
AN ABSTRACT OF THE THESIS OF

David A. Zier for the degree of Master of Science in Electrical and Computer

Engineering presented on April 22 2004.

Title: Designing Multimedia Extensions for Configurable Processors

Abstract approved:
Ben Lee

The purpose of this thesis is to explore the design of a muliimedia extension

Instruction Set Architecture (ISA) for a reconfigurable processor. An Extendable

Multimedia Module (EM3) was designed as an optional module for X32V. X32V is a

prototype configurable processor simulator developed at Oregon State University by

John Mark Matson and Dr. Ben Lee. The EM3 ISA uses Single-Instruction Multiple-

Data (SIMD) type instructions to improve the performance of multimedia applications

on X32V such as MPEG-4.

Two benchmarks based on certain stages of MPEG-4 decompression were

developed to test the initial performance enhancements of EM3. The results of these

benchmark tests indicate a several fold improvement in clock cycles and the number of

instructions executed. This improvement demonstrates the performance increase of

X32V and illustrates the effectiveness of SIMD type multimedia extensions.

Redacted for privacy

©Copyright by David A. Zier

April 22, 2004

All Rights Reserved

Designing Multimedia Extensions for Configurable Processors

by

David A. Zier

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed April 22, 2004
Commencement June 2004

Master of Science thesis of David A. Zier presented on April 22. 2004.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Associate Director of the School of Electrical Engineering and Computer Science

Dean of the Ga'dufte School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

David A. Zier, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

1

ACKNOWLEDGEMENTS

The author expresses sincere appreciation to the following individuals. Dr.

Ben Lee for his mentorship and guidance. Jarrod Nelson for his help in the testing

phase of EM3 and for his enthusiasm. Jumnit Hong for his help in the assembler

support for EM3 and his dedication. Savrithi Venkatachalapathy for her support on

the cross-compiler and her everlasting cheerfulness.

TABLE OF CONTENTS

11

I Introduction .1

2 Background .2

2.1 The X32V Reconfigurable Microprocessor ... 3

2.2 Single-Instruction Multiple-Data .. 4

2.3 Multimedia Extensions ... 5

3 Configurable Component Modules ... 8

3.1 Modular Support ... 9

3.2 Current Modules .. 10

4 The EM3 Instruction Set Architecture... 11

4.1 Register Formats.. 12

4.2 SIMD Operational Types .. 13

4.2.1 One-to-One ... 13

4.2.2 One-to-Two ... 14
4.2.3 Two-to-One ... 15

4.3 Instruction Types .. 16

4.3.1 ALU Instructions .. 16
4.3.2 Multiply and Divide Instructions... 19

4.3.3 Data Conversion Instructions ..21

4.3.4 Data Movement Instructions ... 23
4.3.5 Special Instructions .. 24

5 Benchmarks and Results .. 26

5.1 Color Conversion Benchmark .. 27

5.2 Color Conversion Image Results ... 28

5.3 iDCT and Color Conversion Benchmark... 31

5.4 Overall Performance Comparison ... 32

6 Future Work .. 34

7 Conclusion ...34

Bibliography

LIST OF FIGURES

Figure

111

1. X32V Architectural Diagram with Floating-Point and EM3 Modules....................... 11

2. EM3 Register Formats ...12

3. X32V Architectural Diagram with Floating-Point and EM3 Modules 13

4. One-to-Two Low Operation ..14

5. One-to-Two High Operation ...15

6. Two-to-One Operation ... 15

7. Two-to-One Interleaved Operations ..16

8. SWAP Instruction Example ...25

9. Color Conversion Equations .. 28

10. Original Color Conversion Benchmark Image ... 29

11. Integer Color Conversion Benchmark Image ... 29

12. EM3 Color Conversion Benchmark Image ... 30

13. Zoomed Color Conversion Benchmark Results .. 31

14. Benchmark Cycle Count Comparison ..33

LIST OF TABLES

Figure

lv

1. Addition Instructions .17

2. Subtraction Instructions .17

3. Logical Instructions .18

4. Arithmetic Shift Instructions .19

5. Multiply Instructions ..20

6. Division Instructions ..20

7. Pack Instructions ...22

8. Unpack Instructions ...22

9. Register Transfer Instructions ..23

10. Memory Access Instructions ..24

11. Cosine Values for iDCT .. 32

12. Benchmark Cycle Counts ..33

For my Grandfather

Charles W. Guile

Designing Multimedia Extensions for Configurable Processors

1 Introduction

Current trends in embedded applications are requiring more features and a

shorter time-to-market. With the advent of System On Chip (SOC), the need to

design a custom processor and secondary components has created enormous

challenges for embedded system designers [111. A synthesizable, configurable

processor offers an effective way to improve time-to-market. A configurable

processor allows the designer to create a custom microprocessor by configuring the

processor core or adding specialized modules. These modules can provide the benefits

of a coprocessor without the communication or area overhead usually encountered.

With the advent of MPEG-4 video compression and MIP3 audio compression,

media has taken a mainstream market in embedded applications such as portable MP3

players, miniature DVD players, and Smart Phones. With each of these devices,

custom configurable processors speed the time-to-market, but it is the advantage of

using multimedia extensions that give these processors the added performance

mcrease.

This thesis discusses the development of a multimedia extension module for a

configurable processor and demonstrates how it improves the performance of

multimedia applications on the configurable processor. The Extendable MultiMedia

Module (EM3) was developed for X32V, a prototype configurable processor

developed at Oregon State under the guidance of Dr. Ben Lee. X32V is a variation of

a simulated 5-stage pipeline that supports variable length instructions. Initially, the

2

pipeline had to be modified to support modules and then EM3 was developed and

integrated into X32V.

The purpose of EM3 is to improve the performance of MPEG-4 benchmark

on X32V. To evaluate the gain in performance, the simulated cycled counts were

compared from two versions of each benchmark, an Integer benchmark and an EM3

benchmark. Due to a lack in compiler support for EM3 instructions, two benchmarks

were created from hand-coded assembly and assembled using a PERL script. These

benchmarks involved small portions of the MPEG-4 decompression code. It is clear

from the results in Section 5, that there were significantly less number of cycles in the

EM3 version of the benchmarks.

This thesis is organized as follows: Section 2 discusses the background

information needed to explain the research for this thesis including X32V, SIMD, and

multimedia extensions. Section 3 discusses the initial research and development by the

author in order to include modular support in X32V. Section 4 covers the EM3

Instruction Set Architecture. Section 5 discusses the benchmarks that were created

and the results of those benchmarks. And finally, Section 6 discusses the future work

on EM3.

2 Background

Over the course of developing EM3, several areas needed to be researched.

Since EM3 is an extension to X32V, the developments of X32V needed to be studied

as well as becoming familiar with the source code for the simulator. Since multimedia

extensions primarily consist of Single-Instruction Multiple-Data (SIMD) type

3

instructions, the concept and current practices of SIMD operations are covered. And

finally, an overview and comparison of current popular multimedia extensions were

evaluated.

2.1 The X32 VReconfigurable Microprocessor

Currently there are several companies offering configurable and extensible

microprocessor cores including Tensilica [121 and ARC Cores [9]. The eXpandable

32-bit Variable microcontroller, or X32V, offers 3-modes with various instruction

lengths, which allows added flexibility when balancing memory requirements and cycle

performance. At the core, X32V only supports an integer instruction set, which is

useful in most situations, but X32V also provides extensive support for additional

expansions through the use of add-on modules.

To prototype X32V and test the performance of various configurations, a

cycle-accurate simulator was developed [71 [13]. This simulator used the SimpleScalar

Toolset as the base framework for simulating memory, system calls, cache, resources,

and statistics gathering [3].

X32V supports three different modes of variable length instructions.

Default (32-bit instructions)

Light (32/16-bit instructions)

Ultra-Light (32/24/16-bit instructions)

In default mode, a 32-bit instruction word is fetched from memory every clock

cycle. In this mode, all the instructions are fetched on word aligned boundaries, thus

ru

X32V operates normally without the additional overhead of fetching misaligned

words. The default mode provides large immediate values and room for expansion.

Light mode can fetch both 32-bit and 16-bit instructions. The compiler will

map any 32-bit instructions into their equivalent 16-bit formats if the instruction is

compressible. All instructions are fetched 32-bits at a time, but in Light mode, a 32-bit

instruction can land outside of a word boundary. This incurs a one-cycle penalty on

miss-predicted branch since a 32-bit instruction can span across a memory word and

the next 32-bit word needsto be fetched to get the complete instruction.

Ultra-light mode allows instructions to be fetched as 32-bit, 24-bit, or 16-bit

instructions. The compiler will map any instructions that are compressible into 24-bit

or 16-bit instructions. There can be up to a four-cycle penalty on a branch or jump

that is made to a non-word aligned instruction in memory since there can potentially

be three partial instructions in the fetched word. The benefit of the Ultra-light mode is

that it provides the smallest program binaries and thus saves memory space.

22 Single-Instruction Multvle-Data

Single-Instruction Multiple-Data (SIMD) serves as the basic idea behind

multimedia extensions. There is an inherent parallelism within multimedia datasets.

Often data is associated into arrays of similar size, such as the RGB data used to

signify the colors of pixels in digital images. The idea behind SIMD is to load multiple

data elements into a single register and operate on all the data with a single instruction.

In order to perform an SIMD operation, the data set that is to be operated

upon must be loaded into an SIMD register. Most SIMD architectures, if not all,

5

specify several formats that an SIMD register can support. The formats vary

depending upon the architecture, but generally an SIMD register holds 1-16 members

of the data set at a time. The format also specifies the type of data, for example, signed

or unsigned, integer or floating point, etc. Typically the format does not need to be

specified when loading the register, the format is determined when the SIMD operator

is invoked. This allows the same register to be used for many different kinds of

operations.

Once members of the data set are stored in an SIMD register, an SIMD

operator may be applied on them. SIMD operations vary from processor to

processor, but generally they all include basic arithmetic operations: logical operations

(and, or, xor, etc.), shifts, addition, subtraction, and multiplication. Many processors

also include floating-point counterparts. These basic operations can also be

augmented with helper operations for conditional branching based on the SIMD

registers and for load/store operations. Some processors also include speciali2ed

operators for computer graphics and digital signal processing such as saturated

multiplication, saturated addition and reciprocal square root.

23 Multimedia Extensions

Multimedia extensions are a specific application of SIMD operations that

enhance the performance of multimedia applications such as MPEG-4, MP3, and 3D

graphics accelerators. The idea behind multimedia extensions have been around since

the early 1990's and was made popular by Intel's MMX technology. Since then, there

6

have been dozens of popular multimedia extensions. This section will discuss six such

SIMD multimedia technologies; MMIX, VIS, 3DNow!, SSE, SSE2, and AltiVec.

InteFs MultiMedia eXtension (MMX) was Intel's first foray into SIMD for

consumer processors. First appearing in the i860 processor, it was later popularized in

the Pentium processor where it became a regular member of the 32-bit Intel

Architecture (11A32) [8]. MMX provides eight 64-bit SIMD registers (this was

accomplished through sharing the existing 1A32 registers), with four integer formats:

eight 8-bit, four 16-bit, two 32-bit and one 64-bit. The MMIX operators included add,

subtract, multiply, and logical operators. MMX did not support division or floating-

point operations. MMX's distinct disadvantage was that the MMIX registers overlapped

the regular 1A32 floating-point registers, requiring programmers to separate their

integer SIMD operations from their floating-point code in order to achieve any

performance benefit. MMIX also required the processor to be in "MMX mode" in

order to perform SIMD operations, which made context switching between processes

unnecessarily expensive.

The Visual Instruction Set (VIS) was introduced by Sun Microsystem in the

U1traSPARC-I processor [10]. In many ways VIS was Sun's answer to Intel's MMX.

Like MMIX, VIS used the CPU's existing registers to perform SIMD operations.

However, unlike MMX, VIS had 32 registers (vs. MMIX's eight), and supported

floating-point SIMD operations. VIS provides four integer formats and four floating-

point formats: 8-bit, 16-bit, 32-bit and 64-bit. VIS operators included add, subtract,

multiply, and logical operators for both integer and floating-point data sets. VIS does

7

not support division. VIS used the same registers for SIMD operations as the regular

SPARC registers, so it also required programmers to separate their SIMD operations

from their regular operations.

3DNow! is an extension to the MMIX instruction set developed by AMD.

3DNow! implemented the full MMIX instruction set, but added to it floating-point

support. 3DNow! was first introduced in the AMD K6-2 processor family [1].

Streaming SIMD Extensions (SSE), developed by Intel for the Pentium III

processor, is an extension to MMX and was intended to compete with AMD's

3DNow! extensions. SSE added eight new 128-bit SIMD registers that can support

four 32-bit and eight 16-bit floating-point formats [2]. The Pentium 4 processor

introduced SSE2, which added the capability for the eight registers in SSE to be

formatted as two 64-bit floating-point values and new operators such as saturated

addition, saturated multiplication, and reciprocal square root. Although SSE does not

overlap the floating-point registers as MMIX did, it still shares the same circuitry, so

SIMD and regular floating-point could not be run in parallel within the processor's

pipeline.

AltiVec is an extension to the PowerPC architecture first introduced in the G4

processor by Motorola. AkiVec is a true extension since the SIMD registers are

completely separate from the regular PowerPC registers. AkiVec consists of 32 128-

bit SIMD registers that can be formatted as sixteen 8-bit, eight 16-bit, four 32-bit, two

64-bit and one 128-bit integer, or four 32-bit IEEE-754 floating-point values. AltiVec

features all of the usual SIMD operators plus floating-point division, saturated addition

r]
[SJ

and mukiplication, square root and half-precision reciprocal square root, absolute

value, average, and a variety of highly customized SIMD load/store operators to

maximize memory efficiency. AltiVec has proven to be very useful as an SIMD

extension set to an existing consumer processor. IBM has recently added AltiVec

support to their PowerPC 970 processor.

3 Configurable Component Modules

Initially, X32V was a prototype simulator that consisted of 5-stage pipeline,

which supported variable length instructions in several different modes. One of the

main goals for X32V was to provide support for modules that could be included at

design time without significant modifications to the X32V simulator. Unfortunately,

this feature had yet to be integrated, so adding modular support became the first

pnority in designing a multimedia extension library.

X32V now supports both floating-point and multimedia modules that have

been developed as cycle-accurate simulator components and can be added or removed

depending upon the processor's intended purpose [13]. The base simulator consists

of several complex components that are needed to support the component modules.

Some examples are a complex forwarding mechanism, support for multicycle

functional units, a fetch unit capable of fetching misaligned instructions from program

memory, and a memory unit that is capable of reading data of any size and alignment

from data memory. Additionally, an interface was created to include configurable

modules.

9

3.1 Modular Support

A module consists of additional hardware that can interpret a new set of

instructions. Depending on the module, this hardware consists of an extension to the

decoder, functional units that will execute the instruction, and possibly an additional

register file that can hold the module specific register data. To simulate this hardware,

additional source and header files were created that contained the cycle-accurate

simulator components that prototyped these hardware modules. They were integrated

into the simulator through the use of several interfaces shared by each module.

The basic underlying architecture of X32V is a 5-stage pipeline with several

common data buses that are used for interacting between the stages, writing back data

to the register files, and forwarding. One of the key features for modularity is the

support of multi-cycle functional units. Since each functional unit shares the common

data buses, it is very easy to include additional functional units.

In order for the instruction to know which functional unit receives it, the

decoder must be extended to support the additional instructions. Initially, there will be

paths down the decoder in which an instruction is not supported. This could happen

when running a program where a particular module has not yet been included. If such

a situation arises, the instruction will be treated as a No Operation Instruction, or

NOP, and passed through to the pipeline. Unfortunately, this will give rise to

programs that do not execute correctly, thus it is important to compile programs for a

particular configuration of X32V.

10

In order to keep all of the functional units working seamlessly together, X32V

maintains in-order execution through the use of a reservation shift register (RSR) [4].

The RSR simplifies scheduling by tracking the cycle on which any instruction will

finish the execution stage. The output htency of the execution is used to mask the

RSR and determine whether the instruction will interfere with other instructions

currently being executed. Masking the RSR was modified slightly to not only mask the

current output latency bit, but also mask against all the bits after the output latency bit.

If there was a bit that was in the RSR after the current output latency bit, then an

instruction that is already in flight will finish after the current instruction, thus the

instruction will become out-of-order. By masking against all future bits, we can

guarantee that the instruction will remain in order and insure that there will be no

confficts in the Memory stage.

3.2 Current Modules

Currently, there are only two modules that have been implemented and tested

for performance: A floating-point module that supports both 32-bit and 64-bit

floating-point numbers and the multimedia module (EM3) that performs SIMD type

integer operations. Both of these modules share a common register file, which means

that floating-point registers are aliased to the EM3 registers. Figure 1 illustrates the

integration of both the floating-point and EM3 modules within the X32V pipeline.

This integration is exactly how X32V is currently simulated. EM3 is further discussed

in Section 4.

11

rL'I . SR
1

th

X32V Integer PIpeline

X32V Floating Point! EM3 Molulee

H
Figure 1: X32V Architectural Diagram with Floating-Point and EM3 Modules

4 The EM3 Instruction Set Architecture

This section discusses the Extendable MultiMedia Module (EM3) Instruction

Set Architecture (ISA). The current ISA is a base set that was created from the

combming the best features of popular SIMD multimedia architectures, such as those

describe in Section 2.3. Currently, EM3 only supports integer SIMD operations using

a variety of register formats (Section 4.1). Every SIMD operation can be thought of as

a specific type of operation. These types of operations determine how the partitions in

the register are operated on and are described in Section 4.2. The instructions can also

be classified into specific types depending on which operation they execute (Section

4.3).

12

4.1 Register Formats

X32V supports various floating-point operations requiring a floating-point

register file that consists of sixteen 32-bit floating-point registers. The general idea is

to allow the EM3 multimedia registers (MMR) to alias the floating-point registers.

EM3 supports multiple 8-bit, 16-bit, or 32-bit signed or unsigned instructions. Figure

2 illustrates the various data formats that are available. It is important to note that the

16-bit and 32-bit formats also support both signed and unsigned integer values where

the sign bit is the most significant bit. Signed 8-bit integer data is not supported, since

this form of data type is rarely used in multimedia applications.

311 24 23 16 15 8 7 0 E- MMRBit
8-bit Data Byte3

I
Byte2

I

Bytel
I

ByteQ 32-bit
7 0 7 0 7 0 7 0 E Data Bit

31 16 15 0 E MMR Bit
16-bit Data Wordi

I
WordO 32-bit

15 0 15 0 DataBit

31 0 -MMRBit
8-bit Data DWordO 32-bit

31 0 E Data Bit
Figure 2: EM3 Register Formats

Additionally, the inclusion of operating on 64-bit multimedia registers could

potentially increase the performance of EM3. This would be accomplished by

performing multimedia operations on two contiguous MMRs. Using 64-bit registers

will allow up to 8 operations per instruction.

13

4.2 SIMD Operational Types

When describing the functionality of the EM3 instructions, it will be easier to

refer to the operational type of the SIMD instruction. There are three main types of

SIMD operations; one-to-one operations, one-to-two operations, and two-to-one

operations.

4.2.1 One-to-One

Every integer ALU SIMD operation can be described as a one-to-one

operation. One-to-one operations occur when the result of an operation is the same

size as the operands. This is the case for operations such as addition and subtraction.

Every two corresponding data elements from the source registers are operated

on and the resulting element is stored in the corresponding destination register. Figure

3 ifiustrates this type of operation. A simple example would be the addition oftwo 32-

bit words consisting of four 8-bit unsigned integer values. The addition would be very

similar to a regular 32-bit addition with the exception that the ripple carry would stop

on bits 7, 15, and 23.

Figure 3: One-to-One Operation

14

4.2.2 One-to-Two

Both muhiplication and unpacking operations are one-to-two operations since

the resulting data that is produced will be twice the size of the original data. It is

apparent that not all of the data segments can be operated on at once, since there is

not enough room in the destination register to store the result. Therefore, any one-to-

two operations will have two parts, a low and a high part. Figure 4 illustrates the one-

to-two low operation where the lower segments of the source registers are operated on

and the result is stored in the destination register.

//

,zr
/ /'

z_ //
I'

I,

Figure 4: One-to-Two Low Operation

Figure 5 illustrates the one-to-two high operation where the upper halves of

the source registers are operated on and the result is stored in the destination register.

It is easy to see that if this type of operation was warranted for all the segments of the

source registers, two instructions will be needed and the result will be contained into

two registers.

I I

I I I

I I

Figure 5: One-to-Two High Operation

4.2.3 Two-to-One

15

Packing instructions compress the data size of a register by half of the original

size. This type of operation is known as a two-to-one operation. The operand values

are scaled and saturated to reduce the size, but there is no correlation between any of

operands in either source register. Therefore, two source registers with four operands

in total will be reduced to a single destination register. Figure 6 illustrates how a typical

Two-to-One operation works.

I I

'N. \
N

I 1°

N
I

,1 "-.'--'

-.----.-/ N. _.

/ N-'
/

I

N;
I

Figure 6: Two-to-One Operation

16

When the result can be represented as four elements, there is the option of

interleaving the placement of the resulting values. Interleaving creates the ability

manipulate and reposition segments within a register. An example of where this would

be useful is grabbing all the red color components from four RGBA color words.

Figure 7 illustrates the placement of two-to-one interleave operations.

/
/
/

Figure 7: Two-to-One Interleaved Operations

4.3 Instruction Types

The EM3 instruction set can be thought of in terms of 5 different instruction

types or classes; ALU Instructions, Multiplication/Division Instructions, Data

Conversion Operations, Data Movement Instructions, and Special Instructions. The

following subsections describe each instruction type in detail including which register

formats are supported and the type of S1MD operation that is used.

4.3.1 ALU Instructions

Instructions that fall into the category of ALU instructions involve all the basic

arithmetic and logic instructions that would normally be in every integer ALU. These

include but are not limited to addition, subtraction, AND, OR, XOR, NOT,

17

compliments, and arithmetic shifts. All of these instructions can be operated on all

three EM3 register formats and assumes unsigned data. Additionally, the addition,

subtraction, and compliment instructions can operate on 16- and 32-bit signed integer

data.

4.3.1.1 Addition Instructions

Addition instructions consist of one-to-one SIMD addition operations for all

EM3 register formats, both signed and unsigned.

Table 1: Addition Instructions

Mnemonic Name Format Description
ADD_8U Addition 8-Bit Adds 4 unsigned bytes
ADD_I 6 Addition 16-Bit Adds 2 signed words
ADD_I 6U Addition 16-Bit Adds 2 unsigned words
ADD_32 Addition 32-Bit Adds a signed double word
ADD_32U Addition 32-Bit Adds an unsigned double word

4.3.1.2 Subtraction Instructions

Subtraction instructions consist of one-to-one SIMD subtraction operations

for all EM3 register formats, both signed and unsigned.

Table 2: Subtraction Instructions

Mnemonic Name Format Description
SUB_8U Subtraction 8-Bit Subtracts 4 unsigned bytes
SUB_I 6 Subtraction 16-Bit Subtracts 2 signed words
SUB_I 6U Subtraction 16-Bit Subtracts 2 unsigned words
SUB_32 Subtraction 32-Bit Subtracts a signed double word
SUB_32U Subtraction 32-Bit Subtracts an unsigned double word

4.3.1.3 Logica1Instructions

Logical instructions consist of one-to-one logic operations. These instructions

are actually bitwise instructions; therefore, only one instruction is needed for all EM3

register formats. The idea for these instructions is to reduce additional cycle overhead

from moving the data to the GPR and back again. The only exception to this is the 2's

compliment instruction, which operates only on 16- and 32-bit signed operands.

Table 3: Logical Instructions

Mnemonic Name Format Descrip don

OR_8 Logical OR 8-Bit Logical OR on 4 bytes
AND_8 Logical AND 8-Bit Logical AND on 4 bytes
XOR_8 Logical XOR 8-Bit Logical XOR on 4 bytes
NOT_8 Logical NOT 8-Bit Logical NOT on 4 bytes
CPL_16 2's Compliment 16-Bit Two's complement of 2 signed

words
CPL_32 2's Compliment 32-Bit Two's complement of a signed

double word

4.3.1.4 Arithmetic Shfis

Arithmetic shift instructions perform right and left arithmetic shifts. All data

sizes are available, but use only the unsigned data formats. The values to be shifted are

defined by the first source register, while the second source register specifies the shift

constants. Each operand in the first source register can be shifted independently of

one another. Future implementations could include the ability to add an immediate

shift constant.

19

Table 4: Arithmetic Shift Instructions

Mnemonic Name Format Descrprion

SAR_8 Arithmetic Shift R 8-Bit Arithmetic right shift on 4 bytes
SAR_1 6 Arithmetic Shift R 16-Bit Arithmetic right shift on 2 words
SAR_32 Arithmetic Shift R 32-Bit Arithmetic right shift on a double

word
SAL_8 Arithmetic Shift L 8-Bit Arithmetic left shift on 4 bytes
SAL_i 6 Arithmetic Shift L 16-Bit Arithmetic left shift on 2 words
SAL_32 Arithmetic Shift L 32-Bit Arithmetic left shift on a double

word

4.3.2 Multiply and Divide Instructions

The multiplication and division operations are some of the most time

consuming and complicated instructions in the EM3 instruction set. These

mstructions can operate on all the register formats and can produce different formats

for the output. For example, multiplication done on two 16-bit values can result in 16-

bit saturated, 32-bit, 16-bit high, or 16-bit low formats. Division can produce similar

results.

Future additions to this category would be a I 6x1 8-bit multiplication to

increase the performance of MPEG-4 color-space conversion. An instruction that can

multiply a single immediate value against all components within an EM3 register may

also have a performance enhancement for some multimedia applications.

4.3.2.1 Multzblication Instructions

Multiplication instructions support all EM3 register formats. Multiply is a one-

to-two operation and requires two instructions for each register format. Additionally,

there is a one-to-one multiply instruction that uses saturation to create a result of the

20

same size as the operands. For the 32-bit format, saturation is the only type of

multiplication allowed since EM3 does not currently support any format above 32-bits.

Table 5: Multiply Instructions

Mnemonic Name Format Descrivtion
MUL_8UL Multiply 8-Bit Unsigned Low Multiply
MUL_8UH Multiply 8-Bit Unsigned High Multiply
MUL_8US Multiply 8-Bit Unsigned Saturated Multiply
MUL6L Multiply 16-Bit Signed Low Multiply
MUL6H Multiply 16-Bit Signed High Multiply
MUL_16S Multiply 16-Bit Signed Saturated Multiply
MUL_I6UL Multiply 16-Bit Unsigned Low Multiply
MUL_1 6UH Multiply 16-Bit Unsigned High Multiply
MUL_I6US Multiply 16-Bit Unsigned Saturated Multiply
MUL_32US Multiply 32-Bit Unsigned Saturated Multiply
MUL_32S Multiply 32-Bit Signed Saturated Multiply

4.3.2.2 Division Instructions

Divide is supported across all EM3 register formats and treated as a one-to-

one divide operation. The result is not fractional and only contains the quotient part.

This is an area of research to determine the effectiveness of the divide operation and

to determine if any other divide operations will be more pertinent.

Table 6: Division Instructions

Mnemonic Name Format Description
DIV_8U Divide 8-Bit Unsigned Divide
DIV_i 6U Divide 16-Bit Unsigned Divide
DIV_I 6 Divide 16-Bit Signed Divide
DIV_32U Divide 32-Bit Unsigned Divide
DIV_32 Divide 32-Bit Signed Divide

21

4.3.3 Data Conversion Instructions

Conversion operations are essential when handling SIMD data, since they

allow data to be converted from different formats and allow the data to be rearranged

within the registers. An example would be to convert two EM3 registers in 16-bit

register format to a single EM3 register in 8-bit format. Being able to move between

formats quickly and efficiently can improve both performance and precision when

certain operations are required. There are two data conversion categories, pack and

unpack. Pack allows data to be compressed into a smaller format and unpack will

uncompress data into a larger format.

4.3.3.1 Pack Instructions

Pack instructions are used to compress data into a format that is half the sire

as the original. Packing is considered to be a two-to-one operation, so the option for

interleaving the results is allowed when packing 16-bit formatted data to 8-bit

formatted data. The 8-bit pack is not implemented since there are no other supported

formats smaller than 8-bit.

The compression process involves first scaling the data and then saturating the

remaining result into the destination size. The scaling is accomplished by shifting the

data to the right. The amount shifted depends on the precision required for the data

format size.

22

Table 7: Pack Instructions

Mnemonic Name Fomiat Descriotion
PCKI 6 Pack Bits 16-Bit Packs 4 words into 4 bytes
PCK16S Pack Bits 16-Bit Packs 4 words into 4 bytes using interleaving
PCK_32 Pack Bits 32-Bit Packs 2 double words into 2 logical words

4.3.3.2 Unpack Instructions

Unpack instructions decompress data to a format that is double the original

size. This is a one-to-two operation, therefore there are both high and low

components. An example would be decompressing an 8-bit formatted register into a

16-bit format. The 32-bit unpack is not supported since formats that are larger than

32-bit are not supported.

The decompression process is similar to the pack instructions, except that the

instructions are scaled up, which involves shifting the data to the left. The scaled data

is then placed in the resulting register without further alteration. It is important to

note that packing and unpacking data will result in some data loss. The scaling factor

reduces the effect of this data loss.

Table 8: Unpack Instructions

Mnemonic Name Format Description
UPCK_8L Unpack Bits 8-Bit Unpacks 2 low bytes into 2 words
UPCK_8H Unpack Bits 8-Bit Unpacks 2 high bytes into 2 words
UPCK_8SL Unpack Bits 8-Bit Unpacks 2 saturated low bytes into 2

words
UPCK_8SH Unpack Bits 8-Bit Unpacks 2 saturate high bytes into 2

words
UPCK_1 6L Unpack Bits 16-Bit Unpacks low word into a double word
UPCK_1 6H Unpack Bits 16-Bit Unpacks high word into a double word

23

4.3.4 Data Movement Instructions

Data movement instructions allow data to be moved from the General

Purpose Registers (GPR) to the Multimedia Registers (MMR), from MMR to GPR,

and from MMR to MMR. These instructions do not provide any conversion

capability, instead they are intended to move the data as is and without regard to any

specific format. The format of the data will then be interpreted by the particular

multimedia instruction.

Other instructions that fall in this category are the load and store instructions.

In addition to allowing data to be moved directly from memory into the MMR, these

load and store instructions also allow the data to be accessed by the format boundary.

4.3.4.1 Register Transfer Instructions

Register transfer instructions move data from one register to another. The

data format is not taken into consideration since this is not an SIMD instruction.

These instructions allow X32V to transfer data between the Multimedia Register file

(MMR) and the Integer Register file (GPR).

Table 9: Register Transfer Instructions

Mnemonic Name Format Descrption
MOV_MM Move 32-Bit Move data between two MMR registers
MO V_TM Move 32-Bit Move data from GPR register to MMR register
MO V_MI Move 32-Bit Move data from MMR register to GPR register

24

43.4.2 MemoiAccess Insfructions

The EM3 memory instructions complement the integer memory instructions

by allowing 32-bits at a time to be accessed from memory, regardless of the data type.

The formats allow access to different data boundaries in the memory. For example, an

8-bit Load will load four 8-bit values at a byte boundary, but a 32-bit Load will load a

single 32-bit value from a double word boundary.

Table 10: Memory Access Instructions

Mnemonic Name Format Description

LD_8 Load 8-Bit Loads 4 contiguous bytes of memory into MMR
register

LD_16 Load 16-Bit Loads 2 contiguous words of memory into
MMR register

LD 32 Load 32-Bit Loads a double word of memory into MMR
register

ST_8 Store 8-Bit Stores 4 contiguous bytes into memory from
MMR register

ST_16 Store 16-Bit Stores 2 contiguous words into memory from
MMR register

ST_32 Store 32-Bit Stores a double word into memory from MMR
register

4.3.5 Special Instructions

The special instructions category is left for certain multimedia instructions that

do not clearly fall into any of the previous categories. Although not currently

implemented, an instruction that performs pixel distance calculations (PDIST[) would

fall into this category. One special instruction that greatly enhanced the performance

of EM3 is the SWAP instruction.

25

4.3.5.1 SWAP Instruction

Currenily, the only special instruction that is implemented is the SWAP

instruction. This instruction allows the programmer to select four bytes from two

EM3 registers, rearrange them, and store them in a single EM3 register. The format

for the instruction is: SWAP fd, fsO, fsl, a, b, c, d. The first three operands signify the

destination and source registers. The remaining four operands indicate which byte

from the two source operands will be stored in particular byte of the destination

register.

The idea behind the swap instruction is to quickly rearrange data within

registers without the data ioss that would occur from the pack and unpack instructions.

A good use for the swap instruction in multimedia applications would be to separate

pixel data and generate arrays of individual colors. Another good use is to quickly set

up data for matrix multiplications. Figure 8 illustrates a swap operation.

Figure 8: SWAP Instruction Example

26

4.3.5.2 Future Special Instructions

There are several instructions that are currently being looked into that could

produce a better performance gain out of MPEG-4. The following is a list of

instructions as well as a brief explanation.

PDIST This instruction will perform a pixel distance calculation used in

MPEG-4 compression.

MADD This instruction will multiply two registers and add the result to the

data currently in the destination register. This will improve the performance of

matrix multiplications and iDCT.

MATMUL This instruction performs a 4x4 matrix multiplication against a 1x4

vector represented in a single source register. The 4x4 matrix is represented by

the registers FO-F3 and are statically tied to the instruction, so they do not need

to be explicitly called. This allows a programmer to create a single matrix and

then multiply it against several vectors.

Immediate Instructions Although not currently implement, additional support for

immediate values will reduce the amount of time spent fetching constants from

memory.

5 Benchmarks and Results

To test the performance of the EM3 instructions and the X32V in general, two

benchmarks were created. Each benchmark has two versions, one version uses only

the integer ISA and the other uses the EM3 multimedia extensions. These

27

benchmarks serve two purposes. The first purpose is to validate of the simulator,

while the second purpose is to study the performance of MPEG-4 using EM3. The

initial benchmark modeled the color conversion process of MPEG-4. The second

benchmark modeled the Inverse Discrete Cosine Transform (iDCT) and color

conversion process together.

5.1 Color Conversion Benchrmzrk

The color conversion process was chosen as the first benchmark to model one

portion of MPEG-4. Color conversion was an ideal benchmark since the performance

was known to increase with the use of multimedia extensions and the resulting image

data could be easily verified through visual inspection. The benchmark reads in macro

blocks of YCbCr image data from an input file, converts them to interleaved RGB

data and writes the results to an output file. To make the benchmark as much like

MPEG-4 decoding as possible, sub-sampled macro blocks were used. For each I 6x1 6

block of pixels, 128 Y samples, 64 Cb samples, and 64 Cr samples were taken. The

sub-sampling was done by choosing the lower left pixel of each block of four pixels as

the color value for that block. The reader will notice in Section 5.2 that the sub-

sampling did introduce some distortion, but at the original resolution the effect is

virtually unnoticeable.

To allow us to view the results, the benchmark writes the data to a file as a 24-

bit color bitmap image. This image uses the standard Windows BMP file format that

makes for easy viewing. Both benchmarks implement the equations in Figure 9 in

order to perform the YCrCb to RGB color conversion.

R =(l49.Y)>>7+(5l.Cr)>>5
G=(149.Y)>>7+(208.Cr)>>8(100.Cb)>>8
B=(149.Y)>> 7+(129.Cb)>>6

Figure 9: Color Conversion Equations

Values are multiplied by integer constants and then shifted left to accomplish

fractional multiplication. The integer version performs one pixel calculation at a time,

where as the EM3 version calculates four pixel values per iteration.

In order to perform the test, a third program was created in standard C that

would convert a test image from RGB format to YCrCb format. Both simulators used

the test image in order to recreate the RGB image. The generated RGB images were

compared to the original image for accuracy.

5.2 Color Conversion ImageResults

In order to fully demonstrate the capabilities of the color conversion

benchmark, a large high-contrast image of a popular video game was chosen. The

original image has the dimensions of 640x480 pixels. Figure 10 is the original image

that was first converted to YCrCb format using a standard C program and then used

for the benchmark data. Figure 11 is the resulting image from the integer color

conversion benchmark and Figure 12 is the resulting image from the EM3 color

conversion benchmark. By visually comparing the full size images, no differences can

be discerned.

32

values and kept 4 fractional bits for all our intermediate results. These fractional bits

limit the final errors to within ±1 ulp, as required by most standards. The cosine

values can be seen in Table 11.

Table 11: Cosine Values for iDCT

i0 i=1 i=2 i=3 i=4 i=5 i=6 i7x0 128 128 128 128 128 128 128 128
x 1 126 106 71 25 -25 -71 -106 -126x2 118 49 -49 -118 -118 -49 49 118x3 106 -25 -126 -71 71 126 25 -106
x 4 91 -91 -91 91 91 -91 -91 91
x=5 71 -126 25 106 -106 -25 126 -71x6 49 -118 118 -49 -49 118 -118 49x7 25 -71 106 -126 126 -106 71 -25

The same images were used for the iIDCT benchmark as in the color

conversion benchmark. The resulting images did not differ from the resulting images

in the color conversion benchmark.

5.4 Overall Perfomiance Comparison

Using EM3 operations, the color conversion process performed 3 times faster

than when using only integer operations. As can be seen in Section 5.2, the image

created with the EM3 version is identical to the image from the integer version. The

smaller data formats used by the EM3 version do not cause any additional round off

error or truncation errors. The iDCT portion of the combined EM3 benchmark is

about 50% faster than the iDCT portion of the integer benchmark. The actual cycle

counts from the two benchmarks can be seen in Table 12. To further illustrate the

performance gain, Figure 14 has been provided.

33

Table 12: Benchmark Cycle Counts

YCC DCT BOTH
EM3 6,620,878 15,455,928 22,076,806
Integer 20,098,719 24,816,902 44,915,621

Cycle Count Comparison

50

40
0

LJi1L
YCC DCT BOTH

Benchmark
DEM3 Dint

Figure 14: Benchmark Cycle Count Comparison

The EM3 benchmark outperforms the integer benchmark for several reasons.

There are the obvious parallel operations that EM3 performs when multiplying several

color constants together. EM3 also has the advantage of an extra 16 registers. This

allows the integer registers to be used for holding memory pointers, loop counters and

constants. For the integer benchmark, these values must be stored on the stack

requiring frequent push and pop operations. The end result is much less ioop

overhead for the EM3 benchmark. The EM3 module also has a fully pipelined

multiplier that allows several multiply instructions to be issued at once. As a result,

only the last multiply instruction stalls the pipeline. Pipelining the multiply instructions

result in less stalls through the pipeline. This is apparent in the integer pipeline since

an integer multiply stores the results in high and low registers, which must be moved

34

after each multiply. Since the X32V pipeline has an in-order execution core, the data

movements from the high and low instructions must be stalled until the integer

pipeline is complete. EM3 does not have this restriction and thus produced less stalls

in the pipeline.

6 Future Work

The goals for this research were to integrate modular support into X32V and

create a basic multimedia extension ISA. Although the research showed that EM3

improved multimedia applications for X32V, there is still a lot of work needed to fully

test and improve the EM3 pipeline. One of the main areas of future research is to

obtain a full MPEG-4 benchmark using the EM3 ISA. This will be easier when

compiler support for EM3 is complete. With an MPEG-4 benchmark, the EM3 ISA

will be fully tested, as will the improvements of multimedia extensions.

The next area for future works involves examining the EM3 ISA and looking

for improvements within the instruction set. These improvements can come from

evaluating the performance of certain instructions as well as the necessity for some.

Additional improvements can come from developing new special instructions such as

PDIST and MADD (see Section 4.3.5.2).

7 Conclusion

The purpose of this thesis is to discuss the development and effectiveness of

multimedia extensions on a configurable processor. EM3 was developed as an

extendable module for the X32V configurable processor. EM3 took advantage of

SIMD operations in order to improve the performance of multimedia applications by

35

taking advantage of the parallelism within multimedia data. The improvement in

performance stems from the increase in the throughput of the pipeline by utilizing

more resources and creating fewer stalls. Additional improvements come from the

fewer number of instructions being executed. It is obvious to see that when fewer

instructions are executed, the speed at which the application is executed also increases.

From the few benchmarks that were tested, the results showed that multimedia

extensions do have a significant impact over normal operations. This impact is made

more obvious by the fact that several of the world's largest microprocessor developers

spend a significant amount of time and resources developing their own version of

multimedia extensions.

36

BIBIJOGRAPHY

[1] Advanced Micro Systems, A7vID Technology Manual, Advanced Micro Systems,
Sunnyvale, CA, 2000.

[2] Bargeron, M., T. Craver, and M. Phlipot, "Applications Tuning for Streaming
SIMD Extensions", Intel Technology Journal, no. Q2, 1999.

[3] Burger, D., and T.M. Austin, "The SimpleScalar Tool Set, Version 2.0",
SimpleScalar LLC, Ann Arbor, MI, 1997.

[4] Hennessy, J.L., and D.A. Patterson, ComputerArchitecture: A Quantitative Approach,
Morgan Kaufmann Publishers, San Francisco, 2003, pp. A-I A-56.

[5] Lee, C., M. Potkonjak, and W.H. Mangione-Smith, "MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communications Systems",
University of California, Los Angeles, 1998.

[6] Leibson, Steven, "SOC-Based Signal Processing: Meeting Performance Goals
With Tailored DSPs", Tensilica, mc, Santa Clara, CA, 2003.

[7] Matson, J.M., "Designing a Reconfigurable Embedded Processor", MS Thesis,
Oregon State University, 2003.

[8] Mital, M., A. Peleg, and U. Weiser, "MMX Technology Overview", Intel
Technology Journal, no. Q3, 1997.

[9] Setbia, A., "Solving System on Chip Design Challenges with the ARCform
Development Platform", White Paper, ARC Cores Ltd., San Jose, CA, 2001.

[10] Sun Microsystems, VIS Instruction Set User's Manual, Sun Microsystems, Santa
Clara, 1997.

[11] Takaki, S., et. al., "Hardware/Software Partitioning Methodology for System on
Chip (SOCs) with RISC host and Configurable Microprocessor", IP Based
Design, 2003.

[12] Tensilica, "Xtensa Architecture and Performance", White Paper, Tensilica, Inc.,
Santa Clara, CA, 2002.

[13] Zier, D., et. al., "X32V: A Design of a Configurable Processor Core for
Embedded Systems", International Conference on Embedded Systems and
Applications, Las Vegas, 2004.

37

APPENDIX

Appendix A: EM3 Instruction Set

The following pages outline each instruction in the EM3 ISA. Detailed

information about instruction type, format, usage, and encoding are given. The

following table lists the nomenclature used by the appendix.

Substitute left side of operator with right side
+ Addition

Subtraction
* Multiplication
/ Division

= Test equality
= Test inequality
> Greater Than
< Less Than
& Bit wise Logical AND

Bit wise Logical OR
Bit wise Logical XOR

I
Join or Concatenate
Bit wise Shift Left

>> Bit wise Shift Right
fsl Source register one
fs2 Source register two
fd Destination register

MEM(Ox2a) Value at main memory address Ox2a
O8 Zero extended 8 places

1mm15 15th bit of immediate value, sign extended 16 places
r[iI The ith SIMD component of the EM3 register
rft The ith SIMD component of the x formatted EM3

register

r1 ii

39

8-Bit Unsigned Integer Addition

Description:

ADD_8U performs SIMD addition between two 32-bit registers,

interpreted as four 8-bit unsigned components (MMRfs1 and MMRfi2)

and returns a 32-bit result interpreted as four 8-bit unsigned components

(MMRfd). Overflow is not detected and the result is saturated to 255.

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

ADD_8U fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[O] fsl [0] + fs2[O]

fd[1] fsl[1] + fs2[1]

fd[2] fsl [2] + fs2[2]

fd[3] fsl [3] + fs2[3]

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0000 fd fsl fs2 0000 N/A N/AEM3

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
0000 fd fsl fs2 0000EM3

4 4 4 4 4 4

ADD 16 16-Bit Signed Integer Addition

Description:

ADD_8U performs partitioned addition between two 32-bit partitioned

registers, interpreted as two 16-bit signed components (MMR fri and

MMRfs2) and returns a 32-bit partitioned result interpreted as two 16-bit

signed components (MMRf. Overflow is not detected and the result is

saturated between 215 and (215 1).

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

ADD_16 fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[0] fsl[0] + fs2Oj (signed)

fd[1I fsl[1] + fs2[1} (signed)

Encoding:

3128272423201916151211 87 43 0

32-bit I

0000 fd fsl fs2 0101 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0000 fd fsl fs2 0101EM3

4 4 4 4 4 4

41

ADD 16U 16-Bit Unsigned Integer Addition

Description:

ADD_16U performs partitioned addition between two 32-bit partitioned

registers, interpreted as two 16-bit unsigned components (MMR fsl and

MMRfs) and returns a 32-bit partitioned result interpreted as two 16-bit

unsigned components (MMRJ). Overflow is not detected and the result

is saturated to 216.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

ADD 16U fd, fsl, fs2

32-bit / 24-bit

fd[O] fs I 0] + fs2[O}

fd[1] fsl{1] + fs2[1J

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0000 fd fsl fs2 0001 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0000 fd fsl fs2 0001EM3

4 4 4 4 4 4

42

ADD 32 32-Bit Signed Integer Addition

Description:

ADD_32 performs partitioned addition between two 32-bit partitioned

registers, interpreted as a 32-bit signed components (MMR fsl and MMR

fs2) and returns a 32-bit partitioned result interpreted as a 32-bit signed

components MMR fd). Overflow is not detected and the result is

saturated from between _231 and (231 1).

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

ADD32 fd, fsl, fs2

Operation:

32-bit / 24-bit

fd{0] fsl{0] + fs2[OJ (signed)

Encoding:

1 2S 27 24 23 21) 19 16 15 12 11 8 7 4 3 0

32-bit I

0000 fd fsl fs2 0110 N/A N/AEM3

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
0000 fd fs[fs2 0110

{

EM3

4 4 4 4 4 4

43

ADD 32U 32-Bit Unsigned Integer Addition

Description:

ADD_8U performs partitioned addition between two 32-bit partitioned

registers, interpreted as a 32-bit unsigned components (MMR fsl and

MMR fs2) and returns a 32-bit partitioned result interpreted as a 32-bit

unsigned components (MMRfd). Overflow is not detected and the result

is saturated to 232.

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

ADD_32U fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[O] fsl [0] + fs2[O]

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0000 fd fsl fs2 0010 N/A N/At

EM3I
4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

0000 fd fsl fs2 0010

4 4 4 4 4 4

44

SUB 8U 8-Bit Unsigned Integer Subtraction

Description:

SUB_8TJ performs partitioned subtraction between two 32-bit partitioned

registers, interpreted as four 8-bit unsigned components (MMR fsl and

MMRfs2) and returns a 32-bit partitioned result interpreted as four 8-bit

unsigned components (MMRfd). Underfiow is not detected and the result

is saturated to 0.

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

SUB_8U fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[O1 fsl [0] fs2[OJ

fd[1] fsl[1] fs2[1]

fd[2] fsl [21 fs2[21

fd[31 fsl [3] fs2[3]

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0000 fd fsl fs2 1000 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

0000 fd fsl fs2 1000

4 4 4 4 4 4

45

SUB_16 16-Bit Signed Integer Subtraction

Description:

SUB_16 performs partitioned subtraction between two 32-bit partitioned

registers, interpreted as two 16-bit signed components (MMR fsl and

MMRfs2) and returns a 32-bit partitioned result interpreted as two 16-bit

signed components MMRfd). Underfiow is not detected and the result is

saturated between _215 and (215 1).

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

SUB_16 fd, fsl, fs2

32-bit / 24-bit

fd[0] = fsl{0] fs2[0] (signed)

fd[1] = fsl[11 fs2[1] (signed)

Encoding:

31282724232019 1615 1211 S7 43 0

32-bit
0000 fd fsl fs2 1001 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
EM3

0000 fd fsl fs2 1001

4 4 4 4 4 4

46

SUB 16U 16-Bit Unsigned Integer Subtraction

Description:

SUB_16U performs partitioned subtraction between two 32-bit partitioned

registers, interpreted as two 16-bit unsigned components (MMRfs1 and

MMRfs2) and returns a 32-bit partitioned result interpreted as two 16-bit

unsigned components (MMRfd). Underfiow is not detected and the result

is saturated to 0.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

SUB_16U fd, fsl, fs2

32-bit / 24-bit

fd[O] fsl [0] fs2[O]

fd1] = fsl[1] fs2[1]

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0000 fd fsl fs2 1101 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0000 fd fsl fs2 1101EM3

4 4 4 4 4

47

SUB 32 32-Bit Signed Integer Subtraction

Description:

SUB_32 performs partitioned subtraction between two 32-bit partitioned

registers, interpreted as a 32-bit signed components (MMRfs/ and MMR

fs2) and returns a 32-bit partitioned result interpreted as a 32-bit signed

components (MMR fd). Underfiow is not detected and the result is

saturated between 2 and (231 1).

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

SUB_32 fd, fsl, fs2

Operation:

32-bit! 24-bit

fd[Oj fsl [0] fs2[0I (signed)

Encoding:

31282724232019 1615 1211 87 43 0

32-bit
0000 fd fsl fs2 1110 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

0000 fd fsl fs2 1110EM3

4 4 4 4 4 4

SUB 32U 32-Bit Unsigned Integer Subtraction

Description:

SUB_32U performs partitioned subtraction between two 32-bit partitioned

registers, interpreted as a 32-bit unsigned components (MMR fsl and

MMR fs2) and returns a 32-bit partitioned result interpreted as a 32-bit

unsigned components (MMRfd). Underfiow is not detected and the result

is saturated to 0.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

SUB_8U fd,fsl,fs2

32-bit / 24-bit

fd[O] fsl [0} fs20]

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0000 fd fsl fs2 1010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0000 fd fsl fs2 1010

4 4 4 4 4 4

49

AND 32 32-Bit AND

Description:

Performs a logical AND operation between two MMR registers (fsl and

fs2). The result of the operation is stored in an MMR register (fd). Since

this is a bitwise operation, this instruction will work on all registers

regardless of partitions.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

AND 32 fd, fs 1, fs2

32-bit / 24-bit

fd fsl & fs2

Encoding:

31282724232019 1615 1211 S7 43 0

32-bit
EM31 0001 fd fsl fs2 0000 N/A N/A

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
EM31 0001 fd fsl fs2 0000

4 4 4 4 4 4

50

OR_32 32-Bit OR

Description:

Performs a logical OR operation between two MMR registers (fsl andfsZ).

The result of the operation is stored in an MMR register (fd). Since this is a

bitwise operation, this instruction will work on all registers regardless of

partitions.

Type:

EM3 Register ALU

Format

32-bit / 24-bit

0R32 fd, fsl, fs2

Operation:

32-bit / 24-bit

fd = fsl
I fs2

Encoding:

1 7 77 74 2 70 19 16 15 12 11 8 7 4 3 0

32-bit
0001 fd fsl fs2 0001 N/A N/AEM3

4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

ibito001fdf1f20001
4 4 4 4 4 4

51

XOR 32 32-Bit Exclusive OR

Description:

Performs a logical XOR operation between two MMR registers (fri and

fs2). The result of the operation is stored in an MMR register (fc). Since

this is a bitwise operation, this instruction will work on all registers

regardless of partitions.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

XOR_32 fd, fsl, fs2

32-bit / 24-bit

fd fsl "fs2

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0001 fd fsl fs2 0010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0001 fd fsl fs2 0010EM3

4 4 4 4 4 4

52

NOR 32 32-Bit NOR

Description:

Performs a logical NOR operation between two MMR registers (1st and

fs2). The result of the operation is stored in an MMR register (f). Since

this is a bitwise operation, this instruction will work on all registers

regardless of partitions.

Type:

Format:

Operation:

EM3 Register ALU

32-bit I 24-bit

NOR_32 fd, fsl, fs2

32-bit / 24-bit

fd -(fs1 fs2)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0001 fd fsl fs2 0011 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

0001 fd J fsl fs2 0011

]
EM3

4 4 4 4 4 4

53

NAND 32 32-Bit NAND

Description:

Performs a logical NAND operation between two MMR registers (fri and

fs2). The result of the operation is stored in an MMR register (fd). Since

this is a bitwise operation, this instruction will work on all registers

regardless of partitions.

Type:

EM3 Register ALU

Format:

Operation:

32-bit / 24-bit

NAND_32 fd, fsl, fs2

32-bit / 24-bit

fd '-(fs1 & fs2)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
EM3

0001 fd fsl fs2 0100 N/A N/A

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit I

0001 fd fsl fs2 0100EM3

4 4 4 4 4 4

54

XNOR 32 32-Bit XNOR

Description:

Performs a iogical XNOR operation between two MMR registers (fsl and

fs2). The result of the operation is stored in an MMR register (Id). Since

this is a bitwise operation, this instruction will work on all registers

regardless of partitions.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

XNOR32 fd,fsl,fs2

32-bit / 24-bit

fd -(fs1 " fs2)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0001 fd fsl fs2 0101 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0001 fd fsl fs2 0101EM3

4 4 4 4 4 4

55

CPL 16 16-Bit Two's Compliment

Description:

Performs a two's complement operation on an MMR register (fsl)

interpreted as two 16-bit elements. The result of the operation is stored in

an MMR register (fd) interpreted as two 16-bit elements. This operation is

used with the 16-bit signed number format.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

CPLI6 fd, fsl

32-bit / 24-bit

fd[Oj fs1[O] + 1

fdIl] -fs1[1] + I

Encoding:

3128272423201916151211 87 43 0

32-bit
0001 fd fsl N/A 1001 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0001 fd fsl N/A ioojEM31

4 4 4 4 4 4

56

CPL 32 32-Bit Two's Compliment

Description:

Performs a two's complement operation on an MMR register (fsl)

interpreted as a 32-bit element. The result of the operation is stored in an

MMR register (fd) interpreted as a 32-bit element. This operation is used

with the 32-bit signed number format.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

CPL_32 fd, fsl

32-bit / 24-bit

fd[O] -fs1[O] + I

fd[IJ -fs1[1] + I

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0001 fd fsl N/A 1010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
EM3

0001 fd fsl N/A 1010

4 4 4 4 4 4

57

NOT_32 32-Bit NOT

Description:

Performs a NOT operation on an MMR register (fsl) interpreted as a 32-

bit element. The result of the operation is stôred in an MMR register (fa?)

interpreted as a 32-bit element. The NOT is performed by complimenting

each individual bit regardless of format.

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

NOT 32 fd, fsl

Operation:

32-bit / 24-bit

fd NOT fsl

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0001 fd fsl N/A 1011 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0001 fd fsl N/A ioi1JEM3

4 4 4 4 4 4

ASR_8 8-Bit Right Arithmetic Shift

Description:

Performs a right arithmetic shift operation on an MMR register (fsl)

interpreted as four 8-bit elements. The amount to shift is determined by

the MMR register,fs2, interpreted as four 8-bit elements. The result of the

operation is stored in an MMR register (fd) interpreted as four 8-bit

elements. If the value of the fs2 element (fs2[i]) is greater than 7, then the

value of the correspondingfsl element (fsl [i]) will be set to zero.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

ASR_8 fd, fsl, fs2

32-bit / 24-bit

fd[O] = fsl [0] >> fs2[0]

fd[l] = fsl[1] >> fs2[1]

fd[2] = fsl [21 >> fs2[2]

fd[3] = fsl [3] >> fs2[3]

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0010 fd

J
fsl fs2 0000 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

EM3 0010 fd fsl fs2 0000

4 4 4 4 4 4

59

ASR 16 16-Bit Right Arithmetic Shift

Description:

Performs a right arithmetic shift operation on an MMR register (fsl)

interpreted as two 16-bit elements. The amount to shift is determined by

the MMR register, fs2, interpreted as two 16-bit elements. The result of the

operation is stored iii an MMR register (Id) interpreted as two 16-bits

elements. If the value of thefs2 element (fs2[il) is greater than 15, then the

value of the correspondingfsl element (fsl [ii) will be set to zero.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

ASR_16 fd,fsl,fs2

32-bit / 24-bit

fd[OI fsl [Oj >> fs2[0]

fd1] fs1[1 >> fs2[11

Encoding:

3128272423201916151211 87 43 0

32-bit I

0010 fd fsl fs2 0001 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0010 fd fsl fs2 0001EM3

4 4 4 4 4 4

60

ASR 32 32-Bit Right Arithmetic Shift

Description:

Performs a right arithmetic shift operation on an MMR register (In)

interpreted as a 32-bit element. The amount to shift is determined by the

MMR register, fs2, interpreted as a 32-bit element. The result of the

operation is stored in an MMR register (Id) interpreted as a 32-bit element.

If the value of thefs2 element (fs2[i}) is greater than 31, then the value of

the correspondingfsl element (fsl [i}) will be set to zero.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

ASR_8U fd, fsl, fs2

32-bit / 24-bit

fd[0} fsl 0] >> fs2[OJ

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0010

L
fsl fs2 0010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
I 0010 fd fsl fs2 0010EM3

4 4 4 4 4 4

61

ASL 8 8-Bit Left Arithmetic Shift

Description:

Performs a left arithmetic shift operation on an MMR register (t1)

interpreted as four 8-bit elements. The amount to shift is determined by

the MMR register,fs2, interpreted as four 8-bit elements. The result of the

operation is stored in an MMR register (fd) interpreted as four 8-bit

elements. If the value of the fs2 element (fs2[i]) is greater than 7, then the

value of the correspondingfsl element (fsl [i}) will be set to zero.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

ASR8 fd, fsl, fs2

32-bit / 24-bit

fd[0I fsl fOl <<fs2[0]

fd[1} fsl[1j <<fs2[11

fd[2} fsl [2J <<fs2[2]

fdl3] fsl 131 <<fs2[31

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0010 fd fsl fs2 1000 N/A N/A
J

EM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

0010 fd [fs1 fs2 1000EM3_________
4 4 4 4 4 4

62

ASL 16 16-Bit Left Arithmetic Shift

Description:

Performs a left arithmetic shift operation on an MMR register (fsl)

interpreted as two 16-bit elements. The amount to shift is determined by

the MMR register ,fs2, interpreted as two 16-bit elements. The result of the

operation is stored in an MMR register (Id) interpreted as two 16-bits

elements. If the value of thefs2 element (fs2[il) is greater than 15, then the

value of the correspondingfs/ element (fsl [i}) will be set to zero.

Type:

EM3 Register ALU

Format:

32-bit / 24-bit

ASR_16 fd, fsl, fs2

Operation:

32-bit / 24-bit

fdOJ fsl [0] <<fs2[O]

fd[1] fsl[1} <<fs2[1]

Encoding:

31 2R 27 24 23 20 19 16 15 12 ii 8 7 4 3 0

I 32-bit
0010 fd fsl fs2 1001 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

0010 fd fsl fs2 1001EM3

4 4 4 4 4 4

63

ASL 32 32-Bit Left Arithmetic Shift

Description:

Performs a left arithmetic shift operation on an MMR register (fsl)

interpreted as a 32-bit element. The amount to shift is determined by the

MMR register, fs2, interpreted as a 32-bit element. The result of the

operation is stored in an MMR register (i interpreted as a 32-bit element.

If the value of the fs2 element (fs2i}) is greater than 31, then the value of

the correspondingfsl element (fsl [ij) will be set to zero.

Type:

Format:

Operation:

EM3 Register ALU

32-bit / 24-bit

ASR_8U fd, fsl, fs2

32-bit / 24-bit

fd0] fsl O] <<fs2[0I

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0010 fd fsl

J

fs2 1010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0010 fd fsl fs2 1010EM3

4 4 4 4 4 4

64

MUL8UL 8-Bit Unsigned Multiplication Low Order

Description:

Performs an 8-bit unsigned multiplication on the low order elements of the

MMR registers fsl andfs2 interpreted as four 8-bit unsigned integers. The

result will be interpreted as two 16-bit unsigned integers in the MMR

registerfd.

Type:

EM3 Register MUL

Format:

32-bit /_24-bit

MUL_8UL fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[O]16 fsl FOIs * fs2OI 8

fd[1]16 fsl [118 * fs2[1]s

Encoding:

3128272423201916151211 87 43 0

32-bit I

0011 fd fsl fs2 0000 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

0011 fd fsl fs2 0000EM3

4 4 4 4 4 4

65

MUL 8UH 8-Bit Unsigned Multiplication High Order

Description:

Performs an 8-bit unsigned multiplication on the high order elements of

the MMR registers fsl and fs2 interpreted as four 8-bit unsigned integers.

The result will be interpreted as two 16-bit unsigned integers in the MMR

registerfd.

Type:

Format:

Operation:

EM3 Register MUL

32-bit / 24-bit

IVIIJL8UH fd, fsl, fs2

32-bit / 24-bit

fd[O]16 = fs12]8 * fs2[2}s

fd[1Iis fsl[31s * fs2[3]8

Encoding:

31282724232019 1615 1211 87 43 0

32-bit I

0011 fd fsl fs2 0001 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
I 0011 fd fsl fs2 0001EM3

4 4 4 4 4 4

66

MU L_8 US 8-Bit Unsigned Saturated Multiplication

Description:

Performs an 8-bit unsigned multiplication on the elements of the MMR

registeis fsl and fs2 interpreted as four 8-bit unsigned integers. The result

will be saturated, meaning if the result is larger than 2-I, then the value is

set to 281, and is interpreted as four 8-bit unsigned integers in the MMR

registerfd

Type:

EM3 Register MUL

Format:

Operation:

32-bit / 24-bit

MIJL_8US fd, fsl, fs2

32-bit / 24-bit

fd[0J8 fsl[0J8 * fs2{038

fd1I8 fsl [1]g * fs2[1J 8

fd[28 fsl[2]8 * fs2[2

fd[3]8 fsl [3]8 * fs2 [1 8

Encoding:

3128272423201916151211 87 43 0

32-bit
0011 fd fsl fs2 0010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I I I I

0011 fd fsl fs2 0010[EM3
4 4 4 4 4 4

67

MUL I6UL 8-Bit Unsigned Multiplication L.O.

Description:

Performs a 16-bit unsigned multiplication on the low order elements of the

MMR registers fsl andfs2 interpreted as two 16-bit unsigned integers. The

result will be interpreted as a 32-bit unsigned integer in the MMR register

fd.

Type:

EM3 Register MUL

Format:

Operation:

32-bit / 24-bit

MUL_I6UL fd,fsl,fs2

32-bit / 24-bit

fd[0J32 fsl[O]io * fs2[0116

Encoding:

3128272423201916151211 87 43 0

32-bit I

0011 fd fsl fs2 0100 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0011 fd fsl fs2 0100EM3

4 4 4 4 4 4

MUL I6UH 16-Bit Unsigned Multiplication H.O.

Description:

Performs a 16-bit unsigned multiplication on the high order elements of

the MMR registers fsl andfs2 interpreted as two 16-bit unsigned integers.

The result will be interpreted as a 32-bit unsigned integer in the MMR

registerjd.

Type:

Format:

Operation:

EM3 Register MUL

32-bit / 24-bit

MUL_I6UH fd, fsl, fs2

32-bit / 24-bit

fd[O12 = fsl[1]l(, * fs2[1]l(,

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0011 fd fsl fs2 0101 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0011 fd fsl fs2 0101EM3

4 4 4 4 4 4

69

MUL I6US 16-Bit Unsigned Saturated Multiplication

Description:

Performs a 16-bit unsigned multiplication on the elements of the MMR

registers fsl añdfs2 interpreted as two 16-bit unsigned integers. The result

will be saturated, meaning if the result is larger than 216_I, then the value is

set to 2161, and is interpreted as two 16-bit unsigned integers in the MMR

registerfd.

Type:

Format:

Operation:

EM3 Register MUL

32-bit / 24-bit

MUL_I6US fd, fsl, fs2

32-bit / 24-bit

fdpJ16 fsl [0116 * fs2O1i6

fd[1116 = fs11Iio * fs2[1]16

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0011 fd fsl fs2 0110 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0011 fd fsl fs2 0110EM3

4 4 4 4 4 4

70

MUL_16L 8-Bit Signed Multiplication LO.

Description:

Performs a 16-bit signed multiplication on the low order elements of the

MMR registers fsl andfs2 interpreted as two 16-bit signed integers. The

result will be interpreted as a 32-bit signed integer in the MMR registerfd.

Type:

EM3 Register MUL

Format:

32-bit / 24-bit

MEJL_16L fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[0132 fs1[O]i6*fs2j0]i6 (signec)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0011 fd fsl fs2 1000 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
I 0011 fd fsl fs2 1000EM3
1

4 4 4 4 4 4

71

MUL_16H 16-Bit Signed Multiplication H.O.

Description:

Performs a 16-bit signed multiplication on the high order elements of the

MMR registers fsl and fs2 interpreted as two 16-bit signed integers. The

result will be interpreted as a 32-bit signed integer in the MMR registerfd.

Type:

Format:

Operation:

EM3 Register MUL

32-bit /_24-bit

MEJLj6H fd, fsl, fs2

32-bit / 24-bit

fd[O]32 fsl[1]is * fs2[1]is (signed)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0011 fd fsl fs2 1001 N/A N/AEM31

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0011 fd fsl fs2 1001EM3

4 4 4 4 4 4

72

MUL_1 6S 16-Bit Signed Saturated Multiplication

Description:

Performs a 16-bit signed multiplication on the elements of the MMR

registers fri and fs2 interpreted as two 16-bit signed integers. The result

will be saturated, meaning if the result is larger than 2151 or smaller than (-

215 + 1), then the value is set to 215_I and (215 + 1) respectively, and is

interpreted as two 16-bit signed integers in the MMR registerfd.

Type:

EM3 Register MUL

Format:

32-bit I 24-bit

MUL_16S fd, fsl, fs2

Operation:

32-bit /_24-bit

fdO]16 fsl[O]is * fs2[O}is

fd1]10 = fsl[1Iio * fs2{1116

Encoding:

3128272423201916151211 87 43 0

32-bit
0011 fd fsl fs2 1010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0011 fd fsl fs2 1010EM3

4 4 4 4 4 4

73

MUL 32US 32-Bit Unsigned Saturated Multiplication

Description:

Performs a 32-bit unsigned multiplication on the elements of the MMR

registersfsl andfs2 interpreted as a 32-bit unsigned integer. The result will

be saturated, meaning if the result is hirger than 2321, then the value is set

to 232 I, and is interpreted as a 32-bit unsigned integer in the MMR register

fd

Type:

EM3 Register MUL

Format:

32-bit / 24-bit

MUL_I6US fd, fsl, fs2

Operation:

32-bit /_24-bit

fd[0}32 = fsl[0132 * fs2[0j32

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0011 fd Lfsl fs2 1100 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0011 fd fsl fs2 1100EM3

4 4 4 4 4 4

74

MUL 32S 32-Bit Signed Saturated Multiplication

Description:

Performs a 32-bit signed multiplication on the elements of the MMR

registersfsl andfs2 interpreted as a 32-bit signed integer. The result will be

saturated, meaning if the result is larger than 2311 or smaller than (-231 + 1),

then the value is set to 231_I and (231 + 1) respectively, and is interpreted as

a 32-bit signed integers in the MMR registerfd

Type:

Format:

Operation:

EM3 Register MUL

32-bit / 24-bit

MUL._32S fd, fsl, fs2

32-bit / 24-bit

fd[O]32 fslO]u * fs2O]32 (signed)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0011 Id fsl fs2 1101 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0011 fd fsl fs2 1101EM3

4 4 4 4 4 4

75

DIV_8U 8-Bit Unsigned Division

Description:

Performs an 8-bit unsigned division on the elements of the MMR registers

fri and fs2 interpreted as four 8-bit unsigned integers. The result

interpreted as four 8-bit unsigned integers in the MMR registerfd.

Type:

Format:

Operation:

EM3 Register DIV

32-bit / 24-bit

DIV_8U fd, fsl, fs2

32-bit / 24-bit

fd[O] fsl [0] / fs2[Qj

fd[1] fsl[1} / fs2[1]

fd[2] fsl [2] / fs2[2]

fd[3} fsl [3] / fs2[3]

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0100 fd fsl fs2 0000 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0100 fd fsl fs2 0000EM3

4 4 4 4 4 4

76

DIV_16U 16-Bit Unsigned Division

Description:

Performs a 16-bit unsigned division on the elements of the MMR registers

fsl and fs2 interpreted as two 16-bit unsigned integers. The result

interpreted as two 16-bit unsigned integers in the MMR registerfd.

Type:

EM3 Register DIV

Format:

32-bit / 24-bit

DIV_16U fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[0] fsl [0] / fs2[0]

fd[1] fsl[1] / fs2[1]

Encoding:

312827242320191615 1211 87 43 0

32-bit
0100 fd fsl fs2 0001 N/A N/A

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0100 fd fsl fs2 0001EM3

4 4 4 4 4 4

77

DIV_I 6 16-Bit Signed Division

Description:

Performs a 16-bit signed division on the elements of the MMR registers fsl

andfs2 interpreted as two 16-bit signed integers. The result interpreted as

two 16-bit signed integers in the MMR registerfd.

Type:

EM3 Register DIV

Format:

32-bit / 24-bit

DIV_16 fd, fsl, fs2

Operation:

32-bit / 24-bit

fd0] = fs 1 [Oj / fs4O} (signed)

fd[1 fsl[1] / fs2{1] (signed)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0100 fd fsl fs2 0010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0100 fd

J
fsl fs2 0010EM3

4 4 4 4 4 4

D(V32U 32-Bit Unsigned Division

Description:

Performs a 32-bit unsigned division on the elements of the MMR registers

fsl andfs2 interpreted as a 32-bit unsigned integer. The result interpreted

as a 32-bit unsigned integer in the MMR registerfd.

Type:

EM3 Register DIV

Format:

32-bit / 24-bit

DIV_32 fd, fsl, fs2

Operation:

32-bit / 24-bit

fd[0] Is 110] / fs2[O]

Encoding:

312827242320191615 1211 87 43 0

32-bit I

0100 Id fsl fs2 0011 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0100 fd fsl fs2 0011EM3

4 4 4 4 4 4

79

DIV_32 32-Bit Unsigned Division

Description:

Performs a 32-bit signed division on the elements of the MMR registersfsl

andfs2 interpreted as a 32-bit signed integers. The result interpreted as a

32-bit signed integers in the MMR registerfd.

Type:

EM3 Register DIV

Format:

32-bit / 24-bit

DIV_32 fd, fsl, fs2

Operation:

32-bit / 24-bit

fdFOJ fsl[0J / fs2[0I (signed)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0100 fd fsl fs2 0100 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0100 fd fsl fs2 0100EM3

4 4 4 4 4 4

PCK 16 16-Bit to 8-Bit Pack

Description:

Packs four 16-bit values represented by two MMR registers, fsl and fs2,

into four 8-bit values represented by one MMR register, fd. The 16-bit

value is saturated into an 8-bit value by a scaling factor. The function,

sat(n), performs this operation. The values are packed linearly into the

destination register.

Type:

EM3 Register PACK

Format:

32-bit / 24-bit

PCK_16 fd, fsl, fs2

Operation:

32-bit /_24-bit

fd[0J8 sat(fsl[0}16)

fd{1j8 sat(fsl[1]16)

fd[2]8 sat(fs2[O]16)

fd[3]8 sat(fs2[1116)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0101 fd Lfsl J
fs2 0000 N/A N/AEM3____________

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0101 fd fsl

j
fs2 0000jEM3

4 4 4 4 4 4

1I

PCK 16S 16-Bit to 8-Bit Pack Saturated

Description:

Packs four 16-bit values represented by two MMR registers, fri and Ji2,

into four 8-bit values represented by one MMR register, fd. The 16-bit

value is saturated into an 8-bit value by a scaling factor. The function,

sat(n), performs this operation. The values are packed in a saturated

fashion as to offset values stored in the destination register.

Type:

Format:

Operation:

EM3 Register PACK

32-bit / 24-bit

PCK_16S fd, fsl, fs2

32-bit / 24-bit

fd[O]8 sat(fsl[O}16)

fd[1]8 sat(fs2O]i6)

fd[218 sat(fsl [1}16)

fd[3]5 sat(fs21ij

Encodrng:

3128272423201916151211 87 43 0

32-bit I

0101 fd fsl fs2 0001 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0101 fd fsl fs2 0001

4 4 4 4 4 4

PCK 32 32-Bit to 16-Bit Pack

Description:

Packs two 32-bit values represented by two MMR registers,fsl andfs2, into

two 16-bit values represented by one MMR register,fd. The 32-bit value is

saturated into a 16-bit value by a scaling factor. The function, sat(n),

performs this operation. The values are packed linearly into the

destination register.

Type:

Format:

Operation:

EM3 Register PACK

32-bit / 24-bit

PCK_32 fd, fsl, fs2

32-bit / 24-bit

fd0]16 sat(fsl [0132)

fd[1116 sat(fs2[0132)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0101 fd fsl fs2 0010 N/A N/AEM3;

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

0101 fd fsl fs2 0010EM3

4 4 4 4 4 4

UPCK 8L 8-Bit to 16-Bit Unpack Low

Description:

Unpacks two iow 8-bit values represented by the MMR register, fri. into

two 16-bit values represented by the MMR register,fd. The 8-bit value is

saturated into a 16-bit value by a scaling factor. The function, invsat(n),

performs this operation.

Type:

Format:

Operation:

EM3 Register PACK

32-bit / 24-bit

UPCK8L fd, fsl

32-bit / 24-bit

fd[0J16 invsat(fsl[0]8)

fd1Ii6 = invsat(fs11Ig)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0101 fd fsl N/A 1000 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0101 fd fsl N/A 1000EM3

4 4 4 4 4 4

UPCK 8H 8-Bit to 16-Bit Unpack High

Description:

Unpacks two high 8-bit values represented by the MMR register,fs/, into

two 16-bit values represented by the MMR register, fd. The 8-bit value is

saturated into a 16-bit value by a scaling factor. The function, invsat(n),

performs this operation.

Type:

Format:

Operation:

EM3 Register PACK

32-bit / 24-bit

UPCK_8H fd, fsl

32-bit / 24-bit

fdO}16 invsat(fsl[2]s)

fd{1]l(invsat(fsl[3]g)

Encoding:

'1 7S77 247' 21)19 1615 1211 87 43 0

32-bit I

0101 fd fsl N/A 1001 N/A N/AEM3

4 4 4 4 4 4 4 Lf

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0101 fd fsl N/A 1001EM3

4 4 4 4 4 4

85

UPCK 8SL 8-Bit to 16-Bit Unpack Saturated Low

Description:

Unpacks two low 8-bit values, bytes 0 and 2, represented by the MMR

register, fsl, into two 16-bit values represented by the MMR register, fd.

The 8-bit value is saturated into a 16-bit value by a scaling factor. The

function, invsat(n), performs this operation.

Type:

EM3 Register PACK

Format:

32-bit / 24-bit

UPCK_8SL fd, fsl

Operation:

32-bit /_24-bit

fd{O]16 invsat(fsl [0Js)

fd[1]16 invsat(fsl[218)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
fd fsl N/A 1010 N/A N/At

EM3I0101
4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0101 fd fsl N/A 1010EM3

4 4 4 4 4 4

UPCK 8SH 8-Bit to 16-Bit Unpack Saturated High

Description:

Unpacks two high 8-bit values, bytes 1 and 3, represented by the MMR

register, fsl, into two 16-bit values represented by the MMR register, fd.

The 8-bit value is saturated into a 16-bit value by a scaling factor. The

function, invsat(n), performs this operation.

Type:

Format:

Operation:

EM3 Register PACK

32-bit / 24-bit

UPCEL8SH fd, fsl

32-bit / 24-bit

fd[O}16 invsat(fsl[1j8)

fd[1116 invsat(fsl [318)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0101 fd fsl N/A 1011 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 Ii 8 7 4 3 0

24-bit
0101 fd fsl N/A 1011 jEM3

4 4 4 4 4 4

UPCK 16L 16-Bit to 32-Bit Unpack Low

Description:

Unpacks the low 16-bit value represented by the MMR register, fsl, into a

32-bit value represented by the MMR register, fI. The 16-bit value is

saturated into a 32-bit value by a scaling factor. The function, invsat(n),

performs this operation.

Type:

EM3 Register PACK

Format:

32-bit / 24-bit

UPCK_16L fd, fsl

Operation:

32-bit / 24-bit

fd[0132 invsat(fs1Ojio)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
I 32-bit

0101 fd fsl N/A 1100 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

0101 fd

]

fsl N/A 1100

4 4 4 4 4 4

UPCK 16H 16-Bit to 32-Bit Unpack High

Description:

Unpacks the high 16-bit value represented by the MMR register,fsl, into a

32-bit value represented by the MMR register, fd. The 16-bit value is

saturated into a 32-bit value by a scaling factor. The function, invsat(n),

performs this operation.

Type:

Format:

Operation:

EM3 Register PACK

32-bit / 24-bit

UPCK_16H fd, fsl

32-bit / 24-bit

fd[O]32 invsat(fsl[1]io)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0101 fd fsl N/A 1101 N/A N/A]

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
0101 fd fsl N/A 1101

1
EM3

4 4 4 4 4 4

MOV_EE Move Register MMR to MMR

Description:

Moves register data from MMR register,fsl, to MMR register,fd.

Type:

EM3 Register Move

Format:

32-bit / 24-bit

MO\LEE fd, fsl

Operation:

32-bit / 24-bit

MIIV[R(fd) MMR(fsl)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0110 fd fsl N/A 0000 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
EM3 0110 fd fsl N/A 0000

4 4 4 4 4 4

90

MOVGE Move Register GPR to MMR

Description:

Moves register data from GPR register, rsl, to MMR register,fd.

Type:

Format:

Operation:

EM3 Register Move

32-bit / 24-bit

MOV_GE fd, rsl

32-bit / 24-bit

MIv1R(fd) = GPR(rsl)

Encoding:

31 28 27 24 23 20 19 16 1 12 11 X 7 4

32-bit
EM3 0110 fd rsl N/A 0001 N/A N/A

L. 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 (1

24-bit I

EM3
0110 fd rsl N/A 0001

4 4 4 4 4 4

91

MOVEG Move Register MMR to GPR

Description:

Moves register data from MMR register,fsl, to GPR register, rd.

Type:

Format:

Operation:

EM3 Register Move

32-bit / 24-bit

MOV_GE rd, fsl

32-bit / 24-bit

GPR(fd) MIVIIR(rsl)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit I

0110 rd fsl N/A 0010 N/A N/AEM3

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

'l-bit I I I I

0110 rd fsl N/A 0010EM3

4 4 4 4 4 4

LD8

92

Load 8-Bit

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

four consecutive 8-bit values starting at this address are copied into MMR

fd

Type:

Format:

Operation:

EM3 Register Load/Store

32-bit

ID_8 fd, disp(rsl)

32-bit

fd MEM(rsl + ('dispi5'16
I

disp))

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0110 fd rsl N/A 1000 displacementEM3

4 4 4 4 4 4 4 4

LD_16

93

Load 16-Bit

Description:

The contents of GPR rsf are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

two consecutive 16-bit values starting at this address are copied into MMR

fd.

Type:

Format:

Operation:

EM3 Register Load/Store

32-bit

LD_16 fd, disp(rsl)

32-bit

fd MEM(rsl + ('dispi5'16 disp))

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

I 32-bit
0110 fd rsl N/A 1001 displacementEM3

4 4 4 4 4 4 4 4

LD_32

94

Load 32-Bit

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

32-bit value at this address is copied into MMRfd.

Type:

Format:

Operation:

EM3 Register Load/Store

32-bit

LD_32 fd, disp(rsl)

32-bit

fd MEM(rsl + ('dispi5'16
I

disp))

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
I 32-bit

0110 fd rsl N/A 1010 displacementEM3

4 4 4 4 4 4 4 4

95

Store 8-Bit

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

four 8-bit values in MMRfd are then copied to the memory address.

Type:

Format:

Operation:

EM3 Register Load/Store

32-bit

ST_8 disp(rsl), fd

32-bit

MIEM(rsl + ('dispi5'16
I

disp)) = fd

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0110 fd rsl N/A 1100 displacementJEM3

4 4 4 4 4 4 4 4

ST_16

96

Store 16-Bit

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

two 16-bit values in MMRfd are then copied to the memory address.

Type:

Format:

Operation:

EM3 Register Load/Store

32-bit

ST_16 disp(rsl), fd

32-bit

MEM(rsl + ('displ5'16
I

disp)) fd

Encoding:

3128272423201916151211 87 43 0

I 32-bit
0110 fd rsl N/A 1101 displacementEM3

4 4 4 4 4 4 4 4

ST_32

97

Store 32-Bit

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

32-bit value in MMRfdis then copied to the memory address.

Type:

Format:

Operation:

EM3 Register Load/Store

32-bit

ST_32 disp(rsl), fd

32-bit

MEM(rsl + (dispis'16
I

disp)) = fd

Encoding:

3128272423201916151211 87 43 0

I 32-bit
0110 fd rsl N/A 1110 displacementEM3

4 4 4 4 4 4 4 4

SWAP_8 8-Bit Swap

Description:

Swap will fill each of the bytes in the MMR registerfd with one of the bytes

from either MMRfs1 orfs2 depending on the constant value. For each of

the four bytes in the destination, there is a corresponding constant, a, b, c,

and d. All of the constant are only 3-bits, thus there value is from 0 7.

This value corresponds to the byte position of the source registers, 0 3

arefs/ bytes 0 3, and 4 7 corresponded tofr2 bytes 0 3.

Type:

Format:

Operation:

EM3 Register SPECIAL

32-bit / 24-bit

SWAP_8 fd, fsl, fs2, a, b, c, d

32-bit /_24-bit

fdO] swap(a, fsl, fs2)

fd[1] swap(b,fsl, fs2)

fd2] swap(c, fsl, fs2)

fd[3] swap(d, fsl, fs2)

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

I 32-bit
1000 fd fsl fs2 aaab bbcc cdddEM3

4 4 4 4 4 4 4 4

