


AN ABSTRACT OF THE THESIS OF 

Mohamed Grissa for the degree of Master of Science in Electrical and Computer 

Engineering presented on May 22, 2015. 

Title: Location Privacy Preservation for Optimal Sensing in Cognitive Radio Networks 

Abstract approved: 

Bechir Hamdaoui 

Cognitive Radio Networks (CRNs) enable opportunistic access to the licensed chan­

nel resources by allowing unlicensed users to exploit vacant channel opportunities. One 

effective technique through which unlicensed users, often referred to as Secondary Users 

(SUs), acquire whether a channel is vacant is cooperative spectrum sensing. Despite its 

effectiveness in enabling CRN access, cooperative sensing suffers from location privacy 

threats, merely because the sensing reports that need to be exchanged among the SUs to 

perform the sensing task are highly correlated to the SUs’ locations. 

In this thesis, we propose three private sensing protocols. The first scheme, Location 

Privacy for Optimal Sensing (LPOS) preserves the location privacy of SUs while achiev­

ing optimal sensing performance through voting-based sensing. In addition, LPOS is the 

only alternative among existing CRN location privacy preserving schemes (to the best of 

our knowledge) that ensures high privacy, achieves fault tolerance, and is robust against 



the highly dynamic and wireless nature of CRNs. We provide also a second variant of 

LPOS, that we call REP-LPOS which incorporates a reputation mechanism and uses El­

liptic Curve El Gamal with Pollard lambda method to boost the decryption. The third 

scheme is called Public Register Private Sensing (PRPS) which is the most efficient 

scheme but offers lower privacy than LPOS and REP-LPOS. 



c©Copyright by Mohamed Grissa
 
May 22, 2015
 

All Rights Reserved
 



Location Privacy Preservation for Optimal Sensing in Cognitive Radio
 
Networks
 

by
 

Mohamed Grissa
 

A THESIS
 

submitted to
 

Oregon State University
 

in partial fulfillment of
 
the requirements for the
 

degree of
 

Master of Science
 

Presented May 22, 2015
 
Commencement June 2015
 



Master of Science thesis of Mohamed Grissa presented on May 22, 2015. 

APPROVED: 

Major Professor, representing Electrical and Computer Engineering
 

Director of the School of Electrical Engineering and Computer Science
 

Dean of the Graduate School 

I understand that my thesis will become part of the permanent collection of Oregon 
State University libraries. My signature below authorizes release of my thesis to any 
reader upon request. 

Mohamed Grissa, Author
 



ACKNOWLEDGEMENTS
 

First and foremost, I would like to express my sincere gratitude and appreciation 

to my academic advisor Professor Bechir Hamdaoui, Associate Professor in EECS at 

OSU, for offering me the chance to join his group and work under his supervision. 

His expertise, suggestions, and continuous support, added considerably to my graduate 

experience and my ability to carry out scientific research at OSU. 

Also I would like to thank Professor Attila Yavuz, Assistant Professor in EECS at 

OSU, for his collaboration in this project, his time, help, valuable suggestions and con­

structive discussions that we had and for sharing with me his knowledge and expertise 

throughout this project and the classes I took with him. 

I would like to express my sincere gratitude also to my committee members Profes­

sor Maggie Niess, Professor Lizhong Chen and Professor J. Eduardo Cotilla-Sanchez, 

for accepting to serve as members of the committee of my defense and for the time they 

devoted to read this thesis. 

I deeply thank my dear parents, Zakia Sta and Abderraouf Grissa, and would like 

to dedicate this thesis to them for their unlimited support, love and encouragements 

throughout all the endeavors that I have been through and to my brothers, Wassim, 

Belhassen, Ahmed and Abdallah to whom I wish happiness and success in their lives. 

Finally and most importantly, I would like to thank my dear wife and best friend 

Lamia Ben Lagha for her patience, love and constant support during this very important 

step of our live. 



TABLE OF CONTENTS
 

Page
 

1 Introduction 1
 

1.1	 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 

1.2	 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 

1.3	 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 

2 Preliminaries	 9
 

3 The Proposed Schemes	 15
 

3.1	 Location Privacy for Optimal Sensing LPOS . . . . . . . . . . . . . . . . 15
 

3.2	 Reputation and Elliptic Curve based Location Privacy for Optimal Sensing
 
REP-LPOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 

3.3	 Public Register based Private Sensing PRPS . . . . . . . . . . . . . . . . 20
 

4 Security Analysis	 24
 

5 Analysis and Comparison	 27
 

6 Conclusion	 34
 

Bibliography	 34
 



LIST OF FIGURES
 

Figure Page 

1.1 Cooperative spectrum sensing architecture . . . . . . . . . . . . . . . . 3
 

5.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 30
 

5.2 Communication and Computational Overhead variation with respect to κ 31
 

5.3 Dynamism in the network . . . . . . . . . . . . . . . . . . . . . . . . . 32
 

5.4 Cumulative overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 



LIST OF TABLES 

Table	 Page 

1.1	 Privacy, dynamism handling, fault tolerance and sensing performance
 
proposed and previous schemes . . . . . . . . . . . . . . . . . . . . . . 2
 

5.1	 Communication and computation overhead of proposed and existent
 
schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
 



LIST OF ALGORITHMS
 

Algorithm Page
 

1 LPOS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 

2 LPOS Algorithm - continued . . . . . . . . . . . . . . . . . . . . . . . 17
 

3 REP-LPOS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 

4 PRPS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 



Chapter 1: Introduction 

1.1 Problem Statement 

Cognitive Radio Networks (CRNs) have emerged as a key technology for improving 

spectrum utilization efficiency by enabling opportunistic access to the wireless chan­

nel resources. They do so by allowing unlicensed spectrum users, often referred to as 

Secondary Users (SUs), to identify and exploit unused opportunities of licensed chan­

nels, so long as they do not cause any interference to licensed users, often referred to as 

Primary Users (PUs). 

Two main approaches can be used by SUs to acquire whether PUs are present in a 

licensed channel [7]. The first approach is based on geo-location databases and is very 

similar to what is used in LBSs (location-based services). The second approach, referred 

to as cooperative spectrum sensing, relies on the SUs themselves to visit and sense the 

licensed channels, on a regular basis, to collaboratively decide whether a channel is va­

cant or not. In this work, we focus on the cooperative spectrum sensing approach whose 

general architecture is shown in Fig. 1.1. In this architecture, the Fusion Center (FC ) is 

the entity responsible for orchestrating the SUs to perform the sensing task so as to col­

lectively decide whether PUs are present or not. Through a control channel, FC queries 

SUs, each having sensing capability, to tune to specific channels/frequencies, measure 

the energy level (known as Received Signal Strength (RSS)) observed in each of these 
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Table 1.1: Privacy, dynamism handling, fault tolerance and sensing performance pro­
posed and previous schemes 

Evaluation Location Privacy Dynamism Fault Tolerance Sensing Performance 

LPOS Very High Multiple yes optimal [29] 

REP-LPOS Very High Multiple yes optimal 

PRPS High Multiple yes optimal 

Generic 
ECEG Low Multiple yes not optimal 

PDAFT [13] Low Multiple yes not optimal 

PPSS [19] Medium Single No not optimal 

Privacy: If FC can learn the aggregated result we evaluate the privacy to be low since an 
estimation of sensing reports of some users is possible when there are users leaving/joining the 
network. Medium privacy if there is a mechanism to cope with the mentioned problem but still 
using aggregation. We qualify our scheme to have High privacy since it does not have this 
vulnerability. Dynamism: Multiple when the scheme can handle multiple users 
leaving/joining the network simultaneously and Single when only one SU joining/leaving the 
network is supported. Fault Tolerance: whether or not the system still works normally when 
one of the SUs fails to send its report. Sensing Performance: a scheme is optimal if its 
sensing performance is proven to be optimal otherwise it is not optimal 

channels, and report the observed RSS values back to FC 1 . FC then first combines 

the RSS values collected from the different SUs and then compares the combined value 

against a detection threshold, τ , to decide whether a channel is available. Channel avail­

ability decisions are sent back to the SUs to rely on during their opportunistic spectrum 

access. 

Despite its effectiveness in improving sensing performance, cooperative spectrum 

sensing suffers from many security and privacy threats that make SUs shy away from 

joining and participating in the cooperative sensing task. One of these threats is the 

disclosure of SUs’ location information. Cooperative spectrum sensing exploits spatial 

1Energy detection is the most popular method for signal detection due to its simplicity and small 
sensing time [15]. 
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Figure 1.1: Cooperative spectrum sensing architecture 

diversity for enhancing accuracy of sensing and this can jeopardize the location privacy 

of SUs. It has been shown in [19] that RSS values are heavily correlated to the SUs’ 

physical locations, thus making it not too difficult to compromise the location privacy of 

SUs. Disclosing the location information is undesirable especially when FC is run by an 

untrusted service provider [9]. The fine-grained location data can be used to determine a 

lot of information about an individual’s beliefs, preferences, and behavior [26]. In fact, 

by analyzing location traces of a user, an adversary can learn that he/she regularly goes 

to a hospital, and may then sell this information to pharmaceutical advertisers without 

the user’s consent. In addition, malicious adversaries with criminal intent could use this 

information to pose a threat to an individual’s security and privacy. Being aware of such 

potential privacy risks, SUs may not want to share their data with FC s or databases [26], 

making the need for preserving the location privacy of these users of a high importance. 

In this work, we address the SUs’ location disclosure threat, which is considered 
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as one of the most important threats to cognitive radio users’ privacy. We design three 

different protocols that guarantee a high privacy of the SUs’ location by concealing the 

RSS values from FC while enabling optimal sensing using the half-voting rule proposed 

in [29]. 

1.2 Related Work 

Shuai Li et al. [19] showed that location information of SUs could be inferred from the 

sensing reports, and called this attack Single CR Report Location Privacy (SRLP) at­

tack. Another attack in the same context occurs when a user joins or leaves the network. 

Any malicious entity can estimate the report of a user and hence its location from the 

variations in the final aggregated RSS measurements when the node joins and leaves 

the network. This is termed Differential Location Privacy attack. To cope with these 

attacks, the authors propose PPSS, a Privacy Preserving collaborative Spectrum Sensing 

protocol, that uses secret sharing and the Privacy Preserving Aggregation (PPA) process 

to hide the content of specific sensing reports. It also uses dummy report injections to 

cope with the Differential Location Privacy attack. However, PPSS has several limita­

tions. First, it requires all the sensing reports in order to decode the aggregated result, 

which makes it quite impractical since the wireless channel may be unreliable, making 

some sensing reports not accessible by FC . Hence, FC will not be able to decrypt the 

aggregated sensing result. Moreover, it cannot cope with the dynamics resulting when 

multiple users join or leave the network simultaneously. In addition, the pairwise secret 

sharing process incurs extra communication overhead, which results in an additional 
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delay especially when all the keys need to be updated when a user joins or leaves the 

network. Also, the encryption scheme used here is practical only when the plaintext 

space is small, since the decryption of the aggregated result requires solving the DLP 

problem, which is very costly as shown in Table 5.1. 

Some other approaches focused on solving the location privacy problem of SUs in 

completely different settings and scenarios. Goa et al. [16] provided a solution that 

guarantees users’ location privacy in database-driven cognitive radio networks using a 

blinding factor to hide the location information when querying the database. In [21], 

Liu et al. proposed a location privacy preserving dynamic spectrum auction approach 

to protect SUs’ location using prefix membership verification based range queries that 

protect the bid items and prices of the SUs from which they show that an attacker can 

determine the location information. 

Despite the importance of this issue and the potential that CRNs present, little atten­

tion has been paid to this problem. This drove us to look outside the context of CRNs 

and try to find an approach that might be applied to our setup. We were particularly inter­

ested in the work proposed by Chen et al. [13] where they present a privacy-preserving 

data aggregation scheme with fault tolerance for smart grid communications, termed 

PDAFT. They considered a setting very similar to the one we study in this work, and 

tried to preserve users’ privacy when smart meters installed within each house sense the 

consumption information and send it to the control center. 

PDAFT combines Paillier cryptosystem with Shamir’s secret sharing, where a set 

of smart meters sense the consumption of different households, encrypt their reports 

using Paillier, then send them to a gateway. The gateway multiplies these reports and 
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forwards the result to the control center, which selects a number of servers (among all 

servers) to cooperate in order to decrypt the aggregated result. However, PDAFT re­

quires a dedicated gateway to collect the encrypted data and a minimum number of 

working servers in the control center to be able to decrypt the aggregated result. In 

addition, PDAFT, like most of the aggregation-based methods, is prone to differential 

attacks that we mentioned earlier, and does not provide a mechanism that prevents this 

attack. Another drawback, which is common to simple aggregation-based methods, is 

that they usually do not provide optimal sensing performance and might be affected by 

the distribution of the RSS values. Throughout this thesis, by optimal sensing we mean 

final decision accuracy regrading the channel availability. 

1.3 Our Contribution 

We propose new location privacy-preserving sensing schemes for cognitive radio net­

works (CRNs) LPOS, REP-LPOS and PRPS. To the best of our knowledge, these are 

the first schemes that can preserve SUs’ location privacy for CRNs but at the same time 

enable an optimal sensing performance using the half-voting rule. The main idea be­

hind our schemes is to enable privacy-preserving comparison of RSS values and FC ’s 

threshold in an efficient manner via a novel integration of Order Preserving Encryption 

(OPE) [11] and Yao’s Millionaires’ protocol [28]. We summarize the desirable proper­

ties of our different schemes below, and we further compare them to existing approaches 

with respect to different metrics as outlined in Table 1.1. We give detailed performance 

analysis and comparison with further discussions in Chapter 5. 
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Desirable Properties: Compared to their counterparts, LPOS, REP-LPOS and PRPS 

achieve the following desirable properties: 

1) Location Privacy with Optimal Sensing Performance: To the best of our knowl­

edge, the proposed schemes are the first schemes that enable location privacy for CRNs 

with an optimal spectrum sensing performance. That is, they permit privacy-preserving 

realization of the half-voting rule proposed in [29], which has been shown to be the 

optimal decision rule for spectrum sensing using energy detection. Unlike aggregation 

methods that may be vastly impacted by the distribution of RSS values (and misleading 

FC to inaccurate decisions), this rule enjoys an optimal sensing performance. 

2) High Location Privacy of Secondary Users: Unlike some aggregation type pro­

tocols [13, 19], our schemes do not leak RSS information during users joining/leaving 

operations, nor do they require dummy report injection to prevent differential attacks as 

in [19]. 

3) Fault Tolerance: In our schemes, if some users cannot sense the channels or fail 

to send their reports, FC only needs to update the voting threshold, λ, with the available 

users to make an accurate decision. However, some existing schemes cannot handle 

such failures. For example, PPSS [19] requires inputs from all (pre-determined) users 

to be able to decrypt the aggregated RSS. Hence, if one of the encrypted reports is 

missing, FC will not be able to make a decision. The proposed schemes do not have 

such a limitation, since they rely on a voting-based approach and FC evaluates each 

contribution of users towards the decision individually, which makes our schemes more 

fault-tolerant compared to PPSS [19]. 

4) Scalability and Computational Efficiency: Our schemes offer the smallest com­
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munication overhead among their counterparts for large network sizes. The compu­

tational complexity is logarithmic in the number of users for both LPOS and REP­

LPOS and is constant for PRPS, which makes them more practical and scalable (a de­

tailed performance analysis is given in Chapter 5). 

5) Handling Dynamism Effectively in the Network: When a group of users join or 

leave the network (a common scenario in CRNs), the system security and performance 

should be maintained. Unlike some alternatives (e.g., PPSS [19]) which can deal with 

the joining/leaving of only a single user at a time, the proposed schemes can effectively 

handle multiple, simultaneous join/leave operations. 

The remainder of this thesis is organized as follows. Chapter 2 presents our pre­

liminary concepts and definitions. Chapter 3 provides an extensive explanation of the 

different schemes that we propose in this thesis. Chapter 4 gives the security analysis 

of the different proposed protocols. Chapter 5 presents performance analysis of the pro­

posed schemes and a comparison with existent approaches. Finally, Chapter 6 concludes 

this work. 
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Chapter 2: Preliminaries 

CRN System and Sensing Model. We consider a centralized CRN that consists of a 

FC and n SUs, as shown in Figure 1.1. We assume that each SU is capable of assessing 

RSS values of channels through energy detection methods [15], and communicating 

them to FC , which it then combines them to make decisions regarding whether channels 

are available. FC then broadcasts the final decisions back to SUs. 

Half-voting rule. Two reasons motivated our choice of a voting-based rule over an 

aggregation-based fusion rule: (i) it has a better sensing performance than aggregation-

based rules [24], and (ii) it does not expose users to the privacy issues, we mentioned 

earlier, that would otherwise be exposed to when aggregation-based rules are used. 

The authors in [29] derived a voting threshold, λ, for optimal spectrum sensing in 

voting-based CRNs, which is termed half-voting rule. With this, when the number of 

users whose RSS values are greater than τ is higher than λ, then FC can conclude that 

the channel is busy. 

Beta Reputation Mechanism. To make the voting rule more reliable we incorporate 

a reputation mechanism which allows FC to progressively eliminate malicious users 

that try to falsify their reports along with faulty SUs by decreasing their contribution 

to the sensing at each iteration. Thus, whenever FC detects that one of the users is 

malicious or has erroneous reports, it will penalize it by updating a reputation score that 

reflects the level of reliability that the user has. In this work we use the robust Beta 
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reputation system proposed by Arshad et al. [8]. After running YM with the users in 

the network, FC obtains a decision vector b = [b1, . . . , bn ]
T that contains the binary 

decision corresponding to each user. FC then combines the different binary decisions 

to make a global decision: 

B = f(w, b) (2.1) 

where w = [w1, . . . , wn ]
T is the the weights vector calculated by FC based on the 

credibility score of each user and f is the fusion rule defined as 

⎧ ⎪⎪⎨

 


1, if n wi × bi ≥ λi=1 
(2.2)f(w, b) =
 ⎪⎪⎩
0, otherwise
 

where λ is the voting threshold determined by the Half-voting rule. FC categorizes the 

contribution of each SU Ui as positive or negative based on its observation by computing 

a positive rating and negative rating coefficients ζi and ηi that are updated every sensing 

period tw as follows: 

ζi(tw) = ζi(tw − 1) + ν1, ηi(tw) = ηi(tw − 1) + ν2 (2.3) 

where ζi reflects the number of times user Ui ’s observation bi follows the global decision 

B made by the FC and ηi reflects the number of times user Ui ’s observation disagrees 
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with the global decision. ν1 and ν2 are obtained as follows: 

1, if bi(tw) = B(tw) 
ν1 =	 (2.4) 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

⎧ ⎪⎪⎨ ⎪⎪⎩
 

0, otherwise 

1, if bi(tw)  )= B(tw 
ν2 =	 (2.5) 

0, otherwise
 

then the credibility score ϕi of SU Ui is given by 

ζi + 1 
ϕi =	 (2.6)

ζi + ηi + 2 

Finally, based on the credibility score of user Ui, FC computes the weight wi that will 

be given to the contribution of this user using Equation 2.7: 

ϕi 
wi =	 n (2.7) 

j=1 ϕj 

Notation. Operators || and |x| denote the concatenation and the bit length of variable 
$

x, respectively. x ← S denotes that x is randomly and uniformly selected from the set 

S . Large primes q and p > q such that q|(p − 1), and a generator α of the subgroup 

G of order q in Z∗ 
p are selected such that Discrete Logarithm Problem (DLP) [22] is 

intractable. (sk , PK ) denotes a private/public key pair of ElGamal Encryption [14], 

generated under (G, p, q, α). c ← OPE .EK(M) denotes order preserving encryption 

(as defined in Definition 1) of a message M ∈ {0, 1}d under private key K, where 
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integer d is the block size of OPE .
 

Cryptographic Building Blocks. Our scheme utilizes various cryptographic building
 

blocks, which are described below:
 

• Order Preserving Encryption (OPE ): Recall that the definition of OPE , intro­

duced by Boldyreva et al. in [11], is: 

Definition 1 An OPE is a deterministic symmetric encryption scheme whose encryp­

tion operation preserves the numerical ordering of the plaintexts, i.e. for any two mes­

sages m1 and m2 s.t. m1 ≤ m2, we have c1 ← OPE .EK(m1) ≤ c2 ← OPE .EK(m2). 

The OPE concept was first introduced by Agrawal et. al [6] and then formalized by 

Boldyreva et. al [11]. Note that our scheme can use any secure OPE scheme (e.g., [18, 

23]) as a building block, and receive the benefits of the security enhancement (e.g., [18]). 

However, we chose the publicly available implementation of Boldyreva’s scheme [11] 

so as to evaluate our scheme in terms of execution time. In [11], an ideal security 

notion, called indistinguishability under ordered chosen-plaintext attack (IND-OCPA), 

was introduced, which implies that OPE has no leakage, except the order of ciphertexts. 

However, Boldyreva et. al [12] showed that the ideal OPE security is unachievable, 

since it requires a ciphertext size that is at least exponential in the size of the plaintext, 

leading to the introduction and adoption of a weaker security notion of Random Order-

Preserving Functions (ROPF), as defined below. 

Definition 2 An OPE based on ROPF leaks the order of plaintexts and also at least 

half of the high-order bits of the plaintext [12, 23]. 
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• Secure Comparison Protocol: The Yao’s Millionaires’ (YM ) protocol [28] enables 

two parties to execute “the greater-than” function, GT (x, y) = [x > y], without disclos­

ing any other information apart from the outcome of the comparison. In LPOS, we used 

an efficient YM scheme [20], referred to as YM .ElGamal , which ensures that only the 

initiator learns the outcome. In this work we modify this protocol by using elliptic curve 

El Gamal instead of using the El Gamal scheme and use this modified version in REP­

LPOS. This has several benefits as will discussed later in this thesis. We refer to the 

original YM scheme as YM .ElGamal and the modified scheme as YM .ECElGamal . 

Definition 3 Let (X , Y) and (x, y) ∈ {0, 1}γ be two parties and γ-bit integers to be 

compared, respectively. Let π = (γ, q, p, α, {sk , PK }) be YM .ElGamal parameters 

generated by the protocol initiator X . YM .ElGamal returns a bit b ← YM .ElGamal 

(x, y, π), where b = 0 if x < y and b = 1 otherwise. Only X learns b but (X , Y) 

learn nothing else. YM .ECElGamal is secure in the semi-honest setting if El Gamal 

encryption scheme [14] is secure. 

We give the description of the Yao’s Millionaires’ protocol as in [20]. This protocol 

was reduced by [20] to the set intersection problem and is based on the fact that x 

is greater than y iff S1 and S0 have a common element where S1 and S0 are the 1­x y x y 

encoding of x and the 0-encoding of y respectively. The 0-encoding of a binary string 

s = sγ sγ−1 . . . s1 ∈ {0, 1}l is given by S0 = {sγ sγ−1 . . . si+11|si = 0, 1 ≤ i ≤ γ} ands 

the 1-encoding of s is given by S1 = {sγ sγ−1 . . . si|si = 1, 1 ≤ i ≤ γ}. X with a private s 

input x = xγ xγ−1 . . . x1 generates π as in Definition 3 for encryption and decryption 

(E , D) then prepares a 2 × γ-table T [i, j], i ∈ 0, 1, 1 ≤ j ≤ γ such that T [xi, i] = E(1) 
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and T [ ̄xi, i] = E(ri) for a random ri in the subgroup Gq and finally sends T to Y . Y with 

private input y = yγ yγ−1 . . . y1 computes ct for each t = tltγ−1 . . . ti ∈ Sy 
0 as follows 

ct = T [tγ , l] × T [tγ−1] . . . × T [ti, i] (2.8) 

then it prepares l = γ − |S0| random encryptions zj = (aj , bj ) ∈ G2 , 1 ≤ j ≤ ly q 

and permutes ct’s and zj ’s as c1, c2, . . . , cγ which are sent back to X . X now decrypts 

D(ci) = mi, 1 ≤ j ≤ γ and decides x > y iff some mi = 1. 

• Group Key Establishment and Management: We use a dynamic and contributory 

group key establishment and management protocol for secure group communication 

purposes. 

Definition 4 Tree-based Group Elliptic Curve Diffie-Hellman (TG ECDH) [27] per­

mits n distinct users to collaboratively establish and update a common group key K 

by extending 2-party ECDH key exchange protocol to n-party. TGECDH is secure if 

Elliptic Curve Discrete Logarithm Problem (ECDLP) is intractable [27]. 
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Chapter 3: The Proposed Schemes 

3.1 Location Privacy for Optimal Sensing LPOS 

Voting-based spectrum sensing offers several advantages over its aggregation-based 

counterparts as discussed in Chapter 2. However, this approach requires comparing 

FC ’s threshold τ and the RSS value ri of each user Ui, thereby forcing at least one of 

the parties to expose its information to the other. One solution is to use a secure com­

parison protocol, such as YM .ElGamal , between FC and each user U1, . . . , Un in the 

network, which permits FC to learn the total number of users above/below threshold 

τ (as discussed in Chapter 1.2) but nothing else. However, secure comparison proto­

cols involve several costly public key crypto operations (e.g., modular exponentiation), 

and therefore O(n) invocations of such a protocol per sensing period incur prohibitive 

computational and communication overhead. 

The key observation that led us to overcome this challenge is the following: If we 

enable FC to learn the relative order of RSS values but nothing else, then the number of 

YM .ElGamal invocations can be reduced drastically. That is, the knowledge of relative 

order permits FC to execute YM .ElGamal protocol at worst-case O(log(n)) by utiliz­

ing a binary-search type approach, as opposed to running YM .ElGamal with each user 

in total O(n) overhead. 

This simple yet powerful observation enables us to develop LPOS, which achieves 



16 

Algorithm 1 LPOS Algorithm
 
Initialization: Executed once at the beginning of the protocol. 

1:	 FC sets its energy sensing and optimal voting thresholds τ and λ, respectively as 
in [29]. Bit-length γ = |τ | = |r i| for i = 1, . . . , n, where r i denotes RSS value of 
user Ui. 

2:	 FC generates YM .ElGamal parameters π (as defined in Definition 3) and 
pre-computes El Gamal encryption values in π based on τ to accelerate 

$
YM .ElGamal protocol. FC also generates a random padding D ← {0, 1}d−γ−1 , 
where d is the block size of OPE . D is known to all users. 

3:	 There are n users {Ui}n in the system, whose RSS values are denoted as r i fori=1 

i = 1, . . . , n, respectively. 
4:	 {Ui}n collaboratively establish a group key K via TGECDH protocol (Definition i=1 

4). We denote this group of users as G. 
5:	 FC establishes an authenticated secure channel chn i with each user Ui for i = 

1, . . . , n. l (e.g., via SSL/TLS) . 

Private Sensing: Executed every sensing period tw 

6:	 Ui computes ci ← OPE .EK(D||r i) for i = 1, . . . , n . 
7:	 Ui sends ci to FC over chn i for i = 1, . . . , n. 
8:	 FC sorts encrypted RSS values as cmin ≤ . . . ≤ cmax (by Definition 1). 
9:	 FC initiates YM .ElGamal as b ← YM .ElGamal (r idmax , τ , π) with user idmax 

having the maximum cmax. 
10:	 if b = 1 then 
11: decision ← Channel is free. 
12:	 else 
13:	 FC initiates YM .ElGamal as b ← YM .ElGamal(r idmin , τ , π) with user idmin 

having the minimum cmin. 
14: if b = 0 then 
15: decision ← Channel is busy. 
16: else 
17:	 FC initiates YM .ElGamal with a subset of users based on a binary search 

of τ on the remaining encrypted RSS values as described below. Let index I be the 
index of user cI , where YM .ElGamal with binary search process is finalized (i.e., 
r I−1 ≤ τ ≤ r I ). 

18: FC counts the number of Uis s.t. τ ≤ r i : z ← n − I 
19: if z ≥ λ then 
20: decision ← Channel is busy 
21: else 
22: decision ← Channel is free 

return decision 
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Algorithm 2 LPOS Algorithm - continued
 
Update Private Sensing after Group Membership Changes: 

23:	 If new user(s) join/leave G in tw, the new set of users G ' forms a new group key K ' 

by following the key update of TGECDH protocol. FC may update threshold and 
YM .ElGamal parameters as λ’ and π’, respectively, if required. 

24:	 Follow the private sensing steps with new (K ', λ', π'). 

the above objective via an innovative integration of the OPE scheme, TGECDH and 

YM .ElGamal protocols. The crux of the idea is to make users OPE encrypt their RSS 

values under a group key K, which is derived via TGECDH at the beginning of the 

sensing period. In this way, FC can learn the relative order of encrypted RSS values but 

nothing else (and users do not learn each others’ RSS values, as they are sent to FC over 

a pairwise secure channel). FC then uses this knowledge to run YM .ElGamal protocol 

by utilizing a binary-search strategy, which enables it to identify the total number of 

users above/below threshold τ (as defined by voting-based optimal sensing in [29]) with 

only O(log(n)) complexity. This strategy makes LPOS the only alternative among its 

counterparts that can achieve CRN location privacy with an optimal spectrum sensing, 

fault-tolerance and network dynamism simultaneously (as discussed in Chapter 1.3 and 

Chapter 5). 

We give the detailed description of LPOS in Algorithm 1, and further outline the 

high-level description of LPOS as below: 

• Initialization: FC sets up spectrum sensing and crypto parameters for crypto­

graphic building blocks. Users establish a group key K via TGECDH, with which they 

will OPE encrypt their RSS values during the private sensing. FC also establishes a 

secure channel chn i with each user Ui. 
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• Private Sensing: Each user Ui OPE encrypts its RSS value ri with group key 

K and sends ciphertext ci to FC over chn i. This permits FC to sort ciphertexts as 

cmin ≤ . . . ≤ cmax without learning corresponding RSS values, and the secure channel 

chn i protects the communication of Ui from other users (as each ri is encrypted under 

the same K) as well as from outside attackers. FC then initiates YM .ElGamal first 

with the user that has the highest RSS value rmax. If it is smaller than energy sensing 

threshold τ then the channel is free. Otherwise, FC initiates YM .ElGamal with the user 

that has rmin. If it is bigger than τ then the channel is busy. Otherwise, to make the final 

decision based on the optimal sensing threshold λ, FC runs YM .ElGamal according to 

the binary-search strategy as described in Steps 17-22, which guarantees the decision at 

the worst O(log(n)) invocations. 

• Update Private Sensing after Group Membership Changes: At the beginning of 

each sensing period tw, according to the membership changes in the user group, a new 

group key may be formed via the update procedure of TGECDH efficiently. FC may 

also optionally update sensing parameters. The private sensing for the new sensing 

period then begins with new sensing parameters and group key K ' and is executed as 

described above. 

3.2	 Reputation and Elliptic Curve based Location Privacy for Optimal 

Sensing REP-LPOS 

This protocol is another variant of LPOS that incorporates a robust reputation mecha­

nism and uses a modified version of the YM protocol based on an optimized imple­
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mentation of the Elliptic Curve El Gamal scheme that uses Pollard-Lambda algorithm 

to solve the ECDLP problem for the reverse map during the decryption phase. We refer 

to the modified version of the YM protocol as YM .ECElGamal . In YM .ECElGamal , 

we modify the YM protocol described in Chapter 2 by replacing the multiplication op­

erations × in Equation 2.8 by Elliptic Curve addition operations ⊕ to make the protocol 

work with additive homomorphic encryption and more specifically with Elliptic Curve 

El Gamal. Now the decision of x > y is made iff some mi = 0. 

The Pollard-Lambda method is designed to solve the ECDLP problem for points 

that are known to lie in a small interval which is the case for the RSS values. This 

method, also known as kangaroo method, uses two random walks one performed by a 

tame kangaroo who jumps off into the wild, digs a hole and waits for the wild kangaroo 

to fall into it [10]. 

The reputation mechanism allows to minimize the contribution of potential mali­

cious or faulty SUs to the global decision and thus makes our scheme more reliable in 

real situations. We use the reputation mechanism proposed in [8] that was proven to 

be robust in detecting malicious SUs that intentionally or unintentionally modify their 

measurements. 

We provide C++ Implementations of the optimized Elliptic Curve El Gamal and the 

YM .ECElGamal schemes which are available for public use and can be found in [1]. 

As shown in Chapter 5, this protocol enjoys a smaller communication overhead com­

pared to the original LPOS and this is one benefit of using elliptic curve cryptography 

over usual public encryption schemes. In addition, REP-LPOS considerably reduces 

the computational overhead of SUs and puts most of the computation to FC . These 
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benefits are very desirable especially when the SUs are battery constrained. In fact, re­

ducing the computational and communication overhead of these users will drastically 

increase the batteries lifetime. These modifications have no impact on the security level 

of the original scheme. The different steps of REP-LPOS are depicted in Algorithm 3. 

For brevity, we omit the initialization and the update phases from the algorithm since 

they are identical to the ones in LPOS but with the use of YM .ECElGamal instead 

of YM .ElGamal . The main difference with the LPOS algorithm resides in the use of 

YM .ECElGamal and the reputation mechanism. 

In Steps 7, 12 and 15 of Algorithm 3, FC constructs the vector of local decisions of 

SUs after running the private comparisons between τ and the RSS values. Based on the 

decision vector b and the weights vector w that was computed previously, FC computes 

the global decision B in Step 16 using Equations 2.1 and 2.2 and voting threshold λ. 

Then FC computes the credibility score and the weights that will be given to every user 

in the next sensing period. Initially, all the users are considered credible and the weight 

vector w will be constituted of ones and whenever a SU Ui has a decision bi = B, it 

will see its assigned weight decreasing. In the other hand, the users that make the same 

decision as FC will be assigned the highest weight. 

3.3 Public Register based Private Sensing PRPS 

We propose another algorithm for private sensing in CRNs called Public Register based 

Private Sensing PRPS. This protocol presents a trade-off between privacy and computa­

tional and communication efficiency. In fact this algorithm requires much less computa­
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Algorithm 3 REP-LPOS Algorithm
 
Private Sensing: Executed every sensing period tw 

1:	 Ui computes ci ← OPE .EK(D||r i) for i = 1, . . . , n . 
2:	 Ui sends ci to FC over chn i for i = 1, . . . , n. 
3:	 FC sorts encrypted RSS values as cmin ≤ . . . ≤ cmax (by Definition 1). 
4:	 FC initiates YM .ECElGamal as bidmax ← YM .ECElGamal (r idmax , τ , π) with 

user idmax having the maximum cmax. 
5:	 if bidmax = 0 then 
6: decision ← Channel is free. 
7: bi ← 0 for i = 1, . . . , n . 
8:	 else 
9:	 FC initiates YM .ECElGamal as bidmin ← YM .ECElGamal(r idmin , τ , π) with 

user idmin having the minimum cmin. 
10: = 1 thenif bidmin 

11: decision ← Channel is busy. 
12: bi ← 1 for i = 1, . . . , n . 
13: else 
14:	 FC initiates YM .ECElGamal with a subset of users based on a binary 

search of τ on the remaining encrypted RSS values as described below. Let in­
dex I be the index of user cI , where YM .ECElGamal with binary search process 
is finalized (i.e., r I−1 ≤ τ ≤ r I ). 

15: FC assigns bi ← 0 for i = 1, . . . , I − 1 and bj ← 1 for j = I , . . . , n 
16: FC computes the global decision B ← f(w, b) as in equations 2.1 and 2.2 
17: if B = 1 then 
18: decision ← Channel is busy 
19: else 
20: decision ← Channel is free 
21:	 FC updates the credibility score ϕi and weight wi of user Ui as in equations 2.6 and 

2.7 for i = 1, . . . , n 
22:	 return decision 

tional and communication overhead than LPOS and REP-LPOS but this comes with the 

cost of loosing in terms of privacy compared to the previous schemes as will be shown 

later in this thesis. The different steps of PRPS are depicted in Algorithm 4. Just like 

LPOS, PRPS has three phases as described below: 
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• Initialization: Very similar to the initialization phase of LPOS but it further re­

quires FC to construct a public register to obfuscate the value of the energy threshold 

τ in such way that one of the values in this register is very close to τ as shown in Step 3 

of Algorithm 4. This register, which consists basically of a set of energy values, is sent 

to one or multiple users to be encrypted with OPE under the group key K. 

• Private Sensing: Here again Each user Ui OPE encrypts its RSS value ri with 

group key K and sends ciphertext ci to FC over the secure channel chn i. Now from the 

encrypted register ς that was obtained from Step 8, FC will only need ςc which is the 

OPE encryption of ρc that satisfies | ρc −τ |< ε. So when ε is small enough, comparing 

an RSS value to τ becomes equivalent to comparing it to ρc with high probability. The 

FC counts the number of ci’s s.t. ci > ς c and then compares it to the optimal voting 

threshold λ to decide about the availability of the channel. 

• Update Private Sensing after Group Membership Changes: At the beginning of 

each sensing period tw and whenever there is a membership change in the network, a 

new group key may be formed and the voting threshold may be updated if required. 

Then the private sensing will be executed using the new parameters. 

The parameter s controls the security level of PRPS. A small value of s can easily 

expose the threshold τ . In the other hand, a large value of s makes it very difficult to an 

attacker to guess the value of τ . The parameter e determines the accuracy level of the 

scheme in making the decision. 
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Algorithm 4 PRPS Algorithm
 
Initialization: Executed once at the beginning of the protocol. 

1:	 FC sets its energy sensing and optimal voting thresholds τ and λ, respectively as 
in [29]. Bit-length γ = |τ | = |r i| for i = 1, . . . , n, where r i denotes RSS value of 
user Ui. 

$
2:	 FC generates a random padding D ← {0, 1}d−γ−1, where d is the block size of 

OPE . D is known to all users. 
3:	 FC constructs a public register ρ = [ρ1 . . . ρs ] s.t. ∃ f < s and | ρc − τ |< ε 
4:	 There are n users {Ui}n in the system, whose RSS values are denoted as r i fori=1 

i = 1, . . . , n, respectively. 
5:	 {Ui}n collaboratively establish a group key K via TGECDH protocol (Definition i=1 

4). We denote this group of users as G. 
6:	 FC establishes an authenticated secure channel chn i with each user Ui for i = 

1, . . . , n. l (e.g., via SSL/TLS). 
7:	 FC shares ρ with a user Uj . 
8:	 Uj computes ς = [ς1 . . . ς s ] ← OPE .EK(D||ρ) = 

[OPE .EK(D||ρ1) . . . OPE .EK(D||ρs )] and sends it to the FC . 

Private Sensing: Executed every sensing period tw 

9:	 Ui computes ci ← OPE .EK(D||r i) for i = 1, . . . , n . 
10:	 Ui sends ci to FC over chn i for i = 1, . . . , n. 
11: FC	 sets j ← 0. 
12:	 for i ← 1 to n do 
13: if ci > ς c then 
14: j + +	 l # of RS S s > τ with high probability 
15:	 if j ≥ λ then 
16: decision ← Channel is busy 
17:	 else 
18:	 decision ← Channel is free 

return decision 

Update Private Sensing after Group Membership Changes: 
19:	 If new user(s) join/leave G in tw, the new set of users G ' form a new group key 

K ' by following the key update of TGECDH protocol. FC may update half-voting 
threshold as λ’ if required. 

20:	 Follow the private sensing steps with new (K ' , λ ' ). 
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Chapter 4: Security Analysis 

Threat Model: Our threat model focuses on the location privacy (i.e., RSS values) of 

SUs. We consider honest but curious (semi-honest) setting for FC and SUs forming 

group G(no party, including FC, maliciously modies the integrity of its input). That is, 

they execute the protocol honestly but will show interest in learning information about 

the other parties. That is, FC and other SUs in the group G may target the location in­

formation of a SU Ui. RSS value ri of Ui reveals this location information and therefore 

should be protected. SUs also may target the threshold value τ of FC . However, we as­

sume that FC does not collude with some SUs to localize the other SUs, nor do SUs col­

lude with each others or expose the group key K to FC or external parties maliciously. 

Similarly, we assume that FC and SUs do not inject false τ or RSS values into spectrum 

sensing. Finally, an external attacker A may launch passive attacks against the output of 

cryptographic operations and active attacks including packet interception/modification 

to FC and SUs. We rely on traditional authenticated secure channel to prevent such an 

external attacker A. 

Security Objectives and Analysis: We give our security objectives and their secu­

rity analysis as below. 

Definition 5 Under our threat model described above, our security objectives are: (i) 

RSS values ri of each Ui remain confidential during all sensing periods. (ii) The sensing 

threshold τ of FC remains confidential for all sensing periods. (iii) A secure channel is 
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maintained between each SU and FC . (iv) Objectives (i)-(iii) are maintained for every 

membership changes in G. 

It is easy to show that LPOS is secure according to Definition 5, as long as its under­

lying cryptographic building blocks are secure. 

Theorem 1 LPOS achieves security objectives in Definition 5, as long as TGECDH, 

OPE and YM .ElGamal are secure according to Definition 2, Definition 3 and Defini­

tion 4, respectively. 

In sensing period tw, objectives (i)-(iv) in Definition 5 are achieved as follows: 

Initialization: In Step 1-2, FC sets up system and security parameters such that 

YM .ElGamal and OPE are secure. Padding D and proper block size of OPE ensures 

that the leftmost bit leakage from OPE as defined in Definition 2 does not leak RSS 

value during the private sensing. In Step 4, SUs establish a group K, which protects ri 

values against FC via OPE encryption (as required by (i) in Definition 5). In Step 5, 

FC and each Ui establish a secure channel, which protects OPE encrypted ri values ci 

(under the same group key K) from other SUs and external attacker A (as required by 

(i) and (iii) in Definition 5). 

Private Sensing: OPE encryptions in Step 6 ensure the confidentiality of ri values 

against FC during the ciphertext sorting (c1,. . . ,cn ) in Step 8, as long as OPE is secure 

according to Definition 2 (with proper padding and OPE block size as set in the initial­

ization phase). Step 7 ensures the confidentiality of ri of Ui against other SUs as well 

as the protection of the communication against an external attacker A via the secure 

channel. Hence, objective (i) in Definition 5 is achieved during OPE phase of LPOS. 
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Step 9 - Step 22 execute YM .ElGamal , which leaks no information on τ to SUs and 

ri’s to FC as required. Hence, objectives (i)-(iii) in Definition 5 are achieved during the 

whole private sensing steps. 

Update Private Sensing after Group Membership Changes: Step 23 ensures that a 

new group key K ' (based on Definition 4) and parameters (λ ' , π ' ) are generated accord­

ing to the membership status of the new group G ' . Step 24 ensures the private sensing 

steps are executed using new (K ' , λ ' , π ' ) for each new sensing period. Consequently, se­

curity objectives (i)-(iv) in Definition 5 are achieved for all sensing periods as required. 

Corollary 1 REP-LPOS achieves security objectives in Definition 5 and reputation 

mechanism in Chapter 2 

The security of REP-LPOS is identical to LPOS with the exception of using of a reputa­

tion mechanism and a modified version of YM protocol, that we call YM .ECElGamal , 

based on Elliptic Curve El Gamal encryption that uses Pollard-Lambda algorithm for 

fast decryption. 
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Chapter 5: Analysis and Comparison 

To show that our schemes can be applied to practical situations, we consider the IEEE 

802.22 standard for TV white space management for our performance analysis as de­

fined in the IEEE standard document [17]. Our analysis and comparison focuses on 

two aspects: (i) The level of location privacy, the accuracy of decision for spectrum 

availability and reliability. (ii) Communication, computational overhead introduced by 

cryptographic methods. 

The execution times of the different primitives and protocols were measured on a 

laptop running Ubuntu 14.10 with 8GB of RAM and a core M 1.3 GHz Intel proces­

sor, with cryptographic libraries MIRACL [4], Crypto++ [2] and Louismullie’s Ruby 

implementation of OPE [5]. 

Location Privacy, Sensing Accuracy and Reliability: As shown in Table 1.1, 

LPOS and REP-LPOS achieve the highest level of privacy and decision accuracy among 

their counterparts. That is, they are the only schemes that achieve very high location 

privacy while enabling an optimal spectrum sensing. Moreover, they provide fault tol­

erance and support for dynamism of multiple SUs in the network, which makes them 

reliable. In addition, they both achieve low communication, computation overhead as 

discussed below. PRPS shares the same properties with LPOS and REP-LPOS except 

for the privacy level which is lower for PRPS. Still, PRPS offers higher privacy than 

state of art protocols as explained in Chapter 4. In addition, as we show in the follow­
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Table 5.1: Communication and computation overhead of proposed and existent schemes
 

Evaluation Communication 
Computation 

FC SU 

LPOS 2γ · |p| · (2 + log n) + n · eOPE + |Q| · log n γ/2 · (2 + log n) · |p| · M ulp √ 
(2γ · |p| + 2γ) · M ulp + OPE + 2 log n · P M ulQ 

REP-LPOS 2γ · |Q| · (2 + log n) + n · eOPE + |Q| · log n γ /2 · (2 + log n) · (P M ulQ + P AddQ + δ · Pol) (4γ − 6) · P AddQ + OPE + (2 log n + 2) · P M ulQ 

PRPS (γ + eOPE ) · s + |Q| · log n s · cmp 
√ 

OPE 

Generic 
ECEG 4|Q| · n P M ulQ + P AddQ + n · δ · Pol 2P M ulQ + P AddQ(∗) || (n − 2) · P AddQ(†) 
PDAFT 2|N | · (n + 1) 2E xpN 2 + I nvN 2 + y · M ulN 2 2E xpN 2 + M ulN 2 

PPSS |p| · n H + (n + 2) · M ulp + (2γ−1 · n + 2) · E xpp H + 2Expp + M ulp 

(i) Variables: γ: size of the sensing reports, n: number of S U s, N : modulus in Paillier, p: modulus of El Gamal, H: 

cryptographic hash operation, K: secret group key of OPE . E xpu and M ulu denote a modular exponentiation and a modular 

multiplication over modulus u respectively, where u ∈ {N , N 2, p}. I nvN 2: modular inversion over N 2 , P M ulQ: point 

multiplication of order Q, P AddQ: point addition of order Q. y : number of servers needed for decryption in PDAFT. cmp is the 

cost of one comparison and s is the size of the register in PRPS. (ii) Parameter size: For a security parameter κ = 80, suggested 

parameter sizes by NIST 2012 are given by : |N | = 1024, |p| = 1024, |Q| = 192 as indicated in [3]. (iii) OPE: the computational 

complexity of the OPE is given by OPE = (log |C | + 1) · TH GD + (log |P| + 3) · (5log |C | + θ' + 1)/128 · TAES , where 

P ,C are plaintext and ciphertext spaces respectively and θ' is a constant. EOPE is the maximum ciphertext size that could be 

obtained under the OPE encryption. This value was determined experimentally based on the OPE implementation in [5] and we 

noticed that it doesn’t exceed the 128bits block size of the underlying AES block cipher ⇒ EOPE = 128 bits. (iv) ECEG: The 

SUs use the FC’s ECEG public key to encrypt their RSSs and then one node is picked to collect the ciphertexts and multiply them 

together including its own encrypted RSS and then send the result to the FC. The decryption of the aggregated message in ECEG is 

done by solving the constrained ECDLP problem on small plaintext space similarly to [19] via Pollard’s Lambda algorithm, which 
√ 

requires O( n · δ) · Pol computation and O(log(nδ)) storage [22], where δ = a − b if RS S ∈ [a, b] and Pol is the number of 

point operations in Pollard Lambda algorithm which varies depending on algorithm implementation used. (v) YM.ElGamal: The 

communication cost for one comparison is 4γ · |p|. The total computational cost of the scheme for one comparison is 

5γ log p + 2n . Since in our scenario the value of the energy threshold τ remains unchanged, we can encrypt it only once and 

offline so the encryption cost can be omitted and the new total computational cost would be (3γ · |p| + 2γ) · M ulp for each 

comparison operation. (vi) YM.ECElGamal: The communication cost for one comparison is 4γ · |Q|. The total computational 

cost of the scheme for one comparison is .(vii) TGECDH: It permits the alteration of group membership (i.e., join/leave), on 

average O(log(n)) communication and computation (i.e., ECC scalar multiplication) [25]. (*) is the cost for a normal SU in 

ECEG and (†) is the cost of the SU that plays the role of a gateway in ECEG. 

ing figures, it is the most efficient scheme in all aspects and its privacy level can be 

controlled by modifying the size s of the register ρ. 

Communication and Computational Overhead: Our analytical comparison is 

summarized in Table 5.1, which also gives detailed explanations about variables, pa­

rameters sizes as well as overhead of building blocks and other schemes that are in­
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cluded in this comparison. The cost of LPOS is determined by YM .ElGamal , OPE , 

and TGECDH, whose costs are outlined in Table 5.1. Similarly the cost of REP-LPOS is 

determined by YM .ECElGamal , OPE , and TGECDH. Notice that the overall cost 

of LPOS and REP-LPOS is dominated by YM protocol, and yet YM .ElGamal and 

YM .ECElGamal are invoked only O(log(n)) at the worst case (as explained earlier in 

Chapter 3 in detail). This permits high computational and communication efficiency for 

both protocols. Table 5.1 shows also that PRPS has the smallest overhead. In fact it has 

a constant end-to-end computational cost that does not depend on the number of users 

and only depends on the size s of the public register ρ. The communication overhead 

also depends only on s unless there is a need to update the group key which doesn’t 

necessarily happen every sensing period. The cost of this update operation, performed 

using TGECDH, is given by the common logarithmic component in the three protocols 

as indicated in Table 5.1. 

Figure 5.1(a)1 compares the communication overhead of the different schemes for a 

security level κ = 80. As expected analytically, the figure shows how PRPS is the most 

efficient in terms of communication, followed by REP-LPOS and LPOS. The gap be­

tween LPOS and REP-LPOS shows the impact of the modifications performed and the 

benefit of using ellitpic curve cryptography. This gap increases as we increase κ. They 

are followed by ECEG, who has small key sizes for small number of users due to com­

pact ECC parameters. PPSS has a high communication overhead, while PDAFT incurs 

extremely large communication overhead due to heavy Pailler encryption2 . 

1Communication overhead of each scheme is calculated by evaluating its corresponding analytical 
results in Table 5.1 with the parameter sizes given in item (ii)-Table 5.1. 

2PDAFT is adapted to CRN settings by dedicating one of the SUs to serve as a gateway, which collects 
encrypted RSSs and forwards their multiplication to the FC. 
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Figure 5.1: Performance Comparison 

Then we compare the end-to-end computational overhead of the different schemes as 

shown in Figure 5.1(b). Here again PRPS has the smallest overhead since it requires only 

a small number of comparison operations and OPE encryptions and the cost doesn’t 

depend on the number of SUs. Then comes PDAFT whose most of the computation is 

done by the dedicated gateway which explains its efficiency in terms of computation. 

ECEG is efficient only for very small network and its cost increases rapidly as the num­

ber of users increases. LPOS and REP-LPOS have similar logarithmic behaviors as the 

number of SUs increases, but REP-LPOS is clearly more expensive and this is due to 

the high cost needed to solve the ECDLPproblem in the YM .ECElGamal . However 

most of this cost resides in FC side and the computational cost of SUs is much better in 

REP-LPOS than in LPOS as can be seen in Figure 5.2. 

We also tried to modify the security level to see how the different schemes respond 

to the always increasing required size for the cryptographic keys. We show the vari­
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Figure 5.2: Communication and Computational Overhead variation with respect to κ 

ations incurred for three values of κ in Figure 5.2. Again our schemes perform much 

better than the other schemes in terms of communication overhead and the gap keeps 

increasing considerably with the increase in the security level as in Figure 5.2(a). PRPS, 

as mentioned previously, depends only on the parameter s and is not impacted by the 

change of κ. In terms of computation overhead required in FC side, PRPS turns out to 

be the best again and since it only requires very fast comparison operations, we were not 

able to measure the execution time. Thus, we omit it from Figure 5.2(b). This Figure 

shows that increasing security parameter κ doesn’t incur much change on Elliptic Curve 

based protocols REP-LPOS and ECEG as opposed to the other schemes based on usual 

public encryption that has larger keys and that are more sensitive to the change of κ. The 

same observation is also valid and more obvious for Figure 5.2(c). Figure 5.2(c) shows 

how SUs computation was reduced considerably in REP-LPOS after the modifications 

that were performed over the original LPOS. However, LPOS requires less computation 

in FC side which could be seen as an advantage in systems where the QoS matters 

the most, meaning how fast FC can make the decision. REP-LPOS, in the other hand, 
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could be seen as an excellent option for systems that have a powerful FC and battery 

constrained SUs. The different schemes, in particular ours, are below the requirement 

of 2s imposed by the IEEE 802.22a standard for the SUs time required to send their 

decisions. 

Figure 5.3 shows the impact of the dynamism in the network on the different schemes. 

We start with 500 SUs in the network, the number of users that join and leave the net­

work follow a uniform random distribution with values between 300 and 700 and with 

mean 500. we show in the Figure the standard deviation and the mean of the computa­

tional overhead over 1000 sensing rounds. It is clear from their curves heavy fluctuations 

that PPSS and ECEG are the most sensitive to the variation of the number of users in 

the network. This variation have a very little impact on our schemes. 
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Figure 5.3: Dynamism in the network 

We also try to measure the cumulative computational overhead that the system will 

experience after multiple sensing rounds as shown in Figure 5.4. After 1000 rounds, 

PRPS will require less than 600ms of system computation, LPOS will need less than 
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40s and REP-LPOS less than 200s. They are much more efficient to PPSS who will cost 

the system around 5 hours and 30 min of computation. 
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Figure 5.4: Cumulative overhead 

Observe that while offering the smallest communication overhead (vital for scala­

bility) and reasonable computational efficiency, our schemes are the only schemes that 

enable optimal spectrum sensing based on the half-voting voting approach and also pro­

vide the highest level of location privacy, fault-tolerance and network dynamism. All of 

these results show also how practical the different schemes that we propose are. 
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Chapter 6: Conclusion 

In this work, we design three location privacy preserving protocols, called LPOS, REP­

LPOS and PRPS. These protocols enable optimal sensing accuracy through the half-

voting rule. We show that our schemes enjoy several desirable properties, making 

them more practical, secure, and reliable for small and large-scale CRNs. When com­

pared to existing approaches, our schemes achieve optimal sensing performance with 

high user location privacy levels while being robust against user mobility and failures. 

LPOS through a small computational overhead required for FC offers better QoS to 

systems that require quicker decision about spectrum availability. REP-LPOS, via an 

efficient SU’s computational overhead and low communication requirement, offers an 

excellent alternative to systems with battery constrained SUs. Both LPOS and REP­

LPOS offer very high privacy. PRPS, which is extremely efficient in all aspects, is more 

suited to systems with very limited resources and that opt for lower location privacy 

level. The different schemes were shown to be practical under the IEEE 802.22a re­

quirement [17] 
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