AN ABSTRACT OF THE THESIS OF

Masao Fukuda for the degree of Doctor of Philosophy

in Mechanical Engineering presented on December 17, 1981

Title: LAMINAR NATURAL CONVECTION IN VERTICAL TUBES WITH ONE END CLOSED

Redacted for privacy

Abstract approved: /James R. Welty/

The problem of laminar natural convection in a vertical cylindrical enclosure with one end open to a reservoir is solved analytically to obtain a similarity-flow solution and then numerically to obtain non-similarity flow solutions for the Rayleigh-number ranges of $0 < Ra_A < 1300$ and $0 < Ra_L^a < 1000$. The closed-form solution applied here is that originally developed by Lighthill and later modified by Ostrach and Thornton. The numerical solution employs the finite-difference technique with successive-over-relaxation and up-wind methods to achieve acceleration of convergence.

For values of $Ra_A$ between 380 and 1200, similarity flows from numerical calculations well agree with those of the closed-form solution. The numerical solution, in addition, is able to give information about non-similarity flows; four flow regimes were identified with $0 < Ra_A < 1300$ and $0 < Ra_L^a < 1000$. For one of the five flow regimes where a cell formation (or a secondary flow) was present, a
A parametric equation correlating the size of cells and the above two Rayleigh numbers has been developed. The numerical solution is also sufficiently general such that it is able to predict those convection flows once investigated by Lighthill, and Ostrach and Thornton as special cases. The comparison made between their solutions and the present numerical solutions indicates good agreement.
Laminar Natural Convection in Vertical Tubes with One End Closed

by

Masao Fukuda

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
Completed December 1981
Commencement June 1982
APPROVED:

Redacted for privacy
Professor of Mechanical Engineering in charge of major

Redacted for privacy
Head of Department of Mechanical Engineering

Date thesis is presented December 17, 1981
Typed by Barbara Hanson for Masao Fukuda
ACKNOWLEDGMENTS

I would like to thank my major professor and department head, Dr. James R. Welty for his constructive suggestions to my thesis work and financial support during the course of my graduate studies. In addition, the help of my graduate committee members, Dr. Dean E. Booster, Dr. Gunnar Bodvarsson, Dr. Lorin R. Davis, and Dr. Milton B. Larson is most appreciated. I wish also to thank Dr. Gordon M. Reistad for providing technical and extra financial support, Dr. Robert W. Thresher for his moral support, and the Oregon State University Computer Center for providing computer time.

Also, my thanks are extended to Mrs. Barbara Hanson for typing the thesis manuscript, and Mrs. Linda Haygarth for illustration of several figures.

Finally, I would like to extend my special thanks to my wife, Nanae who provided endless support to my graduate study, and my children, Naomi and Masahiro who provided my only precious entertainment.
# TABLE OF CONTENTS

I. INTRODUCTION
   1. Problem  
   2. Past Work
      1.2.1 Well Related Studies  
      1.2.2 Turbine Blade Problem  
      1.2.3 Other Related Studies

II. ANALYTICAL STUDY
   2.1 Governing Equations  
   2.2 Analytical Development
      2.2.1 Modification of Governing Equations  
      2.2.2 Solution Method  
      2.2.3 Average Heat Transfer
   2.3 Result of Analytical Study

III. NUMERICAL STUDY
   3.1 Modification of Governing Equations  
   3.2 Finite Difference Formulation
      3.2.1 Energy Equation  
      3.2.2 Vorticity Equation  
      3.2.3 Vorticity and Stream Function Relation  
      3.2.4 Stream Function Equations  
      3.2.5 Average Heat Transfer Coefficient
   3.3 Programming Consideration
      3.3.1 Gauss-Seidel Iteration Method  
      3.3.2 Mesh Configuration and Calculation Sequence  
      3.3.3 Nusselt Number Calculation  
      3.3.4 Validation of Numerical Method  
      3.3.5 Effect of Reservoir Boundary Condition and Size  
      3.3.6 Convergence of the Numerical Solution
   3.4 Result of Numerical Study
      3.4.1 Flow Characterization  
      3.4.2 Flow Regimes  
      3.4.3 Nusselt Number and Heat Transfer Coefficients
      3.4.4 Cases of Lighthill and Ostrach

IV. CONCLUSIONS AND RECOMMENDATIONS

V. BIBLIOGRAPHY

VI. APPENDICES
   A - Modified Numerical Equations
   B - Computer Codes
### LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic of vertical cylinder above a hot reservoir as considered in this analysis</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>The predicted velocity and temperature profiles</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Relationship between $Ra_L^a$ and $\alpha$</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Relationship between $Ra_L^a$ and $Ra_A$</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Two kinds of flow direction predicted by $Ra_L^a$ and $Ra_A$ relations</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Cross plot of Figs. 2.2 and 2.3 in the range $0 &lt; Ra_L^a &lt; 1000$</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Temperature profiles</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Velocity profiles</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Average heat transfer coefficient within the applicable range</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>The axial velocity gradient illustration; the $\partial U/\partial R$</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>approaches zero as $X$ approaches $X=L$</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Nodal structure used for derivation of Eq. 3.29</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Nodal structure used for derivation of Eqs. 3.30 and 3.31</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Internal node arrangements for the velocity difference-equations</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Node adjacent to boundaries for velocity calculation</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Nodal structure used for Eqs. 3.40, 3.41, and 3.41a</td>
<td>61</td>
</tr>
<tr>
<td>3.7</td>
<td>Mesh configuration</td>
<td>66</td>
</tr>
<tr>
<td>3.8</td>
<td>Flow chart of the program NATCON</td>
<td>68</td>
</tr>
<tr>
<td>3.9</td>
<td>The configuration of the problem used by Ref. [26] where $a=b$, $c/a=0.1$,</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>and $T_1 &gt; T_0$</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Isotherms of (a) Ref. [26] and (b) the current study</td>
<td>73</td>
</tr>
<tr>
<td>3.11</td>
<td>Streamlines of (a) Ref. [26] and (b) the current study</td>
<td>74</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.12</td>
<td>Comparison of the three temperature boundary conditions</td>
<td>76</td>
</tr>
<tr>
<td>3.13</td>
<td>Comparison of the three temperature boundary conditions of the reservoir</td>
<td>77</td>
</tr>
<tr>
<td>3.14</td>
<td>Effect of L/L_{RES} at Ra_{A}=0</td>
<td>79</td>
</tr>
<tr>
<td>3.15</td>
<td>Effect of L/L_{RES} at Ra_{A}≠0</td>
<td>81</td>
</tr>
<tr>
<td>3.16</td>
<td>Required number of iterations for various S.O.R. factors and mesh sizes for the same nodal structure</td>
<td>87</td>
</tr>
<tr>
<td>3.17</td>
<td>Required number of iterations for various mesh sizes and number of nodes for approximately the same G_r</td>
<td>89</td>
</tr>
<tr>
<td>3.18</td>
<td>Comparison of the variation of temperature at a certain node when S.O.R. factor is larger, or smaller than the optimum FAC, or when it is equal to the optimum FAC</td>
<td>91</td>
</tr>
<tr>
<td>3.19</td>
<td>Typical variations of T, ξ, and Ψ when the numerical solution fails to converge due to excessively large mesh distances are used</td>
<td>92</td>
</tr>
<tr>
<td>3.20</td>
<td>Typical variations of T, ξ, and Ψ when the numerical solution converges</td>
<td>93</td>
</tr>
<tr>
<td>3.21</td>
<td>The boundary temperature configuration applied to the numerical study where T_0 is the coldest and T_{RES} is the hottest temperature of the system</td>
<td>94</td>
</tr>
<tr>
<td>3.22</td>
<td>Ra_{A} vs. Ra_{L} for AR=; (a) 1.0, (b) 2.0, (c) 4.0, (d) 6.0, (e) 12.0, (f) 15.0, (g) 35, and (h) 40.0</td>
<td>99</td>
</tr>
<tr>
<td>3.23</td>
<td>Streamlines and axial velocity profiles of Run No. 09</td>
<td>108</td>
</tr>
<tr>
<td>3.24</td>
<td>Development of axial velocity profiles at the orifice section for AR=.25, .5, and 1.0 at Ra_{A}=900</td>
<td>109</td>
</tr>
<tr>
<td>3.25</td>
<td>Variation of the flow parameter α along the cylinder length for AR=2 and 15, and Ra_{L}=350, 500, and 600</td>
<td>111</td>
</tr>
<tr>
<td>3.26</td>
<td>Isotherms and streamlines of AR=15 at Ra_{A}=230</td>
<td>112</td>
</tr>
<tr>
<td>3.27</td>
<td>Isotherms and streamlines of AR=15 at Ra_{A}=850</td>
<td>113</td>
</tr>
<tr>
<td>3.28</td>
<td>Isotherms and streamlines of AR=15 at Ra_{A}=1580</td>
<td>114</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.29</td>
<td>Axial velocity profiles along the centerline of the cylinder</td>
<td>116</td>
</tr>
<tr>
<td>3.30</td>
<td>Isotherms and streamlines at AR=50 and $\text{Ra}_A=1000$</td>
<td>117</td>
</tr>
<tr>
<td>3.31</td>
<td>Axial velocity profiles along the centerline of the cylinder at AR=40 for various $\text{Ra}_A$</td>
<td>119</td>
</tr>
<tr>
<td>3.32</td>
<td>Flow regime map</td>
<td>120</td>
</tr>
<tr>
<td>3.33</td>
<td>Illustration of the corrected modified-Rayleigh number when a cell is formed</td>
<td>124</td>
</tr>
<tr>
<td>3.34</td>
<td>Correlation of $\text{Ra}_A$, $\text{Ra}^{\text{a}}_L$, and $Lc/L$ in Regime IV</td>
<td>125</td>
</tr>
<tr>
<td>3.35</td>
<td>$Lc/L$ vs. $\text{Ra}^{\text{a}}_L$ for various $\text{Ra}_A$ (extrapolated from Fig. 3.34)</td>
<td>126</td>
</tr>
<tr>
<td>3.36</td>
<td>$Lc/L$ vs. $\text{Ra}^{\text{a}}_A$ for various $\text{Ra}^{\text{a}}_L$ (extrapolated from Fig. 3.34)</td>
<td>127</td>
</tr>
<tr>
<td>3.37</td>
<td>Corrected $\text{Ra}^{\text{a}}_L$ for the flows in Regime IV</td>
<td>129</td>
</tr>
<tr>
<td>3.38</td>
<td>Cell formation in AR=4 at $\text{Ra}_A=2970$ and $\text{Ra}^{\text{a}}_L=2010$</td>
<td>133</td>
</tr>
<tr>
<td>3.39</td>
<td>Development of a cell in AR=4 at $\text{Ra}_A=2970$ where $I$ represents the number of iterations</td>
<td>134</td>
</tr>
<tr>
<td>3.40</td>
<td>Region of periodic instability for AR=.83 to 15</td>
<td>136</td>
</tr>
<tr>
<td>3.41</td>
<td>Theoretical and numerical flow parameter variations over the applicable $\text{Ra}^{\text{a}}_L$ range</td>
<td>140</td>
</tr>
<tr>
<td>3.42</td>
<td>Theoretical and numerical velocity profiles within the similarity flow regime</td>
<td>141</td>
</tr>
<tr>
<td>3.43</td>
<td>Theoretical and numerical temperature profiles within the similarity flow regime</td>
<td>142</td>
</tr>
<tr>
<td>3.44</td>
<td>Net $\text{Nu}_a$ vs. $\text{Ra}_A$ for AR=2, 15, and 40</td>
<td>144</td>
</tr>
<tr>
<td>3.45</td>
<td>Variation of local heat transfer coefficients along the cylinder length at $\text{Ra}_A=1000$ for AR=2, 15, 70</td>
<td>146</td>
</tr>
<tr>
<td>3.46</td>
<td>Configuration of the model investigated by Lighthill when A=0, and later by Ostrach and Thornton when $A\neq0$</td>
<td>148</td>
</tr>
<tr>
<td>3.47</td>
<td>Comparison of similarity flows resulted from the theoretical and from the numerical analysis at AR=15</td>
<td>150</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.48</td>
<td>Streamlines of non-similarity flows in the Ostrach's configuration at AR=15</td>
<td>151</td>
</tr>
<tr>
<td>3.49</td>
<td>The case of Lighthill where $R_A = 0$ at AR=15 for various $R_{a_L}$</td>
<td>152</td>
</tr>
<tr>
<td>3.50</td>
<td>Comparison of the theoretical and numerical flow parameters for the cases of Lighthill and Ostrach; $-306 &lt; Ra^L &lt; 260$, and $255 &lt; Ra_A &lt; 355$</td>
<td>156</td>
</tr>
</tbody>
</table>
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>96</td>
</tr>
<tr>
<td>3.3</td>
<td>123</td>
</tr>
<tr>
<td>3.4</td>
<td>137</td>
</tr>
<tr>
<td>3.5</td>
<td>139</td>
</tr>
<tr>
<td>3.6</td>
<td>145</td>
</tr>
<tr>
<td>3.7</td>
<td>149</td>
</tr>
</tbody>
</table>

- **2.1** Average heat transfer coefficient (Eq. 2.45)
- **3.1** Numerical result of mesh sizing factor $C_U$ and $C_V$ for $\Delta x=.333$ and $\Delta r=.25$
- **3.2** Summary of computer runs
- **3.3** Computer runs made for the evaluation of cell formation in Regime IV
- **3.4** The largest $Ra_A$ without a periodic instability
- **3.5** Temperature and velocity profiles from the numerical and theoretical studies within the similarity flow regime at $AR=15$
- **3.6** Nusselt numbers for various AR's
- **3.7** Computer runs made for the cases of Lighthill and Ostrach
<table>
<thead>
<tr>
<th>Symbols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Radius of cylinder</td>
</tr>
<tr>
<td>a\text{RES}</td>
<td>Reservoir radius</td>
</tr>
<tr>
<td>A</td>
<td>Temperature gradient on the cylinder wall</td>
</tr>
<tr>
<td>AR</td>
<td>Aspect ratio of cylinder, (L/a)</td>
</tr>
<tr>
<td>(AR)_M</td>
<td>Aspect ratio of the main flow at presence of a cell</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat at constant pressure</td>
</tr>
<tr>
<td>C_U,C_V</td>
<td>Mesh sizing factors based on axial and radial velocities, respectively</td>
</tr>
<tr>
<td>C'_U,C'_V</td>
<td>Modified C_U and C_V</td>
</tr>
<tr>
<td>C</td>
<td>Axial centerline of cylinder or a line of symmetry</td>
</tr>
<tr>
<td>f_{i,j}</td>
<td>Arbitrary variables in the numerical development</td>
</tr>
<tr>
<td>FAC</td>
<td>S.O.R. factor (=\bar{a})</td>
</tr>
<tr>
<td>\vec{g}</td>
<td>Gravitational-acceleration vector</td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number based on (T_1-T_0)</td>
</tr>
<tr>
<td>Gr,RES</td>
<td>Reservoir Grashof number</td>
</tr>
<tr>
<td>Gr,ORF</td>
<td>Orifice Grashof number</td>
</tr>
<tr>
<td>h</td>
<td>Enthalpy of the fluid</td>
</tr>
<tr>
<td>h</td>
<td>Heat transfer coefficient</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>L</td>
<td>Axial length of cylinder</td>
</tr>
<tr>
<td>L\text{RES}</td>
<td>Axial length of reservoir</td>
</tr>
<tr>
<td>L_C</td>
<td>Axial length of cell</td>
</tr>
<tr>
<td>Nu_a</td>
<td>Average Nusselt number</td>
</tr>
<tr>
<td>p</td>
<td>Dimensionless P</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>Symbols</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>r</td>
<td>Dimensionless R</td>
</tr>
<tr>
<td>R</td>
<td>Radial coordinate</td>
</tr>
<tr>
<td>Ra</td>
<td>Rayleigh number based on the radius and the temperature difference (T₁ - T₀)</td>
</tr>
<tr>
<td>Raₐ</td>
<td>Modified Rayleigh number based on the radius and the temperature gradient A</td>
</tr>
<tr>
<td>Raₐₕ</td>
<td>Modified Rayleigh</td>
</tr>
<tr>
<td>(Raₐₕ)ₐ</td>
<td>Corrected Raₐ of the main convective flow at presence of a cell</td>
</tr>
<tr>
<td>S.O.R.</td>
<td>Successive-Over-Relaxation</td>
</tr>
<tr>
<td>t</td>
<td>Dimensionless time variable</td>
</tr>
<tr>
<td>t</td>
<td>Dimensionless temperature</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>Ta</td>
<td>Cylinder wall temperature in analytical development</td>
</tr>
<tr>
<td>T_BOT</td>
<td>Bottom wall temperature of cylinder</td>
</tr>
<tr>
<td>T₀</td>
<td>Closed-end temperature of cylinder</td>
</tr>
<tr>
<td>T₁</td>
<td>Centerline temperature at open-end of cylinder</td>
</tr>
<tr>
<td>u</td>
<td>Dimensionless axial velocity</td>
</tr>
<tr>
<td>U</td>
<td>Axial velocity</td>
</tr>
<tr>
<td>v</td>
<td>Specific volume</td>
</tr>
<tr>
<td>v</td>
<td>Dimensionless radial velocity</td>
</tr>
<tr>
<td>V</td>
<td>Radial velocity</td>
</tr>
<tr>
<td>V</td>
<td>Velocity vector</td>
</tr>
<tr>
<td>x</td>
<td>Dimensionless axial coordinates</td>
</tr>
<tr>
<td>X</td>
<td>Axial coordinate</td>
</tr>
<tr>
<td>Greek Symbols</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>Flow parameter in the analytical development</td>
</tr>
<tr>
<td>$\tilde{\alpha}$</td>
<td>Successive-Over-Relaxation factor in the numerical development</td>
</tr>
<tr>
<td>$\tilde{\alpha}_{\text{opt}}$</td>
<td>Optimum successive-over-relaxation factor</td>
</tr>
<tr>
<td>$\beta$</td>
<td>Volumetric expansion coefficient</td>
</tr>
<tr>
<td>$\beta_0$</td>
<td>$\beta$ at reference temperature $T_0$</td>
</tr>
<tr>
<td>$\kappa$</td>
<td>Thermal diffusivity</td>
</tr>
<tr>
<td>$\mu$</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>$\nu$</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>$\xi$</td>
<td>Dimensionless vorticity</td>
</tr>
<tr>
<td>$\Xi$</td>
<td>Vorticity</td>
</tr>
<tr>
<td>$\rho$</td>
<td>Density</td>
</tr>
<tr>
<td>$\rho_0$</td>
<td>Density at reference temperature $T_0$</td>
</tr>
<tr>
<td>$\phi$</td>
<td>Dissipation function</td>
</tr>
<tr>
<td>$\psi$</td>
<td>Dimensionless stream function</td>
</tr>
<tr>
<td>$\psi$</td>
<td>Stream function</td>
</tr>
</tbody>
</table>

**Others**

- $(\ )_{\text{ave}}$: Average quantity
- $(\ )_{i,j}$: Quantity at node $(i,j)$
- $(\ )_{w}$: Quantity at the cylinder wall
- $(\ )_{r=0}$: Centerline quantity
- $\Delta(\ )$: Finite difference quantity
LAMINAR NATURAL CONVECTION IN VERTICAL TUBES WITH ONE END CLOSED

I. INTRODUCTION

Natural convection in a vertical cylindrical enclosure with one end open to a reservoir has been of interest to geologists who, for example, deal with ground water within a deep well like that of a geothermal well; by turbine engineers who employ natural convection of this nature for cooling turbine blades; and by engineers and scientists in general who are concerned with natural convection generated in such geometric configurations. Although some interest has existed for several decades, progress in this area of natural convection has been rather slow, due in part to the magnitude of the problem where, for example, one kind of Rayleigh number (a dimensionless temperature parameter) may range from zero to the order of a million, the aspect ratio (a length-to-radius ratio) of the fluid column can vary between 1 and well over 100, and the fluid column can be exposed to several kinds of temperature boundary condition. For these reasons, a general solution is rather difficult to obtain, and the currently existing solutions are often applicable only to specific regions of the problem.

Therefore, the author has attempted here to investigate and understand the fundamental natures of the problem, hoping that the results presented in this thesis will fill the previously undefined and unexamined regions of the problem.
1.1 Problem

The problem investigated in this thesis is the fluid motion resulting from natural convection in a vertical cylindrical enclosure with one end open to a reservoir as shown in Fig. 1.1. The boundary conditions are: (a) the cylinder wall maintains a linearly changing temperature with its length, (b) the fluid is confined within a solid cylinder with one end open to a reservoir without any restriction, and (c) the reservoir is maintained at either the hottest or the coldest temperature of the system depending on the specific situation. Of major interest is the case of the cylinder above a reservoir with the cylinder-wall temperature increasing linearly in the direction of the body force applied to the system. Another case of interest is that where the cylinder is open to a reservoir located above with the body force directed toward the closed-end. In all cases, this study is confined to steady-state laminar flows.

1.2 Past Work

Although the exact problem being considered here has not been treated previously, similar types of problems have been investigated analytically and/or experimentally by a handful of people in the past 40 to 50 years. These previous investigations can be divided into the following three types: a) those related to geothermal and geological wells in which the basic geometry is a long bore hole with or without specified temperature along the well, b) those related to the cooling of a turbine blade where the basic geometry
Figure 1.1 Schematic of vertical cylinder above a hot reservoir as considered in this analysis.
consists of a long drilled hole along the axis of a blade with a fluid reservoir at its base, and c) those which do not belong to either of the above two cases but are still related to the problem considered here.

In the following subsections, summaries of these studies are listed in the order described above, and at the same time particular emphasis is given to the information applicable to this proposed study.

1.2.1 Well Related Studies

One of the earliest studies of natural convection in general was that of Benard [1] who studied experimentally the convection phenomena in a thin sheet of fluid heated from below and observed the formation of hexagonal cells. Following his study Lord Rayleigh [2], Jeffreys [3], Hales [4], and Pellew and Southwell [5] treated problems of the same nature. Among these studies, the common interest was to determine the on-set of convective flow (then it was called the problem of instability) in different geometric configurations, however, that of Jeffreys' and Hales' is most closely related to the geometry of the current problem. Jeffreys and Hales each derived the expression which established the condition for the onset of convective flow of water in deep boreholes. Jeffreys expressed the instability of the water by relating the temperature gradient to adiabatic compression, and Hales related the temperature gradient to viscosity. These two expressions were later combined by Krige [6] whose new formula gave an expression for critical temperature gradient (the rate of temperature change with depth),
which is related to the viscosity and compressibility of fluid in the borehole for a given size (or diameter) of well at a given depth. Temperature gradients greater than the critical temperature gradient indicated an unstable condition (the onset of flow) of the fluid in the well. Diment [7] performed an extensive test of temperature measurement of water in a large (length-to-diameter ratio) well at the U.S. Bureau of Mines' West Virginia Laboratory. In addition to measuring temperature as a function of depth, he also recorded the temperature oscillation over a time period of 50 minutes at several different depths of the well. The maximum temperature variation of fluid at a given depth was correlated with the temperature gradient. From this correlation, he suggested that the water movement was in the form of cells or eddies juxtaposed vertically in the well and the height of the cells was no more than several times the well diameter. The completely independent investigations of Gretener [8] yielded similar results in his observation of a large diameter well. Diment also indicated that when thermal instability exists in a large diameter well, temperature oscillations of several hundredths of a degree would be expected at a given depth.

Sammel [9] used two wells of different length-to-diameter ratio, L/D, (63 and 270) to prove the existence of convective flow in a deep well. From temperature oscillation measurements in his field and laboratory tests, Sammel estimated the approximate velocity of the convective flow, which ranged as high as 3 cm/sec, and the size of the cell which ranged from 8 cm to 48 cm for the well of L/D=270, and a diameter of 4.5 cm. From these experiments he concluded that the theoretical critical values of temperature gradient obtained by
use of Krige’s formula were close to, but probably higher than the measured values. For these experiments the estimated Rayleigh number based on the fluid temperature gradient ranged from $1.4 \times 10^4$ to $4.5 \times 10^6$.

Donaldson [10] performed analytical and experimental studies of a geothermal-well model. His experimental model was a 2.45 cm diameter tube, about 90 cm long with closed-top and -bottom, and with a linearly increasing temperature with depth imposed along the tube wall. The same model was analytically solved to obtain a correlation among the ratio of temperature gradients (along the tube axis and the wall), modified Rayleigh number based on the wall temperature gradient, and the tube radius. He obtained a good agreement between his experimental and theoretical results only when the modified Rayleigh number was less than 300 and greater than 3000. Between the above two values of the modified Rayleigh number, a negative temperature gradient was observed along the axis in his experiment. The given reason for this was that the convective flow generated in the cylinder was probably not symmetric. When the modified Rayleigh number was as large as $10^6$, it was experimentally observed that the temperature of the fluid corresponded closely with that of the wall at the same depth.

1.2.2 Turbine Blade Problem

This type of problem was first treated by Lighthill [11] in a purely theoretical manner. His model was a circular cylinder with a constant wall temperature, closed at the bottom and open at the top to a reservoir. The body force was always directed toward the
closed end, and the hottest and the coldest temperatures of his system were always at the centerline of the top opening and at the cylinder wall, respectively. For this problem he defined the following characteristic non-dimensional parameters; the length-to-radius ratio, $L/a$ (or often called the aspect ratio) of the tube, the two modified Rayleigh numbers, $Ra$ and $R_1$ (based on the radius $a$ and the length of the tube, respectively), and the Prandtl-number. He established three flow regimes in such a model for laminar flow. They are defined as: i) at small $L/a$, flow along the tube wall is a type that can be approximated by free convection along a flat vertical wall; ii) for large $L/a$, the boundary layer mixes with the central flow which fills up the entire tube and the velocity distributions at each section of the tube are similar differing only by some constant (He called this the similarity flow regime, and the solution for this particular flow regime was called the similarity solution.), and iii) if $L/a$ exceeds the critical value of the above regime, the flow does not occur along the entire length of the tube leaving some fluid, within a certain distance from the closed-end, stationary. Regarding these flow regimes, he predicted that the similarity flow regime was bounded by two critical aspect ratios (one borders the first regime and the other borders the third regime), and these two were separated by a factor of order 10. Lighthill solved the field equations for each of the above three regimes by integrating them over each cross-sectional area first, then forming three integral conservation equations. He found expressions for temperature and velocity profiles in each regime and the Nusselt number was related to the
modified Rayleigh number. He concluded that in such configuration the flow is always up along the wall and down along the tube axis, with turbulent flow predicted to occur at a modified Rayleigh number near $10^4$.

In the following year Martin and Cohen [12] performed heat transfer experiments using the same model that Lighthill studied, and found that most of their results agreed with Lighthill's in regard to heat transfer rates. When Martin [13] continued his experiment with a special emphasis on turbulent flow, he found that Prandtl number became significant as to how the turbulent flow was generated while it was insignificant in laminar flow. For Prandtl numbers near unity, he found that transition occurred during laminar impeded-flow regime, and for large Prandtl numbers, transition took place during laminar boundary-layer flow, yielding conventional boundary-layer regime. In his experiment the transition was detected by noting the fluctuation of the orifice temperature, and the transitional modified Rayleigh number was found to be in between $10^{4.4}$ and $10^{4.6}$.

A condition similar to Lighthill's configuration but with a linearly decreasing temperature with depth (or decreasing in the direction of the applied body force) along the wall, was analytically investigated by Ostrach and Thornton [14] for the similarity flow which was previously defined by Lighthill. His solution technique was similar to that of Lighthill's, however, because of the imposed temperature gradient along the cylinder wall, he introduced a new Rayleigh number, $Ra_A$, based on the wall temperature gradient. Similarity flow could not be specified by one Rayleigh number for
this case while Lighthill stated that similarity flow would occur only when $Ra_L^a = 311$ since $Ra_A$ was always zero. Ostrach and Thornton concluded that similarity flow exists within certain ranges of $Ra_L^a$ and $Ra_A$ values, and defined them to be approximately $0 < Ra_A < 1600$ and $0 < Ra_L^a < 311$, however no explanation was given for these choices of Rayleigh number ranges. Their result also indicated that the flow along the wall was always in the direction of increasing temperature of the wall within defined Rayleigh number ranges.

Hasegawa [15] published the results of his extensive work on heat transfer in an open thermosyphon. In his three part report the last two parts are of interest to the current problem. In these, he discussed the analytical and experimental results of the open thermosyphon in a circular tube. His experimental configuration was very closely related to that of Martin. His results in the similarity flow region agree very closely with Lighthill's analytical work. In particular, the occurrence of a stagnant region as a function of the Rayleigh number based on the top and bottom temperature difference was closely duplicated by Hasegawa. He used a two-dimensional model which enabled him to use a Schlieren system to obtain visual flow profiles. He further noted that where the Rayleigh number was less than a certain value, a portion of the fluid column could be expected to become fairly stagnant. He also observed that the occurrence of turbulence takes place where the shear is maximum, and that turbulence in the down-flowing fluid along the center axis usually precedes that in the up-flow along the wall and eventual turbulence in the entire fluid.
1.2.3 Other Related Studies

Elder [16,17,18] in three reports presented an extensive study of free convection in a vertical slot where the two vertical walls were at different temperatures and its top and bottom were adiabatically closed with solid boundaries. His main concern was to characterize the convective flow in such a geometric configuration by analytical, numerical, and experimental means. In these he reported the existence of secondary and tertiary flows when the Rayleigh number based on slot width and the difference between the two wall temperatures exceeded $10^5$. His numerical solution also indicated the existence of secondary flow at a Rayleigh number as low as 1500. In addition to this, he also experienced a partial numerical instability with a Rayleigh number larger than 1500 in his finite difference and iterative numerical solution. However, he was not able to identify whether the instability was actually of a physical nature or the propagation of a local numerical disturbance.

The same phenomenon observed by Elder was later demonstrated by de Vahl Davis and Thomas [19]. Then, de Vahl Davis and Mallinson [20] concluded that the instability of numerical solutions encountered by Elder, and de Vahl Davis and Thomas was of a physical nature rather than the instability of the numerical method they applied. In Ref. [20], it was mentioned further that the instability was experienced whenever the secondary motion was generated at the center portion of the slot where the shear was thought to be greatest. The stability problem of natural convection in a vertical slot was also studied by Batchelor [21], Vest and
Arpaci [22], and Ostrach and Raghavan [23].

Regarding numerical solutions, Barakat and Clark [24] applied the finite difference method to a natural convection problem in a cylindrical enclosure. A similar application of finite difference methods was also made by Kee, Landram, and Miles [25]. Torrance [26] made a comparison study of five different finite-difference methods which were applied to a common problem of natural convection in a cylindrical enclosure. Other numerical work related to the current problem to a lesser degree are the following: Powe and Comfort [27] applied a finite difference scheme to natural convection in a spherical enclosure with a cylindrical cavity inside; Newell and Schmidt [28] applied the Crank-Nicholson method to laminar natural convection in a two-dimensional rectangular enclosure; Ozoe, Yamamoto, Churchill, and Sayama [29] developed a general numerical solution using finite difference methods with an alternating direction scheme which was applied to laminar natural convection in a cubic enclosure, the space between two horizontal infinite plates, and a long square channel; Hwang and Cheng [30] used the boundary vorticity method to solve the combined free and forced laminar convection in horizontal tubes; Pepper and Harris [31] applied a strongly implicit procedure to three dimensional natural convection in a rectangular enclosure; and Mallinson and de Vahl Davis [32] used the false transient method for natural convection in a box.
II. ANALYTICAL STUDY

The mathematical development of the problem described in the previous chapter will be considered in this chapter.

The governing equations will be developed, then solved analytically to obtain a closed-form solution. In Chapter III a numerical solution will be presented which allows additional insight beyond that possible in closed form.

2.1 Governing Equations

The governing equations consist of the usual conservation relationships namely: conservation of mass, momentum, and energy. These three equations in vector form are as follows [33,34]:

\[
\frac{D\rho}{Dt} + \rho \vec{V} \cdot \hat{V} = 0 \\
(2.1)
\]

\[
\rho \frac{DV}{Dt} = \rho \vec{g} - \nabla P + \mu \nabla^2 \vec{V} \\
(2.2)
\]

\[
\rho \frac{Dh}{Dt} = \frac{DP}{Dt} + \nabla \cdot (k\nabla T) + \phi \\
(2.3)
\]

where \(\frac{D()}{Dt}\) indicates the substantial or particle derivatives and can be written out as follows:

\[
\frac{D()}{Dt} = \frac{\partial()}{\partial t} + (\hat{V} \cdot \nabla)() \\
(2.4)
\]

The first term, \(\frac{\partial()}{\partial t}\), in the right hand side of Eq. (2.4) represents a local rate of change of the property in interest and the second term, \((\hat{V} \cdot \nabla)()\), indicates a rate of change due to the
motion of the property, and which is commonly called the convection term. The three conservation equations are written in relatively general form, the conservation-of-momentum equation is for constant viscosity medium and is one form of the Navier-Stokes equation.

In order to reduce these three conservation equations to forms suitable to this problem, the following assumptions are made:

1) axisymmetric flow (only two geometric variables; \( r \) for radial and \( x \) for vertical directions),

2) incompressible, steady state flow, and

3) constant property liquid medium.

With these assumptions, and the coordinates specified as shown in Fig. 1.1, Eqs. (2.1) through (2.3) reduce to the following forms, respectively:

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial R} + \frac{V}{R} = 0 \tag{2.5}
\]

\[
U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial R} = -g - \frac{1}{\rho} \frac{\partial P}{\partial x} + \nu \left[ \frac{\partial^2 U}{\partial R^2} + \frac{1}{R} \frac{\partial U}{\partial R} + \frac{\partial^2 U}{\partial x^2} \right] \tag{2.6}
\]

\[
U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial R} = - \frac{1}{\rho} \frac{\partial P}{\partial R} + \nu \left[ \frac{\partial^2 V}{\partial R^2} - \frac{V}{R^2} + \frac{1}{R} \frac{\partial V}{\partial R} + \frac{\partial^2 V}{\partial x^2} \right] \tag{2.7}
\]

\[
U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial R} = \kappa \left[ \frac{\partial^2 T}{\partial R^2} + \frac{1}{R} \frac{\partial T}{\partial R} + \frac{\partial^2 T}{\partial x^2} \right] \tag{2.8}
\]

where \( \kappa = k/\rho C_p \), and the direction of the body force is downward. Eqs. (2.6) and (2.7) are component forms of the conservation of momentum; the former in the axial (\( x \)) direction, the latter in the radial (\( r \)) direction. The reasons for the disappearance of the pressure term, \( \partial P/\partial T \), and the dissipation function, \( \phi \), in the
transition from Eqs. (2.4) to (2.8) are as indicated in the footnote below.

2.2 Analytical Development

In this section, the four governing equations, Eqs. (2.5) through (2.8), established in the previous section are reduced to three governing equations. These are then solved for "similarity" flow.

2.2.1 Modification of Governing Equations

Because of the similarity in geometry of the model (see Fig. 1.1) considered here with that of Ostrach and Thornton [14], the following modification of the three governing equations follows their procedure.

First, the use of the laminar boundary layer approximation is employed. That is; a) \( U, T, \text{ and } X \) are in the order of unity, and b) \( V \) and \( R \) are in the order of \((\text{Reynolds number})^{-1/2}\). After applying this approximation, several terms can be eliminated from Eqs. (2.5) through (2.8), and the resulting equations for mass, momentum, and energy conservation are as follows:

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial R} + \frac{V}{R} = 0 \tag{2.9}
\]

\[
\frac{U}{\partial X} \frac{\partial U}{\partial R} + V \frac{\partial U}{\partial R} = -g - \frac{1}{\rho} \frac{\partial P}{\partial X} + \nu \left[ \frac{\partial^2 U}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} \right] \tag{2.10}
\]

From the defining thermodynamic relation, enthalpy is written as, \( h=u+pv \), where \( u \) is the internal energy and \( v \) is the specific volume. When we write \( dh=cpdT \) and \( du=cvdT \) and substitute, we have \( cpdT=cvdT+pdv+vdp \). For solid or incompressible media with \( cp=cv \) and \( dv=0 \), the enthalpy equation reduces to \( vdp=0 \). Since \( v\neq0 \), we have \( dp=0 \).

Commonly, a "slow" fluid movement indicates the dissipation function to be negligible, however, this becomes clear if one nondimensionalizes the energy equation, Eq. (2.3), to find the coefficient of the dissipation term, \( \phi \). This coefficient is usually a ratio of Eckert to Reynolds numbers and is small for liquids.
\[ \frac{\partial p}{\partial R} = 0 \quad (2.11) \]

\[ U \frac{\partial T}{\partial X} + V \frac{\partial T}{\partial R} = \kappa \left[ \frac{\partial^2 T}{\partial R^2} + \frac{1}{R} \frac{\partial T}{\partial R} \right] \quad (2.12) \]

The applicable boundary conditions are: \( U(0,R)=0, V(0,R)=0, \) 
\( T(0,R)=T_0, U(X,a)=0, V(X,a)=0, T(X,a)=T_0+AX, \) and \( T(L,0)=T_1 \) where \( A \) represents the temperature gradient along the cylinder wall.

To eliminate the pressure term from Eq. (2.10), we first apply the 
velocity boundary conditions, namely, at \( R = a \) (at wall), \( U = 0 \) and 
\( V = 0 \) to produce the following equation

\[
0 = -g - \frac{1}{\rho} \frac{\partial p}{\partial X} + \nu \left( \frac{\partial^2 U}{\partial R^2} + \frac{1}{R} \frac{\partial U}{\partial R} \right) \quad (2.13)
\]

Then, subtraction of Eq. (2.13) from (2.10) results in,

\[
U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial R} = -\frac{1}{\rho} \frac{\partial p}{\partial X} + \frac{1}{\rho} \frac{\partial p}{\partial X} \bigg|_{R=a} + \nu \left[ \frac{\partial^2 U}{\partial R^2} + \frac{1}{R} \frac{\partial U}{\partial R} \right] \bigg|_{R=a} \quad (2.14)
\]

To account for the change of density due only to the temperature, the 
following steps are taken to obtain the specific volume \((1/\rho)\) and 
temperature relation: first, the specific volume, \( v \), is expanded about 
\( v_0 \) of at some reference temperature by Taylor series as follows,

\[
v = \frac{1}{\rho} = v(T_0) + \frac{(T-T_0)}{1} \frac{av(T_0)}{aT} + \frac{(T-T_0)^2}{2} \frac{a^2v(T_0)}{aT^2} + \ldots \]

then, the definition of the thermal expansion coefficient,

\[
\beta(T_0) \equiv \frac{av(T_0)/aT}{v(T_0)}
\]
is applied, and finally using only the first two terms, the following relationship is obtained,

\[ \frac{1}{\rho} \approx \frac{1}{\rho_0} + (T - T_0) \frac{\beta}{\rho_0} \]  \hspace{1cm} (2.15)

where the subscript, 0, indicates the quantity at the wall. With the substitution of Eq. (2.15) together with the hydrostatic pressure change, \( \partial P/\partial X \approx \rho_0 g \), Eq. (2.14) becomes,

\[ U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial R} = -(T - T_a) \beta g + \nu \left[ \frac{\partial^2 U}{\partial R^2} + \frac{1}{R} \frac{\partial U}{\partial R} \right] \text{at } R = a \]  \hspace{1cm} (2.16)

where \( \beta \) is the volumetric expansion coefficient and is assumed constant (at wall temperature) throughout the region in question.

Applying the following dimensionless variables to Eq. (2.9), (2.16), and (2.12):

\[ x = \frac{X}{L}, \quad r = \frac{R}{a}, \quad u = a^2 U/(\kappa L), \quad v = a V/\kappa \]
\[ t = \beta g a^4 \frac{(T_0 - T)}{\kappa L} \]  \hspace{1cm} (2.17)

the dimensionless equations of mass, momentum, and energy are obtained

\[ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial r} + \frac{v}{r} = 0 \]  \hspace{1cm} (2.18)

\[ \frac{1}{r} \left( u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} \right) = t + \frac{\beta g a^4}{\kappa L} x + \left( \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) \text{at } r = 1 \]  \hspace{1cm} (2.19)

\[ u \frac{\partial t}{\partial x} + v \frac{\partial t}{\partial r} = \frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} \]  \hspace{1cm} (2.20)
and the applicable dimensionless boundary conditions are:

\[ u(0,r) = 0, \quad v(0,r) = 0, \quad u(x,1) = 0, \quad v(x,1) = 0 \]  \hspace{1cm} (2.21)

\[ t(0,r) = 0, \quad t(x,1) = -Ra_A x, \quad t(1,0) = -Ra_L \]  \hspace{1cm} (2.22)

where \( Ra_A = \frac{\beta g a^4}{\nu \kappa} \) is a modified Rayleigh number based on the radius and the temperature gradient \( A \) along the wall, and \( Ra = \frac{\beta g a^3(T_1 - T_0)/\nu \kappa}{} \) is a Rayleigh number based on the radius and the temperature difference \( (T_1 - T_0) \) which is the difference between the bottom and the top temperature of the fluid at the center line.

Thus, Eqs. (2.18) through (2.22) define the problem in a dimensionless manner.

### 2.2.2 Solution Method

As was done by Lighthill [11] and few years later by Ostrach and Thornton [14], the "similarity" solutions along \( X \)-direction for the axial velocity and the temperature are sought. In other words the temperature and axial velocity profiles obtained at a certain value of \( x \) should look proportional or "similar" to those obtained at some other value of \( x \).

To accomplish this, Eqs. (2.18) through (2.20) are first integrated along the radius of the cylinder \((r = 0 \text{ to } 1)\) to give the further simplified conservation equations in integral form:

\[ \int_0^1 r u dr = 0 \]  \hspace{1cm} (2.23)
\[ \frac{\partial}{\partial x} \int_0^1 r u r dr = \frac{\partial t}{\partial r} \bigg|_{r=1} \] \quad (2.24)

\[ \frac{1}{\text{Pr}} \frac{\partial}{\partial x} \int_0^1 r u^2 dr = \int_0^1 r t dr + \frac{1}{2} \left( \frac{\partial u}{\partial r} - \frac{\partial^2 u}{\partial r^2} \right) \bigg|_{r=1} + \text{Ra}_A \frac{x}{2} \] \quad (2.25)

Next, Eq. (2.19) is evaluated at the centerline of the cylinder \((r = 0)\) to give:

\[ \frac{1}{\text{Pr}} \left. u \frac{\partial u}{\partial x} \right|_{r=0} = \left( t + \text{Ra}_A \frac{x}{2} \right) \bigg|_{r=0} + \left( \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) \bigg|_{r=1} \] \quad (2.26)

and Eq. (2.20) is evaluated at both the centerline and the wall to give

\[ \left. u \frac{\partial t}{\partial x} \right|_{r=0} = \left( \frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} \right) \bigg|_{r=0} \] \quad (2.27)

\[ \left( \frac{\partial^2 t}{\partial r^2} + \frac{\partial t}{\partial r} \right) \bigg|_{r=1} = 0 \] \quad (2.28)

In the preceding process radial flow at the centerline is assumed zero \((v = 0 \text{ at } r = 0)\), because of the symmetry about the centerline of the model geometry.

Then, to obtain the solutions for the axial velocity, \(U\), and for the temperature, \(t\), within the cylinder the following two expressions are assumed:

\[ u = F(x)(a_0 + a_1 r^2 + a_2 r^4 + a_3 r^6) \] \quad (2.29)
\[ t = G(x)(b_0 + b_1 r^2 + b_2 r^4 + b_3 r^6) \]  \hspace{1cm} (2.30)

where \( a_i \) and \( b_i \) for \( i = 0 \) to \( 3 \) are unknown at this stage. The even functions which are functions of \( r \) only, represent the general shape of intuitively surmised axial velocity and temperature profiles (see Fig. 2.1), and the two functions \( F(x) \) and \( G(x) \) represent the variation of \( u(r) \) and \( t(r) \), respectively, along X-axis of the geometry.

To approximate \( F(x) \) and \( G(x) \), Eqs. (2.29) and (2.30) are substituted into Eq. (2.25) to obtain:

\[ \frac{\partial F(x)}{\partial x} \sim \frac{G(x)}{F(x)} \sim \frac{x}{F(x)} \sim \text{constant}. \]

When \( F(x) \) and \( G(x) \) are denoted by \( F(x) \sim x^m \) and \( G(x) \sim x^n \), the above expression becomes:

\[ m x^{m-1} \sim \frac{x^n}{x^m} \sim \frac{x^n}{x^m} \sim \text{constant}. \]

For each of these terms to be proportional to the others in the above expression, by either the first or the third term it can be concluded that \( m = 1 \), and by second term \( n = m \). From this analogy, \( F(x) \) and \( G(x) \) are determined to be of the form \( F(x) \sim x \) and also \( G(x) \sim x \).

Using the above result, Eqs. (2.29) and (2.30) can be rewritten as:

\[ u = x(a_0 + a_1 r^2 + a_2 r^4 + a_3 r^6) \]  \hspace{1cm} (2.31)
Figure 2.1 The predicted velocity and temperature profiles.
\[ t = x(b_0 + b_1 r^2 + b_2 r^4 + b_3 r^6) \]  

(2.32)

In order for the unknown coefficients, \( a_i \) and \( b_i \), to be found, Eqs. (2.31) and (2.32) are substituted into Eqs. (2.23), (2.26), (2.27), and (2.28) to form four independent equations. Together with three more independent equations which are formed by applying the following boundary conditions: \( u(x,1) = 0, t(x,1) = -(A_\beta g a^4/\nu k)x, \) and \( t(1,0) = (T_0-T_1) \beta g a^4/\nu k L, \) to Eqs. (2.31) and (2.32), the unknown coefficients can be determined and the results are:

\[ \frac{u}{x} = \alpha(1-6r^2+9r^4-4r^6) \]  

(2.33)

\[ \frac{t}{x} = -Ra_L^a - \frac{1}{4}\alpha Ra_L^a r^2 + [9(Ra_L^a - Ra_A^a) + 2\alpha Ra_L^a] \frac{r^4}{5} \]

\[ + [16 (Ra_A^a - Ra_L^a) - 3\alpha Ra_L^a] \frac{r^6}{20} \]  

(2.34)

where \( \alpha \) can be taken as a flow parameter yet to be determined. These last two equations provide profiles of the axial velocity and of the temperature, however, for the actual use of these two equations, additional expressions relating the three parameters, \( \alpha, Ra_L^a, \) and \( Ra_A^a \) must be found.

Following the procedure detailed by Ostrach and Thornton, two additional expressions relating, \( \alpha, Ra_L^a, \) and \( Ra_A^a \) are achieved by substituting already defined axial velocity and temperature equations, Eqs. (2.33) and (2.34), into Eqs. (2.24) and (2.25), the expressions which result are:
\[ 2B_2 + 4B_3 + 6B_4 \]

\[ = A_1 (B_1 + \frac{1}{2}B_2 + \frac{1}{3}B_3 + \frac{1}{4}B_4) + A_2 (\frac{1}{2}B_1 + \frac{1}{3}B_2 + \frac{1}{4}B_3 + \frac{1}{5}B_4) + A_3 (\frac{1}{3}B_1 + \frac{1}{4}B_2 + \frac{1}{5}B_3 + \frac{1}{6}B_4) + A_4 (\frac{1}{4}B_1 + \frac{1}{5}B_2 + \frac{1}{6}B_3 + \frac{1}{7}B_4) \]

\[ \text{(2.35)} \]

and

\[ \frac{1}{\Pr} (A_1^2 + A_1A_2 + \frac{1}{3}A_2^2 + \frac{2}{3}A_1A_3 + \frac{1}{2}A_2A_3 + \frac{1}{5}A_3^2 + \frac{1}{2}A_1A_4 + \frac{2}{5}A_2A_4 + \frac{1}{3}A_3A_4 + \frac{1}{7}A_4^2) = \]

\[ \frac{1}{2}B_1 + \frac{1}{4}B_2 + \frac{1}{6}B_3 + \frac{1}{8}B_4 - 4A_3 - 12A_4 + \frac{1}{2} \text{Ra}_A \]

\[ \text{(2.36)} \]

where for Eqs. (2.35) and (2.36)

\[ A_1 = \alpha \]

\[ A_2 = -6\alpha - \frac{1}{24} \frac{\alpha^2}{Pr} - \frac{1}{24} \text{Ra}_L^a + \frac{1}{24} \text{Ra}_A \]

\[ A_3 = 9\alpha + \frac{1}{8} \frac{\alpha^2}{Pr} + \frac{1}{8} \text{Ra}_L^a - \frac{1}{8} \text{Ra}_A \]

\[ A_4 = -4\alpha - \frac{1}{12} \frac{\alpha^2}{Pr} - \frac{1}{12} \text{Ra}_L^a + \frac{1}{12} \text{Ra}_A \]

\[ B_1 = -\text{Ra}_L^a \]
\[ B_2 = -\frac{1}{4} \alpha \frac{R_{aL}^3}{L} \]

\[ B_3 = \frac{9}{5} R_{aL}^3 - \frac{9}{5} R_{aA} + \frac{2}{5} \alpha \frac{R_{aL}^3}{L} \]

\[ B_4 = -\frac{4}{5} R_{aL}^3 + \frac{4}{5} R_{aA} - \frac{3}{20} \alpha \frac{R_{aL}^3}{L} \]

Since Lighthill found, for a similarity solution in the laminar case, the difference between assuming Pr = \( \infty \) or unity is small, the Pr = \( \infty \) case is assumed here for simplicity. An expression for \( \alpha \) in terms of only \( R_{aL} \) is thus obtained by eliminating \( R_{aA} \) between Eqs. (2.35) and (2.36):

\[
\alpha = \frac{144000 - 375.8 R_{aL}^3}{-0.0052(R_{aL}^3)^2 + 8.4(R_{aL}^3) - 5343.6} \tag{2.37}
\]

Eq. (2.37) is plotted in Fig. 2.2. Also, \( \alpha \) can be eliminated between Eqs. (2.35) and (2.36), and the expression for \( R_{aA} \) can be obtained in terms of \( R_{aL}^3 \):

\[
R_{aA} = \frac{-0.0052(R_{aL}^3)^3 + 35.8(R_{aL}^3)^2 - 3839.4(R_{aL}^3) + 8640000}{-0.0052(R_{aL}^3)^2 - 8.4(R_{aL}^3) - 5343.6} \tag{2.38}
\]

Eq. (2.38) is plotted in Fig. 2.3. On this plot, the \( R_{aL}^3 \) domain is divided into four parts as indicated. Since the main interest of the temperature variation along the cylinder wall is that of a linear increase in the direction of body force, \( R_{aA} \) is always positive valued, thus the two regions I and III can be eliminated.
from the possible applicable range on $Ra_L^a$. In range IV on $Ra_L^a$, the relationship between $Ra_L^a$ and $Ra_A$ becomes linear as seen in the figure and at any point on this curve the value of $Ra_L^a$ is always larger than $Ra_A$ by approximately 5500. Since by definition, $Ra_A$ is representative of the linear temperature gradient along the wall of the cylinder and $Ra_L^a$ is that for the centerline axis, at any level (i.e., at any choice of $x$) along the cylinder the temperature at the centerline is always higher than that at the wall. It is expected that in such a situation the induced convective flow is rising along the centerline axis, and thus down along the wall (see Fig. 2.4). However, the flow parameter (which also indicates the velocity at $r = 0$, centerline) is always positive (see Fig. 2.2 for the $Ra_L^a$ values marked as region IV in Fig. 2.3) indicating its direction to be in the positive $x$ sense (downward). For this reason the $Ra_L^a$ range indicated by IV is also eliminated from the possible applicable range on $Ra_L^a$.

Thus, the applicable range has been narrowed down to region II alone and for this region a more detailed examination of temperature distributions is necessary to determine which portion of this curve may still be applicable.

In Fig. 2.5, values from Figs. 2.2 and 2.3 are cross plotted for the $Ra_L^a$ range from zero to 1000, and in Fig. 2.6 several temperature profiles are plotted according to Eq. (2.34) choosing the necessary values from Fig. 2.5. Starting at $Ra_L^a \approx 310$ along the $Ra_A$ curve in Fig. 2.5, as $Ra_L^a$ increases the temperature profile flattens (which is depicted in Fig. 2.6) indicating less movement of fluid in the cylinder caused by the small difference in $Ra_L^a$. 
Figure 2.2 Relationship between $Ra_a^L$ and $\alpha$. (Eq. 2.37)
Figure 2.3 Relationship between $\frac{Ra^a}{L}$ and $Ra_A$. (Eq. 2.38)
a) Temperature and Rayleigh number relations

\[ \text{Ra}_L^a \sim (T_1 - T_0) \]

\[ \text{Ra}_A \sim (T_{\text{BOT}} - T_0) \]

b) Flow up along the centerline

\[ \text{Ra}_L^a > \text{Ra}_A \]

or

\[ T_1 > T_{\text{BOT}} \]

c) Flow down along the centerline

\[ \text{Ra}_L^a < \text{Ra}_A \]

or

\[ T_1 < T_{\text{BOT}} \]

Figure 2.4 Two kinds of flow direction predicted by \( \text{Ra}_L^a \) and \( \text{Ra}_A \) relations.
Figure 2.5 Cross plot of Figs. 2.2 and 2.3 in the range $0 < Ra_a < 1000$. 
Figure 2.6 Temperature profiles.
and \( Ra_A \) values. At \( Ra_A^{380} = Ra_A \) also reaches the same value which causes the flow to become stationary indicated by \( \alpha = 0 \) (see Fig. 2.5). As soon as this \( Ra_A^{380} \) value is increased further (more than 380), the convective flow is again induced but its direction is reversed as depicted by the \( \alpha \) curve in Fig. 2.5. Beyond this point as seen in Fig. 2.6, the temperature profile holds a similar shape except the peak of the profile tends to move away from the wall.

At \( Ra_A^{660} = 660 \) in Fig. 2.5, \( Ra_A \) attains its peak value and further increase in \( Ra_A^{660} \) results in decreased values of \( Ra_A \). For such a situation it is reasonable to expect the magnitude of the center-line velocity, \( \alpha \), to decrease since the temperature difference between the center-line and the wall (both at the orifice) is decreasing indicated by the decreasing difference between \( Ra_A \) and \( Ra_A^{a} \) (see also Fig. 2.4). However this situation is contradicted as indicated by the increasing \( \alpha \) in Fig. 2.5 for \( Ra_A^{a} > 660 \). It is suspected, as argued by Ostrach and Thornton, that beyond \( Ra_A^{a} = 660 \) the temperature gradient along the center-line axis may become so large that the similarity solution does not apply any longer.

Therefore, the most applicable range for this particular problem appears to correspond to \( Ra_A^{a} \) values between 310 and 660. Along the \( Ra_A \) curve in Fig. 2.5, seven points are chosen between \( Ra_A^{a} = 310 \) and 660, and choosing seven corresponding \( \alpha \) values from the same figure on the \( \alpha \)-curve, velocity profiles are plotted in Fig. 2.7 using Eq. (2.33).
Figure 2.7 Velocity profiles.
2.2.3 Average Heat Transfer

The average heat transfer coefficient $N_u_a$ of this analytical model can be defined as follows:

$$N_u_a = \frac{\text{Net Heat Transfer from the Fluid to the Wall}}{\text{Net Heat Transfer at the Wall}}$$  \hspace{1cm} (2.39)

Following the above definition with proper quantities, $N_u_a$ is:

$$N_u_a = \frac{\dot{Q}}{a/k(T_m-T_1)}2\pi La$$  \hspace{1cm} (2.40)

where $\dot{Q}$ is the total heat transfer rate from the fluid to the wall, and $T_m$ is the average temperature of the wall as defined below:

$$T_m = T_0 + (AL/2)$$  \hspace{1cm} (2.41)

In Eq. (2.40), a positive $N_u_a$ will indicate the net heat transfer to be from the fluid to the wall. The net heat transfer at the wall can be found by the following expression:

$$\dot{Q} = 2\pi ak \int_0^L \left| \frac{dT}{dR} \right|_{R=a} dX$$  \hspace{1cm} (2.42)

Substitution of Eq. (2.42) into Eq. (2.40) yields:

$$N_u_a = a \int_0^L \left| \frac{dT}{dR} \right|_{R=a} dX / L(T_m - T_1)$$  \hspace{1cm} (2.43)
Substituting dimensionless variables, the above expression becomes:

\[
\text{Nu}_a = \left[ \int_0^1 \frac{dt}{dr} \bigg|_{r=1} dx \right] / (Ra_L^a - \frac{1}{2} Ra_A)
\]  \hspace{1cm} (2.44)

Finally, by using the expression for the fluid temperature which is already found in Eq. (2.34) and by solving the integral in Eq. 2.44, a more practical \( \text{Nu}_a \) equation is found as follows:

\[
\text{Nu}_a = \frac{[2.4(Ra_L^a - Ra_A) + 0.2\alpha Ra_L^a]}{(2Ra_L^a - Ra_A)}
\]  \hspace{1cm} (2.45)

The parameters used in the above equation are all dimensionless.

Choosing several values of \( Ra_A \) from the applicable range in Fig. 2.5, corresponding \( \text{Nu}_a \) values are computed using Eq. (2.45), and the results are listed in Table 2.1 and plotted in Fig. 2.8.

### 2.3 Result of Analytical Study

Among the previous works mentioned in the introduction, Ostrach and Thorntons' investigation is most like the problem in this work. The difference is that in their investigation, the cold reservoir is located at the open top of the closed-bottom cylinder, while in this work the cold fluid is located at the closed-top portion of the open-bottom cylinder. In addition, although a linear temperature gradient is imposed on the wall in the both cases, they are oppositely directed.

For these situations, it is not surprising that correlations among \( Ra_L^a, Ra_A, \) and \( \alpha \) (see Figs. 2.2 and 2.3) in both cases produced
Table 2.1 Average Heat Transfer Coefficient Eq. (2.45).

<table>
<thead>
<tr>
<th>$Ra_A$</th>
<th>$Ra_L$</th>
<th>$\alpha$</th>
<th>$Nu_a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>310</td>
<td>-8</td>
<td>0.40</td>
</tr>
<tr>
<td>100</td>
<td>330</td>
<td>-5.5</td>
<td>0.34</td>
</tr>
<tr>
<td>300</td>
<td>360</td>
<td>-1.5</td>
<td>0.09</td>
</tr>
<tr>
<td>380</td>
<td>380</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>405</td>
<td>4</td>
<td>0.31</td>
</tr>
<tr>
<td>700</td>
<td>445</td>
<td>10</td>
<td>1.46</td>
</tr>
<tr>
<td>1000</td>
<td>520</td>
<td>22</td>
<td>28.40</td>
</tr>
<tr>
<td>1280</td>
<td>660</td>
<td>50</td>
<td>128.80</td>
</tr>
<tr>
<td>1000*</td>
<td>780</td>
<td>77</td>
<td>20.30</td>
</tr>
<tr>
<td>820*</td>
<td>820</td>
<td>85</td>
<td>16.80</td>
</tr>
</tbody>
</table>

(* Beyond the applicable range)
Figure 2.8 Average heat transfer coefficient within the applicable range. (see Table 2.1)
virtually identical results except for the difference caused by the sign change of the coordinate system. The choice of an applicable range is different from Ostrach and Thornton's temperature and velocity results. In Ostrach and Thornton's work, the convective flow may be in one direction considering the nature of the imposed wall-temperature and of the location of the cold-fluid reservoir, while in this problem the direction cannot be predetermined without examining the nature of all parameters. For this reason, a lengthy and careful evaluation of the applicable range is required.

In the applicable range, it is found that the convective flow may be zero at a certain combination of \( Ra_{L}^{a} \) and \( Ra_{A} \) values, namely \( Ra_{L}^{a} = Ra_{A} = 380 \), and with increasing or decreasing \( Ra_{L}^{a} \) values from this point (see Fig. 2.5) the flow will rise or fall along the center-line of the cylinder.

In Hasegawa's analysis which is, to a degree, an extension of Ostrach and Thornton's analysis, the average dimensionless heat transfer coefficient, \( Nu_{a} \) is calculated for the applicable range defined by Ostrach and Thornton. A similarity between Hasegawa's result and this work is the significant variation of \( Ra_{A} \) corresponding to a rather small change of \( Ra_{L}^{a} \); while a greater variation of \( Nu_{a} \) is more noticeable in this result than their case. Apparently, this large variation of \( Nu_{a} \) within the applicable range is caused by the flow parameter \( \alpha \). The influence of \( \alpha \) in the calculation of \( Nu_{a} \) is seen in Eq. (2.45) where \( \alpha \) is a multiplier to \( Ra_{L}^{a} \) in the numerator, and it is, because of this particular term, that such a large variation in \( Nu_{a} \) occurs as indicated in Table 2.1. Also, values in Table 2.1 and Fig. 2.8 indicate that the direction of
the average heat transfer is always from the fluid to the wall regardless of whether the flow along the wall is up or down. This is a reasonable result since the highest temperature of the system is assumed to be located at $x = 1$ and $r = 0$ (center of the orifice).
III. NUMERICAL STUDY

In this chapter the governing equations, (2.5) through (2.8), are modified in such a way that the system of equations contains three dependent variables, namely temperature, vorticity, and stream function. The modified equations are then converted to a set of difference equations by applying the finite difference technique, followed by writing the Fortran computer code.

3.1 Modification of Governing Equations

The major modification made in the system of governing equations is the combining of the two momentum equations. This is accomplished by, first, differentiating Eq. (2.6) with respect to the radial coordinate, $R$, and Eq. (2.7) with respect to the axial coordinate, $X$, and then the two equations are combined by using the common term $\frac{\partial^2 P}{\partial R \partial X}$. At this point, the modified vorticity term:

$$\varepsilon = \frac{1}{R} \left( \frac{\partial U}{\partial R} - \frac{\partial V}{\partial X} \right)$$

is introduced to the combined equation, Ref. [24], yielding

$$\varepsilon \left( \frac{\partial U}{\partial X} + \frac{\partial V}{\partial R} + \frac{V}{R} \right) + U \frac{\partial \varepsilon}{\partial X} + V \frac{\partial \varepsilon}{\partial R}$$

$$= \frac{1}{R} \left( \frac{\partial P}{\partial R} \frac{\partial}{\partial X} \left( \frac{1}{\rho} \right) - \frac{\partial P}{\partial X} \frac{\partial}{\partial R} \left( \frac{1}{\rho} \right) \right) + \nu \left( \frac{\partial^2 \varepsilon}{\partial X^2} + \frac{3}{R} \frac{\partial \varepsilon}{\partial R} + \frac{\partial^2 \varepsilon}{\partial R^2} \right)$$

The bracketed terms in the left hand side of Eq. (3.2) are zero because of the conservation of mass, Eq. (2.5), and the
pressure term $\partial P/\partial R$ can also be made to zero by assuming
$|\partial P/\partial R| \ll |\partial P/\partial X|$. The density changes in $R$- and in $X$-directions
are assumed to be of the same order of magnitude for the configuration
of this problem. The other pressure term, $\partial P/\partial X$, in Eq. (3.2)
is considered hydrostatic and written as $-\rho_0 g$ where $\rho_0$ is a
density at some reference temperature, $T_0$. Then, applying the
definition of thermal expansion coefficient (see Eq. (2.15) and the
footnote below), the combined equations of Eqs. (2.6) and (2.7)
finally takes the following form:

$$U \frac{\partial \xi}{\partial X} + V \frac{\partial \xi}{\partial R} = \frac{g \rho_0}{R} \frac{\partial T}{\partial R} + \nu \left( \frac{\partial^2 \xi}{\partial X^2} + \frac{3}{R} \frac{\partial \xi}{\partial R} + \frac{\partial^2 \xi}{\partial R^2} \right)$$  \hspace{1cm} (3.3)

where vorticity is defined by Eq. (3.1).

Introduction of stream function becomes necessary in order for
two velocity components to be found. The stream function is defined
as:

By Taylor series, specific volume $\nu$ is expanded about $\nu_0$ of at some
reference temperature:

$$\nu = \frac{1}{\rho_0} = \nu(T_0) + \frac{(T-T_0) \partial \nu(T_0)}{\partial T} + \frac{(T-T_0)^2 \partial^2 \nu(T_0)}{2! \partial T^2} + \ldots$$

Approximating it by using the first two terms of the above series
and incorporating the definition of the thermal expansion coefficient,
$\beta(T_0) \equiv [\partial \nu(T_0)/\partial T]/\nu(T_0)$, the expression for $\nu$ becomes:

$$\nu(T) = \nu_0 + (T-T_0) \beta_0 \nu_0$$

where $\nu_0$ and $\beta_0$ are at the reference temperature $T_0$. Now, differentiating this with respect to the radial coordinate, $R$, it becomes:

$$\frac{\partial \nu(T)}{\partial R} = \frac{1}{\rho_0} \frac{\partial T}{\partial R} \beta_0 \nu_0 \frac{\partial \nu_0}{\partial R} = \frac{\beta_0 \nu_0}{\rho_0} \frac{\partial T}{\partial R}$$
Differentiating the first equation of Eqs. (3.4) with respect to \( R \), the second with respect to \( X \), and substituting them into Eq. (3.1) gives the following expression:

\[
\Xi R^2 = - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial R^2} + \frac{\partial^2 \psi}{\partial X^2}
\] (3.5)

which relates the stream function and the vorticity. Thus, solving Eq. (3.5) for \( \psi \) and substituting it into Eq. (3.4) yields the two velocity values.

Therefore, in summing up, the equations to be solved numerically are as follows:

\[
U \frac{\partial T}{\partial X} + V \frac{\partial T}{\partial R} = \kappa \left( \frac{\partial^2 T}{\partial R^2} + \frac{1}{R} \frac{\partial T}{\partial R} + \frac{\partial^2 T}{\partial X^2} \right)
\] (2.8)

\[
U \frac{\partial \Xi}{\partial X} + V \frac{\partial \Xi}{\partial R} = \frac{\partial^2 T}{\partial R^2} + \kappa \left( \frac{\partial^2 \Xi}{\partial X^2} + 3 \frac{\partial \Xi}{\partial R} + \frac{\partial^2 \Xi}{\partial R^2} \right)
\] (3.3)

\[
\Xi R^2 = - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial R^2} + \frac{\partial^2 \psi}{\partial X^2}
\] (3.5)

\[
U \equiv \frac{1}{R} \frac{\partial \psi}{\partial R}, \quad V \equiv - \frac{1}{R} \frac{\partial \psi}{\partial X}
\] (3.4)

The substitution of the following relationships: \( X = xL, R = ra \),
\( U = u\kappa L/a^2, V = \psi \kappa/a, T - T_0 = T\kappa L/\beta a^4, \Xi = \xi \kappa L/a^4 \), and \( \psi = \psi \kappa L \),
into these equations yields the following dimensionless expressions:
\[
\frac{u}{\Delta x} + \frac{v}{\Delta r} = \frac{\Delta t^2}{\Delta r^2} + \frac{1}{r} \frac{\Delta t}{\Delta r} + \frac{1}{(L/a)^2} \frac{\Delta^2 t}{\Delta x^2} \quad (2.8a)
\]

\[
\frac{u}{\Delta x} + \frac{v}{\Delta r} = Pr \left( \frac{1}{r} \frac{\Delta t}{\Delta r} + \frac{1}{(L/a)^2} \frac{\Delta^2 t}{\Delta x^2} + \frac{3}{r} \frac{\Delta t}{\Delta r} + \frac{3 \Delta^2 t}{\Delta x^2} \right) \quad (3.3a)
\]

\[
\frac{\Delta \psi}{\Delta r^2} = - \frac{1}{r} \frac{\Delta \psi}{\Delta r} + \frac{\Delta^2 \psi}{\Delta r^2} + \frac{1}{(L/a)^2} \frac{\Delta^2 \psi}{\Delta x^2} \quad (3.5a)
\]

\[
u \equiv \frac{1}{r} \frac{\Delta \psi}{\Delta r}, \quad \psi \equiv - \frac{1}{r} \frac{\Delta \psi}{\Delta x} \quad (3.4a)
\]

where the two dimensionless parameters arising in this process are \(Pr(=\nu/\kappa)\) and \(L/a\), Prandtl number and aspect ratio respectively.

The first equation is of course the energy equation; the second one is the vorticity equation converted from the two-directional momentum equations, coupled to the first one by \(T\); the third one relates the vorticity and the stream function, coupled to the second by \(\Xi\); and the last two are the velocity expressions.

### 3.2 Finite Difference Formulation

The basic numerical formulas used for the partial differential equations mentioned in the last section are; forward, backward, and central difference formulas as listed below Ref's. [35,36,37]:

\[
\frac{\Delta f}{\Delta x} = \frac{f_{i+1,j} - f_{i,j}}{\Delta x} + O(\Delta x) \quad \text{(Forward)} \quad (3.6)
\]

\[
\frac{\Delta f}{\Delta x} = \frac{f_{i,j} - f_{i-1,j}}{\Delta x} + O(\Delta x) \quad \text{(Backward)} \quad (3.7)
\]
\[
\frac{\partial f}{\partial x} = \frac{f_{i+1,j} - f_{i-1,j}}{2\Delta x} + O[(\Delta x)^2] \quad \text{(Central)} 
\]

and

\[
\frac{\partial^2 f}{\partial x^2} = \frac{f_{i-1,j} - 2f_{i,j} + f_{i+1,j}}{(\Delta x)^2} + O[(\Delta x)^2] 
\]

For non-standard cases, however, such as at boundaries or the cases which require a higher-than-usual order of approximation, special formulas are needed. These numerical expressions will be derived and noted as this section progresses.

### 3.2.1 Energy Equation

The energy equation to be written in a finite difference form is Eq. (2.8). Those terms with velocities in this equation require special consideration. When the velocity is positive (or in the direction of scan) or equal to zero, the backward formula is applied to those applicable terms. This technique is termed "upwind" method and is known to accelerate the program for convergence. Those terms which do not involve velocities are approximated by the central finite difference formula for the first and second derivatives [38].

Therefore, the numerical expression for energy becomes:
\[
U \frac{\partial T}{\partial X} + V \frac{\partial T}{\partial R} = \kappa \left[ \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta R)^2} + \frac{T_{i,j+1} - T_{i,j-1}}{2R(\Delta R)} \right]
\]

\[
+ \frac{T_{i,j+1} - T_{i,j-1}}{2R(\Delta R)} + \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{(\Delta X)^2} \right]
\]

(3.10)

where \((U \frac{\partial T}{\partial X} + V \frac{\partial T}{\partial R})\) takes one of the following four forms depending on the direction of the velocity:

\[
U \left( \frac{T_{i,j} + T_{i-1,j}}{\Delta X} \right) + V \left( \frac{T_{i,j} - T_{i,j-1}}{\Delta R} \right) \quad \text{for } U > 0 \text{ and } V > 0,
\]

\[
U \left( \frac{T_{i,j} - T_{i-1,j}}{\Delta X} \right) + V \left( \frac{T_{i,j+1} - T_{i,j}}{\Delta R} \right) \quad \text{for } U > 0 \text{ and } V < 0,
\]

\[
U \left( \frac{T_{i+1,j} - T_{i,j}}{\Delta X} \right) + V \left( \frac{T_{i,j+1} - T_{i,j}}{\Delta R} \right) \quad \text{for } U < 0 \text{ and } V < 0,
\]

and

\[
U \left( \frac{T_{i,j} - T_{i,j}}{\Delta X} \right) + V \left( \frac{T_{i,j} - T_{i-1,j}}{\Delta R} \right) \quad \text{for } U < 0 \text{ and } V > 0.
\]

Eq. (3.10) together with these four different forms of convection terms are applicable for internal nodes.

For those nodes along system boundaries, a modification to Eq. (2.8) must be made. At the centerline or the line of symmetry of the system, the radial velocity approaches zero and the temperature gradient can be assumed zero. Because of these conditions and applying L'Hospital's rule to \(\frac{1}{R} \frac{\partial T}{\partial R}\), Eq. (2.8) becomes as follows:
\[
\begin{align*}
U \frac{\partial T}{\partial X} &= \kappa \left( 2 \frac{\partial^2 T}{\partial R^2} + \frac{\partial^2 T}{\partial X^2} \right) \quad \text{R=0}
\end{align*}
\]

and its finite difference form is,

\[
U \frac{\partial T}{\partial X} = \kappa \left( \frac{2T_{i+1,j} - 4T_{i,j} + 2T_{i-1,j}}{(\Delta R)^2} + \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{(\Delta X)^2} \right) \tag{3.11}
\]

where

\[
U \frac{\partial T}{\partial X} = U \left( \frac{T_{i,j} - T_{i-1,j}}{\Delta X} \right) \quad \text{for } U \geq 0
\]

and

\[
U \frac{\partial T}{\partial X} = U \left( \frac{T_{i+1,j} - T_{i,j}}{\Delta X} \right) \quad \text{for } U < 0.
\]

In the actual use of the above equations, \(T_{i,j+1} = T_{i,j-1}\) is assumed because of the symmetry of the temperature profile about the centerline of the system.

For insulated boundaries, the following conditions apply:

\(U = V = 0\) (no slip condition), \(\partial T/\partial X = 0\) (when the wall perpendicular to X-axis is insulated), and \(\partial T/\partial R = 0\) (when the wall perpendicular to R-axis is insulated). Applying these conditions to the energy equation, Eq. (2.8) becomes:

\[
\frac{\partial^2 T}{\partial R^2} + \frac{\partial^2 T}{\partial X^2} = 0 \tag{3.12}
\]
for the wall normal to R-axis, and

\[
\frac{\partial^2 T}{\partial R^2} + \frac{1}{R} \frac{\partial T}{\partial R} + \frac{\partial^2 T}{\partial X^2} = 0
\]  

(3.13)

for the wall normal to X-axis. These in the finite difference form are, respectively:

\[
\frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta R)^2} + \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta X)^2} = 0
\]  

(3.14)

and

\[
\frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta R)^2} + \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{2R\Delta R} + \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta X)^2} = 0
\]  

(3.15)

where \(T_{i,j+1} = T_{i,j-1}\) for Eq. (3.14) and \(T_{i+1,j} = T_{i-1,j}\) for Eq. (3.15) can be assumed.

Nodes located at corners require different forms of finite difference expressions, however, these can be derived easily from the last two equations with proper assumptions.

### 3.2.2 Vorticity Equation

The finite difference form of the vorticity equation is derived from Eq. (3.3). As was done with the energy equation, those terms with velocity coefficients take the backward difference form
when the velocity is positive or equal to zero, and take the forward form when it is negative. Thus, for the internal nodes the finite difference form of Eq. (3.3) can be written as:

\[
U \frac{\partial \bar{u}}{\partial X} + V \frac{\partial \bar{u}}{\partial R} = \frac{g R_0}{R} \left( \frac{T_{i,j+1} - T_{i,j-1}}{2 \Delta R} \right) \\
+ \sqrt{ \left( \frac{\bar{u}_{i-1,j} - 2 \bar{u}_{i,j} + \bar{u}_{i+1,j}}{(\Delta X)^2} \right) + \left( \frac{\bar{u}_{i,j+1} - \bar{u}_{i,j-1}}{(\Delta R)^2} \right) + \left( \frac{\bar{u}_{i,j+1} - \bar{u}_{i,j-1}}{2 \Delta R} \right) + \left( \frac{\bar{u}_{i,j} - \bar{u}_{i,j+1}}{(\Delta R)^2} \right)}
\]

where \((U \frac{\partial \bar{u}}{\partial X} + V \frac{\partial \bar{u}}{\partial R})\) takes one of the following four forms depending on the direction of the velocity:

- For \(U > 0\) and \(V > 0\),
  \[ U \left( \frac{\bar{u}_{i,j} - \bar{u}_{i-1,j}}{\Delta X} \right) + V \left( \frac{\bar{u}_{i,j} - \bar{u}_{i,j-1}}{\Delta R} \right) \]

- For \(U > 0\) and \(V < 0\),
  \[ U \left( \frac{\bar{u}_{i,j} - \bar{u}_{i-1,j}}{\Delta X} \right) + V \left( \frac{\bar{u}_{i,j+1} - \bar{u}_{i,j}}{\Delta R} \right) \]

- For \(U < 0\) and \(V < 0\),
  \[ U \left( \frac{\bar{u}_{i,j+1} - \bar{u}_{i,j}}{\Delta X} \right) + V \left( \frac{\bar{u}_{i,j+1} - \bar{u}_{i,j}}{\Delta R} \right) \]

and

- For \(U < 0\) and \(V > 0\),
  \[ U \left( \frac{\bar{u}_{i,j+1} - \bar{u}_{i,j}}{\Delta X} \right) + V \left( \frac{\bar{u}_{i,j} - \bar{u}_{i,j-1}}{\Delta R} \right) \]

For the centerline (or the line of symmetry), a limit is taken on Eq. (3.3) as the radius, \(R\), approaches zero, and its result is:
This can be expressed in finite difference form as follows:

\[
\frac{\partial U}{\partial x} = \frac{2}{\partial R^2} + \nu \left( \frac{\partial^2 U}{\partial x^2} + 4 \frac{\partial^2 R}{\partial R^2} \right) \tag{3.17}
\]

where

\[
U \frac{\partial R}{\partial x} = U \left( \frac{\partial R}{\partial x} \right) \quad \text{for} \ U \geq 0,
\]

and

\[
U \frac{\partial R}{\partial x} = U \left( \frac{\partial R}{\partial x} \right) \quad \text{for} \ U < 0.
\]

For the top \((X = L)\) and bottom \((X = 0)\) boundaries at the centerline \((R = 0)\), Eq. (3.17) is used with the following conditions:

\[U(L,0) = U(0,0) = 0, \ T(L,0) = \text{constant}, \ T(0,0) = \text{constant}, \right.
\[\partial T(L,0)/\partial R = 0, \ \partial T(0,0)/\partial R = 0, \text{and} \ \partial^2 T(L,0)/\partial R = \partial^2 T(0,0)/\partial R = 0.
\]

Thus, we have:

\[\left( \frac{\partial^2 U}{\partial x^2} + 4 \frac{\partial^2 U}{\partial R^2} = 0 \right) \quad \text{X=0 or L} \tag{3.19}\]

Numerical expressions for \(\frac{\partial^2 U}{\partial x^2}\) and \(\frac{\partial^2 U}{\partial R^2}\) are:

\[
\left[ \Xi_{i+3} = \Xi_i + 3\Delta X \left( \frac{\partial \Xi_i}{\partial x} + \frac{(3\Delta X)^2}{2} \frac{\partial^2 \Xi_i}{\partial x^2} + \frac{(3\Delta X)^3}{3!} \frac{\partial^3 \Xi_i}{\partial x^3} + \cdots \right) \right] \tag{-3}\]

and the sum of these is:

\[-5\Xi_{i+1} + 4\Xi_{i+2} - \Xi_{i+3} = -2\Xi_i + (\Delta X)^2 \frac{\partial^2 \Xi_i}{\partial x^2} + 0 \left[ (\Delta X)^3 \right] \]
\[
\frac{\partial^2 \Xi}{\partial x^2} \bigg|_{X=0} = \frac{-5\Xi_{i+1,j} + 4\Xi_{i+2,j} - \Xi_{i+3,j} + 2\Xi_{i,j}}{(\Delta x)^2} \tag{3.20}
\]

\[
\frac{\partial^2 \Xi}{\partial x^2} \bigg|_{X=L} = \frac{-5\Xi_{i-1,j} + 4\Xi_{i-2,j} - \Xi_{i-3,j} + 2\Xi_{i,j}}{(\Delta x)^2} \tag{3.21}
\]

and

\[
\frac{\partial^2 \Xi}{\partial R^2} \bigg|_{R=0} = \frac{2(\Xi_{i,j+1} - \Xi_{i,j})}{(\Delta R)^2} \tag{3.22}
\]

Eq. (3.20) and (3.21) are derived by expanding Taylor series around node \((i,j)\) at three consecutive nodes; \((i+1,j)\), \((i+2,j)\), and \((i+3,j)\), generating three Taylor series expressions about \((i,j)\), and each of these is multiplied by a factor such that upon summing the three expressions the second- and third-order derivative terms drop out. An example of this procedure is shown below.

\[
\begin{align*}
\Xi_{i+1} &= \Xi_i + \Delta x \frac{\partial \Xi_i}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 \Xi_i}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 \Xi_i}{\partial x^3} + \cdots \tag{15} \\
\Xi_{i+2} &= \Xi_i + 2\Delta x \frac{\partial \Xi_i}{\partial x} + \frac{(2\Delta x)^2}{2!} \frac{\partial^2 \Xi_i}{\partial x^2} + \frac{(2\Delta x)^3}{3!} \frac{\partial^3 \Xi_i}{\partial x^3} + \cdots \tag{12} \\
\Xi_{i+3} &= \Xi_i + 3\Delta x \frac{\partial \Xi_i}{\partial x} + \frac{(3\Delta x)^2}{2!} \frac{\partial^2 \Xi_i}{\partial x^2} + \frac{(3\Delta x)^3}{3!} \frac{\partial^3 \Xi_i}{\partial x^3} + \cdots \tag{13}
\end{align*}
\]

and the sum of these is:

\[-5\Xi_{i+1} + 4\Xi_{i+2} - \Xi_{i+3} = -2\Xi_i + (\Delta x)^2 \frac{\partial^2 \Xi_i}{\partial x^2} + 0 [(\Delta x)^3] \]
or
\[
\frac{\partial^2 \xi_i}{\partial x^2} = \frac{-5\xi_{i+1} + 4\xi_{i+2} - \xi_{i+3} + 2\xi_i}{(\Delta x)^2}
\]

which is Eq. (3.20). Eq. (3.22) is obtained from the ordinary central difference formula with \(\xi_{i,j+1} = \xi_{i,j-1}\) is applied.

The other option for deriving a boundary condition for the vorticity at \((X=L, R=0)\) and \((X=0, R=0)\) is to use Eq. (3.1). The reduction of Eq. (3.1) for these two corner boundaries leads us to somewhat complicated situations due to the limiting values of \(\partial U/\partial R\), \(\partial V/\partial X\), and \(1/R\). Under the presumption that velocity derivatives become zero as \(R\) and \(X\) approach these two boundary points and, further, their second derivatives with respect to \(R\) are also zero at these two points, the reasonable value one can obtain from Eq. (3.1) for \(\xi(L,0)\) and \(\xi(0,0)\) is zero. This method has been successfully applied by Ref.'s [24, 28, and 29], however, this optional boundary value for the vorticity at these particular corners will be further discussed in Sec. 3.3.6.

For the solid boundaries we examine Eq. (3.5):
\[
\frac{\partial^2 \xi}{\partial R^2} = -\frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial R^2} + \frac{\partial^2 \psi}{\partial X^2}.
\]

Evaluating the right hand side of this equation, we find that the first term is zero since \(\psi = \text{constant at solid boundaries} \) \((X=0 \text{ and } X=L)\). To evaluate the second term, the definition of the stream function, \(U \equiv (1/R)(\partial \psi/\partial R)\), is once differentiated with
respect to \( R \) and \( \partial \psi / \partial R = 0 \) is applied. Thus, it yields

\[
\frac{\partial U}{\partial R} = \left( \frac{1}{R} \right) \left( \frac{\partial^2 \psi}{\partial R^2} \right)
\]  

(3.23)

However, the axial velocity, \( U \), becomes zero at \( X=0 \) and \( X=L \), thus we can safely say \( \partial U / \partial R = 0 \) (this reasoning is illustrated in Fig. 3.1). This, with Eq. (3.23), implies that \( \partial^2 \psi / \partial R^2 \) is also zero at the solid boundaries. The last term, \( \partial^2 \psi / \partial X^2 \), in Eq. (3.5) is not explainable at this point, and thus, it remains in the equation without change. Therefore, Eq. (3.5) is reduced to follows:

\[
\bar{\Xi} = \frac{1}{R^2} \frac{\partial^2 \psi}{\partial X^2}
\]  

(3.24)

which is valid at the solid boundaries, \( X=0 \) and \( X=L \). By applying a similar procedure as stipulated above, the vorticity boundary condition at \( R=a \) (also a solid boundary) can be reduced from Eq. (3.5) to

\[
\bar{\Xi} = \frac{1}{a^2} \frac{\partial^2 \psi}{\partial R^2}
\]  

(3.25)

These solid-boundary conditions for the vorticity are expressed in difference form as

\[
\bar{\Xi}_{i,j} = \frac{1}{R^2} \left( \frac{8\psi_{i-1,j} - \psi_{i-2,j}}{2(\Delta X)^2} \right) + \text{terms involving } R
\]  

(3.26)
Figure 3.1 The axial velocity gradient illustration; the $\frac{\partial U}{\partial R}$ approaches zero as $X$ approaches $X=L$. 
for the top boundary \((X=L)\),

\[
\Xi_{i,j} = \frac{1}{a^2} \left( \frac{8\psi_{i+1,j} - \psi_{i+2,j}}{2(\Delta X)^2} \right)
\]  

(3.27)

for the bottom boundary \((X=0)\), and

\[
\Xi_{i,j} = \frac{1}{a^2} \left( \frac{8\psi_{i,j-2} - \psi_{i,j-1}}{2(\Delta R)^2} \right)
\]  

(3.28)

for the vertical wall boundary \((R=a)\). Development of these expressions is illustrated by the following example derivation (see also Fig. 3.2):

\[
\psi_2 = \psi_1 + \Delta X \frac{\partial \psi_1}{\partial X} + \frac{1}{2!} (\Delta X)^2 \frac{\partial^2 \psi_1}{\partial X^2} + \frac{1}{3!} (\Delta X)^3 \frac{\partial^3 \psi_1}{\partial X^3} + \cdots
\]  

(8)

\[
\psi_3 = \psi_1 + 2\Delta X \frac{\partial \psi_1}{\partial X} + \frac{1}{2!} (2\Delta X)^2 \frac{\partial^2 \psi_1}{\partial X^2} + \frac{1}{3!} (2\Delta X)^3 \frac{\partial^3 \psi_1}{\partial X^3} + \cdots
\]  

(-1)

\[
8\psi_2 - \psi_3 = 7\psi_1 + 6(\Delta X) \frac{\partial \psi_1}{\partial X} + 2(\Delta X)^2 \frac{\partial^2 \psi_1}{\partial X^2} + 0 [(\Delta X)^4]
\]

Since \(\psi_1=0\) (assigned value) and \(\partial \psi_1/\partial X=0\) (by the symmetry of stream function with respect to the solid boundary), the above expression reduces to

\[
\frac{\partial^2 \psi_1}{\partial X^2} = \frac{8\psi_{i+1} - \psi_{i+2}}{2(\Delta X)^2}
\]  

(3.29)

For the nodes located at corners as shown in Fig. 3.3-(a), -(b),
Figure 3.2 Nodal structure used for derivation of Eq. 3.29.

Figure 3.3 Nodal structure used for derivation of Eqs. 3.30 and 3.31.
and -(c), the following numerical expressions are used:

$$E_{i,j} = 0$$  \hspace{1cm} (3.30)

for the nodes shown in Fig. 3.3-(a) and -(b), and

$$E_{i,j} = \frac{1}{4R^2} \left( \frac{8\Psi_{i-1,j} - \Psi_{i-2,j} + 8\Psi_{i,j-1} - \Psi_{i,j-2}}{(\Delta X)^2} \right)$$  \hspace{1cm} (3.31)

for the nodes shown in Fig. 3.3-(c). The reason behind Eq. (3.30) is that, since Eqs. (3.26), (3.27), or (3.28) are applied for these corner nodes, $\Psi$-terms become zero since they are zero at solid walls. Eq. (3.31) is an average of Eqs. (3.26) and (3.28).

3.2.3 Vorticity and Stream Function Relation

Eq. (3.5) expresses the relationship between the vorticity and the stream function within the system. This equation is used to calculate stream function values at each node, provided that the vorticity values for the all nodes have been previously calculated.

The conversion of Eq. (3.5) is rather straightforward. The second and third terms on the right hand side of this equation are expressed using the second order central difference equation, Eq. (3.7), and the first term by a first order central difference formulation, Eq. (3.8). The converted equation takes the following form:
\[ \psi_{i,j+1} - 2\psi_{i,j} + \psi_{i,j-1} + \psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j} \]

\[ \psi_{i,j} = \frac{\psi_{i,j-1} - \psi_{i,j+1} + \psi_{i,j-1} + \psi_{i,j+1} - \psi_{i,j+2}}{12R(\Delta R)} \]

(3.33)

and

\[ \psi_{i,j} = \frac{\psi_{i+1,j} - 8\psi_{i,j} + \psi_{i-1,j} - \psi_{i-2,j}}{12R(\Delta X)} \]

(3.34)

Since this equation is used for calculating stream function values at each node, it is, in actual use, rearranged to give \( \psi_{i,j} \).

The boundary values for \( \psi_{i,j} \) are set to zero which indicates that the boundaries involved here are all solid or symmetric types.

### 3.2.4 Stream Function Equations

Eq. (3.4) which is used to calculate two-component velocities at each node, is numerically expressed here.

For internal nodes, a four-point Taylor series expansion about the node \((i,j)\), (see Fig. 3.4) is used to arrive at the following numerical expressions for axial and radial velocities, respectively:

For nodes adjacent to boundaries, three-point Taylor series expansions are made about node \((i,j)\) and the expressions obtained are:
a) For axial velocity

b) For radial velocity

Figure 3.4 Internal node arrangements for the velocity difference-equations.
\[ U_{i,j} = \frac{\psi_{i,j-2} - 6\psi_{i,j-1} + 3\psi_{i,j} + 2\psi_{i,j+1}}{6R(\Delta R)} \tag{3.35} \]
\[ U_{i,j} = \frac{-2\psi_{i,j-1} - 3\psi_{i,j} + 6\psi_{i,j+1} - \psi_{i,j+2}}{6R(\Delta R)} \tag{3.36} \]
\[ V_{i,j} = \frac{-\psi_{i-2,j} + 6\psi_{i-1,j} - 3\psi_{i,j} - 2\psi_{i+1,j}}{6R(\Delta X)} \tag{3.37} \]

and
\[ V_{i,j} = \frac{2\psi_{i-1,j} + 3\psi_{i,j} - 6\psi_{i+1,j} + \psi_{i+2,j}}{6R(\Delta X)} \tag{3.38} \]

Eq. (3.35) is used at the nodes adjacent to the vertical wall and Eq. (3.36) at nodes adjacent to the center line. Eqs. (3.37) and (3.38) are used at nodes adjacent to the top and the bottom walls, respectively (see Fig. 3.5).

The method used in deriving the above six equations are very similar to those applied in obtaining Eqs. (3.20) and (3.21).

Due to the no-slip condition, both velocity components become zero at the solid boundaries. At the centerline the axial velocity can be calculated using Eq. (3.33) with the conditions, \( \psi_{i,j-1} = \psi_{i,j+1} \) and \( \psi_{i,j-2} = \psi_{i,j+2} \), due to the symmetrical nature of the stream lines. The radial velocity at the centerline is assumed zero which is also due to the symmetry of the stream lines about the centerline.

3.2.5 Average Heat Transfer Coefficient

The derivation of the average heat transfer coefficient has
Figure 3.5 Node adjacent to boundaries for velocity calculation.
been discussed earlier in Sec. 2.2.3, where Eq. (2.43) was derived, expressing the average Nusselt number, \( \text{Nu}_a \). In the analytical part of this thesis, in Eq. (2.43), the cylinder wall temperature was the average of the top and bottom temperatures, as given by Eq. (2.41). However, in numerical work the average wall temperature can be easily calculated even though the wall temperature varies non-linearly. Thus, \( T_{w, \text{ave}} \) is not necessarily the mean of the top and bottom wall temperatures.

For this reason, Eq. (2.43) in Sec. 2.2.3 is written in the following manner:

\[
\text{Nu}_a = a \int_0^L \frac{\partial T_w}{\partial R \text{w}} \frac{dX}{T_{w, \text{ave}} - T_1} \quad (3.39)
\]

where \( \frac{\partial T_w}{\partial R \text{w}} \) is the slope of temperature variation in the radial direction at the cylinder wall, \( T_{w, \text{ave}} \) is the mean wall temperature, and \( T_1 \) is the orifice temperature (see Fig. 1.1) which was established as a boundary condition in the theoretical solution, but, here, it is calculated prior to the \( \text{Nu}_a \) computation.

The integration in Eq. (3.39) is done by Simpson's one-third rule which requires an odd number of nodes; this result in numerical form is as follows:

\[
\int_0^L \frac{\partial T_w}{\partial R \text{w}} \frac{\Delta X}{T_{w, \text{ave}} - T_1} dx = \frac{\Delta X}{3(T_{w, \text{ave}} - T_1)} \left[ \frac{\partial T_i, j}{\partial R} + 4 \frac{\partial T_{i+1, j}}{\partial R} + \frac{\partial T_{i+2, j}}{\partial R} + \cdots + \frac{\partial T_{i+m-1, j}}{\partial R} + \frac{\partial T_{i+m, j}}{\partial R} \right] \quad (3.40)
\]
where \( \frac{\partial T}{\partial R \mid i,j} \) are approximated by the following:

\[
\frac{\partial T}{\partial R \mid i,j} = \frac{11T_{i,j} - 18T_{i,j-1} + 9T_{i,j-2} - 2T_{i,j-3}}{6(\Delta R)}
\]  

Eq. (3.41) is the result of the four-node expansion, and the nodal structure for the above two equations is described in Fig. 3.6.

Eq. (3.41) approximates the temperature gradient at the wall in the radial direction, however, it requires that the four nodes be located very close to the wall. This means that, for a good approximation, the radius need be divided into at least 12 to 16 increments depending on the temperature profile. If, in case this many nodes cannot be accommodated, the following equation in place of Eq. (3.41) may provide a better approximation of the temperature gradient at the wall:

\[
\frac{\partial T}{\partial R \mid i,j} = \frac{T_{i,j} - T_{i,j-1}}{\Delta R}
\]  

which is simply the backward difference equation at the cylinder wall.

Eqs. (3.39) through (3.41) are used in a computation in the following order: 1) first Eq. (3.41) or (3.41a) is used to compute \( \frac{\partial T}{\partial R \mid i,j} \) at each level of \( i \) with values of \( T_{i,j} \) available from the three conservation equations, 2) \( \frac{\partial T}{\partial R \mid i,j} \) values are substituted into Eq. (3.40), and finally 3) the Nu_a value is computed by Eq. (3.39).
Figure 3.6 Nodal structure used for Eqs. 3.40, 3.41, and 3.41a.
If a local heat transfer coefficient, \( h(x) \), is desired at each node along the wall the following expression can be used:

\[
h(x) = k \frac{\frac{\partial T}{\partial R}}{\left( T_{w,ave} - T_1 \right)} \frac{\partial T}{\partial R}
\]

where \( \frac{\partial T}{\partial R} \) is again approximated by Eq. (3.41). The mean heat transfer coefficient, \( \overline{h} \), is simply \( \overline{h} = \frac{N_{u_a} k}{a} \), after having \( N_{u_a} \) calculated.

### 3.3 Programing Consideration

The finite difference equations discussed in Sec. 3.2 form \( n \) linear equations for \( n \) unknowns where \( n \) is the number of nodes.

For this type of problem, there are basically two numerical solution methods: 1) a matrix-inversion method (e.g. Gauss-Jordan elimination), and 2) an iterative method (e.g. Gauss-Seidel iteration). Depending on the size of program, the matrix-inversion method generally requires a computer with a large memory capacity, however, it may take much shorter computation time than the iteration method. On the other hand, the iteration method may require less memory capacity, but requires a large computation time. The matrix-inversion method involves more complex programing, but can yield a more accurate computed result than the other. A relatively simple computer program is associated with the iteration method, from which one may obtain some results on each run although it may be not so accurate as that of the matrix-inversion method.

After considering the above factors associated with the two methods, the author chose to apply Gauss-Seidel method (iterative
method) for this problem. The reasons for this choice were:
a) availability of PDP-11/10 computer in the Department of
Mechanical Engineering at Oregon State University with a rather
limited memory capacity, b) modification in the number of nodes or
the shape of the domain to be analyzed by the computer program may
be easily accomplished and c) each iteration step can be approxi-
mated as a time change of the system such that transient results can
be obtained, even though the program is written for the case of a
steady-state problem.

3.3.1 Gauss-Seidel Iteration Method

The first step in applying the Gauss-Seidel Method to this
problem was to modify the numerical equations which were developed
in Sec. 3.2 so that the variables of interest were equated to the
rest of the variables and constants; that is to re-write each of
the equations developed in Sec. 3.2 to the following form (p. 300
of Ref. [35]):

\[
X_{i,k} = \sum_{j=1}^{i-1} a_{i,j}X_{j,k} + \sum_{j=i+1}^{n} a_{i,j}X_{j,k-1} + v_i
\]

(3.42)

for \(1 \leq i \leq n\) and \(1 \leq k\). In this equation \(a_i\)'s are the coefficients
and \(v_i\) are the constants. When \(i=1\), \(\sum_{j=1}^{i-1} a_{i,j}X_{j,k}\) is inter-
preted as zero and when \(i = n\), \(\sum_{j=i+1}^{n} a_{i,j}X_{j,k-1}\) likewise inter-
preted as zero.

All numerical equations in this form are expressed in Appendix
A, also each equation is explained with its source, applicable nodes,
and some restrictions.
The basic idea in the Gauss-Seidel iterative method is that, at each node, the variable of interest is calculated using values of that variable at adjoining nodes, then this newly calculated value replaces the previous value at this node in all subsequent calculations. This is done successively. Because of this feature, Gauss-Seidel iterative method is very often called the successive displacement method as opposed to the simultaneous displacement method of Jacobi's iteration. This procedure is repeated for all nodes until a satisfactory convergence is met. A detailed description of this method can be found in Refs. [35,36,39,40].

A sufficient condition for the convergence of this method is that the coefficient matrix is strictly (row) diagonally dominant or is positive definite [36,35]. The coefficient matrix of this problem is the matrix whose elements consist of coefficients, a's, in Eq. (3.42), or the coefficients, b's, when Eq. (3.42) is applied to n node and is re-written in the following form[41]:

\[
\begin{align*}
\mathbf{b}_{1,1} \mathbf{x}_{1,1} + \mathbf{b}_{1,2} \mathbf{x}_{1,2} + \cdots & = \mathbf{c}_1 \\
\mathbf{b}_{2,1} \mathbf{x}_{2,1} + \mathbf{b}_{2,2} \mathbf{x}_{2,2} + \cdots & = \mathbf{c}_2 \\
\vdots & \\
\mathbf{b}_{n,1} \mathbf{x}_{n,1} + \mathbf{b}_{n,2} \mathbf{x}_{n,2} + \cdots & = \mathbf{c}_n
\end{align*}
\]

Thus, in order to satisfy the above convergence condition for this problem, the first row elements, for example, must satisfy the following condition:
\[ b_{1,1} > b_{1,2}, b_{1,3}, b_{1,4} \quad \text{------ or} \quad b_{1,n} \]

and for the second row,

\[ b_{2,2} > b_{2,1}, b_{2,3}, b_{2,4} \quad \text{------ or} \quad b_{2,n} \]

and so on. It is also important that no element in the principal diagonal of the above matrix have a value of zero.

Torrance [26] and Barakat [24] state that the following inequality conditions ensure the stability of their system:

\[
\begin{align*}
\Delta X &\leq \frac{8\kappa}{|U|}, \quad \Delta R \leq \frac{8\kappa}{|V|} & \text{Ref. [26]} \\
\Delta X &\leq \frac{2\kappa}{|U|}, \quad \Delta R \leq \frac{2\kappa}{|V|} & \text{Ref. [21]}
\end{align*}
\]

Both Refs. [21] and [26] applied the above inequalities to a transient case of natural convection in cylindrical enclosures.

The only difference between these two sets of conditions is that in Ref. [21] the result was obtained empirically and the latter set was derived by examining central difference equations for non-linear terms.

### 3.3.2 Mesh Configuration and Calculation Sequence

The mesh configuration used for this numerical problem is shown in Fig. 3.7. Each node is specified by \((M,N)\) where \(M\) and \(N\) specify axial and radial directions, respectively. The reservoir
Figure 3.7 Mesh configuration.
section is considered to be $1 \leq M < M_X$ and $1 \leq N < N_R$, while the fluid column (or cylinder) is defined by $M_X < M < M_{XX}$ and $1 \leq N < N_R$. The total number of nodes used is, thus, $(M_{XX})(N_R) + (M_X)(N_R - N_R)$. The magnitudes of $M_X$, $M_{XX}$, $N_R$, and $N_R$ must be specified by the user before each run of the program. The limits of $M_{XX}$ and $N_R$ that one can specify depend on two factors: 1) the amount of computation time that the user can afford, and 2) the storage capacity of the machine being used. In the present numerical work values of $M_{XX}$ and $N_R$ were limited by storage capacity, and it was found that the largest $(M_{XX}, N_R)$ that PDP-11/10 can tolerate was $(35, 10)$. If a larger than $35 \times 10$ node size were required, one might either shorten the program to create extra storage area, or use a larger machine.

The computation sequence which was applied over the aforementioned nodal system is as follows (see Fig. 3.8 for the program flow chart and Appendix B for the Fortran coded program):

1) Boundary conditions and necessary constants are specified, and all nodes are given initial values.

2) The temperature calculation is performed for all nodes using the most recent values of $T, U, V$.

3) The vorticity calculation is performed for all nodes using the temperature values from step 2).

4) Stream function values are approximated at each node using the vorticity values calculated at the last step (an acceleration method is applied at this step).

5) The axial and radial velocities are approximated at each node using the stream function values calculated in the last step.
Figure 3.8 Flow chart of the program NATCON.
6) The error in each variable is calculated by comparing the previously calculated value and the current value at one specified node - currently which is at node (MX, 3) representing the orifice section, and if the error of any one of the variables exceeds the specified maximum error, ERR, the program returns to step (2).

7) If either the convergence check in Step (6) is acceptable, or the specified number of iterations, ILOOP, have been carried out, program execution stops.

Each step of the above computation sequence is guided by the driving program (main program, NATCON). Steps (2) through (4) are carried out in SUBROUTINE EQNS, and step (5) is in SUBROUTINE VELO. The acceleration scheme for fast convergence applied at step (4) is that of Successive Over Relaxation, SOR.

3.3.3 Nusselt Number Calculation

After the variables were calculated by the program NATCON as described in the previous section, one can use the program NUSSLT (see Appendix B for the Fortran coded program of NUSSLT) to compute the local heat transfer coefficients, H(I); the average heat transfer coefficient, HAV; and the average Nusselt number based on the cylinder radius, ANU.

The numerical formulation for this program was explained in Sec. 3.2.5. As described in Sec. 3.2.5, since the Simpson's rule is used for the integration scheme, one must use an odd number of nodes (which must be typed in by the user) along the cylinder wall. Other necessary information to execute this program is explained
in the comment section of the program NUSSLT.

This program was originally written as a sub-program within NATCON. However, as the number of nodes increased in NATCON, the computer was unable to accept the program because of its limited storage capacity. The sub-program was then separated from NATCON and made into an independent program, NUSSLT. The storage problem was thus alleviated, however, the user must now transfer necessary information from the output of NATCON to the input of NUSSLT manually, and it must be executed separately.

3.3.4 Validation of Numerical Method

In order to investigate the validity of this particular numerical method, the numerical solution was compared with that of Ref. [26]. In Ref. [26], several numerical procedures suited for natural convection were presented and their results were compared with experimental results.

For comparison purposes, the numerical program was run using identical boundary conditions to those applied by Ref. [26].

The example problem for this purpose was natural convection within a cylindrical enclosure with a circular heat source located at the center of the bottom boundary. Half of a vertically-cut cross section of the cylinder was divided into an equal-size grid creating total of 121 nodes. A unit temperature was assigned to the bottom center node for the heat source, while the rest of the boundary nodes were assigned zero temperature. Thus, natural convection was induced by the temperature (or potential) difference between the heat-source and that of the rest of the boundary (see
Fig. 3.9). When the air was used as a medium, established condition represents \( \text{Gr} = \alpha g \beta (T_1 - T_0) a^3 / \nu^2 \approx 1 \times 10^5 \).

Solution of the problem described above was obtained after 91 iterations. Then the steady-state streamline and temperature fields were compared with those of Ref. [26] as shown in Figs. 3.10 and 3.11. As seen in these two plots, the results of the current numerical scheme yielded a solution almost identical to those of Torrance. The most obvious difference is in the general shape of the isotherms.

In discussing different methods, Torrence remarked that the solution of Method I turned out to be the least accurate among the four methods he examined. The difference between isotherms of Method I compared with those from other methods including the current work was partially due to the treatment of the vorticity boundary condition for the center line (or line of symmetry) nodes. Method I of Torrence simply assigned zero vorticity to these nodes, however, more precise vorticity values were applied in the other methods, as given by Eq. (3.18).

3.3.5 Effects of Reservoir Boundary Condition and Size

Although the main objective of this work was to investigate natural convection within a circular cylinder standing above a cylindrical reservoir, the effect of the reservoir boundary condition and size compared with that of the column of fluid within the cylinder must not be ignored. Thus, in order to specify a reservoir whose influence on the fluid column situated above it is independent of its boundary conditions and relative
Figure 3.9 The configuration of the problem used by Ref. [26] where \( a = b \), \( c/a = 0.1 \), and \( T_1 > T_0 \).
Figure 3.10 Isotherms of (a) Ref. [26] and (b) the current study.
Figure 3.11 Streamlines of (a) Ref. [26] and (b) the current study.
size, three kinds of temperature boundary conditions were compared. Next, the dimensions of the reservoir having no effect on behavior within the cylinder was determined. In the course of this evaluation, and efficiency of the numerical program was also considered.

For the evaluation of temperature boundary conditions in the reservoir, the following three cases were examined:

Case I  - All boundaries at uniform and constant temperatures.
Case II - The vertical wall insulated, the rest same as above.
Case III - The top boundary at uniform and constant temperature, the rest insulated.

Isotherms and streamlines resulting for the above three cases were obtained using the current numerical program and are plotted in Figs. 3.12 and 3.13. As seen in these figures, the first two cases yielded similar trends for both isotherms and streamlines within the test section (or the top cylinder), Case III being least like the rest. The reason for this was that the two insulated boundaries of Case III likely generated the most complex flow pattern as seen in Fig. 3.13. Case II required the least number of iterations to reach steady state, indicating it to be the most stable boundary condition among the three cases. For this reason, the boundary condition of Case II was chosen for the all subsequent runs of the current numerical program. The program, NATCON, given in App. B-1, is still provided with these three options for reservoir boundary conditions.

To evaluate the effect of reservoir size on fluid behavior in the cylinder, the first case tried was to find the correlation between the radius and length of the reservoir to those dimensions
Figure 3.12 Comparison of the three temperature boundary conditions.
Figure 3.13 Comparison of the three temperature boundary conditions of the reservoir (see Fig. 3.12)
of the cylinder for a constant reservoir wall temperature (see the related variables in the diagram described at the top portion of Fig. 3.14). The radius-ratio, $a_{RES}/a$, and the length-ratio, $L/L_{RES}$, were varied from 1.33 to 2.67 and from 1.0 to 3.5, respectively, while the reservoir Grashof number, $Gr_{RES}$, was maintained at the constant value of 1800. (The reservoir Grashof number is indicative of the reservoir wall temperature relative to the cylinder boundary temperature.) Results of these runs are shown in the three curves plotted in the bottom portion of Fig. 3.14. The indication is that the orifice temperature represented by $Gr_{RES}$ is no longer influenced by the change in reservoir size when $L/L_{RES}$ is 1.0 or greater.

For a constant $L/L_{RES}$ a change in $a_{RES}/a$ did affect the orifice temperature slightly.

The next case examined was to determine if the same result would be obtained with the reservoir wall temperature increased at $a_{RES} = 2a$. Results of these runs are described by the remaining curves in Fig. 3.14, indicated by $Gr_{RES} = 11000$, $33000$, and $88000$. These three curves indicate that the orifice temperature becomes insensitive to the change of $L/L_{RES}$ when $L/L_{RES}$ is larger or equal to 1.0.

Therefore, when the $L/L_{RES} > 1$ and the cylinder wall is assigned a uniform and constant temperature, one can expect a very small effect of reservoir size for a fixed reservoir wall temperature.

The last test of reservoir-size effects was to examine the situation where the cylinder-wall temperature increased linearly from the cylinder-top temperature of $T_0$ to the reservoir wall
Figure 3.14 Effect of L/L_{RES} at Ra_{A}=0.
temperature of $T_{RES}$ as illustrated by the diagram in Fig. 3.15. Again, the radius-ratio, $a_{RES}/a$, was held constant at a value of 2.0. The new variable considered in this case was the temperature-gradient parameter, $A$, which is included in the non-dimensional parameter, $Ra_A$. The results of this test are plotted in Fig. 3.15. This plot indicates the general variation of $Gr_{ORF}$ with $L/L_{RES}$ to be very similar to the case of constant cylinder-wall temperature. Also, values of $Gr_{ORF}$ each $Gr_{RES}$ approach zero indicating that the orifice temperature, $T_1$, is approaching the cylinder-top temperature, $T_0$. The major difference between this case and the previous one was that a cylinder with a temperature gradient along its wall required a much large value of $L/L_{RES}$ for $Gr_{ORF}$ to reach its asymptotic value. Also, for this case the orifice velocity never reached a constant value. In the previous case where the cylinder wall was at the constant temperature, the orifice velocity reached a constant value before $Gr_{ORF}$ did.

Another important fact shown in Fig. 3.15 is that when $Gr_{RES} = 11,000$ was tried for several $L/L_{RES}$ values, the numerical solution failed to converge for $Gr_{ORF}$ larger than approximately 8000 and $L/L_{RES}$ larger than 1.0. Studying every 100th iteration from the computer indicated that two similar, but not identical, flow configurations to exist after a number of iterations. Two questions come to mind at this point; 1) Is this phenomenon due to a numerically caused instability within the computer program? or 2) In actuality does this situation exist and the numerical program simply simulated it? This situation will be discussed further in the latter part of this chapter.
Figure 3.15 Effect of $L/L_{RES}$ at $Ra_A \neq 0$. 

\[ Gr_{RES} = \frac{\alpha_a^3 (T_{RES} - T_0)}{\nu k} \]

\[ Gr_{x_{ORF}} = \frac{\alpha_a^3 (T_1 - T_0)}{\nu k} \]
3.3.6 Convergence of the Numerical Solution

The major convergence criterion for the numerical solution method employed here is, as discussed in Sec. 3.3.1, to have the coefficient matrix be diagonally dominant. This condition was examined for all nodal equations derived in Secs. 3.2.1 through 3.2.4; two boundary vorticity equations were found to be violating the above convergence criterion. Those are the two equations generated by Eq. (3.19) for the following two corner nodes; (X=0, R=0) and (X=L, R=0). For this reason, these two equations were replaced by the second option as discussed in Sec. 3.2.2, that is \( E(0,0) = H(L,0) = 0 \), which in turn satisfied the convergence criterion. Several test runs were carried out with these supposedly converging and non-converging coefficient matrices, and their solutions were compared. The result was that the both matrices did converge, and no significant differences were found between the two solutions. The probable reason for this unexpected result was that the non-converging equations were confined to the two equations which were written for the vorticity at (0,0) and (L,0), thus their effect was suppressed by the remaining stable equations. Although no clear difference between the two were found in the test runs, the supposedly converging boundary conditions, \( \Xi(0,0) = \Xi(L,0) = 0 \), were employed here rather than the boundary conditions generated by Eq. (3.19).

The mesh size (or the distance between two nodes) is another parameter influencing convergence of a finite-difference numerical solution. This matter was briefly discussed in Sec. 3.3.1 and two
sets of expressions for estimating the maximum $\Delta X$ and $\Delta R$ for the convergence were given. If the inequality expressions given in Sec. 3.3.1 (Eqs. (3.43) and (3.44)) are converted to give the following equations:

$$C_U = \frac{\Delta X |U_{\max}|}{\kappa}$$  \hspace{1cm} (3.45)

$$C_V = \frac{\Delta R |V_{\max}|}{\kappa}$$  \hspace{1cm} (3.46)

where $C_U$ and $C_V$ are the mesh sizing factors then, according to Eq. (3.43), the maximum $C_U$ or $C_V$ one can use for the maximum mesh size, $\Delta X$ or $\Delta R$, is 8.0. After making six runs with the current numerical program, however, (see Table 3.1), it was found that $C_U$ could be as large as 1277.7 and the system would still converge within the cylinder. The inequalities given by Eqs. (3.43) and (3.44) which are essentially derived or empirically obtained for transient conditions, apparently do not apply to steady state cases. Nevertheless, the author continued this investigation and found an interesting result. That is, under the assumption that $C_U$ and $C_V$ are also functions of some temperature variables, Eqs. (3.45) and (3.46) are divided by the square root of the modified Rayleigh number, $Ra_L^{\alpha}$, to give:

$$C'_U = \frac{C_U}{\sqrt{Ra_L^{\alpha}}}$$  \hspace{1cm} (3.47)

$$C'_V = \frac{C_V}{\sqrt{Ra_L^{\alpha}}}$$  \hspace{1cm} (3.48)
Table 3.1 Numerical result of mesh sizing factors $C_U$ and $C_V$ for $\Delta x = .333$ and $\Delta r = .25$

| $\Delta X(=\Delta R)$, cm | $|U_{\text{max}}|$ , cm/s | $|V_{\text{max}}|$ , cm/s | $Ra^a_{L}$ | $C_U$  | $C'_U$ | $C_V$  | $C'_V$ |
|--------------------------|-------------------------|-------------------------|-------------|-------|-------|-------|-------|
| 0.05                     | 0.00962                 | 0.00983                 | $2.1 \times 10^2$ | 0.334 | 0.023 | 0.342 | 0.023 |
| 0.1                      | 0.201                   | 0.0558                  | $4.1 \times 10^3$ | 13.99 | 0.22  | 3.883 | 0.061 |
| 0.3                      | 1.03                    | 0.22                    | $1.5 \times 10^5$ | 215.0 | 0.559 | 45.93 | 0.119 |
| 0.6                      | 1.64                    | 0.372                   | $1.2 \times 10^6$ | 684.8 | 0.617 | 155.3 | 0.140 |
| 0.9                      | 2.04                    | 0.485                   | $4.2 \times 10^6$ | 1277.7 | 0.624 | 303.8 | 0.148 |
| 1.2                      | 0.655                   | 0.56                    | $1.9 \times 10^6$ | 547.0 | 0.393 | 467.6 | 0.336 |
The result of using these equations is given in Table 3.1 showing that all six converging runs required $C_U$ and $C_V$ values to be less than unity. This finding indicates that, for a better estimation of maximum converging mesh size for steady-state natural convection, one may need to consider temperature variables as well as flow variables.

In order to accelerate the convergence of the current numerical solution, the successive-over-relaxation method (or often called S.O.R.) was applied strictly to the calculation of stream function, Eq. (3.5). The way the above method was used, can be illustrated by the following expression:

$$\psi^{n+1} = \alpha \psi^n + (1-\alpha)\psi^{n-1} \tag{3.49}$$

where $\alpha$ is the relaxation factor, and $\psi^{n+1}$, $\psi^n$, and $\psi^{n-1}$ represent, respectively, the stream function value to be used for the immediately following calculation, the current value, and the value from the preceding calculation. When $\alpha = \frac{1}{2}$, Eq. (3.49) approximates the subsequent value to be the average of the current and the old values. When $\alpha = 1$, it is the same as not applying the S.O.R. at all. When $\alpha < 1$ or $\alpha > 1$, future values assume a weighted average of the current and old values. The two states, $\alpha < 1$ and $\alpha > 1$, are often termed "under-relaxation" and "over-relaxation", respectively [36,40].

To investigate the effectiveness of the successive over-relaxation method applied here, the following nodal structure was used (see also the node information given in Fig. 3.7): 5 nodes.
Figure 3.16 Required number of iterations for various S.O.R. factors and mesh sizes for the same nodal structure.
from Ref. [40],

\[ \tilde{\alpha} = \frac{2}{1 + \sqrt{1 - \cos^2 \frac{\pi}{h}}} \]  

(3.51)

which estimates the optimum relaxation factor for a square domain where \( h \) represents the mesh divisions. The domain of the current problem is neither square nor rectangular; however, when \( p = 5 \) and \( q = 7 \) (which is the approximate configuration tested here) are used in Eq. (3.50), it estimates the largest optimum relaxation factor to be 1.23 and the smallest to be 0.31. When \( h = (5+7)/2 \) is used in Eq. (3.51), the estimated optimum relaxation factor is 1.33. Therefore, the empirically found optimum-relaxation factors agree quite well with the theoretically estimated values as above. Hwang and Cheng [30], also applied the S.O.R. method in a natural convection study and their optimum relaxation factor ranged from 0.25 to 1.8 for a circular domain.

To show that the optimum relaxation factor is independent of the number of nodes (or how finely the domain is meshed) used three additional runs were made with the total number of nodes varying from 55 to 119. This result is plotted in Fig. 3.17 which clearly substantiates the point stated above. It also indicates that, although the optimum relaxation factor stays unchanged, more iterations are required for convergence as the domain is divided into a finer grid. This observation is logical since, with a finer mesh the total number of nodes on which the convergence must be made is increased.
Figure 3.17 Required number of iterations for various mesh sizes and number of nodes for approximately the same $Gr$. 

<table>
<thead>
<tr>
<th>$\Delta X(=\Delta R)$</th>
<th>Gr</th>
<th>NO. OF NODES</th>
<th>MX</th>
<th>MXX</th>
<th>NR</th>
<th>NRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 m</td>
<td>280</td>
<td>55</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>0.0008</td>
<td>460</td>
<td>84</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>0.00067</td>
<td>600</td>
<td>119</td>
<td>7</td>
<td>12</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

TEMP. INF.: TTOP=0, TWTP=0, TWBT=0, TRES=S, TINI=0

ERR=.0001
Finally, results are shown in Fig. 3.18 for S.O.R. factors; a) larger than, b) equal to, and c) smaller than optimum. In this case the temperature variation at a certain node is plotted against number of iterations. Also shown in Fig. 3.19 is a typical example of variations of the three variables when a too-large mesh distance is used and, in Fig. 3.20, the case is shown when an acceptable mesh distance is used.

3.4 Result of Numerical Study

We now present the results of a numerical study using the program which has been discussed in the previous portions of this chapter.

The three basic dimensionless parameters that are used for evaluating computed results, are; a) the aspect ratio of the cylinder, AR=L/a, b) a Rayleigh number based on the cylinder-wall temperature gradient, RA=βga4A/νκ, and c) a modified Rayleigh number which is a product of Grashof number and the reciprocal of AR, RA^e_L = βga^4(T_1 - T_0)/νκL. Here, RA and AR are used as input variables, and RA^e_L thus becomes the computed result or the output. The aspect ratio is one of the two dimensionless parameters found by non-dimensionalizing the governing equations (see Eqs. (2.8a), (3.3a), (3.5a), and (3.4a)). The other dimensionless parameter found in the above process is Prandtl number, which is maintained constant at 7.0 (comparable to that of water) throughout this work. To compare the results of this numerical work to the similarity solution (Chapter II), the boundary-temperature configuration of the cylinder is restricted to the one shown in Fig. 3.21.
Figure 3.18 Comparison of the variation of temperature at a certain node when S.O.R. factor is larger, or smaller than the optimum FAC, or when it is equal to the optimum FAC.
Figure 3.19 Typical variations of $T$, $\Xi$, and $\Psi$ when the numerical solution fails to converge due to excessively large mesh distances are used.
Figure 3.20  Typical variations of $T$, $\xi$, and $\psi$ when the numerical solution converges.
Figure 3.21 The boundary temperature configuration applied to the numerical study where $T_0$ is the coldest and $T_{RES}$ is the hottest temperature of the system.
By doing so, one can ensure that the temperature of the top surface and that of the top of the cylinder are equal (no temperature jump is created); the same is true at the lower corner where the bottom of the cylinder joins the top horizontal wall of the reservoir. In this configuration, $T_0$ is always the coldest and $T_{RES}$ is the hottest temperatures of the system, and thus the resulting orifice temperature, $T_1$, must be $T_0 < T_1 < T_{RES}$. Also, because of the above restriction, $Ra_A$ and $Ra_L$ simply become the dimensionless representations of the wall temperature difference and the axial (or centerline) temperature difference relative to the coldest temperature, $T_0$.

3.4.1 Flow Characterization

With the configuration described above, approximately 100 computer runs (see Table 3.2) were made using the PDP-11/10. Some representative computed results are plotted as $Ra_A$ vs. $Ra_L$ for several different AR's as shown in Fig. 3.22a through 3.22h. Also plotted on these figures is the superimposed curve for the similarity solution.

By inspecting each of these plots and comparing the results with the similarity solution, one can see that for $AR = 4$ through 35 within the $Ra_A$ range of from 400 to 1300, the solutions are virtually the same. Although the plot of $AR = 40$ shows some agreement with that of the similarity solution, an inspection of the flow structure indicates otherwise; this is discussed in detail later. The aspect ratio is roughly divided into the
Table 3.2 Summary of Computer Runs

<table>
<thead>
<tr>
<th>Run No.</th>
<th>AR</th>
<th>( R a_A )</th>
<th>( R a_L^a )</th>
<th>FAC</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>.25</td>
<td>896</td>
<td>501</td>
<td>.3</td>
<td>115</td>
</tr>
<tr>
<td>02</td>
<td>.5</td>
<td>339</td>
<td>202</td>
<td>.3</td>
<td>141</td>
</tr>
<tr>
<td>03</td>
<td>.5</td>
<td>883</td>
<td>507</td>
<td>.3</td>
<td>153</td>
</tr>
<tr>
<td>04</td>
<td>.67</td>
<td>550</td>
<td>256</td>
<td>.5</td>
<td>62</td>
</tr>
<tr>
<td>05</td>
<td>.83</td>
<td>28200</td>
<td>3260</td>
<td>.6</td>
<td>114</td>
</tr>
<tr>
<td>06</td>
<td>1.0</td>
<td>13600</td>
<td>2280</td>
<td>.7</td>
<td>94</td>
</tr>
<tr>
<td>07</td>
<td>1.0</td>
<td>643</td>
<td>349</td>
<td>.3</td>
<td>158</td>
</tr>
<tr>
<td>08</td>
<td>1.0</td>
<td>99</td>
<td>70</td>
<td>1.0</td>
<td>145</td>
</tr>
<tr>
<td>09</td>
<td>1.0</td>
<td>418</td>
<td>260</td>
<td>1.15</td>
<td>153</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>895</td>
<td>427</td>
<td>1.2</td>
<td>101</td>
</tr>
<tr>
<td>11</td>
<td>1.0</td>
<td>1290</td>
<td>536</td>
<td>1.3</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>1990</td>
<td>703</td>
<td>1.3</td>
<td>111</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>275</td>
<td>198</td>
<td>.5</td>
<td>62</td>
</tr>
<tr>
<td>14</td>
<td>2.0</td>
<td>43</td>
<td>37</td>
<td>1.0</td>
<td>134</td>
</tr>
<tr>
<td>15</td>
<td>2.0</td>
<td>217</td>
<td>180</td>
<td>.55</td>
<td>151</td>
</tr>
<tr>
<td>16</td>
<td>2.0</td>
<td>434</td>
<td>325</td>
<td>.8</td>
<td>116</td>
</tr>
<tr>
<td>17</td>
<td>2.0</td>
<td>869</td>
<td>493</td>
<td>.8</td>
<td>106</td>
</tr>
<tr>
<td>18</td>
<td>2.0</td>
<td>1300</td>
<td>622</td>
<td>.8</td>
<td>124</td>
</tr>
<tr>
<td>19</td>
<td>2.0</td>
<td>2170</td>
<td>879</td>
<td>.7</td>
<td>116</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>6520</td>
<td>4470</td>
<td>.3</td>
<td>485</td>
</tr>
<tr>
<td>21</td>
<td>3.0</td>
<td>122</td>
<td>110</td>
<td>.5</td>
<td>91</td>
</tr>
<tr>
<td>22</td>
<td>4.0</td>
<td>199</td>
<td>183</td>
<td>.3</td>
<td>217</td>
</tr>
<tr>
<td>23</td>
<td>4.0</td>
<td>424</td>
<td>365</td>
<td>.5</td>
<td>331</td>
</tr>
<tr>
<td>24</td>
<td>4.0</td>
<td>993</td>
<td>541</td>
<td>1.3</td>
<td>148</td>
</tr>
<tr>
<td>25</td>
<td>4.0</td>
<td>1290</td>
<td>625</td>
<td>1.2</td>
<td>183</td>
</tr>
<tr>
<td>26</td>
<td>6.0</td>
<td>145</td>
<td>137</td>
<td>.5</td>
<td>181</td>
</tr>
<tr>
<td>27</td>
<td>6.0</td>
<td>434</td>
<td>379</td>
<td>.5</td>
<td>177</td>
</tr>
<tr>
<td>28</td>
<td>6.0</td>
<td>1010</td>
<td>556</td>
<td>.5</td>
<td>98</td>
</tr>
<tr>
<td>29</td>
<td>6.0</td>
<td>1590</td>
<td>750</td>
<td>.5</td>
<td>160</td>
</tr>
<tr>
<td>30</td>
<td>7.3</td>
<td>50</td>
<td>48</td>
<td>.5</td>
<td>65</td>
</tr>
<tr>
<td>31</td>
<td>12.0</td>
<td>109</td>
<td>106</td>
<td>.5</td>
<td>297</td>
</tr>
<tr>
<td>32</td>
<td>12.0</td>
<td>434</td>
<td>390</td>
<td>.5</td>
<td>175</td>
</tr>
</tbody>
</table>
Table 3.2 Summary of Computer Runs (continued)

<table>
<thead>
<tr>
<th>Run No.</th>
<th>AR</th>
<th>Ra_A</th>
<th>Ra^2_L</th>
<th>FAC</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>12.0</td>
<td>724</td>
<td>476</td>
<td>.5</td>
<td>97</td>
</tr>
<tr>
<td>34</td>
<td>12.0</td>
<td>1160</td>
<td>608</td>
<td>.5</td>
<td>109</td>
</tr>
<tr>
<td>35</td>
<td>12.0</td>
<td>1450</td>
<td>710</td>
<td>.5</td>
<td>135</td>
</tr>
<tr>
<td>36</td>
<td>15.0</td>
<td>438</td>
<td>398</td>
<td>1.1</td>
<td>265</td>
</tr>
<tr>
<td>37</td>
<td>15.0</td>
<td>849</td>
<td>511</td>
<td>.7</td>
<td>133</td>
</tr>
<tr>
<td>38</td>
<td>15.0</td>
<td>1190</td>
<td>610</td>
<td>.5</td>
<td>147</td>
</tr>
<tr>
<td>39</td>
<td>15.0</td>
<td>1390</td>
<td>673</td>
<td>.3</td>
<td>143</td>
</tr>
<tr>
<td>40</td>
<td>15.0</td>
<td>100</td>
<td>98</td>
<td>1.2</td>
<td>429</td>
</tr>
<tr>
<td>41</td>
<td>15.0</td>
<td>226</td>
<td>221</td>
<td>1.2</td>
<td>361</td>
</tr>
<tr>
<td>42</td>
<td>15.0</td>
<td>1580</td>
<td>738</td>
<td>.3</td>
<td>180</td>
</tr>
<tr>
<td>43</td>
<td>17</td>
<td>998</td>
<td>553</td>
<td>.5</td>
<td>130</td>
</tr>
<tr>
<td>44</td>
<td>18</td>
<td>990</td>
<td>551</td>
<td>.5</td>
<td>131</td>
</tr>
<tr>
<td>45</td>
<td>20</td>
<td>1020</td>
<td>559</td>
<td>.3</td>
<td>129</td>
</tr>
<tr>
<td>46</td>
<td>24</td>
<td>145</td>
<td>143</td>
<td>.5</td>
<td>652</td>
</tr>
<tr>
<td>47</td>
<td>24</td>
<td>290</td>
<td>284</td>
<td>.5</td>
<td>539</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
<td>406</td>
<td>392</td>
<td>1.25</td>
<td>1985</td>
</tr>
<tr>
<td>49</td>
<td>24</td>
<td>1000</td>
<td>555</td>
<td>1.3</td>
<td>140</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>1000</td>
<td>556</td>
<td>.3</td>
<td>151</td>
</tr>
<tr>
<td>51</td>
<td>35</td>
<td>436</td>
<td>399</td>
<td>.3</td>
<td>1145</td>
</tr>
<tr>
<td>52</td>
<td>35</td>
<td>895</td>
<td>525</td>
<td>.3</td>
<td>155</td>
</tr>
<tr>
<td>53</td>
<td>35</td>
<td>1290</td>
<td>641</td>
<td>.3</td>
<td>150</td>
</tr>
<tr>
<td>54</td>
<td>40</td>
<td>1000</td>
<td>556</td>
<td>.3</td>
<td>148</td>
</tr>
<tr>
<td>55</td>
<td>40</td>
<td>199</td>
<td>198</td>
<td>.8</td>
<td>1943</td>
</tr>
<tr>
<td>56</td>
<td>40</td>
<td>437</td>
<td>405</td>
<td>.3</td>
<td>423</td>
</tr>
<tr>
<td>57</td>
<td>40</td>
<td>696</td>
<td>501</td>
<td>.3</td>
<td>290</td>
</tr>
<tr>
<td>58</td>
<td>40</td>
<td>1290</td>
<td>642</td>
<td>.3</td>
<td>191</td>
</tr>
<tr>
<td>59</td>
<td>40</td>
<td>1000</td>
<td>616</td>
<td>.3</td>
<td>160</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>1000</td>
<td>616</td>
<td>.3</td>
<td>160</td>
</tr>
<tr>
<td>61</td>
<td>50</td>
<td>1000</td>
<td>616</td>
<td>.3</td>
<td>160</td>
</tr>
<tr>
<td>62</td>
<td>54</td>
<td>1010</td>
<td>616</td>
<td>.3</td>
<td>298</td>
</tr>
<tr>
<td>63</td>
<td>60</td>
<td>1000</td>
<td>616</td>
<td>.3</td>
<td>348</td>
</tr>
<tr>
<td>64</td>
<td>70</td>
<td>1000</td>
<td>612</td>
<td>.3</td>
<td>216</td>
</tr>
</tbody>
</table>
Table 3.2  Summary of Computer Runs (continued)

<table>
<thead>
<tr>
<th>Run No.</th>
<th>AR</th>
<th>Ra_A</th>
<th>Ra_A^2</th>
<th>FAC</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>80</td>
<td>1000</td>
<td>615</td>
<td>.3</td>
<td>160</td>
</tr>
<tr>
<td>66</td>
<td>15</td>
<td>338</td>
<td>328</td>
<td>.3</td>
<td>549</td>
</tr>
<tr>
<td>67</td>
<td>15</td>
<td>566</td>
<td>435</td>
<td>.3</td>
<td>276</td>
</tr>
<tr>
<td>68</td>
<td>15</td>
<td>498</td>
<td>416</td>
<td>.3</td>
<td>357</td>
</tr>
<tr>
<td>69</td>
<td>15</td>
<td>1100</td>
<td>582</td>
<td>.3</td>
<td>161</td>
</tr>
<tr>
<td>70</td>
<td>15</td>
<td>696</td>
<td>470</td>
<td>.3</td>
<td>178</td>
</tr>
<tr>
<td>71</td>
<td>40</td>
<td>398</td>
<td>386</td>
<td>.3</td>
<td>1873</td>
</tr>
<tr>
<td>72</td>
<td>60</td>
<td>707</td>
<td>506</td>
<td>.3</td>
<td>227</td>
</tr>
<tr>
<td>73</td>
<td>60</td>
<td>849</td>
<td>557</td>
<td>.3</td>
<td>130</td>
</tr>
<tr>
<td>74</td>
<td>60</td>
<td>1150</td>
<td>670</td>
<td>.3</td>
<td>154</td>
</tr>
<tr>
<td>75</td>
<td>70</td>
<td>1090</td>
<td>648</td>
<td>.3</td>
<td>156</td>
</tr>
<tr>
<td>76</td>
<td>4</td>
<td>2970</td>
<td>2010</td>
<td>.3</td>
<td>1143</td>
</tr>
<tr>
<td>77</td>
<td>16</td>
<td>1510</td>
<td>702</td>
<td>.3</td>
<td>132</td>
</tr>
</tbody>
</table>
Figure 3.22a $Ra_A$ vs. $Ra_L$ for various AR's.
Figure 3.22b
Figure 3.22d
Figure 3.22e
Figure 3.22f
Figure 3.22g
Figure 3.22h
following three ranges: 1) $AR<4$, 2) $4<AR<35$, and 3) $AR>35$. In each range of AR, its characteristics will be presented.

1) $AR<4$: According to Lighthill [11], who theoretically studied the case with the cold reservoir located above the cylinder and a constant temperature established along the tube wall at the value equal to the hottest temperature of the system, two critical aspect ratios exist; the first defining the smallest AR of the similarity flow regime, and the second defining the largest AR, beyond which value the similarity flow breaks down. Although the physical model of the current study differs somewhat from that of Lighthill's, the results are similar. As seen in Fig. 3.23 where the velocity profiles and streamlines are plotted for $AR = 1$ and $Ra_A = 400$, the axial velocity profile at the open end of the cylinder, $x = 0$, indicates an undeveloped flow region around the centerline, $r < .2$. At the wall side, $r > .8$, boundary layer flow is indicated while a shear flow occurs between the above two radii. In Fig. 3.24, the development of the boundary layer along the wall is shown as the AR is increased from .25 to 1.0. This figure shows that when AR is small, the major shear flow occurs for $.2 < r < .9$ (dotted portion is approximated by the mass conservation); this is indicated by the case of $AR = .25$. As AR increases, the boundary-layer type flow grows in extent and eventually fills the entire section, which would be the case at $AR = 1.0$, although the profile still shows some flatness at $r < .2$. Another way to show whether similarity flow is present or not is by checking to see if the flow parameter, $\alpha$, is constant along the centerline of the tube. The flow parameter at $r = 0$ is defined as $\alpha = u/x$ from
Figure 3.23 Streamlines and axial velocity profiles of Run No. 09.
Figure 3.24 Development of axial velocity profiles at the orifice section for AR = 0.25, 0.5, and 1.0 at $Ra_A = 900$. 

RUN NO. 01  AR = 0.25
RUN NO. 03  AR = 0.5
RUN NO. 10  AR = 1.0

$u_{|ORIFICE}$ vs $r$
Eq. (2.33). For similarity flow, this parameter has only one value which theoretically applies at any \( x \), \( x \) being measured from the closed-end. To determine the variation in the flow parameter, \( \alpha/\alpha_{\max} \) is plotted vs. \( x/L \) for \( AR = 2 \) and \( AR = 15 \) at \( Ra_{\lambda} = 350, 500, \) and \( 600 \) in Fig. 3.25. From this figure, it is evident that the variation of \( \alpha/\alpha_{\max} \) at \( AR = 2 \) is much larger than that at \( AR = 15 \), indicating the flow for \( AR = 15 \) to be more of a similarity type than for \( AR = 2 \).

These characteristics are typical of the flow patterns generated in the cylinders with \( AR < 4 \), thus, \( AR = 4 \) is comparable to the first critical aspect ratio of Lighthill.

2) \( 4 \leq AR \leq 35 \): Within this range for aspect ratio the numerical results agreed best with the similarity solution. This was indicated previously by the constant value of the flow parameter, \( \alpha \), in Fig. 3.25 when compared with that for \( AR = 2 \). In this figure \( \alpha \) is not observed to be absolutely constant, however, deviation is seen only at the orifice section in all three plots for \( AR = 15 \). This deviation is probably due to the finite size of the reservoir used in this numerical study, whereas in the theoretical study the similarity solution was derived up to the orifice section from the closed-end of the cylinder. A break-down in the similarity flow is seen to occur within this aspect-ratio range for values of \( Ra_A \) outside the range \( 400 < Ra_A < 1300 \) which corresponds to \( 400 < Ra_{\lambda}^2 < 600 \), respectively. To illustrate this point, isotherms and streamlines for \( AR = 15 \) (refer to Fig. 3.22f) at \( Ra_A = 230, 850, \) and \( 1580 \) are plotted in Fig. 3.26, 3.27, and 3.28. Fig. 3.26 shows
Figure 3.25  Variation of the flow parameter $\alpha$ along the cylinder length for AR=2 and 15, and $Ra_L=350$, 500, and 600.
Figure 3.26 Isotherms and streamlines of AR=15 at $Ra_A=230$. 
Figure 3.27. Isotherms and streamlines of $AR=15$ at $Ra_A=850$. 
Figure 3.28 Isotherms and streamlines of AR=15 at Ra_\text{A}=1580.
that heat transfer is mainly dominated by conduction rather than by convection. Very weak convection is seen only in the fluid below $x = .3$ as indicated both by the streamlines, and by the $u/u_{\text{max}}$ plot in Fig. 3.29, where $u/u_{\text{max}}$ along the centerline is plotted for the same three cases. Fig. 3.29 also indicates that the fluid from $x = .3$ up to the top is very nearly stationary along the centerline for $Ra_A = 230$. Fig. 3.27 shows typical isotherms and streamlines when flow within the entire cylinder is of a similarity nature, and in Fig. 3.29 the axial velocity profile along the centerline is shown, which indicates the linear variation of the axial velocity with the distance measured from the top. When $Ra_A = 1580$, a condition outside the similarity regime, streamlines and isotherms are as shown in Fig. 3.28. As seen in this figure, strong convective flow reaching the top of the cylinder is found for $Ra_A > 1300$ within the range of AR discussed here. This becomes more evident when the streamlines of Fig. 3.28 are compared with those plotted in Fig. 3.27 (note that the six streamlines range from $\psi = .1$ to $\psi = .6$ in the both cases).

Thus it is within this range of AR that similarity flow is most likely to exist, the range being $400 < Ra_A < 1300$. Outside of this range of $Ra_A$ convective flow rate fails to reach the closed-top end leaving some portion of the fluid nearly stagnant when $Ra_A < 400$, and an extremely strong convective flow fills the entire cylinder when $Ra_A > 1300$.

3) $AR > 35$: When the AR exceeds 35, a typical convective-flow pattern found is as shown in Fig. 3.30, where a newly formed convection cell is seen at the top portion of the cylinder.
Figure 3.29 Axial velocity profiles along the centerline of the cylinder.
Figure 3.30 Isotherms and streamlines at AR=50 and Ra_A=1000.
Because of this cell formation the isotherms take on a different configuration than previously seen at AR < 35 (for comparison see Fig. 3.27). A rather interesting isotherm pattern that one can notice in Fig. 3.30 is the formation of an interface-like surface at about x = .87, about which surface the two isotherms, t = 100 and 200, look to be symmetric. Also, an examination of the radial velocity indicates that its maximum occurs at this surface at all radial positions. Although the flow pattern depicted in Fig. 3.30 is typical of the range AR > 35, if an AR is chosen close to 35, one would expect to see no cell formation at all for certain ranges of RaA; this condition is illustrated in Fig. 3.31. In this figure, axial velocity profiles along the centerline are plotted for 199 ≤ RaA ≤ 1290 at AR = 40, where one can see that for RaA = 437 and 696, a cell is forming at the top portion (x > .85) of the cylinder which is indicated by u(r = 0) going into the positive side. However, the cell is replaced by a stagnant fluid layer like that of Fig. 3.26 when RaA < 437, and by continuous convection flow when RaA > 696.

Therefore, when AR > 35, the flow is characterized as having an independent convection cell toward the closed-end of the cylinder for RaA > 400, flow in the rest of the cylinder is of a similarity nature.

### 3.4.2 Flow Regimes

To summarize what was presented in the previous subsection and considering Lighthill's two critical aspect ratios, a flow-regime map, as shown in Fig. 3.32 was constructed with additional data
Figure 3.31 Axial velocity profiles along the centerline of the cylinder at AR=40 for various $Ra_A$. 
Figure 3.32 Flow regime map.
from the numerical solution to that already presented in the Sec. 3.4.1. Refering to Fig. 3.32, the two critical AR as mentioned above are found to be, approximately, AR = 4 and 35. As Lighthill predicted, the difference between these two is approximately a factor of order ten. Thus, AR = 4 can be considered as the lower limit and AR = 35 as the upper limit such that only within these limits similarity flow exist. (This region is labelled III in the figure). In the adjoining regions, three different flow regimes are found within the two Ra_A boundaries; namely from the line of Ra_A = Ra_a^L up to Ra_A = 1300. Each of these four regimes is discussed below (see Fig. 3.32):

Regime I -- This regime is bounded by Ra_A = 1300 and AR = 4. The most distinctive aspect of the convective flow of this regime is that, along the wall, flow is of the boundary-layer type while in the central portion of the cylinder flow is undeveloped (see Fig. 3.23 and 3.24).

Regime II -- This regime lies within the region defined by Ra_A = Ra_a^L, AR = 4, and Ra_a^L = 360. Within this flow regime, only a weak convective flow can be seen at the open end of the cylinder, while the rest of the fluid remains nearly stationary (see Fig. 3.26).

Regime III -- This is the similarity flow regime which is defined by values of AR = 4, AR = 35, Ra_a^L = 360, and Ra_A = 1300. The principal characteristic of similarity flow is that the axial velocity is proportional to the distance measured from the closed-end of the cylinder with the proportionality constant designated α (flow parameter) which is related to the combination of Ra_A and
as described previously. In the theoretical study, the applicable part of the similarity solution (see Fig. 2.5) began at $Ra_A = 0$ and extended to $Ra_A = 1300$, however, in the numerical study no similarity flow was found for values of $Ra_A$ less than approximately 440. Thus, it may be proper to redefine the applicable range of the similarity solution here to $400 < Ra_A < 1300$ and $380 < Ra^a_L < 650$.

**Regime IV** -- This regime is defined by $Ra_A = Ra^a_L$, $Ra^a_L = 360$, and AR = 35, and $Ra_A = 1300$. Within this region an independent convection cell is formed within a certain distance from the closed-end, and below it a similarity flow exists throughout the rest of the cylinder (see Fig. 3.30). After the cell formation became evident within this flow regime, 21 additional computer runs were made in order to characterize the conditions of cell-formation and their dimensions.

A summary of the results of the computer runs made for this purpose is listed in Table 3.3, where $L_c/L$ is the ratio of the cell length to the cylinder length; $L_c/a$ is the cell aspect ratio which is the product of AR and $L_c/L$; $(Ra^a_L)_c$ is the corrected modified-Rayleigh number which is, as explained in Fig. 3.33, the modified Rayleigh number of a main flow (or a continuous convection from reservoir); and $(AR)_M$ is the AR of the main flow. Values of $Ra_A$ are shown as functions of $Ra^a_L$ and $L_c/L$ in Fig. 3.34, and extrapolated values of $L_c/L$ from Fig. 3.34 are graphed in Figs. 3.35 and 3.36 as functions $Ra^a_L$ and $Ra_A$. These results basically indicate the following; (a) for a constant $L_c/L$ the relationship between $Ra^a_L$ and $Ra_A$ is linear, (b) for a constant $Ra_A$, $L_c/L$ increases almost
### Table 3.3 Computer runs made for the evaluation of cell formation in Regime IV

<table>
<thead>
<tr>
<th>Run No.</th>
<th>AR</th>
<th>$Ra_A$</th>
<th>$Ra_a^L$</th>
<th>$L_c/L$</th>
<th>$L_c/a$</th>
<th>$(Ra_a^L)_c$</th>
<th>$(AR)_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>13.6</td>
<td>770</td>
<td>490</td>
<td>0</td>
<td>0</td>
<td>490</td>
<td>13.6</td>
</tr>
<tr>
<td>79</td>
<td>21.8</td>
<td>777</td>
<td>569</td>
<td>.273</td>
<td>5.95</td>
<td>493</td>
<td>15.8</td>
</tr>
<tr>
<td>80</td>
<td>30.0</td>
<td>1000</td>
<td>614</td>
<td>.140</td>
<td>4.20</td>
<td>552</td>
<td>25.8</td>
</tr>
<tr>
<td>81</td>
<td>32.5</td>
<td>489</td>
<td>467</td>
<td>.753</td>
<td>24.47</td>
<td>395</td>
<td>8.0</td>
</tr>
<tr>
<td>82</td>
<td>40.0</td>
<td>1000</td>
<td>676</td>
<td>.272</td>
<td>10.88</td>
<td>554</td>
<td>29.1</td>
</tr>
<tr>
<td>83</td>
<td>40.3</td>
<td>1290</td>
<td>639</td>
<td>0</td>
<td>0</td>
<td>639</td>
<td>40.3</td>
</tr>
<tr>
<td>84</td>
<td>45.0</td>
<td>991</td>
<td>669</td>
<td>.267</td>
<td>12.02</td>
<td>548</td>
<td>33.0</td>
</tr>
<tr>
<td>85</td>
<td>52.0</td>
<td>598</td>
<td>502</td>
<td>.377</td>
<td>19.60</td>
<td>444</td>
<td>32.4</td>
</tr>
<tr>
<td>86</td>
<td>54.3</td>
<td>996</td>
<td>780</td>
<td>.505</td>
<td>27.40</td>
<td>559</td>
<td>26.9</td>
</tr>
<tr>
<td>87</td>
<td>60.0</td>
<td>1300</td>
<td>713</td>
<td>.116</td>
<td>6.96</td>
<td>656</td>
<td>50.4</td>
</tr>
<tr>
<td>88</td>
<td>60.0</td>
<td>707</td>
<td>499</td>
<td>.104</td>
<td>6.24</td>
<td>475</td>
<td>53.8</td>
</tr>
<tr>
<td>89</td>
<td>70.0</td>
<td>1020</td>
<td>622</td>
<td>.135</td>
<td>9.45</td>
<td>560</td>
<td>60.6</td>
</tr>
<tr>
<td>90</td>
<td>71.4</td>
<td>1300</td>
<td>732</td>
<td>.143</td>
<td>10.21</td>
<td>649</td>
<td>61.2</td>
</tr>
<tr>
<td>91</td>
<td>73.7</td>
<td>995</td>
<td>833</td>
<td>.628</td>
<td>46.28</td>
<td>559</td>
<td>27.4</td>
</tr>
<tr>
<td>92</td>
<td>80.0</td>
<td>1180</td>
<td>757</td>
<td>.242</td>
<td>19.36</td>
<td>621</td>
<td>60.6</td>
</tr>
<tr>
<td>93</td>
<td>94.3</td>
<td>1290</td>
<td>724</td>
<td>.139</td>
<td>13.11</td>
<td>641</td>
<td>46.4</td>
</tr>
<tr>
<td>94</td>
<td>110.3</td>
<td>1190</td>
<td>910</td>
<td>.508</td>
<td>56.03</td>
<td>620</td>
<td>54.3</td>
</tr>
<tr>
<td>95</td>
<td>115.3</td>
<td>996</td>
<td>780</td>
<td>.504</td>
<td>58.11</td>
<td>561</td>
<td>57.2</td>
</tr>
<tr>
<td>96</td>
<td>121.7</td>
<td>1270</td>
<td>719</td>
<td>.133</td>
<td>16.19</td>
<td>633</td>
<td>105.5</td>
</tr>
<tr>
<td>97</td>
<td>122.0</td>
<td>796</td>
<td>649</td>
<td>.503</td>
<td>61.37</td>
<td>501</td>
<td>60.6</td>
</tr>
<tr>
<td>98</td>
<td>125.7</td>
<td>1190</td>
<td>910</td>
<td>.508</td>
<td>63.86</td>
<td>620</td>
<td>61.8</td>
</tr>
</tbody>
</table>
Figure 3.33 Illustration of the corrected modified-Rayleigh number when a cell is formed.
Figure 3.34 Correlation of $Ra_A$, $Ra_{a/L}$, and $Lc/L$ in Regime IV.
Figure 3.35 $L_c/L$ vs. $Ra_A^{\frac{a}{L}}$ for various $Ra_A$ (extrapolated from Fig. 3.34).
Figure 3.36 $L_c/L$ vs. $Ra_A$ for various $Ra_A^\alpha_L$ (extrapolated from Fig. 3.34).
linearly with $Ra_L^a$, and (c) for a constant $Ra_L^a$, $L_c/L$ decreases non-linearly with $Ra_A$. In addition Fig. 3.34 also suggests that, if extrapolated, $L_c/L$-lines will converge to the common value of $Ra_A = Ra_L^a = 380$, a value which interestingly was earlier defined as the approximate lower-limit of $Ra_L^a$ for Regime III (the similarity flow regime), as indicated in Fig. 3.32, and was also the value at which flow reversal was predicted to take place in the similarity solution (see the variation of $\alpha$ in Fig. 2.5). Also, in Fig. 3.34 the aspect ratios do not appear to give any specific trend, however, those aspect ratios which were known to be within the similarity flow regime ($4 < AR < 35$), are also amenable to cell formation when the combination of $Ra_A$ and $Ra_L^a$ is appropriate. Thus, it is important to emphasize here that although the similarity-flow regime has been defined rather specifically by the aspect-ratio range ($4 < AR < 35$), the aspect-ratio alone is not sufficient to identify any flow regime. Next, the corrected $Ra_L^a$, $(Ra_L^a)_C$, is plotted in Fig. 3.37 which indicates that all $(Ra_L^a)_C$ fall on the similarity-flow line which is represented by the dotted line. This means that flow between the cylinder and the reservoir is of the similarity type, while above it an independent convection cell is generated. This interpretation was reinforced by calculating $\alpha$ and noting its being constant at $r = 0$ within the continuous flow region. A surprising result from the $\alpha$ calculation is that, although the $(AR)_M$ is very large, such as that of RUN NO. 96 in Table 3.3, $\alpha$ remained nearly constant along the center-line; for the case of RUN NO. 96, the maximum deviation was about 15%. This indicates that when the main flow is bounded by a free surface or
Figure 3.37 Corrected $Ra^L_\infty$ for the flows in Regime IV (see also Fig. 3.33). $L_\infty$
an interface of $\psi = 0$ rather than a solid boundary, similarity flow tends to exist even for values of AR larger than 35. Finally, an equation expressing the relationship between $Ra_A$, $Ra_L^a$ and $L_c/L$ was derived from the data shown in Fig. 3.34 as follows: (a) first, a general expression for $L_c/L$ lines was found as,

$$(SLOPE) = (Ra_A - 380)/(Ra_L^a - 380)$$

where ($SLOPE$) is a variable and represents slopes of $L_c/L$ lines; (b) then, ($SLOPE$) was related to $L_c/L$ as,

$$(SLOPE) = 1.0 - 0.803 \ln (L_c/L)$$

where HP - 67 Curve Fitting routine was used and the coefficient of determination was found to be nearly unity [42,43]; and (c) the above two expressions were combined by ($SLOPE$) to obtain the following final expression,

$$Ra_A = (305 - .803 Ra_L^a) \ln \frac{L_c}{L} + Ra_L^a$$

(3.52)

where $Ra_L^a$ lies between 380 and 1300, and $L_c/L$ is from 0.05 (effectively zero) to 1.0. This equation was tested with all $Ra_A$ values listed in Table 3.3 and the maximum error was found to be 1.6% which resulted with RUN NO. 84. Eq. (3.52) can also be written as follows to make $L_c/L$ as a dependent variable,

$$L_c/L = EXP.[(Ra_A - Ra_L^a)/(305 - .803 Ra_L^a)]$$

(3.53)
In Eqs. (3.52) and (3.53), \(Ra_L^a\) can be replaced by,

\[
Ra_L^a = (Ra_L^a)_C \left(1 - \frac{L_C}{L} \frac{T_1 - T_0}{(T_1 - T_C)} \right)
\]  (3.54)

where \((Ra_L^a)_C\) is the corresponding \(Ra_L^a\) of the similarity-flow regime at the same \(Ra_A\), and \(L_C/L\) in Eq. (3.54) can be replaced by,

\[
L_C/L = (L_C/a)/AR
\]  (3.55)

where \(L_C/a\) is the aspect-ratio of the cell.

Not many tests are made for the case where \(Ra_A > 1300\), however, when values of \(AR = 15\) at \(Ra_A = 1580\) were specified, a strong continuous convection flow was found to fill the entire tube, as was already described in Fig. 3.28. When \(Ra_A\) was increased to about 3000 with \(AR = 4\), a cell was found to form (see Fig. 3.38) within the upper portion of the cylinder. The noticeable difference between this cell and those found in Regime IV (see Fig. 3.30) is that the intensity of the cell found in this case is as strong as that of the continuous convection current beneath it; this was not the case in the previously found cells where \(Ra_A < 1300\). A possible reason for the formation of a cell in the case of \(Ra_A < 1300\) is that convection currents originating in the reservoir increasingly loses their momentum due to the decrease in the temperature difference between the fluid and the wall (or a corresponding decrease in the bouyancy force) while flowing up along the cylinder wall, thus before reaching the top of the cylinder the fluid reaches a condition of equilibrium at which point the fluid starts flowing
down to the reservoir along the axis of the cylinder. Meanwhile, the fluid within the top portion of the cylinder where fluid from the reservoir did not reach, forms its own weak circulation (or a convection cell), its direction being determined by that of the continuous convection fluid at the interface. In the case of cell formation with $Ra_A > 1300$, this same reasoning does not apply since both the cell and the continuous flow below it are of approximately equal strength as shown in Fig. 3.38. For this reason, streamlines are plotted in Fig. 3.39 at eight sequential stages before converging to the steady state case of Fig. 3.38. Referring to Fig. 3.39, at $I = 30$ (or after 30 iterations) flow originating in the reservoir does reach the top of the cylinder, however, a small cell of $\psi = .1$ has formed at the top corner of the cylinder. A possible reason for cell formation to originate at this particular place would be that the strong flow moving up along the wall responds to 90° corner such that when it suddenly meets the closed-end surface of the cylinder, part of the fluid is bent to the wall side creating a vortex at the corner with the rest traveling back to the reservoir. After the creation of this small vortex (or cell), it continues to grow (as in $I = 60$ and 90) by extracting heat from the main flow at the interface ($\psi = 0$) until the interface temperature becomes constant along a horizontal line as seen in Fig. 3.38. Meanwhile, the main flow, from which energy was lost to the cell, decreases in size and its region moves downward as the cell grows. Before reaching steady state the $\psi = 0$ line shifts vertically many times like a "border dispute" as seen in $I = 150$ through 700. Finally when reaching steady state, the $\psi = 0$
Figure 3.38 Cell formation in AR=4 at $Ra_A=2970$ and $Ra_L^a=2010$. 

RUN NO. 76
Figure 3.39 Development of a cell in AR=4 at $Ra_A=2970$ where $I$ represents the number of iterations.
Figure 3.39 (continued).
line becomes horizontal and maintains this position.

All reasoning is done under the assumption that each iteration step in this steady-state numerical solution approximately equal to the time step of a transient solution, which is reasonable since the current numerical solution uses the iteration method rather than the matrix inversion method, as was true for both cases discussed in the earlier section of this chapter. The major difference between the steady-state and transient numerical solutions would be that in the latter case, the time increment (or step) can be controlled, whereas this is not possible in the steady-state numerical solution.

When $Ra_A$ was increased beyond a value of 3000 at AR = 4, the numerical solution did not converge to a steady state limit, rather it became periodic with a near identical flow pattern occurring after a number of iteration steps. This is a periodic instability, similar to that experienced by Elder [18] who applied a similar iterative solution to a natural convection problem with two vertical parallel plates at different temperatures. Later, de Vahl Davis and Thomas [19] experienced a similar situation with their numerical solution for natural convection in a vertical annulus.

Several additional computer runs were made with different aspect ratios, at approximately the largest $Ra_A$ for which instability would not occur; results of these runs are plotted against AR in Fig. 3.40 (also see Table 3.4). This plot indicates the existence of periodic instability to be strongly related to AR and $Ra_A$ for $AR \leq 6$. For $AR > 6$ an increase in AR does not seem
Figure 3.40 Region of periodic instability for AR=.83 to 15 (see also Table 3.4).
<table>
<thead>
<tr>
<th>Run No.</th>
<th>AR</th>
<th>$Ra_A$</th>
<th>$\log(Ra_A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>.83</td>
<td>28,000</td>
<td>4.45</td>
</tr>
<tr>
<td>06</td>
<td>1.0</td>
<td>13,600</td>
<td>4.13</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>6,520</td>
<td>3.81</td>
</tr>
<tr>
<td>76</td>
<td>4.0</td>
<td>2,970</td>
<td>3.47</td>
</tr>
<tr>
<td>29</td>
<td>6.0</td>
<td>1,590</td>
<td>3.20</td>
</tr>
<tr>
<td>35</td>
<td>12.0</td>
<td>1,450</td>
<td>3.16</td>
</tr>
<tr>
<td>42</td>
<td>15.0</td>
<td>1,580</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Table 3.4 The largest $Ra_A$ without a periodic instability
to influence the largest value of $Ra_A$.

Finally, within the similarity flow regime it is possible to compare numerical vs. theoretical values for the flow parameter, $\alpha$; axial velocity profiles; and temperature profiles. The cases specified in these comparisons are listed in Table 3.5, and the results are plotted in Figs. 3.41, 3.42, and 3.43. In Fig. 3.41, the numerically determined flow parameter, $\alpha$, is compared with that obtained theoretically by Eq. (2.37). The greater difference between the two as $Ra_L^{a}$ increases may be due to a combination of the finite size of reservoir used and the linearization of terms in the momentum equations applied in this numerical solution. Probably, the linear variation $\alpha$ in Fig. 3.41 is an indication of a linear input specification while the theoretical $\alpha$ suggests a non-linear variation. This seems to be a reasonable explanation if one assumes the increase in $Ra_L^{a}$ (or $Ra_A$, at least, in the similarity flow regime) to cause a proportional change in the momentum, since momentum is non-linearly related to any of the flow variables. The author feels that the resulting difference in $\alpha$ may be caused by the use of a finite-size reservoir more than by the linearization, where the fluid traveling back into the reservoir must face the reservoir-bottom located within a finite distance from the orifice, which in turn influences the fluid within the cylinder.

In Figs. 3.42 and 3.43 the theoretically obtained velocity and temperature profiles using Eqs. (2.33) and (2.34) are plotted for comparison with numerically obtained profiles. The plots in these two figures indicate that, within the similarity flow regime, the general shapes of temperature and velocity profiles are
Table 3.5 Temperature and Velocity Profiles from Numerical and Theoretical Studies within the Similarity Flow Regime at AR = 15.

A) Cases

<table>
<thead>
<tr>
<th>RUN No.</th>
<th>$Ra_A$</th>
<th>$Ra_L^a$</th>
<th>$\alpha_{ave}$</th>
<th>St.D.</th>
<th>$\alpha_{max}$</th>
<th>$\alpha_{min}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>438</td>
<td>398</td>
<td>1.14</td>
<td>.03</td>
<td>1.26</td>
<td>1.11</td>
</tr>
<tr>
<td>37</td>
<td>849</td>
<td>511</td>
<td>11.78</td>
<td>.31</td>
<td>12.08</td>
<td>10.95</td>
</tr>
<tr>
<td>39</td>
<td>1190</td>
<td>610</td>
<td>21.00</td>
<td>1.05</td>
<td>22.00</td>
<td>18.38</td>
</tr>
</tbody>
</table>

B) Velocity Profile at $x = .533$ from the closed-end (Numerical results are in the first row and the similarity-solution values from Eq. (2.33) are in the second row of each case)

<table>
<thead>
<tr>
<th>RUN No.</th>
<th>$u(x = .533)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$r = 0$</td>
</tr>
<tr>
<td>36</td>
<td>-.608</td>
</tr>
<tr>
<td></td>
<td>-.608</td>
</tr>
<tr>
<td>37</td>
<td>-6.40</td>
</tr>
<tr>
<td></td>
<td>-6.28</td>
</tr>
<tr>
<td>39</td>
<td>-11.44</td>
</tr>
<tr>
<td></td>
<td>-11.20</td>
</tr>
</tbody>
</table>

C) Temperature Profiles at $x = .533$ from the closed-end (Numerical results are in the first row and the similarity-solution values from Eq. (2.34) are in the second row of each case)

<table>
<thead>
<tr>
<th>RUN No.</th>
<th>$t(x = .533)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$r = 0$</td>
</tr>
<tr>
<td>36</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>212</td>
</tr>
<tr>
<td>37</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>273</td>
</tr>
<tr>
<td>39</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>325</td>
</tr>
</tbody>
</table>
Figure 3.41  Theoretical and numerical flow parameter variations over the applicable $Ra_{L}^{a}$ range.
Figure 3.42 Theoretical and numerical velocity profiles within the similarity flow regime (see Table 3.5).
Figure 3.43 Theoretical and numerical temperature profiles within the similarity flow regime (see Table 3.5).
predicted with some precision by the current numerical solution. This very good comparison is further evidence that the numerical solution of this work does, indeed, yield physically meaningful results.

3.4.3 Nusselt Number and Heat Transfer Coefficient

The computer program, NUSSLT which is listed in App.-B, is used to calculate Nusselt number and local heat transfer coefficients along the cylinder wall.

First, in Fig. 3.44 (see Table 3.6) the mean Nusselt number is plotted as a function of \( Ra_A \) for \( AR = 2, 15, \) and \( 40 \) which represent the aspect ratios of Regimes I, III, and IV respectively. As seen in the figure, when \( AR = 2 \), much of the heat transfer appears to be from the fluid to the wall. However, for \( AR = 15 \) and 40 relatively little heat transfer takes place for \( Ra_A \leq 400 \) where very little convective flow occurs (Regime II). As soon as \( Ra_A \) increases to that of the similarity flow regime (\( Ra_A > 400 \)) heat transfer sharply increases from the wall to the fluid.

To show the variation in heat transfer coefficients within Regimes I, III, and IV, local coefficients presented as \( h/|h_{max}| \) are plotted along the length of the cylinder in Fig. 3.45 for \( AR = 2 \) (Regime I), 15 (Regime III), and 70 (Regime IV). In this figure, most wall-to-fluid heat transfer is seen to occur when \( AR = 15 \), that is when similarity flow exists. When a cell is formed, as is typical in Regime IV, the direction of the heat transfer reverses to being from the fluid to the wall as indicated by the curve of \( AR = 70 \). Convection heat transfer is more balanced
Figure 3.44 Net $N_u_a$ vs. $Ra_A$ for $AR=2, 15, \text{ and } 40$ (a negative $N_u_a$ indicates the net heat transfer from the fluid to the cylinder wall).

\[ 0 \leq N_u_a \geq 0.3 \]

\[ 0 \leq Ra_A \leq 1200 \]
<table>
<thead>
<tr>
<th>No.</th>
<th>Ra_A</th>
<th>Ra_L</th>
<th>Nu_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>43.4</td>
<td>37.3</td>
<td>- .155</td>
</tr>
<tr>
<td>15</td>
<td>217</td>
<td>180</td>
<td>- .1767</td>
</tr>
<tr>
<td>16</td>
<td>434</td>
<td>325</td>
<td>- .253</td>
</tr>
<tr>
<td>17</td>
<td>869</td>
<td>493</td>
<td>.00714</td>
</tr>
<tr>
<td>18</td>
<td>1300</td>
<td>622</td>
<td>3.917</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AR = 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AR = 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
</tr>
<tr>
<td>57</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>59</td>
</tr>
</tbody>
</table>
Figure 3.45 Variation of local heat transfer coefficients along the cylinder length at $Ra_A \approx 1000$ for $AR=2, 15, 70$. 
between the two directions when AR = 2, which apparently is typical for Regime I. The similarity of the two curves for AR = 15 and 70 up to x = .5 is due to the formation of similarity flow in both cases.

3.4.4 Cases of Lighthill and Ostrach

A minor change was made in the current numerical program such that it could accept the configurations that were previously investigated by Lighthill [11] for Raₐ = 0 and by Ostrach and Thornton [14] for negative Raₐ (indicating that the wall temperature increases in the direction opposite to the applied body force, see Fig. 3.46). With this modified program, several additional computer runs (see Table 3.7) were made with AR = 15 which was chosen because it was well within the similarity flow regime. The results of this investigation are presented in Fig. 3.47.

Fig. 3.47 indicates that the theoretically derived applicable range of Ostrach and Thornton (-1600 < Raₐ < 0 and 0 < Raₐ < 310) for similarity flow agrees with the numerical solution up to Ra ≃ -300 for AR = 15. When Raₐ is assigned larger negative values, the similarity-flow curves resulting from the numerical solution deviates from that of the theoretical solution, and becomes increasingly divergent as Raₐ takes on larger negative values. To assist in explaining this deviation, the streamlines of the data points indicated in Fig. 3.47 were plotted and are presented in Figs. 3.48 and 3.49. The streamline plot indicates that a vigorous flow exists toward the open-end of the cylinder but does not penetrate far toward the closed-end. What this means, is that for the
Figure 3.46 Configuration of the model investigated by Lighthill when $A=0$, and later by Ostrach and Thornton when $A\neq 0$. 
<table>
<thead>
<tr>
<th>Run No.</th>
<th>AR</th>
<th>Ra_A</th>
<th>Ra_aL</th>
<th>I</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>15</td>
<td>-792</td>
<td>169</td>
<td>112</td>
<td>N</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>-792</td>
<td>256</td>
<td>111</td>
<td>S</td>
</tr>
<tr>
<td>101</td>
<td>15</td>
<td>-407</td>
<td>250</td>
<td>116</td>
<td>S</td>
</tr>
<tr>
<td>102</td>
<td>15</td>
<td>-407</td>
<td>272</td>
<td>115</td>
<td>N</td>
</tr>
<tr>
<td>103</td>
<td>15</td>
<td>-306</td>
<td>255</td>
<td>118</td>
<td>S</td>
</tr>
<tr>
<td>104</td>
<td>15</td>
<td>-91</td>
<td>277</td>
<td>120</td>
<td>N</td>
</tr>
<tr>
<td>105</td>
<td>15</td>
<td>-91</td>
<td>288</td>
<td>120</td>
<td>S</td>
</tr>
<tr>
<td>106</td>
<td>15</td>
<td>0</td>
<td>293</td>
<td>116</td>
<td>N</td>
</tr>
<tr>
<td>107</td>
<td>15</td>
<td>0</td>
<td>400</td>
<td>119</td>
<td>N</td>
</tr>
<tr>
<td>108</td>
<td>15</td>
<td>0</td>
<td>241</td>
<td>116</td>
<td>N</td>
</tr>
<tr>
<td>109</td>
<td>15</td>
<td>0</td>
<td>304</td>
<td>116</td>
<td>S</td>
</tr>
<tr>
<td>110</td>
<td>15</td>
<td>0</td>
<td>507</td>
<td>118</td>
<td>N</td>
</tr>
<tr>
<td>111</td>
<td>15</td>
<td>0</td>
<td>193</td>
<td>158</td>
<td>N</td>
</tr>
<tr>
<td>112</td>
<td>15</td>
<td>113</td>
<td>301</td>
<td>112</td>
<td>N</td>
</tr>
<tr>
<td>113</td>
<td>15</td>
<td>113</td>
<td>322</td>
<td>117</td>
<td>S</td>
</tr>
<tr>
<td>114</td>
<td>15</td>
<td>113</td>
<td>407</td>
<td>116</td>
<td>N</td>
</tr>
<tr>
<td>115</td>
<td>15</td>
<td>260</td>
<td>355</td>
<td>84</td>
<td>S</td>
</tr>
<tr>
<td>116</td>
<td>15</td>
<td>260</td>
<td>344</td>
<td>101</td>
<td>N</td>
</tr>
<tr>
<td>117</td>
<td>15</td>
<td>396</td>
<td>605</td>
<td>117</td>
<td>N</td>
</tr>
<tr>
<td>118</td>
<td>15</td>
<td>396</td>
<td>424</td>
<td>91</td>
<td>N</td>
</tr>
<tr>
<td>119</td>
<td>15</td>
<td>453</td>
<td>430</td>
<td>911</td>
<td>N</td>
</tr>
<tr>
<td>120</td>
<td>15</td>
<td>453</td>
<td>431</td>
<td>936</td>
<td>N</td>
</tr>
<tr>
<td>121</td>
<td>15</td>
<td>679</td>
<td>627</td>
<td>1011</td>
<td>N</td>
</tr>
</tbody>
</table>
Figure 3.47 Comparison of similarity flows resulted from the theoretical and from the numerical analysis at AR=15.
Figure 3.48 Streamlines of non-similarity flows in the Ostrach's configuration at AR=15.
Figure 3.49 The case of Lighthill where $R_A = 0$ at $AR=15$ for various $Ra_L^a$. 
imposed $Ra_A = -800$, the theoretically predicted value of $Ra_L^a = 170$ was not sufficiently large to produce a strong flow far toward the closed region of the cylinder. It appears that to form a similarity flow at $Ra_A = -800$, $Ra_L^a$ must be as large as 250, which is the value shown in Fig. 3.47.

Again referring to Fig. 3.47, similarity flow resulting from the numerical solution exists for positive values of $Ra_A$ which was not predicted by Ostrach and Thornton. The upper limit for $AR = 15$ is found to be near $Ra_A = 350$ which is interestingly, the approximate $Ra_A$ value where similarity flow for the previous case begins (see the flow regime map, Fig. 3.32). This is also the point where flow reversal is theoretically predicted (see Fig. 2.5). For this case, the reason that similarity flow is not achieved is that a cell is formed as Fig. 3.48(b) illustrates. The formation of the cell is probably due to the excessively large temperature gradient decreasing from the bottom (hottest) to the open-end. It was also found that in the vicinity of the theoretically-predicted similarity-flow curve for $Ra_A > 350$, the numerical solution required more iterations to reach convergence than when $Ra_A < 350$. This seems to indicate that the nature of the flow described above is very similar to that of the previous configuration where cell formation was indicated when $Ra_A$ was larger than 1300 (compare Fig. 3.48(b) with Fig. 3.38), also, in the latter case, some indication of instability was detected.

The Lighthill case is for $Ra_A = 0$. He predicted that if the flow is similar, the modified Rayleigh number, $Ra_L^a$, should have a value near 311. This was also predicted by Ostrach and Thornton.
and by the theoretically determined result in Chap. II. In the present numerical study, it was computed to be $Ra^a_L = 305$ as seen in Fig. 3.47, thus good agreement is also obtained here. To show further the differences in flow characteristics at $Ra_A = 0$, three conditions with data points indicated by figure numbers along the $Ra_A = 0$ line were examined; their streamlines are plotted in figure numbers, Fig. 3.49(a), (b) and (c). The streamline pattern in Fig. 3.49(a) occurs when $Ra^a_L$ is larger than that of similarity flow, which indicates that the non-similarity flow is formed due to an excessively strong convection current from the reservoir reaching the closed-end. This trend was found to be true as well for the region to the right side of the numerically obtained similarity-flow curve. Also, this situation compares well with flow results obtained in the previous case when $Ra_A$ was about 1300 or larger (see Fig. 3.28). The streamlines in Fig. 3.49(b) are typical of similarity flow a case already discussed when similarity flow was obtained (see Fig. 3.27). and as seen in these two figures, they are very much alike. Fig. 3.49(c) shows the streamlines for the situation where $Ra_A$ is smaller than that of similarity flow at $Ra_A = 0$. The reason for not able to achieve similarity flow here is that the temperature difference between the fluid in the reservoir and the cylinder wall was too small thus $Ra^a_L$ did not reach a large enough value such that the flow originating within the reservoir then moving down along the axis of the cylinder achieved temperature equilibrium before reaching the bottom portion of the cylinder. Thus, the fluid within a certain distance from the closed-end appeared to remain stagnant.
By examining the temperature field of this particular run it is seen that, within about 0.27 L from the closed-end of the cylinder, the fluid temperature remained the same as that at the wall. Again comparing this situation with that of the previous configuration, this result agrees well with what was discussed for the resulted flow when $Ra_A < 380$ and $4 < AR < 35$ or it was named Flow Regime II in Fig. 3.32.

Finally, the theoretical and numerical flow parameter $\alpha$ is compared in Fig. 3.50 for this particular configuration where the reservoir is located on top of the cylinder and the body force is directed downward. In Fig. 3.50, each numerically obtained $\alpha$ is the average of those along the centerline nodes with $AR$ again restricted to a value of 15. In this figure, we see again the deviation of the numerically determined $\alpha$ from the theoretical one as was seen in Fig. 3.41 of the previous configuration. However, the type of deviation in this case is different from that in Fig. 3.41, in that the numerically estimated $\alpha$ is larger than the theoretical value over a wide range in $Ra_A^L$ as seen in Fig. 3.50, while Fig. 3.41 indicated the opposite. The reason for this deviation is again due to the finite size of reservoir used in the numerical solution. In this case the reservoir was located on top of the cylinder, and similarity flow was downward along the cylinder-axis. Thus, the reasoning used for Fig. 3.41 does not apply here. Instead the reason would be that, since the cold reservoir wall at the top of the system was located sufficiently near such that the returning fluid from the cylinder was intensely cooled by the nearby cold reservoir-wall and which, in turn, returned into
Figure 3.50 Comparison of the theoretical and numerical flow parameters for the cases of Lighthill and Ostrach; $-306<\text{Ra}_L^a<260$, and $255<\text{Ra}_A<355$. 
the cylinder down along the axis at a much faster rate than when there was no restriction made on the reservoir size.
IV. CONCLUSIONS AND RECOMMENDATIONS

A closed-form solution was developed and solved for similarity flow in Chap. II, and the finite-difference solution was developed in Chap. III to obtain the information for non-similarity flow regimes not predicted by the above closed-form solution. Based upon the results reported in these respective chapters, the following conclusions can be listed:

1) The analytically defined similarity-flow regime was well predicted by the numerical solution for $380 < Ra_A < 1200$ and $380 < Ra_A^{\alpha} < 660$.

2) The result given by the numerical solution further defined three other flow regimes within the approximate Rayleigh-number ranges of $0 < Ra_A < 1300$ and $0 < Ra_L^{\alpha} < 1000$. One may thus identify the convection flow upon specifying $Ra_A$, $Ra_L^{\alpha}$, and AR of such geometries (see Fig. 3.32).

3) Flow regime IV (see Fig. 3.32) in which a secondary-flow cell formed, was further investigated to define the geometric characteristics of cells. Again by specifying two of the three parameters within this flow regime, one can identify the convection flow as well as cell sizes, parametrically, either by Fig. 3.34 or by Eq. (3.52).

4) The theoretically determined similarity flow of Lighthill's configuration was duplicated by the numerical solution with $Ra_A = 0$ and $Ra_L^{\alpha} = 310$, and further, two flow patterns, one for $Ra_L^{\alpha} < 310$ and the other for $Ra_L^{\alpha} > 310$, were characterized for AR = 15. Also, the case of Ostrach and Thornton was run
for AR = 15 and it was subsequently demonstrated that the numerically predicted similarity flow by the current solution agreed reasonably well with that of Ostrach and Thornton. The current numerical solution, however, was also capable of generating isotherms and streamlines for this case, which enabled the author to explain the above partial agreement of the similarity flow in detail as well as to describe the non-similarity flows of their configuration (see Sec. 3.4.4).

5) With regard to the application of the current results to a typical geothermal well where $Ra_A = 10^7$ and $AR > 150$, a direct correlation is not possible for such large values of $Ra_A$. However, based on the conclusion presented so far it would be safe to assume that in such geometries one can expect at least a break-down of continuous convection flow originating in the reservoir, such that the top portion of the well would be occupied either by secondary flow (or cell), or by periodically unstable convection flow.

Overall, as was proposed originally, the fundamental problem was solved mainly by means of the numerical solution, with results yielding sufficient information for one to understand the convection flows in such geometries at least for $0 < Ra_A < 1300$ and $0 < Ra_L < 1000$, and in lesser degree for $Ra_A > 1300$. Thus to define other possible flow regimes in a region with $Ra_A$ much larger than 1300, any solution must account for turbulent effects. By doing so and having the current result for the case of laminar flows, one may also be able to determine the transitional Rayleigh numbers. Finally, the validation of both cases by experiment will complete the current problem.
V. BIBLIOGRAPHY


13. Martin, B. W., "Free Convection in an Open Thermosyphon with Special Reference to Turbulent Flow," Proc. of the Royal


APPENDICES
VI. APPENDICES

A. Modified Numerical Equations

B. Computer Codes
   B-1 Program NATCON
   B-2 Example Input-Output Listing of NATCON
   B-3 Program NUSSLT
Appendix A

Modified Numerical Equations

This appendix is referred first time in Section 3.3.1, and contains the modified form of the numerical equations developed in Sec. 3.2. This modification was necessitated by the application of Gauss-Seidel iterative method to this problem.

Energy Equations:

1) for the internal nodes when $U > 0$ and $V > 0$ (from Eq. (3.10))

$$T_{i,j} = \left[ \left( \frac{U}{\alpha \Delta X} + \frac{1}{(\Delta X)^2} \right) T_{i-1,j} + \left( \frac{V}{\alpha \Delta R} + \frac{1}{(\Delta R)^2} - \frac{1}{2R(\Delta R)} \right) T_{i,j-1} \right. $$

$$\left. + \left( \frac{1}{(\Delta R)^2} + \frac{1}{2R(\Delta R)} \right) T_{i,j+1} + \frac{T_{i+1,j}}{(\Delta X)^2} \right] \left/ \left[ \frac{1}{\alpha} \left( \frac{U}{\Delta X} + \frac{V}{\Delta R} \right) + 2 \left( \frac{1}{(\Delta R)^2} + \frac{1}{(\Delta X)^2} \right) \right]\right.$$  

2) for the internal nodes when $U > 0$ and $V < 0$ (from Eq. (3.10))

$$T_{i,j} = \left[ \left( \frac{1}{(\Delta R)^2} - \frac{1}{2R(\Delta R)} \right) T_{i,j-1} + \left( \frac{1}{(\Delta R)^2} + \frac{1}{2R(\Delta R)} - \frac{V}{\alpha \Delta R} \right) T_{i,j+1} \right. $$

$$\left. + \left( \frac{1}{(\Delta X)^2} + \frac{U}{\alpha \Delta X} \right) T_{i-1,j} + \frac{T_{i+1,j}}{(\Delta X)^2} \right] \left/ \left[ \frac{1}{\alpha} \left( \frac{U}{\Delta X} - \frac{V}{\Delta R} \right) + 2 \left( \frac{1}{(\Delta R)^2} + \frac{1}{(\Delta X)^2} \right) \right]\right.$$
3) for the internal nodes when $U < 0$ and $V < 0$ (from Eq. (3.10))

$$T_{i,j} = \left[ \left( \frac{1}{(\Delta R)^2} - \frac{1}{2R(\Delta R)} \right) T_{i,j-1} + \left( \frac{1}{(\Delta R)^2} + \frac{1}{2R(\Delta R)} - \frac{V}{\alpha\Delta R} \right) T_{i,j+1} + \left( \frac{1}{\Delta X^2} - \frac{U}{\alpha\Delta X} \right) T_{i+1,j} + \frac{T_{i-1,j}}{(\Delta X)^2} \right] / \left[ \frac{1}{\alpha} \left( \frac{V}{\Delta R} - \frac{U}{\Delta X} \right) + 2 \left( \frac{1}{(\Delta X)^2} + \frac{1}{(\Delta R)^2} \right) \right]$$

4) for the internal nodes when $U < 0$ and $V \geq 0$ (from Eq. (3.10))

$$T_{i,j} = \left[ \left( \frac{1}{(\Delta R)^2} - \frac{1}{2R(\Delta R)} + \frac{V}{\alpha\Delta R} \right) T_{i,j-1} + \left( \frac{1}{(\Delta R)^2} + \frac{1}{2R(\Delta R)} \right) T_{i,j+1} + \left( \frac{1}{\Delta X^2} - \frac{U}{\alpha\Delta X} \right) T_{i+1,j} + \frac{T_{i-1,j}}{(\Delta X)^2} \right] / \left[ \frac{1}{\alpha} \left( \frac{V}{\Delta R} - \frac{U}{\Delta X} \right) + 2 \left( \frac{1}{(\Delta X)^2} + \frac{1}{(\Delta R)^2} \right) \right]$$

5) for the centerline nodes when $U \geq 0$ (from Eq. (3.11))

$$T_{i,j} = \left[ \left( \frac{1}{(\Delta X)^2} + \frac{U}{\alpha\Delta X} \right) T_{i-1,j} + \frac{T_{i+1,j}}{(\Delta X)^2} + \frac{4T_{i,j+1}}{(\Delta R)^2} \right] / \left( \frac{U}{\alpha\Delta X} + \frac{4}{(\Delta R)^2} + \frac{2}{(\Delta X)^2} \right)$$
6) for the centerline nodes when \( U < 0 \) (from Eq. (3.11))

\[
T_{i,j} = \left[ \left( \frac{1}{\alpha \Delta X} - \frac{U}{\alpha \Delta X} \right) T_{i+1,j} + \frac{4T_{i,j+1} + 4T_{i,j-1}}{(\Delta R)^2} \right] \left/ \left( \frac{4}{(\Delta R)^2} - \frac{U}{\alpha \Delta X} + \frac{2}{(\Delta X)^2} \right) \right.
\]

7) for the insulated vertical boundary nodes (from Eq. (3.14))

\[
T_{i,j} = \left( \frac{T_{i,j-1} + T_{i+1,j} + T_{i,j+1} + T_{i-1,j}}{(\Delta R)^2} \right) \left/ \left( \frac{1}{(\Delta R)^2} + \frac{1}{(\Delta X)^2} \right) \right.
\]

8) for the insulated horizontal boundary nodes (from Eq. (3.15))

\[
T_{i,j} = \left( \frac{T_{i,j+1} + T_{i,j-1} + T_{i+1,j} - T_{i,j-1}}{2R(\Delta R)} + \frac{2T_{i+1,j}}{(\Delta X)^2} \right) \left/ \left( \frac{2}{(\Delta R)^2} + \frac{2}{(\Delta X)^2} \right) \right.
\]

9) for the insulated bottom center node

\[
T_{i,j} = \left( \frac{2T_{i,j+1} + T_{i+1,j}}{(\Delta R)^2} \right) \left/ \left( \frac{2}{(\Delta R)^2} + \frac{1}{(\Delta X)^2} \right) \right.
\]

for the insulated bottom corner node

\[
T_{i,j} = \left( \frac{T_{i+1,j} + T_{i,j-1}}{(\Delta X)^2} \right) \left/ \left( \frac{1}{(\Delta X)^2} + \frac{1}{(\Delta R)^2} \right) \right.
\]
Vorticity Equations:

1) for the internal nodes when \( U > 0 \) and \( V > 0 \) (from Eq. (3.16))

\[
\Xi_{i,j} = \left[ \left( \frac{U}{v \Delta X} + \frac{1}{(\Delta X)^2} \right) \Xi_{i-1,j} + \left( \frac{V}{v \Delta R} - \frac{3}{2R(\Delta R)} + \frac{1}{(\Delta R)^2} \right) \Xi_{i,j-1} \right]
\]
\[
+ \left( \frac{3}{2R(\Delta R)} + \frac{1}{(\Delta R)^2} \right) \Xi_{i,j+1} + \frac{g \rho_0}{vR} \left( \frac{T_{i,j+1} - T_{i,j-1}}{2\Delta R} \right)
\]
\[
\left[ \frac{1}{v} \left( \frac{U}{\Delta X} + \frac{V}{\Delta R} \right) + 2 \left( \frac{1}{(\Delta X)^2} + \frac{1}{(\Delta R)^2} \right) \right]
\]

2) for the internal nodes when \( U > 0 \) and \( V < 0 \) (from Eq. (3.16))

\[
\Xi_{i,j} = \left[ \left( \frac{1}{(\Delta X)^2} + \frac{U}{v \Delta X} \right) \Xi_{i-1,j} + \left( \frac{3}{2R(\Delta R)} + \frac{1}{(\Delta R)^2} - \frac{V}{v \Delta R} \right) \Xi_{i,j+1} \right]
\]
\[
+ \left( \frac{1}{(\Delta R)^2} - \frac{3}{2R(\Delta R)} \right) \Xi_{i,j-1} + \frac{g \rho_0}{vR} \left( \frac{T_{i,j+1} - T_{i,j-1}}{2\Delta R} \right)
\]
\[
\left[ \frac{1}{v} \left( \frac{U}{\Delta X} - \frac{V}{\Delta R} \right) + 2 \left( \frac{1}{(\Delta X)^2} + \frac{1}{(\Delta R)^2} \right) \right]
\]

3) for the internal nodes when \( U < 0 \) and \( V < 0 \) (from Eq. (3.16))

\[
\Xi_{i,j} = \left[ \frac{\Xi_{i-1,j} + \left( \frac{1}{(\Delta X)^2} - \frac{U}{v \Delta X} \right) \Xi_{i+1,j} + \left( \frac{3}{2R(\Delta R)} + \frac{1}{(\Delta R)^2} \right) \Xi_{i,j-1} \right]
\]
\[
+ \left( \frac{3}{2R(\Delta R)} + \frac{1}{(\Delta R)^2} - \frac{V}{v \Delta R} \right) \Xi_{i,j+1} + \frac{g \rho_0}{vR} \left( \frac{T_{i,j+1} - T_{i,j-1}}{2\Delta R} \right)
\]
\[
\left[ - \frac{1}{v} \left( \frac{U}{\Delta X} + \frac{V}{\Delta R} \right) + 2 \left( \frac{1}{(\Delta X)^2} + \frac{1}{(\Delta R)^2} \right) \right]
\]
4) for the internal nodes when \( U < 0 \) and \( V \geq 0 \) (from Eq. (3.16))

\[
\Xi_{i,j} = \left[ \frac{\Xi_{i-1,j} + \left( \frac{1}{(\Delta X)^2} - \frac{U}{\nu \Delta X} \right) \Xi_{i+1,j} + \left( \frac{1}{(\Delta R)^2} - \frac{3}{2R \Delta R} + \frac{V}{\nu \Delta R} \right) \Xi_{i,j-1}}{\left( \frac{3}{2R \Delta R} + \frac{1}{(\Delta R)^2} \right) \Xi_{i,j+1} + \frac{g^B_0}{\nu R} \left( \frac{T_{i,j+1} - T_{i,j-1}}{2 \Delta R} \right) \right] \\
+ \left[ \frac{1}{\nu} \left( \frac{V}{\Delta R} - \frac{U}{\Delta X} \right) + 2 \left( \frac{1}{(\Delta X)^2} + \frac{1}{(\Delta R)^2} \right) \right]
\]

5) for the centerline nodes when \( U \geq 0 \) (from Eq. (3.18))

\[
\Xi_{i,j} = \left[ \left( \frac{U}{\nu \Delta X} + \frac{1}{(\Delta X)^2} \right) \Xi_{i-1,j} + \frac{\Xi_{i+1,j} + \frac{4}{(\Delta R)^2} \Xi_{i,j-1}}{\left( \frac{1}{(\Delta R)^2} + \frac{8}{(\Delta R)^2} \right)} \right] \\
+ \frac{4}{(\Delta R)^2} \Xi_{i,j+1} + \frac{g^B_0}{\nu} \left( \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j+1}}{(\Delta R)^2} \right)
\]

6) for the centerline nodes when \( U < 0 \) (from Eq. (3.18))

\[
\Xi_{i,j} = \left[ \frac{\Xi_{i-1,j} + \left( \frac{1}{(\Delta X)^2} - \frac{U}{\nu \Delta X} \right) \Xi_{i+1,j} + \frac{4}{(\Delta R)^2} \Xi_{i,j-1}}{\left( \frac{1}{(\Delta R)^2} + \frac{8}{(\Delta R)^2} \right)} \right] \\
+ \frac{4}{(\Delta R)^2} \Xi_{i,j+1} + \frac{g^B_0}{\nu} \left( \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j+1}}{(\Delta R)^2} \right)
\]

\[
\left( - \frac{U}{\nu \Delta X} + \frac{2}{(\Delta X)^2} + \frac{8}{(\Delta R)^2} \right)
\]
7) for the bottom center node (from Eq. (3.20))

\[ \Xi_{i,j} = \left[ \frac{5\Xi_{i+1,j} - 4\Xi_{i+2,j} + \Xi_{i+3,j}}{(\Delta X)^2 - \frac{8}{(\Delta R)^2}} \Xi_{i,j+1} \right] / \left( \frac{2}{(\Delta X)^2} - \frac{8}{(\Delta R)^2} \right) \]

8) for the top center node (from Eq. (3.21))

\[ \Xi_{i,j} = \left[ \frac{5\Xi_{i-1,j} - 4\Xi_{i-2,j} + \Xi_{i-3,j}}{(\Delta X)^2 - \frac{8}{(\Delta R)^2}} \Xi_{i,j+1} \right] / \left( \frac{2}{(\Delta X)^2} - \frac{8}{(\Delta R)^2} \right) \]

9) for the solid boundary nodes Eqs. (3.26) through (3.28) are used.

10) for the various corner nodes Eqs. (3.30) through (3.31) are used except, for the centerline Eq. (3.17) is used.

Vorticity and Stream Function Relation:

1) for the all internal nodes (from Eq. (3.32))

\[ \Psi_{i,j} = \left[ -\frac{\Psi_{i-1,j}}{(\Delta X)^2} - \frac{\Psi_{i+1,j}}{(\Delta X)^2} + \left( -\frac{1}{(\Delta R)^2} - \frac{1}{2R(\Delta R)} \right) \Psi_{i,j-1} \right. \\
+ \left. \frac{1}{(\Delta R)^2} - \frac{1}{(\Delta R)^2} \right] \Psi_{i,j+1} + \Xi_{i,j} R^2 \]

\[ -\frac{2}{(\Delta X)^2} - \frac{2}{(\Delta R)^2} \]
2) for the all solid boundary nodes

\[ \psi_{i,j} = 0 \]

Stream Function Equations:

Eqs. (3.33) through (3.38) were used without any modification.
Appendix B
Computer Codes

B-1 Program NATCON: The Fortran coded program NATCON is included in the following 11 pages. This numerical program is developed and used in Chap. III. The first stage of the coded-program development was done by the use of the CDC CYBER-75 computer at Oregon State University with the unsponsored research fund provided by the OSU Computer Center. Upon the completion of the first stage development which also included the debugging, the total coded-program was transferred to the PDP-11/10 computer of the mechanical engineering department of OSU. Thereafter, all computer runs were made by the above computer, except the last approximately 40 runs out of about 250 total runs, were made by the PDP-11/10 of the chemistry department of the above institution.

Most of the explanation of the program were already done in Chap. III, however, the pertinent coded-variables are as follows:

(in program) (in analysis)

- **U** \( U \) Axial velocity, m/s
- **V** \( V \) Radial velocity, m/s
- **S** \( \psi \) Stream function, m\(^3\)/s
- **T** \( T \) Temperature, °C
- **W** \( \varepsilon \) Vorticity, 1/s-m
- **G** \( g \) Gravitational constant, m/s\(^2\)
- **BET** \( \beta \) Thermal expansion coefficient, 1/°C
- **THRCON** \( k \) Thermal conductivity, kJ/s-m-K
<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS</td>
<td>$v$</td>
<td>Kinematic viscosity, $m^2/s$</td>
</tr>
<tr>
<td>DENS</td>
<td>$\rho$</td>
<td>Density, $kg/m^3$</td>
</tr>
<tr>
<td>SPHT</td>
<td>$c_p$</td>
<td>Specific heat, $kJ/kg-K$</td>
</tr>
</tbody>
</table>

Other related variables are also listed in Appendix B-2.
C PROGRAM NATCON
COMMON/A/U(30,10),V(30,10),S(30,10),T(30,10),U(30,10)
COMMON/B/G,BET,A,THRCON,VIS,DX,DXS,DR,DRS,AL,DXDR,
1 XD,RD
COMMON/C/OLD,FAC,FACM
COMMON/D/MX,MXX,NR,NRR,IFLIUIMD
COMMON/E/TTOP,TUTP,TUBT,TRTP,TRBT
IRE=2
C*************************************************************************
C FOLLOWING 11 CONSTANTS ARE FREQUENTLY CHANGED
C TO OBTAIN A SUITABLE GN, RA, OR RM.
C*************************************************************************

TYPE 1
1 FORMAT(' LIMIT ON ITERATION, ILOOP=',$,)
   ACCEPT 100,ILoop
100 FORMAT(I4)

10 FORMAT(' WATER-0; GLYCERINE-1: ',$)
   ACCEPT 100,IFLIUIMD

TYPE 2
2 FORMAT(' IF RESERVOIR PRINTOUT DESIRED TYPE "1", IF NOT "0":',$)
   ACCEPT 100,IRESV

110 FORMAT(' IF EVERY N TH ITERATION PRINTOUT DESIRED, TYPE IN
1 THAT NUMBER, IF NOT "0", IPRNT=',$)
   ACCEPT 100,IPRNT

TYPE 3
3 FORMAT(' MESH DISTANCES: DX=',$)
   ACCEPT 101,DX

11 FORMAT(' IF EVERY N TH ITERATION PRINTOUT DESIRED, TYPE IN
1 THAT NUMBER, IF NOT "0", IPRNT=',$)
   ACCEPT 100,IPRNT

TYPE 4
4 FORMAT(' DR=',$)
   ACCEPT 101,DR

TYPE 5
5 FORMAT(' BOUNDARY TEMPERATURES:

TYPE 6
6 FORMAT(' TOP OF THE FLUID, TTOP=',$)
   ACCEPT 101,TTOP

TYPE 8
8 FORMAT(' TOP OF THE WALL, TUTP=',$)
   ACCEPT 101,TUTP

TYPE 9
9 FORMAT(' BOT OF THE WALL, TUBT=',$)
   ACCEPT 101,TUBT

TYPE 11
11 FORMAT(' WALLS OF THE RES, TRTP=',$)
   ACCEPT 101,TRTP

TYPE 20
20 FORMAT(' TRBT=',$)
ACCEPT 101,TRBT
TYPE 111
111 FORMAT(' INITIAL FLUID TEMP., TINI=',S)
ACCEPT 101,TINI
TYPE 12
12 FORMAT(' NO. OF NODE FROM THE RES BOT CENTER: ')
TYPE 13
13 FORMAT(' TO THE RESERVOIR TOP, MX=',S)
ACCEPT 100,MX
TYPE 14
14 FORMAT(' TO THE CYLINDER TOP, MXX=',S)
ACCEPT 100,MXX
TYPE 15
15 FORMAT(' TO THE CYLINDER WALL, NR=',S)
ACCEPT 100,NR
TYPE 16
16 FORMAT(' TO THE RESERVOIR WALL, NRR=',S)
ACCEPT 100,NRR
TYPE 17
17 FORMAT(' RELAXATION FACTOR, FAC=',S)
ACCEPT 101,FAC
TYPE 18
18 FORMAT(' SUCCESSIVE TOLERANCE, ERR=',S)
ACCEPT 101,ERR
C*********************************************************************
MCK=MX
NCK=(NR+1)/2
CHKT=0.
CHKS=0.
CHKV=0.
CHKW=0.
CHKU=0.
OLD=0.
FACM=1.-FAC
CALL DATAS
DO 1000 M=1,MXX
IR=NR
IF(M.LE.MX)IR=NRR
DO 1000 N=1,IR
U(M,N)=0.
V(M,N)=0.
S(M,N)=0.
T(M,N)=TINI
W(M,N)=0.
1000 CONTINUE
C********************************************************************
C NON-LINEAR WALL TEMP. TYPE-IN PROCEDURE
C********************************************************************
TYPE 103
103 FORMAT(' IF WALL TEMP IS NON-LINEAR, TYPE IN "0"; IF LINEAR, "1": 1',S)
ACCEPT 104,LINER
104 FORMAT(I2)
IF(LINER.EQ.1)GO TO 300
ISTRT=MX+1
IEND=MXX-1
DO 200 I=ISTRT,IEND
TYPE 201,1
201 FORMAT(’AT M=’,I3,’;’,$)
ACCEPT 202,T(I,NR)
202 FORMAT(F10.3)
200 CONTINUE
300 CONTINUE
C******************************************************
C   CALCULATION STARTS, FROM HERE ON
C******************************************************

JPRNT=IPRNT
DO 2000 I=1,ILOOP
CALL EQNS(MX,NR,MXX,NRR,URES,LINER)
CALL VELO(MX,NR,HX-X,NRR)
IF(I.EQ.JPRNT)GO TO 2001
GO TO 2002
2001 JPRNT=JPRNT+IPRNT
C
WRITE(5,2003)I,T(MCK,NCK),U(MCK,NCK),S(MCK,NCK)
2003 FORMAT(1X,I4,2X,E11.4,2X,E11.4,2X,E11.4)
GO TO 2002
C
CALL PRTOUT(I,MX,NR,MXX,NRR,URES)
2002 CONTINUE
IF(I.LT.20)GO TO 2000
ABST=ABS((T(MCK,NCK)-CHKT)/T(MCK,NCK))
ABSS=ABS((S(MCK,NCK)-CHKS)/S(MCK,NCK))
ABSV=ABS((V(MCK,NCK)-CHKV)/V(MCK,NCK))
ABSU=ABS((U(MCK,NCK)-CHKU)/U(MCK,NCK))
CHKT=T(MCK,NCK)
CHKS=S(MCK,NCK)
CHKV=V(MCK,NCK)
CHKW=W(MCK,NCK)
CHKU=U(MCK,NCK)
IF(ABST.GT.ERR)GO TO 2000
IF(ABSS.GT.ERR)GO TO 2000
IF(ABSV.GT.ERR)GO TO 2000
IF(ABSU.GT.ERR)GO TO 2000
GO TO 2100
2000 CONTINUE
2100 CALL PRTOUT(I,MX,NR,MXX,NRR,URES)
CALL EXIT
END
SUBROUTINE DATAS
COMMON/A/U(30,10),V(30,10),S(30,10),T(30,10),U(30,10)
COMMON/B/G,BET,A,THRCON,VIS,DX,DXS,DR,DRS,AL,DXDR,
1 XD,RD
COMMON/C/OLD,FAC,FACM
COMMON/D/MX,MXX,NR,NRR,IFLUID
COMMON/E/TTOP,TUTP,TUBT,TRTP,TRBT
G=-9.80665
IF(IFLUID.EQ.1)GO TO 1000

C

C ---WATER---
C
SPHT=4.182
DENS=998.2
THRCON=.0006
VIS=10.05E-7
BET=.0002
GO TO 2000

1000 CONTINUE
C

C ---GLYCERINE---
C
SPHT=2.62
DENS=1259.
THRCON=.00029
VIS=7.54E-4
BET=.00054

2000 CONTINUE

DXS=DX*DX
DRS=DR*DR
XD=1./DXS
RD=1./DRS
AL=THRCON/(DENS*SPHT)
DXDR=1./DXS+1./DRS
A=(TUTP-TUTP)/(FLOAT(MXX-MX)*DX)
RETURN

END.

SUBROUTINE EDNS(MX,NR,MXX,NRR,IRES,LINER)
COMMON/A/U(30,10),V(30,10),S(30,10),T(30,10),U(30,10)
COMMON/B/G,BET,A,THRCON,VIS,DX,DXS,DR,DRS,AL,DXDR,
1 XD, RD
COMMON/C/OLD,FAC,FACM
COMMON/E/TTOP,TUTP,TUBT,TRTP,TRBT

C***ENERGY EQUATION*****************************************************
DO 9000 M=1,MXX
IR=NR
DO 9000 N=1,IR
IF(M.LE.MX)IR=NRR
DO 9000 N=1,IR
IF(M.EQ.1)GO TO 2000
IF(M.GT.1.AND.M.LT.MX)GO TO 1000
IF(M.EQ.MX)GO TO 2004
IF(M.EQ.MX.AND.M.LT.MXX)GO TO 200
IF(M.EQ.MXX)GO TO 300

1000 IF(N.EQ.1)GO TO 2001
IF(N.GT.1.AND.N.LT.NRR)GO TO 2002
IF(N.EQ.NRR)GO TO 2003

2000 GO TO(101,101,103),IRES
101 T(M,N)=TRBM
GO TO 9000
103 IF(N.EQ.1)GO TO 104
178

IF(N.GT.1.AND.N.LT.NRR)GO TO 105
IF(N.EQ.NRR)GO TO 106

104 T(M,N)=(2.*T(M,N+1)*RD+T(M+1,N)*XD)/(2.*RD+XD)
GO TO 9000

105 T(M,N)=((T(M,N+1)+T(M,N-1))*RD+(T(M,N+1)-T(M,N-1))/
1 (2.*FLOAT(N-1)*DRS)+2.*T(M+1,N)*XD)/(2.*DXDR)
GO TO 9000

106 T(M,N)=(T(M+1,N)*XD+T(M,N-1)*RD)/DXDR
GO TO 9000

2001 IF(U(M,N).GT.0.)GO TO 2100
T(M,N)=((XD-FU(M,N)/(AL*DX))*T(M+1,N)
1 +4.*T(M,N+1)*RD+T(M-1,N)*XD)/
2 (4.*RD-FU(M,N)/(AL*DX)+2.*XD)
GO TO 9000

2100 T(M,N)=((XD-FU(M,N)/(AL*DX))*T(M-1,N)
1 +T(M+1,N)*XD+4.*T(M,N+1)*RD)/
2 (FU(M,N)/(AL*DX)+4.*RD+2.*XD)
GO TO 9000

2002 IF(U(M,N).LT.0.AND.V(M,N).LT.0.)GO TO 2103
IF(U(M,N).LT.0.AND.V(M,N).LT.0.)GO TO 2103
GO TO 2104

2003 GO TO(107,108,108),IRES
107 T(M,N)=TRES
GO TO 9000

108 T(M,N)=(T(M,N-1)*RD+(T(M+1,N)+T(M-1,N))/(2.*DXS))/DXDR
GO TO 9000

2004 IF(N.EQ.1)GO TO 2001
IF(N.GT.1.AND.N.LT.NRR)GO TO 2002
IF(N.EQ.NRR)GO TO 2105
T(M,N)=TRIP
GO TO 9000

2101 T(M,N)=((FU(M,N)/(AL*DX)+XD)*T(M-1,N)
1 +(FU(M,N)/(AL*DR)+RD-1./(2.*FLOAT(N-1)*DRS))*T(M,N-1)
2 +(RD+1./(2.*FLOAT(N-1)*DRS))*T(M,N+1)
3 +T(M+1,N)*XD)/
4 ((FU(M,N)/(DX+FV(M,N)/DR)/AL+2.*DXDR)
GO TO 9000

2102 T(M,N)=((RD-1./(2.*FLOAT(N-1)*DRS))*T(M,N-1)
1 +(RD+1./(2.*FLOAT(N-1)*DRS)-FU(M,N)/(AL*DR))*T(M,N+1)
2 +(XD-FU(M,N)/(AL*DX))(T(M-1,N)+T(M+1,N)*XD)/
3 (FU(M,N)/DX-FV(M,N)/DR)/AL+2.*DXDR)
GO TO 9000

2103 T(M,N)=((RD-1./(2.*FLOAT(N-1)*DRS))*T(M,N-1)
1 +(RD+1./(2.*FLOAT(N-1)*DRS)-FU(M,N)/(AL*DR))*T(M,N+1)
2 +(XD-FU(M,N)/(AL*DX))*T(M-1,N)+T(M+1,N)*XD)/
3 ((FU(M,N)/DX+FV(M,N)/DR)/(-AL)+2.*DXDR)
GO TO 9000

2104 T(M,N)=((RD-1./(2.*FLOAT(N-1)*DRS)+FU(M,N)/(AL*DR))*T(M,N-1)
1 +(RD+1./(2.*FLOAT(N-1)*DRS))*T(M,N+1)
2 +(XD-FU(M,N)/(AL*DX))*T(M+1,N)+T(M-1,N)*XD)/
3 ((FU(M,N)/DR-FU(M,N)/DX)/AL+2.*DXDR)
GO TO 9000
179

T(M,N) = TUBT
GO TO 9000

200 IF(N.EQ.1) GO TO 2001
IF(N.GT.1 .AND. N.LT.NR) GO TO 2002
IF(LINER.EQ.0) GO TO 9000
T(M,N) = TWTP + A*DX*FLOAT(MXX-M)
GO TO 9000

300 T(M,N) = TTDP
IF(N.EQ.NR) GO TO 350
GO TO 9000

350 T(M,N) = TWTP
GO TO 9000

CONTINUE

C*** M O M E N T U M E D U A T I O N *****************************

DO 9100 M=1,MXX
IR = NR
IF(M.LE.MX) IR = NRR
DO 9100 N = 1, IR
IF(N.EQ.1) GO TO 3000
IF(N.GT.1 .AND. N.LT.NRR) GO TO 3001
IF(N.GT.NR) GO TO 3002
IF(N.GT.NRR) GO TO 3003
DO 9100 N = 1, IR
IF(N.EQ.1) GO TO 3004
IF(N.GT.1 .AND. N.LT.NRR) GO TO 3005
IF(N.GT.NR) GO TO 3006
IF(N.GT.NRR) GO TO 3007
DO 9100 N = 1, IR
IF(N.EQ.1) GO TO 3008
IF(N.GT.1 .AND. N.LT.NRR) GO TO 3009
IF(N.GT.NR) GO TO 3010
IF(N.GT.NRR) GO TO 3011

310 W(M,N) = ((B*S(M-1,N) - S(M-2,N))*XD + (B*S(M,N-1) - S(M,N-2))*RD)/
1 (4.*FLOAT(N-1)*FLOAT(N-1)*DRS)
GO TO 9100

4001 W(M,N) = 0.
C4001 W(M,N) = ((5.*W(M+1,N) - 4.*W(M+2,N) + W(M+3,N))*XD
1 - 8.*W(M,N+1) + RD)/(2.*XD - 8.*RD)
GO TO 9100

4002 W(M,N) = (B*S(M+1,N) - S(M+2,N)))/(2.*DXS*FLOAT(N-1)*FLOAT(N-1)*DRS)
GO TO 9100

4003 W(M,N) = 0.
GO TO 9100

4004 IF(U(M,N).GE.0.) GO TO 4005
W(M,N) = (U(M-1,N)*XD + (XD/EU(M,N)/(VIS*DX)) + U(M+1,N))
1 + (B.*RD) + W(M,H+1)
GO TO 9100

4005  \( W(M,N) = ( (F(U(M,N)/(VIS*DX)+XD)\times U(M-1,N) + U(M+1,N)\times XD \\
1 + (8.*RD)\times W(M,N+1) \\
2 + G*BET*(2.*T(M,N+1) - 2.*T(M,N))/(VIS*DRS) \\
3 (F(U(M,N)/(VIS*DX)+2.*XD+B.*RD) \\
GO TO 9100

4006  IF(U(M,N) .GE. 0. AND. V(M,N) .GE. 0.) GO TO 4007 \\
IF(U(M,N) .GE. 0. AND. V(M,N) .LT. 0.) GO TO 4008 \\
IF(U(M,N) .LT. 0. AND. V(M,N) .LT. 0.) GO TO 4009 \\
GO TO 4010

4007  \( W(M,N) = ( (F(U(M,N)/(VIS*DX)+XD)\times U(M-1,N) \\
1 + (8.*RD)\times W(M,N+1) \\
2 + G*BET*(2.*T(M,N+1) - 2.*T(M,N))/(VIS*DRS) \\
3 (F(U(M,N)/(VIS*DX)+2.*XD+B.*RD) \\
GO TO 9100

4008  IF(U(M,N) .GE. 0. AND. V(M,N) .GE. 0.) GO TO 4007 \\
IF(U(M,N) .GE. 0. AND. V(M,N) .LT. 0.) GO TO 4008 \\
IF(U(M,N) .LT. 0. AND. V(M,N) .LT. 0.) GO TO 4009 \\
GO TO 4010

4009  \( W(M,N) = ( (F(U(M,N)/(VIS*DX)+XD)\times U(M-1,N) \\
1 + (8.*RD)\times W(M,N+1) \\
2 + G*BET*(2.*T(M,N+1) - 2.*T(M,N))/(VIS*DRS) \\
3 (F(U(M,N)/(VIS*DX)+2.*XD+B.*RD) \\
GO TO 9100

4010  \( W(M,N) = ( (F(U(M,N)/(VIS*DX)+XD)\times U(M-1,N) \\
1 + (8.*RD)\times W(M,N+1) \\
2 + G*BET*(2.*T(M,N+1) - 2.*T(M,N))/(VIS*DRS) \\
3 (F(U(M,N)/(VIS*DX)+2.*XD+B.*RD) \\
GO TO 9100

4011  \( W(M,N) = ( (F(U(M,N)/(VIS*DX)+XD)\times U(M-1,N) \\
1 + (8.*RD)\times W(M,N+1) \\
2 + G*BET*(2.*T(M,N+1) - 2.*T(M,N))/(VIS*DRS) \\
3 (F(U(M,N)/(VIS*DX)+2.*XD+B.*RD) \\
GO TO 9100

4012  \( W(M,N) = 0. \\
C4012  \( W(M,N) = ( (5.*W(M-1,N) - 4.*W(M-2,N) + W(M-3,N))\times XD \\
1 - 8.*W(M,N+1)\times RD)/(2.*XD+B.*RD) \\
GO TO 9100

4013  \( W(M,N) = ( (5.*W(M-1,N) - 4.*W(M-2,N) + W(M-3,N))\times XD \\
1 - 8.*W(M,N+1)\times RD)/(2.*XD+B.*RD) \\
GO TO 9100

4014  \( W(M,N) = 0. \\
9100  CONTINUE \\
C***STREAM FUNCTIONS************************************************************

DO 9200 M=1,MXX
IR=NR
IF(M.LE.MX)IR=NRR
DO 9200 N=1,IR
IF(M.EQ.1)GO TO 5100
IF(M.GT.1.AND.M.LT.MX)GO TO 5101
IF(M.EQ.MX)GO TO 403
IF(M.GT.MX.AND.M.LT.MXX)GO TO 401
IF(M.EQ.MXX)GO TO 5100
401 IF(N.EQ.1.OR.N.EQ.NR)GO TO 5100
IF(N.GT.1.AND.N.LT.NR)GO TO 5102
403 IF(N.EQ.1.OR.N.EQ.NR)GO TO 5100
IF(N.GT.NR)GO TO 5100
5100 S(M,N)=0.
GO TO 9200
5101 IF(N.EQ.1)GO TO 5100
IF(N.GT.1.AND.N.LT.NRR)GO TO 5102
IF(N.EQ.NRR)GO TO 5100
5102 OLD=S(M,N)
S(M,N)=((-S(M-1,N)-S(M+1,N))*XD
1. +(-RD-1./(2.*FLOAT(M-1)*DRS))*S(M,N-1)
2. +(-RD+1./(2.*FLOAT(M-1)*DRS))*S(M,N+1)
3. +(M,N)*FLOAT(M-1)*FLOAT(N-1)*DRS)/
4. (-2.*DXDR)
S(M,N)=FAC*S(M,N)+FACM*OLD
9200 CONTINUE
RETURN
END
SUBROUTINE VELO(MX,NR,MXX,NRR)
COMMON/A/U(30,10),V(30,10),S(30,10),1(30,10),U(30,10)
COMMON/B/G,BETIA,TNRCON,VISIDX,DXS,DR,DRS,AL,DXDR,
X,DR
COMMON/C/OLD,FAC,FACM,
MNUS=MX-1
NNUS=NR-1
NRNMUS=NR-1
MXMNUS=MX-1
C***AXIAL VELOCITY (U)********************************************************************
DO 7000 M=1,MXX
IR=NR
IF(M.LE.MX)IR=NR
DO 7000 N=1,IR
IF(M.EQ.1)GO TO 1000
IF(M.GT.1.AND.M.LT.MX)GO TO 1001
IF(M.GE.MX.AND.M.LT.MXX)GO TO 100
IF(M.EQ.MX)GO TO 1000
100 IF(N.EQ.1)GO TO 2000
IF(N.EQ.2)GO TO 2001
IF(N.GT.2.AND.N.LT.NRMUS)GO TO 2002
IF(N.EQ.NRMUS)GO TO 2003
1000 U(M,N)=0.
GO TO 7000
1001 IF(N.EQ.1)GO TO 2000
IF(N.EQ.2)GO TO 2001
IF(N.GT.2.AND.N.LT.NRMUS)GO TO 2002
IF(N.EQ.NRMUS)GO TO 2003
IF(N.EQ.NRR)GO TO 1000
C2000 OLD=U(M,N)
2000 U(M,N)=2.*S(M,N+1)*RD
C U(M,N)=FAC*U(M,N)+FACM*OLD
GO TO 7000
C2001 OLD=U(M,N)
2001 U(M,N)=(-3.*S(M,N)+6.*S(M,N+1)-S(M,N+2))/
1 (6.*FLOAT(N-1)*DRS)
C U(M,N)=FAC*U(M,N)+FACM*OLD
GO TO 7000
C2002 OLD=U(M,N)
2002 U(M,N)=(S(M,N-2)-6.*S(M,N-1)+8.*S(M,N)+S(M,N+2))/
1 (12.*FLOAT(N-1)*DRS)
C U(M,N)=FAC*U(M,N)+FACM*OLD
GO TO 7000
C2003 OLD=U(M,N)
2003 U(M,N)=(S(M,N-2)-6.*S(M,N-1)+3.*S(M,N))/(6.*FLOAT(N-1)*DRS)
C U(M,N)=FAC*U(M,N)+FACM*OLD
7000 CONTINUE
C***RADIAL VELOCITY (V)*****************************************************************
DO 8000 M=1,MXX
IR=NR
IF(M.LE.MX)IR=NRR
DO 8000 N=1,IR
IF(M.EQ.1)GO TO 1100
IF(M.EQ.2)GO TO 1101
IF(M.GT.2.AND.M.LT.MXX)GO TO 200
IF(M.EQ.MXX)GO TO 201
IF(M.EQ.MX)GO TO 202
IF(M.GT.MX.AND.M.LT.MXX)GO TO 1102
IF(M.EQ.MX)GO TO 1103
IF(M.EQ.MXX)GO TO 1100
200 IF(N.EQ.1.OR.N.EQ.NRR)GO TO 1100
IF(N.GT.1.AND.N.LT.NRR)GO TO 2102
201 IF(N.EQ.1.OR.N.EQ.NRR)GO TO 1100
IF(N.GT.1.AND.N.LT.NR)GO TO 2102
IF(N.GE.NR.AND.N.LE.MXX)GO TO 2103
202 IF(N.EQ.1.OR.N.GE.NR)GO TO 1100
IF(N.GT.1.AND.N.LT.NR)GO TO 2102
1100 V(M,N)=0.
GO TO 8000
1101 IF(N.EQ.1)GO TO 1100
IF(N.GT.1.AND.N.LT.NRR)GO TO 2101
IF(N.EQ.NRR)GO TO 1100
1102 IF(N.EQ.1)GO TO 1100
IF(N.GT.1.AND.N.LT.NRR)GO TO 2102
IF(N.EQ.NR)GO TO 1100
1103 IF(N.EQ.1)GO TO 1100
IF(N.GT.1.AND.N.LT.NRR)GO TO 2103
IF(N.EQ.NR)GO TO 1100
C2101 OLD=V(M,N)
2101 V(M,N)=(3.*S(M,N)-6.*S(M+1,N)+S(M+2,N))/
1 (6.*FLOAT(N-1)*DX*DR)
C \( V(M,N) = FAC \times V(M,N) + FACM \times OLD \)
GO TO 8000

C2102 \( OLD = V(M,N) \)
2102 \( \frac{(S(M+2,N) - 8 \times S(M+1,N) + 8 \times S(M-1,N) - S(M-2,N))}{12 \times \text{FLOAT}(N-1) \times DR \times DX} \)
C \( V(M,N) = FAC \times V(M,N) + FACM \times OLD \)
GO TO 8000

C2103 \( OLD = V(M,N) \)
2103 \( \frac{(-S(M-2,N) + 6 \times S(M-1,N) - 3 \times S(M,N))}{6 \times \text{FLOAT}(N-1) \times DR \times DX} \)
C \( V(M,N) = FAC \times V(M,N) + FACM \times OLD \)

8000 CONTINUE
RETURN
END

FUNCTION \( FU(M,N) \)
COMMON/A/U(30,10),V(30,10)
C \( FU = \frac{U(M-1,N) + U(M,N) + U(M+1,N)}{2} \)
RETURN
END

FUNCTION \( FV(M,N) \)
COMMON/A/U(30,10),V(30,10)
C \( FV = \frac{V(M,N-1) + V(M,N) + V(M,N+1)}{2} \)
RETURN
END

SUBROUTINE PRTOUT(T, MX, NR, MXX, NRR, IRESV)
COMMON/A/U(30,10),V(30,10),S(30,10),T(30,10),W(30,10)
COMMON/B/G,BET,A,THRCON,VIS,DX,DXS,DR,DRS,AL,DXDR,
1 XD, RD
COMMON/C/OLD,FAC,FACM
COMMON/E/TTOP,TWTP,TWBT,TRTP,TRBT

PRN=VIS/AL
RA=A*BET*G*((FLOAT(NR-1)*DR)**4)/(VIS*AL)
GN=BET*G*(T(MX,1)-TTOP)*((FLOAT(NR-1)*DR)**3)/(VIS*AL)
RM=GN*FLOAT(NR-1)*DR/(FLOAT(MXX-MX)*DX)
WRITE(5,4002)
WRITE(5,5000)RA,RM,GN,PRN
WRITE(5,5001)T(MX,1),U(MX,1)
5001 FORMAT(1X,'T(MX,1)=',E10.3,3X,'U(MX,1)=',E10.3)
WRITE(5,1000)I
WRITE(5,1001)
DO 2000 IM=1,MXX
M=MXX-IM+1
IF(M.LE.MX)GO TO 3000
WRITE(5,4000)(T(M,N),N=1,NR)
GO TO 2000
3000 WRITE(5,4001)(T(M,N),N=1,NRR)
IF(M.EQ.(MX-1).AND.IRESV.EQ.0) GO TO 2100
2000 CONTINUE
2100 WRITE(5,1003)
DO 2001 IM=1,MXX
M=MXX-IM+1
183
IF(M.LE.MX)GO TO 3001
WRITE(5,4000)(W(M,N),N=1,NR)
GO TO 2001
3001 WRITE(5,4001)(W(M,N),N=1,NRR)
IF(M.EQ.(M-1).AND.IRESV.EQ.0) GOTO 2200
2001 CONTINUE
2200 WRITE(5,1004)
DO 2002 IM=1,HXX
M=HXX-IM+1
IF(M.LE.MX)GO TO 3002
WRITE(5,4000)(S(M,N),N=1,NR)
GO TO 2002
3002 WRITE(5,4001)(S(M,N),N=1,NRR)
IF(M.EQ.(M-1).AND.IRESV.EQ.0) GOTO 2300
2002 CONTINUE
2300 WRITE(5,1005)
DO 2003 IM=1,MXX
M=MXX-IM+1
IF(M.LE.MX)GO TO 3003
WRITE(5,4000)(U(M,N),N=1,NR)
GO TO 2003
3003 WRITE(5,4001)(U(M,N),N=1,NRR)
IF(M.EQ.(M-1).AND.IRESV.EQ.0) GOTO 2400
2003 CONTINUE
2400 WRITE(5,1006)
DO 2004 IM=1,MXX
M=MXX-IM+1
IF(M.LE.MX)GO TO 3004
WRITE(5,4000)(V(M,N),N=1,NR)
GO TO 2004
3004 WRITE(5,4001)(V(M,N),N=1,NRR)
IF(M.EQ.(M-1).AND.IRESV.EQ.0) GOTO 2500
2004 CONTINUE
2500 CONTINUE
1000 FORMAT(/1X,'I=',I4)
1001 FORMAT(/1X,'TEMPERATURE IN DEGREE C')
1003 FORMAT(/1X,'VORTICITY')
1004 FORMAT(/1X,'STREAM FUNCTION')
1005 FORMAT(/1X,'AXIAL VELOCITY IN METER/SEC')
1006 FORMAT(/1X,'RADIAL VELOCITY IN METER/SEC')
4000 FORMAT(1X,6E10.3)
4001 FORMAT(1X,9E10.3)
4002 FORMAT(/1X,'COMPUTATION RESULTS:')
5000 FORMAT(1X,'RA=',E10.3,5X,'RM=',E10.3,5X,'GN=',E10.3,5X,
    1 'PRN=',F9.5)
RETURN
END
B-2 Example Input-Output Listing: The example input and output listings of the program NATCON are included in the following six pages. The input portion is listed in the first page where the values of frequently changed constants are set before each run of the program. The output section starts from the line "COMPUTED RESULTS:" at the bottom of the first page and includes following five pages where maps of the temperature, the vorticity, the stream function values, the axial velocity, and the radial velocity are listed. The explanation of input and output variables are as follows:

(in program) (in analysis)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILOOP</td>
<td>n/a</td>
<td>Maximum number of iterations</td>
</tr>
<tr>
<td>DX</td>
<td>ΔX</td>
<td>Axial mesh distance, m</td>
</tr>
<tr>
<td>DR</td>
<td>ΔR</td>
<td>Radial mesh distance, m</td>
</tr>
<tr>
<td>TTOP</td>
<td>T₀</td>
<td>Cylinder top temperature, °C</td>
</tr>
<tr>
<td>TWTP</td>
<td>T₀</td>
<td>Top cylinder-wall temperature, °C</td>
</tr>
<tr>
<td>TWBT</td>
<td>T_{BOT}</td>
<td>Bottom cylinder-wall temperature, °C</td>
</tr>
<tr>
<td>TRTP</td>
<td>T_{RES}</td>
<td>Reservoir top-wall temperature, °C</td>
</tr>
<tr>
<td>TRBT</td>
<td>n/a</td>
<td>Reservoir bottom-wall temperature, °C</td>
</tr>
<tr>
<td>MX</td>
<td>n/a</td>
<td>See Fig. 3.7</td>
</tr>
<tr>
<td>MXX</td>
<td>n/a</td>
<td>See Fig. 3.7</td>
</tr>
<tr>
<td>NR</td>
<td>n/a</td>
<td>See Fig. 3.7</td>
</tr>
<tr>
<td>NRR</td>
<td>n/a</td>
<td>See Fig. 3.7</td>
</tr>
<tr>
<td>FAC</td>
<td>FAC</td>
<td>Successive-over-relaxation factor</td>
</tr>
<tr>
<td>ERR</td>
<td>n/a</td>
<td>Successive iteration error</td>
</tr>
<tr>
<td>RA</td>
<td>Ra_A</td>
<td>Modified Rayleigh number based on the wall temperature gradient</td>
</tr>
<tr>
<td>Code</td>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>RM</td>
<td>$Ra_L^3$</td>
<td>Modified Rayleigh number based on the center line temperature</td>
</tr>
<tr>
<td>GN</td>
<td>$Ra$</td>
<td>Grashof number based on the centerline temperature</td>
</tr>
<tr>
<td>PRN</td>
<td>$Pr$</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>I</td>
<td>n/a</td>
<td>Iteration number at the time of print out</td>
</tr>
</tbody>
</table>
RUN CON

LIMIT ON ITERATION, ILOOP=1000

WATER-0; GLYCERINE-1: 0

IF RESERVOIR PRINTOUT DESIRED TYPE "1", IF NOT "0": 1

IF EVERY N TH ITERATION PRINTOUT DESIRED, TYPE INT THAT NUMBER, IF NOT "0", IPRNT=0

MESH DISTANCES: DX=.015

DR=.001

BOUNDARY TEMPERATURES:
  TOP OF THE FLUID, TOP=0.
  TOP OF THE WALL, TTOP=0.
  BOT OF THE WALL, TBT=46.
  WALLS OF THE RES, TRP=46.
  TR=46.

INITIAL FLUID TEMP., TINI=5.

NO. OF NODE FROM THE RES BOT CENTER:
  TO THE RESERVOIR TOP, MX=5
  TO THE CYLINDER TOP, MXX=25
  TO THE CYLINDER WALL, NR=6
  TO THE RESERVOIR WALL,NRR=9

RELAXATION FACTOR, FAC=.3

SUCCESSIVE TOLERANCE, ERR=.00001

IF WALL TEMP IS NON-LINEAR, TYPE IN "0"; IF LINEAR, "1": 1

COMPUTATION RESULTS:

RA= 0.130E+04  RM= 0.713E+03  GN= 0.428E+05  PRN= 6.99224
T(MX,1)= 0.252E+02  U(MX,1)=-0.307E-01
I = 179

<table>
<thead>
<tr>
<th>TEMPERATURE IN DEGREE C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000E+00</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>0.386E+01</td>
<td>0.360E+01</td>
</tr>
<tr>
<td>0.465E+01</td>
<td>0.461E+01</td>
</tr>
<tr>
<td>0.587E+01</td>
<td>0.634E+01</td>
</tr>
<tr>
<td>0.709E+01</td>
<td>0.771E+01</td>
</tr>
<tr>
<td>0.831E+01</td>
<td>0.923E+01</td>
</tr>
<tr>
<td>0.953E+01</td>
<td>0.107E+02</td>
</tr>
<tr>
<td>1.07E+02</td>
<td>0.122E+02</td>
</tr>
<tr>
<td>1.19E+02</td>
<td>0.137E+02</td>
</tr>
<tr>
<td>0.131E+02</td>
<td>0.152E+02</td>
</tr>
<tr>
<td>0.143E+02</td>
<td>0.166E+02</td>
</tr>
<tr>
<td>0.155E+02</td>
<td>0.180E+02</td>
</tr>
<tr>
<td>0.166E+02</td>
<td>0.194E+02</td>
</tr>
<tr>
<td>0.177E+02</td>
<td>0.207E+02</td>
</tr>
<tr>
<td>0.188E+02</td>
<td>0.220E+02</td>
</tr>
<tr>
<td>0.199E+02</td>
<td>0.232E+02</td>
</tr>
<tr>
<td>0.210E+02</td>
<td>0.245E+02</td>
</tr>
<tr>
<td>0.220E+02</td>
<td>0.255E+02</td>
</tr>
<tr>
<td>0.231E+02</td>
<td>0.268E+02</td>
</tr>
<tr>
<td>0.240E+02</td>
<td>0.275E+02</td>
</tr>
<tr>
<td>0.252E+02</td>
<td>0.293E+02</td>
</tr>
<tr>
<td>0.261E+02</td>
<td>0.305E+02</td>
</tr>
<tr>
<td>0.273E+02</td>
<td>0.322E+02</td>
</tr>
<tr>
<td>0.281E+02</td>
<td>0.332E+02</td>
</tr>
<tr>
<td>0.460E+02</td>
<td>0.460E+02</td>
</tr>
</tbody>
</table>

188
<table>
<thead>
<tr>
<th>0.000E+00</th>
<th>0.252E+02</th>
<th>0.166E+02</th>
<th>0.793E+01</th>
<th>0.186E+01</th>
<th>0.000E+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.108E+04</td>
<td>-0.982E+03</td>
<td>-0.682E+03</td>
<td>-0.257E+03</td>
<td>0.719E+02</td>
<td>0.189E+03</td>
</tr>
<tr>
<td>-0.444E+02</td>
<td>-0.378E+02</td>
<td>-0.233E+02</td>
<td>-0.714E+01</td>
<td>0.344E+01</td>
<td>0.500E+01</td>
</tr>
<tr>
<td>0.000E+00</td>
<td>-0.108E+04</td>
<td>-0.982E+03</td>
<td>-0.682E+03</td>
<td>-0.257E+03</td>
<td>0.719E+02</td>
</tr>
<tr>
<td>0.190E+04</td>
<td>0.164E+04</td>
<td>0.101E+04</td>
<td>0.305E+03</td>
<td>-0.145E+03</td>
<td>-0.181E+03</td>
</tr>
<tr>
<td>0.285E+04</td>
<td>0.246E+04</td>
<td>0.152E+04</td>
<td>0.462E+03</td>
<td>-0.215E+03</td>
<td>-0.277E+03</td>
</tr>
<tr>
<td>0.379E+04</td>
<td>0.327E+04</td>
<td>0.203E+04</td>
<td>0.619E+03</td>
<td>-0.284E+03</td>
<td>-0.376E+03</td>
</tr>
<tr>
<td>0.471E+04</td>
<td>0.406E+04</td>
<td>0.253E+04</td>
<td>0.778E+03</td>
<td>-0.349E+03</td>
<td>-0.480E+03</td>
</tr>
<tr>
<td>0.562E+04</td>
<td>0.484E+04</td>
<td>0.302E+04</td>
<td>0.938E+03</td>
<td>-0.411E+03</td>
<td>-0.589E+03</td>
</tr>
<tr>
<td>0.649E+04</td>
<td>0.560E+04</td>
<td>0.350E+04</td>
<td>0.110E+04</td>
<td>-0.469E+03</td>
<td>-0.704E+03</td>
</tr>
<tr>
<td>0.734E+04</td>
<td>0.634E+04</td>
<td>0.396E+04</td>
<td>0.126E+04</td>
<td>-0.521E+03</td>
<td>-0.825E+03</td>
</tr>
<tr>
<td>0.816E+04</td>
<td>0.704E+04</td>
<td>0.442E+04</td>
<td>0.143E+04</td>
<td>-0.568E+03</td>
<td>-0.955E+03</td>
</tr>
<tr>
<td>0.894E+04</td>
<td>0.772E+04</td>
<td>0.485E+04</td>
<td>0.159E+04</td>
<td>-0.607E+03</td>
<td>-0.109E+04</td>
</tr>
<tr>
<td>0.967E+04</td>
<td>0.836E+04</td>
<td>0.527E+04</td>
<td>0.176E+04</td>
<td>-0.640E+03</td>
<td>-0.124E+04</td>
</tr>
<tr>
<td>0.104E+05</td>
<td>0.896E+04</td>
<td>0.566E+04</td>
<td>0.192E+04</td>
<td>-0.662E+03</td>
<td>-0.139E+04</td>
</tr>
<tr>
<td>0.110E+05</td>
<td>0.952E+04</td>
<td>0.605E+04</td>
<td>0.211E+04</td>
<td>-0.675E+03</td>
<td>-0.157E+04</td>
</tr>
<tr>
<td>0.116E+05</td>
<td>0.100E+05</td>
<td>0.633E+04</td>
<td>0.224E+04</td>
<td>-0.674E+03</td>
<td>-0.173E+04</td>
</tr>
<tr>
<td>0.120E+05</td>
<td>0.105E+05</td>
<td>0.683E+04</td>
<td>0.248E+04</td>
<td>-0.662E+03</td>
<td>-0.198E+04</td>
</tr>
<tr>
<td>0.124E+05</td>
<td>0.107E+05</td>
<td>0.677E+04</td>
<td>0.247E+04</td>
<td>-0.626E+03</td>
<td>-0.207E+04</td>
</tr>
<tr>
<td>0.127E+05</td>
<td>0.111E+05</td>
<td>0.738E+04</td>
<td>0.300E+04</td>
<td>-0.524E+03</td>
<td>-0.269E+04</td>
</tr>
<tr>
<td>0.131E+05</td>
<td>0.112E+05</td>
<td>0.670E+04</td>
<td>0.228E+04</td>
<td>-0.179E+03</td>
<td>-0.141E+04</td>
</tr>
<tr>
<td>0.134E+05</td>
<td>0.113E+05</td>
<td>0.698E+04</td>
<td>0.303E+04</td>
<td>0.110E+04</td>
<td>0.302E+03</td>
</tr>
<tr>
<td>0.134E+05</td>
<td>0.110E+05</td>
<td>0.635E+04</td>
<td>0.276E+04</td>
<td>0.108E+04</td>
<td>0.325E+03</td>
</tr>
<tr>
<td>0.134E+05</td>
<td>0.113E+05</td>
<td>0.737E+04</td>
<td>0.406E+04</td>
<td>0.207E+04</td>
<td>0.690E+03</td>
</tr>
<tr>
<td>0.000E+00</td>
<td>-0.375E+03</td>
<td>-0.288E+03</td>
<td>-0.204E+03</td>
<td>-0.131E+03</td>
<td>-0.722E+02</td>
</tr>
</tbody>
</table>
STREAM FUNCTION

0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00
0.000E+00  0.142E-08  0.375E-08  0.403E-08  0.168E-08  0.000E+00
0.000E+00  0.520E-10  0.130E-09  0.131E-09  0.475E-10  0.000E+00
0.000E+00  0.106E-08  0.263E-08  0.258E-08  0.875E-09  0.000E+00
0.000E+00  0.215E-08  0.534E-08  0.523E-08  0.179E-08  0.000E+00
0.000E+00  0.324E-08  0.803E-08  0.790E-08  0.272E-08  0.000E+00
0.000E+00  0.431E-08  0.107E-07  0.106E-07  0.367E-08  0.000E+00
0.000E+00  0.538E-08  0.134E-07  0.132E-07  0.466E-08  0.000E+00
0.000E+00  0.643E-08  0.160E-07  0.159E-07  0.567E-08  0.000E+00
0.000E+00  0.746E-08  0.186E-07  0.186E-07  0.673E-08  0.000E+00
0.000E+00  0.847E-08  0.212E-07  0.213E-07  0.782E-08  0.000E+00
0.000E+00  0.946E-08  0.238E-07  0.240E-07  0.897E-08  0.000E+00
0.000E+00  0.104E-07  0.262E-07  0.267E-07  0.102E-07  0.000E+00
0.000E+00  0.113E-07  0.287E-07  0.294E-07  0.114E-07  0.000E+00
0.000E+00  0.122E-07  0.309E-07  0.320E-07  0.127E-07  0.000E+00
0.000E+00  0.131E-07  0.333E-07  0.348E-07  0.142E-07  0.000E+00
0.000E+00  0.138E-07  0.352E-07  0.370E-07  0.154E-07  0.000E+00
0.000E+00  0.147E-07  0.378E-07  0.405E-07  0.175E-07  0.000E+00
0.000E+00  0.149E-07  0.382E-07  0.410E-07  0.180E-07  0.000E+00
0.000E+00  0.163E-07  0.429E-07  0.480E-07  0.228E-07  0.000E+00
0.000E+00  0.153E-07  0.390E-07  0.426E-07  0.227E-07  0.000E+00
0.000E+00  0.199E-07  0.570E-07  0.823E-07  0.852E-07  0.691E-07  0.416E-07  0.135E-07  0.000E+00
0.000E+00  0.190E-07  0.540E-07  0.784E-07  0.826E-07  0.680E-07  0.410E-07  0.131E-07  0.000E+00
0.000E+00  0.235E-07  0.716E-07  0.113E-06  0.128E-06  0.110E-06  0.699E-07  0.246E-07  0.000E+00
0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00
<table>
<thead>
<tr>
<th>AXIAL VELOCITY IN METER/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00</td>
</tr>
<tr>
<td>0.284E-02 0.237E-02 0.799E-03 0.419E-03 0.641E-03 0.000E+00</td>
</tr>
<tr>
<td>0.104E-03 0.822E-04 0.242E-04 0.169E-04 0.213E-04 0.000E+00</td>
</tr>
<tr>
<td>-0.212E-02 0.167E-02 0.469E-03 0.361E-03 0.425E-03 0.000E+00</td>
</tr>
<tr>
<td>-0.431E-02 0.339E-02 0.729E-03 0.862E-03 0.000E+00</td>
</tr>
<tr>
<td>-0.648E-02 0.510E-02 0.144E-02 0.361E-03 0.425E-03 0.000E+00</td>
</tr>
<tr>
<td>-0.863E-02 0.680E-02 0.193E-02 0.145E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.108E-01 0.849E-02 0.243E-02 0.179E-02 0.217E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.129E-01 0.102E-01 0.293E-02 0.212E-02 0.261E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.149E-01 0.118E-01 0.344E-02 0.244E-02 0.304E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.169E-01 0.134E-01 0.396E-02 0.274E-02 0.347E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.189E-01 0.150E-01 0.448E-02 0.302E-02 0.389E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.208E-01 0.166E-01 0.500E-02 0.328E-02 0.431E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.227E-01 0.181E-01 0.556E-02 0.352E-02 0.473E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.244E-01 0.195E-01 0.606E-02 0.372E-02 0.512E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.262E-01 0.210E-01 0.666E-02 0.389E-02 0.555E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.276E-01 0.221E-01 0.710E-02 0.400E-02 0.586E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.294E-01 0.237E-01 0.787E-02 0.411E-02 0.636E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.299E-01 0.239E-01 0.792E-02 0.407E-02 0.639E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.326E-01 0.268E-01 0.964E-02 0.402E-02 0.737E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.307E-01 0.242E-01 0.813E-02 0.321E-02 0.618E-02 0.000E+00 0.000E+00 0.000E+00</td>
</tr>
<tr>
<td>-0.398E-01 0.333E-01 0.172E-01 0.489E-02 0.186E-02 0.467E-02 0.500E-02 0.333E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.380E-01 0.315E-01 0.164E-01 0.498E-02 0.146E-02 0.446E-02 0.496E-02 0.330E-02 0.000E+00</td>
</tr>
<tr>
<td>-0.469E-01 0.410E-01 0.245E-01 0.101E-01 0.453E-03 0.625E-02 0.772E-02 0.561E-02 0.000E+00</td>
</tr>
<tr>
<td>0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00</td>
</tr>
<tr>
<td>Radial Velocity in Meter/Sec</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00</td>
</tr>
<tr>
<td>0.000E+00 0.321E-04 0.435E-04 0.323E-04 0.108E-04</td>
</tr>
<tr>
<td>0.000E+00 0.984E-04 0.127E-03 0.882E-04 0.259E-04</td>
</tr>
<tr>
<td>0.000E+00 0.721E-04 0.888E-04 0.574E-04 0.143E-04</td>
</tr>
<tr>
<td>0.000E+00 0.725E-04 0.899E-04 0.590E-04 0.153E-04</td>
</tr>
<tr>
<td>0.000E+00 0.720E-04 0.897E-04 0.593E-04 0.157E-04</td>
</tr>
<tr>
<td>0.000E+00 0.714E-04 0.892E-04 0.595E-04 0.162E-04</td>
</tr>
<tr>
<td>0.000E+00 0.705E-04 0.885E-04 0.596E-04 0.166E-04</td>
</tr>
<tr>
<td>0.000E+00 0.695E-04 0.876E-04 0.598E-04 0.172E-04</td>
</tr>
<tr>
<td>0.000E+00 0.682E-04 0.865E-04 0.598E-04 0.179E-04</td>
</tr>
<tr>
<td>0.000E+00 0.668E-04 0.853E-04 0.600E-04 0.187E-04</td>
</tr>
<tr>
<td>0.000E+00 0.648E-04 0.834E-04 0.597E-04 0.194E-04</td>
</tr>
<tr>
<td>0.000E+00 0.631E-04 0.822E-04 0.602E-04 0.206E-04</td>
</tr>
<tr>
<td>0.000E+00 0.598E-04 0.784E-04 0.585E-04 0.210E-04</td>
</tr>
<tr>
<td>0.000E+00 0.587E-04 0.786E-04 0.611E-04 0.233E-04</td>
</tr>
<tr>
<td>0.000E+00 0.515E-04 0.684E-04 0.539E-04 0.220E-04</td>
</tr>
<tr>
<td>0.000E+00 0.553E-04 0.790E-04 0.668E-04 0.289E-04</td>
</tr>
<tr>
<td>0.000E+00 0.333E-04 0.417E-04 0.340E-04 0.170E-04</td>
</tr>
<tr>
<td>0.000E+00 0.630E-04 0.103E-03 0.102E-03 0.496E-04</td>
</tr>
<tr>
<td>0.000E+00 0.107E-04 0.366E-04 0.537E-04 0.428E-04</td>
</tr>
<tr>
<td>0.000E+00 0.138E-03 0.267E-03 0.437E-03 0.603E-03</td>
</tr>
<tr>
<td>0.000E+00 0.123E-03 0.255E-03 0.411E-03 0.520E-03</td>
</tr>
<tr>
<td>0.000E+00 0.244E-03 0.432E-03 0.534E-03 0.505E-03</td>
</tr>
<tr>
<td>0.000E+00 0.264E-03 0.292E-03 0.183E-03 0.746E-04</td>
</tr>
<tr>
<td>0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00</td>
</tr>
</tbody>
</table>
B-3 Program NUSSLT: The program NUSSLT is included in the following three pages. This coded program was first developed together with the program NATCON by the CDC CYBER-75 computer of the OSU Computer Center. However, when NATCON was transferred to the PDP-11/10 as mentioned in Appendix B-1, because of the limited memory capacity of the PDP-11/10 the program NUSSLT had to be separated from the program NATCON and thus these two programs were stored in two separate memory discs.

Originally, the approximation of radial temperature gradients $dT(X,R)/dR$ at $R=\text{Wall}$ at several different $X$ was done by 4-node approximation (see Sec. 3.2.5). However, it was realized that the 4-node approximation required more number of nodes between $R=0$ and Wall in order to obtain an accurate result. In this aspect, a 2-node approximation, when only five or six nodes in the radial direction (which was the case currently) were assigned, actually gave a better approximation of the temperature gradient at the wall. Thus, the listed program is currently written to apply the 2-node approximation. However, a minor change will modify the program to the 4-node approximation. To make this modification, comment those statements underlined by a solid line and uncomment those statements underlined by a dotted line in the program.

Other explanation is also given in the comment section at the beginning of the program.
PROGRAM NUSSLT

This program computes the local heat transfer coefficients, the average H.T. coefficient, and the Nusselt number based on the radius of the cylinder of the problem of program "NATCON".

Explanation of constants:
M; No. of nodes (should be odd since the Simpson's rule is used for the integration scheme), and this value should correspond to (MXX-MX-1) of NATCON.
DX and DR; Mesh distances used in NATCON.
R; Radius of the cylinder, = DR*(NR-1).
TORF; Orifice temperature at node (MX,1).

The explanation for TEMP. MAP: T(I,1), T(I,2), T(I,3), T(I,4) where T(I,1) is the wall temp., and T(I,4) is the 4th node's temp. from the wall. I=1 corresponds to the MX and I=M to the MXX of NATCON.

DIMENSION T(25,4), H(25), DTR(25), X(25), Y(25)

THRC=0.0006
CL=DX*FLOAT(M-1)

** Average wall temperature ***

SUMT=0.
DO 1500 I=1,M
SUMT=SUMT+T(I,1)
1500 CONTINUE
TUAV=SUMT/FLOAT(M)

** Local heat transfer coefficients ***

WRITE(5,1001)
DO 1000 I=1,M
DTR(I)=(T(I,1)-T(I,2))/DR
C   \[ DTR(I) = \frac{11 \cdot T(I,1) - 18 \cdot T(I,2) + 9 \cdot T(I,3) - 2 \cdot T(I,4)}{6 \cdot DR} \] 

C   H(I) = THRCON * DTR(I) / (TWAU - TORF)

C   WRITE(5,1002) I, H(I)

1000 CONTINUE
C
C   ** AVERAGE NUSSELT NO. AND ABS. AVE. NU NO. **
C
C   X(1) = DTR(1)
Y(1) = ABS(DTR(1))

DO 2000 I = 2, M-1

ODD = FLOAT(I) * .5 - FLOAT(I/2)

IF(ODD.GT.0.) GO TO 2001

X(I) = DTR(I) * 4.
Y(I) = ABS(X(I))

GO TO 2000

2001 X(I) = DTR(I) * 2.
Y(I) = ABS(X(I))

2000 CONTINUE

X(M) = DTR(M)
Y(M) = ABS(X(M))

XSUM = 0.
YSUM = 0.

DO 2002 I = 1, M

XSUM = XSUM + X(I)
YSUM = YSUM + Y(I)

2002 CONTINUE

ANU = (R/CL) * (DX/(3.*(TWAU - TORF))) * XSUM
ABNU = (R/CL) * (DX/(3.*(TWAU - TORF))) * YSUM

C
C   ** AVERAGE H. T. COEFFICIENT **
C
HAV = ANU + THRCON / CL

C
C   ** PRINT RESULTS **
C
WRITE(5,3000) HAV
WRITE(5,3001) ANU
WRITE(5,3003) ABNU

100 FORMAT(//'DX(METER)=', S)
101 FORMAT(F12.6)
102 FORMAT('DR(METER)=', S)
103 FORMAT('RADIUS, R(METER)=', S)
104 FORMAT('NO. OF NODES (MUST BE ODD), M=', S)
105 FORMAT(I3)
106 FORMAT('ORIFICE CENTER TEMP., TORF(C)=', S)
301 FORMAT('TYPE-IN 4 TEMPS(C) FROM WALL IN 4F6.3:')
305 FORMAT(10X ,'******')
303 FORMAT(2F6.3)

C   305 FORMAT(10X, '******')
C   303 FORMAT(4F6.3)

1001 FORMAT(//1X,'COMPUTED RESULTS:','/2X,'
LOCAL H. T. COEFFICIENTS (KJ/SEC.M2.C)--

1002 FORMAT(12X,'H(',I3,')=',E12.4)

3000 FORMAT(2X,'THE AVERAGE H. T. COEFFICIENT, (KJ/SEC.M2.C), HAV=',
          1E12.4)

3001 FORMAT(2X,'THE AVERAGE NUSSELT NO. BASED ON RADIUS, ',
          1'ANU=',E12.4)

3003 FORMAT(2X,'ABS. ANU=',E12.4)

CALL EXIT
END