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Analysis and comparison of nonlinear tree height
prediction strategies for Douglas-fir forests

H. Temesgen, V.J. Monleon, and D.W. Hann

Abstract: Using an extensive Douglas-fir data set from southwest Oregon, we examined the (1) performance and suitabil-
ity of selected prediction strategies, (2) contribution of relative position and stand-density measures in improving tree
height (k) prediction values, and (3) effect of different subsampling designs to fill in missing / values in a new stand using
a regional nonlinear model. Nonlinear mixed-effects models (NMEM) substantially improved the accuracy and precision
of height prediction over the conventional nonlinear fixed-effects model (NFEM) that assumes the observations are inde-
pendent, particularly when a few trees are subsampled for height. The predictive performance of a correction factor on a
NFEM with relative position and stand-density measures was comparable to that of a NMEM when four or more trees
were subsampled for height. When two or more heights were randomly subsampled, the NMEM efficiently explained the
differences in the height—diameter relationship because of the variations in relative position of trees and stand density
without having to incorporate them into the model. When only one height was subsampled, selecting the largest diameter
tree in the stand would result in a lower predicted root mean square error (RMSE) than randomly selecting the height, re-
gardless of the model form or fitting strategy used.

Résumé : A I’aide d’une banque de données exhaustive sur le sapin Douglas du sud-ouest de 1’Oregon, nous avons exam-
iné (1) la performance et la pertinence des stratégies de prédiction sélectionnées, (2) la contribution de la position relative
de I’arbre et de la densité du peuplement pour améliorer la prédiction de la hauteur des arbres et (3) I’effet de différents
dispositifs d’échantillonnage pour imputer la hauteur manquante dans un nouveau peuplement a 1’aide d’un modele non
linéaire régional. Les modeles non linéaires a effets mixtes (MNLEM) améliorent substantiellement 1’exactitude et la préci-
sion des prédictions de la hauteur comparativement au modele non linéaire a effets fixes conventionnel (MNLEF). Ce der-
nier suppose que les observations sont indépendantes, particulierement lorsque peu d’arbres sont échantillonnés pour
évaluer la hauteur. La performance prédictive d’un facteur de correction pour le MNLEF basé sur la mesure de la position
relative de 1’arbre et de la densité du peuplement est comparable a celle du MNLEM lorsque quatre arbres ou plus sont
échantillonnés pour évaluer la hauteur. Lorsque deux hauteurs ou plus sont échantillonnées aléatoirement, le MNLEM ex-
plique efficacement les différences dans la relation hauteur-diametre dues aux variations de la position relative des arbres
et de la densité sans avoir a les incorporer formellement dans le modele. Lorsqu’une seule hauteur est échantillonnée, le
choix du plus gros arbre dans le peuplement pourrait entrainer une erreur de prédiction plus faible que lorsque la hauteur

est sélectionnée au hasard, peu importe la forme du modele ou la stratégie d’ajustement utilisée.

[Traduit par la Rédaction]

Introduction

Modelling stand development over time relies on accurate
estimates of tree height (4) and diameter (d). Accurate
height measurements are required for describing vertical
stand structure and estimating stand development over time
(e.g., Dubrasich et al. 1997), stand volume, and site quality
(Clutter et al. 1983). However, height is costly to measure
and, as a result, trees are frequently subsampled for height.
Often the subsample is concentrated in the trees of greatest
diameter; for example, those used to estimate site index.
Subsampled heights can also be used to localize regional
height-diameter (h—d) functions (e.g., Wykoff et al. 1982;
Robinson and Wykoff 2004; Hann 2005).

Many growth and yield models require height and diame-
ter as basic input variables, with all or part of the heights
predicted from measured diameters using regional height—
diameter functions (Wykoff et al. 1982, Huang et al. 1992,
Hann 2005). Regional height diameter functions can also be
used to indirectly predict height growth (Larsen and Hann
1987). For example, in the southwestern Oregon version of the
ORGANON growth and yield model (SWO-ORGANON;
Hann 2005), missing heights are directly predicted using
the species specific height—diameter equations of Hanus et
al. (1999a), and these equations are also used to estimate
height growth from diameter growth for minor species. Tree
height is also a critical variable in many process and hybrid
models, such as Biome-BGC (Running and Coughlan 1988)
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and 3-PG (Landsberg and Waring 1997), as height provides a
numerical link between processes that are based on leaf
area (e.g., light capture, photosynthesis, and transpiration)
and foliage mass (Temesgen and Weiskittel 2000).

The relationship between tree height and diameter varies
from stand to stand owing to differences in site quality
(Larsen and Hann 1987, Wang and Hann 1988), stand den-
sity (Larsen and Hann 1987, Zeide and Vanderschaaf 2001,
Temesgen and von Gadow 2004), and stand age (Zeide and
Vanderschaaf 2001). Even within the same stand, the rela-
tionship varies over time (Curtis 1967); by relative position
of trees in a stand (Temesgen and von Gadow 2004); and
spatial distribution pattern (Aguirre et al. 2003). Thus, local-
ization of the regional height—diameter relationship is an im-
portant step in obtaining accurate growth and yield
estimates.

Conventionally, regional height—diameter models have
used only diameter as a predictor variable (Wykoff et al.
1982; Huang et al. 1992; Lappi 1997). However, several
studies have explored the use of additional variables that
might influence the height—diameter relationship both within
and between stands. As examples, stand-density measures
have been used by Larsen and Hann (1987), Temesgen and
von Gadow (2004), and Castedo et al. (2006); relative tree
position variables have been used by Temesgen and von
Gadow (2004); site quality variables have been used by
Larsen and Hann (1987) and Wang and Hann (1988); and
the average h and d of the top height trees have been used
by Krumland and Wensel (1978) and Hanus et al. (1999b)
for even-aged stands. The inclusion of these variables im-
proved the precision of height estimates, as expected. How-
ever, Sharma and Zhang (2004) found that site index did not
improve the precision of height estimates.

Data for development of regional height—diameter equa-
tions are often collected on trees sampled in plots selected
from multiple stands. Because trees from the same plot tend
to be more similar to each other than to trees from different
plots, the classical regression assumption that observations
are independent does not hold (Neter et al. 1990, Gregoire
et al. 1995). Conventional regression models do not account
for the clustered and nested structure of the data, nor do
they identify the different sources of variation. Recognizing
this lack of independence, several recent studies have ex-
plored the use of linear mixed-effects models (LMEM;
Monleon 2003; Robinson and Wykoff 2004; Mehtitalo
2004), and nonlinear mixed-effects models (NMEM; Calama
and Montero 2004; Castedo et al. 2006) to predict height as
a function of diameter and to account for a stand effect.

From a practical perspective, it has been reported that
LMEM and NMEM allow a more accurate and precise esti-
mation of the height—diameter relationship than conventional
linear and nonlinear regression models that assume that ob-
servations are independent (we shall abbreviate these latter
approaches as LFEM and NFEM). The LMEM and NMEM
approaches also account for the correlation structure of the
data and provide realistic variance estimates for stochastic
simulation and for modelling natural variability (e.g., Lappi
1997; Castedo et al. 2006). The LMEM and NMEM esti-
mates are effectively empirical Bayes estimates and can be
motivated from a Bayesian perspective. The prediction of
height for trees from a new stand is based on the prior infor-
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mation from the training data set, actualized with new data

collected as a subsample of heights from the stand.

Despite the growing research interest in LMEM and
NMEM for predicting heights, detailed analyses that quan-
tify the gains obtained by using these methods over LFEM
or NFEM are lacking. Also lacking are analyses that exam-
ine the ability, efficiency, and suitability of any of these ap-
proaches for predicting missing height measurements when
the trees subsampled for height in the new stand are selected
using different subsampling designs and subsample sizes.

The primary objective of this study was to examine the
performance of NMEM for predicting tree height when a
subsample of heights from the new stand is available. Using
an extensive data set of Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco var. glauca (Beissn.) Franco) in southwestern
Oregon, we examined the performance of NFEM and
NMEM for predicting missing heights from a regional
height—diameter equation that has been localized using a
subsample of trees measured for height in the new stand.
The subsample of heights was selected using different de-
signs and subsample sizes. We also evaluated the contribu-
tion that stand-level variables, in particular relative position
and stand-density measures, can provide in improving the
prediction of height from regional height—diameter equations
fitted using these alternative strategies. In comparing the dif-
ferent strategies, we examined three questions concerning
the predictive performance, efficiency, and suitability of
these methods to fill-in missing heights.

1. Will the accuracy and precision of height prediction vary
by the type of prediction strategy? Is there substantial
improvement in accuracy and precision by predicting
heights using NMEM over the conventional NFEM strat-
egy?

2. How does the predictive ability of localizing NMEM and
NFEM from a subsample of heights in the new stand
vary by subsampling design and subsample size?

3. Will the prediction of the random effects in NMEM effi-
ciently explain the differences in the height—diameter re-
lationship due to stand-related effects, such as variations
in relative position of trees and stand density?

Data

The data were collected in two studies associated with the
development of the growth and yield model SWO-ORGANON
(Hann 2005). The first set of data was collected between
1981 and 1983, as part of the southwest Oregon Forestry
Intensified Research (FIR) Growth and Yield Project. This
study included 391 plots in an area extending from near the Cal-
ifornia border (42°10'N) in the south to Cow Creek (43°00'N) in
the north, and from the Cascade crest (122°15'W) in the east
to approximately 15 mi. (I mi. = 1.609 km) west of Glendale,
California (123°50'W). Elevation of the sample plots ranged
from 250 to 1600 m. Selection was limited to stands under
120 years of age and with 80% of its basal area consisting of
conifer species. The second study’s data was collected be-
tween 1992 and 1996. It covered about the same area, but ex-
tended the selection criteria to include stands with trees over
250 years old and younger stands with a greater component
of hardwoods. An additional 138 plots were measured in the
second study. Stands treated in the previous 5 years were
not sampled in either study.
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Table 1. Summary of tree- and stand-level attributes used in the study.

Min. Mean Max. SD

Tree-level attributes

Diameter (cm)

Height (m)

Basal area in larger trees (m%ha)
Crown competition factor in larger trees

Stand-level attributes
Basal area (m%ha)
Crown competition factor
Site index (m)

0.3 35.7 178.9 21.5
1.4 259 62.1 11.9
0.0 25.8 93.4 16.7
0.0 112.4 485.6 79.1
8.1 52.1 101.0 15.7
51.6 263.8 536.7 79.1

12.6 30.7 44.8 54

Note: No. of trees used in the study was 4948 and no. of stands in the study was 142.

In both studies, each stand was sampled with 4-25 sample
points spaced 45.73 m apart. The sampling grid was estab-
lished in a manner such that all sample points were at least
30.5 m from the edge of the stand. Therefore, the specific
parameter estimates derived from this study may not be ap-
plicable to edge trees in southwestern Oregon. At each sam-
ple point, trees were sampled with a nested plot design
composed of four subplots: trees having a d < 10.2 cm were
selected on a circular subplot with a fixed radius of 2.37 m;
trees having a d = 10.3-20.3 cm were selected on a circular
subplot with a fixed radius of 4.74 m; trees having a d =
20.4-91.4 cm were selected on a 4.592-BAF variable radius
subplot; and trees having a d > 91.4 cm were selected on a
13.776-BAF variable radius subplot.

Measurements of height and diameter were taken on all
sample trees. Tree diameter was measured to the nearest
2.54 mm with a diameter tape. Tree height was measured
on all trees either directly with a 25-45 ft (1 ft = 0.3048 m)
telescoping fiberglass pole or, for taller trees, indirectly us-
ing the pole-tangent method (Larsen and Hann 1987) and
recorded to the nearest 0.03 m. For trees with broken or
dead tops, height was measured to the top of the live crown.

A total of 30 tree species were found on 529 plots. The
number of species found on a single plot ranged from 1 to
12 and averaged almost five species. Douglas-fir was the
most common species, found on 339 plots, and will be the
focus of this study. From each untreated plot, heights and
diameters of undamaged trees were extracted to assess and
evaluate selected height prediction strategies. Since one of
the main objectives of this study was to evaluate the predic-
tive performance of the models as a function of the number
of heights subsampled from the stand, only stands with at
least 25 Douglas-fir sample trees were included. The data
set covered a wide array of stand densities, with the basal
area (BA) ranging from 8.1 to 101.0 m?/ha; the crown com-
petition factor (CCF) ranging from 51.6 to 536.7; d ranging
from 0.3 to 178.9 cm; and % ranging from 1.4 to 62.1 m
(Table 1).

Methods

Models and prediction strategies

In a related study, five sets of four nonlinear regional
height—diameter equations (for a total of 20 alternative equa-
tions) were evaluated (Temesgen et al. 2007). The first set
included four base equations for estimating height as a func-

tion of diameter alone: a Weibull-based equation applied by
Yang et al. (1978) to tree species in British Columbia; a
Chapman-Richards (Richards 1959) equation applied by
Garman et al. (1995) to 24 western Oregon tree species; a
function proposed by Ratkowsky (1990) and used by Flew-
elling and de Jong (1994) for western hemlock in the coastal
region of the Pacific Northwest; and an equation used by
Larsen and Hann (1987), Wang and Hann (1988), and Hanus
et al. (1999a, 1999b) for 26 tree species in the Pacific North-
west. Two functional forms were selected based on their
superior predictive performance: the Chapman—Richards
equation and the equation used by Hanus et al. (1999a,
1999b).

These two base equations were then modified to include
various tree- and stand-level variables. The crown length of
a tree affects its form and, as a result, the height-diameter
relationship (Larson 1963). Factors affecting crown length
include the relative position of the tree within the stand and
the stand’s density (Ritchie and Hann 1987; Zumrawi and
Hann 1989; Hann et al. 2003). It is expected that a decrease
in either relative position or an increase in stand density
would result in an increase in predicted height for a given
diameter. Thus, two stand-density measures (basal area per
hectare in m%ha (BA) and the crown competition factor
(CCF) of Krajicek et al. 1961), and two relative position
measures (crown competition factor in larger trees (CCFL)
and basal area in larger trees in m¥ha (BAL)) were eval-
uated for potential improvement in the predictive abilities
of each of the base equations. Computation of all four of
these variables requires the measurement of only diameter
for all sample trees in the stand and knowledge of the sam-
pling probability for each sample tree. Both CCF and CCFL
were calculated using the maximum crown width equations
of Paine and Hann (1982). The Chapman—Richards equation
with CCFL and BA resulted in the best overall predictive
performance (Temesgen et al. 2007) and, therefore, was se-
lected for further examination in this study.

In our previous study, all regional height—diameter models
were fitted and evaluated under the assumption that each
tree was an independent observation and did not include ran-
dom stand effects. Here, the predictive performance of the
Chapman—Richards equation will be further examined under
a combination of model-fitting strategies and tree- and
stand-level variables. Briefly, the four modelling strategies
examined are NFEM under the traditional assumption that
all observations are independent; a NMEM with a random
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stand effect on the asymptote, thus explicitly incorporating
the clustered structure of the sample; a NMEM with two
random stand effects, the model asymptote and curvature
parameters; and a stand-level height correction factor calcu-
lated using ordinary least-squares regression (OLS) and ap-
plied to the predicted heights from the NFEM (Hanus et al.
1999a). Within each of the four model-fitting strategies, we
estimated & as a function of d alone and as a function of d,
CCFL, and BA. The predictive performance of the Hanus et
al. (1999a, 1999b) equation was also evaluated. The results
were almost identical to those of the Chapman—Richards
equation and will not be reported.

Strategy 1 — NFEM assuming independent observations
The Chapman—Richards equation used in this study is ex-
pressed as

(11 hy =137+ B,(1 =) + ¢

where 3, 3, and (3, are parameters to be estimated; dj; is
the diameter of tree j in stand 7, and h;; is the height of tree
Jj in stand 7; and ¢;; is an error term, assumed to be indepen-
dent between observations and N(O, ag). In this equation,
By >0, 3, and (3, represent the asymptotic height, steep-
ness, and curvature, respectively.

The base equation was enhanced by making the asymp-
totic parameter dependent on the stand-level variables
CCFL and BA as follows

(2] hij = 1.37 + (Byg + B0 CCFL;; + B, BA;)
x(1 —ehdiy% 4 ¢

where CCFL;; is the crown competition factor on larger
trees for the jth tree in the ith stand and BA; is the basal
area of the ith stand. Note that CCFL depends on both the
value of d for the tree and the value of d for the other trees
in the stand. Therefore, it can be considered both a stand-
and tree-level variable. The estimation models considered
in this study explicitly account for this type of variable.
The asymptote depends on stand- and tree-level variables,
but all the parameters are fixed effects. The prediction of
height for trees in a new stand under this strategy is a
straightforward application of either eq. 1 or eq. 2 to the
diameter measurements taken in the stand.

Strategy 2— NMEM with one random stand effect

The relationship between height and diameter is reported
to vary by stand (Larsen and Hann 1987; Temesgen and
von Gadow 2004), indicating the need for varying parameters
among stands. Mixed-model approaches formally incorporate
the between-stand variability of the s—d relationship into the
model. Estimation of & using NMEM has been previously re-
ported by Lynch et al. (2005) and Castedo et al. (2006).

Regardless of the number of random effects, the NMEM
can be motivated as a hierarchical model (Pinheiro and Bates
2000). The & of the jth tree from the ith stand is modeled as

[3] ]’llj = f(ﬁy,dlj) + &ij i=1,...M, j= 1, ..., n;,

gij ~ N(0, 0?)

where B is a vector of p stand and possibly tree-specific
parameters, f is a real-valued function that relates the height
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of a tree to its diameter, and €;; is a within-stand error term that
is assumed to be independent and normally distributed. In this
study, f is the Chapman—Richards equation (i.e., eqs. 1 and 2).
The kth element of the parameter vector B; is then mod-
eled as a linear function of fixed and random effects
[4] ﬁijk = x’,-jk,Bk+z’,_~,-kb,-k, k=0,..,p—-1,
bix ~ N(0, ¥)

where 8, is a vector of fixed effects and by, is a vector of
random effects associated with the ith stand. The number of
fixed and random effects does not have to be the same. It is
assumed that by is normally distributed, with mean 0 and
covariance matrix Wy, and independent of €;. x; and Zjjk
are vectors of covariates associated with the ith stand and
possibly with the jth tree. Allowing for these vectors to de-
pend on both the stand and tree within stand permits the use
of variables such as CCFL.
In matrix form, eqs. 3 and 4 can be written as

hi =f£(B;.d;)+e;

ﬂi = Xiﬂ +Zib,‘, b,‘ ~ N(O, \IJ)

These two equations can be combined, so that
[51 ki = £(8,b:.Xi, Zi)+e;

where h; is a vector of tree heights from stand i, 3; is a vec-
tor of stand-level parameters, d; is a vector of tree diameters
from stand i, g; is a vector of within-stand error terms, 3 is
a vector of fixed parameters that do not depend on the
stand, b; is a vector of stand-level random effects, and Xj
and Z; are matrices of explanatory variables. The random
effects for the stand enter into eq. 5 nonlinearly, making
the model a NMEM.

After examining the between stand variability of the coef-
ficients of the base equations, we added a single random ef-
fect to the parameter that controls the model asymptote.
When a single random effect is included in the asymptote
of the Chapman—Richards function, eq. 4 becomes

(61 Boj=050+0bi
if only diameter is included in the model or

(71 Boij = Boo + Boi CCELy; + By BA; + b,

b; ~ N(0, o7)

b; ~ N(0, o3)

if relative position and stand-density variables are included.
Inserting eq. 6 as the asymptote of eq. 1 and eq. 7 as the
asymptote of eq. 2 yields

(81  hy = 137+ (By+b)(1 -l 4 ¢
and
[91  hy = 137+ (Byy + 81 CCFL;; + B, BA, + b))

x (1" 4 ¢

Predicting heights of trees for a new stand
Suppose that the heights of a subsample of n,, trees from
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a new stand, not included in the original training data set,
are known. Let &, be the height vector and X, and Z,, be
the covariate matrices from those trees. Then, the height of
another tree from the same stand can be estimated by first
predicting the random effects of the stand, b,,, based on the
subsample of n,, trees of known height, and then calculating
the new height as

hm,new :f(ﬂ: by, Xm,new, Zm,new)

where 3 is the estimated fixed-effects parameter vector, b,
the predicted random effects for stand m, and x,, pew and
Zmnew are the vectors of covariates for the new tree from
stand m that does not have a measured height. The fixed-
effects parameters are estimated from the training data set.

Prediction of the random effects follows directly from
Lindstrom and Bates’ algorithm for estimating the model pa-
rameters (Lindstrom and Bates 1990; Pinheiro and Bates
2000). The NMEM is linearized using a Taylor expansion
about the current estimate of 8 and b. At each iteration, the
model is approximated by the following LMEM:

ﬁi = )A(n,/é + ZiBi

where the transformed variables Hi, )A(i, and Zi are defined
as

[10]  h; = by —£(X;, Zi, B, by) + X + Zib;

A~

B.bi

% = of X, Z;, B, by)
[11] 1 8ﬂ/

7. - of (Xi, Zs, 3, by)
" ob),

o~

B.bi

The random effects for a new stand are approximated using
an empirical best linear unbiased predictor (BLUP) (Gold-
berger 1962) on this LMEM approximation at convergence

[12]  bm~ \If;zi’mV;@m—f(mB)

where (8 is the estimate of the fixed parameters and W, is
the matrix ¥ evaluated at the estimated variance compo-
nents &2 and

V2 = [Var(hp)|2]™" = (670 + Zg U2 Z )™

where I, is the m x m identity matrix. Both 8 and o2 are
estimated from the training data set. R

Equation 10 is applied to stand m to obtain hy,. Substitut-
ing into eq. 12 yields:

[13]  bn~ \IJ}QZ’,,, g(h,,, — fXm, B, bm) + Zmbm)

Note that the terms involving )A(new cancel out, so that
eq. 11 does not have to be calculated. In general, a solution
to eq. 13 has to be obtained iteratively.

We will illustrate this process with the Chapman—Richards
model with only one random effect and d as the sole explana-
tory variable (eq. 8). Because there is only one random effect,
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both b,, and ¥ = ori are scalars, and the calculations sim-
plify considerably. Z,, is a vector with jth element.

/Z\ — 8f(dmj’ ﬂr bm) N

" abm B.bw
_ OBy +bp)(1 = ) ~~ =(1- e:/;ldm/):/j\z
Ob,, B,b

_ 2 D~ o~
V2 = (G + Gy ZmZ m) ™
o
Then, after simplification, eq. 13 becomes
(14] by~ 5,2 m(0 I+ G ZmZ m) "

hml — 30(1 — eﬂldm])ﬂz
X .

hm,, = Bo(1 = eémn)

In this case, there exists a closed form solution and Zm
can be calculated directly. The height of a new tree from
the stand is predicted to be

[15]  Apnew = 137+ (B + by )(1 — e1mmevys

When relative position and stand-density variables are in-
cluded, eqs. 14 and 15 have the same form but with 3, sub-

Strategy 3— NMEM with two random stand effects

In addition to the random asymptote, one may consider a
random steepness ((3;) or curvature parameter ((3,) or both.
The correlation between the steepness parameter and the
asymptote is very high, 0.97. As a consequence, modeling
all three parameters as random effects results in serious con-
vergence problems and is not likely to result in a significant
improvement in predictive performance. We will consider
the case of a random asymptote and curvature parameter
(correlation = —0.81).

Model formulation follows directly from the general de-
scription for strategy 2. Equation 3 with random asymptote
and curvature parameters is

[16]  hy=1.37+ By;(1 — ") % 4 ¢

If only random effects, no relative position, and stand-
density variables are added, eq. 4 becomes

Boi = Bo + boi
B = By + by, by ~ N(0, ¥)
O’i Tbob
where W = [ ’ > 2} and o, = Cov(by;, ba;). These
Obob, Op,

equations can be combined to yield the final model.
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hij = 1.37 + (By + boi)(1 — eM190) 5020 4

When the relative position and stand-density variables are
added, eq. 4 becomes

Boij = Boo + Bot CCELy; + B BA; + bo;

Bai = By + bai,
Combining those two equations with eq. 16 yields
hl]=137 + (ﬂoo + ﬂOICCFLl] + ﬁOZBAi + b()i)

x(1 - eﬂldxjf)(ﬂz+bzi)+glj

b; ~ N(O, ¥)

Predicting heights of trees for a new stand
Prediction of the height of a tree from a new stand proceeds
as described in the previous section. In this case, there are two

(1 _ eﬁldml )(ﬂz"‘bm)

N)
g
1l

(Eg-f-;zm) o~ o~ o~
) (ﬂ() + bOm) ( 1- gﬁld'""m

( 1 —_ eﬁld/m!m

V;% is a n,, X n,, matrix.

-1
=~/

2 ~
ag (o2

b boby

0 Zm

~ ~2

T byb, Tp,

vi=
o

6+ Zm

) (Ba+bom)
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random effects (b, by), and the calculations are more com-
plex. Zy, is a n,, X 2 matrix, with the jth row composed of:

o af(dmjr ,8: bm) N
20mj = abom Bb
_ 9By + bow)(1 = &) Frbme)
- 8b0m B.b

=(- eﬂldm,’)(ﬂﬁbm)

-~ L af(dmj) ﬂ) bm) PN
omj = Ob,n Bb

= (B() +/b\0m)(1 - eﬁldm;’)(ﬂﬁbzm)log(l _ eﬁld,”,)

(B + bon)(1 = e%1)(T2P2og(1 — 1)

log(1 — eﬁld”mm)

After some calculation, the random effects (Zo,,,, Egm) can be approximated by iteratively solving the following equation.

The height of a new tree from this stand is predicted to be

o~ o~

[18] hm,new — 1-37+(/ﬂ\0+/l;0m)(1 _eﬁldm,new)(ﬂz+bzm)

When relative position and stand-density variables are in-
cluded, eqs. 17 and 18 are the same but with 3, above sub-
stituted by Bgg + 89;CCFL,,; + B¢0,BA,,.

Strategy 4 — Adjusting the NFEM to measurements from
a new stand

Suppose again that the height of a subsample of n,, trees
from a new stand is known. Let A, be the height and X, and

B {50 —bom (50 + bOm)log(l _ e[ﬁdm)] (1 _ emdm)

1 - e//‘;ldmln>:| <l - e/{;ldmm) (“73\2+b2’”>

o [Bo = b (o + bon log<

Z., be the matrices of covariates from those trees. Then, the
height of another tree from the same stand can be adjusted
with the following OLS correction factor on the regional
height—diameter equations (Draper and Smith 1998, p. 225):

Zj [ (7 =1.37) (1 = 1.37)]

*_J
k,, =

i 2
> (hy-1.37)
1

where k7 is the correction factor, fl,-j is the predicted height
from eq. 1 or 2, and A;; is the observed height. Then, the ad-
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Table 2. Cross-validation bias and root mean square error by prediction method and model form.

Diameter model only

Diameter, CCFL, and BA models

Prediction method Bias (m) RMSE (m) Bias (m) RMSE (m)
NFEM (strategy 1) -0.13 3.76 -0.04 3.25
NMEM with one random effect (strategy 2) -0.01 2.50 0.00 245
NMEM with one random effect, fixed component* 0.88 4.11 0.18 3.31
NMEM with two random effects (strategy 3) 0.01 2.36 0.00 2.36
NMEM with two random effects, fixed component* 0.88 4.20 0.23 3.32
Correction factor (strategy 4) 0.25 2.72 0.06 245

Note: NFEM, nonlinear fixed effects model; NMEM, nonlinear mixed effects model; CCFL, crown competition factor on larger trees;

and BA, basal area of the stand.

*The fixed component of the NMEM was calculated by setting the random effects to 0.

justed predicted height for a tree from the stand can be calcu-
lated to be

(191 Tnew = 1.37 + K5 3(1 = e%1mmeny
If relative position and stand-density variables are in-
cluded, the equation becomes

[20]  Apnew = 1.37 +K5(Boo + BotCCFL,; + BoaBA,)

X(l — eﬂldm,new)ﬂz

Model fitting and evaluation of predictive performance

All strategies were fitted in the standard R software lan-
guage (available from www.r-project.org), using the nlme
package for fitting NMEMs (strategies 2 and 3), and the
nlreg package for fitting NFEMs (strategies 1 and 4). To
find a global minimum, the starting value of each parameter
was varied and several runs were obtained.

The predictive performance of the different strategies was
evaluated as follows.

1. A stand was selected for evaluation and the remaining
141 stands were used to estimate the regional parameters
of the alternative models using either NFEM or NMEM.

2. A subsample of heights from the evaluation stand was
selected following different criteria. The random stand
effects (strategies 2 and 3 and eqs. 14 and 17) and the
OLS correction factor (strategy 4 and eq. 19) were calcu-
lated from this subsample.

3. The height of the remaining trees in the evaluation stand
was predicted and the prediction error, (h; — h;), calcu-
lated. Note that the predicted height was obtained from
a set of trees different from those used to fit the model.

4. The process was repeated for all stands to estimate the
prediction RMSE and prediction bias. Because the main
interest is in predicting heights from a stand, estimates of
the RMSE and bias were obtained first at the stand level
and then averaged over the n stands.

Bias = %Xn: lmi i(hlj - Eij)]
=1 =

i

where h;; is the measured height of the jth tree from the
ith stand, h;; is its predicted height, m; is the number of
trees from the ith stand for which height was predicted,
and n is the number of stands.

5. The process was repeated 200 times. The prediction
RMSE and bias calculated at each iteration were then
averaged across all 200 iterations.

The following subsample selection procedures were used
in step 2:

1. Random selection of heights: the subsample sizes evalu-
ated varied from 1 to 15 heights. Because we did not
correct for the different inclusion probabilities associated
with the use of nested fixed and variable radius subplots,
the random-subsampling approach we used will tend to
include larger trees from the stand more frequently than
smaller trees.

2. Selection of dominant heights, often collected for site in-
dex estimation: the heights of the largest one, two, three,
or four trees in the stand, based on diameter, were se-
lected and the prediction RMSE calculated for each of
the four subsample sizes. In this case, only steps 1-4
above were used, since there was no possibility for repe-
tition when large trees were selected. In selecting the lar-
gest one, two, three, or four trees in the stand, there were
very few stands in which two candidate trees exhibited
the same diameter. When this occurred, the height of
one tree was randomly chosen for the subsample.

If an estimate of the height of the trees from a new stand
is desired but a subsample of heights from that stand is not
available, then neither the random effects nor the OLS cor-
rection factor can be calculated. As a result, the only strat-
egies available are to use the regional height—diameter
equations from strategy 1 or to use the equations from strat-
egy 2 or 3 with only their fixed effects parameters — that is,
setting the random stand effects, by,, equal to zero.

The performance and appropriateness of these approaches
was evaluated using leave-one-out cross-validation (Stone
1974). At each iteration, one stand was excluded from the
data set and models were fitted to the remaining stands.
The various height-diameter models were then used to pre-
dict the height of all the trees in the excluded stand. The
same process was repeated for every stand in the data set.
Because trees from the same stand tend to be correlated, ex-
cluding an entire stand to examine the performance of the
models provides stronger model evaluation if prediction of
heights for trees from a new stand not included in the origi-
nal data set is desired (Monleon et al. 2004). The leave-one-
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Fig. 1. Predictive performance (root mean square error, RMSE,
(m)) for the four strategies as a function of the number of heights
subsampled at random to predict the stand random effects (strate-
gies 2 and 3) or ordinary least-squares (OLS) correction factor
(strategy 4). For comparison, the cross-validation results from strat-
egy 1 are included as two horizontal lines. (A) Models using dia-
meter only and (B) models using diameter, crown competition
factor in larger trees (CCFL), and basal area (BA).
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out cross-validation statistics was summarized and used to
evaluate the performance of these approaches.

Results and discussion

Q.1. Will the accuracy and precision of height prediction
vary by the type of prediction strategy? Is there
substantial improvement in accuracy and precision by
predicting height using NMEM over the conventional
NFEM strategy?

Substantial differences were found among the predictive
abilities of the alternative strategies examined for develop-
ing regional height-diameter equations. For the NFEM, the
cross-validation RMSE of the base model form (i.e., with di-
ameter only) was 3.76 m (Table 2). The enhanced model,
which included the stand-level variables, resulted in a de-
crease in RMSE of 0.51 m (13.3%). The bias was also re-
duced from —0.13 to —0.04 m. The results are in agreement
with those of several recent studies that have included rela-
tive position and (or) stand density in the base regional
height-diameter equation (e.g., Zeide and Vanderschaaf
2001; Temesgen and von Gadow 2004; Sharma and Zhang
2004; Castedo et al. 2006).
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Table 3. Mean bias (m) as a function of the number of heights
subsampled to predict the stand random effects (strategies 2 and 3)
or ordinary least-squares (OLS) correction factor (strategy 4). The
subsample of heights from the stand was selected at random.

Mean bias (diameter Mean bias (diameter, CCFL,

model only) (m) and BA models) (m)
Strategy Strategy
Subsam-
ple size
(hs) 2 3 4 2 3 4
1 0.00 001 -054 0.05 0.06 -0.34
2 -0.07 -0.06 -0.05 0.01 0.01 -0.03
3 -0.08 -0.07 0.07 -0.01 -0.01 0.02
4 -0.08 -0.07 0.12 -0.02 -0.02 0.02
5 -0.06 -0.05 0.15 -0.01 -0.01 0.04
7 -0.05 -0.05 0.18 -0.02 -0.02 0.04
10 -0.04 -0.03 021 -0.02 -0.02 0.04
15 -0.03 -0.03 0.22 -0.01 -0.02 0.05

Note: CCFL, crown competition factor in larger trees; and BA, basal
area of the stand.

When a subsample of heights was available to predict the
random effects, the predictive performance of the NMEM
was substantially better than that of the NFEM (Table 2).
Although a more detailed analysis follows, when the heights
of all the sample trees in a stand were used to estimate a
single random stand effect using eq. 13, the RMSE de-
creased by 1.36 m (36%) compared with the NFEM. Adding
a second random effect to the curvature parameter of the
Chapman-Richards equation, and therefore increasing the
complexity of the model, only produced a marginal addi-
tional gain of 0.04 m. The bias of the NMEM was negligible
in both cases. The OLS correction factor, calculated with the
heights of all the available sample trees from the stand, also
improved the precision of the height prediction, although not
as much as the NMEM (1.04 m, 28%). However, it resulted
in substantial bias. Note that using the heights of all the
sample trees in a stand to calibrate the model and to assess
its predictive performance is not reasonable from an applica-
tion point of view. However, the values provided in Table 2
for NFEM, NMEM, and the OLS correction factor provide
limiting values to evaluate the gains in performance when
using a subsample of heights. They also allow for compari-
son between methods when using all the information avail-
able.

One explanation for the improvement in accuracy and
precision of NMEM over NFEM with the use of a subsam-
ple is that NFEM ignores the clustered structure of the data,
assuming that all trees are independent, and produces an
overall regional height—diameter equation, while NMEM ac-
knowledges this structure of the data and produces a re-
gional equation that also characterizes individual stand
height—diameter curves. This, in turn, allows NMEM greater
flexibility in describing the variance and covariance
structure and account for the within and between stand
height—diameter variations.

If a subsample of heights is not available to predict the
stand random effects, then the random effects are usually
set to zero and the model with only the fixed effect parame-
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Fig. 2. Frequency distribution of the root mean square error
(RMSE) after 200 simulations for the mixed model with one ran-
dom effect and diameter alone (strategy 2), as a function of the
number of randomly selected heights used to predict the random
effect. For comparison, the cross-validation RMSE for the nonlinear
fixed effects model (NFEM, grey lines) and nonlinear mixed effects
model (NMEM) based on all heights (black lines) (Table 2) are in-
cluded. Broken lines represent the RMSE of the base model (dia-
meter only) and light solid lines represent the RMSE of the
enhanced model (diameter, crown competition factor in larger trees
(CCFL), and basal area of the stand (BA)).
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ters is used. Using a mixed-effects model in this case can
result in a substantial decrease in predictive performance
(Monleon 2003). In this study, the bias increased to 0.88 m
and the RMSE to more than 4 m (Table 2). A similar de-
crease in performance was reported by Monleon (2003) and
Robinson and Wykoff (2004) and noted by Vonesh and
Chinchilli (1997; p. 295). Adding relative position and
stand-density measures improved the performance of the
NMEM with random effects set to zero, but it remained
worse than that of the simpler NFEM with relative position
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Fig. 3. Frequency distribution of the root mean square error
(RMSE) after 200 simulations for the nonlinear fixed effects model
(NFEM) with the ordinary least-squares (OLS) correction factor
and diameter alone (strategy 4), as a function of the number of ran-
domly selected heights used to predict the random effect. For com-
parison, the cross-validation RMSE for the NFEM (grey lines) and
nonlinear mixed effects model (NMEM) based on all heights (black
lines) (Table 2) are included. Broken lines represent the RMSE of
the base model (diameter only) and solid lines represent the RMSE
of the enhanced model (diameter, crown competition factor in lar-
ger trees (CCFL), and basal area of the stand (BA)).
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and stand-density measures. Therefore, we would not recom-
mend the use of mixed models when a subsample of heights
from the stand is not available.

Q.2. How does the predictive ability of localizing NMEM
and NFEM from a subsample of height in the stand vary
by subsampling design and subsample size?

For the NMEM base model, increasing the number of
subsampled heights used to estimate the random stand ef-

© 2008 NRC Canada



562

Fig. 4. Frequency distribution of the root mean square error
(RMSE) after 200 simulations for the mixed model with one ran-
dom effect and diameter, crown competition factor in larger trees
(CCFL), and basal area of the stand (BA) (strategy 2), as a function
of the number of randomly selected heights used to predict the ran-
dom effect. For comparison, the cross-validation RMSE for the
nonlinear fixed effects model (NFEM, grey lines) and the nonlinear
mixed effects model (NMEM) based on all heights (black lines)
(Table 2) are included. Broken lines represent the RMSE of the
base model (diameter only) and solid lines represent the RMSE of
the enhanced model (diameter, CCFL, and BA).
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fects from one height up to 15 heights reduced prediction
RMSE (Fig. 1), while the bias remained negligible (Table 3).
The largest decrease in prediction RMSE between the
NFEM and NMEM strategies was when only one height
from the stand was subsampled: on average, the RMSE de-
creased from 3.76 to 3.33 m (11%). More importantly, after
200 simulations, the RMSE for the NMEM was never
greater than that of the NFEM (Fig. 2): even when only one
height was subsampled, the RMSE remained below 3.55 m,
compared with 3.76 m for the NFEM. The relative gains de-
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Fig. 5. Frequency distribution of the root mean square error
(RMSE) after 200 simulations for the the nonlinear mixed effects
model (NFEM) with the ordinary least-squares (OLS) correction
factor and diameter, crown competition factor in larger trees
(CCFL), and and basal area of the stand (BA) (strategy 4), as a
function of the number of randomly selected heights used to predict
the random effect. For comparison, the cross-validation RMSE for
the NFEM (grey lines) and the nonlinear mixed effects model
(NMEM) based on all heights (black lines) (Table 2) are included.
Broken lines represent the RMSE of the base model (diameter only)
and solid lines represent the RMSE of the enhanced model (dia-
meter, CCFL, and BA).
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clined as the number of heights subsampled increased. How-
ever, after 15 heights were subsampled from each stand, the
RMSE was reduced to 2.61 m, on average, an improvement
of 30% over the NFEM strategy. This value was very close
to 2.5 m, the RMSE obtained when the heights of all the
trees in the sample were used to both estimate the random
effects and calculate the RMSE (Table 2). Adding a second
random effect did not significantly improve the predictive
performance of the model over that of a single random ef-
fect (Fig. 1).
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Table 4. Predictive performance (root mean square error, RMSE,
m) as a function of the number of heights from the largest dia-

meter trees used to predict the random effects (strategies 2 and 3)
or the ordinary least-squares (OLS) correction factor (strategy 4).

Diameter, CCFL, and

Diameter model only BA models

Strategy Strategy
No. of heights 2 3 4 2 3 4
1 3.10 3.07 368 293 292 3.18
2 296 293 350 281 2.81 2.97
3 287 285 342 274 2.73 2.86
4 281 280 336 2.69 2.68 2.717

Note: CCFL, crown competition factor in larger trees; and BA, basal
area of the stand.

The substantial improvement in performance with just one
subsampled height is in accordance with the results reported
by Monleon (2003), who found an even greater improve-
ment for a LMEM (20%). However, Castedo et al. (2006)
found a much smaller reduction in RMSE, even after several
heights were used to estimate the random effects. This can
be ascribed to the fact that a small proportion of the total
variability in their data was between stands rather than
within stands. Further, those authors included the height of
the dominant tree as a fixed effect in their model and, there-
fore, less additional information may be obtained from a
subsample of heights from the stand. Obviously, application
of their models to a new stand always requires a measure-
ment of at least one height, that of the dominant tree.

Strategy 4 applied to the base model resulted in biased
height estimates (Table 2), though the size of the bias for
subsamples of two or larger are within the measurement pre-
cision for most tree sizes found for this data set (Larsen et
al. 1987). For the same number of subsampled heights used
to estimate the random effects, the OLS correction factor to
the base model resulted in higher average prediction RMSE
and greater variability among the 200 simulations (Figs. 1
and 3). Strategy 4 performed poorly when only one or two
heights were subsampled. For the expanded model, strategy
4 produced nearly unbiased height estimates if more than
one height was subsampled. While the prediction RMSE
was always higher with the OLS correction factor versus
the random effect models, the difference was close to 0.1 m
for the expanded model when four or more heights were
subsampled, again within the measurement precision for
most tree sizes found by Larsen et al. 1987. Furthermore,
the NFEM with OLS correction factor on the expanded
model was almost as precise and accurate as the NMEM
with one random effect and diameter only when subsample
sizes were four or larger.

The frequency distributions of the prediction RMSE from
the 200 simulations for different random subsample sizes are
given in Figs. 2 and 4 for the base and enhanced model
forms fit using strategy 2 and in Figs. 3 and 5 using strategy
4. The histograms for strategy 3 were very similar to those
of strategy 2, so they are not included. For the 200 simula-
tions, the empirical distributions narrowed as the size of the
subsample increased.

Examination of Figs. 3 and 5 shows that the application
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Table 5. Estimated parameters and associated standard errors for
models with diameter (d) only and with stand-level variables.

Strategy 1 Strategy 2 Strategy 3

Estimate SE Estimate SE Estimate SE

Model with diameter only

By 51.9954 Bo 40.4218 B 41.8199
o8 -0.0208 o8 —-0.0276 5, —0.0241
5, 1.0182 5, 0.936 5, 0.8604
0. 4.029 o, 6.544 Ohy 6.409
0. 2.693 Op, 0.165
Obobs 0.31
(o8 2.574
Model with stand-level variables
Boo 43.7195 Boo 32.4635 Boo 35.7419
B 0.0644 Bor 0.0363 Bor 0.0431
B 0.128 Boa 0.2585 Boa 0.2447
B -0.0194 B -0.021 5, -0.0184
5, 1.0805 5, 0.9906 5, 0.961
0. 3.519 o, 4.635 Oby 4.743
0. 2.641 Ob, 0.098
Obybs 0.125
0. 2.566

of strategy 4 when only one height has been randomly sub-
sampled produces prediction RMSE values that are nearly
always larger than the residual RMSE from the uncorrected
NFEM of strategy 1. While application of strategy 4 when
two heights have been randomly selected often produces
prediction RMSE values lower than the residual RMSE, the
strategy at times still produces values larger than the resid-
ual RMSE. We conclude that strategy 4 should not be ap-
plied when only one or two heights have been randomly
selected from a stand for height measurement.

Selecting the heights of the largest trees in the stand when
predicting random effects, as opposed to a random subsam-
ple, was advantageous (Table 4). For the base model and
both strategies 2 and 3, the prediction RMSE when the
height of the largest tree was selected was approximately
0.2 m less than when a single height was selected at ran-
dom, but this difference was reduced to 0.07 m when the en-
hanced models were used. Given that the original sample
was selected with an angle gauge, thus increasing the pro-
portion of larger trees, we would expect that the difference
would have been greater if a random subsample had been
conducted on a sample tree list that had been selected pro-
portional to tree frequency. As the number of heights of the
largest trees subsampled increased, the difference in per-
formance between large-tree and random selection strategies
decreased. The difference was negligible when the heights
of more than four large trees were subsampled. Both Calama
and Montero (2004) and Castedo et al. (2006) found that for
their models, selecting the heights of the largest trees re-
sulted in a greater RMSE than selecting heights at random.
However, those authors included the height of the dominant
tree as a fixed effect, thus making their use for estimating
the random effects redundant. For strategy 4, the advantage
of the large-tree selection strategy was not that clear. While
there was a substantial decrease in the mean RMSE when
the height of the largest tree was selected, compared with a
random height, this was not the case when the heights of
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two or more large trees were selected for the subsample
(Table 4).

For the same model form and subsample size, the OLS
correction factor of strategy 4 produced mean prediction
RMSEs and ranges in the prediction RMSEs about their
means that were consistently larger than the values derived
from using the random effects of strategy 2 (Tables 2 and
4). In particular, a subsample size of one resulted in notably
large differences. Increasing the number of randomly se-
lected heights used to estimate the OLS correction factor
did substantially reduce the prediction RMSE for subsam-
ples up to four heights.

Q.3. Will the prediction of the random effects in NMEM
efficiently explain the differences in the height-diameter
relationship due to stand-related effects, such as
variations in relative position of trees and stand density?

Predicting a random stand effect from a subsample of
known heights can be seen as an empirical surrogate for meas-
uring stand-level variables that affect the height—diameter re-
lationship. Therefore, we can compare the performance of the
mixed effects models with that of the model with CCFL and
BA to study the effectiveness of those two approaches. When
only one height was selected at random from the stand, the
mean RMSE was 3.33 m, compared to 3.25 m for the en-
hanced model (strategy 1). However, if the single height was
from a large (dominant) tree, the RMSE was 3.10 m, substan-
tially less than that of the model that included relative position
and stand-density measures. More interestingly, when two
heights were subsampled at random, the average RMSE from
all 200 simulations was less that that of the enhanced model
(Fig. 1). This result seems to suggest that predicting a random
effect parameter is a very effective way of incorporating stand
effects. Many of the variables that could influence the height—
diameter relationship may not be known or may not be practi-
cal to measure, but their effect may be captured by measuring
a small subsample of heights from the stand, thus substantially
improving the predictive performance of the models.

Including both random effects and stand-level variables
had a relatively small effect on the RMSE, compared with
including random effects and diameter alone (Tables 2 and
5 and Fig. 1). However, inclusion of the stand variables was
advantageous when a small number of heights were sub-
sampled, especially when only one random effect was in-
cluded (Fig. 1). Table 5 provides the parameter estimates
obtained using the three strategies.

When three or fewer heights were randomly subsampled,
the prediction of the random effects parameter efficiently
explained the differences in the height—diameter relationship
due to variations in relative position of trees and stand den-
sity (Fig. 1). The use of NMEM is more robust and practical
than including relative position and stand-density measures
in estimating height.

Conclusions and recommendations

We recommend the following strategy when either devel-
oping a new regional height—diameter equation that will be
applied to stands not in the modelling data set or when ap-
plying a previously parameterized regional height—diameter
equation to a new stand.
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1. The NFEM with the expanded (including BA and CCFL)
model form should be used for predicting missing
heights of trees in a new stand for which a subsample of
height measurements is not available.

2. When a subsample of heights from the new stand is
available, the use of modelling strategies that incorporate
random stand effects is advantageous. The predictive
performance was superior to that of fixed-effects models,
even when relative position and stand-density measures
were included in the model. When the subsample is
small, it is beneficial to select the height of dominant
trees to estimate the random effects. The difference in
predictive performance between one or two random para-
meters was negligible.

3. In general, mixed-effects models performed better than
an OLS adjustment (strategy 4). However, the predictive
performance of strategy 4 with relative position and
stand-density measures is comparable to that of a mixed
model with only one random effect when four or more
trees were subsampled for height.

The results of this study are sufficiently convincing to ad-
vocate the use of NMEM estimates for predicting missing
heights when a subsample of them is available. In some cir-
cumstances, the use of NFEM and the OLS correction factor
of strategy 4 is a viable option for reducing prediction
RMSE, particularly when only a NFEM is available for ap-
plication to a new stand with a subsample of four or more
heights.
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