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NUMERICAL ASPECTS OF THE INVERSE
STURM-LIOUVILLE PROBLEM

I. INTRODUCTION

1. 0 Objectives

The fact that the implications of the Inverse Sturm-Liouville

Theory are far-reaching has been the motivating force behind this

dissertation.

The objectives of this dissertation are, first, to resolve cer-

tain mathematical problems which restrict the practical utility of the

Inverse Sturm-Liouville Theory, and secondly, to indicate the signi-

ficance of this inverse theory to other fields.

In Section 1. 1 the inverse Sturm-Liouville problem will be

stated; in Section 1. 2 a brief resume of the historical development of

the problem will be given, and in Section 1. 3 the principal theory of

this dissertation will be formulated.

1. 1 Definition

with the initial conditions,

Determining q(x) of the differential equation

(1.0) (X...(1( ))yz=0, 0 <x <00,



(1. 0') y'(0) = h, y(0) = 1

for a given spectral function p(X), where h is a real number,

is referred to as the inverse Sturm-Liouville problem. p(k) is the

spectral function of (1.0)-(1. 0') if p(k) is a nondecreasing function

on -co < < 00 such that

ao oo

E2(k)dp(k) = f2(x)dx
_oo 0

where

E(X) = lirn EN(X.),
N-00

and

{(Pi(x)}0i.0

E (X) L.-- ts- f(x)cp(x, X)dx,
0

for any function f, which is square integrable in the Lebesque

sense on0 < x < co (see Reference [4]), and cp(x, X) is the unique

solution of (1.0)-(1. 0'). For Equation (1.0) on 0 <x < n with the

boundary conditions

(1. 0") y1(0) - hy(0) 0, y(Tr) + Hy1(.7) = 0,

1 oo

the spectral function p(X) equals Z , where {X.},0 and
a i 1=
n

are the eigenvalues and eigenfunctions, respectively, of
Tr

S'the system (1. 0)-1. 0"), and a = cp 2(x)dx (see Gelfand and
n n

0
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Levitan, [4]).

1.2 Background

The general theory for solving this problem has evolved during

the last 40 years. In 1929, V.A. Ambartsumyan produced the first

result in this field [1]. He proved the following theorem:

"1 t
X0, X1, .

. . denote the eigenvalues of the system:

(1.1) y" + {X-q(x)}y = 0, 0 <x <IT ,

(1.2) y(0) = y(n) = 0,

where q(x) is a real, continuous function on the interval.

Ifn = n2 (n = 0,1, ...), then q( x) = 0.

The second important step in the general development of the

theory was made by G. Borg in 1945 [Z, p. 1-98]. His main result is:

3

"let X , X
0 1

under the boundary conditions, (h and H are finite,

real numbers),

(1.3) y'(0) - hy(0) = 0

(1.4) yt(Tr) + Hy(r)= 0,

and let 110,p.1 ., be the corresponding eigenvalues of

(1.1) under the boundary conditions (1.4) and

denote the eigenvalues of Equation (1.1)



(1.5) y;(0) h1y(0) = 0, h).

Then the sequences {X. n} and {j. }, (n= 0,1,... ),

uniquely determine the function q(x) and the numbers

h, h1, and H. n

In 1950, V. Marchenko made the next important advance in the

theory by showing that if the spectral function of (1. 0)-(1. 0') (or

(1. 0")) is given, then q( x) and the constant(s) h (or h and H)

are unambiguously determined [7].

In 1951 Gelfand and Levitan presented the first effective method

for constructing q(x) of (1. 0)-(1. 0') (or (1.0 )) from its spectral

function, as well as giving necessary and sufficient conditions for a

monotonic function p(X.) to be the spectral function of (1. 0)-(1. 0')

(or (1. 0")).

In 1964 Levitan and Gasymov [6, p. 1-63] published a paper

which refines the 1951 paper of Gelfand and Levitan and also attains

a new result for a variation of boundary conditions. A brief synopsis

of this work will be presented in Appendix C.

1.3 Scope

In determining q(x) of the system (1. 0)-(1. 0') or (1. 0") from

the spectral function p (X.) by means of the Gelfand-Levitan theory,

it is necessary to determine the function K(x, t) and its derivative

4



dK(x, x)idx ([4] or [6]), for

dX(x, x)q(x) = + 2
dx

where

K(x, t + F(x, t) +Sx F(s, t)K(x, s)ds = 0, 0 < t < x.

F(x, t) = urnyN cos NTX x cos NiKtdcr(X),
N-1-00 -00

and

01X) =
2

(X) - x. o .
7T

Accordingly, in Chapters II and III algorithms are constructed

for solving K and dKidx numerically. In Chapter IV, the sig-

nificance of this theory is discussed. In particular, an application of

the theory is given in 4.1 which is relevant to the field of medicine, i.e.

an indirect method of determining the elasticity of a flexible tube is sug-

gested. This example is indicative of the truly diverse applicability

of this theory. In 4. 2, applications of the theory to various types of

problems will be indicated, and in 4.3 the interrelationships between

the physical systems of Section 4. 2 and the Gelfand-Levitan theory

are explicitly given. For the inverse problem on [0, Tr], it is shown

in Chapter V, that if--for sufficiently large N and appropriate

growth conditions--the first N eigenvalues K. and normalizing

5



pIT
constants a. (a.2(x)dx) are known, meaningful results can

1
0

be derived. In Appendix A, the integral equation of Chapter II is

solved by various iterative methods. In Appendix B, a brief synop-

sis of the theory of Kantorovich, upon which Chapters II and III are

based, is presented. In Appendix C, a brief synopsis of the Gelfand-

Levitan theory is given.

6



ALGORITHM FOR K(x, t)

2. 0 Introduction

In this chapter an algorithm is developed for numerically de-

termining the solution K(s, t) of the integral equation

(2.0) K(s, t) + F(s, t) +s F(x, t)K(s, x)dx = , 0 < t < s < R 00,

in which F is a given continuous function on

7

< t < s <R. With-_ _
in the framework of the Gelfand-Levitan theory, F is even abso-

lutely continuous in both variables and K is as smooth as F (see

[4] or [6]). Results of this chapter are based upon Kantorovich's

general theory of approximation methods [5].

The most important result to be developed in this chapter, for

our purposes, is as follows:

For a given E > 0, there exists an equipartition A of

[0,R] such that for each r, 0 < s < r <R, there exists a readily
^in

constructed continuous, iecewise differentiable function K suchr

that K(r, s) - rg:(s) I < E, 0 <s < r, for each equipartition An

of [0, r], providing the partition An is at least as fine as the

partition L; if, in addition, F of Equation (2.0) satisfies a
1

Lipschitz condition in each variable, then



n.Jn
K(r, s) = Kr(s) + O(A),

providing the equipartition An
of [0, r} is at least as fine as the

equipartition A of [0, Rj, where A denotes the length of the
1111

subpartitions of A .

1/1

The procedure followed in Sections 2.2 and 2.3 in developing an

algorithm for K of Equation (2. 0) is briefly sketched in Section

2.1. Sufficient conditions for constructing an algorithm for K(s, t)

of Equation (2.0) for fixed s are developed in Section 2.2. Then

based upon Section 2. 2, the results of this chapter are developed in

Section 2.3.

2.1 Kantorovich Approach

Let x(r, s) be the solution of

(2.1) x(r, s)
Cr

h(s, t)x(r,t)dt = y(r, s), for 0 < s < r < R;
0

(or equivalently)

(2. 1) Kx (s) = xr(s) + Hxr(s) = yr(s)

in the Banach Space Xr of real continuous functions on [0, r].

Now suppose there exists a linear transformation cpn that maps

Equation (2. 1) of Xr into the system

8



(2.2) xr3(t.) + h(t., t)xr (tk ) y r(t.), j = 1, 2, ...,n,
k=1

of the n-dimensional vector space X r. In order to determine

whether the solution (if it exists) of Equation (2. 2) satisfactorily

approximates the solution of (2. 1), it is necessary to answer ques-

tions of the following type:

Is the "reduced" linear system (2. 2) of algebraic equations

uniquely solvable?

If (2.2) is uniquely solvable, then to what degree of accuracy

does its solution actually represent the solution of Equation

(2. 1) ?

For a given E > 0, is it possible to determine a linear

system of equations (i. e. , a system (2. 2)) such that its solu-

tion does not vary from the exact solution of Equation (2. 1)

by more than c uniformly?

Questions of this type are readily answered within the Kantorovich

theory under rather general conditions. Consequently, it will be

necessary to familiarize the reader somewhat with the Kantorovich

framework, and secondly to show how this theory ties in with the par-

ticular problem under consideration.

First, with respect to the Kantorovich framework, suppose 3.-
^4na linear operation Pn projecting Xr on to Xr (a complete

9



subspace of X ) P 2= P . In the space Xr, consider the

equation

(2. 1') xrr (s) + H7c (s) = P y (s),r n r

where H is a linear operator on Xr. If the following conditions

"d*are satisfied Equation (2. 1') and its solution xr will be referred to

as the approximate equation and solution, respectively, of Equation

(Condition that H and H be neighboring operations)
r-'nFor everyxr E Xr,

II Pnr - HX f< 1137 II -r

(Condition for elements of the form Hx, x Xr, to be

rsinapproximated by elements of X) For every x E X

EX

Hx -

III. (Condition for close approximation of
min(2. 1)) .3- Sr) X 3-r r

II Y - II < rl IIY IIr r 2 r

where
712

may be dependent on

10

x

(see Kantorovich [5]).

Yr of Equation



If these conditions are satisfied, questions of the type mentioned on

page 9 are readily resolved [5]).

Secondly, with respect to the system under consideration (i.e.,

Equation (2.1) of Xr and (2.2) of X), suppose there exists ar
(-)n nsubspace Xr of Xr isomorphic to X , where 9 is ther 0, r(-inn n

function mapping Xr isomorphically onto X r and
(pr

is a lin-
nnear extension of

cp0, r mapping Xr onto X r such that

cp =nP . Therefore,0, r n

n -1 n
PO, r

rvn nIn view of the isomorphism between Xr and X r, Equation (2. 1')

can be transformed into an equivalent equation in X nr (and vice

versa). This is accomplished by substituting x = ((p ) xr inr 0, r

(2. 1'), and applying the operation cp 0, r to both sides.

xr- +

Letting

n. n - 1
) epPy.0, r x =0, r r 0 n r

H = 9 nr n -11(49q'0 0, r

xr + H xr =ryr.

Hence, the Kantorovich conditions on page 10 can be expressed in

11

terms of the system under consideration (i. e. , Equation (2. 1) of Xr



into

12

and (2. 2) 3Enr) by means of the mapping functions
cpr

and

n. Therefore, under appropriate conditions (see page 10) involv-
0, r n evning X, X, X, the mapping functions (p ,

0, rn,
and the linear

r r r

operator H of Equation (2. 1) it is possible to answer all questions

of the type stated on page 9 (see Kantorovich [51). Consequently, in

order to satisfactorily approximate the solution of Equation (2. 0), it

is sufficient to properly construct mapping functions and spaces in

the above context such that all conditions of the Kantorovich theory

are satisfied. In Section 2 2, this is accomplished for the solution

K(s, t) of Equation (2. 0) for fixed

2. 2 Algorithm Development

Mappings and spaces are constructed in this section for K(s, t)

of Equation (2. 0) for fixed s such that the Kantorovich theory is

applicable.

Let An(r) = be an equipartition of [0, r], where
Ji= 1

Ai
= I T 1< S < T., T. - T. = T = 0}, = 1, 2,i- 1 1 1-1 n 0

and A (= is the length of the interval Ai, i = 1, , n. Let t.

be the midpoint of Ai, (i = 1, , n). Transform Equation (2. 1)

xr(s) + Hxr(s) yr(s)



(2. 2) x (t.) +A h(t., t x (tr j r k
k=1

and

for t E .
1

by and

that the integral (t)dt be replaced by the finite sum
0

y = (y (tr r r

k=1

(t.), (j = 1, 2, , n),r j

Equation (2.2) may be expressed in the form:

n n--K x = x +H x = y,rr r r r r r
where

..... Yr(tn)) E

Ah(ti, t ) Ah(ti

Ah(t2, t ) .
H r =

h(t ,t1 ) A h(t ,t )
n n n

Definition. For the given equipartition t(r) = i}ni, let Xr be a

subspace of Xr such that if Eln, then x (1) ) gr r r k
n -1-- n

xr = (0 , r) xr where =, ng ) E Xr and xr(t) g
1

13



0.1nHencemaps It r isomorphically onto X r, and cpn is a
0, r

linear extension of 90, r. In brief then, the questions introduced on
-

page 9 will be resolved within the framework of the spaces X /Inr r

and Xnr, where Xr is the Banach space of continuous functions

on [0, r], 3e1 a Banach space of continuous functions linear on each
fl

subinterval A . and X , a vector space isomorphic to X
r r.

Diagrammatically

r

where cp
n is a function mapping )Tzl. isomorphically onto r,0, r

nand
cpr

is a linear extension of (0
n mapping Xr onto X r.0, r

For the given equipartition
An

(r) of [0, r] (with the length

of A = A , i = 1, , n ) , let Pn be a projection operator mapping

2
onto Xr, P P.n = n

,vn,n ,n /vnoinK x = x + H x Py,r r r rr nr

r4n*with solution x , will be called the approximate equation and

solution, respectively, of

Kx = x + Hx = yr r r r

14



if

"-)nThere exists an ri such that for each xr E Xr,

<1113- II.r r
A such that for each xr E Xr1,r

112, r

rJP-HxiIn r r r
There exists an

fvn ,..,n 1, 6exists an S' E X such that I Hx - x II <1 II xr r r r 1,r r II .

',al 5F
III. For each yr E X r, there exists a y such thatr r

tvn
II Yr - n2 r whereY II < A II Y II ,

A

n2, r may depend. on yr.r r
r4n e-ill

It should b e noted that H i. s a linear operator on Xr,r
and if x E Xr or X , then 114 = max I x(s) I , andr 0 < s <r
if x EX, then 114 = max I gi , where

i= 1, . . . , n

x = 1'2' grd
A AIn accordance with the Kantorovich theory, if 11, 11 , r and

can be made sufficiently small, if K-1 exists, and if the

three conditions (I, II, III) are satisfied, then x (the approxi-r
A Amate solution, see page 14) exists [5]. Furthermore, if 1r 111, r

A

and-92 converge to zero as n co in A (r) (or equivalently,, r

0), the equipartition of [0, r], then II xr -rII ° as

n 0, where x is the solution of Kx = y [5].r r r

Since the problem of interest directly involves rather
^inthan Xr, it will be necessary to interpret Condition I in the setting

of X r To this end, we proceed as follows:
n -1 nWriting (pn = Pr 0, r n , we see that Pn = ((p )r r . Since

0,_n n
xr Hrxr Pnyr, there exists an xr E X such that

15

there



Hencen nnx +H x =q,y,r r r r

n -1n n nes-ln nn
xr = (cp x r, xr + H ((p x = q' Y0, r 0,r r r r r r

nrJn n -1
so H = H (q/0, r r 0, r

If we replace Condition I by the Condition

n ,n
cpr Hxr

n n,on
H cp x < 11 xr 0, rr r r

then by letting ri A = II n II

1r Condition I is satisfied, forr 0, r

LIP Hx = H x II = II (
n -1 nHx - H x

n r r r 0, r r r r r

-1 n n -1n
= 1r r r -

(PO, r r 0, r r

-1 n nv nell
II ( (HI Hx

0, r 0, r r

II ((Po, 7.)-11117rAll ;jcrri II Vcrti, II

In summary we have the following:

Problem. Kx(r, s) = x(r, s)
pr

h(t, s)x(r, t)dt = y(r, s);
0

(equivalently) Kxr = xr(s) + Hxr(s) = y (s).

Domain. 0 <s <r < R .

Assumption. r fixed (0 <r <R) and equipartition (r) =

16



of [0, r]; A = length of A i = 1, 2, , n.

Reduced Problem (Algebraic System). tk the midpoint of Ak,

x(r, t.) + A h(t., tk)x(r, t) = y(r, t.), (j = 1, 2, ...,n);

nn n nn(equivalently) K x =x +H x = yr r r r r r

where n nxE X , yE Xr r r.

Hr : An n x n matrix whose element in the i-th row,

j-th column is of the form A h(t., t.).
1

Xr : Banach Space of continuous functions on [0, r].
rvn
X : Banach Space of continuous functions linear on each inter-

rs-ri
v ial = 1, 2, , n, such that if x E Xr, then

where n-1x = ) x , x = E X r)
)r'cjerk) = (90, r l'
and Z(t) = for t E1.

1

Lemma 1. For each equipartition An(r) = i 1}n of [0, r] there
-A r A (\inexists an r = r () such that for each x E Xrr t 2

cpnHZ H 119 n)"c <11All3c) IIr r r 0, rr r r

r Awhere CJ(-) is the modulus of t- continuity of h(t, s):t

17



= x (t ).r k

z(t)1 (t)dt - Az tX) (t )1r k

[z(t)-z(tk)]Vcr(t)dt1 rco()11371..II=

kAk

Let z(t) = h(t., t) =>
3

=>

r
wt 2

n
A is the length of the interval Ai, i = 1,2, ... , n; h, 'r' ,r' "'
and H are discussed on page 17.

Proof. Suppose z is a function in Xr, whose modulus of con-

tinuity does not exceed w(6). Let x E Xr,

z(t)xr(t)dt - /Azt x t)k r k

=>

= sup {1h(t+6, s)-h(t, s)I, 0<s <r, 0 <t <r, I 6

r
h(t., t).;\e (t)dt -

3 r
0

[z(t)-z(t (t)dt + A
k r Sjc.r (t)dt-X'rk(t jz(t.)(t)dtA r

Ak k k

II Con/4)T -H -nv 11;jc
r r r 0, r r

Ah(tj, tk )Vcr tk
1 < rwr(-4-11;t r

17:113cr 11

<-2

18



Lemma 2. Given an equipartition L(r) = {A . }ri of [0, r], for
n 1 1

rO runeach x E X there exists an xr E Xr such thatr r
A

il Hx -Vc 11 < ri II x II , wherer r 1, r r

wr(A) = sup {11-1(t,s+6)-h(t,s), 0 <t <r, 0<s <r, I5I < A},

A
= rwr(A), Hx (s) = Crh(t,$)x(t)dt,1,r s j0 r

and A is the length of Ai, i = 1, 2, ...,n.

n.)Proof. Suppose z(s) E Xr; let z(s) E Xr, where z is a piece-

wise linear function whose values at the points Tl' -r- (i.e.,

T.-T. = T = 0), coincide with the corresponding values of the

function z.

Suppose -ri s <T.+l, j = 1, 2, , , n-1. Therefore

)-2)(s)1 = 1 z(s) - [(T.+i-s)z(Ti) (s-I.j)z(Ti+i A

1
(<

ri
+1

-s)(z(s)-z(T.)1 1(s--r.) z(s)-z(T. )1
A 3 3+1

1
sSincez(s) = T.
)z(s) + s-T.)z(s)]

3+1 3 A

(s)-1(s)I< (T. ,-T.)W(A) = ( A

where w(A) = the modulus of continuity of z(s).

If 0<s<T , then

19



IZ(S)-Z(S)I = I Z(S)-Z(Ti)I <W(A)

Consider z(s) - z(s'), for z = Hx, x E

z(s)-z(s')I < Ih(s, t) h(st, t) II x(t)Idt.
0

Therefore

lz(s)-z(s')I <rwr(6)II

which implies for arbitrary s,

lz(s)--V(s)I <rwrs(A)11x11 for z Hx, x E X

< 11 II X 11

A rwhere
ri1, r rco (b.)r r

=>

Lemma 3. Given an equipartition An(r) = {a.}n11
ron

each y E X there exists a y E X such thatr r r

II Yr -34r II < rAII yr , 0 < <

where

A 1 (r)
112, r 11Yr 11 (4 (A),

(r)
w (A) = sup {I y(r, s+6)-y(r, s)I, 0 < s <r, 61 < A

and A is the length of the partition Ai, i 1, 2, , n.

Proof. In the proof of Lemma 2, it was shown that for each z E Xr,

[0, r], for

20

Nthere exists a z EX such that I z(s)-z(s)I <(t), where w was



A 1 rthe modulus of continuity of z. By.
2

letting 1 - co (A),r
implies that ly(s)-(i)r(s)1 < (:(r)(A) 112,16:11Y°

Hence,AII Y-rir)11 < 12, r II Y II

2.3 Results

Theorem 2.1. There exists an equipartition A = {A 'ft of
1 1

[ 0, R] such that for each equipartition An(r) = {A.}n of [0,
1

0 < r <R, at least as fine as A , (i.e., A < A')

nn nK x = yr r r

n nis uniquely solvable for all y E X ; also,r r

n -1--nIlx(r, s)-(cp ) x < P Ilx(r,$)II,0r r

where AT is the length of Ali, i = 1, 2, . n; A is the length of

i = 1, 2, n; P is defined below, and the remaining notation

is discussed on page 17.

A A
11 )M= (1+ 1, R 1

M M(1+ nl, R)P= (1+
cR)rriR

+
cR(1+ )=A1-q 1-=q°

R R

,,where M > sup {(1K }, M > sup {li

0 <r <R 1 < r <R

r Aq = ( 1 + ii +j
R 1,R 1, R

for arbitrary s.
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Proof of Theorems 1 and 2.

r A A< 1 for 0 < r <R, sinceTir =t (-2). Also, r 1, R'

1, r rwr11 (s). In applying the Kantorovich theory [5], it is neces-
s

Asary to make
qr

< 1, where

A Aa = r(1+11, r) + 1 II ((P
- 1 (pnic K-

11 ill
-`r 1, r 0, r r

Therefore

Let

therefore

A A
ER + ri M.

R 1,R 2, R

A -
11 <11r

A A Aqr < ( 1
+111

) + M)M1, R 1, R

=A A

qR =
(11R (1+11

) + 1, RAM)M1 ,, R

ci& <q for 0 < r <R.r R

Let .6 = th,'.}n' be an equipartition of [0, R], with the length
P- 11

=A'
of the subinterval AI = AI, (i = 1, 2, n), such

thatR

< 1.
=AT

Therefore q". < 1 for A =>

n'
KR xR

is solvable for all E -X-r1R1 (see Appendix B), and all finer equi-
-n(e1)--n(.6. 1)

partitions of [0, R]. Hence [K
xr

=
yr]

is solvable
n(A ,)

for all yr- E Xr 4 , where A , is an equipartition of [0, r] at
la

for 0 <r <R, since
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least as fine as A .

Let

w(A) = sup Ily(r, s+5)-y(r, s)I, 0<s <r <R, <p)
s, r

and

INTH min min { max (I y(r, s) I), deleting those valuse of
0 <r <R 0 <s <r

such that r E (r0 -5, r0+6), where 5 is a given,

positive, aribtrarily small number and Y(r0' s) =

for 0 <s < r0 , which implies, x (r0' s), the solu-

tion of the equation Kx(r , s) 7- y(ro, s), 0 <s <r0, is

identically zero.

In particular, since x(r, s) is a continuous function, for a given

>0, there exists a 5 >0 such that I x(r, s) I < E for I r-r 1 <5,
0

0 < s < r. We will refer to this deleted set as the "exceptional set."

Therefore

(r)
0, (A)A w (A) n A<

712, r = yr(s)II 2, r
Y II min

, R

providing r I exceptional set for 0 <r <R.

Noting that the two theorems, plus the corollary and theorems to fol-

low in this section must be qualified with respect to the "exceptional

set."

E

23



24

In accordance with the Kantorovich Theory [5], (see Appendix B), for

a given equipartition A (r) = {A,}n of [0, r], with A the length
1

of A., i. I., 2,,

A n -1 A n -1 n -1 n
r, A Kr) 4. Er(1+11(`PO, r (Kr) (PrKil)'P = (1+Er)r (

cp0, r

A A
E 111, 112, 11 II <1 + , r ql (Exceptional set).

Let "E. A AR 1, R
A

2, R'

Also, E <E since
R R

Therefore

therefore

-1 -1

r, A< (1+ER) r - A IIn+ E 1+ 1111K11).

Suppose A
p,

= {A i} is the equipartition of [0,R] with the
i 1

length of the subinterval A Al, = If 2,

is at least as fine as A ., i.e., A < A/. Through use of the

Kantorovich Theory (see Appendix B), we directly obtain the following
-1estimate of (K ) :

-1 (1+71 A)M (1+i A)M
K <

1, r 1 1,R 1

r 1-qA
=A

1-qR

II KII
.5- M1

for 0 < r <

and that A (r)

A A1
11 <111, R 1, R



1+ A 1

1

(,9
1, R)M 1

+
1

(1+p < (11-E r)r, A R 1-qR

since q qR => Pr
A

xr(s)- ((Po, nr)-1- x- < P xr, A

Since

A

(1+11 )M1
M

, R
=A

1-qR

=.-
< p

A

from which Theorem (1) directly follows.

II x II < (q)o,rn)-1;_c
II (90, :)- 1 -;

r
--cr

n-1 =-'-""

xr-('Po, nr)-17cril Ilxr-(g9 ,r)

Therefore

(IIx -(49 n)-117 )(1-7): 1) II(v ni-17c- II0, r r A r r

By selecting the equipartition A such that P1 < 1, Theorem
1111

(2) directly follows.

P(9 - 1 Tc A

-:- II ((Po, -1;r II

Corollary. Under the hypothesis of Theorem 2. 1 or 2. 2

n-1--n M ily
A 1 r

(q) x < (1-Fi )r 1, R =A
1-qR
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Proof. Since

and

Therefore

where

n 00

K x =yr=q)nyr r r r

n n -.1--nx r = (K)r r

n -1--n n -1 n -1n
( ) xr = ((PO, r) (Kr)0, r

II fl
lix II < II (R1-11)-111 liCr- I

II (Rnri II

A

(1+11, It)M1
=46

cIR

n*Theorem Z. 3. For the solution x r of

K x =ny , 0 < r < R, 0 < s < r,r r r

which is an approximate solution of the equation

Kxr(s) y (s), 0 < r <R,r

whose solution is xr

n -1 n*lirn 'Ixr - ((P0, r ) xr = 0;

in addition, there exist constants Q, Q1' and Q2
such that

26



n -1n*
Ilx (s)-((P0,r) xr <011R + Q 11 A

1 1, R

where the symbols have exactly the same meaning as given in The-

orem 2.1.

Proof. From the results of Theorem 2.1, these results readily fol-

low since
TIR

0 as

A
0 as i0

2, R

and

A
0, T1 1,R 0 as A 0, and

Since the kernel h(s, t) of concern is actually the function

F(s, t) of Spectral theory, which is at least absolutely continuous in

each variable, let us now assume h(s, t) is absolutely continuous

in each variable. Furthermore, let us assume h(s, t) is lipschit-

zian in each variable This implies that there exists an a such that

Ih(s+o-, t)-h(s, < alcr

Ih(s,t+o-)-h(s, 01 <al cr I ,

ws(6)< al 61

A A( 6) < a 61 < a., 1<RaA,

A w(A) < i3A2,R IlI min

for partition A with the length of its subintervals A. =A.

2, R

for all s, t in [0, 11].

for all s, t in [0, R].

Theorem 2.4. If in addition to the hypothesis of Theorem 2.3, the
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kernel h(s, t) satisfies a lips chitz condition in each variable, then

fun
-x O(A)

for all r such that 0 < r <R providing the equipartition is at

least as fine as al .

Proof. P4 .
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III. ALGORITHM FOR q(x)

3. 0 Definition of Problem

In determining q(x) of the Sturm-Liouville differential equa-

tion

(3.0) y" - q(x)y + , 0 <x <R

from its spectral function, it has been shown by Gelfand-Levitan (see

[4] or [6]) that

dK(x, x)q(x) = +2 dx

where

K(x, t) + F(x, t) +j F(s, t)K(x, s)ds = 0, 0 <t <x <
0

In this chapter an algorithm for numerically solving for

dK(x, x) /dx is developed, where

dK(x, x) dF(x, x(3.1) + F(x, x)K(x, x) + xF(s,x)(x,$)dx = O.dx dx
0

ax

This algorithm is based primarily upon Chapter II. However, this

time it will be necessary to assume that F of Equation (2. 0) is in
1 0C rather than just in C .

The main result to be developed in this chapter is the following:



Given c > 0, there exists an equipartition A of (0, R]

such that for each x, 0 <x <R, there exists a readily constructed

continuous, pie cewise differentiable function G ( )X

such that

K(x, xdx

dK(x, x) _ Gn(x) I <E
I dx

aK 8K,,(K(x, t))1 = ( + )1t=x ax ot x

on 0 < s < x

providing the equipartition
An

of (0, x] associated with G'1(s)

is at least as fine as A .

1171

In Section 3.1, it is shown to be sufficient to develop algorithms

for BK/Bx and 8K/8t rather than for dK(x,x)/dx of Equation (3.1).

In Sections 3.2 and 3.3 algorithms are developed for aloft and

BK/8x, respectively, based primarily upon Chapter II. In Section

3.4 the results of this chapter are obtained by combining the results

of Sections 3.2 and 3.3.

3. 1 Simplification

Since

dK(x, t) BK(x, t) aK dt
= (dx 8x at dx/ along t = f(x),

it follows that

30

Therefore, determining dK(x,x)/clx of Equation (3.1) reduces to



It follows directly that axiat of Equation (3.2) is unique and con-

tinuous. Also, since 8F/3x is continuous by hypothesis, it fol-

lows from the spectral theory [6, p. 14] that 3K/3x is unique and

continuous.

3. 2 Algorithm for moat

Let aK'/at be the unique solution of Equation 3. 2).

ax (x, t) aF(x, t) aFts, t) K* (x, s)ds.at at at

=
8F(x, t) 8F(s, t)

at at x, s)-Kx (s))dsArn*

x F8 n*
- K dsx

For fixed x, let

n 8F(x, t) Sx 8FK
n*

(s)ds,at at x
0

Differentiating Equation (2. 0) yields:

(3. 2) 81C(x, t) 8F(x, t) 8F(s, t
).1.cat x, s ds,at at

and

(3. 3)
8K(x, t) 8K(x, s)51xF(s,aF(x, t) ds.ax - F(x, t)K(x, x) - t) ax

0

31
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and

ax (x, t) "in *,
at .-K (t)1 < c1M4 = , for 0 < t < x.

In particular, for a given el > 0 there exists an equipartition

of [0, IQ such that for each equipartition An(x) of [0, x] at

least as fine as A a continuous piecewise differentiable function
ruin

Kx(s) 0 <s <x, can be constructed (as shown in Chapter II) such

that for each x, 0 < x <R, K -K < E0 <t < x, andx 1 -

32

n*where Kx (s) is the approximate solution of K(x, s) of Equation

(2. 0), for fixed x, 0 <s <x <R, as developed in Chapter II (see

page 7), and we denote the unique solution of Equation (2.0) by K.

Therefore,

8K Ai n* x 8F(s, t) rdn * *- K = (Kx(s) -K x, sflds ;at x
o

at

&K (x, t) (^On
-

*,K(t)i <e1M4 = c, for 0<t<x,
' at

where

Fa (s, t)
M4 = max tc x

0 <t <x <R 0
at

Hence, for a given
c1

> 0, there exists a continuous function
(vnK (t) for each x, 0 <x <R, such that

aK*(x, t) Pen *
at - Kx(t) I <E2, 0 <t <x, c= e M ,

1 4



aK (x, t) n*- K () e
'

ti < 0 <t <x'
I at x

3.3 Algorithm for MK/3x

For Equation (3.3)

(3 3) aK(x, t) aF(x, t
. =ax ax

* aF(x, t) t K*(x,G = ax

Fix x, let

K (x, x)-Kx (x)A-'n*
- - F , t) *

- F(x, t)K(x, x) - 5-1 F s, t
0

< x < R, = M
--- 2 1 4

let G = ax /at denote its unique solution. Therefore

aK(x, s)
ax

- F(s, t)G (x, s)ds.

(3.4) an(t) = -F t)[K (x, x)-K (x)] xF(s, t)Gn(s)ds.rvn*

0

For fixed x, consider the equation:

aF "in *(3.5) G(t) = - - F(x, t)Kx(x) - F(s, t)G (s)ds
0

6-) n*In Equation (3. 4), divide through by K (x, x) Kx (x):

Gn(t)
1

A.'n*
F(s,t)Gn(s)ds

(K (x, x)-K (x)) 0

Noting that Equation (3.3) cannot be numerically solved directly for

alciax, since K(x, x) is typically unknown. Therefore

s;

33



"Nn "InG (t) x G (s)
X - -F(x, t) - S F(s, t)[ x Iv ,,, Ids .* Nn*K (x, x)-Kx (x) o K (x,x)-Kn '(x)

x

However

K(x, t) = -F(x, t) F(s, t)K(x, s)d

for each fixed x, has the unique solution K (x, t). Hence,

= K (x, t).

"n*
Let

Gx denote the unique solution of Equation (3. 4) for the given

equipartition i(x) of [0, x]. Therefore for each x, there
A n *

exists a unique function G(t) satisfying Equation (3.4) for each

appropriate equipartition i(x) = {A }n of [0, x] (i. . , A <
I

Ain*see page 7); it will be assumed that K*(x, x) Kx (x), for if
Nn* AinK (x, x) = Kx (t), then G(x, t) = G(t) of (3. 5). Hence, the follow-

ing analysis holds.

For fixed x, consider G*(x, t) - G:(t), where
*axG*(x, t) = is the solution of Equation (3. 3):ax

(3.3) G (x, t) = aF(x, t)- F(x, t)K (x, x) - F(s, t)G (x, s)ds;ax

^n* n*(3.4) G (t) = -F(x, t)[K (x, x)-Kx (x) - F(s, t)G;( )ds
0

34
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Let

* An *
G (x, t) G(t) = - F x, t)K (x) -

x

* An
G (t) = G (x, t) - Gx(t).

Therefore Gx
n*

(t) is the unique solution of Equation (3. 5):

(3.5) Adn(o* t) is)n *
ax - K (x)F(x, t) - F(s, t)G (s) ds.

x
0 x

We will now show that for a given
e3

> 0, there exists an equiparti-

tion A of [0, R] such that for each x,
441

"ni, *
G < c, (i.e., G -G < E ),

x

for all equipartitions of [0, x] at least as fine as A

Since

* "nF(x, t)[G -Gx]ds.

Hence,

Therefore

Gx(t)
NI1*K (x, x)-K(x)

- K (x, t

G(t)
I *

x 1 fin *
- K(t '

< E 0 <t < x.n * xK x, x)-K (x)x

^n "in * * "../n*
xG(t)-K (t) (K (x, x)-Kx( ) )I<

E1
I K (x, x)-K (x) I.x x

A n /N-m* * n
I Gx(t)-Kx(t)(K (x, x) K (x) ) <C .

1
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For fixed x,

* 2
I 8n(t) I - I kn * * n(t)I K(x, x)-K(x) j <Ei

kin(t)*1 =E + ki:(0*1).

IIG*(x, t)- Gn*(t) II < E (E II Ir11),

where G (x, t) = 81c (x, t)is the solution of (3.3):ax

8K(x, t) OF(x, t) F(s, t aK(x' s) ds F t)K(x, x) = 0,ax ax ax

r4n*and G is the solution of (3. 5):

G:(t) = - t) F(x, t)Kin(x)* F(s t)61.1(s)ds
Ox

From the above result, the assertion given on page 30 directly fol-

lows, since <Jj 1((x, t) K(x, 011, and C1 is inde-

pendent of x.

OF(x,By letting y(t) = - t)ax - F(x, t)K:(x)*, Equation 3.5 can

be written in the form:

'-ajn(t) F(s, t)Gx(s)ds = y (t).

This is the same type of integral equation whose numerical solution
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was considered in Chapter II; the only difference is that in Chapter II

we were primarily interested in the case where y (t) = F(x, t);

whereas in this case

t *
y(t)x ax j: , t)Kx(x) .

Therefore, in order to apply the results of Chapter II to Equation

(3.5), it will be sufficient to show that the three conditions cited on

page 15 are satisfied. However, since the equations are the same

except for the nonhomogeneous term y (t), it is sufficient to check

the conditions that involve yx(t). Therefore, it suffices to show that

for each y(t) there exists a 3r) (t) such that

Y rj <x , YxII II 0 < x < R, (see page 20).x 2 x
Since

aF(x,
-.t

n
t( ) = - ax F , t)K(x)*Yx,

which is continuous, the above condition is shown by following

exactly the same line of reasoning as presented in Chapter II on this

item.

Hence, for a given
c4

> 0, and a sufficiently fine equipartition

A of [0,11], for each equipartition A n
of [0, 4 0 < x <R,m

at least as fine as A , there exists a continuous piecewise differ-m
esJ

entiable function Gx on [0, x] such that



Therefore, since

dK(x, lt) dK (x, t
dx dx

we obtain

and

For each fixed X:

8K (x, t) ax (x, t) * '4n *
= ( at - Kx(t) ) +at K (t) ;

8K (x, t) ax (x, t) fsdn* e4n *
Gx (t)) + Gx(t) .ax ax

* ^inII K -K <EX -

"in* m*G -G II < e .
x x 4

3.4 Results

dK (x, t) ax t
I -(Kn(t)+G (t) )1 (x(t) )t=xdx t=x x x =x at

aK*

*,

+ -G (t) )
8x x t=x

IdK (x, x) "n* <c M 11P)ri*II )

I dx -(Kx(x)+Gx (x) +jj K4+ 1(£
1 x 1

uniformly in x, providing for each x, its associated equiparti-

tion A n(x) is at least as fine as both equipartitions (see page

32) and 4%

NJ*
(see page 35), where

=
(8K t) OK (x, t

ax at t=x

t K"xn(x)*dsaF(x, t)
at
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rdn(tI OF(x, t) * evn(s)ds.(3.5) - F(x, t)Kx(x) - F s, t)Gxx 8x

ron* Zn*Since K is known, K is readily determined. However,
rs-in* can only be obtained by solving the integral Equation (3. 5).

As mentioned earlier, Equation (3.5) can be numerically solved

by the method developed in Chapter II. In this light, (see page 37),

for fixed x:

8K (x, t) r-)m. * ax (x t),- Gx (t) - Gx (t)) + (G--(t) -G (t) );ax 8x x x

18K (x, t ,

G (t)* I < IAK(x
t)

- G--(t) I* + I G(t)44*(t)I
I ax 8x

aK (x, t) '0*w'
I 8x x I

< E (E

1,-,n* 7-6m *
1G -G (t) I < E

X X 4
For fixed x:

IdK (x, t)Nin* ,
- (Kx (t) + Gx (t) )1ax

ax (x, t Zn* ax (x, t) rs/s'm *
I( - Kx (t) + I ( - G (t)at ax

8K* (x, t)
- Krin(t)"1/4I + I

aK(X, t) "-in* ,-Im*
I G + Gn- (t)-G (t)1xat ax x x

'1(6 + II

+ II 11:11
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idK(x, x) e
ME1

+ e for 0 <x <R.
I dx x x 4

The results of Sections 3.2 and 3.3 were based upon the

assumptions that

there does not exist an r0 such that F(ro' s) 0 for

0 < s < r0 < R, and

that there does not exist an xo such that

(9F(xt)
0' A.)n*- F(x , t)K (x)= 0 for 0 < t < x <R.

x0
0

If (a) does not hold, one must proceed as in Chapter II (see page 23).

If (b) does not hold, then in determining Gx
the same type of

qualifications must be imposed as were imposed in constructing
^Jrn
Kx under similar conditions in Chapter II (see page 15).
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IV. APPLICATION OF BASIC THEORY

4. 0 Introductory Statement

The significance, in the sciences, of the inverse theory will be

indicated in this chapter. In Section 4. 1 an application of the theory

is given, which is relevant to the field of medicine; in particular, an

indirect method of determining the elasticity of a flexible tube is sug-

gested. In section 4. 2 the application of the inverse theory to a few

problems of mathematical physics is indicated, and in Section 4.3

the interrelationships between the equations describing the systems

of Section 4. 2 and the inverse theory are given.

4.1 Specific Application

Consider a one-dimensional flow through a slightly flexible tube

of an inviscid liquid with constant density and velocity v(x, t), which

is constant over each cross sectional area. Let F(x, t) denote the

total flow through the cross section, and f(x, t) the cross sectional

area. Furthermore, assume that f(x, t) is a linear function of the

pressure P(x, t), i.e. ,

f(x, t) = f (l+k(x)P(x, t)) = fo + fok(x)P(x, t),

where k(x) is the proportionality constant of elasticity.
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In this section it will be assumed that all variables are suffi-

ciently smooth, in particular, twice continuously differentiable.

A first order linearized theory will be assumed, in particular,

with respect to the equation

F(x, t) = pv(x, t)f( , t) = pvfo pvfok(x)P(x, t),

the magnitude of the second order term vP will be assumed to be

negligible in comparison to the magnitude of v. Hence,

F(x, t) = pvfo

By conservation of mass

ar. af
TX- = H(x' t),

where H(x,t) = source density (fluid mass added per unit length per

unit time).

8 8P
Pfo

v
-aTc Pfok(x) H

(4. 0) av ap H
ax at pf

0

By conservation of momentum (one dimensional Euler Equation),

Dv ap
p .

Dt ax

Dv_ av av
Dt at v" ax

t).
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avDisregarding the second order term v impliesax

(4. 1)

(4. 2)

where

where

From Equations (4. 0)-(4. 1) it follows that

2
a l ay 8v - H = 0,k ax 8t2

8P av A

-aTc P at -

HH =
ax pf k`

0

The elasticity of the tube is expressed by the function k(x).

Therefore, the problem of determining the elasticity by indirect

means entails determining the function k(x) by indirect means. The

function k(x) can be determined by indirect means through utiliza-

tion of the Inverse Sturm-Liouville Theory. In this regard, let us

consider a specific example.

Now suppose we wish to determine k(x) for a flexible tube of

length Tr, where the end (x = 0) is closed and the liquid flows

from the other end (x Tr) into a reservoir. Also, let the source

density H(x, t) be of the form G(x) sin wt. Therefore, from

Equation (4. 2), the flow in this tube is described by the equation

1(4.3) pvtt = (iv) + J(x) sin wt
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G(x)J(x) = dx 0pk(x)
)

At x=

(4. 4) v(0, t) = 0.

It will be assumed that an incremental change in the internal

pressure of the reservoir is proportional to an incremental change in

the volume of the reservoir (i. e. , dP = CdV ). Hence,(volume)

t) = f C (TT, t),0 vdt

since

dV(volume)
f dt 1T, t)

Therefore, by Equation (4. 0),

vx(ri,t) + hv(Tr, t) = 0,

where

h = k(Tr)Cfo.

Suppose v(x, t) U(x) sin cot, then Equation (4. 3) reduces to

(4. 5) 1 z(UT +pU + J = O.

(4. 6) U(0) 0, U'(lr) + hU(Tr) = 0.

oo
For (4. 5)-(4. 6) there exists the eigenvalues {x.

}0
and the normal-

].
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00
ized real-valued eigenfunctions {491 (X) }0 such that



Therefore,

The

, (----, 9104
1

bi k(x) 1

../

=>

2w p

U(x) =

x, t) =

co

vi)(pi(x)

2
X.-w

[b.(-X..p+w2p) + a.p cp.(x) = 0.

b. -
X. w2-

(J, vi)(pi(x) sin wt

a.go.- (x) =

Noting that this mathematical solution is singular at

as a result of linearizing the equations of the actual physical system.

By varying the frequency w of the driver mechanism it is

45

1
+kipcoi(x) = 0,

7r(P.(-
0) = 0, yo- l(Tr) + hcp.( ) = 0.

) = a.(p.- (x), a. = T.- ).

U(x) = b.v.- (x).

i=0 wX.-2



(4.7) U =
xx + f(x)U(x,t), (with suitable boundary conditions),
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possible to determine the resonances of the system (in particular,

the eigenvalues Xd. Exactly how this example ties into the Gelfand-

Levitan Theory will be clarified in 4.3.

This example is applicable to the field of medicine, in particu-

lar, in determining indirectly the elasticity of an artery, which is a

measure of the degree of arteriosclerosis.

4. 2 Indicated Applicability

Now let us briefly look at a few additional mathematical models,

which describe numerous problems of mathematical physics, to which

the Gelfand-Levitan Theory can be applied.

Determining f(x) (assuming f E C°) of the equation

reduces, by separation of variables (U X(x)T(t)), to determining

f(x) of the differential equation

(4. 8) Xii(x) - f(x)X + X X = 0, (with appropriate boundary conditions).

f(x) can be determined, for example, if in addition to knowing the

eigenvalues k.(i 7-- 0, 1, 2, ... ), the constants c. and d.
1 1 1

(i = 0, 1, 2, ...).1-/can be determined (see Gelfand and Levitan, [4] or
(%) 2[6]), where c. =Scp. S( )d, , and ev ,

. s are the eigenfunctions suchi 1 'Pi

1/a i of references [4] and [6] is determined from C. and d.,
1 1



that A'ci(0) = di, or if, in addition to knowing the eigenvalues k.

(i = 0, 1, ... ) under one set of boundary conditions, one boundary

condition can be changed and the eigenvalues of the altered sys-

tem determined (Theorem C8, Appendix C).

Determining p(x) (assuming p E CZ) of

(4. 9)

=S1/2p (g)a 2l,p E C , (0), and

p
(x)Wtt

= W , with suitable boundary conditions),
XX

can be reduced (by separation of variables, W = XT) to determining

p(x) of the differential equation

(4. 10) X" + X. p X( ) 0, (with appropriate boundary conditions

which, in turn, can be transformed into a differential equation of the

form

(4.11) y"(t) - q(t)y(t) + ky(t) = 0,

to which the Gelfand-Levitan Theory is applicable. For example,

p(x) of (4.9) can be determined indirectly by means of the Gelfand-

Levitan Theory if, in addition to knowing the eigenvalues K. of

(4.10), p(0), p'(0),
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can be determined, where and LP n's are a set of
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eigenfunctions of (4.10), or if addition to knowing the eigenvalues
.of (4.10), p(0),

p,(0), and p E C2, it is possible to

change one boundary condition and determine the new set of eigenvaides

for the system.

Similarly, for example, p(x) (assuming p E C2) of the

equations

p(x)U Uxx' Ut = (p(x)Ux)x, etc.

can be determined indirectly by means of the Gelfand-Levitan Theory.

4.3 Interrelationships Between Indicated Systems and
Basic Theory

The physical systems as described by the above equations will

now be explicitly connected to the Gelfand-Levitan Theory.

The differential equation

(4.12) X" + kp(x)X(x) = 0, 0 <x < Tr,

with the boundary conditions

(4.13) X'(0) + hX(0) = 0, X'(IT) + HX(Tr) = 0,

(4.12)-(4.13), can be reduced to the system:

(4.14) Z"(r) + q(r)Z(r) + AZ(r) = 0, 0 <r

with the boundary conditions



(4.15) Z'(0) + gZ(0) = 0, Z'(.12) + GZ(1) = 0

where g and ale constants, by the appropriate transforma-

tion [3]; noting that the Gelfand-Levitan Theory is directly applicable

to (4.14)-(4.15).

The following theorem clarifies the relation between (4.12)-

(4.13) and (4. 14)-(4. 15).

Theorem 4.3.1. If p is known and p "(x) E L(0, Tr), then there

exists a transformation setting up a 1 1 correspondence between the

eigenfunctions of the system (4.14)-(4.15), where q of (4.14) is

related to p of (4.12) in the following manner:

1 d2 1q(r) = - (
1

p3/4( ) dx p/4(x)

and the constants g and G of (4.15) are related to h and H

of (4.13) in the following way:

(h- P") 1
g )

1
G = (H- PI(Tr))4p(0) pl /2(0) 4p(v) 1/2

P (1T)

(In [2], similar results are used but never proven explicitly.)

Proof. Let

1/2 and / =p1/2( )4t p (0d.
0 0
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For each eigenfunction 4J.(x) of (4.12)-(4.13) with its eigenvalue Xi,



1/4consider the mapping(pi(r) = p (x)Lpi(x), where r is the running

dummy variable in the transform space. By direct substitution, it

can be shown that

V."(r) - cl(r)(P.(r) X.q.(r) = 0, 0 <r

and that

iyo!(0)+ g.(0) = , cp! (1) + G .( ) = 0,

where g and G are given by the above formulas. Conversely,

suppose we have the eigenfunction p.(r) of (4.14)-(4.15) with its

eigenvalUe X.; that is,

rcp!'(r)q(r)v.( + X.v.(r) = 0, 0 < r <I,
J

and

cp!(0) + g(p.(0) 0, q(i) + Gcp .(e ) = 0,

where

g (h- P" 1
) )4p(0) 1/2

p (0)'
G (H- 217T) 1

4p(Tr) ) 1/2
P (1r)

and q is constructed from p by the formula:

1 d2 I 1

q(r) = 1/4
P3 (x) dx2 p(x))

Letting

co .(r)

j 11/4
P (x)
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we see by direct substitution that Liii(x) satisfies (4.12)-(4.13).

Theorem 4.3.2. If there exists a unique solution y of

q(p) = 1 d2
o < < Tr

y(0) , 00) q E L,
0

such that y is strictly positive, then there exists a unique solution

to the nonlinear differential equation

q( S1
3 d2Zcg) = -Z (x)---2-- 0<x <I ,

0 Z dx

Z(0) = Go, Z'(0) = po

Proof. For q E L, it is well known (see Theory of Differential

Equations by Coddington and Levinson) that there exists a unique

solution to the differential equation

1q(x) dy(x)
y(x)

dx
y(0) = 00) = 430.

ao
(This proof is based upon ideas developed by Borg 12].)

Let

1r
2 and I *1

0 y ( ) 0 y ( )

dxDefinition of the function p(r): p(r) = +(---)1/2 .dr
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Noting that

dr 1

dx
y*(x)2

and

Since

p(r) = y(x),

where

r =Sx1* 2d.
0 y (t)

d d dp(r) dr= 1 d.p(r)
dxY'x' = dxP`ri - dr dx 2p(r) dr

Or)
p2(r)

dy(x) 1 d2 1
)

p(r)dx2 p2(r) dr2

Also,

y(x)q(x)
2

d
y(x)2 , y(0) = y'(0)

dx 0

1 d2 1 1 0q(x) - ), P(0) = , V)) = -ap3(r) dr2 p(r)
0 ao

p"(r) 2pI(r)2

2(
3r) pp (r)

>
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Also,

d2y(x) d( 1 dp(r)1 1 1 dp(r))][d(
2 dx -2 dr ' 2 dr 2 drdx p (r) p (r) p (r)

1 d2p 2 dp(r) 2
2,

P kr)
2 2p (r) dr 3 drp (r)

2

dr



where

r 1
d* 2t .

0 y (t)

Since x p2 ()d and p2(r)d.r = dx,
0

d2p2(t)dt) = - p(0) = , p(0)= 0

0 p (r) dr P 0
a0

1Letting Z(r) p(r)

2

q( )d)= -Z3(r) d Z(r) Z(0) -= a0, Z1(0) = 13 Z > 0.
1

0 Z2() dr2

Therefore, it remains to show that the solution of

2

(
1

), p(0) = 1, 00) = -q( tcl p2(t)dt) = -
3 2 p(r)

0 p (r) dr a0 a0

is unique.

Suppose two solutions, p
1

(x) and. p (x), exist.
2

Construct a function yi, such that

dx 1 /2 f-)

where

C
r

2
x = p1 ()d.

0
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Since p1 >0, it directly follows that VI is well-defined.

dx 2 rv 2 dx
= P1 (1.),

y1(x)
=

dx r - dgdr -
AA. 2 ' A) 2y1(x) 0 y1(g)

1 d2 1 1 PO
q(x) = ( (r) ), pi (0) = P11(0) = -

2 ppl dr 1 0 a0

d dp1 (r)
1

71 3-c (x) = 2 dr
P1 (r)

2
d2 d

psi1 r 1 1 2 dp(r)12.1_2y1
1 - 2 2 2 - 3 drdx p1 (r) p1

(r) dr p (r)

2(..)d yi (x)
1 d2 1

_
2

=
2 2 p (r)dx

p1
(r) dr 1

1 d2 r-' 1 rvq(x) =y (x), y1(0) = , y:(0) -po.Yi(x) 1
1

ao

With respect to p2 y2

1 d2 eNJ ni 1
q(x) = Ti y2(x) ; y2( ) = ;

Ya dx
Hence

P2 = P1

1,1
yi (0) =

2 0

By combining the results of Theorems 4.3.1 and 4.3.2 with the
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Gelfand-Levitan Theory, we obtain the following theorem.

Theorem 4.3.3. If

The hypotheses of Theorem 4.3.2 are satisfied.

The eigenvalues {X.} and the normalizing constants
oo

i=0
00 2taili=0 of (4.14)-(4.15) are known, where a. (04

1 1
0

and 4,i's are the eigenfunctions such that 4,i(0) = di.

1
p(0) and p'(0) of (4.12)-(4.13) are known (a =

0 p(0)

po = -p1(0) of Theorem 4.3.2). Then p(x), h, and H

of (4.12)-(4.13) are uniquely determined.

The following facts pertaining to Theorem 4.3.3 should be

noted:

p(x) of (4.12)-(4.13) can be explicitly determined by means

of the Gelfand-Levitan Theory combined with the results of

Theorems 4.3.1 and 4.3.2.

The smoothness of p(x) of (4.12)-(4.13) (i. e . ,

p E L(0,71-) for some m) can be determined by means of

the Gelfand-Levitan Spectral Theory and Theorem 4.3.3

could have been phrased accordingly.

In the hypotheses of the theorem, it was assumed that p(0)

and p'(0) of (4.12)-(4.13) were given; however, the same

results could have been attained if p(1)and p( 2) or

PI(z) were known instead of p(0) and p1(0), where
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U(P) = 1/4(x)X(x),

P = 1 /2 '

1
=

s, Tr

1/2
1 dt

0 k (g) 0 k (t)

q(P) = -
1 d2 1 /4(x)) .

1 /4
k (x) dP2

Hence, analogous results of Theorems 4.3. 1, 4.3. 2, and 4. 3. 3

directly follow.
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E [0, E [0, w].

4. Also, if one boundary condition can be changed and the

ieigenvalues14. ( 0, 1, 2, ) determined for this altered

system, then it is not necessary to know the s and d

Similarly,

(k(x)Xl(x))1 + XX = , 0 <x <ir,

X1(0) + hX(0) = 0, Xl(ir) + HX(r) =

may be transformed into

Un(P) - q(P)U(P) + XU(P) = 0, 0 < P <

100) Weir)+ (h- k(0)
W)U(0) = 0, OO + (11- )TTi

47(7) =
4

by the transformation



shown that if X
X' 1

. , X a a .. a
0 N-1' 0' 1 N-1

and

a0 al , 1
-1Nan = n + + + O() for n,

4n3

Tr 0 1

an +
+ 3- for all n,

then for sufficiently large N, there exist continuous functions

GN(x, t), KN(x, t), and q(x) such that

1 1F = G + O(--), K = KN + 0( )

N2
2

are known,
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V. RESULTS FOR AN APPROXIMATE SPECTRAL FUNCTION

5. 0 Introductory Remarks

For the inverse Sturm-Liouville problem

y" - q(x)y + X y = 0, y1(0) hy(0) = 0, y'(rr) + Hy( ) =

on the finite interval 0 <x < Tr, it has been assumed in the preced-

ing chapters that the complete infinite set of eigenvalues {xi},

i = 0, 1, 2, ... and normalizing constants {a.}, i = 0, 1, 2, , are

known. However, for practical considerations, it is important to

know whether F, K, and q(x) of chapters two and three can be

uniformly approximated if only the first N eigenvalues k. and

normalizing constants a. are known. In this chapter it will be



and

1q(x) = q(x) +

where

F(x, t) + K(x, t) +
ft

F(s, t)K(x, s)ds = 0, 0 < t< x
0

and

ZdK(x, x)
cl(x) - + dx

The functions F, K and q will be approximated in Sections

5. 1, 5. 2 and 5. 3, respectively. Results of this Chapter have neces-

sitated the estimation of certain asymptotic series. Similar tech-

niques have been used by B. M. Levitan, lzv. Akad. Nauk SSSR Ser.

Mat. 28 (1964), 63-78.

Condition A.

X, for n = 0, , N- 1, and

a n, for n 0, , N-1, are known.

The asymptotic conditions

ao al
n + + + (-1)n n n3' n4

and

IT 0, 1 ,
=

n32 2

are satisfied for arbitrary n.

There exist constants cl and c
2

such that

3 b0C <n + for all n > N,
2 2 a2
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and

and

brXn -

iT c20 < ,

5.1 Approximation of F(x, t)

Theorem 5.1. Under the hypotheses of Condition A, there exists a

continuous symmetric functionGN(x t) such that
'

1F(x, t) GN(x, t) +

where

1

GN = F(x, t) + (x+t)+f (x-td,2 N

N-1cosNIX. x cosNIKt cosNa xcosN.rT t010 n 2

FN(x, t) = - + [ cosnxcosnta
0 Lian Tr

n=1

4b 2
0 cos nx x

Tr2 2 2b0 2

n=N n (1+
Trn2

00

x

n=N

00

n=N

a a
, 0 1 ,cos nxk--+)

n 3

a a 4b
0 1 0 2sin nx(+---) -n 3 2b Tr

n Trn2(1+ 20

Trn

4b0

2 2b0
Trn

Tan

Proof. For the inverse Sturm-Liouville problem on 10, Tr , the
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function F can be expressed in the form see [4] or [6]):

(5. 0)

1 1
F(x, t) = cosNI-Rox cosN1T ot - +

a0
n=

where 0 <t <x <it,
an > 0.

Let
00

cosNI Xnx 2
aN(x) = - cos nx).

n=N

Therefore,

(5. 1) F(x, t) = FN(x, t) + [aN(x+t)+ a

where

(5. 2)

cosNTox cox\/"K0t 1

FN(x,
t) = ----+

a0 it

(5.3)

and

(5.4)

where

n - n

00

N-1

n=1

cosNrX x cosNTX tn n
-

2 cosnxcosnii,a

c o s NIXx co s Nrfi *t
n n 2 cosnxcosnt

an

a a
0 1

Nrxn = n + + gn 3 n

Tr b0a = + - h ,
n 2 Z n
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There exist functions gn and hn such that



and

(5. 5)

and

(5. 6)

Tr 0 , 2
hn 7

(,) ".)
Let an and bn be defined as follows:

a a
"., 0 1a = ++

n n 3
n

e`i 0
b = - hn 2 n.n

Since, by Equation (5.1

F(x, t) F , t) + x+t)+aN(x-t)],

to prove that F(x, t) can be expressed in the form

1 1

F = (FN(x, t)+fN (x+t)+f (x-t)]) + 0( 2)2

reduces to appropriately estimating the terms of the series a :

00
cost\TX x

2
aN(x) = a - cos nx).

Tr

n=N

1In this regard, the factor of the nth term of a can
an

be expressed in the form:

n
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Also,

since

Since

NT-V = n +n

by Equations (5.3) and (5. 5), cos NiXn

form

4b
1 2 0

a Tr 22
n Tr n

b0 2lit

nz
1-

by hypothesis. Therefore,

(5.7)

cosNrr x 4b0cosNrrnxn
=

2
cos,\TX-x -

an it n 2 2 2b0it n (1+-2-)
Trn

1 hn
2b

Tr b0 2

Trn

31T b0 2n ( + )

Tr 0
2

n
2+

2

n2

<1 for all n > N

C2

1-

hncosNr7 x

r.)cosNiTnx = cos nx cos anx - sin nx sin anx.

C2

n
b

3 0
I

-7) 1-
n b0

b02 hn

can be expressed in the
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cosN/Tnx = cos nx + cos nx

+ cos nx

IN 2i(-1)
(anx)

i=1

Therefore the nth term of the series aN

in the form:

(5. 8)

cost\TX-nx 2
4b cos nx

0
( - -cos nx) = -

an
w 22 , 2b0,

it 11 k i -t )
2

wn

(2i)!

".)+ sin nx sin anx 7 7 2b
\ir-n-(1+-0-) ./wri

h cos'./XT x

b 2(
(.7,4"-)

n
b

( 2 2

= Iln +12n
+ I3n + I4n

respectively.

Now, let us consider 2n
of Equation (5.8)

4b0 2

- sin nx sin 'ajx.n

can be expressed

-1)(a x) 4b0

oo

Zb2 2 0n (1+-2)
wn-
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(5. 9)

Since

it follows that

since

I2n
= cos nx (2i)!

2 2b0
i=1 rr n (1+ _y

rrn

00 ir.i 2i es, 2v (-1) (a_x) a x
" _

Z., (20! 2

A.J 2 a0(a) = (
n n

ax2a0 12
I = - +--) cos nxZn 2 n

n3

co i 2i(-I) (a x) 4b0

al 2 gn
7 4. [ngn + 2(a + -2)],

2

i=2

and by the definition of (Equation (5.5))

4b0
2b

0
rrn2 (1+-2-)

rrn

2x gn 2 4b0- ---z cos nx [ (ng +2(a0 ) I IT -n n 2, 2b0,rrn ki-r-3-)
7rn-

irn

00 ) 2i(-1) (anx)

(2i)!
i=2
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+ cos nx

oo

i=2

-1)i(2j 2i. x) (2 4b0
(2i)! 2b

2 0rrn (1+-2°



and

Furthermore,

and

rv 3 1

an
n3

A, 4(a) 0(4),

co i 2i(-1) (anx)
(2i+4)!

i=0

. (s) A.) PJ 3 3sin anx = anx + anx
i=0

= 0(1).

Similarly, let us consider the term I3n of Equation (5.8).

4b0
I3n = sin nx sin axn

2b0cm2(1+
Trn

Since

2i i+1
anx) (-I)

(2i+3)!

2
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Hence,

2n

gn (ng + 2(a +n 0

a0 a l ,2

al--))
n3

i
2

4b0

1

1= 0(7 ) .

n

+0(;.)

n

2x

irn2(1+---2-)

4b
0 cos nx

\trn

2b0
1

2 n /
n3

it
2b02(1+-7)irn

\ irn-



I4n

1=0

it directly follows that

a a 4b
0 1 0I = x( +--)

3n n 3
2b0

Trn

The term I4n of Equation 5.8),

hn cosNIXnx

co n.) 21 i+1(a x) (-1)

(2i+3)!

Therefore, by letting,

= 0(1),

(1r+0)2 (-2
n2 ir 0

hn

n2

reduces to

I4n =O(

for it was shown on page 62 that

1sin nx + 0(7)
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fN(x) =
n=N n (1+---2-)

/2 2130

n=N
n n3

2
2b

wn (1+--0
)

co 00

4b0 cos nx 0 1 2 4b0
\ cos nx( +

x2 a a

a a (co
41a

x sin nx(
n 3

0 0
) 2bA

2

n=N

we directly obtain the result

1

aN = f +

It directly follows from this result that

F t = G (x, t) + 0

where

G (x, t) = -F

5.2 Approximation of K(x, t)

Theorem 5. 2. Under the hypotheses of Condition A, there exists a

continuous function
KN(x,

t) such that

1K(x, t) = K (x, t) + I

urn

1, t) -
2 [fN (x+t)+f (x-t)J

0 <t <x <

Proof. The function F of Section 5.1 is related to the function

by means of the integral equation
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x
(5.10) K(x, t) + F(x, t) S F(s, t)K(x, s)ds = 0, 0 < t < x Sir.

0

In Section 5.1 it was shown that
GN

a known continuous symmetric

function, is related to the function F by means of the equation

1F(x, t) = G (x, t) + O() .
N2

Let

and

where

where

HN = F - GN,

GN = FN + RN,

RN = 2 N
(x+t

N
)+f (x-t)].

68

Let KN(x,
t), for large N, denote the unique solution of the equa-

tion

(5.11) GN(x, t) + KN(x, t) + GN(s, t)KN(x, s)d = 0 (see [5, p. 547]).
0

Let
GN

denote the bounded linea operator such that

Nf(x,
t) = GN(s, t)f(x, s)ds.

0

Hence

KN = )



which implies

Consequently

or

(1+-a- N)-111 < M.

By subtracting Equation (5.11) from Equation 5.10) we obtain the

equation

(5.12) (F-G ) + (K-KN) +.S1
(FK-GNKN)

0

Therefore

)(K-KN ) = -(HN HNK).
0

Hence

K
KN =N)-1(-HN-51 HNK),

0

K-K < MII-HN-51
NKII.

0

1K = KN + )

N2
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I K-KN
N2

a

ISxH,K1 is replaced by IS HN(K-KN)I + I5HKI, then
0 IN 0 0

a can be explicitly calculated for sufficiently large N.

5.3 Approximation of q(x)

Theorem 5.3. Under the hypotheses of Condition A, there exists a

continuous function q(x) such that



and

where

Noting that

a

aT. aN(x-t)'

a' (x) =

n=N

1q(x) = q(x) + O() .

Proof. By Chapter III, it is sufficient to show that there exist con-

tinuous functions 4,1 and LIJ2 such that

ax
= 4'1 +

aic
= +2 O("R)

By point 2 of Condition A (see [6]) it follows that

aK(x, t) aF(x, t) 4.S x ar(s, t)K(x, s)ds =at 4" at
o at

and that
co

OF -Nrr
OF n 2n= _. + cow./ X.x sin'/1 t + cos nx sin nt],at at an n n a.

8FN
at

1
+

2
[a' (x-t)-al (x+t)1,

N

Ni-Xn 2nsinNrr x - sin nx].
an n TT

a
a'

a
(x+t) = - a, (x+t).
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Since

it directly follows that

n 2n
= + II +g II +h II,

an 11'1 n 2 n3
where

2a 2a 4b a a
0 1 0 1 0 1 1

+ _II1 = wn 3 2 7+7) 2bn \
Trn w n n(1+ -

Trn2j

As in Section 5.1,

hn1 2 4b0 1

213

+
bn im 0 Tr OZ( na w 2 h

1+-7 (2+.7 1- b
wn n TT 0

2 )
n

Determination of

a a
0 1

Nan = + + + g
n 3 n

n Tr (+-0

)
2 2

1

n4

NTT 2n__sin NITx - sin nxi:a n
n

sinNITnx = sin nx cos anx + cos nx sin a x.

71

112 =
2 4b0 1

Tr2n2
( 2b0\

1+ ---2-
Trn i

and a a
0 1n+ +-

n
g
n

113 =
1T b02 ( hn

)



and

Also,

2i 1+1anx) (-1)r-vM N33\sin a x = ax + ax
n n (21+3) !

1=0

Hence,
a a a a2. 0 12 0 1sin Nrrn x = sin nx - x sin nx( +) + x cos nx( +)
n 3 n 3n

+ sin nx L ( 2i) !
- x2 sinnx (ng +2(a0 +--- ))

i=2 I

oo iAJ 2i(-1) (ax) g al
n n

n2

n

rv 2i 1+1
I(aTI(-1)+ xgn cos nx +(cos nx)anx I

,v3 3
(21+3) !

1=0
Therefore,

N 21-1) (a x)
cos ax = 1 +

(2i) !
i=1

a a gA.,2 0 1 2 nsin nx cos a x = sin n - x sinnx [( +) + -- (ng +2(a
n n 3 n n

n

+ sin nx

i=2

As in Section 5.1.,

00 i 2i(-1) (a x)
1

(21) ! 4
1=2

a
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Let

nsinN/Vnx2n
- sin nx +

it a

a0 a1 2 a0 al
= III (sinnx - x2sinnx( ---+) + x cosnx( +))n 3 n 3

II

gnII

sinnx

2

2

2i
-1) (anx)

a
1ng +2(a0 +)+ x cosnx)] + gnII2 sin Nrr x

n
n2

2x2 .
a

2 2+h II3 sin Nax - sin nx a l
+ cos nx(a

n n Trn 2

a
2 2 1

- sinnxg (ng +2(va+7))
Tr n n n

00 rv 2i 1+1(a x)(-1)
2 2 N3 3--nx gncos nx + n cos nx(anx
Tr Tr (2i+3)!

i=0

N 2a0 2a1 4b0 , -a a1
1

II1 Tr 2 2 2 4 ( 2b0= ---+ - -- (1 -r-
Tin it n n '

Tin
rs.)

II1
II1 n

i=0
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tv3 3
2i i+(.3! x)(-1)1"\

n
+cosnx)anx (2i+3 ) !

Let

=>



Let

II1 2
a a

a0
a1

e (sin.nx- x sin nx( 0+ 1)2+ x cos nx(--+))n n n n3
n

n3

2 al 2 2
a2 x l

- sin nx(a +) + x cos nx().
IT fl 02 IT n2

Therefore,

I a - EN I <
III1

+ 1112 + 1113 + III4 + III5 +
III6

+
7

+
III8

+ III
N

rv 00 j,'/ 2i
Ill - 1 ) (a x)

n sin nx (20!
i=2

rv00,v 2i i+1
Ill 3 3 (ax) ( -1)
- cos nx

n
x

(2i+3)!

oo

_
ax

0EZ e n Tr

n=N

2a x
Tr

cos nx
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n=N i= 0

II
21 r x

1113 = g L- (ng +2(a +=)+x cos nx)]n n n n 0
n2n=N

oo

1114 = gnII2 sin NTT x

n=N

co

III5 = hnII3
sin \Tr

xIl

n=N

where
00

1111 =

n=

00

1112 =



Since

00

2n
1116

/ sin nx

n=N

III =
7 x

Tr

00

,

2III =
8 it

00

n=N

aF

00

oo

ngn cos nx

- 1 )i(rgnx)2i

(2i)!

sinnx)gn(ngn+ 2(a0+ 7)

1

n=NW
xn

3 3

(i0

oo

=

fai x)21(- ni+1
n

119 = n cos nx(
( Zi+3) !

It can be readily shown that

III1
+ III2 + 1113 + 1114 + 1115 + III + 1117 +

1118
+ 1119 = 0(1) .

N

Hence,

1 r a
(x--z aNt)+- a2- (x4t)]-- [EN(x-t)-E (x+01 + 0(1-)at N

Let

1

FN
N

2
+ [EN (x-t)-EN(x+tdat

Therefore,

aF
at FN + (N) .

n=N
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aK(x, t) aF(x, t) aF(s, t) K(x, s)dat - at at

it directly follows that

aK(x, t)Determination of ax

aK(x, t) aF(x, t) aK(x, s)
_ - F(x, t)K(x, x) - F(s, t)ax ax ax

0

1F(x, = F +
2 rN(x+t) +a (x-t)].

N

aF(x, t) OF
N

(x, t) aN (x+t) aaN(x-t)1-4-1

aN(x+t) =

00

n=N

x aF
+ I at

where K. is the function constructed in Section 5. 2 such that

K =
KN

+ (-1) .
2

Consequently,

cosq7n(x+t) 2
- cos n(x+t)) .

U 7T

aF
at

ax ax 2 ax ax
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Let

Let

aaN(x+t)
ax

aaN(x-t)
ax

00

N(x) =

n=

00

n=N

00

Nrk-n 2nsin \In(x+t) + si n(x+t))
rr

an

cosNrr (x-t)
2

- cos n(x -t)) .
an

-Tr

n .2n
sin NrX" ( -t) + sin n(x-t)) .

n=N

aa (x+t) N(x-
t)

ax -aN(x+t); ax

1a, (x) = E (x) + 0(

aaN(x+t) 1

ax - -EN(x+t) + 0() .

aaN(x-t) 1-
ax -EN(x-t) + 0(N)

1 &aN
(x-t) aa (x+t)

r 1

= -ax ax

r,.) aFN 1

FN = -( ax 2
+ [E x+t)+EN(x-t)}).

NTX- sin Nrr x 2n- sin nx].
itan

-t).

(x+t)+EN(x-t)] + 0
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Therefore

Let

F =
GN

+

Hence

F(s, t)L(x, s)ds - aF(x, t)- F(x, t)K(x, x).ax

Consider

LN +51 N(s, t)LN(x, s)ds = FN - GN (x, t)K(x, x).
0

Hence,

(LL N) GN
(s, t)(L(x, s)-L (x, sflds

N N(s,
t)L(x, s)ds

0 0

Therefore,

L +

= -

Therefore

L-LN =N

ax = FN + o(-1),

aF ,..,t\>

ax = N N'

- F(x, t)K(x, x) + G(x, t)KN(x, x).

aF 1

at FN + 0(N).

H = 1FN = 0( ).

+ [GF(x,t)K(x)x)+GN(x,t)K(x,x))-G

78

x,t)K(x,x)+GN(x,t)KN(x,x))

11 I-1- II < II +II VN II +II K II F-G II N II II K-KN II



1
L =

LN
+ 0( ).

Letting

ciN(x) = 2(LN(x,
x) + (X +

0

s, x)KN(x, s)ds),

it directly follows that

)
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APPENDIX A

Iterative Procedures/

The problem we wish to consider being:
çX

(A.1) K(x, t) + K(x, s)F(s, t)ds = -F(x, t).
0

For practical considerations, let us restrict our attention to the finite

region 0 < t < x< a, where a will be assumed sufficiently

large.

Domain T = {x10 x < x {t10 <t < x < a}_ _

Equation (A.1) in the operator form: f - Af = g, where

Af(x, t) = - Fcg, Of(x, 0 f = K, g = -F.
0

We will assume F(x, t) is the kernel of the said Integral

Equation discussed in Chapter II. Consequently, at least continuous.

Let us now consider (A.1) in the B-space
CT. g E CT, and from

the Gelfand Theory, we know that f is as smooth as g, hence,

f E CT [61. A maps CT into CT. A is linear, which follows

from the fact it is an integral operator. A is a bounded linear

operator, for

2/Similar interative techniques have been used by V. A.
Marchenka, Trudy Moskov, Mat, Obsc. 2, 3-83 (1953).
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=>

= max $F(t, t)f(x, t)dt .
T t, xET 0

Af < max $ I t) f(
cT -t,xET 0

a

11fIIc
max S I F(t, t) I dt ,

T t,xET 0

where

ItflI c = max I f(x, t)(.
T x, t E T

a
II c -<

max s F(t, t) I dt .
T 0 < t < a 0

Therefore A is a bounded linear operator from CT -6. CT.

Since by hypothesis a solution exists (a consequence of the Gelfand
- -Theory) => (I-A)1 exists; f = (IA)1g.

f g + Af n = 1, 2, 3, ...n-1

11 f-fn c < (I-A)- 111 c 11 An))
CT

11 fi 4011 c

if 11 All c< q < 1, then 11f-f 11 Ilf -f 11n CT -1-q 1 0
CT

Since f(x, t) = K(x, t); g(x, t) = -F(x, t), we have that
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and if

then

Let

c3cKn(x,
t) + F , t) +F(g t)Kn-1(x, g)cll = 0, n = 1, 2, 3, .

0

K-Kn11CT <
ill CT 11 CT 11

11Allc <q<1,

II K(x, t)-Kn(x,C 1- q 1
t) II II K (x, t)-K x,

in particular, if

q = max S vg, dg <
0 < t < a 0

Now, let us consider the problem in the space L,..,.

f + Af = ; f and g E LT.

max sa I F(x, t) dt = M'
0<x<a 0

A

LT -* LT

f =

pa r
dx I f(x, t) I dt

...c

LT 0 0

Af d xa x I S' F(g, t)f(x, g)dg I dt
0 0 0

a s, x
< dx F(g,

s.x
)1 I f(x, g) I dg)dt

0 0 0

83

(x, t)-K (x,t)I1 , [5],
0 CT



=>

=>

. . if M' < 1, then

K(x, t)-K (x, t) II
In

II K1(x, t)-K(x, t) .

n LT
1_,M1

Now, consider the problem in L2.

2 2fEL , i4

2
a sx
dx I f(x, 01 2dtPH 2

=T 0 0

F(t, t) I I f(x, t)I =

Af 2

a
dx

0 0

= I f(x, t) clt F(t, I dt

stx
t)dg .

0

a x
Aill

LT
dxs I f(x, t))dt = fk,

0

< M'

Af(x, t) 2d; Af(x, t) = F(g, t)f(x, g)dg
0

SdS
a x

[I si F(t, t)f(x, t)dt112dt
0 0 0

o I I f(c, g)idt

,)j2dJdt <
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a
<IIfIIz $' I t) I 2dO.t.

T 0 0

. if q < , then

K(x, t)-K(x, t) II K1
(x, t)-K x, t) II L2L 1-q

For the three spaces considered q can always be made

strictly less than 1 by restricting the domain T (i. e., by re-

stricting a).

Assuming F(x, t) (EC].) is once continuously differentiable
1with respect to both variables, let us consider the problem in C.

F(s, t) + K(s, t) +S F( t)K(s, g)dg
0

f Af = g; Af F(t, t)f(x, t)c:1
0

pa [la
II All < .) I F(g, t

0

f(x, g)idt)dx S' F(g, t) I 2d.td.t
0 0

2dWt)1
/2

= q.
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Af , = max I 11 F(g, t)f(s, )dg + maxaI-nS F(g,t)f(s,)dg
s, t ET 13 S,t E T

a s
+ max

s,tT `it
1 F(g, t)f(s, g)dgE7

s
0

I1
+

I2 + I3,

respectively.

I - max S t)f(s, 6)d0 < max Ill ( I F(t, t)1(q)
1 s,t ET 0 s,t E T 0

12 = max I F(s, t)f(s, s) Fcg, ts(s,g)clt1
s,tET

max I F(s, I maxi (f(s, t) I max S s Fcg, 01 di max
0

13 < max Si s I Ft(g, t) I I f(s, I dg

max I f(s, s) Ft(u, Odu - (s, t)(t(u, Odu)dg
fg0 0 0

max If' max I 55F (u, Odul
0 t

+ max

I < max If I (maxi F ) + max I fs(s, t) I (maxi-4
2

t) I dg)

s, max$
I

F (u, Odu .

0 0
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=>

aK(x, t)
ax

I1 + 12 + 13 < maxi f 1 (maxi S srt(u, t)dul + max F(s,

max s
0

+ max

d

if M < 1, we have that

< Mn
11 K(x, t)-Kn(x, t)11 11K1 (x, t)-K0(x, t)11 ci ,

CT 1-M

axn(x, t)
which implies that Kn

converges uniformly to K, con-atax (x,
aK(x, t)verges uniformly to and converges uniformly toat ' ax

+ max Ifs(s, t)1 (max

s, t)1 max
o

t)1cq)

u, t)duld

max Sb u, t)dui4
0 0

1
+

12
+

13
_< M(max) f 1+ maxi fs(s, t)1+ maxi fti )

11Af II 1 <1 MC
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M = max { f max U, t)dul + maxi F(s, t)1 + max 1 F( ,t)1 4
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APPENDIX B

Kantorovich Method [5]

A brief synopsis of the results of Kantorovich [5] upon which

Chapters II and III are based:

Let X be a complete subspace of the normed space X, X C X

Let P be a linear operation such that

r-.)
1--)(x) = X; P P

(B.1) In space X: Kx x - Hx = y

1") IV A) /0 r.) -"""(B. 2) In space X: Kx x - Hx = Py

H and g are linear operations in X and X, respectively.

The following results are based upon the lemma:

Let V be a linear operation from the B-space X into the

B-space Y and let there exist for every y E Y an x E X such

that

v(x)-y11 < 114 < NI1y11

where q < 1 and N are constants. Then the equation V(x) = y

has for every y E Y, a solution x E X satisfying

ilx11 <
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Conditions.

For every

For every

ji <

inverse, then if

q= 101(1+1 X 11/ IITIC 11 111 K1 II < 1,

ni '1/4)(B.3) the equation "1"(-X1 = 3jr. has a solution x for any y E X.

Also < 11 3,) II, where N=(1+1X11 )11K II.

Theorem B2. If Conditions I, II are satisfied, the linear operation
- 1 and the Equation (B..1) has a solution x , then

II x.23)c* II <B II x.3 II,

where x is a solution of the Equation B.2) and

fr"-
= +(ill 1X1+11211KH)(1+IIK1 PK!).

Theorem B3. If

n) rt)x E X, II PHX-HCc II <

X E X, there exists an x E X such that

K has a linear inverse

K satisfies Condition A (for each n = I, 2, ... )

89

An element 5 E exists such that II < r1211Y11,

where Ti, may depend on y.

Theorem Bl. If Conditions I and II are satisfied and K has a linear



3) for each n = 1, 2, ..., the Conditions I, II and III are

satisfied, and

liM = 0,
II

=0, and lim 12011
1nco n--oo

then the approximate equations are soluble for sufficiently

large n and the sequence of approximate solutions con-

verges to the exact solution:

urn II

n__.0o

and there exists constants Qo' Q1' and Q2 such that

N*
II X. -Xn11 00 + Q1/11 li + Q29211 Pit

Condition A. The existence of a solution of Equation (B.3) for every

y E X implies its uniqueness.

As discussed in Chapter II, similar results can be derived be-
^-1

tween the space X and a space X, which is isomorphic to X.

In particular: Let cp be a linear operation defining a 1:1 mapping
0

r.)
on X, onto X. Let yc be a linear extension of the operation

co to the entirety of
0

X. P:x; 90(2) = Let

-
P = 9, x x; Equation (B.2) transforms to

0

A.) 1 .....
x 1-19 x = cp

= ill 9-010 0 0

= x - XHx , 0
= = 91C90(PY
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Condition Ia. For every V E 3e, 11 171907- 911X II < .rT II

Theorem Bla. If Ia and II are satisfied, and 1C1 exists, then if

1X1[5(1+1K111)119-0111 + 1 11(P-01(PK11)11K-111 < 1.

(B.4) the equation

handside y e X, with

*
has a solution x for every right-

11;*1 <= (1- I I 1 )11 1111901 1)K-1 II

Theorem B2a. If Ia, II, and III are satisfied, linear operator

exists and the Equation (B. 2) has solution x , then

<

where

111 K 11 + c( 1+ K cpKII ),0 0

< 11IXI 12IIKIL

Theorem B3a. If the following conditions are satisfied

K has a linear inverse

"R satisfies Condition A

Conditions Ia, II and III are satisfied for every n,

n = 1, 2, ..., where

-1
lirn 711 90111 = Urn 1111i (P0 = HI/1 11 119-16°11 0,2 0n-00 n-00 n--00

1
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92

then the approximate Equation (B.4) is soluble for sufficient-

ly large n and the sequence of approximate solutions con-

verges to the exact solution. Also

II x < 6-1111 (P0-1 II + -5 II g9- (1211 + -5 11 II q)-1
1

1 0 2 2 0

_1*
where xn = xn, and -5 , -52, and

3
are con-

stants.



APPENDIX C

Synopsis of Basic Theory [6]

Let

(C.1) y"-q(x)y =

with

(C. 2) 00) - hy(0) = 0

where 0 <x < 00, q(x) is a real integrable function; h is a real

number. Q(x, X) denotes the solution of (C.1) with the initial condi-

tions (C. 2).

Theorem (Gelfand and Levitan)C1. Suppose Q(x, )'.) is the solution of

(C.1) satisfying the initial conditions (C. 2) and that q(x) has m

locally integrable derivatives. Then there exist functions K(x, t)

and H(x, t), each have m+1 integrable derivatives with respect to

each of the variables, such that

cp(x, X) = cos Nirx K(x, t) cos Nradt
0

cos N/Xx = co(x, X) +S' H(x, t)cp(t, X)dt
0

,+ 1xq(t)dt, aK(x, t)
at

0
t=0

= 0,
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8H(x, t) - hH(x, t))at

then the integral

K(x, t) = 0, H(x, t) = 0 for t > x.

Further, if M > 1, then K - q(x)K Ktt andxx

Hxx = Htt - q(t)H.

Theorem (Gelfand and Levitan). Suppose q(x) has m locally

integrable derivatives and that

p()), X< 0
o(X) =

2
P(X) - Nrx--, X > 0

= K(x, 0, H(x, -t) = 0 for t > 0;
t=0

cos NX x do()) converges boundedly to a func-

tion , (x) = X( , 0) in any finite range of values of x, as N 00,

where I.(x) has m+1 integrable derivatives.

Theorem (Gelfand and Levitan) C2. The kernel K(x, t) satisfies the

integral equation

F(x, t) + K(x, t) K(x, s)F(s, t)ds = 0, 0 < t < x,
0

where

94

F(x, t) = N cos N/Xx cos NITtdo-(X.), r(X) =
n oo _oo

Theorem (Gelfand and Levitan) C3. The integral equation

p(X), X < 0

2p(X)TrNg, X > 0.



F(x, t) + K(x, t) K(x, s)F(s, t)ds = 0
0

has a unique solution K(x, t) for every fixed x.

Theorem (Gelfand and Levitan) C4. Suppose the kernel K(x, t)

satisfies the above integral equation. Then the function

Q(x, X) = cos \Fa K(x, t) cos \TXtdt
0

satisfies the differential equation cp" + {X-q(x)}9 = 0 and the initial

conditions 9(0, X) = 1, 4'(0, X) = K(0, 0) = -F(0, 0) = h,

2dK(x, x)
q(x) + dx

Theorem (Gelfand and Levitan) C5. The monotonically increasing

function p().) is the spectral function of a boundary value problem

of the type (C. 1)-(C. 2) with a function q(x) (having m integrable

derivatives) and a number h if and only if the following conditions

are satisfied:

a. If E(X) is the cosine transform of an arbitrary function

f(x) of compact support in L2(0, 00) and

oo

E2(X)dp(X) = 0,
_oo
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then f(x) 0 (a. e. ).

b. The limit

I,(x) = lim S cos NTXxd.o-(X),
N---00 -00

where

p(X), <O
(k) =

2
p(X) - X > 0

exists boundedly in every finite range of values of x and

. (x) has m+1 integrable derivatives with 1.(0) = -h.

Theorem. Basic Inverse Sturm-Liouville Theorem on [0, Tr] (Gelfand)

c6.

-y" + q(x)y = ky

y'(0) - hy(0) = 0, y'(Tr) + I-Iy(rr) = 0

The numbers
{Xn}

and
{an}

are the spectral characteris-

tics of some boundary value problem (C.1)-(C. 3) for [0, id with a

function q(x), where q(m) (x) E L(0, Tr) iff the following asymptotic

estimates hold:

0 1 Tr 1
NTTn = n + + 0( --n-), = a+ o(-)

2 n

96

a

where X. k for n m and all the an > 0, and if the function



1 1F(x, t) = cos \f-Kox cosT0"K t - +

a0 Tr

cc

1

has integrable derivatives of order m+1 in the region (0< x,t < TT).

This implies that there exists a function K(x, t) such that

F(x, t) + K(x, t) +
pX

K(x, s)F(s, t)ds = 0,

where 0 et ex< IT for the kernel K; K(x, t) = 0 for t > x and

dK(x, x)q(x) = 2
dx

Theorem (Gelfand and Levitan) C7. If all the an > 0, and

a0 al 1
\IT + + c( ),

a =
, 0

n 2 2 3 )'

wherea0, al, b0 are constants, then there exists an absolutely

continuous function q(x) corresponding to the given
Xn

and an.

1 r 1
a = Lh+H+ ..c1 q(t)dt]

0 IT
0
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cosNaxcosNrX tn n
- cosnxcosnti

an it



Note: If 0(---) for a can be replaced by 0(
n3

has an absolutely continuous derivative.

The basis of Levitan's new result with respect to a variation of

boundary conditions is the formula

(C.4)
h -h 00

1 / Xk-Xn=FLn -X -X
n n n=0 k n

which gives an expression for-the normalizing constants of a regular

Sturm-Liouville operator in terms of two of its spectra. In addition,

gives a conditional solution of the inverse problem in terms of

two spectra, for once we know the numbers tkn} and
{an},

we can

define the spectral function by the formula

1

an
n<X.

and then form the operator by the prescription given by the basic

Spectral Theory.

For the problem

(C. 1) -yu + q(x)y = Xy,

with

y1(0) h1y(0) = 0, yl(71-) + Hy(Tr) = 0
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there exists the set of eigenvalues } Similarly, for

n4 )' then q(x)



,}.
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(C.1) -y" + q(x)y = Xy

with

(C. 6) y'(0) - h2y(0) = 0, yr(-tr) + Hy(ir) = 0

there exists the set of eigenvalues {la

Theorem (Gas ymov and Levitan) C8. Suppose that we are given two

sequences of numbers
{Xn}

and {p.n} (n = 0, 1, 2, .. ) satisfying

the following conditions:

The numbers
Xn

and interlace,

Xn
and

P.n
satisfy the asymptotic estimates of Theorem

C7, and (a0 a' ) then there exist an absolutely continuous
0

function q(x) and numbers h1, h2, H such that {}

is the spectrum of the problem (C. 1)-(C. 5) and {-1.11} the

spectrum of the problem (C. 1)-(C. 6); moreover

h2 - h1 = ir(ato - ao).




