d−1)/2 lxl

We will show that fn,k,i is an orthonormal basis for a unit disk with respect to the Lebesǵue 

measure in Rd as follows. 

Lemma 5.4.0.12. If {gi(r)} is an orthonormal basis for L2((0, 1), dx) and {ϕn,k(θ)} be 

a collection of spherical harmonics forming an orthonormal basis for L2(Sd−1, σ), then 

gi(lxl) x 
fn,k,i(x) = ϕn,k( )

lxl(d−1)/2 lxl

is also an orthonormal basis for a unit disk with respect to the Lebesǵue measure in Rd . 

http:5.4.0.12
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Proof.
 

1 

fn,k,i(x)fm,l,j (x)dx = gi(r)gj (r)drϕn,k(θ)ϕm,l(θ)dθ 
Bd(0,1) 0Sd−1 

= δ(n,k),(m,l)δi,j , 

This is an orthonormal collection. Next we want to show if f ∈ L2(Bd(0, 1), dx) with 

f(x)fn,k,i(x)dx = 0 for all n, k, i then f ≡ 0 a.e. If Bd(0,1) 

0 = fn,k,i(x)f(x)dx 
Bd(0,1) 

1 
(d−1)/2 = f(r, θ)r gi(r)drϕn,k(θ)dθ 

Sd−1 0 

Since f ∈ L2((Bd(0, 1), dx), 

1 

f(r, θ)gi(r)r
(d−1)/2dr ∈ L2(Sd−1, σ). 

0 

Since ϕn,k is an orthonormal basis for L2(Sd−1, θ), 

1 

f(r, θ)gi(r)r
(d−1)/2dr = 0, for all i 

0 

Hence f(x) = 0 a.e.
 

Therefore fn,k,i is an orthonormal basis for L2(Bd(0, 1), dx).
 

We can use this to develop series representation of fractional Brownian motion. 

1
Suppose BH (t) = K(t, u)dB(u) is a fractional Brownian motion in [−R, R], R > 0.0 

Then we have 
u 1 

BH (t) = K(t · , lul) dB(u). 
lul(d−1)/2lulBd(0,1) 

is a fractional Brownian motion in a disk of radius R in Rd . 

So for fixed t, we can write 

u 1 gi(lul) u 
K(t · , lul) = cn,k,i(t) ϕn,k( )

lul(d−1)/2 lul(d−1)/2lul lul
n,k,i 
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where gi is orthonormal basis for L2((0, 1), dx) and ϕn,k is orthonormal basis for L2(Sd−1) 

u 1and cn,k,i(t) = Bd(0,1) K(t · 1u1 , lul)1u1(d−1)/2 fn,k,i(u)du. 

Thus 

u 1 
BH (t) = K(t · , lul) dB(u)

lul(d−1)/2Rd lul
gi(lul) u 

= cn,k,i(t) ϕn,k( )dB(u)
lul(d−1)/2 lulBd(0,2)n,k,i 

Now we are trying to compute cn,k,i. The key idea for the computation is the 

Funk-Hecke Theorem see [9]. 

Theorem 5.4.0.28. If Φ is a bounded integrable function on [−1, 1] and ϕ ∈ Hd , then n

Φ(u · v) is (for any fixed u ∈ Sd−1) an integrable function on Sd−1 and 

Φ(u · v)ϕ(v)dσ(v) = αd,n(Φ)ϕ(u) 
Sd−1 

with 
1 

αd,n(Φ) = σd−1 Φ(t)P d(t)(1 − t2)ν dtn 
−1 

where ν = (d − 3)/2, Hd is the space of all spherical harmonics of degree n and dimension n
 

n
d and P d(t) = (−1)n2−n (ν + i)−1(1 − t2)−ν dn 
(1 − t2)ν+n is the Legendre polynomial n i=1 dtn 

of dimension d and degree n. 

Then we have the following theorem 

1
Theorem 5.4.0.29. Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion in 

[−R, R], R > 0 and gi be an orthonormal basis for L2((0, 1), dx) and ϕn,k be an orthonor­

mal basis for L2(Sd−1). Then we have 

u 1 
BH (t) = K(t · , lul) dB(u)

lul(d−1)/2lulBd(0,1) 

gi(lul) u 
= cn,k,i(t) ϕn,k( )dB(u)

lul(d−1)/2 lulBd(0,1)n,k,i 

1 1 twhere cn,k,i(t) = σd−1( K(ltlu, r)gi(r)drP d(u)(1 − u2)ν du)ϕn,k( ), ϑ = (d − 3)/2−1 0 n 1t1 

and P d is the Legendre polynomial of dimension d and degree n.n 

http:5.4.0.29
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Proof. For f ∈ L2(Bd(0, 1), dx), we have 

1 

fn,k,i(x)f(x)dx = f(r, θ)gi(r)r
(d−1)/2drϕn,k(θ)dθ. 

Bd(0,1) 0Sd−1 

x 1Now for fix t ∈ Rd with |t| ≤ R, we replace f(x) by K(t · 1x1 , lxl)1x1(d−1)/2 . Then 

u 1 
cn,k,i(t) = K(t · , lul) fn,k,i(x)dx 

lul(d−1)/2lulBd(0,1) 
1 

= K(t · θ, r)gi(r)drϕn,k(θ)dθ 
Sd−1 0 

Thus for x ∈ [−1, 1] we define Φt,i by 

1 

Φt,i(x) = K(ltlx, r)gi(r)dr 
0 

Hence by the Funk-Hecke theorem, 

t 
cn,k,i(t) = 

Sd−1 
Φt,i(ltl 

· θ)ϕn,k(θ)dθ 

t 
= αd,n(Φt,i)ϕn,k(ltl

) 

= σd−1( 
1 

−1 

1 

0 
K(|t|u, r)gi(r)drP d 

n (u)(1 − u 2)ϑdu)ϕn,k( 
t 

ltl
) 

where ϑ = (d − 3)/2. 

Example 2. Molchan-Golosov representation satisfies the above theorem. That is when 

0 < H < 1 and t ≥ 0, 
t 

BH (t) =
d CH K(t, u)dB(u), 

0 

where 

tt 
)H−1/2(t − u)H−1/2 − (H − 

1 1/2−HK(t, u) = {( )u x H−3/2(x − u)H−1/2dx}
u 2 u 

and CH is a normalizing constant. 

Then we define 

1 

B " H (t) = BH (t + 1/2) − BH (1/2) = K(t + 1/2, u)1(0,t+1/2) − K(1/2, u)1(0,1/2)dB(u) 
0 
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is a fractional Brownian motion on [−1/2, 1/2]. Then 

u 1 
BH (t) = (K(t · , lul) − K(1/2, lul)) dB(u)

lul(d−1)/2lulBd(0,1) 

is a fractional Brownian motion on a disk radius 1/2 whose series representation is of the 

form 
gi(lul) u 

BH (t) = cn,k,i(t) ϕn,k( )dB(u),
lul(d−1)/2 lulBd(0,1)n,k,i 

1 1 twhere cn,k,i(t) = σd−1( K(ltlu, r)gi(r)drP n
d(u)(1 − u2)ν du)ϕn,k( ), ϑ = (d − 3)/2−1 0 1t1 

and P d is the Legendre polynomial of dimension d and degree n.n 
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6. CONCLUSION 

In this thesis we obtain new representations of fractional Brownian motion in Rd, d ≥ 

2 from extending the kenel appearing in the representations of fractional Brownian motions 

on R. This extension can be summarized as follows: 

∞
Theorem 6.0.0.30. Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion with 

index H on the interval [−1, 1]. If the function f defined as above satisfies the following 

conditions 

(1) For each t such that ltl ≤ 1, f(t, u) ∈ [−1, 1] for all u ∈ Rd , 

u(2) For all t ∈ Rd , u ∈ Rd/{0}, f(t, u) = f(t, ),1u1 

(3) f(t, u) + f(s, u) = f(t + s, u), 

(4) For c ∈ [−1, 1], f(ct, u) = cf(t, u) for all u ∈ Rd . 

(5) Sd−1 |f(t, u)|2H dσ(u) = CH for all ltl = 1, where CH is a constant. 

then we have 
1 

BH (t) = K(f(t, u), lul) dB(u)
lul(d−1)/2Rd 

is a fractional Brownian motion with index H in a unit disk in Rd . 

We have seen some examples of f that satisfy all of the above conditions. We refer 

to Corollary 5.2.0.10, 5.2.0.11 and 5.2.0.12. So we have the following conjecture. 

Conjecture 6.0.0.1. If f satisfies all of the conditions in the theorem 6.0.0.30 then f 

must have either one of the form 

v1) f(u, v) =< u, 1v1 >, 
lvj2) f(u, v) =< u, 1v1 > or 

v3) f(u, v) = r < u, 1v1 >, 

" where vj = (v1, ..., −vj , ..., vd) and 0 < |r| ≤ 1. 

http:6.0.0.30
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Since we know the conditions on f that allows the extension of fractional Brownian 

motion to work, we could use the same method to extend Gaussian processes with a 

certain kind of covariance function to Gaussian processes in higher dimension. That is 

∞
Theorem 6.0.0.31. For each t ∈ Rd, let Z(t) = K(t, u)dB(u), t ≥ 0 be a one dimen­0 

sional Gaussian process with stationary increments and assume 

g(t) = E(Z2(t)) 

is bounded and Lebesgue integrable on [−1, 1]. Then we have for t ∈ Rd , 

1 
Zd(t) = K(t · u, lul)dB(u)

lul(d−1)/2Rd 

is a Gaussian process in Rd with isotropic property and the covariance function of the 

form 

Cov(Zd(t)Zd(s)) = cd(Gd(ltl) + Gd(lsl) − Gd(lt − sl)) 

d−31
where Gd(u) = (1 − v2) 2 g(uv)dv, and cd is a constant depending only on d.−1

The processes that we get from this method is also isotropic. From the result we 

obtained we could use it to develop a new series representation of fractional Brownian 

motion as follow: 

1
Theorem 6.0.0.32. Let BH (t) = 0 K(t, u)dB(u) be a fractional Brownian motion in 

[−R, R], R > 0 and gi be an orthonormal basis for L2((0, 1), dx) and ϕn,k be an ortho­

mormal basis for L2(Sd−1). Then we have 

u 1 
BH (t) = K(t · , lul) dB(u)

lul(d−1)/2lulBd(0,1) 

gi(lul) u 
= cn,k,i(t) ϕn,k( )dB(u)

lul(d−1)/2 lulBd(0,1)n,k,i 

1 1 twhere cn,k,i(t) = σd−1( K(ltlu, r)gi(r)drP n
d(u)(1 − u2)ν du)ϕn,k( ), ϑ = (d − 3)/2−1 0 1t1 

and P d is the Legendre polynomial of dimension d and degree n.n 

http:6.0.0.32
http:6.0.0.31
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gi(1u1) uA benefit of this series representation is Bd(0,1) 1u1(d−1)/2 ϕn,k(1u1 )dB(u) is i.i.d stan­

dard Gaussian process. Unfortunately, cn,k,i(t) may not be orthogonal. So searching for 

orthogonality of the functions in the expansion of fractional Brownian motion is an in­

creasing interest. In 2005 Fourier expansion has been extended for fractional Brownian 

motion in R when 0 < H ≤ 1/2 by Istas [12] and when 1/2 ≤ H < 1 by Igloi [11]. This 

will be an interesting subject to investigate further in Rd . 
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