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NUMERICAL ASPECTS OF THE INVERSE
STURM-LIOUVILLE PROBLEM

I. INTRODUCTION

1.0 Objectives

The fact that the implications of the Inverse Sturm-Liouville
Theory are far-reaching has been the motivating force behind this
dissertation.

The objectives of this dissertation are, first, to resolve cer-
tain mathematical problems which restrict the practical utility of the
Inverse Sturm-Liouville Theory, and se-ondly, to indicate the signi-
ficance of this inverse theory to other fields.

In Section 1.1 the inverse Sturm- Liouville problem will be
stated; in Section 1. 2 a brief resume of the historical development of
the problem will be given, and in Section 1.3 the principal theory of

this dissertation will be formulated.

1.1 Definition

Determining g(x) of the differential equation

(1.0) y'"' + (A-q(x)) ¥ =0, 0 <x < oo,

with the initial conditions,



(1.0") y'(0) = h, vy(0)=1

for a given spectral function p(\), where h is a real number,

is referred to as the inverse Sturm- Liouville problem. p(A) is the

spectral function of (1.0)-(1.0") if p{(\) is a nondecreasing function

on -0 < N\ < o such that

© 2 © 2
S‘ E (MNdp(N) = S' f (x)dx
~00 0
where
E(N\) = lim E_(\),
N—~o N
and

n
E (A= S' f(x)e(x, \)dx,
n
0
for any function £, which is square integrable in the Lebesque
senseon 0 < x < © (see Reference [4]), and ¢(x,\) 1is the unique
solution of (1.0)-(1. 0'). For Equation (1.0) on 0 <x <w with the

boundary conditions

(1.0™) y'(0) - hy(0) = 0, vy(w) + Hy'(w) = 0,
1 00
the spectral function p(A\) equals 2 —, where {)\i}"*O and
Ap<\ “n g
00
{(pi(x)}i*o are the eigenvalues and eigenfunctions, respectively, of

™
the system (1.0)-1.0"), and a = 5 (pj(x)dx (see Gelfand and
0



Levitan, [4]).

1.2 Background

The general theory for solving this problem has evolved during
the last 40 years. In 1929, V.A. Ambartsumyan produced the first

result in this field [1]. He proved the following theorem:

"let >\0’ >\1’ ... denote the eigenvalues of the system:
(1.1) y'+ A-qx)}y =0, 0<x<m,
(1.2) y(0) = y(w) = 0,

where q(x) is a real, continuous function on the interval.

f N\ =n (n=0,1,...), then qg(x)=0."

The second important step in the general development of the
theory was made by G. Borg in 1945 [2, p. 1-98]. His main result is:

"let KO’ Kl’ ..., denote the eigenvalues of Equation (1.1)

under the boundary conditions, (h and H are finite,

real numbers),

(1.3) y'(0) - hy(0) = 0
(1.4) y'(w) + Hy(xw) = 0,
and let L L be the corresponding eigenvalues of

(1.1) under the boundary conditions (1.4) and



(1.5) y'(0) - h,y(0) = 0, (h, # h).

Then the sequences {)\n} and {p.n}, {(n=0,1,...),
uniquely determine the function g(x) and the numbers

h, h and H."

l’
In 1950, V. Marchenko made the next important advance in the

theory by showing that if the spectral function of (1.0)-(1.0") (or

(1.0")) is given, then q(x) and the constant(s) h (or h and H)

are unambiguously determined [7].

In 1951 Gelfand and Levitan presented the first effective method

for constructing q(x) of (1.0)-(1.0") (or (1.0")) from its spectral
function, as well as giving necessary and sufficient conditions for a
monotonic function p(\) to be the spectral function of (1.0)-(1.0")
(or (1.0")).

In 1964 Levitan and Gasymov [6, p. 1-63] published a paper
which refines the 1951 paper of Gelfand and Levitan and also attains
a new result for a variation of boundary conditions. A brief synopsis

of this work will be presented in Appendix C.

1.3 Scope

In determining q(x) of the system (1.0)-(1.0') or (1.0") from
the spectral function p(\) by means of the Gelfand-Levitan theory,

it is necessary to determine the function K(x,t) and its derivative




dK(x, x)/dx ([4] or [6]), for

qix) = + 2 dX(x, x) ,
dx
where
, x
K(x, t) + F(x, t) +§ F(s,t)K(x,s)ds = 0, 0 <t <x.
' 0
N
F(x,t) = lim y cos NAx cos NAtdo{\),
N-—*>0w _© ’
and

p(X\), X <O
a(\) =
(\) - ;?;wfx » A>0

Accordingly, in Chapters II and III algorithms are constructed.
for solving K and dK/dx numerically.  In Chapter IV, the sig-
nificance of t};is theory is discussed. In particular, an application of
the theory is given in 4.1 which is relevant to the field of medicine, i.e,
an indirect method of determining the elasticity of a flexible tube is sug-
gested., This example is indicative of the truly diverse applicability
of this theory. In 4.2, applications of the theory to various types of
problems will be indicated, and in 4.3 the interrelationships between
the physical systems of Section 4. 2 and the Gelfand-Levitan theory
are explicitly given. For the inverse problem on [0, w], it is shown
'in Chapter V, that if--for sufficiently large N and appropriate

growth conditions--the first N eigenvalues )\i and normalizing



constants a, (ai = §ﬂ¢i (x)dx) are known, meaningful results can
be derived. In Appe?qdix A, the integral equation of Chapter II is

solved by various iterative methods. In Appendix B, a brief synop-
sis of the theory of Kantorovich, upon which Chapters II and III are

based, is presented. In Appendix C, a brief synopsis of the Gelfand-

Levitan theory is given.



II. ALGORITHM FOR K(x,t)

2.0 Introduction

In this chapter an algorithm is developed for numerically de-

termining the solution Kf(s,t) of the integral equation

: s

(2.0) K(s, t) + F(s.t) +§ F(x, t)K(s,x)dx = 0, 0<t<s <R <,
0

in which F is a given continuous function on 0 <t <s <R. With-

in the framework of the Gelfand-Levitan theory, F is even abso-
lutely continuous in both variables and K 1is as smooth as F (see
[4] or [6]). Results of this chapter are based upon Kantorovich's
general theory of approximation methods [5].

The most important result to be developed in this chapter, for

our purposes, is as follows:

For a given ¢ >0, there exists an equipartition A1‘I of

[O,R] such that for each r, 0<s <r <R, there exists a readily

~n
constructed continuous, piecewise differentiable function Kr such

that |K(r,s) - I'\{l;l(s)l <e, 0<s<r, for each equipartition A

of [0,r], providing the partition A  is at least as fine as the
o1 ‘ n

partition An; if, in addition, F of Equation (2.0) satisfies a

Lipschitz condition in each variable, then




K(r,s) = ’I\{)I;(s) + 0O(aA),

providing the equipartition A of [0,r] is atleast as fine as the

equipartition A,.m of [0,R], where & denotes the length of the

subpartitions of &

m’

The procedure followed in Sections 2.2 and 2.3 in developing an
algorithm for K of Equation (2.0) is briefly sketched in Section
2.1. Sufficient conditions for constructing an algorithm for Kf(s,t)
of Equation (2. 0) for fixed s are developed in Section 2.2. Then
based upon Section 2. 2, the results of this chapter are developed in

.Section 2.3.

2.1 Kantorovich Approach

%
Let x({r,s) be the solution of

r
(2.1) x(r, s) +S‘ h(s, t)x(r, t)dt = y(r,s), for 0 <s <r <R;
0

(or equivalently)

(2. 1) er(s) = xr(s) + er(s) = yr(s)

in the Banach Space Xr of real continuous functions on [0, r].
n
Now suppose there exists a linear transformation ¢ that maps

Equation (2. 1) of Xr into the system



n
2.2 + ; = , j=1,2,...,n,
(2.2) xr(tj) ZAh(tJ. t )% () Yr(tj) J n

k=1
of the n~-dimensional vector space i: In order to determine

whether the solution (if it exists) of Equation (2. 2) satisfactorily
approximates the solution of (2. 1), it is necessary to answer ques-
tions of the following type:
1. Is the "reduced" linear system (2.2) of algebraic equations
uniquely solvable ?
2. If (2.2) is uniquely solvable, then to what degree of accuracy
does its solution actually represent the solution of Equation
(2.1)?
3. For a given € > 0,’ is it possible to determine a linear
system of equations (i.e., a system (2. 2)) such that its solu-
tion does not vary from the exact solution of Equation (2. 1)
by more than € uniformly?
Questions of this type are readily answered within the Kantorovich
theory under rather general conditions. Consequently, it will be
necessary to familiarize the reader somewhat with the Kantorovich.
framework, and secondly to show how this theory ties in with the par-
ticular problem under consideration.
First, with respect to the Kantorovich framework, suppose -

. . . . Ih
a linear operation Pn projecting Xr on to X. {(a complete



10

2 ~n
subspace of Xr) > Pn = Pn. In the space Xr’ consider the
equation

(2.1") % (s) + ﬁ?‘;r(s) = P_y_(s),

~ ~.
where H 1is a linear operator on X:. If the following conditions

are satisfied Equation (2.1') and its solution gfj will be referred to
as the approximate equation and solution, respectively, of Equation
(2.1).
[a %4
I. (Condition that H and H be neighboring operations)

For every X ef)\(Jn,
T T
~ N/,
IP Bx_ - Hx_| <n|%_|l-
II. (Condition for elements of the form Hx, x € Xr, to be

[aY%
approximated by elements of X:) For every x ¢ Xr’}

ge%J: o
lEx - ]| <= =]

III. (Condition for close approximation of Y, of Equation

nJ

~ n
(2.1) F- §. X2 >
by, - .0 <nly 1

where 1m_, may be dependent on V. (see Kantorovich [5]).

2




11
If these conditions are satisfied, questions of the type mentioned on
page 9 are readily resolved [5]).
Secondly, with respect to the system under consideration (i.e.,

Equation (2.1) of Xr and (2.2) of 3(-:), suppose there exists a

n . . n n .
subspace Xr of Xr isomorphic to X , where 20. is the
T ’

~ —_—
function mapping XI; isomorphically onto XI; and an; is a lin-
ear extension of ?0 I; mapping X, onto 5(-: such that

qon =@ Pn- Therefore,

n-1n

pn = ((pO, r) b

In view of the isomorphism between %/? and -)?:, Equation (2. 1")

. . . . n .
can be transformed into an equivalent equation in Xr (and vice

n-1l—

versa). This is accomplished by substituting ;r = ((po r) X in
(2.1"), and applying the operation ?0 : to both sides.
- no n -1l—
x . toy Hleg ) % =e4P v,
Letting
oy n n -1

Hence, the Kantorovich conditions on page 10 can be expressed in

terms of the system under consideration (i.e., Equation (2. 1) of Xr
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and (2.2) of _)E:) by means of the mapping functions (p: and

2 ® Therefore, under appropriate conditions (see page 10) involv-

) T
ing i:, Xr’ S{J:, the mapping functions (p:, (pO,:’ and the linear
operator H of Equation (2.1) it is possible to answer all questions
of the type stated on page 9 (see Kantorovich [5]). Consequently, in
order to satisfactorily approximate the solution of Equation (2. 0), it
is sufficient to properly construct mapping functions and spaces in
the above context such that all conditions of the Kantorovich theory

are satisfied. In Section 2.2, this is accomplished for the solution

K(s,t) of Equation (2.0) for fixed s.

2.2 Algorithm Development

Mappings and spaces are constructed in this section for K(s, t)
of Equation (2. 0) for fixed s such that the Kantorovich theory is
applicable.

Let An(r) = {Ai}li’l_1 be an equipartition of [0,r], where

r
= - == = ) = 1) s » 11,
o= el <s<Tpomiom =TT 0 2 n
and A(= —:I) is the length of the interval &, i=1,...,n. Let 1:i
be the midpoint of 8 (i=1,...,n). Transform Equation (2.1)

x_(s) + Hx_(s) = y_(s)

into
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n

(2.2) xr(tj) + Z Ah(tj, tk)xr(tk) = yr(tj), (j=1,2,...,n),
k=1

by requiring that Equation (2. 1) be satisfied at the points ti and

r
that the integral S z(t)dt be replaced by the finite sum

0

n n

Z z(tk)Ak(= Z z(tk)A).
k=1 k=1

Equation (2.2) may be expressed in the form:

—I-(n; =; +ﬁn; =qany )
rr T ror T
where
n__ , oh
qaryr - (Yr(tl)’ Yr(tZ)’ U ’Yr(tn)) ¢ Xr
and
Ah(tl, tl) ... Ah(tl, tri);
ah- Ah(tz,tl)
T .
h(t_,t;) ... ah(t .t )

o~n
Definition. For the given equipartition 4 (r) = {Ai}?’ let X  bea

b f X h that if ¥ ¢X°, then X()=¢§
subspace o , suc at i x eX, en X | k)— K’

~o n-1l-— - >h _
xr—((pO,r) x_ where xr-(gl,gz,...,gh)exr and .xr(t)~§l

for t eAl.
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on n
Hence ¢ maps %: isomorphically onto X , and ¢, isa

n

0, r by

linear extension of 20 : In brief then, the questions introduced on
. o1 rgn

page 9 will be resolved within the framework of the spaces Xr’ B

and 3?:, where Xr is the Banach space of continuous functions

n . . .
on [0, r], % a Banach space of continuous functions linear on each
r

. =n . . on
subinterval A., and X, a vector space isomorphic to 'Xr-
i r

Diagrammatically
X n
r ¢
\
~n -_—n
X -~y X
T n T
%0, r
n . . . Snoo. . rn
where P9 p 182 function mapping Xr isomorphically onto Xr’

n . . . ! .
and ¢ is a linear extension of (porrl mapping Xr onto Xr

For the given equipartition An(r) of [0,r] (with the length

of Ai =a,i=1,...,n), let Pn be a projection operator mapping
I 2
X onto X, P =P.
r r n n
~
gt L Y =P Yy
rr T rr n’r

sk
with solution §: ,  will be called the approximate equation and

solution, respectively, of
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if
. A ~ ~n
I. There exists an nr such that for each X € Xr'
M A
P H% - H % || <n )% |l
n r rr’' — r''r
II. There exists an nl ? such that for each x ¢ Xr, there
o jed A
exists an ¥ ¢ X such that |Hx - ;,(n” <n =1l
r r r r' — 1,r r
III. For each V. € Xr;‘ there exists a '}}': € &’: such that
~n A A
- < .
| Y. Yr“ =N . “Yr”’ where N, . may depend on vy
~n ~n
It should be noted that Hr is a linear operator on Xr’
and if xe€X_ or X, then x| = max |x(s)|, and
= r r’ =2
- 0<s<r
i xe X:, then |x|] = max |§i|, where
i=l,...,n
X = (gl,gz, ...,gn).
In accordance with the Kantorovich theory, if 1‘]?, n : and
A -1
n, ., can be made sufficiently small, if K exists, and if the

e

-~ R .
three conditions (I, II, III) are satisfied, then x: (the approxi-

mate solution, see page 14) exists [5]. Furthermore, if T]?, 1‘]1 ?
A
and 1‘]2 , converge to-zeroas n —™ % in An(r) (or equivalently,

%k
A —~0), the equipartition of [0,r], then " x

- ,;n" —- 0 as
r
*
n— 0, where x, is the solution of er =Y, [5].

‘Since the problem of interest directly involves 3(-: rather

~n
than Xr’ it will be necessary to interpret Condition I in the setting

n

of Xr. To this end, we proceed as follows:
- n _ n ' _ n-1ln .
Writing ¢ .= 9, rPn' we see that Pn = ((pO, r) . Since

~1 . ~non ) .n _Tn
x + err = Pnyr, there exists an X, ¢ Xr such that
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Al n-l—n n n~n n-1l_n n
) + X
Xr WO, r) xr x ('00, Hr(q’O, r) Xr (pryr
Hence
-n =n—n n -n n™~n n -1
+ H = ,
xr rxr qaryr 80 Hr q00, rHr(q’O, r)

If we replace Condition I by the Condition

n_~n T-n nen -
o [ H e RO <A
A n'1 -4
then by letting n, s Il ¢ I n. Condition I is satisfied, for
, T

~J -—1 ~N e
2 %2 = 2 = Ny, ™ ope? - BRI
_ “( n -1 n en ( n -lﬁn n;zn”
- q00, ) @ xr - q00, ) rorr
'-1 ~ - ~
<oy M IoED - T2 0
-1 n A n
<lltog M HIRAET < 2 IR0

In summary we have the following:

r
Problem. Kx(r,s) = x(r, s) +S\ h(t, s)x(r, t)dt = y(r, s);
0

(equivalently) er = xr(s) + er(s) = yr(s).
Domain. 0 <s <r <R.

Assumption. r fixed (0 <r <R) and equipartition An(r) = {Ai}rll
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of [O,r]; & = length of Ai’ i=1,2,...,n.

Reduced Problem (Algebraic System). ¢t the midpoint of A

k k’

x(r,t,) + ZAh(t., t )x(r,t;) = y(r,t.), (3=1,2,...,n);
J ik A )
k
~~n-—n —n  —n—n -,
i 1 = =
(equivalently) err X + err Y,
where
xPeX?, ¥y ex™
r T T r
ﬁ: : An nxn matrix whose element in the i-th row,
j-th column is of the form Ah(tj, ti).
Xr : Banach Space of continuous functions on [0, r].
Xr : Banach Space of continuous functions linear on each inter-
val Ai' i=1,2,...,n, such that if ;e;{:, then
n-1l—

%) =, where X=(pg )7 % x=(E.6,f) X,

o ,
and x(t)=§§1 for tea,-

Lemma 1. For each equipartition An(r) = {Ai}ll1 of [0,r] there

. —A ~
exists an MN_ = rwr(é) such that for each x €¢X
r t 2 r by

n .~ T n A
lo B -HD o 7% I <nlI%_ Il

where w:(%) is the modulus of t-continuity of hi(t, s):
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A
w:(%) = sup {|h(t+6,5)-h(t,s)|, 0<s<r, 0<t<r, |8] <3 };

n n
A is the length of the interval Ai’ i=1,2,...,n; h, . %o H,
and E: are discussed on page 17.
Proof. Suppose 2z is a function in Xr’ whose modulus of con-
. . v SN
tinuity does not exceed w(6). Let x ¢ Xr'

‘yrz(t)gr(t)dt - ZAz(tk)Q’:r(tk)
0 k ,

~ ~ 1 (o
= !Zf [z(t)-z(tk)]xr(t)dt + Az[i—j‘ xr(t)dt~§r(tk)]z(tk)I,ZS‘xr(t)dt
k 2k K A

2k
= xr(tk).
i nJ
=> lj; z(t)';’;r(t)dt - z Az(tk)xr(tk)l

k

= | 25‘ [Z(t)-z(tk)]Qr(t)dtl < rw(%)“;r”.
kK %k

Let z(t)=h(tj,t) =>

x|l

r
o ~ r, A
lj; bt OF ()dt - ZAh(tj,tk)xr(tkH < rwt(-z-)llx
K

r

- —A
IR - HR) % I < TAIR

il
\



Lemma 2. Given an equipartition An(r) = {Ai}li1 of [0,r], for
. N NMn

each x €¢X there exists an x €X such that

r r r r

A
e % || <ny 2 [, where

w:(A) = sup {|h(t, s+8)-h(t,s)|, 0<t<r, 0<s<r, |&] <a},

r
n. %< ret(a), Hx (s) 51 h(t, s)x (t)dt,
S I r

l, r

0
and A is the length of Ai, i=12,...,n.
o~ ~I ~o. .
Proof. Suppose z(s) e Xr; let Z(s) € Xr’ where 2z 1is a piece-
wise linear function whose values at the points Ty Toree s (i.e.,
T Tl = i, ™o = 0), coincide with the corresponding values of the
function z.
Suppose Tj <s -STj+1’ j=1,2,...,n-1. Therefore
|a(s)-8(e)| = |2(s) - [(r, | -s)a(r,) + (s-7)z(r , D] |
jtl j j jt1’" A

1
_<_z[|(-rj+l—s)(z(s)-z(-rj)| + ‘(s--rj)(z(s)~z(-rj+1)|] )

Since z(s) = [(T.,,-8s)z(s) + (S—TJ.)Z(S)]'i',

j+1

{T

|z(s)-2(s)| _<_1A -'rj)w(A\) = wl(A),

j+1
where w(A) = the modulus of continuity of z(s).

If 0<s <-T

-~ — 1,

then

19
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|z(s)-2(s)| = |z(s)—z(’r1)| <w(a).

Consider z(s) - z(s"), for 2z = Hx, x ¢ Xr’

T
| z(s)-z(s")| 55 |h(s, t) - h(s', t)] | x(t)|dt.
0
Therefore

|2(s)-2(s)| <ol (8)]x],

which implies for arbitrary s,

|z(s)—'§(s)| < rw:(A)"x“ for z. = Hx, x ¢ Xr
A A r
=> "er_";" =m, r"Xr |, where N, = rels)

Lemma 3. Given an equipartition An(r) = {Ai}l; of [0, r], for

~
each V. € Xr there exists a ¥ ¢ X: such that

~ A
by, 50 < 2y Il o<z <R,
where
A 1 —(r)
.. = w (A)v
P
=(r) ,\ -
w ' (a) = sup {|y(r, s+8)-y(r, s)|, 0<s <r, |6|§A},
and A is the length of the partition Y i=1,2,...,n.

Proof. In the proof of Lemma 2, it was shown that for each 1z e Xr’

nJ
there exists a geX: such that |z(s)—;(s)| _Sw(A), where w was
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A 1 -
the modulus of continuity of z. By letting M, .~ mw r(A)

(r)

implies that Iy(s)-'}\r,(s)| < w T a) = n, :“Y” for arbitrary s.

A
Hence, [y-$1 < n, “lyll.
2.3 Results
nl
Theorem 2.1. There exists an equipartition . Ap = {A'i}l of

[0, R] such that for each equipartition An(r) = {Ai}lil of [0, r],

0 <r <R, atleastas fine as A“, (i.e., A<A)

—on—n —-n
x -
r r T

is uniquely solvable for all ;: € 3(—:, also,

S1— =
Hx(r,s)—(cpo’ :) X:” <P, | %z, s)|,

where A' is the length of A'i, i=1,2,...,n; A is the length of

A, i=1,2,...,n;, P is defined below, and the remaining notation

is discussed on page 17.

A A
P o= (1+ey7l ——————-————(Hnl’R)Ml +e 84 MlM(Hnl’R))
R’ "R =4 R 1.=A ’

! !

where M > sup {|K |} M, > sup K[}
0<r <R 0<r <R

_—-A.-

—A A A
1 ,
ag = [ngQ+n o) +n oMM
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—A A — A
= + M.
‘R M,rRT "2,R
—A —A .
Proof of Theorems 1 and 2. T]r < T]R, for 0 <r <R, since
—A r, A A A .
= ). ) < ’ < < 4

1‘]r rwt(z) Also nl,r—-nl,R for 0<r <R since

A
mn r rw:(A)- In applying the Kantorovich theory [5], it is neces-

sary to make qf <1, where

A -1 n

g = [nfaen, D4y Zleg D7 e kINIK -
Therefore

A —A A A

< 1 .

q. __(nR( +“1,R) + nl’RM)Ml
Let

a2 = (mla+ ¥ M)M
therefore

A =A

< < <
9. = 49y for 0<r <R
1
Let AI~L = {A'l}li1 be an equipartition of [0,R], with the length
o= !
of the subinterval A‘,1= A, {(i=1,2,...,n), such that ag < 1.
= !
Therefore g <1 for AIJ-:>
-...-nl _.nl N —
EKr*r VR

e X" (see Appendix B), and all finer equi-

is solvable for all ;R R
—n(aA -—n(A -
partitions of [0, R]. Hence [K ; p) D yr] is solvable
- n(a ;)

for all yreXr M, where A is an equipartition of [0, r] at
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least as fine as A“.

Let

—

w(a) = sup {|y(r, s+8) -y(r, s)|, 0<s<r<R, | 6] <a}
s, T
and

”y”min = min { max (|y(r,s)|), deleting those valuse of r
0<r<R 0<s<r

such that r € (r0~ 5, r0+6), where 6 is a given,

,8)=20

positive, aribtrarily small number and y(r0

for 0<s <r

<sZry which implies, x (r,,s), the solu-

0

tion of the equation Kx(r ., s) = y(ro, s), 0 <s <r is

0 0’

identically zero.

In particular, since x(r,s) is a continuous function, for a given

e >0, there existsa & >0 suchthat [x(r,s)| <e for |r-r0] <3,

0 <s <r. We will refer to this deleted set as the "exceptional set."
Therefore

n A:‘:(I‘)(A) o B w (A) —q A

2, r Hyr(s)” 2, r — “y”min 2, R

providing r¢ exceptionalsetfor 0 <r <R.

Noting that the two theorems, plus the corollary and theorems to fol-
low in this section must be qualified with respect to the "exceptional

set."
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In accordance with the Kantorovich Theory [5], (see Appendix B), for
a given equipartition 4 (r) = {Ai}lil of [0,r], with A the length
Of Ai,i:lyzy""n9
l=—=n-1n

®Y7H +ELOH o, DT R D ekl

- N AL —A n -1
pr ‘N (1+Er)nr“(¢0, r)

A

r ¢ (Exceptional set).
r— L, r

A A, — A
tn, MKl <y g+, R

therefore

-1 -1
—n - A —n
2 ESOED kD

]
Suppose 4 = {A{}’;1 is the equipartition of [0,R] with the
length of the subinterval Ai' =a' i=1,2,...,n', and that An(l‘)

is at least as fine as Ap’ i.e., o <4A. Through use of the

Kantorovich Theory (see Appendix B), we directly obtain the following

—n, -1
estimate of (K:) :

T 1. o® 1=A ’
_qr -qR
IK[ <M, for 0<r <R
—A = A ) A Al
Also, ER_SER since nl,R—-nl,R

Therefore
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A
U U 5 +?EA'(1+(””1,R’M1M)
r,a SUTER MR T =40 R T=ar )

l-qp -q9p
= =l — —
since g <qR => Pr Apr. .
n-1— — ==
lx,(e)-tog D7 x Il <P =l < Pyllx,|

from which Theorem (1) directly follows.

. -1- n-1l—
since x|l <lleg D7 x N+ x -(og D7

n

-1— === -1—- n-l— =
Ix,-to, 7 5 <B, M0y, D7+ Ik tog DR IE, -

Therefore ’
n _1._. = = n_l-—
- - <
(% -(eg, )7 x)1-B ) <P I
By selecting the equipartition App such that PA,, <1, Theorem

(2) directly follows.

Corollary. Under the hypothesis of Theorem 2. lor 2.2

=11,
M,y I

=A
1-
ir

-1-
g )7 %Il < (14my )

1,R



Proof. Since
—=n—n _—n _
err - yr B (pryr
and
- —_—n _1—
xn - (Kn) n ’
r r r
n-l—n n-l—n-1-—n
((pO, r) xr ((pO, r) (Kr) Yr
Therefore
--n -1
12 < H&ED Iy
where A
—n-1, _ M gIM
T3l =
l1-q
R
_n>:<
Theorem 2.3. For the solution X of
—n--n n
= , < <R, < <r,
err ¢, 0<r <R 0<s<r

= <r <R,
er(s) yr(s), 0<r <R
*
whose solution is xr,
. -1 n¥,
lim “x :po r X = 0;
n —o

in addition, there exist constants 5, 61, and

Q

2

such that

26
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Al Al
R 1'1,R

- 1-m3*
x|

ok n —— — AI
=, (s)-(oy ) =, N R

where the symbols have exactly the same meaning as given in The-

orem 2.1.

Proof. From the results of Theorem 2.1, these results readily fol-

. A A
low since n_ >0 as A — 0,

R nl,R_’O as A 0, and

A
T]Z’ R 0 as A 0
Since the kernel h(s,t) of concern is actually the function
F(s,t) of Spectral theory, which is at least absolutely continuous in
each variable, let us now assume h(s,t) is absolutely continuous

in each variable. Furthermore, let us assume h(s,t) is lipschit-

zian in each variable This implies that there exists an a such that

|h(s+o, t)-h(s, t)| <a|o|, forall s,t in [0,R].

Ih(S,t'l'O')—h(S,t)‘_(.aIO'I, for all s,t in [O,R].

R
w_(8) < o] 8]

R —A A A

< = — . s
wt(é)_a|6| >nR§Ra2, nl’RfRaA

and
- A w(A)
ul = < BaA
2, H -
R ”Y min )

for partition Ap with the length of its subintervals Ai = A,

Theorem 2.4. If in addition to the hypothesis of Theorem 2.3, the




kernel h(s,t)
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satisfies a lipschitz condition in each variable, then

Ixtr, 9)-%21] = Oa)

for all r suchthat 0 < r <R providing the equipartition is at

least as fine as

Proof. B .

A
B
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III. . ALGORITHM FOR q(x)

3.0 Definition of Problem

In determining q(x) of the Sturm-Liouville differential equa-

tion
(3.0) y" - qglx)y +A\y =0, 0<x <R,

from its spectral function, it has been shown by Gelfand-Levitan (see

[4] or [6]) that

dK(x, x)

q(X) = +2 dx )

where

X
K(x, t) + F(x, t) +5 F(s, t)K(x, s)ds = 0, 0<t<x<R.
0
In this chapter an algorithm for numerically solving for
dK(x,x)/dx is developed, where
* K

+ F(x, x)K(x, x) +51 F(s,x)-g?(x,s)dx = 0.
0

dK(x, x) . dF(x, x)
dx dx

(3. 1)

This algorithm is based primarily upon Chapter II. However, this

time it will be necessary to assume that F of Equation (2.0) is in
1 s 0

C rather than justin C .

The main result to be developed in this chapter is the following:
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Given € >0, there exists an equipartition ATITI of [0, R]

such that for each x, 0 <x <R, there exists a readily constructed

. . . . . . n
continuous, piecewise differentiable function Gx('s) on 0<s <x

such that

|dK(x,x2 - Gn(x)l <
dx X

providing the equipartition An of [0,x] associated with Gz(s)
is at least as fine as A

In Section 3.1, it is shown to be sufficient to develop algorithms
for 8K/0x and 8K/8t rather than for dKi,x /dx of Equation (3.1).
In Sections 3.2 and 3.3 algorithms are developed for 9K/d0t and
8K/9x, respectively, based primarily upon Chapter II. In Section
3.4 the results of this chapter are obtained by combining the results

of Sections 3.2 and 3.3.

3.1 Simplification

Since
dK(x,t) _  9K(x,t) 8K dt _
ax - Toax ot ax) 2lome t= i),
it follows that
d .4 _ (2K | 9K
ax K000 = [gp (Ko ] = G5+ 50 ey

Therefore, determining dK(x,x)/dx of Equation (3. 1) reduces to
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determining 9K/ox| __ and 0K/at|,_ .

Differentiating Equation (2. 0) yields:

OK(x,t) _  9F(x,t) * 9F(s, t)
(3.2) 5t = - Tt -5;) 5t K(x, s)}ds,
and
X
OK(x,t)  9F(x,t) IK(x, s)
(3‘ 3) 8X - = 8X - F(X’ t)K(X’ X) - ‘S\ F(S’ t) 8X ds-

0

It follows directly that 8K/8t of Equation (3.2) is unique and con-
tinuous. Also, since O0F/3x is continuous by hypothesis, it fol-
lows from the spectral theory [6, p. 14] that 8K/8x is unique and

continuous.

3.2 Algorithm for 9K/ot

x®
Let 8K /8t be the unique solution of Equation (3.2).

* X
0K (x,t) 9F(x,t) S‘ OF(s,t)  *
at TT e TJ) et K (x, s)ds.

_ dF(x,t) X 9F(s,t), * o nk
= - = _5:) S (K (x,8)-K_ (s))ds

X
5k
SR
0

. For fixed x, let

X .
K ) nsx
Kn(t) = AF(x, t _‘y -—-8FK (s)ds,
X ot 0 ot x
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where Kz*(s) is the approximate solution of K(x,s) of Equation
(2.0), for fixed x, 0 <s <x <R, as developed in Chapter II (see
page 7), and we denote the unique solution of Equation (2. 0) by K

Therefore,

aK’k ;{(\‘JJn* —j\x aF(S: t) ~n %k *® ds:
e M e

aK*( t) *
|-—.__2{_.’.._)_%;1(t) ljslM

= <t <x,
5t 4 82’ for 0 <t <x
where
X
9F (s,
M4= max S‘ I—%-(ts—9|ds.
0<t<x<R 70
Hence, for a given €, >0, there exists a continuous function

1
?\JJn ok
K (t) for each x, 0 <x <R, such that
% >x=

|3K*(x, £)

®n, ok
ot } Kx(t) | <¢

2’ - - 2 1
and

*
’aK »(X, t)

’f\\’ln 3
5t - K_(t) ]_<elM =€

4”2 ="=

In particular, for a given € > 0 there exists an equipartition

Ap of [0,R] such that for each equipartition An(x) of [0,x] at

least as fine as Ap a continuous piecewise differentiable function
~n Sk .
Kx(s) , 0 <s <x, canbe constructed (as shown in Chapter II) such

Jn sk
K| 0<t<x, and

b
that for each x, O<x§R, |K - <e
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5t - x(t)lfez, 0<t<x, 0<x<R, €Z=€1M4
3.3 Algorithm for 9K/0x
For Equation (3. 3)
(3.3) LY. B g ke - ny(s’ py 2B 2) g,

0

let G = 0K /0t denote its unique solution. Therefore

*  QF(x, t)

% X *
G - F(x, )K (x,x) -y F(s, t)G (x, s)ds.

ox 0
Fix x, let
“\n £ nnk % An
(3.4) G (t) = -F(x, t)[K (%, x)-K_ (x)] - F(s, t)G (s)ds.
X X 0 X
For fixed x, consider the equation:
(3.5 Gt = - 2E | pix, )% ‘YXF( G (s)d
. 5) x)—-ax- (x,)x(x) - s,)xs)s-

0

. ES N nk
In Equation (3.4), divide through by K (x,x) - Kx (x):

Gx(t) 1

— = - Flx,t) - —

X
¥ o , pype S‘ F(s,t)G_(s)ds.
K (X,X)~Kx (x) (K (x, x)-Kx(X)) 0

Noting that Equation (3->3) cannot be numerically solved directly for

9K /8x, since K(x,x) is typically unknown. Therefore
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. G (x,t):aK
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An
X Gx(s)

- pype = -F(x,t) -5‘ F(s, t)[ = Y Jds ,
K (x,%)-K, (x) 0 K (x,%)-K (x)

a%e)
X

However
X
‘K(x,t) = -F(x, t) -‘S‘ F(s, t)K(x, s)ds,
0
sk
for each fixed x, has the unique solution K (x,t). Hence,

An
G
X

o s = K (X, t)'

K (%, x)-KZ" (x)

s
Let 8:: denote the unique solution of Equation (3. 4) for the given

equipartition An(x) of [0,x]. Therefore for each x, there
An %
exists a unique function Gx(t) satisfying Equation (3. 4) for each
appropriate equipartition An(x) = {Ai}rl1 of [0,x] (ie., a <a',
S x®
see page 7); it will be assumed that K (x,x) # ,I\(Iz (x), for if
sk Sk n/
K (x,x) = f{: (t), then G(x,t) = G:(t) of (3.5). Hence, the follow-
ing analysis holds.

sk AN
For fixed x, consider G (x,t) - Gx(t), where

abs
-~

. is the solution of Equation (3. 3):

- OF(x, t) )

%
(3.3) G (x,t) ™

x sl
F(x, t)K*(x, x) - 5‘ F(s, t)G (x, s)ds;
0

sl

n’x
X

S X
(3. 4) aZ(t) = -F(x,t)[K*(x,x)-KZ*(x)] ‘S‘ F(s, )G™ (s)ds.

0
Therefore,
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X
b3 A * -0 n k A
G (x: t) - Gn(t) = _'QE - F(x: t)Kn(x) "S‘ F(x) t)[G "Gn]ds'
X Ox X 0 b'e
Let

~n %k ES /\n
Gx(t) G (x,t) - Gx(t).

Therefore réza\(t) is the unique solution of Equation (3.5):

& x sk
(3.5) A(J;n(t)* = _M_§n>' (x)F(x, t) —5 F(s,t)ﬂcj}n(s) ds.
X oOx X 0 b'e

We will now show that for a given €5 >0, there exists an equiparti-

tion a of [0,R] such that for each x,
B
. * ~n
(i.e., G -G || <¢5),

for all equipartitions of [0,x] at least as fine as A

frinty
Since
G_(t) :
Nn* - K (X, t):
K (x,x)-K (x)
X
n
Gx(t) o %
| —— — - K ()| <), 0<t<x
K (x, X)—KX(X)
Hence,

A ~ o % % % P
|G2(t)—Kz(t) (K (x, x)—ﬁz(x). ) |§ £ | K (x, x‘)-’I\{Jz x)|.

e
R

~n * ~ * 2
|GRe)-K (6K (%) KD )| < e

Therefore
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]8:&)] - li‘é:(t)*] 1K™ (x, x)-“ﬁ:(x)*] < 812.

l?;::(t)f _gelz +e1|fi:(t)*] - el(sl+i'f€2(t)*|).

For fixed x,

* n* ~Jn*
I -Gl <e e, + 1K1,

*
9K (x,t)

*
where G (x,t) = ™

is the solution of (3. 3):

X
0K (x,t) 3F(x,t)+5‘ Fis, t) 2B 8) 40 4 pia K (x, %) = 0,

ox ox 0 ox
~n . .
and Gx is the solution of (3. 5):

AF(x, t)

~n * va ~n
5% F(x, t)Kx(x) - F(s, t)GX(s)ds.

~nJ)
Gz(t) = -
0

From the above result, the assertion given on page 30 directly fol-

lows, since ”'I\{/::*”j | K(x, t)-hﬁ:*” + | K(x,t)}}, and e, isinde-

pendent of x.

0F(x, t)

*
Ox - F(x, t)K:(x) , Equation (3.5) can

By letting yx(t) = .

be written in the form:

~n X an
Gx(t) +S(‘) F(s, t)Gx(s)ds = yx(t).

This is the same type of integral equation whose numerical solution
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was considered in Chapter II; the only difference is that in Chapter II
we were primarily interested in the case where yx(t) = F(x,t);

whereas in this case

- IF(x, t) Nnp, |k
Y (B = - = - F(x, t)K_(x) -

Therefore, in order to apply the results of Chapter II to Equation
(3.5), it will be sufficient to show that the three conditions cited on
page 15 are satisfied. However, since the equations are the same
except for the nonhomogeneous term yx(t), it is sufficient to check
the conditions that involve yx(t). Therefore, it suffices to show that

for each yx(t) there exists a '}\rJX(t) such that

I YX'?')X“ = T'z,i” Yx”’ 0 <x <R, (see page 20).

Since

_ 9F(x,t) n, %
yx(t) = - T F(x, t)Kx(x) , ‘

which is continuous, the above condition is shown by following
exactly the same line of reasoning as presented in Chapter II on this
item.

Hence, for a given €4 >0, and a sufficiently fine equipartition

A of [0,R], for each equipartition A of [0,x], 0<x <R,

at least as fine as A , there exists a continuous piecewise differ-
m

. ~m*
entiable function GX on [0,x] such that




3.4 Results

For each fixed x:

£ %
9K (x,t) _ 9K (x,t) N¥n * &n  *
BK*( ) BK*( )  dn* ~
X, £) _ x, t n n, %
ox = ox - Gx (t)) + Gx(t)
Therefore, since
%
dx dx Ox ot

we obtain

* *
dK (x,t) * _ (0K (x,t) ®n *
dx ‘tzx'(K:(tHG:(t) )'t= T TR (0 ko

sk

0K on,  *
* (-5;: _Gx(t) )t=

3k
,dK (X, X)

’A\J‘n ~nk
I -(Kx(x)+Gx (x)| <M

o~k
4 +el(el+”Kx ”)fM

uniformly in %, providing for each x,
tion An(x) is at least as fine as both equipartitions

32 and & (see page 35), where
) M pag )

IF(x, t)_j‘ IF(x, t) g

% rop Nn *
I -K | <e; K (t)= - T

and

€

)
M

38

L3

t=x

= €

1

its associated equiparti-

(see page

()ds
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nJ nk

~
. . ¥ . .
Since KX is known, K is readily determined.  However,
X

I
G;l can only be obtained by solving the integral Equation (3.5).

As mentioned earlier, Equation (3.5) can be numerically solved

by the method developed in Chapter II. In this light, (see page 37),

for fixed x:

~ ok
’ % s AN K ok sk
I R - A RN (K IS A GY
X X ox X X
9K (x,t) Am, * 0K (x,t) ~n n, * Pm*
=5 - G, 0 | |7 -G () | +]|G () -G " ()]
BK*(X, t) onk n
I 9x _Gx (t)l <€1(€1+”le|)
~ N3k ’#Jm oK
|G -G ] <e,
For fixed x:
dK*(x t) Nn* ¥m, ok
| == - () + G e )
X X X
OK (x,t) oK (1) Ym, *
X, n* X, m
(==K, 0] + (7 7—-G_(® |
aK*(x, t) Tn % 9K(x, t) n ~nk = m*
| 5t - Kx(t)| | o - G ()| + |c:.x (£)-G_ (t)|

A%
< M4sl + sl(sl+ "K}r{l”) + €4

5M81+s4
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The results of Sections 3.2 and 3.3 were based upon the
assumptions that

(a) there does not exist an T such that F(ro, s) =0 for

0<s< T <R, and
(b) that there does not exist an X such that
BF(xo,t) ( ot o s o<t < <
o= - F Xy )Kxo(xo) = or <x, R

If (a) does not hold, one must proceed as in Chapter II (see page 23).
~m

If (b) does not hold, then in determining Gx the same type of

qualifications must be imposed as were imposed in constructing

~J
K;n under similar conditions in Chapter II (see page 15).
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IV. APPLICATION OF BASIC THEORY

4.0 Introductory Statement

The significance, in the sciences, of the inverse theory will be
indicated in this chapter. In Section 4.1 an application of the theory
is given, which is relevant to the field of medicine; in particular, an
indirect method of determining the elasticity of a flexible tube is sug-
gested. In section 4.2 the application of the inverse theory to a few
problems of mathematical physics is indicated, and in Section 4.3
the interrelationships between the equations describing the systems

of Section 4.2 and the inverse theory are given.

4.1 Specific Application

Consider a one-dimensional flow through a slightly flexible tube
of an inviscid liquid with constant density and velocity v(x,t}), which
is constant over each cross sectional area. Let F(x,t) denote the
total flow through the cross section, and f(x,t) the cross sectional
area. Furthermore, assume that f£(x,t) is a linear function of the

pressure P(x,t), i.e.,

f(x, t) = f0(1+k(x)P(x, t)) = fo + fok(x)P(x, t), |

where k(x) 1is the proportionality constant of elasticity.
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In this section it will be assumed that all variables are suffi-
ciently smooth, in particular, twice continuously differentiable.
A first order linearized theory will be assumed, in particular,

with respect to the equation

F(x, t) = pvix, t)f(x,t) = pvfo + pvfok(x)P(x, t),
the magnitude of the second order term vP will be assumed to be

negligible in comparison to the magnitude of v. Hence,

F(x,t) = pvfo.

By conservation of mass

OF of _

where H(x,t) = source density (fluid mass added per unit length per
unit timej.
ov oP _
pfO Y + pfok(x) 5t - H(x, t)-

. v 9P  H
4. O X pkE = =
(4.0) ax T X gt Pt

By conservation of momentum (one dimensional Euler Equation),
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Disregarding the second order term v g—:g implies

' 8P . 9
(4.1) -5;+pgzi:o.

From Equations (4. 0)-(4.1) it follows that

2
2] 1 v 0 v n
4. — (=)~ -H=
(4.2) ox kox) P 2 "H=O
ot
where
~Noo9  H
H=5x Grx)

The elasticity of the tube is expressed by the function k(x).
Therefore, the problem of determining the elasticity by indirect
means entails determining the function k(x) by indirect means. The
function k(x) can be determined by indirect means through utiliza-
tion of the Inverse Sturm- Liouville Theory. In this regard, let us
consider a specific example.

Now suppose we wish to determine k(x) for a flexible tube of
length w, where the end (x = 0) is closed and the liquid flows
from the other end (x = w) into a reservoir. Also, let the source
density H(x,t) be of the form G(x) sinwt. Therefore, from

Equation (4. 2), the flow in this tube is described by the equation

1
4. = i
(4.3) pvtt (—=v ) + J(x) sin wt

where
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_d ., G(x)
Ix) = d.x(fopk(x) )
At x = ¢,
(4. 4) v(0,t) = 0.

It will be assumed that an incremental change in the internal

pressure ofthe reservoir is proportional to an incremental change in

the volume of the reservoir (ire., dP = CdV ). Hence,
(volume)
dP(mw, t)
—2d = f C:(mt),
dt 0Cy(mt)
since

dv
(volume) _
@ C vy
0

Therefore, by Equation (4. 0),

vx(n', t) + hv(w, t) = 0,
where

h = k(n)Cfo.
Suppose v(x,t) = U(x) sin wt, then Equation (4.3) reduces to

1
(4.5) (EU‘)' +prU +J=0.

(4.6) U(0) = 0, U'w) + hU(w) = 0.

For (4.5)-(4.6) there exists the eigenvalues {)\i}zo and the normal-

. — 0
ized real-valued eigenfunctions {cp1 (x) }0 such that




45

1—' ! " = = ] - -
() thpe,(x) = 0, ¢(0) =0, ¢ lm)+ he.(m) = 0.
J(x) = Pzai;i(X), a, = (J, 9,)-

U(x) = z b_1<pi(x).

!

N\ ;'i(x 2 - -
Zbi = Zbi“’i(x) te Zai“’i(x) =0

Therefore,
Z [b,(-X,p+w’p) +a.p]5,(x) = 0.
i i i i
24
=> b, = .
i )\._wZ
i
(3. ¢,)9,(x)
N -w
i
Therefore,

[¢.¢]

(J’;i);i(x) sin wt
vix, t) = Z 5 .
i 0 )\i-w

Noting that this mathematical solution is singular at w= )\“i A=031,...
as a result of linearizing the equations of the actual physical system,

By varying the frequency w of the driver mechanism it is
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possible to determine the resonances of the system (in particular,
the eigenvalues )\;). Exactly how this example ties into the Gelfand-
Levitan Theory will be clarified in 4.3.
This example is applicable to thve fieid. of medicine, in particu-
lar, in determining indirectly the elasticity of an artery, which is a
measure of the degree of arteriosclerosis.

4.2 Indicated Applicability

Now let us briefly look at a few additional mathematical models,

which describe numerous problems of mathematical physics, to which

the Gelfand-Levitan Theory can be applied.

Determining f(x) (assuming feCO) of the equation

(4.7) Uxx = Utt + f(x)U(x, t), (with suitable boundary conditions),

reduces, by separation of variables (U = X(x)T(t)), to detyermining

f(x) of the differential equation
(4.8) X'"(x) - f(x)X+ X\ X =0, (with appropriate boundary conditions},

f(x) can be determined, for example, if in addition to knowing the
eigenvalues xi (i=0,1,2,... )-, the constants < and di
(i=0,1,2,.. -}l/can be determined (see Gelfand and Levitan, [4] or

2
[6]). where " c; 253)1 (§)dE, and gi's are the eigenfunctions such

1/

a, ofreferences [4] and [6] is determined from c, and d..
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that ?;,1(0) = d.l, or if, in addition to knowing the eigenvalues )\i
(i=0,1,...) under one set of boundary conditions, one boundary
condition can be changed and the eigenvalues By of the altered sys-

tem determined (Theorem C8, Appendix C).

Determining p(x) (assuming p €C") of
(4.9) P (x)th = W , (with suitable boundary conditions),
XX
can be reduced (by separation of variables, W = XT) to determining

p(x) of the differential equation
(4.10) X"+ N p X(x) =0, (with appropriate boundary conditions},

which, in turn, can be transformed into a differential equation of the

form

(4.11) y'(t) - q(t)y(t) + Ny(t) = 0,

to which the Gelfand-Levitan Theory is applicable. For example,
p(x) of (4.9) can be determined indirectly by means of the Gelfand-
Levitan Theory if, in addition to knowing the eigenvalues X.l of

(4.10), p(0), p'(0),

1 =51p1/2(§)d§, p eCZ, Ll)n(O), and Y, (n=201,2,...)

can be determined, where Y, = ‘S‘p-.pnz, and Ll)n'S are a set of
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eigenfunctions of (4.10), or if addition to knowing the eigenvalues )\i
| 1/2 2 s .
of (4.10), p(0), p'(0), £ =1\p and p €C, itis possible to
change one boundary condition and determine the new setof eigenvaiues
for the system.
2
Similarly, for example, p(x) (assuming p €C ) of the

equations

p(x)U_=U__, U, = (p(x)U ) , etc.

t XX X'X

can be determined indirectly by means of the Gelfand-Levitan Theory.

4.3 Interrelationships Between Indicated Systems and
Basic Theory

The physical systems as described by the above equations will
now be explicitly connected to the Gelfand-Levitan Theory.

The differential equation

(4.12) X"+ Np(x)X(x) =0, 0<x<m,

with the boundary conditions

(4.13) X'(0) + hX(0) = 0, X'(w) + HX(w) = 0,
(4.12)-(4.13), can be reduced to the system:

(4.14) Z"(r) + qr)Z(r) + NZ(r) = 0, 0<r <¢{,

with the boundary conditions
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(4.15) Z'(0) + gZ(0) = 0, Z'(2) +GZ(2) =0,

where g and G are constants, by the appropriate transforma-
tion [3]; noting that the Gelfand- Levitan Theory is directly applicable
to (4.14)-(4.15).

The following theorem clarifies the relation between (4.12)-

(4.13) and (4.14)-(4.15).

Theorem 4.3.1. If p is known and p"(x) e L(0,w), then there

exists a transformation setting up a 1:1 correspondence between the
eigenfunctions of the system (4.14)-(4.15), where q of (4.14) is

related to p of (4.12) in the following manner:

2
1 d 1
q(r) = - - - ( ),
93/4(x) dx? p1/4(x)

and the constants g and G of (4.15) are relatedto h and H

of (4.13) in the following way:

p'(0) 1 p () 1
. ) s— G =(H- =% 773
40(0) p1/ (0) pm’ /

(In [2], similar results are used but never proven explicitly.)

g = (h-

Proof, Let

X kij 1 Z
t =SI pl/z(é)dé and 4 =§ P / (€)dE .
0 0

For each eigenfunction Ax of (4.12)-(4.13) with its eigenvalue \.,
g LIJI i
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: : 1/4 . .
consider the mapping qai(r) =p (X)Ll}i(X), where r is the running

dummy variable in the transform space. By direct substitution, it

can be shown that

¢{'(r) - qlr)e.(r) + No(r) =0, 0<r <Y,

and that

<pi'(0) + gqoi(O) =0, ¢i'(!l) + G¢i(£) =0,

where g and G are given by the above formulas. Conversely,
suppose we have the eigenfunction ¢.(r) of (4.14)-(4.15) with its
J

eigenvalue xj,- that is,

an!'(r) - q(r)qaj(r)‘ + qu:j(r) =0, 0<r<{¢
and
(0) + (0) = 0, (L Ge.(£) = 0,
qu( ) g¢J( ) ¢J( ) + qu( )
where

p'(0) 1 p'(w) 1

- 4p(0)) p1/2(0)’

g = (h

and q 1is constructed from p by the formula:

qr) = - —7— S (=)
p3/4(x) ol p1/4(x)
Letting
@.(r)
Py, = —L—o
j 1/4

p (x)
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we see by direct substitution that ij(x) satisfies (4.12)-(4.13).

Theorem 4.3.2. If there exists a unique solution yﬁ\ of

2
1 d
ql€) = y(€), 0<§<m.
=L, o - L
N0 =gor y0 =B acL,

such that yq\ is strictly positive, then there exists a unique solution

to the nonlinear differential equation

X 2
Q(y ‘—2‘1'—'d§):-Z3(x)§-—EZ-, 0<x<1t,
0 Z°(§) dx

Z(0) =a,, Z'(0)=p

0 0

Proof. For q €L, itis well known (see Theory of Differential

Equations by Coddington and Levinson) that there exists a unique

solution to the differential equation

1 dzz(x) 1
q(x) = ) 2 y(0) = ;;, y'(0) = -,

(This proof is based upon ideas developed by Borg [2].)

X T
r :5 — d§, and ¢ :‘S' — dg .
0 vy (§) 0 y (§)

Let

Definition of the function p(r): p(r) = +(=—)



Noting that

and

where

Also,

Since

dr _ 1
STk 2

dx Y*(X)

p(r) = y(x),

1 d,E(r) .
2 dr
p (r)

2 dx dr 2 dr' 2 dr
dx p (r) p (r) p (r)
B 1 dzp 2 ,dp(r). 2
T2 [ T3 ( dr )71
p (r) p (r)dr p (r)
2 ] 1" 1
d ( 1 ):_i(P(r)):_p (r) , 2p (r)
2 2
ar? P dr 2T 2y PR
dzy(x) o d2 ( 1 )
dx2 pz(r) dr2 plr)
Also,
a%y(x) 1
y(x)q(x) = =L, y(0) ==, y'(0) = -B,
dx 0
2
1 d 1 1
q(x) = - ( ), p(0) ==,  p'(0)
p3(r) er p(r) 4,

52



where

|
r=§ o ng.

0 vy (§)

3 -yr 2 2 ~
Since x = p (§)d€ and p (r)dr =dx,

0
r 2 B
1 d 1 1 0
q(y p2(§)dg) = - ( ) p(0) =—, pl0)= -— .
3 2 "p(r) a
0 p (r)dr 0 ay
Lettin Z(r) !
r) = ,
g p(r)
T 3, dz
q((f ——)ag) = -2’0 SEEL Z(0) = ey, 20) = By 2 >0
0 Z(§) dr
Therefore, it remains to show that the solution of
r 2 g
2 1 d 1 1 0
q(j" p (E)dE) = - A p(0) =, p'0)=-—
0 p (r)dr P 0 0
is unique.
Suppose two solutions, pl(x) and pz(x), exist.
Construct a function ?r)l, such that
2L )
dr ERARA
where

T2
X :S‘ pl (g)dg‘
0

53
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it directly follows that ;rJl is well-defined.

Since Py >0,

dx 2
P pl(r), ¥y (x) I

dr :N 5
¥, (%) 0 §(8)
2 &
. 1 4 1 _ R
p; dr 0
dx yl x) = 2 dr
py (r)
2
a w~ 1 4y 2, dp(r)
—.-Eyl = 2 [ = ( dr ) ]
dx p(r) p/(r) ar”  p(r)
2
d yl(x) 1 dZ 1
2 7 el
dx Py (r) dr 1
1 d2 ~ o~ 1 ~
o ( - .8 .
: ~
With respect to Py _.7. Y, >
1 <:‘lr'2 ~ .y 1
a(x) = m= =5 ¥,(x);  ¥,(00 ==, y)(0)=-B,
Y2 dx 0
Hence
P2 =P

By combining the results of Theorems 4.3.1 and 4.3.2 with the
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Gelfand- Levitan Theory, we obtain the following theorem.

Theorem 4.3.3. If

1. The hypotheses of Theorem 4. 3.2 are satisfied.
o0
2. The eigenvalues {xi}i_o and the normalizing constants

‘ yJ
00
{ai}i=0 of (4.14)-(4.15) are known, where ai=5\ q,:‘(g)dg

0
and ¢i's are the eigenfunctions such that ¢i(0) = di-
1
3. p(0) and p'(0) of (4.12)-(4.13) are known (aO =-;-(-6-) )

ﬁo = -p'(0) of Theorem 4.3.2). Then p(x), h, and H
of (4.12)-(4.13) are uniquely determined.

The following facts pertaining to Theorem 4.3.3 should be

noted:

1. p(x) of (4.12)-(4.13) can be explicitly determined by means
of the Gelfand-Levitan Theory combined with the results of
Theorems 4.3.1 and 4.3.2.

2. The smoothness of p(x) of (4.12)-(4.13) (i.e.,
pm € L,(0,m) for some m) can be determined by means of
the Gelfand-Levitan Spectral Theory and Theorem 4.3.3
could have been phrased accordingly.

3. In the hypotheses of the theorem, it was assumed that p(0)
and p'(0) of (4.12)-(4.13) were given; however, the same

results could have been attained if p(gl) and p(§ or

2)
p’(gz) were known instead of p(0) and p'(0), where
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gl € [O’ "]’ gz € [O’ "]'
4. Also, if one boundary condition can be changed and the
eigenvalues “i (i=0,1,2,...) determined for this altered

system, then it is not necessary to know the a's and di's.

Similarly,

(k(x)X"(x))'+N\X =0, 0<x<m,

X'(0) + hX(0) = 0, X'(w) + HX(w) = 0,
may be transformed into

U"(P) - q(P)U(P) + \U(P) =0, O0<P<{,

, k'(0) _ \ k'(m) _
U'(0) + (h- 3%(0) )U(0) = 0, U'(m) + (H- e )U(mr) = 0,

by the transformation

uP) = k%),

X ] w ]
P=S‘ —W-Z——-dg, 125‘ -—1—/—2'-"'-d§,

0 k (€) 0 k (§)
2
1 1/4
q(P) = —*T/T—-d—‘z(k / (%)) -
k (x) dP

Hence, analogous results of Theorems 4.3.1, 4.3.2, and 4.3.3

directly follow.
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V. RESULTS FOR AN APPROXIMATE SPECTRAL FUNCTION

5. 0 Introductory Remarks

For the inverse Sturm-Liouville problem
y'" - qx)y + Ny =0, y'(0) - hy(0) = 0, y'(m) + Hy(m) = 0,

on the finite interval 0 <x <, it has been assumed in the preced-
ing chapters that the complete infinite set of eigenvalues {)\i},
i=0,1,2,... and normalizing constants {ai}, i=0,1,2,..., are
known. However, for practical considerations, it is important to
know whether F, K, and q(x) of chapters two and three can be
uniformly approximated if only the first N eigenvalues )\i and

normalizing constants a, are known. In this chapter it will be

shown that if )\0, )\1, e, )\N_l, ao, al, ey aN—l are known,
a a
0 1 1
= —+ — — ail )
'\/'Xn n+n+ 3+O( 4) for a n
n n
and
b
™ 0 1
an =3 +—7+ O(~—3-) for all n,
n n
then for sufficiently large N, there exist continuous functions
GN(x, t), KN(x, t), and qN(x) such that
F=G +O(1) K=K_+0()
- -_2 ] - Z ’
N N N N
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and
(x) = qy (x) + OF)
A=) = qpix N’
where .
x .
F(x, t) + K(x, t) +5 F(s,t)K(x,s)ds =0, 0<t<x<m,
0
and
_ L 2dK(x, x)
q(x) - + dX .

The functions F, K and q will be approximated in Sections
5.1, 5.2 and 5. 3, respectively. Results of this Chapter have neces-
sitated the estimation of certain asymptotic series., Similar tech-
‘niques have been used by B, M, Levitan, Iz‘v. Akad, Nauk SSSR Ser,

Mat, 28 (1964), 63-78,

Condition A,
1. N, for n=0, ..., N-1, and
a , for n=0, ,.., N-1, are known,

2. The asymptotic conditions

a a
- 0,1 -
»\/Xn~n+n+ 3,+O(4)
n n
and
b
.r, 0 1
an—2+ Z+O<.3)
n n

are satisfied for arbitrary n,
3. There exist constants c1 and c2 such that

c2< n3|-1—rz- +—0£| for all n > N,
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| s .l.)_Q|<.C.E
Gtz -T2 2T
n n

and

a a C

20 1 1

INK -n-—- 53
n n

5.1 Ap_p‘roximation of F(x,t)

Theorem 5.1. Under the hypotheses of Condition A, there exists a

continuous symmetric function GN(x, t) such that

F(x, t) = G(xit) + 0(—-1—) .

NZ
where
1
Gy = FN(x, t) + -Z-[fN(x+t)+fN(x-t)],
cosNA_x cosN At -1 cosN'K XcosNKN t
0 0 1 n n 2
F_(x,t) = -—+ )1 - —cosnxcosnt ]
N a kg a kg
0 ' n
n=1
and
fN(X) =

Proof. For the inverse Sturm- Liouville problem on [0, %], the
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function F can be expressed in the form (see [4] or [6]):

(5.0)
] cos'\ﬂ(nx cos'\fxnt
F(x,t) = — cosNA x cosNX .t - —+ ) { - =cosnxcosnt},
ao 0 0 T an T

n=1

where 0 <t <x <w, a >0.
-— - n

Let
cos'\/knx
aN(x) = Z ( - - — cos nx).
n=N n
Therefore,
1
'1 ’ = ’ - - ’
(5.1) F(x, t) FN(x t) +3 [aN(x+t)+aN(x t)]
where
(5.2) N-1
cosN' K X coxN\ .t 27 cosNK xcosNK t
0 0 1 n n
F_(x,t) = - —+ [ : - —cosnxcosnt}.
N a T a T
0 n
n=1
There exist functions g, and hn such that
ao a
(5.3) NK =nt+— +— +tg,
n n n
n
and
b
0
5 ST L0y,
(5-4) an 2 * 2 hn
n
where
a a c
0 1 1
- - T cm— - < —_—
I'\I'Xn n n 3l IgnI - 4

=}
=}



and
b c
™ 0 2
o, -2-=zl=In <=5
n n
~ ')
| Let a_ and bn be defined as follows:
|
| a a
~ 0 1
(5-5) an—'_n"" + 3+gn1
n
and
5. 6 y 20
(5. ) bn—'—"z' -hn.
n

Since, by Equation (5.1),

Fix,t) = F_(x,t) + % [aN(x+t)+aN(x-t)],

N

to prove that F(x,t) can be expressed in the form

F=(F_( +-1-[f +t)+ £ ]+oi—
= FNx,t) 3 N(x t) + N(x-t)) (NZ)

reduces to appropriately estimating the terms of the series

00
cosNA x

a_(x) = z (——-—-—-—I-]——--Z-cos nx).

N a 1T

n=N n

In this regard, the factor El—v of the nth term of
n

be expressed in the form:

a

a

N

N:
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can



62

12 o 1 n
a T 22 2b b h
n T n 14 0 (_11'_+__9_)2 ] n
2 2 2 - b
wn | n (IL,.’..E)
2 2
n
Also,
h c
n
< ’
(E.+E_9)Z 1 hn B 3(1+E92 1 ‘2
2" 72 } b n(5t3) - b
n 7,9 n Yty
2772 SR
n n
since
€2
<1 forall n>N
b —
Ly
1T2

by hypothesis. Therefore,

(5.7)
cosN'A X 4b cosN'N X h cosNN x
n 2 0 n n n
———e— = —c0OsN\ X - +
a ™ n 2b b
n 2 Z(H’v 0 (_1_'r_+ 0)2
T n ——Z,) > ——Z
™ n
Since
NN =n+a,
n n

by Equatibns (5.3) and (5.5), cos '\an X can be expressed in the
form

~ . PO
cos '\I‘X‘nx = CO5 NX cos a X - Ssln nx sin a X.
n n
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2 o
n

NN . Lo
cos X = cos nx + cos nx z -sinnx sina X.
n n

(2i)!
i=1
Therefore the nth term of the series ayn can be expressed
in the form:
(5.8)
cosNA X 4b cos nx
(__________n - -Z-cosnx) = - 0
an T 2 2 Zbo
T n (1+——)
2
™
o . 2
(-1) (8 _x) A
+ cos nx z-————-—-———n -
(2i)! U
. LN 4b0 2
+ sin nXx sina X - -
n\ ., %Py T
AT n (l+-—-2-)
™ *
h cosNX x
+ n n
b h
(1920, &
2t 2| Ty
n (2,9
2 2
: \
- Iln * IZn * I3n * I4n ’
respectively.
Now, let us consider I of Equatjon (5. 8)

2n



o . Y
(-1)1(3’nx) ! A 4b
(5.9) IZn = cos nx Z —(-'2—;-)—,——— 7 >
. 2.2, 0
i=1 T n (1+——2-)
mn
Since
SOHE T xS S (1 X
n . .\ ___ n’
}: (2i)! 2 E (2i) ! !
i=1 i=2

and by the definition of 2;1 (Equation (5. 5))

2 B a

a
~ L2 0 1 n 1
v = (— —— —_— 2 -1
(an) (n + 3,) = [ngn+ (a0+ 2)]
n n
it follows that
I = §_2_(ig +1)2 [.2_ 4b0 ]
2n ~ 2 'n 3 cos nx ™ 2b
n 2 0
™ (1+-—2)
T
x2 €n al 2 4bO
- =3 cos nx [-n— (ngn+ Z(ao”’"‘—z')][; - b
n ‘ 2,. 0
™ (1+_—Z)
mh
0 i 2i
(-1)(& %) 4b
+ cos n Z 2 E— 0
cos nx (2i)! T 2
i=2 mh (1+—7
™
o ) )
© e xf
Z —n ol
(21)1 1
i=2 o

since

64
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4 1
(a‘ ) - O( 4)’
n
and
o . .
. (-1)1(2{nx)‘21
), T = o
i=0
Furthermore,
g a 4b
n 1 2 0 -
n (ngn+2(a0+ 3)) T 2b = Ol 5)
n 2 0 n
™Tn (l+—-—-2-)
Hence, T
2
St s U S r oL
2n RS L 2b cos nx 2
n 2 0
wn (1+—)
v 2
mn
Similarly, let us consider the term I, of Equation (5.8).
I = sin nx sin 3 x ——4-}-)—9—— 2
3n , n 2b T
(14 —2)
mn >
™
Since
0 2i i+l
sing X = ’a\,J x+z3 3 Z (anX) b
n n n* (2i+3)! ’
i=0
~3 1
an = Of 3 ),
n

and
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0

(g)nx)h( 1 )1+1
Z (2i13) ! = O,
i=0
it directly follows that
a a 4b
0 1 0 2 . 1
= x(—+—=) |————— - = +0O(—) .
I3n x(n+3) 75 - sin nx + Of 3)
n 2 0 n
n (1+—=)
2
™

The term 141’1 of Equation (5. 8),

h cosN\N x
I, = at =
4n b h 7
(f_+._.9)2 ] ——te—
2 2 - b
i (2+-2)
2 2
n
reduces to
I4n N O(—g) ’
n
for it was shown on page 62 that
hn < CZ
£+b_0 2 1 hn - 3(1T_+'E.9)2 1 ___._(..:..Z____.__
2t 2 (T ST 2 ) b
n , 1_T_+__(_)_ n n311—r'+—9'i
2 2 2 2
n n

Therefore, by letting,



o0 0
f_(x) :_-~---(l Z £o8 nxX .,?ﬁZcosnx(-a-‘-Q-+
N 2 2 n
n=N (1+—-—E) n=N
T
0
Z : 2 21 [ *Pg 2
+ X sin nx{—+—) -~
n ri3 > Zbo T
n=N T (1+-—'2")
™

we directly obtain the result

i 1
ay ~ iyt Ol=3) -

N

It directly follows from this result that

Flx, t) = Gyl t) + O(I—:-é),

where

= 1
G(x: t) = -Fy(xt) - 5 [fN(x+t)+fN(x-t)].

5.2 Approximation of K(x, t)

Theorem 5. 2. Under the hypotheses of Condition A, there exists a

continuous function KN(x, t) such that

K(x, t) = K (x,t)+O(—1—), 0<t<x<m.
N NZ - =" -

Proof. The function F of Section 5.1 is related to the function

by means of the integral equation

67

K
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» X

(5.10) K(x, t) + F(x,t) +§ F(s, t)K(x, s)ds = 0, 0 <t <x <.
0

In Section 5.1 it was shown that GN, a known continuous symmetric

function, is related to the function F by means of the equation

Flx,t) = Gy (% 6) + o(-5) -

N
Let
HN =F - GN,
and
= + ,
GN FN RN
where
1
RN =3 [fN(x+t)+fN(x-t)].

Let KN(x, t), for large N, denote the unique solution of the equa-
tion

% ,
{5.11) GN(x, t) + KN(x, t) +5(‘) GN(s, t)KN(x, s)ds = 0, (see[5, p. 547)).

Let EN denote the bounded linea. operator such that

x
51 GN(s, t)f(x, s)ds.

E f(x, t) =
N 0
Hence
K_=-(+G.) 'a
N N N’

where
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leGy ) < m

By subtracting Equation (5.11) from Equation (5,10) we obtain the

equation

b'e
.12 - + - - = 0.
(5.12) (F GN) (K KN) +§0 (FK GNKN) 0
Therefore
— b'e
(I+GN)(K-KN) = _(HN+.S;) HNK)-
Hence

X
= -1
K - KN = (I+GN) (_HN-.S;) HNK),
which implies

X
Tr-Kyl < IR-K ] < MII—HN-SO 1 K]

Consequently
K=K+ O(l)
Z ?
N N
or
a
|K-K_| <— .
- 2
N N

' X X X
If I‘Y HNKl is replaced by |§ HN(K—KN)| + |§ HNKNI, then
0 0 0

a can be explicitly calculated for sufficiently large N.

5.3 Approximation of q(x)

Theorem 5.3. Under the hypotheses of Condition A, there exists a

continuous function qN(x) such that



alx) = ay () + O(F) -

Proof. By Chapter III, it is sufficient to show that there exist con-

tinuous functions ¢1 and npz such that

0K _ 1
ax ¥ OlR)
and
oK _ 1
at - Y TOR) -
By point 2 of Condition A (see [6]) it follows that
9K (x, t) | aF(x, t) y OF(s. t) 5)ds = 0,
ot ot
and that
9F 2
22:——1!%— Z [ 2 cosN\ Xsin'\f'Xt+EP-cos nx sin nt],
ot ot n n T
n=N
OF
N 1
— crn—— + __ ! + ,
Bt [a! (x t)- aN(x t)]
where
o0
'\I'Xn 2n
a! (x) = z [ sinN'N x - — sin nx]
N a T
n=N
Noting that
a! (x-t) = 2 a (x t) a! (x+t) = - KA a_{(x+t).
N at ’ N ot N



As in Section 5.1,

_L*_Z_._ 4b0 , 1 + hn
a w 2 2b b h
n ™ 1+ 0 (£+__Q 2 1 n
2 ztz) { 1- b
™n n (_1_r_+__g)
2 2
n
Since
a a c
0 1 1
= ——— — < m—
'\/T\n n+n+3+gn, Ignl_4
n n
it directly follows that
'\I'X'n 2n
—(;'— = :T— + Hl + gnII2 + hnII3’
n
where
2 2
1 wn 3 2 'n 3 5 2b
Tn o n n 0
1+ ——
2
n
I = 2 4b0 1
2 T2 2 2b ’
T n 1+ 0
2
n
and
a a
+— +—= +
n - gn
Iy = b h
(_1_r_+ 0.2 I n
2 ng) ] ] bO
(+—3)
n
NN
n

— . n .
Determination of | sin NX x - —sin nx]:
n m

n

~nJ ~
sin '\I'an = sin nx cos a X + cos nx sin anx.
n
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o . 2
(-1)"E =
cos'\é{ x =1+ Z —_—
n (21)!
i=1
a.  a g a
. N, 2 . 1.2 _n s
sinnx cos anx = sinnx - X 51nnx[( a + 3) + a (ngn+2(a0+ 2))]
n n
© i 2i
(-1) (& =)
+ sinnx Z ———(—él—)T—-—
i=2
As in Section 5.1,
oo i 2i
, (-1)1('; x) ! 1
—-—-————n-——— = O(—-—-—)
Z (2i)! 4"’
i=2 n
and
5 = 0(=)
n
Also,
0 smeny 21 i+l
singx=gx+g3 3 (aHX) -
n n n* (2i+3)!
i=0
Hence,
a a a a
, 2 1
sinN'K x = sinnx - xzsinnx(-—g-+-l—) + x cosnx(~—+—)
n n n3 n 3

o . 2
-1)'& %~ g 2,

+ sinnx z ——2  _x%innx ~--1-1-(ng +2(a +—=))
(2i)! n n 0 2

i=2

o .

3 (& x)7H(-1)
+ xg cosnx + (cos nx)anx Z (Zir3)1

i=0

Therefore,



N sinNk x
2n n n

- = sin nx + e
w a

n
> a_ a a, 2,
= IIl(s1nnx-x s1nnx(;—+—§) +xcosnx(—r-l— +—-3—))
n
oo 21 i+
(-1)(8x o3 3 (307
+
sinnx Z (2 )' + (cosnx)anx z o
i=0
XZ a1
+ gnIII[- ey (ngn+2(a0+;—2-.)+xcosnx)] + gnII2 sin '\/’X;lx
2 a a
. 2x . 1.2 2 1
+ hnII3 sin '\f'an - s1n,nx(a0+ 2,) + Tl’xcos nx(a0+ 2)
n n
2i
(-1) (8 _x) a
2n n 2 2 1
L ——te. _ & 2({a +——
+ - s1nnxz o1 Tl_x s1nnxg (ng + (ao nZ))

i=2

0w 21 i+l

+—2~nx cosn +—2— snx(N3X) (aHX) -
w8y xranee ®n (2i43)!
i=0
Let
2
ff _ 2a0+ a1 4b0(1+a0+1) 1
1 ™ 2 2 2 4 2b>
wh w n n 0
1+—
2
wn
n
II
1
II1 -

Let
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II a a a a
1 . . 1 0 1
e =—(sinnx-x sinnx(—+—) +xcosnx(—+—))
n n n 3 n 3
n
E-}—{i in nx( +1) +-—xcosn(:a—l')
T s X ao > - X 5)
n n
Let '
i a 2a X N-1
) X
E__= \ e 0 0 7 cos nx
N ZJ n T T Ly
n=N 1
Therefore,
e < + + + + + I+ + 111,
|aN ENI < IIIl IIIZ III3 + III4 1115 1116 I . III8 1119
where
0 n 00 i 2i
II (-1)(3 x)°*
I, = Z —lsinnxz—-——n—v— ,
1 n o (2i)!
n=N i=2
00 n 0 2i i+
I & %))t
III, = z —lcosnx 3 32 i
2 n n> (2i+3)! ’
n=N i=0
o0 ~
IIl XZ al
1113: z gn;—[— ?(ngn+2(a0+——2—)+xcosnx)] )
n
n=N

00
III4 = z

n=N

III1

n=N

gnHZ sin '\anx )

h II. sinNK x ,
n 3 n
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fe) ’w . Z.
(-1)'E =)
I, = z 22 sin nx z _
6 ™ (2i)! !
n=N i=2
o0
a
22 . 1
III7— - Z(s1nnx)gn(ngn+2(ao+ Z‘) )
n=N n
o0
m. = 2 \
g~ 7 ¥ ng cos nx
n=N
00 ‘ 2i i+
2 @ et
III. = E-Z n cos nx(qaj3x3 2
97 T n*) (2i43)1
n=N i=0

It can be readily shown that

III. + II1, + III, + III, + III_ + III, + III, + III_ + III

1 2 3 4 5 6 7 8 9

Hence,
19 d - 1
3 g et 5 2 (xtt)l= 5 [E(x-t)-E (e4) ] + O

Let

N [E_(x-t)

N -EN(x+t)].

Therefore,

Since
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x
OK(x,t) = 9F(x, t) 5’ dF (s, t)
ot = - Tt - 5t K(x, s)ds,
0
it directly follows that
x —
30 K, + < - + °Fk
I I;‘N 5\ I;‘NKNI ¥ N I Iy N N~ at ‘

0
oF
I‘Sﬂ atKl’

where ‘KN is the function constructed in Section 5. 2 such that
K=K_+ o(—-—)
N N

Consequently,

X
9K _ =
-—FN-S‘ F. K +O( )

ot 0 N N
Determination of M :
ox
X
BK(x t) | BF(RY)  povi _5‘ (s, t) ————’ﬁ—s—)—ds.
ox ox 0 ox
1
F(x,t) = Fyts [aN(x+t) +aN(x_t)].
OF(x,t) _ 3FN(X, t) l[a (x+t) \ aaN(x-t) |
9x 9x 2 9% 9% '
[¢ o]
cosN A (x+t)
a_(x+t) = Z (—-——-——P—— - — cos n(x+tt))
N a ™



17

)
da_ (x+t) NX
= - z (- —2 sin N\ (x+t) + 2n si. n{x+t)}
ox a n o
n=N n
cos'\/‘X;l(x-t)
aN(X—t) = ( —g -, cos nfx -t)) .
n=N n
9a_(x-t) — NK
a_(x-
2
- Z (- 2 sin NX_(x-t) + 22 sin n(x-t)) .
0x a n ™
n=N
Let
)
NN sinNK x
al (x) = [+ - -%351n nx
N an T
n=N
) + -
aN(X t) = -3’ (X+t) w = . a' (X—t)-
ox N ’ ox N
a' (x) =E_(x) + O(L
N = Byt N
da_ (xtt)
N 1
- = ~E(xtt) + O(3) -
da_ (x-t)
N 1
- = -E(x-t) + O( ) -
da_(x-t) 9da_(xtt)
1 N N 1 1
— = _ - _ + =.
Sl g 1= - FEGHIFE(x-0)] + O(7) -
Let
oF
~ N 1
Fy© -( r™ +Z[EN(x+t)+EN(x—t)]).
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Therefore
OF _ W 1 8F _ = 1
9% ~FN+O(N)’ at‘FN+O(N)'
F=G. +H 8F—§/ +? H -o('1 ?*O(“
S\ N 8x °N N’ N Nz)’ N~ )
Let
_ 3K
9x
Hence
* 0F(x,t
L +S‘ F(s, t)L(x, s)ds = - 228 | p(x, t)K(x, x).
ox
0
Consider

X ~
LN +S‘ GN(S, t)LN(x, s)ds = -F__ - G_(x, t)K_(x, X).

0 N N N
Hence,
x x
(L- LN) +;S;) GN(s, t)( L(x, s)-LN(x, s))ds +S;) HN(s, t)L(x, s)ds
o ,
= - FN - F(x, t)K(x, x) + GN(x, t)KN(x, x).
Therefore

L—L (I+G ) (‘Sﬁ H Lds-

+ [(- F(x, t)K(x,x)+GN(x, t)K(x,x%))- GN(x, t)K(x,x)+GN(x, t)KN(x,x)y ,

—_ 1 x ~
lL-Lygl < G | | j; i L+ Fy I F-Gg I+l o sk

Therefore,



Letting

x
qN(x) = Z(LN(x, x) + FN(x, x) +5; FN(s, x)KN(x, s)ds),

it directly follows that

- 1
q—qN+O(N). .
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APPENDIX A

2/

Iterative Procedures—

The problem we wish to consider being:
x
(A, 1) K(x, t) + 5. K(x, s)F(s, t)ds = -F(x,t).
0

For practical considerations, let us restrict our attention to the finite
region 0< t< x< a, where a will be assumed sufficiently

large.
Domain T={x0<x<a}x{t]o< t< x< a}
Equation (A, 1) in the operator form: f - Af =g, where

X
Af(x,t) = - Y F(E, t)f(x, §)dE, f=K, g=-F.
0

We will assume F(x,t) 1is the kernel of the said Integral
Equation discussed in Chapter II, Consequently, at least continuous,

Let us now consider (A, 1) in the B-space CT' g€ CT’ and from

‘the Gelfand Theory, we know that f is as smooth as g, hence,

fe Cop, [6]. A maps Cp into Cp- A is linear, which follows

from the fact it is an integral operator. A 1is a bounded linear

operator, for

2/Similar interative techniques have been used by V. A,
Marchenks, Trudy Moskov, Mat, Obsc, 2, 3-83 (1953).



X
|| ag]| = max |§ F(E, t)f(x, £)dE .

CT t,xeT 0

X
latl, < max | 7@ 0 [6xg)lag
T t,xeT 0

a
<l max 5 | F(E, 6|t

T t,xeT 0
where
|!1€||C = max |[f(x,t)].
T x,teT
=> a
lal, < max | |FEolat.

T 0_<_t__<_a 0

Therefore A is a bounded linear operator from CT - CT.

Since by hypothesis a solution exists (a consequence of the Gelfand

Theory) => (I—A)"1 exists; = (I-rA)-lg-
fo=gtAfl_ . n=123 ...
-1 n
he-£ Il < la-a7" 0. latle e £l
n CT CT CT 1 70"cC
<
it ||Al. <q<1, then Jl££ |. <-3= £ £l . -
CT n CT l-q 170 CT

Since f(x,t) = K(x, t); g(x,t) = -F(x, t), we have that

82
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x
Kn(x,t) + F(x, t) +§ F(&,t)Kn_l(x, £)dE=0, n=1,2,3,...

0
Ik-x_I|. <laa . 1A%, Ig to-Kol. . [5)

n'c, o Cp' 0™ e,

and if
”A" <g<1l,
Cr
then
n
1K £)-K_(x, &) . < -l-cf-q— %, (%, 6)-K (% 6]

in particular, if

a
q= max 5 | F(E, t)|dE < 1.
O_Stja 0

Now, let us consider the problem in the space L

T

f+Af=g; f and geLT-

Let
a
max 5‘ | F(x, t)|dt = M
Ofxfa 0
A
Lo =~ Lj
a X
ey, = § ax feenar
T 0 0
| af]l =

a X X
f d_xy 15‘ F(&, t)f(x, £)dE|dt
0 0 0

a ‘X X
y d.xy <§ | F(E, t)| | £(x, €)|dE)dt
0 0 0

IA



1}

X X X X
at\ | F& b |z, £)|dE dt \ | F(& )] [f(x, €)]dt
IS J, ),

I}

0

i

X X
| £(x, €)|d§5 | F(E, t)]at
0

A

X
M’ [f(x, £)dE -
!
a X
=>  Jaf], < M'\ dx | [f(x &)]at = M'||£]
Lp ‘S;) ‘Yo EJT

=> fall;, <™
LT

.if M' <1, then

n
Ml
& 6)-K_(x t)]] L < (—1-——13—17 &, (x 0)-K(x 0] L

2
Now, consider the problem in L .

2 2
f ) L
eLT g €

T
a x
”f”iz 25 der | £(x, t)]zdt
T 0 0

2 @ r* 2 *
|af]l ™ = 5‘ d.xy | Af(x, t)| “dt;  Af(x, t) = 5 F(&, t)i(x, £)dE
0 0

0

a X X
= ax 11 R ves £)ag | 1Pa
Je=f ur,

< fdxfox[ _YOXI F(, t)| “at]l foxlf(x, §)|Zd§]dt <
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f f dédxy f | F(& t)| “at)d
a X a ~a 5
§0 (fo | £(x, é)lzdé)dxfo fo | F(&. t)| "daat
Il £l i% S:S:|F(€, 6| 2atd.

a a
Ial < f §iee o) aan 2
0 "0

if gq< 1, then

IA

tA

1K, 6)-K_(x, £ 12 < < —L I, (x 8)-K o (x, )||‘L%-

For the three spaces considered g

can always be made
strictly less than 1

by restricting the domain T (i.e., by re-
stricting a).

Assuming F(x,t) (eCl) is once continuously differentiable

1
with respect to both variables, let us consider the problem in C'I‘

S
F(s, t) + K(s, t) +§ F(€, t)K(s, §)d§
0

X
f-Af =g, Af= S‘ F(&, t)f(x, §)dE
0
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lacl ., = max 1§ F(£, t)f(s
T ,teT

, £)dE| + max |

s,teT

5 s
+ max l"—S\ F(£, t)i(s, £)d|

s,teT at 0

fl

I1 +IZ +I3,

respectively.

2

s
max lSv F(£, t)f(s, £)d&| < max |f]|( 5:) | F(&,

s,teT s,teT

s
max | F(s, t)f(s, s) +§ F(E, t)fs(s,f_f,)d§|

s,teT 0

S
5 max‘g. ‘Ft(g: t)l lf(S, g)ldg

0

s
f_maxlf(s,s)jﬁ (u, t du-y f_f,
0

s
< max | £] max |5 Ft(u, t)du

0

s €
+ max |ft(s,t)| maxy |5' F (u
0 0

o

t)du|d§ .

86

8 s
_3——5 F(£,t)f(s,£)dE |
50

t)]d€)

s
< max IF(s,t)lmaxl(f(s, t)l + max\S1 | F(E, t)|dg max|fs|

s
<max |f|(max|F|) + max |fs(s, t)|(max5' | F(&, t)]|dE)

L 2

, t)du)d§
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s
Il +L+t1 < max|f](max]5L Ft(u, t)du| + max | F(s,t)|
0

s
+ maxS‘ !F(g, t)|d§)
0

s
+ max |fs(s, t)| (max‘gy | F(&, t)|dE)
0

s 3
+ max |f (s, t)| maxy | 5 F (u, t)du|d§
t t
0 0
Let
s s

M = max {[ max]| 5 Ft(u, t)du| + max|F(s,t)|+ maxy | F(E.t)|dE

0 0

max‘YSIF(g, t)|dE . max‘g‘

s g€
| | F (4, t)du]|dE ]}
\ ,

I +1,+ I, <M(max|f|+ maxifs(s,t)t+max|ft{)

1 2 3
lath 1 < lell o™
CT CT
=> lalar =M
CT
if M <1, we have that
1K t)-K_(x, )] o1 = M K. (x, t)-K (x, )] <1
’ n" e 1-M 1 07 e
T T
9K (x,t)
which implies that K converges uniformly to K, ————  con-
n ot
oK (x,t)
. IK(x, t) n .
verges uniformly to o1’ and Thw  converges uniformly to

OK(x, t)

ox
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APPENDIX B

Kantorovich Method [5]

A brief synopsis of the results of Kantorovich [5] upon which

Chapters II and III are based:

¢/
X

C X

N
Let X be a complete subspace of the normed space X,

Let P be a linear operation such that
— ~J —_—2 —
PX)=X; P =P

(B.1) In space X: Kx=x-Hx=y
o/ Y : o —
(B.2) Inspace X: Kx=%-Hk=Py

H and ﬁ are linear operations in X and S\CJ, respectively.
The following results are based upon the lemma:

Let V be a linear operation from the B-space X into the
B-space Y and let there exist for every ye¢Y an xe¢X such
that

Ive-yll < allyls =)l < Nyl

where q< 1 and N are constants. Then the equation V(x) =y

has for every y €Y, a solution x € X satisfying

< Nl

l-q
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Conditions.
I Forevery ¥e¢X, |P¥-B&| < nf%.
II. For every x € X, there exists an X ¢ % such that
Ex-%|| < n 1]
I Anelement §e¢& exists suchthat [y-§ < n, [yl

where 7 may depend on y-

2

Theorem Bl. If Conditions I and II are satisfied and K has a linear

inverse, then if
q = M np + o BRI < 1,

Sk nJ
(B-3) the equation k¥ = ¥ has a solution % for any ’; € X.
q y

Also u;z*nff-j‘—qu;”, where N = (L+[A[n) K.

Theorem BZ2. If Conditions I, II are satisfied, the linear operation

o~ sk
K 1 and the Equation (B.l) has a solution x , then

x *
Ix-%"[ < Bllx"|,
where x 1is a solution of the Equation (B.2) and
~_] s e
B = 2[M[n| K + (n [M+n, IK[HO+][KPK])-

Theorem B3. If

1) K has a linear inverse

~
2) K satisfies Condition A (for each n=1,2,...)
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3) for each n=1,2,..., the Conditions I, II and III are

satisfied, and

lim n =0, 1im nl ”EH =0, and lim T]ZHISH =0

n—00 n-- o n-—» 00
then the approximate equations are soluble for sufficiently
large n and the sequence of approximate solutions con-

verges to the exact solution:

sk b
lim “x -%
n ~» 00

| =0
and there exists constants QO, Ql, and Q2 such that
s

A = D
I="-x I < @+ IRl +@,n, Pl

Condition A. The existence of a solution of Equation (B.3) for every

y ¢ X implies its uniqueness.

As discussed in Chapter II, similar results can be derived be-

—— ~J
tween the space X and a space X, which is isomorphic to X.

In particular: Let %0 be a linear operation defining a 1:1 mapping

——

~J
on X, onto X. Let ¢ be alinear extension of the operation

2, to the entirety of X. P:X—~X; (.00(%) = X. Let ¢ = ¢0P’

P = 90(-)1% X qa(_)I;; Equation (B.2) transforms to
%= oflo) %= o Py, H= ooy
x = ¢oHey x = ¢ Py, H=¢jHe,,

Ry -7 \Ax T = o K]
X =X = HX—qu, K“P0K¢0



Condition Ia. For every ¥ ¢ %, ||.I-I_qao?é-anx|| <7 ”?{J” .

Theorem Bla. If Ia and II are satisfied, and K.1 exists, then if

- -1 -1 -1
q= lkl[ﬂ(1+|>\ln1)i|¢0 I+ n ey eKITIK ) < 1.

—_— — -
(B.4) the equation Kx =y has a solution x for every right-

handside ye-}?, with

-—k N
= | < "-a”}’” N=(1- |>\In el lleg Hit

Theorem B2a. If Ia, II, and III are satisfied, linear operator K

¢
exists and the Equation (B. 2) has solution x , then

-1-*

%" I < Bl<"],

where

—_ ~1l=-1 -l=-1 =
B = (1+9 M| Tllog K + et o B T1OKD,

€ ..<. nllxl + nan”

Theorem B3a. If the following conditions are satisfied

1) K has a linear inverse
2) K satisfies Condition A

3) Conditions Ia, II and III are satisfied for every n,

n=1,2,..., where

R . -1 . -1
lim Al eg' || = limn flogtell = tim n,lleglell = o,
n — 00 n-— 00 n— oo
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then the approximate Equation (B.4) is soluble for sufficient-
ly large n and the sequence of approximate solutions con-

verges to the exact solution. Also

sk ~>,'< J— -1 — -1 — -1
120 < Bnllog l + 2y log el + Bym,lleg ol
NS S — —
where Xn = (po xn, and Ql, QZ, and Q3 are con-

stants.
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APPENDIX C

Synopsis of Basic Theory [6]

Let
(C.1) y'-q(x)y = -\y
with

(C.2) y'(0) - hy(0) = 0

where 0 <x <o, g(x) is a real integrable function; h is a real
number. Q(x,\) denotes the solution of (C.1) with the initial condi-

tions (C. 2).

Theorem (Gelfand and Levitan)Cl. Suppose Q(x,\) is the solution of

(C.1) satisfying the initial conditions (C. 2) and that g{x) has m
locally integrable derivatives. Then there exist functions Ki(x, t)
and H(x,t), each have m+l integrable derivatives with respect to

each of the variables, such that
X
o(x, \) = cos NRx +§ K(x, t) cos NRtdt
0

x
cos NAX = ¢(x, \) +§ H(x, t)e(t, N)dt
0

OK(x, t)

ot =0 - O

x
K(x,x) = h + -l-Sv q(t)dt,
2 0
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= K(x, -t) = 0, H(x,-t)=0 for t>0;

Further, if M >1, then Kx - q(x)K = K and

Theorem (Gelfand and Levitan). Suppose q(x) has m locally

integrable derivatives and that

o(\) =

N
then the integral S' cos NAx do{\) converges boundedly to a func-
-0

tion &x) = X(x,0) in any finite range of values of x, as N -— ©,

where @®(x) has m+l integrable derivatives.

Theorem (Gelfand and Levitan) C2. The kernel K(x,t) satisfies the

integral equation

x
F(x, t) + K(x, t) +S‘ K(x, s)F(s,t)ds = 0, 0 <t < x,
0
where
N

F(x, t) = lim y cos NAx . cos NXtda(\), o(N) =

n-—" oo -~ 00

Theorem (Gelfand and Levitan) C3. The integral equation
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X
F(x, t) + K(x, t) +§ Ki{x, s)F(s, t)ds = 0
0

has a unique solution K(x,t) for every fixed x.

Theorem (Gelfand and Levitan) C4. Suppose the kernel Ki(x,t)

satisfies the above integral equation. Then the function

X
Q(x, \) = cos NXt +5 K(x, t) cos NXtdt
0

satisfies the differential equation ¢" + {A-q(x)}¢ = 0 and the initial

conditions (0, \) =1, ¢'(0,\) = K(0,0) = -F(0, 0) = h,

_ o, 2dK(x, x)
q(x) = + i

Theorem (Gelfand and Levitan) C5. The monotonically increasing

function p(\) 1is the spectral function of a boundary value problem
of the type (C.1)-(C.2) with a function gq(x) (having m integrable
derivatives) and a number h if and only if the following conditions
are satisfied:

a. If E(MN) is the cosine transform of an arbitrary function

f(x) of compact support in LZ(O, ©) and

[o¢]

5‘ EZ(K)dp()\) =0,

- 00
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then f(x)=0 (a.e.).

b. The limit

N
®(x) = lim S‘ cos NAxdo(\),
o0

N—o0 “_

where
p(N), A <O

p(\) %W A >0

exists boundedly in every finite range of values of x and

®(x) has mt+l integrable derivatives with &(0) = -h.

Theorem. Basic Inverse Sturm-Liouville Theorem on [0, 7] (Gelfand)

c6.
(C-1) -y" + qlx)y = Ny
(C.3) y'(0) - hy(0) = 0, y'(w) + Hy(w) = 0

The numbers {Kn} and ‘{an} are the spectral characteris-
tics of some boundary value problem (C.1)-(C. 3) for {0, n] with a
function q(x), where q(m)(x) e (0, m) iff the following asymptotic

estimates hold:

where )\n N for n#m and all the an >0, and if the function
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n

F(x, t) =-(-ll—-cos\/'730x cos'\f‘Kot -—lT-;+

-— cosnxcosnt]
0 i

o0
Z cos'\l'X xcosN'N t
1

has integrable derivatives of order m+l in the region (05 x,t < ).

This implies that there exists a function K(x,t) such that
F(x, t) + K{x, t S‘ K(x, s)F(s, t)ds = 0,

where 0 <t <x <w for the kernel K; K(x,t) =0 for t>x and

Theorem (Gelfand and Levitan) C7. If all the a >0, and

%0 %1
'\/'Xn*—'n‘i'—;l— +'—-3-+O(—'4—),
n n
b
_r,_0 1
an—2+ Z+O(3)
n

a, b are constants, then there exists an absolutely

where ao, 1 0

continuous function q(x) corresponding to the given )\n and a .
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Note: If O(-%) for a can be replaced by O(—lz), then q(x)
n .

n n

has an absolutely continuous derivative.
The basis of Levitan's new result with respect to a variation of

boundary conditions is the formula

h,-h LI N N
1 [

(C.4) an = Y I k )\n ,

l‘Ln_ n n=0 l‘Lk‘ n

which gives an expression for-the normalizing constants of a regular

-Sturm- Liouville operator in terms of two of its spectra. In addition,

(C.4) gives a conditional solution of the inverse problem in terms of
two spectra, for once we know the numbers {Kn} and {an}, we can

define the spectral function by the formula

and then form the operator by the prescription given by the basic
Spectral Theory.

For the problem

(C.1) -y" + alx)y = My,

with

(C-5) y'(0) - h y(0) = 0, y'(x) + Hy() = 0

there exists the set of eigenvalues {)\i} . Similarly, for



(C.1)
with

(C.6)
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-y" + qlx)y = \y

y'(0) - h,y(0) = 0, y'(m) +Hylm) =0

there exists the set of eigenvalues {Ml}

Theorem (Gasymov and Levitan) C8. Suppose that we are given two

sequences of numbers {kn} and {un} (n=0,1,2,...) satisfying

the following conditions:

1.

2.

The numbers >\n and M interlace,

>\n and b satisfy the asymptotic estimates of Theorem
C7, and (ao # a(')) then there exist an absolutely continuous
function q(x) and numbers hl’ hZ’ H such that {)\n}_
is the spectrum of the problem (C.1)-(C.5) and {}Ln} the
spectrum of the problem (C.1)-(C. 6); moreover

— 1
h, - h; = Tr(ao-ao).





