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1 Introduction

There is a perpetual need to expand and improve nuclear data for national security,
counter-proliferation, and a wide array of nuclear science endeavors. Certain isotopes
of elements such as oxygen, uranium, and plutonium have poor data or are lacking
data entirely. Other key isotopes critical to reactor design, such as tungsten and
gadolinium have poorly resolved cross sections. Consequently, the Domestic Nuclear
Detection Office (DNDO), a sub-agency of the Department of Homeland Security, is
soliciting research to reduce the uncertainty in energy-dependent nuclear data [1]. At
the same time, Pacific Northwest National Laboratory (PNNL) has a lead slowing-
down spectrometer (LSDS) that could be available for the Oregon State University
School of Nuclear Science and Engineering, provided a sufficiently strong neutron
source can be procured [2]. Significant analysis is necessary to establish the charac-
teristics of the LSDS, determine the required source for various applications, and to
ensure that the device can be safely and effectively used. This thesis describes the
initial probe into quantifying these characteristics of the LSDS.

1.1 Nuclear Data

Nuclear data represents empirically derived information that pertains to nuclear re-
actions and interactions. It includes decay constants for unstable isotopes, energy
of decay products, and cross section data. In this case, the nuclear data of concern
is the cross section of materials. A cross section represents the reaction probability
between a particular type of radiation and a particular material [3]. Cross sections
are dependent on the type of radiation, the energy of the radiation, and the material
itself. A cross section is also dependent on the type of interaction that occurs. For
our interests, there are inelastic and elastic scattering interactions, as well as neutron
capture and fission reactions. These cross sections are used for nuclear engineering in
a similar manner to how steam tables are used for thermodynamics, or how convective
coefficients are used for heat transfer. The main goal of this research is to investigate
the potential for an LSDS to refine these cross section values [4].

1.2 Methods of Developing Cross Sections

There are a variety of ways that neutron cross sections can be measured [5]. The
most common method is the Time-Of-Flight (TOF) method. TOF generally relies
on the non-relativistic energy and velocity relationship described as:

E =
1

2
mv2, (1)

where: E is energy, m is mass, and v is velocity.
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All methods that measure neutron interaction require a neutron source. This can
take the form of a reactor, a sub-critical pile, a fusion source, or any other method of
generating neutrons. For TOF methods, the neutron energy is determined by mea-
suring the amount of time that it takes for the neutrons to travel from the source to
the target and then using

v =
d

t
, (2)

where: d is distance and t is time.

The time that the neutrons are traveling is measured using a mechanism that can
’pulse’ the neutrons. This mechanism could be as simple as a Fermi chopper, which
is a rotating drum full of alternating plates of aluminum and cadmium [6]. When the
cadmium plates are parallel to the neutron flux, the neutrons can pass through the
chopper. An indicator is connected between the chopper and a timer so that when
the chopper is in the ‘open’ position, the timer can start timing.

Figure 1: A Fermi Chopper
[5]

The measured time is compared against the readout from a detector near the target,
which is usually measuring the gamma rays coming off from the target. The gamma
rays measured by the detector give an indication of the rate of the neutron interactions
with the target. If the mass of the sample and the magnitude of the neutron flux are
known, then a simple version of the reaction rate formula can be used,

RR = ησφN, (3)
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where: RR is reaction rate of the target, η is detector efficiency, σ is the microscopic
cross section, and N is the number density of the target.

Equation 3 needs to be re-arranged for the microscopic radiative capture cross section
to determine the cross section of the target,

σa =
RR

ηφN
. (4)

Other techniques for determining cross sections are categorized as: beam transmis-
sion, in-pile, and activation [5]. Beam transmission is similar in form to the TOF
method described previously, but it measures the attenuation of the neutron flux
rather than the gamma rays emitted by an irradiated target. The beam transmission
method measures the uncollided neutron flux, usually using a BF3 detector, and then
measures the flux when a target is placed between the source and the detector. The
cross section can then be determined by the change in flux as described by

σt =
− log I

I0

Nt
, (5)

where: I0 is the initial flux intensity, I is the intensity with target, and t is the target
thickness. A chopper can be used for beam transmission to measure the energy-
dependence of the cross section. The beam transmission method determines the total
cross section, as both scattering interactions and absorption interactions can impact
the flux incident upon the detector.

The in-pile method uses a sample placed within the core of a reactor or sub-critical
pile and the change in reactivity is measured. This method only accounts for the ab-
sorptive cross section. Perturbation theory can be used to compute the cross section
in this case.

The activation method involves irradiating a material, and measuring the induced
activity of it. This method only measures absorption reactions that result in radioac-
tive isotopes.

2 The LSDS

Structurally, an LSDS is a pile composed of high purity (> 99.999% pure) lead bricks
that are arranged into a cube. For instance, the LSDS located at Los Alamos Na-
tional Laboratory is a cube that is 1.2 m along each side [7]. There are two slots in
the LSDS: one is for inserting the sample and the other is for the neutron source. An
array of detectors can be placed in and around the LSDS to monitor the neutron flux
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and gamma ray production. An LSDS requires a neutron source to function, as it
contains no fissile material or other inherent neutron sources. This source is pulsed,
and the counts recorded on the detectors are measured as a function of time. The
overarching concept is similar to the TOF method, but the LSDS replies on the time
that the neutrons spend within its volume while the TOF method relies on the time
that the neutrons spend traveling to the target.

The high purity lead is needed to maintain a consistent measurement profile. Small
amounts of foreign material could be enough to disrupt the clarity of the output from
the LSDS [8].

2.1 History and Development

The idea of a neutron spectrometer based on the principals of neutron slowing down
time was quantified by Bergman et al. in 1955 [9]. The first use of the LSDS was for
the “slowing-down-time” (sdt) method of neutron cross section analysis. Originally,
the LSDS used a Penning type ion source to create deuterium-tritium fusion reactions
to generate neutrons, and a proportional counter to indirectly measure the neutron
yield by measuring the α particles that were also created by the fusion reaction. The
form of the LSDS has not changed significantly since its first inception, shown in
Figure 2.

Figure 2: Sketch of LSDS
[9]

The first investigations were into the cross sections of silver, zinc, manganese, cad-
mium, and copper [9]. The conclusion of their results were that the energy resolution
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for the cross section was on the order of 30% in the eV to low keV range, but had a
neutron flux intensity that was three to four orders of magnitude greater than TOF
methods with similar sources. The increase in neutron flux intensity could be very
important to looking at either low mass or low cross section samples [10].

The investigation into the use of an LSDS did not stop with Bergman’s research. Sim-
ilar efforts have been taken up at several other locations, particularly at Los Alamos
National Laboratory (LANL) and Rensselaer Polytechnic Institute (RPI) [8, 7, 11].
At RPI, a team under Y. Danon has been exploring the use of an LSDS to determine
cross sections using similar methods to Bergman [7]. They have focused particularly
on the fission cross sections of heavier isotopes such as curium, einsteinium, and cal-
ifornium [11]. Y. Danon et. al has used the RPI 60 MeV electron linear accelerator
fired at a helium-cooled tantalum pile to produce neutrons within the LSDS. They
reported a resolution of the neutron energy on the order of 35%, but were able to
achieve a 1σ error of approximately 10% in a sample of 254Es that only weighted 0.21
µg.

2.2 Physics and Theory

A brief review of neutron slowing down time will be given to help develop a full
understanding of the functioning of the LSDS. The basis of slowing down time is in
neutron lethargy,

u = log
E0

E
, (6)

where: u is the lethargy of neutrons at energy E and E0 is the initial neutron energy
[3].

This can be rewritten as

u = logE0 − logE,

and defining du as

du =
−dE
E

, (7)

or

uf − ui = ∆u = [log(E0)− log(Ef )]− [log(Eo)− log(Ei)] = log(
Ei
Ef

), (8)
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where: uf is the final lethargy, ui is the initial lethargy, Ef is the final energy, and
Ei is the initial lethargy. The average neutron lethargy gain per collision, assuming
elastic scattering, can be calculated by

ξ = 1 +
α

1− α
logα, (9)

where

α = (
A− 1

A+ 1
)2

in which A is the atomic mass of the scattering medium. For high A materials such as
lead, the average neutron lethargy gain per collision is very small, on the order of 0.01.

Consider that the scattering interaction rate is a function of scattering cross section
and speed of the form

ω = Σsv, (10)

where: ω is the frequency of scattering events, Σs is the scattering cross section, and
v is the speed of the particles. The total number of interactions is the frequency of
scattering events during a time interval ∆t,

R = Σsv∆t. (11)

Since ξ is the lethargy gain per collision, and R is the total number of collisions, we
can combine the two to yield the general slowing down equation of the form,

du = ξΣsvdt. (12)

Equation 12 describes the gain in neutron lethargy as a function of the material prop-
erties of the scattering medium, the neutron speed, and the time interval. ∆t is also
known as the slowing down time.

In the LSDS, the lethargy can be determined by the energy of the channel that
contains the highest relative flux at a given time [11]. The energy of the highest
relative flux, which is also the mean of the energy of the flux spectrum due to the
Gaussian distribution, can be described as a function of time as seen in Equation 13,

E =
K

(t+ t0)2
, (13)

6



where: E is the average energy, K and t0 are constants depending on the materials,
and t is the time after the pulse. K and t0 are derived in Section 4.4.1. Using Equa-
tion 13 to develop the energy, the gamma count rate measured in the detector can be
attributed to that particular energy, allowing for energy dependent cross sections to
be developed.

The count rate of gamma rays in the detector must be measured to determine the
cross section [7]. The counts in channel i for sample x, as described by Danon, can
be calculated by:

Cx
i = FηxNxφr(Ei)σ

x(Ei)∆Ei, (14)

where: Cx
i represents the counts from sample x in channel i, F is the flux normaliza-

tion factor, ηx is the detector efficiency, Nx is the number of atoms of sample x, Ei
is the average energy of macrochannel i, φr(Ei) is the relative energy dependent flux,
σx(Ei) is the resolution-broadened cross section of sample x in channel i, and ∆Ei is
the width of channel i in energy units (∆Ei = Ei+1 − Ei) [11].

The spatial dependence of the neutron flux is not considered, as the sample has
an identical position within the LSDS for every test.

F , or the flux normalization factor, is an important quantity that acts as a calibration
for the LSDS. The method of determining F is to rearrange the above equation to
solve for F , and calibrate the LSDS with an isotope that has a well-defined cross
section. In literature, the fission cross section of U-235 is typically used [11]. In this
case, the (n, γ) reaction for Au-197 was used,

F =
C197
i

η197N197φr(Ei)σ197(Ei)∆Ei
, (15)

where σ197(Ei) is the Au-197 broadened (n, γ) cross section, given by

σ197(Ei) =
1√
Ei

∫ Emax

Emin

G(E,Ei)
√

(E)σ197
γ (E)dE, (16)

where: σ197
γ (E) is the ENDF cross section for 197Au, and G(E,Ei) is the Gaussian

resolution function of the LSDS.

The final flux normalization factor is the energy-dependent flux normalization factors
averaged across all energy channels. When F is determined, the ENDF-equivalent
cross section can be calculated by

σ(Ei) =
1

ηxNx

Cx
i

Fφr(Ei)∆Ei
. (17)
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The broadened value for the cross section needs to be determined to solve for F . The
trapezoid method was used to approximate the integral in Equation 16 [12]. The
integration was evaluated by∫ b

a
f(x)dx ≈

∫ b

a
(a0 + a1x+ ...+ anx

n)dx, (18)

and after some manipulation, we approximate the integration of the function as∫ b

a
f(x)dx ≈ (b− a)

f(b) + f(a)

2
, (19)

where the integral being evaluated is

1√
Ei

∫ Emax

Emin

G(E,Ei)
√

(E)σx(E)dE,

so f(x) = G(E,Ei)
√

(E)σx(E). This is put into Equation 19,

σx(Ei) =
1√
Ei
∗(Emax−Emin)∗G(Emax, Ei)

√
Emaxσx(Emax) +G(Emin, Ei)

√
Eminσx(Emin)

2
(20)

This can be further discretized so that Emin and Emax represent the energies bounding
each energy bin. The equation now takes the form:

σkx(Ei) =
1√
Ek
i

∗(Ek+1+Ek)∗G(Ek+1, Ek+1
i )
√
Ek+1σx(E

k+1) +G(Ek, Ek
i )
√
Ekσx(E

k)

2
,

(21)
where Ek

i is the average energy of channel i at time-bin k. The integrated cross
section is calculated with the ENDF cross section and the resolution function at each
time, and then divided by the width of the energy bin. There were 232 energy bins
ranging from 0 to 14 MeV , and 265 time bins ranging from 1 to 2000 µs. Equation
21 was evaluated by incrementing through k for time, and then Ek

i was determined
by the correlation between time and energy as shown in Equation 13.

2.3 Detectors

In a typical LSDS array, detectors are placed in and around the LSDS to monitor the
neutron flux spectrum and the gamma rays produced from neutron interactions with
the sample [7]. Flux monitors are not considered in the LSDS model proposed in this
thesis due to the impact that they would have on the flux spectrum. There is no
simple way to directly measure the neutron flux within the LSDS without disrupting
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the flux profile.

The detector used in the model created for this thesis is a bismuth germanate
(BGO) detector. It was modeled as a simplified cylindrical geometry representing an
idealized germanium detector. A BGO detector was chosen for this task due to its
high gamma capture efficiency and resolution [13]. Also, the materials that comprised
the BGO detector would have a less significant impact than a detector that has low
mass elements like hydrogen, which could disrupt the flux profile more.

2.4 Operation of the LSDS

1. There is a pulse of interrogating neutrons from the neutron source.

2. There is a short (approximately 10 µs) period of inelastic scattering, in which
the average energy of the neutrons decreases from its starting energy down to
about 100 keV . During this time, the energy of the incident neutrons cannot
be determined, as they are losing energy (or gaining lethargy) in unpredictable
amounts [10]. This results in a neutron energy spectrum that spans over two
orders of magnitude, as seen in Figure 3. Since the neutron energy cannot be
resolved, gamma rays detected during this time cannot be linked to a particular
energy and no energy dependent cross section can be determined.

Figure 3: The neutron flux during inelastic scattering as output by MCNP. The time
is the time after the pulse. The red and green lines represent the 1 σ confidence
interval.
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3. The inelastic scattering period ends when the neutrons have an average energy
of about 100 keV , and they begin to lose energy through elastic scatters. Below
this energy, the scattering becomes more consistent and as a result, the neutron
spectrum narrows into a Gaussian distribution, which is described in detail in
Section 4.4.2.

The more narrowed spectrum is shown in Figure 4.

Figure 4: The neutron flux during elastic scattering. The time is the time after the
pulse. The red and green lines represent the 1 σ confidence interval.

4. With a known neutron energy, gamma rays that are captured by the detector
can be attributed to that particular energy.

5. The correlations described in Section 2.2 are used with the count rate to deter-
mine the cross section.

3 Monte Carlo Model

3.1 MCNP Basics

MCNP, which stands for “Monte Carlo N-Particle”, is a radiation transport simulation
tool that models the movement of particles in a three-dimensional environment by
using pseudo-random numbers and continuous-energy nuclear data to determine the
sample from probability distributions for source particle birth, distance to collision,
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and collision physics. [14]. It is generally considered the gold-standard, though it can
be computationally expensive to use. The inputs data includes: the geometry of the
system, the materials, sources, and the desired tally outputs. These tallies include
various fluxes and energy depositions over time, which are the fluxes and gamma
count rates when calculating the cross sections.

3.2 Extracting Data

The MCNP simulations computed F4:n tallies (neutron track length flux estimator
in a volume) and F6:p tallies (photon energy deposited in a volume). F4:n outputs a
scalar flux that is sorted into the defined energy bins and normalized by the number
of source particles [15].

F6:p describes the energy deposited by photons within a volume, normalized by the
number of source particles and the mass of the cell within the surface [15]. F6:p can
be described by

F6 = (
ρa
V ρg

)
∫
V

∫
t

∫
E
H(E))σtΦ(r, E, t)dEdtdV, (22)

where: ρa is the atomic density, ρg is the mass density, and H(E) is the heating
response.

The tallies were extracted from MCNP into MatLab where they were sorted to be
used in the analysis.

3.3 The LSDS in MCNP

The LSDS is physically a pile of lead bricks, but for the sake of simplicity, the LSDS
was modeled as a solid lead structure that measured 152.4 cm along each side [2].
The model included two holes placed perpendicularly into the sides of the LSDS, one
for the detector and sample, and one for the neutron source. The slot for the detector
was 104.3 cm deep, and the slot for the source was 50.8 cm deep. The detector was
modeled as a high purity beryllium germanganate cylinder 7.63 cm long with a radius
of 3.81 cm. The samples were typically modeled as a thin (25 µm thick) foil wrapped
around the detector. Several simulations were performed with the detector or sample
in altered configurations. No physical structure was modeled for the neutron source.

All five faces of the LSDS exposed to air were covered in a 1 mm layer of high purity
cadmium for shielding, and then covered in a layer of polyethylene doped to be 5
weight percent boron. Unless otherwise noted, each variation of the model involved
5.08 cm of borated polyethylene. The bottom face, which would be in contact with
the ground, had a 1 cm steel plate placed beneath it, and then a layer of 1 mm thick
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cadmium, and then another 1 cm steel plate. The plates were employed to prevent
the cadmium from pressure welding to the lead from the weight of the LSDS.

The room around the LSDS was modeled as a standard laboratory room within
the Radiation Center at Oregon State University [16]. The room is 20’ by 20’ (6 m),
and has cinder-block walls that are 6” (15 cm) thick. The ceiling physically varied in
height and thickness, but could conservatively be modeled as a 4” (10 cm) slab. The
floor was modeled as a 2’ (0.6 m) thick concrete slab. A simulated D-T fusion source
was used as the neutron source, which yields 14.1 MeV neutrons.

Figure 5: This is the full LSDS structure, as it was modeled in MCNP

4 Methods

4.1 Samples

Several cases were evaluated to see if the LSDS could be used with a variety of
materials and for different mass samples. Unless otherwise specified, the sample was
a foil encasing the detector, the neutron starting energy was 14.1 MeV and there
were 109 source particles. 12 MCNP cases were completed to solve for cross sections:
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1. Au-197

2. Au-197 (x1
5

mass)

3. Au-197 (x5 mass)

4. Au-197 with the detector moved outside the volume of the LSDS

5. Au-197, with 108 source particles.

6. U-238

7. Ta (natural)

8. Ni (natural)

9. Ti (natural)

10. Cr (natural)

11. O-16

12. No sample

These materials were chosen as they have been identified as high-interest elements for
further cross section development [1]. The natural compositions of Ni, Ta, Ti, and Cr
were used to model the elements as they would be found in the structure of a reactor.
Au-197 was chosen to be the standard due to having a fairly well-resolved radiative
capture cross section.

The no sample problem was used as a filter for the other cases. The case without a
sample contains the induced background that is associated with neutron interactions
with the LSDS and the detector. If this case is subtracted from the other cases, the
resulting net count rate should only represent neutron interactions with the sample.
This filter was not applied to the moved detector case, as the detector would not be
receiving the same induced background while placed outside the LSDS.

4.2 Determining the Cross Sections

Several factors must be calculated and taken into account to use the data from the
LSDS. All of the values in Equation 23 must be known:

σ(Ei) =
1

ηxNx

Cx
i

Fφr(Ei)∆Ei
. (23)

The “percent difference” was used to compare the calculated cross sections with the
accepted ENDF cross sections. The percent difference is defined as
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% =
X1 −X2

X1+X2

2

∗ 100, (24)

in which: X1 is the exact or accepted value and X2 is the experimental value.

4.2.1 ENDF Data

Data from the Evaluated Nuclear Data File (ENDF) database is used globally for
nuclear data purposes. The data that would be derived from the use of the LSDS and
Equation 23 would be equivalent to the ENDF broadened (n, γ) cross section, σa, as
a function of energy.

4.3 Poorly Resolved Region

At average energies greater than approximately 100 keV , the flux distribution can-
not be used for cross section analysis; the energy spectrum spans several orders of
magnitude, so no energy could be attributed to reactions within the sample. This
means that time of flight methods would have to be used for cross sections at energies
greater than 100 keV . The 100 keV cut-off represents a time of about 10 µs after
the initiation of the pulse.

Figure 6: The width of the neutron spectrum is too great to made accurate determi-
nations of a neutron energy for a calculated cross section.
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4.4 Flux Profile

10 µs after the pulse of neutrons, the flux can be described as:

φ(t) = 2∗10−16∗t6−1∗10−12∗t5+3∗10−9∗t4−4∗10−6∗t3+0.0032∗t2−1.2945∗t+244.8,
(25)

in which: φ is the neutron flux in cm−2 and t is the time after the pulse in µs.

This correlation has a residual of R2 = 0.9955. The neutron flux here is the av-
erage of the neutron flux across all energy bins, which is also the highest relative flux
intensity at that time. This is due to the normal distribution of the flux spectrum.
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Figure 7: Uncertainty in neutron flux
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Figure 8: Neutron flux for different cases

In Figure 7, the uncertainty in the flux for the Au-197 case is shown. The uncer-
tainty is ± 1.38% on average. In Figure 8, the flux profile for every simulation can is
shown, including simulations that were used as proofs of concept and were not used
for cross section analysis. The proof of concept cases were: no shielding, 1” (2.54
cm) of shielding, and vacuum conditions instead of the room and shielding. These
models were simulated to demonstrate the impact of room return and different sam-
ples on the shape and magnitude of the flux profile. The biggest difference between
any two points was between the vacuum boundary case and the moved detector case,
which had a maximum percent difference of 65.99%. The average difference between
all of the points of the various flux profiles and the flux profile defined by Equation
25 was 12.7%. If the vacuum, 1” shield, and no shield cases are removed from con-
sideration, the average percent difference between the flux profiles is 5.56%. These
proof-of-concept cases were not used for cross section development and were neglected
in developing the flux profile.

In the design of the LSDS, the inclusion of contamination could have a significant
impact on the flux profile [8]. The percent difference of 5.56% is relatively small, indi-
cating that local changes may not have the same impact that impurities throughout
the LSDS could have. None of the samples were notable poisons, and the inclusion
of antimony, cadmium, or other highly absorptive materials has the potential to have
a much greater effect.
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4.4.1 Determining K and t0

K and t0 are parameters that are used to model the average energy within the LSDS
as a function of time after the pulse of interrogating neutrons. If we start with the
general slowing down equation, as discussed in Section 2.2,

du = ξΣsvdt

rearranged and integrated from Eo to E, we have

t =

√
2mn

ξΣs

(
1√
E
− 1√

E0

). (26)

Solving for E, or E as the average energy, gives:

E =
K

(t+ t0)2
, (27)

in which

K =
2mn

ξ2Σ2
s

, (28)

and

t0 =

√
K√
E0

, (29)

where: mn is the rest mass of a neutron, ξ is the average lethargy gain per collision,
and Σs is the scattering cross section of the medium which is assumed to be constant
for elastic scattering.

Putting the material properties of lead into the equation yields:

K = 171.6 keV · µs2 and t0 = 0.265 µs. (30)

This equation assumes an infinite medium of homogeneous materials. However, the
LSDS contains air voids, detectors, samples, and a physically dissimilar room around
it. All of these factors mean that the values determined analytically are not sufficient
for determining the energy to a high degree of accuracy. K and t0 must be determined
empirically through the use of MCNP. The energy of the highest relative neutron flux
at each time-step from MCNP was fit to Equation (27).
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Since

E =
K

(t+ t0)2
,

and

t0 =

√
K√
E0

,

then K can be determined from the MCNP output by re-arranging these equations
into:

K =
E ∗ t2

1−
√

E
E0

, (31)

and then used to solve for t0 in Equation 29. K was determined by using the method
of least squares to fit Equation 31 to the MCNP output seen in Figure 9 [17].
Ideally, the LSDS could be used for neutron energies up to 100 keV , but a more
complex equation may be needed to properly match the relationship between energy
and time. The calculated energy and the MCNP output did not converge until ap-
proximately 250 eV . The average difference between the MCNP output energy and
the calculated energy in the energy range that is less than 250 eV is 2.8%, indicating
good agreement. The difference between the two is shown in Figure 9. The same
linear fit could be applied to accommodate the higher energies, but the average dif-
ference between the MCNP output and the log-log fit becomes 190% if the energy is
evaluated from 100 keV and below.
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Figure 9: Comparing the calculated energy to the MCNP output.

The values of K range between 208.84 keV ·µs2 for the O-16 case and 217.72 keV ·µs2
for the moved detector case. The final value used for all cases was:

K = 209.61± 3.51 keV · µs2, (32)

and t0 was determined to be

0.1224± 0.0010 µs. (33)

4.4.2 The Resolution Function

After the average energy of the flux spectrum is below 100 keV , the flux distribution
becomes a normal (Gaussian) distribution centered on the average energy. Since the
distribution is normal, the average neutron energy is also the mode of the distribution,
and therefore the energy of the neutron that is most likely to be the cause of a radiative
capture. The average energy of the flux at each time-step was determined by using
the energy bin that contained the maximum of the energy dependent flux distribution
at that time-step. The theoretical resolution of the flux was analytically derived by
Bergmann et al. [9]. The full width at half maximum (FWHM) was found to be:

G =
dE

E FWHM
= [8 log(2)(

8

3A
+ 4D0

E

E0

+
kT

E
)]

1
2 , (34)
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which, for lead, gives

dE

E FWHM
= [0.720 +

0.140

E
+ 6.59 ∗ 10−5E]

1
2 . (35)

However, the analytical solution is not always the most accurate solution, as it does
not include the presence of the sample, detector, or the room around the LSDS. For
these reasons, more accurate resolutions were derived empirically for LSDSs in the
form of

(
dE

E
)FWHM = [0.0835 + (

0.128

E
) + 3.05 ∗ 10−5E]

1
2 , (36)

which is the resolution function used by Danon et al. in the RPI LSDS [11]. It is also
used for the model of this LSDS.

4.5 Determining Count Rate

The count rate for gamma interactions in the BGO detector was computed using the
F6:p tally as discussed in Section 3.2. Once the output was normalized by the number
of source particles, a filter was applied to the results. The filter was a case simulated
in MCNP that contained no sample, so any photons would be from interactions with
the detector, air, and lead. This filter was subtracted from the other cases, which
would theoretically just leave the photons emitted by the sample. Other background
was not considered, as the detector is insulated by at least 28 cm of lead on every
side.

4.6 Determining the Flux Normalization Factor

The flux normalization factor is a method of “tuning” the LSDS. This is used to
account for the LSDS parameters that need to be determined empirically.

The flux normalization factor was originally determined for the Au-197 case alone,
and was then going to be used for all cases. However, when the normalization factor
was determined for the other cases, some of the factors differed by more than an
order of magnitude. To account for this, two generalized flux normalization factors
were developed; one was for the higher atomic mass samples, and other for the lower
atomic mass samples. The results of this are displayed in Table 1. Danon et al.
established precedence for using one flux normalization factor for multiple samples
[11]. The intent of the averaged normalization factors is to calculate a normalization
factor that could be used for isotopes with unknown cross sections, using the method
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developed by Danon et al.

Sample F

Au-197 1.3129E-22
Au-197, low mass 5.9624E-22
Au-197, high mass 4.9825E-23

Au-197, moved detector 1.5528E-24
Au-197, 1

10
source particles 1.3497E-22

U-238 4.8172E-22
Ta 1.0789E-22
Ni 3.2532E-21
Ti 4.1896E-21
Cr 2.6383E-21

O-16 9.1638E-17
High A Average 2.40E-22
Low A Average 3.36E-21

Table 1: Normalization factor for each sample

The trend that is apparent is the difference in the normalization factor between high
atomic number samples, and low atomic number samples. For the same geometry
and similar number of atoms, Au-197, U-238, and elemental Ta have an average nor-
malization factor of 2.40E-22. This is a percent difference of 59%, 67%, and 76%
for Au-197, U-238, and Ta, respectively. Despite the lower number of atoms, the
low mass Au-197 sample is within 85% of the average. The moved detector case
appears to be an outlier, until the change in solid angle is considered. Solid angle
and intrinsic detector efficiency describe η in Equation 23 [18]. Dividing the average
normalization factor by this solid angle, with the intrinsic efficiency of the detector
remaining constant, yields a normalization factor of 3.11E-22, a percent difference of
26% from the high atomic mass average. This division occurs as a part of the cross
section calculation process, but it is described here to show the appropriateness of
applying the high atomic mass normalization factor to the moved detector case. The
high mass Au-197 sample also appears to be an outlier, but the increase in N can
be considered the same way the decrease in η is for the moved detector. If the larger
N is considered, the effective F becomes 2.4625E-22, which is a percent difference of
only 2.5% from the high atomic mass average.

For Cr, Ti, and Ni, the average normalization factor is 3.36E-21, with respective
differences of 24%, 22%, and 3.2%. O-16, as the sample with the lowest atomic mass,
has a factor that is at least three orders of magnitude larger than all the other samples,
so it had no other sample that could be placed in a group with it.
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5 Results

Now that the variables needed to calculate the cross section are defined, the cross
section can be computed from

σ(Ei) =
1

ηxNx

Cx
i

Fφr(Ei)∆Ei
. (37)

The error and uncertainty in the computed cross section arise from the combination
of the uncertainty from MCNP and the resolution function of the neutron spectrum
at each time-step.

The results of the various test problems were analyzed ion a variety of ways:

Method 1: The normalization factor was calculated for every time-step for the energy
bin that includes 411 keV , which is the channel containing the characteristic decay
gamma from Au-198. This normalization factor was then used in the cross section
calculation, and gave back an exact match for the broadened cross section. This was
expected and served as a verification check of self-consistency.

Method 2: The normalization factor calculated using Method 1 was averaged across
each time-step, and the average flux normalization factor was used to calculate the
cross section of Au-197. The same count rate that was used to solve for F was used
to solve for the cross section.

Method 3: The normalization factor was calculated for each sample, and an average
factor was developed for both the high and the low atomic mass samples. The ap-
propriate flux normalization factor was used to evaluate the cross section of the cases.

The high atomic mass cases were:

1. Au-197

2. Au-197 (1
5

original mass)

3. Au-197 (x5 original mass)

4. Au-197 with the detector moved outside the volume of the LSDS

5. Au-197, with 108 source particles

6. U-238

7. Tantalum (natural)

and the low atomic mass cases were:
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8. Nickel (natural)

9. Titanium (natural)

10. Chromium (natural)

The normalization factor for O-16, Case 11, was not grouped with other samples due
to its flux normalization factor being more than 3 order of magnitude greater than
the normalization factor for any other sample. In computing the O-16 cross section,
an O-16 specific normalization factor was used.

5.1 Cross Sections

The plots below show comparisons of the resulting energy-dependent cross sections
from the LSDS simulation and the broadened ENDF cross section for each case.
In several of the plots, the gaps that appear in the ENDF broadened cross section
are due to the cross section of a resonance peak exceeding the boundaries of the figure.

5.1.1 Case 1, Au-197
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Figure 10: Cross section of Au-197 in the 100s of eV range
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Figure 11: Cross section of Au-197 in the eV range

5.1.2 Case 2, Low Mass Au-197
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Figure 12: Cross section of low mass Au-197 sample in the 100s of eV range
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Figure 13: Cross section of low mass Au-197 sample in the eV range

5.1.3 Case 3, High Mass Au-197
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Figure 14: Cross section of high mass Au-197 sample in the 100s of eV range
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Figure 15: Cross section of high mass Au-197 sample in the eV range
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5.1.4 Case 4, Moved Detector, Au-197
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Figure 16: Cross section of Au-197 sample in the 100s of eV range, with the detector
outside the LSDS
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Figure 17: Cross section of Au-197 sample in the eV range, with the detector moved
outside the LSDS

In all of the Au-197 cases, the calculated cross section did not reach the same magni-
tude as the ENDF broadened cross section in the resonance region. In each Au-197
case, the calculated cross section began following the broadened cross section around
50 eV , but could not reach the approximately 4000 b peak. Instead, the calculated
peak was as high as 2.5 to 8.8% of the broadened cross section peak, depending on the
case. The moved detector had the highest peak, reaching 348 b. At higher energies,
the calculated cross section followed a trend more similar to an averaged cross section
over the resonance region. This indicates that further broadening the cross section
could allow them to have better agreement. The difference between the calculated
cross section and the ENDF broadened cross section is shown in Table 3.

The increase in the calculated cross section beginning between 3 and 4 eV is due
to shielding from the detector. The increase is from reactions occurring in the detec-
tor, which is overshadowing the reactions from the sample due to the much higher
mass of the detector. This is shown by the lack of increase from the moved detector
case, shown in Figure 17, as the detector is exposed to a lower intensity neutron flux.

It was speculated that there were not enough absorption reactions occurring in the
MCNP model, and that more particles could potentially increase the cross section to
match the broadened cross section. This was tested by comparing the original case
with 109 particles to a lower fidelity case with 108 particles. The theory would be
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proved true if the resonance was less defined for the 108 source particle case. The
average percent difference between the calculated cross sections is 8.3%, and the max-
imum percent difference between the cross sections is 28%. This indicates that more
particles could allow for more defined resonances. However, as a conservative thought
experiment, assume that the magnitude of the resonance increases by 28% for every
increase by an order of magnitude of particles. For the calculated resonance peak to
increase by a factor of 100 to match the broadened resonance peak, it would require
the source strength to increase by 19 orders of magnitude. This is not practical to
implement using MCNP. The calculated cross section for the low source particle case
is shown in Figures 18 and 19.

5.1.5 Case 5, Au-197 with 108 Source Particles
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Figure 18: The cross section of Au-197 using 108 source particles in the 100s of eV
range
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Figure 19: The cross section of Au-197 using 108 source particles in the eV range

5.1.6 Case 6, U-238
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Figure 20: The cross section of U238 in the 100s of eV range
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Figure 21: The cross section of U238 in the eV range

The U-238 case had the greatest difference between the calculated and broadened
cross sections. The influence of the detector is shown in the sinusoidal shape between
50 and 100 eV , and the increase around 4 eV .
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5.1.7 Case 7, Tantalum
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Figure 22: The cross section of natural tantalum in the 100s of eV range
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Figure 23: The cross section of natural tantalum in the eV range
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In Figure 23, the calculated cross section for tantalum does respond to the peak
around 6 eV . However, in Figure 24, the degree to which the the calculated cross
section did not agree with the ENDF broadened cross section is shown. The average
degree of agreement is shown in Table 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Energy of Neutron (MeV) 10-5

0

200

400

600

800

1000

1200

C
ro

s
s
 S

e
c
ti
o
n
 (

B
a
rn

s
)

Calculated Cross Section

ENDF Broadened Cross Section

Figure 24: The largest resonance peak of tantalum only caused a small response
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5.1.8 Case 8, Nickel
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Figure 25: The cross section of nickel in the 100s of eV range
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Figure 26: The cross section of nickel in the eV range
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5.1.9 Case 9, Titanium
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Figure 27: The cross section of titanium in the 100s of eV range
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Figure 28: The cross section of titanium in the eV range
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5.1.10 Case 10, Chromium
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Figure 29: The cross section of chromium in the 100s of eV range
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Figure 30: The cross section of chromium in the eV range
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In all of the low atomic mass cases, the impact of the detector appears as the sinu-
soidal shape between 50 and 100 eV . The discrepancy between the broadened cross
section and the calculated in the eV range is also likely due to the detector.

5.1.11 Case 11, O-16
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Figure 31: The cross section of O-16 in the 100s of eV range

37



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Energy of Neutron (MeV) 10-5

0

0.5

1

1.5

2

2.5

3

3.5

4

C
ro

s
s
 S

e
c
ti
o
n
 (

B
a
rn

s
)

10-5

Calculated Cross Section

ENDF Broadened Cross Section

Figure 32: The cross section of O-16 in the eV range

The O-16 case displayed similar errors as the low atomic mass cases, with the sinu-
soidal shape between 50 and 100 eV and the sharp increase around 5 ev.

5.1.12 Tabulated Results

The uncertainty columns are the average uncertainty of the calculated cross section
value, within the specified energy range. The uncertainty values are in Table 2. The
energy range that each column is evaluated over correlates to the energy ranges shown
in the figures. The percent difference table represents the average percent difference
between the calculated cross section and the broadened ENDF cross section, within
the specified energy range. The percent difference values are in Table 3.
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Sample 100s of eV range (%) eV range (%)

Au-197 27.7 29.2
Au-197, low mass 28.0 29.4
Au-197, high mass 27.5 29.0

Au-197, moved detector 41.7 44.1
Au-197, 1

10
source particles 32.9 35.2

U-238 28.0 29.5
Ta 27.8 29.3
Ni 28.1 29.5
Ti 28.1 29.5
Cr 28.1 29.5

O-16 28.1 29.5

Table 2: Uncertainty of each sample

Sample 100s of eV range (%) eV range (%)

Au-197 62.0 66.1
Au-197, low mass 274 301
Au-197, high mass 43.3 48.4

Au-197, moved detector 295 309
Au-197, 1

10
source particles 69.4 70.4

U-238 404 2990
Ta 105 247
Ni 47.3 80.0
Ti 30.4 101
Cr 34.0 135

O-16 36.3 180

Table 3: Percent difference of each sample

5.2 Shortcomings

The sinusoidal shape seen in many of the cases is likely from a 750 b resonance peak
of germanium around 10 eV . This indicates that the filter case did not function
as intended. Also, the lack of well-defined resonances is problematic. However, the
calculated cross sections within the resonance region could likely be improved though
a number of methods.

1. Update filter case - Simulate the filter case again to ensure that it is properly
implemented, and then ensure it is being incorporated properly.
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2. Higher particle count - More particles would lead to further reduction in uncer-
tainty and an improvement in the flux normalization factor.

3. Move the detector - the case in which the detector was moved showed the best
response to a resonance peak, and likely had a large error due to a poorly fit
flux normalization factor.

4. Improved detector array - A more sophisticated detector array could help to
distinguish events and reduce uncertainty.

6 Conclusion

The principles of the LSDS to produce a consistent flux spectrum have been verified.
The ability of the LSDS to produce a similar neutron flux despite the inclusions of a
wide range of materials and differing detector geometries affirms the capacity for the
LSDS to be used for cross section analysis.

The LSDS does show potential to fill in the gaps that exist in the current nuclear
data repository. However, higher fidelity simulations are required to verify whether
the LSDS can truly address the gaps that exist. The errors that are currently in
the model will need to be systematically explored. In general, the calculated cross
sections and the broadened ENDF cross sections do not agree yet, but the application
of the suggested improvements could allow for better results.

6.1 Future Work

The direction of future efforts will be to change the MCNP input to focus more on
energy bins in the higher energy region in the form of shorter simulations that end
at the 1

v
region, which should allow for less computationally expensive results. The

relationship governed by K and t0 should be re-evaluated to increase the energy that
the relationship can modeled at accurately. A further continuation of this work would
be to analyze the reactions besides (n, γ), such as (n, α) or fission cross sections.
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