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algorithms and there are several numerical methods available to calculate the derivative.

New error estimates are derived for the numerical methods to calculate the derivative

in the fan-beam setting with the curved detector geometry. Theoretical justification for

previously proposed methods is provided. Numerical results from simulated data are
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1 Introduction

A patient who undergoes a Computer Tomography (CT) scan lies on a Table surrounded

by a large donut shape containing an x-ray source and a detector array. The x-ray source

and the detector rotate around the patient while emitting radiation and measuring the

loss of energy. Figure 1.1 provides an illustration of such a machine. After the scan is

complete an image, similar to one which appears in Figure 1.2, of the patient’s interior is

then provided to a radiologist. The process of creating the image of the patient’s interior

from x-ray measurements is modeled mathematically by recovering a function of density

values from line integrals of the function.

One of the driving motivations of CT, or tomography in general, is to overcome the

limits of natural human vision. Tomography provides a non destructive interior image

of an opaque object from a series of x-ray images. Since 1973, CT imaging has become

a fundamental tool of radiology departments world wide. The field moves quickly and

new research provides better reconstructions by utilizing more advanced algorithms and

hardware. Tomorrow’s machines will be reconstructing objects, not just in a plane, but

also across entire length of the object including the entire human body. Such volume

reconstructions have applications in biomedical imaging and industrial engineering.

Fan-beam tomography is a popular scanning method to reconstruct 2D density func-

tions. x-rays are emitted from a x-ray source and the intensities are measured on a single

row of detectors. The x-ray source and detectors are rotated to a new viewing angle and

the x-rays are emitted and measured again. The process repeats until the x-rays have

been measured over a sufficient number of angles. The function that is reconstructed is

supported in the plane of rotation. In cone-beam tomography the number of detector

rows increases from the fan-beam case. The goal is to reconstruct a 3D density function

on slices that are parallel to the plane of rotation. The reconstructions from cone-beam

formulas are only exact in the plane of rotation.

The helix is a source position trajectory that meets the needs of exact 3D imaging. In

2002 Katsevich [12] proposed an exact formula to reconstruct 3D functions from a helical

source trajectory. In 2004 Pan et al [32, 33] developed another exact reconstruction
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Figure 1.1: Typical CT scanner.

formula for helical tomography. Where the methods differ is in the direction of the

filtering planes. Katsevich’s formula filters the data along planes that intersect the source

position trajectory at three positions. While Pan et al’s formula filters the function

along special lines that pass through the support of the function and intersect the source

trajectory twice. Both methods apply a Hilbert transform to filter the data.

Definition 1.1. Suppose we have a parametrized curve y(s). We say

f(x) =

∫

[sb(x),st(x)]
g(y(s),x) ds

is a π-line reconstruction formula if the domain of integration with respect to s is Iπ(x) =

[sb(x), st(x)] where x is on the line from y(sb(x)) to y(st(x)). We call the line that passes

through y(sb(x)) and x the π-line of x.

There are π-line reconstruction formulas for fan-beam, helical, circle plus line, and

saddle scanning trajectories. Our work encompasses the numerical analysis of π-line

reconstruction formulas. We present results that provide insights in to the behavior of

π-line reconstruction formulas and present practical applications for them.

The derivative in Katsevich’s and Pan et al’s formula is common to many π-line

reconstruction formulas. Numerical methods for implementing the derivative have been

developed by Noo et al [19, 18], Faridani et al [8], and by Yu and Wang [29]. Faridani et al

proposed a method to calculate the derivative in the local detector coordinate system that
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Figure 1.2: CT reconstruction of a human pelvis.

overcame performance issues found in older methods. Noo, Hoppe et al provided a very

general method to implement the derivative for a variety of source position trajectories

and defined it outside of the local detector coordinate system. However no mathematical

theory has been provided to justify any advantages of the method of Noo, Hoppe et al.

The goal is then to identify the strengths and weaknesses of the current discretization

schemes. To do so we provide error estimates for the methods presented in [19, 8, 29].

Furthermore we provide numerical analysis of Noo, Hoppe et al’s method in the fan-beam

geometry and compare the method to Faridani et al’s method.

The notion of a π-line for helical tomography was established in [3] and the existence

and uniqueness of π-lines was developed in [5]. Izen [11] proposed a robust solution

for calculating the π-lines of a point for the helix. Katsevich’s and Pan et al’s formula

have been extended to more general scanning trajectories and the formulas depend on

the existence and uniqueness π-lines. We extend Izen’s method to calculate π-lines for

helical scanning trajectories with a variable radius and variable pitch. The result is a

simple algorithm to compute π-lines for general scanning trajectories.

We have observed a new type of artifact found in π-line reconstruction formulas.

The comet tail artifact has occurred in high accuracy reconstructions of smooth density

functions in both 2D and 3D π-line reconstructions. The artifact is also present in

reconstructions from poorly aligned x-ray projection data. In this work we present
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a novel mathematical framework to justify the location and shape of the comet tail

artifact. We introduce a set called the region of backprojection and demonstrate the

basic properties of the set. We hypothesize that the location of the artifact depends on

the backprojection at the end of the interval [sb(x), st(x)] and develop theory to support

our numerical results. In particular the boundary of the region of backprojection contains

points where s ≈ sb(x) and s ≈ st(x) and the shape of the boundary dictates the location

of the comet tail artifact. Naturally the choice of π-lines defines the boundary of the

region of backprojection and therefore different families of π-lines can produce different

shaped comet tail artifacts.

The remainder of Chapter 1 is devoted to the notation and geometry we will use

for the remainder of this work. We introduce the π-line reconstruction formulas that

we study and the standard filtered backprojection formula. We also describe in greater

detail the filtering planes used in Katsevich’s and Pan et al’s reconstruction formulas.

In Chapter 2 we present the derivative in Katsevich’s and Pan et al’s formulas and

discuss prior numerical implementations. We describe Noo, Hoppe et al’s method in

greater detail and present the numerical analysis of the method. Our estimate requires

a decomposition of the method into three terms and to express the method in the local

curved detector coordinate system. Numerical experiments, with exact projection data,

are provided to support our theory

Chapter 3 presents Izen’s construction for decomposing the helix cylinder into disjoint

surfaces of π-lines called chips. We generalize the notion of chips to general scanning

trajectories and in the process develop a method to calculate π-lines for the variable

radius and variable pitch helix. We discuss the benefits of using the chips as a method

to organize the computation necessary in Pan et al’s 3D reconstruction formula. We also

present results on the runtime of Katsevich’s and Pan et al’s reconstruction formulas.

We study comet tail artifacts in Chapter 4. Here we introduce the set that we

call the region of backprojection and hypothesize that the boundary of the region of

backprojection determines the shape and location of the comet tail artifact. We derive

properties for the region of backprojection and determine the region of backprojection

for helical CT. We define the region of backprojection for the helix in terms of the chips

defined in Chapter 3. We then describe the region of backprojection for the circular scan

for a families of 2D π-lines. In the 2D and 3D case we develop theory for the location of

the comet tail artifact.
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Chapter 5 describes the behavior of a π-line reconstruction formula with regards to

misaligned data. After the projection data has been loaded into a computer the location

of the detector bins must determined. The resolution of the reconstruction is affected

by improperly aligned detector bins. We develop an error term for the reconstruction

with misaligned data and observe that comet tail artifacts occur. We propose a heuristic

method to properly align the data based on the norm of the reconstruction from a π-line

reconstruction method. We extend our method to helical tomography and misaligned

data.

In Chapter 6 we describe numerical implementation details for π-line reconstruction

formulas described in the this work. In Chapter 7 we provide a convergence study of

Katsevich’s formula and discuss the performance of Katsevich’s formula with regards to

the selection of the pitch of the helix.

In Chapter 8 we end with some closing remarks.

1.1 Mathematical Model for CT

We will introduce the helical cone-beam scanning geometry and present the notation

that will guide us through the rest of the paper. In particular we will describe the basic

framework that allows us to reconstruct a function from its helical cone beam data and

how there is a natural extension to the fan-beam model. This extension to the fan-beam

model has proved to be a valuable resource in studying the behavior of the various exact

3D reconstruction formulas.

Let S2 be the unit sphere and suppose Ω is the open unit ball. We assume that the

x-ray is of high energy and that is does not scatter while passing through the object.

Hence we take the line integral of f(x) ∈ L1
0(Ω), in the direction θ ∈ S2 from position

y ∈ R
3. The divergent beam x-ray transform of f is then given by

Df(y,θ) =

∫ ∞

0
f(y + tθ) dt

where we are assuming that y is outside the support of f .
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1.2 Helical Reconstructions

Our setting is a helical source curve with cylindrical detector coordinate system. Here

we assume a source curve y(s) = (R cos(s), R sin(s), p2πs) with radius R and pitch p.

We position a curved detector array at a distance D from the source position y(s). An

orthonormal coordinate system that rotates with source position is given by

eu(s) = [− sin(s), cos(s), 0]

ev(s) = [− cos(s),− sin(s), 0]

ew(s) = [0, 0, 1].

Note that y(s) = −Rev(s) + ps
2πew(s).

An x-ray emits from y(s) in the direction Θ, passes through the object f and is

measured by the detector array at position

d(s, α,w) = y(s) +D sin(α)eu(s) +D cos(α)ev(s) + wew(s)

|α| ≤ αmax, |w| ≤ wmax, D ≥ R.

The vector between y(s) and detector position d(s, α,w) is

θ(s, α,w) =
1√

D2 +w2
(D sin(α)eu(s) +D cos(α)ev(s) + wew(s)).

Here α is the angle between the projections of ev and θ onto the plane x3 = 0 and w

is the difference in the x3 coordinate between detector position d(s, α,w) and y(s); cf.

Figure 1.3. The measured data are given by

g(s, α,w) = Df(y(s),θ(s, α,w)).

The line from y(s) to the point x intersects the curved detector at (α∗, w′(s, α∗,x))

where

α∗ = α∗(s,x) = arctan

( 〈x, eu〉
R+ 〈x, ev〉

)

, w′(s, α∗,x) =
D cosα∗

R+ 〈x, ev〉
(

x3 −
ps

2π

)

. (1.1)
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y(s)

d(s, α,w)

y(sb(x))

y(st(x))

x
Iπ(x)α

w

Figure 1.3: The Tam-Danielsson window is the shaded region of the detector surface
d(s, α,w). The π-line is shown as the line segment between y(sb(x)) and y(st(x)).

We can express θ in the local detector coordinates by

α = arctan

(

θ · eu(s)
θ · ev(s)

)

, w =
Dθ · ew(s)

√

1 − (θ · ew(s))2
. (1.2)

The Tam-Danielsson window, shown in Figure 1.3 and Figure 1.4, is region of the

detector array that lies between the stereographic projection from y(s) of the upper

and lower turns of the helix onto the detector array. The angular width of the Tam-

Danielsson window is (−αmax, αmax), where αmax = sin−1(r/R), r is the radius of the

support of the cylinder that contains the support of the function and R is the radius of

the helix. Furthermore if s ∈ Iπ(x) then x is projected onto the Tam-Danielsson window

corresponding to y(s). If the x is inside the helix cylinder and if x is projected onto the

Tam-Danielsson window of y(s) then s ∈ Iπ(x) [16].

The choice of the filtering planes is one of Katsevich’s important contributions to

helical CT. Katsevich’s inversion formula relies on filtering the measured data along a

special family of planes called κ planes.

Definition 1.2. A κ plane is any plane that intersects the helix at three points where

one point of intersection is halfway between the other two points of intersection. We
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α in radians

w

-0.3 0 0.3

-0.2

0

0.2

Figure 1.4: The κ curves covering a curved detector array. The shaded region represents
the Tam-Danielsson Window.

call the intersection of the κ plane with the detector array a κ curve. We identify the κ

curves by the points y(s), y(s + φ), and y(s + 2φ).

The minimal amount of data to reconstruct x corresponds to measurements made

within the Tam-Danielsson window, [22]. A point is on the Tam-Danielsson window if

and only if the source position is in the point’s π-interval [16]. As seen in Figure 1.4 the

κ curves on the detector array may lie outside of the Tam-Danielsson window. Therefore

when one filters along the κ curve data the does not lie within the Tam-Danielsson

window is used in the reconstruction.

A point on the detector array may lie on more than one κ curve. This is because

the κ curves tend to intersect near the top and bottom of the Tam-Danielsson window.

If we increase α in Figure 1.4 we would have the κ curves intersecting. It is useful to

classify κ planes by y(s) and φ the angle such that y(s), y(s + φ) and y(s + 2φ) lie in

the κ plane. We discuss how to handle a point that lies on multiple κ curves in Section

6.1.2.

We are now ready to present formulas that allow us to reconstruct a function from its

x-ray data. The following formulas are by no means every option to invert x-ray data in

two or three dimensions. We do however present formulas that follow a general theme.

First the x-ray data is differentiated with respect to the detector coordinate system.

Then the data is filtered along curves which represent the intersection of the detector

surface and κ plane. Finally the data is backprojected along the line connecting the
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detector coordinate’s location and the x-ray’s source position. Such a method is called

a filtered backprojection (FBP) algorithm.

Another choice is to interchange the backprojection and the filtering steps. This

involves filtering the data not in the detector coordinate but instead filtering the back-

projected data along lines that pass through the reconstructed object. We call this type

of method a backprojection filtration (BPF) method. We present 3D reconstruction

formulas of the FBP and BPF type and describe advantages and drawbacks of each.

Katsevich’s inversion formula is

f(x) =
1

2π2

∫

Iπ(x)

1

|x− y(s)|

∫ 2π

0

∂

∂q
Df(y(q), cos γβ + sin γβ⊥)

∣

∣

∣

∣

q=s

dγ

sin γ
ds (1.3)

where

β = β(s,x) =
x− y(s)

|x− y(s)| . (1.4)

The vector β⊥ is chosen orthogonal to β such that the two vectors span a κ plane.

This method is a FBP formula and is exact for sufficiently smooth functions. To

reconstruct f at the point x the formula requires source positions between the endpoints

of the π-interval Iπ(x) and hence does not require source positions far away from x. For

each point to be reconstructed we need to backproject, from source positions along its

π-interval, the data that has been filtered along the κ plane that contains the point.

A Hilbert kernel is used to filter along κ curves. The same kernel is used at every

source position and each κ curve. Furthermore the κ curves have the same detector

coordinates for each source position. This observation will simplify our numerical imple-

mentation in Section 6.1.2.

Katsevich’s formula, as expressed in our local detector coordinates, is

f(x) =
1

2π2

∫

Iπ(x)

cosα∗

R+ 〈x, ev〉

∫ 2π

0

D√
D2 + w′2

(

∂g

∂s
(α∗, w′) +

∂g

∂α
(α∗, w′)

)

× 1

sin(α∗ − α)
dα ds.

(1.5)

This representation of Katsevich’s formula first appeared in [19]. We provide a complete

set of implementation details for (1.5) in Section 6.1.
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We now present an alternative formula for helical tomography. The formula relies

on a different method of reconstruction developed by Pan et al [32] in the 3D setting

which is based on Noo et al’s work in the 2D case [4]. To reconstruct a point utilizing a

π-line filtration method the data is first differentiated with respect to the local detector

coordinates with the same derivative found in (1.3). Then one backprojects the data for

x and all points along the π-line of x. Once this has been done for all source positions in

the π-interval, the data that has been backprojected onto the π-line of x is filtered with

a 1D inverse Hilbert transform along the π-line of x. We now have the function f(x) on

its π-line segments.

Let π(x, t) = (1− t)y(sb(x)) + ty(st(x)) be a parameterization of the π-line through

x. We suppose that f(x) is supported inside the unit cylinder and so there exists a and

b such that f(π(x, t)) = 0 for 0 ≤ t < a and b < t ≤ 1. Define

G(π(x, t)) =

∫

Iπ(x)

1

|x− y(s)|
∂

∂q
Df(y(q),θ(s,x))

∣

∣

∣

∣

q=s

ds. (1.6)

Then we have

G(π(x, t)) = 2

∫ b

a

f(π(x, t′))

t′ − t
dt′ (1.7)

as shown in [32, 33]. Thus G is the Hilbert transform of f along the π-line given by

Iπ(x). This inversion formula is a BPF algorithm. In local detector coordinates the

formula reads as

G(π(x, t)) =

∫

Iπ(x)

1

|x − y(s)|

(

∂g

∂s
(α∗, w′) +

∂g

∂α
(α∗, w′)

)

ds. (1.8)

We have our π-line filtration formula

f(π(x, t)) =
1

2π2
√

(b− t)(t− a)

(

∫ b

a

√

(b− t′)(t′ − a)

t− t′
G(π(x, t′)) dt′ + πc

)

(1.9)

with

c = 2
Df(y(sb(x)),Θ(sb(x),x))

|y(sb(x)) − y(st(x))| . (1.10)

Equation (1.9) is different because it does not require filtering over any of the κ curves.

Instead, the method is based on the idea that the backprojection of the derivative of
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the x-ray data gives the Hilbert transform of the original image along its π-lines. One

need only to invert the Hilbert transform assuming the function and its Hilbert data are

compactly supported. The inversion of the Hilbert transform in this setting is ideal for

CT. The solution of the integral equation (1.7) requires a constant c, the integral of f(x)

along the π-line, which is exactly what our measured x-ray data gives us at positions

y(sb(x)) and y(st(x)).

We shall now discuss the key differences between Katsevich’s formula and the π-line

filtration formula. The two differ in where the formulas choose to filter. The Katsevich

formula filters the data in the local detector coordinates at each source position. The

π-line filtration formula filters in the coordinates of f(x) after all the points have been

backprojected. Thus the amount of filtering required to reconstruct from Katsevich’s

formula grows with the number of source positions. The trade off is the π-line filtration

may require more data to be backprojected. A segment of the π-line must be back-

projected for each point we wish to reconstruct and for every source position. Thus if

we only wish to reconstruct a function on a single π-line the π-line filtration method

will be faster than the Katsevich formula. Furthermore if we restrict our reconstruction

to only a plane then Katsevich’s formula will be faster. The crux of the problem is the

BPF formula cannot recover functions in a plane without reconstructing the volume that

contains the π-lines of the points within the plane.

This downfall in the number of backprojections required in the BPF method can be

overcome by utilizing a FBP of the π-line filtration method developed in [20]. Now in-

stead of filtering along the π-line after every point has been backprojected, it is sufficient

to filter the data on the detector surface along the projection of π-line segment. Hence

a rebinning of measured data to the projection of the π-line onto the detector plane is

necessary at each position. Unlike the Katsevich FBP formula, which filters along the

same κ curves for all source positions, the filtering in the FBP π-line filtration algorithm

has a different interpolation Table for each source position. This is caused by the fact

that the projection of a π-line onto the detector surface is different for all source positions

and must be calculated for each position.

Another issue to consider is which positions on the detector surface are used in

each method. The π-line filtration method only uses data from points within the Tam-

Danielsson window. Since every point along the π-line has the same π-interval and only

source positions within the π-interval are used, every point on the π-line is within the
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Tam-Danielsson window. However the Katsevich formula filters along the κ curves which

do not necessarily intersect the Tam-Danielsson window (See Figure 1.4). This implies

that the π-line filtration method uses less data on the detector surface to recover f(x).

For this reason the π-line filtration method, both the BPF and FBP varieties, are called

minimum data reconstruction formulas. The Katsevich formula is not a minimum data

reconstruction formula. Satisfying this property is only practical from a mathematical

point of view.

The helical tomography reconstruction formulas discussed here solve the “long ob-

ject” problem. That is the projection data can be truncated in the direction of the axis

of the helix and still yield an exact reconstruction. The practical advantage of such a

method is the detector that measures the x-rays does not need to be taller than the

object to be reconstructed.

1.3 Fan-Beam Reconstructions

Now consider the source curve y(s) = (R cos(s), R sin(s)) with radius R. We present old

and new formulas for inverting the fan-beam x-ray data. If we let the pitch go to zero

in equation (1.3) we have [12]

f(x) =
1

2π2

∫

Iπ(x)

1

|x− y(s)|

∫ 2π

0

∂

∂q
Df(y(q),Θ(s, x, γ))

∣

∣

∣

∣

q=s

dγ

sin γ
ds (1.11)

where x and y(s) are in the plane x3 = 0. In local detector coordinates (1.11) is

f(x) =
1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

(

∂g

∂s
(s, α∗) +

∂g

∂α
(s, α∗)

)

1

sin(α∗ − α)
dα ds. (1.12)

These formulas have been shown to hold in a more general setting by the work of Faridani

et al [8]. Equation (1.12) has a striking resemblance to (1.5). Again the derivative

is the same as before but now the filtering occurs strictly in the α coordinate before

backprojecting. As we shall see in Section 4.3, we have far greater flexibility in the

choice of the π-intervals compared to the helical trajectory.

We can remove the dependency of integrating over π-lines in formula (1.11) if we

consider [0, 2π] = Iπ(x)∪Icπ(x). This yields another inversion formula credited to Herman
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and Naparstek [10]

f(x) =
1

4π2

∫ 2π

0

1

|x− y(s)|

∫ 2π

0

(

∂g

∂s
+
∂g

∂α

)

1

sin(α∗ − α)
dα ds. (1.13)

It has been shown that the partial derivative with respect to s drops out when we have

a circular source curve [27, 31]

0 =
1

4π2

∫ 2π

0

1

|x − y(s)|

∫ 2π

0

1

sin(α∗ − α)

∂g

∂s
(s, α) dα ds. (1.14)

This yields the formula

f(x) =
1

4π2

∫ 2π

0

1

|x − y(s)|

∫ 2π

0
k(α∗ − α)

∂g

∂α
(s, α) dα ds

=
1

4π2

∫ 2π

0

1

|x − y(s)|

∫ 2π

0
k′(α∗ − α)g(s, α) dα ds

(1.15)

where

k(α) =
1

sin(α)
. (1.16)

The above formula contains the same filtering as the standard parallel beam formula in

2D.
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2 View Dependent Derivatives

There have been two recent methods for implementing a data derivative found in fan-

beam, cone-beam and helical tomography formulas. Each method’s aim is to efficiently

implement the derivative without decreasing resolution in the reconstruction. Calculated

with respect to the source position while holding the line integral direction fixed, the

derivative is given by
∂

∂q
Df(y(q),θ(s, α))

∣

∣

∣

∣

q=s

. (2.1)

The term appears in the reconstruction formulas given by (1.3), (1.6), and (1.11) and the

subsequent formulas (1.5), (1.13), (1.12) and (1.8) when it is expressed in local detector

coordinates. Geometrically, the derivative can be understood as the difference quotient

of x-ray data from parallel lines that pass through the object. The direct implementation

of the derivative provides poor results and efforts have been made to increase accuracy.

The derivative is considered unfavorable because it can reduce tangential resolution in

the reconstruction and the early implementation schemes reduced the competitiveness

of the reconstruction algorithm compared to other reconstruction methods [31]. The

derivative can be removed by an integration by parts [10, 12]. However this choice

increases the computational complexity of the numerical inversion in the 3D case [18].

The method proposed by Noo et al [18] is robust with regards to adapting to many

different scanning geometries. The Noo et al method requires linear interpolation in the

data specified by a free parameter ε and then a differentiation step. A straightforward

method has been proposed by Faridani et al [8]. Faridani et al’s method relies on standard

central difference methods over the native detector geometry and requires no ε parameter.

We will show that the Noo et al method is a second order method. Our analysis depends

on a decomposition of Noo et al’s method into 3 difference quotients and expressing

them in the fan-beam curved detector geometry. We then perform a Taylor expansion

to describe the error terms from interpolation and the difference quotients found in Noo

et al’s method. Our new analysis provides a uniform framework to compare the error



15

terms of the current methods proposed in the literature for the implementation of the

derivative.

We begin with an overview of our notation and introduce the difference schemes in

better detail in Section 2.1. An analysis of Faridani et al’s and Noo et al’s derivatives

in the local detector coordinates is presented in Section 2.2 and 2.3. We conclude in

Section 2.4 with a comparison of accuracy of the two methods. We also design numerical

experiments to illustrate our results from Section 2.2 and 2.3 and investigate claims made

about the undesirable behavior of the derivative term in the reconstruction formula.

2.1 View Dependent Derivatives

The goal of this Section is to describe methods for effective discretization of (2.1). Let

y(s) = (R cos(s), R sin(s)). We assume that we have angular discretization αi = i∆α,

for i = −q . . . q − 1, and ∆α = sin−1(r/R)/q. Our source position curve is discretized

by sk = k∆s. We denote ID(y(s),θ) and Ig(s, α) as terms that may require linear

interpolation in the second variable.

The first method we consider is [19, equation (19)], the direct scheme,

∂

∂q
Df(y(q),θ(sk+1/2, αi))

∣

∣

∣

∣

q=sk+1/2

≈
IDf(y(sk+1),θ(sk+1/2, αi) − IDf(y(sk),θ(sk+1/2, αi))

∆s

(2.2)

and we denote this method as M0. Method M0 is a natural choice because it is faithful

to the derivative with respect to source position but with a fixed θ; cf. Figure 2.1.

As stated in [19] if we use (1.2) then we have

arctan

(

θ(sk+1/2, αi) · eu(s)
θ(sk+1/2, αi) · ev(s)

)

= arctan

(

(sin(αi)eu(s+ ∆s/2) + cos(αi)ev(s+ ∆s/2)) · eu(s)
(sin(αi)eu(s+ ∆s/2) + cos(αi)ev(s+ ∆s/2)) · ev(s)

)

= αi − ∆s/2

arctan

(

θ(sk+1/2, αi) · eu(s+ ∆s)

θ(sk+1/2, αi) · ev(s+ ∆s)

)

= αi + ∆s/2.
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y(s)

y(s + ∆s/2)
y(s + ∆s)

θ

θ

θ

θ⊥

Figure 2.1: The directions θ used in the direct scheme M0.

Hence expressed in detector coordinates, the direct scheme becomes

Ig(sk+1, αi + ∆s/2) − Ig(sk, αi − ∆s/2)

∆s
. (2.3)

It may be necessary to apply linear interpolation in α to determine the values of g at

αi ± ∆s/2. Numerical results have shown M0 to produce low resolution reconstructions

[19, 28].

If we write (2.1) in the local detector coordinate system and apply the chain rule we

have the following expression

∂

∂q
Df(y(q),θ(s, α))

∣

∣

∣

∣

q=s

=
∂g

∂s
(s, α) +

∂g

∂α
(s, α). (2.4)

as shown in [19]. One approach, introduced in [29] and denoted M1 in [8], to discretizing

(2.4) is to use central differences in each term

∂g

∂s
(sk, αi) ≈

g(sk+1, αi) − g(sk−1, αi)

2∆s
∂g

∂α
(sk, αi) ≈

g(sk, αi+1) − g(sk, αi−1)

2∆α
.

(2.5)
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Another approach is to calculate the derivative on the grid

(sk+1/2, αi+1/2) = (sk + ∆s/2, αi + ∆α/2)

by

∂g

∂s
(sk+1/2, αi+1/2) ≈

1

2∆s
[g(sk+1, αi) − g(sk, αi)

+ g(sk+1, αi+1) − g(sk, αi+1)]

∂g

∂α
(sk+1/2, αi+1/2) ≈

1

2∆α
[g(sk, αi+1) − g(sk, αi)

+ g(sk+1, αi+1) − g(sk+1, αi)].

(2.6)

This method appeared in [19] and following [8] we denote it as M3. Note that the stepsize

in M3 is half that of M1.

Faridani et al [8] proposed the following method for the discretization of (2.4)

∂g

∂s
(sk, αi+1/2) ≈

1

4∆s
[g(sk+1, αi) − g(sk−1, αi)

+ g(sk+1, αi+1) − g(sk−1, αi+1)]

∂g

∂α
(sk, αi+1/2) ≈

1

∆α
[g(sk, αi+1) − g(sk, αi)].

(2.7)

and as in [8] we designate this scheme as M4. Here a central difference scheme is applied

to both the α and s derivative on the grid (sk, αi+1/2).

The Noo et al method for the derivative [18] is based on the following direct approx-

imation

∂

∂q
Df(y(q),θ(s, α))

∣

∣

∣

∣

q=s

≈ Df(y(s+ ε∆s),θ(s, α)) −Df(y(s− ε∆s),θ(s, α))

2ε∆s
(2.8)

where ε is a free parameter in (0, 1]. We designate this scheme M5. Noo et al approximate

the projection data from source position y(s + ε∆s) by linear interpolation in both s
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y(s)

y(s + ǫ∆s)

y(s − ǫ∆s)

y(s+ ∆s)

y(s− ∆s)
b(y(s − ǫ∆s),θ)

b(y(s + ǫ∆s),θ)

θ

θ

θ

θ⊥

Figure 2.2: The point of interest b for the source position y(s± ε∆s). The dashed lines
represent η.

and α

Df(y(s+ ε∆s),θ(s, α))) ≈ (1 − ε)IDf(y(s),η(y(s), s + ε∆s,θ(s, α)))

+ εIDf(y(s + ∆s),η(y(s + ∆s), s+ ε∆s,θ(s, α)))

η(y, s,θ) =
b(s,θ) − y

|b(s,θ) − y| .
(2.9)

The authors of [18] designate

b(s,θ) = y(s) − 〈y(s),θ〉θ (2.10)

as the point of interest; cf. Figure 2.2. This expression for b is the fan-beam geometry

point of interest where n = (0, 0, 1)T and x0 = (0, 0, 0)T for [18, equation (26) ]. We

define the approximation for Df(y(s − ε∆s) by replacing ∆s with −∆s in (2.9). Here

the expression for the derivative is not defined in the local detector coordinates. The

difference scheme given by M5 is designed to overcome the fact that sampling in s is

often coarser than that of α and to improve over the results of M3.
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We must first express M5 in terms of the local detector geometry. To do this we

rewrite M5 as the sum of three terms ds, dα and dε where

ds(s, α, ε) =
1

2∆s
[IDf(y(s+ ∆s),η(y(s + ∆s), s+ ε∆s,θ(s, α)))

− IDf(y(s− ∆s),η(y(s − ∆s), s− ε∆s,θ(s, α)))]

dα(s, α, ε) =
1

2ε∆s
[IDf(y(s),η(y(s), s + ε∆s,θ(s, α)))

− IDf(y(s),η(y(s), s − ε∆s,θ(s, α)))]

dε(s, α, ε) = −εdα(s, α, ε).

We note that to calculate the terms ds, dα, and dε requires linear interpolation in α.

We will now express ds in the local detector coordinates. Suppose R = 1

y(s+ ε∆s) = sin(ε∆s − ∆s)eu(s+ ∆s) − cos(ε∆s− ∆s)ev(s+ ∆s)

θ(s, α) = sin(α+ ∆s)eu(s+ ∆s) + cos(α+ ∆s)ev(s+ ∆s)

y(s + ∆s) = −ev(s+ ∆s)

b(s+ ε∆s,θ(s, α)) = y(s+ ε∆s) − 〈y(s + ε∆s),θ(s, α)〉θ(s, α)

= (− cos(α− 2s− ∆s) sin(α+ ε∆s))eu(s+ ∆s)

+ (sin(α − 2s − ∆s) sin(α+ ε∆s))ev(s + ∆s).

Define

h(u, α, ε) = arctan

(〈η(y(s + u), s+ εu,θ(s, α)), eu(s+ u)〉
〈η(y(s + u), s+ εu,θ(s, α)), ev(s+ u)〉

)

= arctan

(

2 cos(α+ u) sin(α+ εu)

cos(2α + u+ εu) − cos(u− εu) + 2

) (2.11)

which is independent of s. Note we get the same expression for h for an arbitrary R > 0.

Now the terms in ds can be expressed in local detector coordinates as

IDf(y(s+ ∆s),η(y(s + ∆s), s+ ε∆s,θ(s, α))) = Ig(s + ∆s, h(∆s, α, ε)) (2.12)
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and

IDf(y(s− ∆s),η(y(s + ∆s), s− ε∆s,θ(s, α))) = Ig(s − ∆s, h(−∆s, α, ε)). (2.13)

For the dα term we have

IDf(y(s),η(y(s), s + ε∆s,θ(s, α))) = Ig(s, ν(ε∆s, α)) (2.14)

IDf(y(s),η(y(s), s − ε∆s,θ(s, α))) = Ig(s, ν(−ε∆s, α)) (2.15)

with

ν(u, α) = arctan

(〈η(y(s), s + u,θ(s, α)), eu(s)〉
〈η(y(s), s + u,θ(s, α)), ev(s)〉

)

= arctan

(

2 cos(α) sin(α+ u)

2 − cos(u) + cos(2α + u)

)

.

(2.16)

Again we get the same expression for ν for an arbitrary R > 0. Thus M5, in local

detector coordinates, is the sum of the following terms

ds(s, α, ε) =
Ig(s+ ∆s, h(∆s, α, ε)) − Ig(s − ∆s, h(−∆s, α, ε))

2∆s
(2.17)

dα(s, α, ε) =
Ig(s, ν(ε∆s, α)) − Ig(s, ν(−ε∆s, α))

2ε∆s
(2.18)

dε(s, α, ε) = −Ig(s, ν(ε∆s, α)) − Ig(s, ν(−ε∆s, α))

2∆s
. (2.19)

Let us remark on the features of the methods presented. In helical and fan-beam

tomography ∆s is typically larger than ∆α. Method M3 attempts to use a smaller step

size in ∆s to improve accuracy. Suppose ∆s = 4∆α. Then method M0 depends on

values of α at αi±2. The step size in α is then too coarse for an accurate estimate of the

derivative at αi.
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To highlight the drawbacks of M0 observe that

g(sk+1, αi + ∆s/2) − g(sk, αi − ∆s/2)

∆s
=

1

2∆s
[g(sk+1, αi + ∆s/2) − g(sk+1, αi − ∆s/2)

+ g(sk+1, αi − ∆s/2) − g(sk, αi − ∆s/2)

+ g(sk+1, αi + ∆s/2) − g(sk, αi + ∆s/2)

+ g(sk, αi + ∆s/2) − g(sk, αi − ∆s/2)]

and therefore it can viewed as an approximation for (2.4) by

∂g

∂s
(sk+1/2, αi) ≈

1

2∆s
[g(sk+1, αi + ∆s/2) − g(sk, αi + ∆s/2)

+ g(sk+1, αi − ∆s/2) − g(sk, αi − ∆s/2)]

∂g

∂α
(sk+1/2, αi) ≈

1

2∆s
[g(sk+1, αi + ∆s/2) − g(sk+1, αi − ∆s/2)

+ g(sk, αi + ∆s/2) − g(sk, αi − ∆s/2)].

(2.20)

We see that the partial with respect to α is discretized with step size ∆s≫ ∆α instead of

∆α. Thus this natural choice for the discretization is the least effective method discussed

thus far because of the step size for s used for approximating the partial with respect to

α.

We note that Noo et al distinguish between direct schemes, schemes defined in terms

of θ, and chain-rule based schemes, those based on (2.4). The above decomposition

of M0 allow us to interpret M0 within the framework of chain-rule based schemes and

thereby allow for a direct comparison. We are motivated to provide a similar analysis of

M5 by studying our decomposition of M5 in the local detector coordinate system.

Following the appearance of [19], M3 was considered the standard method for the

discretization of (2.1). Method M3 is more accurate than M0 and M1 but it shares an

undesirable feature with M0 in the partial derivative with respect to α. The derivative

is the average of derivatives computed at s = sk and s = sk+1. This suggests the

reconstruction by M3 is the average of two slightly rotated images and we shall see such

a result in Figure 2.6 in Section 2.4. It was observed in [31] that M3 lead to distortions in

the reconstruction that reduced the resolution of circular objects. In [8] it was suggested

to use M4 because the derivative with respect to α is calculated directly at s = sk and
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retains a short step size in α compared to M1. The compromise made in M4 is a larger

step size in s. The results presented by Faridani et al showed empirically that M4 is the

preferred method for discretizing (2.1). We will develop rationale to justify the increased

performance of M4 over M3 in the following section.

2.2 Analysis of M0, M3 and M4

We begin by presenting estimates for the discretization of methods M0, M3 and M4.

The estimates for M1 follow directly from the standard estimates on central difference

quotients [1].

Lemma 2.1. Let g ∈ C4(R), αi = i∆α and αi < t < αi+1 then

g(t) − Ig(t) = −(1 − c)c∆α2

2
g′′(t) − (2c3 − 3c2 + c)∆α3

6
g′′′(t) +O(∆α4)

where c = (t− αi)/∆α and Ig(t) = (1 − c)g(αi) + cg(αi+1).

Lemma 2.2. (Error for method M0) Let g(s, α) be C4 on R × [−π, π), sk = k∆s and

αi = i∆α. Then

∂g

∂α
(sk+1/2, αi) +

∂g

∂s
(sk+1/2, αi) −

Ig(sk+1, αi + ∆s/2) − Ig(sk, αi − ∆s/2)

∆s

= −c(1 − c)∆α2 ∂
3g

∂α3
(sk+1/2, αi) − c(1 − c)∆α2 ∂3g

∂α2∂s
(sk+1/2, αi)

− ∆s2

24

∂3g

∂α3
(sk+1/2, αi) −

∆s2

8

∂3g

∂α2∂s
(sk+1/2, αi)

− ∆s2

8

∂3g

∂α∂s2
(sk+1/2, αi) −

∆s2

24

∂3g

∂s3
(sk+1/2, αi) +O(∆s3 + ∆α3)

with

Ig(sk+1, αi + ∆s/2) = (1 − c)g(sk+1, αi+J ) + cg(sk+1, αi+J+1)

Ig(sk, αi + ∆s/2) = cg(sk, αi−J−1) + (1 − c)g(sk, αi−J)

where c = (αi + ∆s/2 − αi+J)/∆α and J is such that αi+J ≤ αi + ∆s/2 < αi+J+1.

Proof. Let αi = i∆α and αi+J ≤ αi + ∆s/2 < αi+J+1. Then αi + ∆s/2 = (1− c)αi+J +

cαi+J+1 and c = (αi + ∆s/2− αi+J)/∆α. Likewise αi −∆s/2 = cαi−J−1 + (1− c)αi−J .
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The error for the linear interpolation in α is

g(sk+1, αi + ∆s/2) − (1 − c)g(sk+1, αi+J) − cg(sk+1, αi+J+1)

= −c(1 − c)∆α2 ∂
2g

∂α2
(sk+1, αi + ∆s/2) − c− 3c2 + 2c2

6
∆α3 ∂

3g

∂α3
(sk+1, αi + ∆s/2)

+O(∆α4)

and

g(sk, αi − ∆s/2) − cg(sk, αi−J−1) − (1 − c)g(sk, αi−J )

= −c(1 − c)∆α2 ∂
2g

∂α2
(sk, αi − ∆s/2) − c− 3c2 + 2c2

6
∆α3 ∂

3g

∂α3
(sk, αi − ∆s/2)

+O(∆α4).

Since c∆α = αi + ∆s/2−αi+J and αi+J ≤ αi + ∆s/2 < αi+J+1 we have c(1− c)∆α2 =

O(∆α2). We shall now show the difference of the errors from the interpolation in α is

O(∆α2∆s). The 2D Taylor series of the error terms are

∂2g

∂α2
(sk+1, αi + ∆s/2) =

∂2g

∂α2
(sk+1/2, αi) +

∆s

2

∂3g

∂α3
(sk+1/2, αi) +

∆s

2

∂3g

∂α2∂s
(sk+1/2, αi)

+
∆s2

8

∂4g

∂α4
(sk+1/2, αi) +

∆s2

4

∂4g

∂α3s
(sk+1/2, αi)

+
∆s2

8

∂4g

∂α2∂s2
(sk+1/2, αi) +O(∆s3)

∂2g

∂α2
(sk, αi − ∆s/2) =

∂2g

∂α2
(sk+1/2, αi) −

∆s

2

∂3g

∂α3
(sk+1/2, αi) −

∆s

2

∂3g

∂α2∂s
(sk+1/2, αi)

+
∆s2

8

∂4g

∂α4
(sk+1/2, αi) +

∆s2

4

∂4g

∂α3s
(sk+1/2, αi)

+
∆s2

8

∂4g

∂α2∂s2
(sk+1/2, αi) +O(∆s3).

If we take the difference of the two second order error terms we have

∂2g

∂α2
(sk+1, αi + ∆s/2) − ∂2g

∂α2
(sk, αi − ∆s/2)

= ∆s
∂3g

∂α3
(sk+1/2, αi) + ∆s

∂3g

∂α2∂s
(sk+1/2, αi) +O(∆s3)
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and for the third order error terms we have

∂3g

∂α3
(sk+1, αi + ∆s/2) − ∂3g

∂α3
(sk, αi − ∆s/2)

= ∆s
∂4g

∂α4
(sk+1/2, αi) + ∆s

∂4g

∂α3∂s
(sk+1/2, αi) +O(∆s3).

This also implies

−c− 3c2 + 2c2

6
∆α3

(

∂3g

∂α3
(sk+1, αi + ∆s/2) − ∂3g

∂α3
(sk, αi − ∆s/2)

)

= O(∆α3∆s).

Therefore

1

∆s
[g(sk+1, αi + ∆s/2) − (1 − c)g(sk+1, αi+J) − cg(sk+1, αi+J+1)

− g(sk, αi − ∆s/2) + cg(sk, αi−J−1) + (1 − c)g(sk, αi−J)]

= −c(1 − c)∆α2 ∂
3g

∂α3
(sk+1/2, αi) − c(1 − c)∆α2 ∂3g

∂α2∂s
(sk+1/2, αi) +O(∆s3 + ∆α3).

(2.21)

Next we estimate the following error

∂g

∂α
(sk+1/2, αi) +

∂g

∂s
(sk+1/2, αi) −

g(sk+1, αi + ∆s/2) − g(sk, αi − ∆s/2)

∆s

with the Taylor series

g(sk+1, αi + ∆s/2) = g(sk+1/2, αi) +
∆s

2

∂g

∂α
(sk+1/2, αi) +

∆s

2

∂g

∂α
(sk+1/2, αi)

+
∆s2

8

∂2g

∂α2
(sk+1/2, αi) +

∆s2

4

∂2g

∂α∂s
(sk+1/2, αi)

+
∆s2

8

∂2g

∂s2
(sk+1/2, αi) +

∆s3

48

∂3g

∂α3
(sk+1/2, αi)

+
∆s3

16

∂3g

∂α2∂s
(sk+1/2, αi) +

∆s3

16

∂3g

∂α∂s2
(sk+1/2, αi)

+
∆s3

48

∂3g

∂s3
(sk+1/2, αi) +O(∆s4)
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and

g(sk−1, αi − ∆s/2) = g(sk+1/2, αi) −
∆s

2

∂g

∂α
(sk+1/2, αi) −

∆s

2

∂g

∂α
(sk+1/2, αi)

+
∆s2

8

∂2g

∂α2
(sk+1/2, αi) +

∆s2

4

∂2g

∂α∂s
(sk+1/2, αi)

+
∆s2

8

∂2g

∂s2
(sk+1/2, αi) −

∆s3

48

∂3g

∂α3
(sk+1/2, αi)

− ∆s3

16

∂3g

∂α2∂s
(sk+1/2, αi) −

∆s3

16

∂3g

∂α∂s2
(sk+1/2, αi)

− ∆s3

48

∂3g

∂s3
(sk+1/2, αi) +O(∆s4).

Thus

∂g

∂α
(sk+1/2, αi) +

∂g

∂s
(sk+1/2, αi) −

g(sk+1, αi + ∆s/2) − g(sk, αi − ∆s/2)

∆s

= −∆s2

24

∂3g

∂α3
(sk+1/2, αi) −

∆s2

8

∂3g

∂α2∂s
(sk+1/2, αi)

− ∆s2

8

∂3g

∂α∂s2
(sk+1/2, αi) −

∆s2

24

∂3g

∂s3
(sk+1/2, αi) +O(∆s3).

(2.22)

By our bounds (2.21) and (2.22) we conclude

∂g

∂α
(sk+1/2, αi) +

∂g

∂s
(sk+1/2, αi)

− 1

∆s
[(1 − c)g(sk+1, αi+J ) − cg(sk+1, αi+J+1) − cg(sk, αi−J−1) + (1 − c)g(sk, αi−J )]

= −c(1 − c)∆α2 ∂
3g

∂α3
(sk+1/2, αi) − c(1 − c)∆α2 ∂3g

∂α2∂s
(sk+1/2, αi)

− ∆s2

24

∂3g

∂α3
(sk+1/2, αi) −

∆s2

8

∂3g

∂α2∂s
(sk+1/2, αi)

− ∆s2

8

∂3g

∂α∂s2
(sk+1/2, αi) −

∆s2

24

∂3g

∂s3
(sk+1/2, αi) +O(∆s3 + ∆α3).

The techniques we use in the proof of Lemma 2.2 will be used throughout this Chap-

ter. We will use similar estimates on the errors from linear interpolation in α for M5
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because this method also uses linear interpolation in α. Let us now state and prove the

error estimate for M3.

Lemma 2.3. (Error for method M3) Let g(s, α) be C4 on R × [−π, π), sk = k∆s and

αi = i∆α. Then

∂g

∂α
(sk+1/2, αi+1/2) −

g(sk, αi+1) − g(sk, αi) + g(sk+1, αi+1) − g(sk+1, αi)

2∆α

= −∆α2

24

∂3

∂α3
g(sk+1/2, αi+1/2) −

∆s2

8

∂3g

∂α∂s2
(sk+1/2, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3)

and

∂g

∂s
(sk+1/2, αi+1/2) −

g(sk+1, αi+1) − g(sk, αi+1) + g(sk+1, αi) − g(sk, αi)

2∆s

= −∆s2

24

∂3

∂s3
g(sk+1/2, αi+1/2) −

∆α2

8

∂3g

∂α2∂s
(sk+1/2, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

Proof. We shall show the result for the partial derivative with respect to α. The other

error estimate follows by a similar calculation. We use the following approximation

g(sk+1, αi+1) = g(sk+1/2, αi+1/2) +
∆α

2

∂g

∂α
(sk+1/2, αi+1/2) +

∆s

2

∂g

∂s
(sk+1/2, αi+1/2)

+
∆α2

8

∂2g

∂α2
(sk+1/2, αi+1/2) +

∆α∆s

4

∂2g

∂α∂s
(sk+1/2, αi+1/2)

+
∆s2

8

∂2g

∂s2
(sk+1/2, αi+1/2) +

∆α3

48

∂3g

∂α3
(sk+1/2, αi+1/2)

+
∆α2∆s

16

∂3g

∂α2∂s
(sk+1/2, αi+1/2) +

∆α∆s2

16

∂3g

∂α∂s2
(sk+1/2, αi+1/2)

+
∆s3

48

∂3g

∂s3
(sk+1/2, αi+1/2)

+O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4)
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and therefore

g(sk+1, αi+1) − g(sk+1, αi) = ∆α
∂g

∂α
(sk+1/2, αi+1/2) +

∆α∆s

2

∂2g

∂α∂s
(sk+1/2, αi+1/2)

+
∆α3

24

∂3g

∂α3
(sk+1/2, αi+1/2)

+
∆α∆s2

8

∂3g

∂α∂s2
(sk+1/2, αi+1/2)

+O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4).

By a similar argument we have

g(sk, αi+1) − g(sk, αi) = ∆α
∂g

∂α
(sk+1/2, αi+1/2) −

∆α∆s

2

∂2g

∂α∂s
(sk+1/2, αi+1/2)

+
∆α3

24

∂3g

∂α3
(sk+1/2, αi+1/2) +

∆α∆s2

8

∂3g

∂α∂s2
(sk+1/2, αi+1/2)

+O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4).

We have shown

∂g

∂α
(sk+1/2, αi+1/2) −

g(sk, αi+1) − g(sk, αi) + g(sk+1, αi+1) − g(sk+1, αi)

2∆α

= −∆α2

24

∂3

∂α3
g(sk+1/2, αi+1/2) −

∆s2

8

∂3g

∂α∂s2
(sk+1/2, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

We now present our estimate for M4.

Lemma 2.4. (Error for method M4) Let g(s, α) be C4 on R × [−π, π), sk = k∆s and

αi = i∆α. Then

∂g

∂α
(sk, αi+1/2) −

1

∆α
[g(sk, αi+1) − g(sk, αi)] = −∆α2

24

∂3

∂α3
g(sk, αi+1/2) +O(∆α3)
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and

∂g

∂s
(sk, αi+1/2) −

1

4∆s
[g(sk+1, αi) − g(sk−1, αi) + g(sk+1, αi+1) − g(sk−1, αi+1)]

= −∆s2

6

∂3g

∂s3
(sk, αi+1/2) −

∆α2

8

∂3g

∂α2∂s
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

Proof. The error term for the derivative with respect to α follows directly from the

central difference scheme error estimate [1]

∂g

∂α
(sk, αi+1/2) −

1

∆α
[g(sk, αi+1) − g(sk, αi)] = −∆α2

24

∂3

∂α3
g(sk, αi+1/2) +O(∆α3).

For the derivative with respect to s we again use a Taylor series estimate

g(sk+1, αi+1) = g(sk, αi+1/2) +
∆α

2

∂g

∂α
(sk, αi+1/2) + ∆s

∂g

∂s
(sk, αi+1/2)

+
∆α2

8

∂2g

∂α2
(sk, αi+1/2) +

∆α∆s

2

∂2g

∂α∂s
(sk, αi+1/2)

+
∆s2

2

∂2g

∂s2
(sk, αi+1/2) +

∆α3

48

∂3g

∂α3
(sk, αi+1/2)

+
∆α2∆s

8

∂3g

∂α2∂s
(sk, αi+1/2) +

∆α∆s2

4

∂3g

∂α∂s2
(sk, αi+1/2)

+
∆s3

6

∂3g

∂s3
(sk, αi+1/2) +O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4)

and likewise for g(sk+1, αi), g(sk−1, αi) and g(sk−1, αi+1). We then have

g(sk+1, αi) − g(sk−1, αi) = 2∆s
∂g

∂s
(sk, αi+1/2) − ∆α∆s

∂2g

∂α∂s
(sk, αi+1/2)

+
∆α2∆s

4

∂3g

∂s
(sk, αi+1/2) +

∆s3

3

∂3g

∂s3
(sk, αi+1/2)

+O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4)
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and

g(sk+1, αi+1) − g(sk−1, αi+1) = 2∆s
∂g

∂s
(sk, αi+1/2) + ∆α∆s

∂2g

∂α∂s
(sk, αi+1/2)

+
∆α2∆s

4

∂3g

∂s
(sk, αi+1/2) +

∆s3

3

∂3g

∂s3
(sk, αi+1/2)

+O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4).

Hence

∂g

∂s
(sk, αi+1/2) −

1

4∆s
[g(sk+1, αi) − g(sk−1, αi) + g(sk+1, αi+1) − g(sk−1, αi+1)]

= −∆s2

6

∂3g

∂s3
(sk, αi+1/2) −

∆α2

8

∂3g

∂α2∂s
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

(2.23)

Let us decompose f into the sum of fs and fα where

fα(x) =
1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

∂g

∂α
(s, α)

1

sin(α∗ − α)
dα ds (2.24)

and

fs(x) =
1

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

∂g

∂s
(s, α)

1

sin(α∗ − α)
dα ds. (2.25)

A comparison of error terms of M3 and M4 is now possible. Empirical evidence from

the phantoms we have studied in Section 2.4 suggest the larger of the two terms (2.24)

and (2.25) is fα. Thus we hypothesize the largest contribution of the discretization error

of (2.4) is the partial with respect to α. Under this assumption we see that the error

term from interpolation in s for M3 is not found in M4. The remaining error term

for the partial with respect to α are identical for M3 and M4. Therefore we can use

this reasoning to justify the greater resolution in numerical reconstructions from M4

compared to M3.
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2.3 Analysis of M5

Now we shall focus on deriving our estimate for M5. We will show that ds + dε behaves

as a central difference scheme with respect to s and dα behaves as a central difference

scheme with respect to α. We have the following result on the discretization errors in

M5.

Theorem 2.5. (Error for method M5) Let g(s, α) be C4 on R × [−π, π), sk = k∆s and

αi = i∆α. If

0 < ε ≤ ∆α− ∆s2M

2∆s

where

M = max

(

sup
t′∈(0,∆s)

∣

∣

∣

∣

∂2h

∂u2
(t′, αi+1/2, ε)

∣

∣

∣

∣

, sup
t′∈(0,ε∆s)

∣

∣

∣

∣

∂2ν

∂u2
(t′, αi+1/2)

∣

∣

∣

∣

)

then

∂g

∂α
(sk, αi+1/2) +

∂g

∂s
(sk, αi+1/2) − ds(sk, αi+1/2) − (1 − ε)dα(sk, αi+1/2) =

7
∑

i=1

Ei

where

E1 =
∆s2

4

(

(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2)

+ 2(1 − ε)ε2
) ∂g

∂α
(sk, αi+1/2)

E2 =
∆s2

2
(ε− 1)2 tan(αi+1/2)

∂2g

∂α∂s
(sk, αi+1/2)

and

E3 = −∆α2

24

∂3g

∂α3
(sk, αi+1/2)

E4 = −∆α2

8

∂3g

∂α2∂s
(sk, αi+1/2)

E5 = −ε∆s
2

2

∂3g

∂α∂s2
(sk, αi+1/2)

E6 = −∆s2

6

∂3g

∂s3
(sk, αi+1/2)

E7 = O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3 + ε3∆s3).
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Lemma 2.6. Suppose h and ν are defined by (2.11) and (2.16). Let αi = i∆α, ∆s > 0

and ε > 0 then

h(∆s, αi+1/2, ε) = αi+1/2 + ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2)

− ∆s3

4
(ε− 1)2 sec2(αi+1/2)((ε − 1) cos(2αi+1/2) + ε+ 1) +O(∆s4)

and

ν(ε∆s, αi+1/2) = αi+1/2 + ε∆s− (ε∆s)2

2
tan(αi+1/2) −

(ε∆s)3

2
+O(ε4∆s4).

Proof. A tedious but routine calculation shows

h(∆s, αi+1/2, ε) = h(0, αi+1/2, ε) + ∆s
∂h

∂u
(0, αi+1/2, ε) +

∆s2

2

∂2h

∂u2
(0, αi+1/2, ε)

+
∆s3

6

∂3h

∂u3
(0, αi+1/2, ε) +O(∆s4)

= αi+1/2 + ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2)

− ∆s3

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2) +O(∆s4)

h(−∆s, αi+1/2, ε) = αi+1/2 − ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2)

+
∆s3

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2) +O(∆s4).

For the term ν we have

ν(ε∆s, αi+1/2) = ν(ε∆s, αi+1/2) + ε∆s
∂ν

∂u
(0, αi+1/2) +

(ε∆s)2

2

∂2ν

∂u2
(0, αi+1/2)

+
(ε∆s)3

6

∂3ν

∂u3
(0, αi+1/2) +O(ε4∆s4)

= αi+1/2 + ε∆s− (ε∆s)2

2
tan(αi+1/2) −

(ε∆s)3

2
+O(ε4∆s4)

ν(−ε∆s, αi+1/2) = αi+1/2 − ε∆s− (ε∆s)2

2
tan(αi+1/2) +

(ε∆s)3

2
+O(ε4∆s4).
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In M4 we calculate the derivative at the point (sk, αi+1/2). Suppose we calculate

M5 over the same grid as M4. In [18] the authors state a geometrical reason to justify

the calculation of M5 with this half detector shift in α, “We apply this shift so that the

scheme closely resembles a difference between consecutive detector samples when ε tends

to zero and y(s) is far from the object.” We can give another justification for this shift

in α if we use the results of Lemma 2.6 and choose a specific ε.

Suppose ε = ∆α/(2∆s), which is slightly larger than is required by Theorem 2.5.

Then by the Taylor series in Lemma 2.6 we know

h(∆s, αi+1/2,∆α/(2∆s)) = αi+1/2 + ∆s
∆α

2∆s
+O(∆α2) = αi+1 +O(∆α2)

and

h(−∆s, αi+1/2,∆α/(2∆s)) = αi +O(∆α2).

Therefore the terms in ds are approximately the difference of two adjacent detectors.

Similar reasoning can be applied the terms in dα using the Taylor series of ν.

Let us investigate the idea of the shift in α further and determine what would occur if

we calculated g(s, ν(±∆s, αi)) instead of g(s, ν(±∆s, αi+1/2)). By Lemma 2.6 we know

ν(∆α/2, αi) ≈ αi+1/2 and ν(−∆α/2, αi) ≈ αi−1/2. We would then need the following

linear approximations

g(s, ν(∆α/2, αi)) =
1

2
(g(s, αi) + g(s, αi+1))

g(s, ν(−∆α/2, αi)) =
1

2
(g(s, αi−1) + g(s, αi))

to approximate

dα(s, αi, ε) =
Ig(s, ν(∆α/2, αi)) − Ig(s, ν(−∆α/2, αi))

2ε∆s

≈ g(s, αi) + g(s, αi+1) − g(s, αi−1) − g(s, αi)

4ε∆s

=
g(s, αi+1) − g(s, αi−1)

2∆α
.
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Thus we are approximating dα with a central difference scheme with step size 2∆α. If

we compare this to the approximation with the half detector shift in α

dα(s, αi+1/2, ε) ≈
g(s, αi+1) − g(s, αi)

∆α

we find that the half detector shift is equivalent to a central difference scheme with a

smaller stepsize than with no shift in α. Therefore the choice of the half detector shift

will increase the accuracy of the approximation for dα. We shall see that our choice of

ε must be smaller than ∆α/(2∆s) to get the necessary behavior for the interpolation in

α.

Lemma 2.7. If

0 < ε ≤ ∆α− ∆s2M

2∆s

where

M = max

(

sup
t′∈(0,∆s)

∣

∣

∣

∣

∂2h

∂u2
(t′, αi+1/2, ε)

∣

∣

∣

∣

, sup
t′∈(0,ε∆s)

∣

∣

∣

∣

∂2ν

∂u2
(t′, αi+1/2)

∣

∣

∣

∣

)

then

αi < h(±∆s, αi+1/2, ε) < αi+1

αi < ν(±ε∆s, αi+1/2) < αi+1.

Proof. From Lemma 2.6 we have

h(∆s, αi+1/2, ε) = αi+1/2 + ε∆s+
∆s2

2

∂2h

∂u2
(t, αi+1/2, ε)

where t ∈ (0,∆s). Now we want

∣

∣

∣

∣

ε∆s+
∆s2

2

∂2h

∂u2
(t, αi+1/2, ε)

∣

∣

∣

∣

≤ ∆α/2

and therefore

ε ≤ 1

2∆s

(

∆α− ∆s2M
)

(2.26)

where

M = sup
t′∈(0,∆s)

∣

∣

∣

∣

∂2h

∂u2
(t′, αi+1/2, ε)

∣

∣

∣

∣

.
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The remaining bounds follow by a similar argument.

If ∆α− ∆s2M < 0 then the analysis of Theorem 2.5 will not hold for our estimates

on the errors in the linear interpolation. If this condition is violated the interpolation in

α may not satisfy

αi < h(±∆s, αi+1/2, ε) < αi+1

αi < ν(±ε∆s, αi+1/2) < αi+1.
(2.27)

If the bounds in (2.27) do not hold then the terms h(±∆s, αi+1/2, ε) or ν(±ε∆s, αi+1/2)

will be located more than one detector width apart. This suggests that the calculations

of dα or ds will be less accurate than if (2.27) is satisfied.

Now we shall demonstrate that M5 is a second order difference scheme. We begin

by evaluating the errors in the difference schemes without considering the effects of the

linear interpolation in α.

Lemma 2.8. (Error for difference scheme ds without interpolation) Let g(s, α) be C4

on R × [−π, π), sk = k∆s and αi = i∆α. Then

∂g

∂s
(sk, αi+1/2) + ε

∂g

∂α
(sk, αi+1/2) −

g(s+ ∆s, h(∆s, α, ε)) − g(s − ∆s, h(−∆s, α, ε))

2∆s

=
∆s2

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2)

∂g

∂α
(sk, αi+1/2)

+
∆s2

2
(ε− 1)2ε tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

+
∆s2

2
(ε− 1)2 tan(αi+1/2)

∂2g

∂α∂s
(sk, αi+1/2) − ε3

∆s2

6

∂3g

∂α3
(sk, αi+1/2)

− ε2
∆s2

2

∂3g

∂α2∂s
(sk, αi+1/2) − ε

∆s2

2

∂3g

∂α∂s2
(sk, αi+1/2) −

∆s2

6

∂3g

∂s3
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).
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Proof. We shall derive the error estimates for ds without incorporating the linear inter-

polation in α. We begin with Taylor series in both s and α for the terms in ds

g(sk+1, h(∆s, αi+1/2, ε))

= g(sk, αi+1/2) + (h(∆s, αi+1/2, ε) − αi+1/2)
∂g

∂α
(sk, αi+1/2)

+ ∆s
∂g

∂s
(sk, αi+1/2) +

(h(∆s, αi+1/2, ε) − αi+1/2)
2

2

∂2g

∂α2
(sk, αi+1/2)

+ (h(∆s, αi+1/2, ε) − αi+1/2)∆s
∂2g

∂α∂s
(sk, αi+1/2)

+
∆s2

2

∂2g

∂s2
(sk, αi+1/2) +

(h(∆s, αi+1/2, ε) − αi+1/2)
3

6

∂3g

∂α3
(sk, αi+1/2)

+
(h(∆s, αi+1/2, ε) − αi+1/2)

2

2
∆s

∂3g

∂α2∂s
(sk, αi+1/2)

+
(h(∆s, αi+1/2, ε) − αi+1/2)

2
∆s2

∂3g

∂α∂s2
(sk, αi+1/2) +

∆s3

6

∂3g

∂s3
(sk, αi+1/2)

+O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4)

(2.28)

and likewise

g(sk−1, h(−∆s, αi+1/2, ε))

= g(sk, αi+1/2) + (h(−∆s, αi+1/2, ε) − αi+1/2)
∂g

∂α
(sk, αi+1/2)

− ∆s
∂g

∂s
(sk, αi+1/2) +

(h(−∆s, αi+1/2, ε) − αi+1/2)
2

2

∂2g

∂α2
(sk, αi+1/2)

− (h(−∆s, αi+1/2, ε) − αi+1/2)∆s
∂2g

∂α∂s
(sk, αi+1/2)

+
∆s2

2

∂2g

∂s2
(sk, αi+1/2) +

(h(−∆s, αi+1/2, ε) − αi+1/2)
3

6

∂3g

∂α3
(sk, αi+1/2)

−
(h(−∆s, αi+1/2, ε) − αi+1/2)

2

2
∆s

∂3g

∂α2∂s
(sk, αi+1/2)

+
(h(−∆s, αi+1/2, ε) − αi+1/2)

2

2
∆s2

∂3g

∂α∂s2
(sk, αi+1/2) −

∆s3

6

∂3g

∂s3
(sk, αi+1/2)

+O(∆α4 + ∆α3∆s+ ∆α2∆s2 + ∆α∆s3 + ∆s4).

(2.29)
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By Lemma 2.6 we know

h(∆s, αi+1/2, ε) = αi+1/2 + ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2)

− ∆s3

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2) +O(∆s4)

h(−∆s, αi+1/2, ε) = αi+1/2 − ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2)

+
∆s3

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2) +O(∆s4).

(2.30)

The first order derivative terms in ds(sk, αi+1/2) given by (2.28) and (2.29) are

(h(∆s, αi+1/2, ε) − αi+1/2) − (h(−∆s, αi+1/2, ε) − αi+1/2))

2∆s

∂g

∂α
(sk, αi+1/2)

= −∆s2

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2)

∂g

∂α
(sk, αi+1/2) +O(∆s3)

+ ε
∂g

∂α
(sk, αi+1/2)

and
(∆s+ ∆s)

2∆s

∂g

∂s
(sk, αi+1/2) =

∂g

∂s
(sk, αi+1/2).

The second order derivatives terms are

(h(∆s, αi+1/2, ε) − αi+1/2)
2 − (h(−∆s, αi+1/2, ε) − αi+1/2)

2

4∆s

∂2g

∂α2
(sk, αi+1/2)

= −∆s2

2
(ε− 1)2ε tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2) +O(∆s4),

along with

(h(∆s, αi+1/2, ε) − αi+1/2)∆s+ (h(−∆s, αi+1/2, ε) − αi+1/2)∆s

2∆s

∂2g

∂α∂s
(sk, αi+1/2)

= −∆s2

2
(ε− 1)2 tan(αi+1/2)

∂2g

∂α∂s
(sk, αi+1/2) +O(∆s4)

and
∆s2 − ∆s2

4∆s

∂2g

∂s2
(sk, αi+1/2) = 0.



37

The third order derivative terms are

(h(∆s, αi+1/2, ε) − αi+1/2)
3 − (h(−∆s, αi+1/2, ε) − αi+1/2)

3

12∆s

∂3g

∂α3
(sk, αi+1/2)

= ε3
∆s2

6

∂3g

∂α3
(sk, αi+1/2) +O(∆s3),

with

(h(∆s, αi+1/2, ε) − αi+1/2)
2∆s+ (h(−∆s, αi+1/2, ε) − αi+1/2)

2∆s

4∆s

∂3g

∂α2∂s
(sk, αi+1/2)

= ε2
∆s2

2

∂3g

∂α2∂s
(sk, αi+1/2) +O(∆s4),

along with

(h(∆s, αi+1/2, ε) − αi+1/2)∆s
2 − (h(−∆s, αi+1/2, ε) − αi+1/2)∆s

2

4∆s

∂3g

∂α∂s2
(sk, αi+1/2)

= ε
∆s2

2

∂3g

∂α∂s2
(sk, αi+1/2) +O(∆s4)

and
∆s3 + ∆s3

12∆s

∂3g

∂α3
(sk, αi+1/2) =

∆s2

6

∂3g

∂s3
(sk, αi+1/2).

Thus

∂g

∂s
(sk, αi+1/2) + ε

∂g

∂α
(sk, αi+1/2)

−
g(sk+1, h(∆s, αi+1/2, ε)) − g(sk−1, h(−∆s, αi+1/2, ε))

2∆s

=
∆s2

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2)

∂g

∂α
(sk, αi+1/2)

+
∆s2

2
(ε− 1)2ε tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

+
∆s2

2
(ε− 1)2 tan(αi+1/2)

∂2g

∂α∂s
(sk, αi+1/2) − ε3

∆s2

6

∂3g

∂α3
(sk, αi+1/2)

− ε2
∆s2

2

∂3g

∂α2∂s
(sk, αi+1/2) − ε

∆s2

2

∂3g

∂α∂s2
(sk, αi+1/2) −

∆s2

6

∂3g

∂s3
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

(2.31)
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Lemma 2.9. (Error for difference scheme dα without interpolation) Let g(s, α) be C4

on R × [−π, π), sk = k∆s and αi = i∆α. Then

∂g

∂α
(sk, αi+1/2) −

g(s, ν(ε∆s, α)) − g(s, ν(−ε∆s, α))

2ε∆s

= ε2
∆s2

2

∂g

∂α
(sk, αi+1/2) + ε2

∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

− ε2
∆s2

6

∂3g

∂α3
(sk, αi+1/2) +O(∆s3).

Proof. We take the Taylor series of dα in α

g(sk, ν(ε∆s, αi+1/2)) = g(sk, αi+1/2) + (ν(ε∆s, αi+1/2) − αi+1/2)
∂g

∂α
(sk, αi+1/2)

+
(ν(ε∆s, αi+1/2) − αi+1/2)

2

2

∂2g

∂α2
(sk, αi+1/2)

+
(ν(ε∆s, αi+1/2) − αi+1/2)

3

6

∂3g

∂α3
(sk, αi+1/2) +O(∆α4)

(2.32)

and

g(sk, ν(−ε∆s, αi+1/2)) = g(sk, αi+1/2) + (ν(−ε∆s, αi+1/2) − αi+1/2)
∂g

∂α
(sk, αi+1/2)

+
(ν(−ε∆s, αi+1/2) − αi+1/2)

2

2

∂2g

∂α2
(sk, αi+1/2)

+
(ν(−ε∆s, αi+1/2) − αi+1/2)

3

6

∂3g

∂α3
(sk, αi+1/2) +O(∆α4).

(2.33)

As shown in Lemma 2.6

ν(ε∆s, αi+1/2) = αi+1/2 + ε∆s− (ε∆s)2

2
tan(αi+1/2) −

(ε∆s)3

2
+O(∆s4)

ν(−ε∆s, αi+1/2) = αi+1/2 − ε∆s− (ε∆s)2

2
tan(αi+1/2) +

(ε∆s)3

2
+O(∆s4).
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Next we substitute our Taylor expansion for ν into our approximations of (2.32) and

(2.33) and calculate the error terms of dα

ν(ε∆s, αi+1/2) − αi+1/2 − (ν(−ε∆s, αi+1/2) − αi+1/2)

2ε∆s

∂g

∂α
(sk, αi+1/2)

=

(

1 − ε2
∆s2

2

)

∂g

∂α
(sk, αi+1/2) +O(∆s3)

(ν(ε∆s, αi+1/2) − αi+1/2)
2 − (ν(−ε∆s, αi+1/2) − αi+1/2)

2

4ε∆s

∂2g

∂α2
(sk, αi+1/2)

= −ε2 ∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2) +O(∆s3)

(ν(ε∆s, αi+1/2) − αi+1/2)
3 − (ν(−ε∆s, αi+1/2) − αi+1/2)

3

12ε∆s

∂3g

∂α3
(sk, αi+1/2)

= ε2
∆s2

6

∂3g

∂α3
(sk, αi+1/2) +O(∆s3).

Therefore by

∂g

∂α
(sk, αi+1/2) −

g(sk, ν(ε∆s, αi+1/2)) − g(sk, ν(−ε∆s, αi+1/2))

2ε∆s

= ε2
∆s2

2

∂g

∂α
(sk, αi+1/2) +

(ε∆s)2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

− ε2
∆s2

6

∂3g

∂α3
(sk, αi+1/2) +O(∆s3).

Our next results are for differentiating the errors from using linear interpolation in

α to calculate g at the fan angles given by h and ν. The proofs of the next two results

depend on Lemma 2.7. We begin with interpolation in ds.

Lemma 2.10. (Error for linear interpolation in ds) Let g(s, α) be C4 on R × [−π, π),

sk = k∆s and αi = i∆α. If

0 < ε ≤ ∆α− ∆s2M

2∆s

where

M = sup
t′∈(0,∆s)

∣

∣

∣

∣

∂2h

∂u2
(t′, αi+1/2, ε)

∣

∣

∣

∣
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then

g(s + ∆s, h(∆s, α, ε)) − g(s − ∆s, h(−∆s, α, ε))

2∆s
− ds(sk, αi+1/2, ε)

=

(

−∆α2

8
+ ε2

∆s2

2

)

∂3g

∂α2∂s
(sk, αi+1/2) +

(

−ε∆α
2

24
+ ε3

∆s2

6

)

∂3g

∂α3
(sk, αi+1/2)

− ε(1 − ε)2
∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

Proof. Recall

ds(sk, αi+1/2, ε) =
Ig(sk+1, h(∆s, αi+1/2, ε)) − Ig(sk−1, h(−∆s, αi+1/2, ε))

2∆s
.

and let

Ig(sk+1, h(∆s, αi+1/2, ε)) = (1 − c)g(sk+1, αi) + cg(sk+1, αi+1)

Ig(sk−1, h(−∆s, αi+1/2, ε)) = (1 − c1)g(sk−1, αi) + c1g(sk−1, αi+1)

where

c =
h(∆s, αi+1/2, ε) − αi

∆α
(2.34)

c1 =
h(−∆s, αi+1/2, ε) − αi

∆α
. (2.35)

Now we shall focus on the effects of the linear interpolation in α. By Lemmas 2.7

and 2.1 we know αi < h(±∆s, αi+1/2, ε) < αi+1

g(sk+1, h(∆s, αi+1/2, ε)) − (1 − c)g(sk+1, αi) − cg(sk+1, αi+1)

= −(1 − c)c
∆α2

2

∂2g

∂α2
(sk+1, h(∆s, αi+1/2, ε))

− (2c3 − 3c2 + c)
∆α3

6

∂3g

∂α3
(sk+1, h(∆s, αi+1/2, ε)) +O(∆α4)

(2.36)
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and

g(sk−1, h(−∆s, αi+1/2, ε)) − (1 − c1)g(sk−1, αi) − c1g(sk−1, αi+1)

= −(1 − c1)c1
∆α2

2

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε))

− (2c31 − 3c21 + c1)
∆α3

6

∂3g

∂α3
(sk−1, h(−∆s, αi+1/2, ε)) +O(∆α4).

(2.37)

Our goal is to estimate

1

2∆s
[g(sk+1, h(∆s, αi+1/2, ε)) − g(sk−1, h(−∆s, αi+1/2, ε))]

− 1

2∆s
[(1 − c)g(sk+1, αi) + cg(sk+1, αi+1) − (1 − c1)g(sk−1, αi) − c1g(sk−1, αi+1)].

(2.38)

Consider the following term

− ((1 − c)c − (1 − c1)c1)
∆α2

4∆s

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε)) (2.39)

and suppose we estimate the difference of the product of the interpolation weights. From

Lemma 2.6 we have

c∆α = h(∆s, αi+1/2, ε) − αi

= αi+1/2 + ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2) − αi +O(∆s3)

=
∆α

2
+ ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2) +O(∆α3)

(1 − c)∆α =
∆α− h(∆s, αi+1/2, ε)) + αi

∆α
∆α

= αi+1 − h(∆s, αi+1/2, ε)

=
∆α

2
− ε∆s+

∆s2

2
(ε− 1)2 tan(αi+1/2) +O(∆s3)

(2.40)
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and

c1∆α = αi+1/2 − ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2) − αi +O(∆s3)

=
∆α

2
− ε∆s− ∆s2

2
(ε− 1)2 tan(αi+1/2) +O(∆s3)

(1 − c1)∆α = αi+1 − αi+1/2 + ε∆s+
∆s2

2
(ε− 1)2 tan(αi+1/2) +O(∆s3)

=
∆α

2
+ ε∆s+

∆s2

2
(ε− 1)2 tan(αi+1/2) +O(∆s3).

(2.41)

We can then express the terms (1− c)c∆α2 and (1− c1)c1∆α
2 up to higher order terms

as

(1 − c)c∆α2 =
∆α2

4
− ε2∆s2 + ε(1 − ε)2∆s3 tan(αi+1/2)

(1 − c1)c1∆α
2 =

∆α2

4
− ε2∆s2 − ε(1 − ε)2∆s3 tan(αi+1/2).

(2.42)

The above calculation on the interpolations weights gives us the estimate

− 1

2∆s
((1 − c)c − (1 − c1)c1)

∆α2

2

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε))

= −ε(1 − ε)2
∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε)) +O(∆α3)

= −ε(1 − ε)2
∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2) +O(∆α3 + ∆α∆s2 + ∆s3).

(2.43)

The next term we consider is

− (2c3 − 3c2 + c)
∆α3

12∆s

∂3g

∂α3
(sk+1, h(∆s, αi+1/2, ε))

+ (2c31 − 3c21 + c1)
∆α3

12∆s

∂3g

∂α3
(sk−1, h(−∆s, αi+1/2, ε)).

(2.44)

The term (2.44) can be rewritten as

−
(

(2c3 − 3c2 + c) − (2c31 − 3c21 + c1)
) ∆α3

12∆s

∂3g

∂α3
(sk, αi+1/2)
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by Lemma 2.7 and because ∆α3/∆s is a second order term. By (2.40) we have

−
(

(2c3 − 3c2 + c) − (2c31 − 3c21 + c1)
) ∆α3

12∆s

∂3g

∂α3
(sk, αi+1/2)

=

(

ε
∆α2

12
− ε3

∆s2

3

)

∂3g

∂α3
(sk, αi+1/2) +O(∆s3).

(2.45)

Next we shall estimate the error in

−(1 − c)c
∆α2

2

(

∂2g

∂α2
(sk+1, h(∆s, αi+1/2, ε)) −

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε))

)

. (2.46)

We compute the Taylor series in s and α

∂2g

∂α2
(sk+1, h(∆s, αi+1/2, ε))

=
∂2g

∂α2
(sk, αi+1/2) + (h(∆s, αi+1/2, ε) − αi+1/2)

∂3g

∂α3
(sk, αi+1/2)

+ ∆s
∂3g

∂α2∂s
(sk, αi+1/2) +

(h(∆s, αi+1/2, ε) − αi+1/2)
2

2

∂4g

∂α4
(sk, αi+1/2)

+ (h(∆s, αi+1/2, ε) − αi+1/2)∆s
∂4g

∂α3∂s
(sk, αi+1/2)

+
∆s2

2

∂4g

∂α2∂s2
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3)

(2.47)

and also

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε))

=
∂2g

∂α2
(sk, αi+1/2) + (h(−∆s, αi+1/2, ε) − αi+1/2)

∂3g

∂α3
(sk, αi+1/2)

− ∆s
∂3g

∂α2∂s
(sk, αi+1/2) +

(h(−∆s, αi+1/2, ε) − αi+1/2)
2

2

∂4g

∂α4
(sk, αi+1/2)

− (h(−∆s, αi+1/2, ε) − αi+1/2)∆s
∂4g

∂α3∂s
(sk, αi+1/2)

+
∆s2

2

∂4g

∂α2∂s2
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

(2.48)
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We know from Lemma 2.8 that the only first order terms in ∆α and ∆s in the difference

of (2.47) and (2.48) are

2∆s
∂3g

∂α2∂s
(sk, αi+1/2)

2∆sε
∂3g

∂α3
(sk, αi+1/2)

(2.49)

and using the estimates from (2.42) we conclude

− (1 − c)c
∆α2

4∆s

(

∂2g

∂α2
(sk+1, h(∆s, αi+1/2, ε)) −

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε))

)

=

(

−∆α2

8
+ ε2

∆s2

2

)

∂3g

∂α2∂s
(sk, αi+1/2) +

(

−∆α2

8
+ ε2

∆s2

2

)

ε
∂3g

∂α3
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

(2.50)

We can use (2.43), (2.45) and (2.50) to determine

1

2∆s
[g(sk+1, h(∆s, αi+1/2, ε)) − g(sk−1, h(−∆s, αi+1/2, ε))]

− 1

2∆s
[−(1 − c)g(sk+1, αi) + cg(sk+1, αi+1) + (1 − c1)g(sk−1, αi) − c1g(sk−1, αi+1)]

=
1

2∆s
[(1 − c)c

∆α2

2

∂2g

∂α2
(sk+1, h(∆s, αi+1/2, ε))

− (1 − c1)c1
∆α2

2

∂2g

∂α2
(sk−1, h(−∆s, αi+1/2, ε))]

=

(

−∆α2

8
+ ε2

∆s2

2

)

∂3g

∂α2∂s
(sk, αi+1/2) +

(

−ε∆α
2

24
+ ε3

∆s2

6

)

∂3g

∂α3
(sk, αi+1/2)

− ε(1 − ε)2
∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

+O(∆α3 + ∆α2∆s+ ∆α∆s2 + ∆s3).

The effects of the interpolation in α for the term dα is the last result that we need

to complete our numerical analysis of M5.
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Lemma 2.11. (Error for linear interpolation in dα) Let g(s, α) be C4 on R × [−π, π),

sk = k∆s and αi = i∆α. If

0 < ε ≤ ∆α− ∆s2M

2∆s

where

M = sup
t′∈(0,ε∆s)

∣

∣

∣

∣

∂2ν

∂u2
(t′, αi+1/2)

∣

∣

∣

∣

then

g(s, ν(ε∆s, αi+1/2)) − g(s, ν(−ε∆s, αi+1/2))

2ε∆s
− dα(sk, αi+1/2, ε)

=

(

−∆α2

24
+ ε2

∆s2

6

)

∂3g

∂α3
(sk, αi+1/2)

− ε2∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2) +O(∆α3 + ∆s3).

Proof. Now we shall focus on the effects of the linear interpolation in α. Recall

dα(sk, αi+1/2, ε) =
Ig(sk, ν(ε∆s, αi+1/2)) − Ig(sk, ν(−ε∆s, αi+1/2))

2ε∆s
.

and let

Ig(s, ν(ε∆s, α)) = (1 − w)g(sk, αi) + wg(sk, αi+1)

Ig(s, ν(−ε∆s, α)) = (1 − w1)g(sk, αi) + w1g(sk, αi+1)

where

w =
ν(ε∆s, αi+1/2) − αi

∆α

w1 =
ν(−ε∆s, αi+1/2) − αi

∆α
.

(2.51)
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By Lemmas 2.7 and 2.1 we know αi < ν(±ε∆s, αi+1/2) < αi+1 and therefore

g(sk, ν(ε∆s, αi+1/2)) − (1 −w)g(sk , αi) − wg(sk, αi+1)

= −(1 − w)w
∆α2

2

∂2g

∂α2
(sk, ν(ε∆s, αi+1/2))

− (2w3 − 3w2 + w)
∆α3

6

∂3g

∂α3
(sk, ν(ε∆s, αi+1/2)) +O(∆α4)

(2.52)

and

g(sk, ν(−ε∆s, αi−1/2)) − (1 − w1)g(sk, αi) − w1g(sk, αi+1)

= −(1 − w1)w1
∆α2

2

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2))

− (2w3
1 − 3w2

1 + w1)
∆α3

6

∂3g

∂α3
(sk, ν(−ε∆s, αi+1/2)) +O(∆α4).

(2.53)

Our goal is to estimate

1

2ε∆s
[g(sk, ν(ε∆s, αi+1/2)) − g(sk, ν(−ε∆s, αi+1/2))]

− 1

2ε∆s
[(1 − w)g(sk , αi) + wg(sk, αi+1) − (1 − w1)g(sk, αi) − w1g(sk, αi+1)].

(2.54)

Consider the following term

− ((1 − w)w − (1 − w1)w1)
∆α2

4ε∆s

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2)) (2.55)
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and suppose we estimate the difference of the product of the interpolation weights. From

Lemma 2.6 we have

w∆α = ν(ε∆s, αi+1/2) − αi

= αi+1/2 + ε∆s− (ε∆s)2

2
tan(αi+1/2) − αi +O(∆s3)

=
∆α

2
+ ε∆s− (ε∆s)2

2
tan(αi+1/2) +O(∆s3)

(1 − w)∆α =
∆α− ν(ε∆s, αi+1/2) + αi

∆α
∆α

= αi+1 − ν(ε∆s, αi+1/2)

=
∆α

2
− ε∆s+

(ε∆s)2

2
tan(αi+1/2) +O(∆s3)

(2.56)

and

w1∆α = αi+1/2 − ε∆s− (ε∆s)2

2
tan(αi+1/2) − αi +O(∆s3)

=
∆α

2
− ε∆s− (ε∆s)2

2
tan(αi+1/2) +O(s3)

(1 − w1)∆α = αi+1 − αi+1/2 + ε∆s+
(ε∆s)2

2
tan(αi+1/2) − αi +O(∆s3)

=
∆α

2
+ ε∆s+

(ε∆s)2

2
tan(αi+1/2) − αi +O(∆s3).

(2.57)

We can then express the terms (1 − w)w∆α2 and (1 − w1)w1∆α
2 up to higher order

terms as

(1 − w)w∆α2 =
∆α2

4
− ε2∆s2 + (ε∆s)3 tan(αi+1/2)

(1 − w1)w1∆α
2 =

∆α2

4
− ε2∆s2 − (ε∆s)3 tan(αi+1/2).

(2.58)
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The above calculation on the interpolations weights gives us the estimate

− ((1 − w1)w1 − (1 − w)w)
∆α2

4ε∆s

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2))

= −ε
2∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2)) +O(∆s3)

= −ε
2∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2) +O(∆α∆s2 + ∆s3).

(2.59)

The next term we consider is

− (2w3 − 3w2 + w)
∆α3

12ε∆s

∂3g

∂α3
(sk, ν(ε∆s, αi+1/2))

+ (2w3
1 − 3w2

1 + w1)
∆α3

12∆s

∂3g

∂α3
(sk, ν(−ε∆s, αi+1/2)).

(2.60)

The term (2.60) can be rewritten as

−
(

(2w3 − 3w2 + w) − (2w3
1 − 3w2

1 + w1)
) ∆α3

12ε∆s

∂3g

∂α3
(sk, αi+1/2)

by Lemma 2.7 and because ∆α3/∆s is a second order term. By (2.56) we have

−
(

(2w3 − 3w2 + w) − (2w3
1 − 3w2

1 + w1)
) ∆α3

12ε∆s

∂3g

∂α3
(sk, αi+1/2)

=

(

∆α2

12
− ε2

∆s2

3

)

∂3g

∂α3
(sk, αi+1/2) +O(∆α3).

(2.61)

Next we shall estimate the error in

−(1 − w)w
∆α2

2

(

∂2g

∂α2
(sk, ν(ε∆s, αi+1/2)) −

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2))

)

. (2.62)

We compute the Taylor series in α

∂2g

∂α2
(sk, ν(ε∆s, αi+1/2)) =

∂2g

∂α2
(sk, αi+1/2) + (ν(ε∆s, αi+1/2) − αi+1/2)

∂3g

∂α3
(sk, αi+1/2)

+
(ν(ε∆s, αi+1/2) − αi+1/2))

2

2

∂4g

∂α4
(sk, αi+1/2) +O(∆α3)

(2.63)



49

and also

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2))

=
∂2g

∂α2
(sk, αi+1/2) + (ν(−ε∆s, αi+1/2) − αi+1/2)

∂3g

∂α3
(sk, αi+1/2)

+
(ν(−ε∆s, αi+1/2) − αi+1/2))

2

2

∂4g

∂α4
(sk, αi+1/2) +O(∆α3).

(2.64)

We know from Lemma 2.9 that the only first order term in ∆s and ∆α in the difference

of (2.63) and (2.64) is

2ε∆s
∂3g

∂α3
(sk, αi+1/2)

and using the estimates from (2.58) we conclude

− 1

2ε∆s
(1 − w)w

∆α2

2

(

∂2g

∂α2
(sk, ν(ε∆s, αi+1/2)) −

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2))

)

=

(

−∆α2

8
+ ε2

∆s2

2

)

∂3g

∂α3
(sk, αi+1/2) +O(∆s3).

(2.65)

We can use (2.59), (2.61) and (2.65) to determine

1

2ε∆s
[g(sk, ν(ε∆s, αi+1/2)) − g(sk, ν(−ε∆s, αi+1/2))]

− 1

2ε∆s
[(1 − w)g(sk, αi) +wg(sk, αi+1) − (1 − w1)g(sk, αi) − w1g(sk, αi+1)]

=
1

2ε∆s
[−(1 − w)w

∆α2

2

∂2g

∂α2
(sk, ν(ε∆s, αi+1/2))

+ (1 − w1)w1
∆α2

2

∂2g

∂α2
(sk, ν(−ε∆s, αi+1/2))]

=

(

−∆α2

24
+ ε2

∆s2

6

)

∂3g

∂α3
(sk, αi+1/2)

− ε2∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2) +O(∆α3 + ∆s3).

We can now prove our main result for M5 by a sum of the error terms in Lemmas

2.8, 2.9, 2.10 and 2.11.
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Proof Theorem 2.5. We collect all of the error terms from Lemmas 2.8, 2.9, 2.10 and

2.11 to estimate

∂g

∂α
(sk, αi+1/2) +

∂g

∂s
(sk, αi+1/2) − ds(sk, αi+1/2) − (1 − ε)dα(sk, αi+1/2)

=
∂g

∂s
(sk, αi+1/2) + ε

∂g

∂α
(sk, αi+1/2) −

g(s + ∆s, h(∆s, α, ε)) − g(s − ∆s, h(−∆s, α, ε))

2∆s

+
g(s + ∆s, h(∆s, α, ε)) − g(s − ∆s, h(−∆s, α, ε))

2∆s
− ds(sk, αi+1/2, ε)

+ (1 − ε)

(

∂g

∂α
(sk, αi+1/2) −

g(s, ν(ε∆s, α)) − g(s, ν(−ε∆s, α))

2ε∆s

+
g(s, ν(ε∆s, α)) − g(s, ν(−ε∆s, α))

2ε∆s
− dα(sk, αi+1/2)

)

.

The first order derivative term in our estimate is

∆s2

4
(ε− 1)2(1 + ε+ (ε− 1) cos(2αi+1/2)) sec2(αi+1/2)

∂g

∂α
(sk, αi+1/2)

+ (1 − ε)ε2
∆s2

2

∂g

∂α
(sk, αi+1/2).

The second order derivative terms in our estimate consist of

∆s2

2
(ε− 1)2ε tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

− ∆s2

2
(ε− 1)2ε tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

+ (1 − ε)ε2
∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2)

− (1 − ε)ε2
∆s2

2
tan(αi+1/2)

∂2g

∂α2
(sk, αi+1/2) = 0

and
∆s2

2
(ε− 1)2 tan(αi+1/2)

∂2g

∂α∂s
(sk, αi+1/2).
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The third order derivative terms in our estimate are

− ε3
∆s2

6

∂3g

∂α3
(sk, αi+1/2) + ε3

∆s2

6

∂3g

∂α3
(sk, αi+1/2)

− (1 − ε)ε2
∆s2

6

∂3g

∂α3
(sk, αi+1/2) + (1 − ε)ε2

∆s2

6

∂3g

∂α3
(sk, αi+1/2)

(

−ε∆α
2

24
− (1 − ε)

∆α2

24

)

∂3g

∂α3
(sk, αi+1/2)

= −∆α2

24

∂3g

∂α3
(sk, αi+1/2)

with

− ε2
∆s2

2

∂3g

∂α2∂s
(sk, αi+1/2) + ε2

∆s2

2

∂3g

∂α2∂s
(sk, αi+1/2) −

∆α2

8

∂3g

∂α2∂s
(sk, αi+1/2)

= −∆α2

8

∂3g

∂α2∂s
(sk, αi+1/2)

along with

−ε∆s
2

2

∂3g

∂α∂s2
(sk, αi+1/2),

and

−∆s2

6

∂3g

∂s3
(sk, αi+1/2).

This analysis of M5 provides new insight into the behavior of the method. The theory

that we presented here suggests that the accuracy of the method depends on the size of

α. Error terms E1 and E2 depend on trigonometric functions that are unbounded as α

approaches ±π/2. None of the other methods have such behavior in their error terms.

This suggests that M5 will have lower accuracy in reconstructions where the support of

the function lies near the source trajectory.

Let us now compare M4 to M5 with regards to the error terms we derived. M5 has

all of the error terms as M4 in addition to E1, E2, E5 and E6. Thus in the upper bound

for the error in M5 is higher than that of M4. It is possible that sum of error terms

found in M5 provide a smaller error than found in M4. Our numerical experiments in

Section 2.4 will explore this idea further.



52

The error term

E5 = −ε∆s
2

2

∂3g

∂α∂s2
(sk, αi+1/2)

is of particular interest in our analysis of M5. The term appears in Lemma 2.8, a

Lemma estimating the difference scheme ds without considering interpolation in α. For

ε ≥ 1/4 the term E5 is as large or larger than the error term involving the same partial

derivative in the M3’s error estimate. This error term is the same error term we identified

as providing the better results of M4 compared to M3 and it does not depend on the

method of interpolation used in α.

2.4 Numerical Results

For each experiment we have R = 3, D = 6 and we reconstruct inside the unit circle

over a grid of 256 by 256 pixels. We have P source positions per turn ∆s = 2π/P and

Q x-rays measured uniformly over the angular range [−π/2, π/2]. That is we have 2q

discrete angular measurements for αl = l∆α for l = −q, . . . , q − 1 with ∆α = π/Q and

ε = ∆α/(4∆s) unless otherwise stated.

We let Iπ(x) = [γ−θ, γ+θ] where x has polar coordinates (r, γ) and θ = arccos(r/R).

These are the orthogonal-long π-lines from Section 4.3. We perform linear interpolation

in the backprojection and discretize our filtering kernel according to [8]. Further details

on the numerical implementation are found in Section 6.3.

We will use the following function to construct mathematical phantom for our nu-

merical test

bm(x) =
(

1 − |x|2
)m

+
=

{

(

1 − |x|2
)m

if 1 − |x|2 ≥ 0

0 if 1 − |x|2 < 0
(2.66)

Here m = 3 or 0 is a parameter that controls the smoothness of the function. Our object

function f(x) is given by

f(x) = bm(T (x − x0)) (2.67)

with

T =







cos(ψ)/u sin(ψ)/u 0

− sin(ψ)/v cos(ψ)/v 0

0 0 1/w






.
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P M5 l2 error O(P−α) M4 l2 error O(P−α)

128 0.020372 — 0.019527 —
256 0.0051527 1.9832 0.0049305 1.9857
512 0.0012901 1.9978 0.0012337 1.9987
1024 0.00032242 2.0005 0.00030825 2.0008
2048 8.0547 × 10−5 2.0011 7.6998 × 10−5 2.0012
4096 2.0134 × 10−5 2.0002 1.9247 × 10−5 2.0002

Table 2.1: Convergence study for difference schemes M4 and M5 for the phantom (2.67).

One function f we image is given by

f(x) =
J1(b0|x− x0|)
b0|x − x0|

, x ∈ R
2, b0 = 100, x0 = (0.4, 0.7) (2.68)

where J1 denotes the Bessel function of the first kind of order one. The function is strictly

bandlimited for frequencies less than the cut-off frequency b0. We also reconstruct (2.67)

with u = .35, v = .25, ψ = 25π/180 and m = 0 or 3. The Shepp-Logan phantom is given

as a superposition of multiple copies of (2.67).

The first experiment is a convergence study to verify our theory in Section 2.2 and 2.3.

We let P = 2j source positions and q = 2j−2. We see in Table 2.1 that for j = 7, . . . , 12

both methods M4 and M5 exhibit second order convergence as predicted by Theorem

2.5 and Lemma 2.4. Each experiment in the convergence study has near identical results

for M4 and M5.

We also present the reconstructions of the classical Shepp-Logan phantom and of the

smooth function (2.67) as shown in Figures 2.4 and 2.5 respectively. In each case we

have identical image quality and relative errors. This occurs even for the reconstructions

of (2.68), show in Figure 2.3, with both standard data and interpolated data calculated

on a denser grid. The interpolation used is known to be successful for high accuracy

reconstructions [7]. Both methods suffer from large errors for the reconstructions from

data without interpolation. In each case we see the sensitivity of the parameter ε to the

resolution of the reconstruction. When ε = ∆α/(4∆s) the reconstructions are compara-

ble with M4 and for ε = ∆α/∆s the loss in resolution is significant in all cases except

for the strictly bandlimited phantom. For the bandlimited phantom the relative l2 error

is smallest for ε = ∆α/∆s but not by a significant margin.



54

M5

Relative error = 0.81709

M5

Relative error = 0.55344

M4

Relative error = 0.53328

M5

Relative error = 0.034

M5

Relative error = 0.038

M4

Relative error = 0.039

Figure 2.3: Top Row: Reconstructions of function (2.68). Bottom Row: Reconstruc-
tions of function (2.68) using interpolated data. Left Column: ε = ∆α/∆s. Center

Column: ε = ∆α/(4∆s).

Recall from Theorem 2.5 that the error estimate for M5 depends on tan(α). Sup-

pose that R = 1.05. Then the error terms of M5 will be larger than in the previous

experiments. As we see in Table 2.2 the reconstruction from M5 has a larger l2 relative

error than the reconstruction from M4 for (2.67). This experiment validates our error

estimates in Theorem 2.5. Thus the smaller source radius does effect the accuracy of

M5 and does not greatly effect the accuracy of M4. We note that for the Shepp-Logan

phantom the results of M4 and M5 are identical and don’t differ greatly from the R = 3

experiments.

We see in Figure 2.6 that a reconstruction by (1.13) with M3 and with 64 projections

produces a reconstruction that appears as an average of two rotated reconstructions.

The rotated image is more pronounced with M3 and P = 32. The reconstruction with
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M5

Relative error = 0.34434

M5

Relative error = 0.26254

M4

Relative error = 0.26195

Figure 2.4: Reconstructions of the Shepp-Logan phantom. Left Column: ε = ∆α/∆s.
Center Column: ε = ∆α/(4∆s).

M5

Relative error = 0.054

M5

Relative error = 0.019

M4

Relative error = 0.018

Figure 2.5: Reconstructions of the smooth function (2.67). Left Column: ε = ∆α/∆s.
Center Column: ε = ∆α/(4∆s).

(1.13) and M4 produces an image with better resolution. This supports our claim that

M3 is the average of two slightly rotated data sets.

Our next experiment investigates the claim that the partial derivative with respect to

source positions is unfavorable for reconstructions. Suppose we perform a reconstruction

of fs, given by (2.25), with 2P or P/2 with Q fixed. We will then calculate fα, given

by (2.24), with P and Q. Under the hypothesis that the derivative with respect to s

is undesirable the reconstructions from the sparser and denser sampling in s will have

nontrivial variations in the relative l2 error in the reconstructions.
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f(x) M5 l2 error M4 l2 error

Shepp-Logan 0.19753 0.19699
Equation (2.67) 0.0024100 0.001765

Table 2.2: Reconstructions errors small radius R = 1.04. For the Shepp-Logan phantom
P = 256 and Q = 503 and for (2.67) P = 175 Q = 311.

Shepp-Logan P = 256 P = 256, 128 P = 256, 512

Relative error 0.26195 0.26155 0.26206
Equation (2.67) P = 175 P = 175, 87 P = 175, 350

Relative error 0.018455 0.017625 0.018668

Table 2.3: Reconstructions errors for over and under sampling in P in (2.25). The term
(2.24) is calculated over the lattice P and Q. Here P = pα, ps implies fs is calculated
with P = ps and fα with P = pα. For the Shepp-Logan phantom Q = 924 and for (2.67)
Q = 305.

The results of the experiments using M4 are shown in Table 2.3. For both the smooth

function (2.67) and the Shepp-Logan phantom decreasing or increasing P in (2.25) does

not lead to a significant change in the l2 error. In fact the l2 error for P = 256, 128 is

lower than that of P = 256 and P = 256, 512. However if we view a cross Section of the

Shepp-Logan phantom in Figure 2.7 we see that the reconstruction from P = 256, 128

has larger errors at the boundary of the interior of the skull than the reconstruction from

P = 256. This is a classic example of a Gibb’s effect caused by under sampling in P

and is present in reconstructions from (1.12) with P = 128 and Q = 942. We mention

this to highlight that there is no benefit in reducing the number of source positions

where (2.25) is evaluated over. We do not have Gibb’s effect with (2.67) because the

function is sufficiently smooth. We conclude that the derivative with respect to s is not

an undesirable term in the numerical discretization of (1.11) because it is not sensitive

to perturbations in P .

2.5 Conclusions

We have presented the numerical analysis of Noo et al’s approach for calculating the

derivative in (1.11). Our numerical results demonstrate that M4 is a more robust method

when compared to M5. We therefore suggest M4 as the ideal solution to the view



57

M3 P = 64 M4 P = 64

M3 P = 32 M4 P = 32

Figure 2.6: Left: Reconstruction with (1.13) with M3. Right: Reconstruction with
(1.13) with M4. The image greyscale range is [0, .07] with P = 32 or 64, Q = 1183,
R = 3, and D = 6.

dependent derivative because of it simple derivation and implementation; neither of

which depend on a free parameter ε.

Our analysis has provided a framework to compare direct methods with chain-rule

based methods for the calculation of (2.1). We have provided conditions on ε so that the

interpolation for M5 in α is between adjacent detector bins. We have also shown that

the errors in M5 depend on α but this only matters for high accuracy reconstructions.

We have also provided further reasoning to explain the need for a half detector shift in

α in M5. Without the half detector shift in M5 the difference scheme in α, dα, has step

size 2∆α for ε = ∆α/(2∆s). The result of this is a loss of resolution compared to using

M5 with a half detector shift in α.
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Relative error = 0.26155

P = 256, 128

−0.5 0 0.5
0.01

0.03

Relative error = 0.26195

P = 256

−0.5 0 0.5
0.01

0.03

Figure 2.7: Cross Section x2 = −.702 of the reconstructions of the Shepp-Logan phantom
from Table 2.3.

We have also shown experimentally the derivative with respect to s is not a leading

error term in the reconstructions and that the coarse sampling in P relative to Q is not

a major problem for (2.1) in computed tomography.
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3 Calculating π-Lines with Chips

Helical tomography was proposed as a scanning geometry that would be able to recon-

struct entire volumes exactly. In helical tomography a patient lies on a moving table

while the x-ray imaging device spins in a circle. Now clinical CT settings require that

the table the patient lies on while the x-ray source and detector rotate around in a circle

move at variable speed. With a constant table speed it is difficult to synchronize with

biophysical events which occur during the scan [26].

The condition of a variable speed table requires a general reconstruction formula

based on an existing exact reconstruction formula [13]. Katsevich’s and Pan et al for-

mulas have been shown in [23, 15, 30, 24] to hold for many scanning curves besides the

helix of a constant pitch. Exact formulas we study rely heavily on π-lines for the re-

construction. In the generalized reconstruction formula it is necessary to have existence

and uniqueness of π-lines for curves that behave as a helix in a local sense. Furthermore

it is necessary to have a robust method to compute the π-lines and π-intervals for the

admissible scanning trajectories. We shall develop such a method for calculating π-lines

in this chapter.

Consider the following helical curve

y(s) = (R cos(s), R sin(s), hs) (3.1)

where R and h denote the radius and the pitch of the helix, respectively. We denote

S = {(x, y, z) ∈ R3 : x2 + y2 < R2} as the helix cylinder of (3.1). Let L(a,b) denote the

line passing through points a and b.

Definition 3.1. A π-line is a line segment, denoted L(y(sb),y(st)), that intersects the

helix at y(sb) and y(st) such that 0 < st − sb < 2π.

That is to say y(sb(x)) and y(st(x)) are separated by no more than one helical turn.

The name comes from the fact the π-line gives us a 180 degree view of the point we

wish to reconstruct. See Figure 3.1. Most surprising is that every point inside the helix

cylinder belongs to a unique π-line [3, 5].
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Theorem 3.2. Let y(s) be (3.1) and S be the helix cylinder. Then, any point x ∈ S is

on a unique π-line.

Proof. See [5, 11].

Definition 3.3. Suppose x lies on a π-line Lπ(x) passing through y(sb(x)) and y(st(x)).

We call Iπ(x) = [sb(x), st(x)] a parametric interval or a π-interval of x.

Three dimensional CT reconstruction formulas use the π-intervals to identify which

source positions will be used for the reconstruction at a point x. For example, Katsevich’s

formula (1.3) is of the form

f(x) =

∫

Iπ(x)
ρ(y(s),x) ds (3.2)

which is an integral over source positions from Iπ(x) with filtered and weighted x-ray

data ρ. In practice we have knowledge of ρ from only a finite number of source positions

and therefore we must approximate (3.2) by a numerical integration method. Previous

work by [2, 11, 29] have led to non-linear equations which give the π-interval for any

point within the helix.

In CT there are x-ray detectors which lie on a surface that rotates with the source

position. We determine the integral along the line from y(s) to x by the measurement on

the detector surface given by the stereographic projection of x onto the detector surface.

There is a characterization of s ∈ Iπ(x) in terms of the native detector geometry. That

is s ∈ [sb(x), st(x)] if and only if the projection of x onto the detector surface lies

within a region of the detector called the Tam-Danielsson window. For a proof see

[16, 15]. The Tam-Danielsson window is the region on the detector surface bounded by

the stereographic projection of the upper and lower turns of the source curve as shown

in Figure 3.1.

Under ideal conditions this characterization would eliminate the need for calculating

sb(x) and st(x). However this characterization does not easily lead to a second order

or higher numerical integration method. If the source curve is discretized by sk =

k∆s then for each x there need not be a m and n such that Iπ(x) = [m∆s, n∆s].

Therefore interpolation in s is needed to accurately calculate (3.2) numerically [19]. This

interpolation in s naturally depends on the distance of sk to sb(x) and st(x). The distance
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y(s)

d(s, α,w)

y(sb(x))

y(st(x))

x
Iπ(x)α

w

Figure 3.1: The Tam-Danielsson window is the shaded region of the detector surface
d(s, α,w). The π-line is shown as the line segment between y(sb(x)) and y(st(x)).

cannot be easily calculated by determining the distance on the detector surface from the

projection of x to the boundary of the Tam-Danielsson window. Further complicating

the matter is that the shape of the Tam-Danielsson window need not be constant in

s. This occurs for any helical source curve where the pitch or radius is allowed to vary

with s. To overcome this obstacle we suggest calculating sb(x) and st(x), before the

reconstruction, by using the source curve’s trajectory instead of relying on the location

of the Tam-Danielsson window in the native detector geometry.

In Sections 3.1 and 3.2 we review and extend a decomposition of the helix cylinder into

disjoint surfaces to generalize a method to compute π-intervals for many types of curves.

Our proposed method in Section 3.3 is fast, handles any practical source trajectory, and

does not require large overhead during computation. We conclude in Section 3.4 with

a discussion on the speed of two competing reconstruction formulas for helical CT. The

discussion in Section 3.4 is comparing the computational requirements of two different

formulas when the reconstruction of the function occurs on a chip versus a plane.
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3.1 Helical Chips

We now outline the algorithm developed by Izen [11] to calculate the π-lines of the

helix. The method works on the idea of chips, sets of points in the helix with a common

midpoint in their π-intervals.

Definition 3.4. The chip anchored at y(s), denoted by C(s), is the portion within the

helix cylinder S of the union of all π-lines with endpoints equidistant along the helix from

y(s). That is,

C(s) = S ∩ {x ∈ R3|Iπ(x) = [s− φ, s+ φ)], φ ∈ (0, π)} (3.3)

and we call the line segment joining y(s) to (0, 0, hs) the chip axis.

A general formula for a chip is

C(s) = {(1 − t)y(s− α) + ty(s + α), 0 < t < 1, 0 < α < π}. (3.4)

We shall first construct the chip C(0) and show that it is given by

(

x, y,
hy cos−1 (x/R)√

R2 − x2

)

∈ C(0) (3.5)

where x2 + y2 < R2. Suppose we project C(0) onto the xy-plane as in Figure 3.2. The

π-line of the point with projection (x, y) passes through the helix at y(−α) and y(α)

where α = cos−1(x/R). The distance in the y coordinate between the two points on the

helix is given by R sin(α)−R sin(−α) = 2R sin(α) and the z coordinate varies from −αh
to αh. Hence the π-line from y(−α) to y(α) at (x, y, z) satisfies

z = (1 − t)(−αh) + tαh

t =
y − 〈y(−α), e2〉

〈y(α), e2〉 − 〈y(−α), e2〉
(3.6)

which simplifies to

z =
hyα

R sin(α)
=
hy cos−1 (x/R)√

R2 − x2
. (3.7)
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y(s + α)

y(s)

y(s − α)

rR

ρ
α

θ

x

Figure 3.2: C(s) projected onto the xy plane.

Suppose 0 ≤ ρ < R, θ ∈ [−π, π) is the angle in the xy plane measured with the chip

axis and (x, y) = (ρ cos(θ + s), ρ sin(θ + s)). Then we have

(

ρ cos(θ + s), ρ sin(θ + s), h

(

s+
(ρ/R) sin θ cos−1 ((ρ/R) cos θ)

√

1 − (ρ/R)2 cos2 θ

))

∈ C(s). (3.8)

The chip C(s) is a rotated and translated copy of C(0) and π-lines in each chip lie in

parallel planes. These two conditions simplify identifying the chip C(s) that contains a

given point x.

The goal is then to identify s and θ for each x ∈ S. We follow the method Izen

proposed in [11]. Once s and θ are identified it is a simple calculation to get Iπ(x). Izen

showed to solve for the π-interval of x one computes

β = γ − z/h mod 2π (3.9)

θ = g−1
ρ (β) (3.10)

s =
z

h
−

ρ
R sin θ cos−1( ρR cos θ)
√

1 − ( ρR )2 cos2 θ
(3.11)
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y x−0.5 0 0.5−0.500.5

0

0.1

0.2

0.3

0.4

Figure 3.3: A stack of chips for h = .274 with R = 1 and r = 3/4.

where (ρ, γ, z) are the cylindrical coordinates of x and

gρ(θ) = θ −
ρ
R sin θ cos−1( ρR cos θ)
√

1 − ( ρR)2 cos2 θ
. (3.12)

Now the π-interval of x is Iπ(x) = [s − α, s + α] where α = cos−1( ρR cos θ). The

following Newton method is then used to solve for θ

θn = θn−1 −
gρ(θn−1) − β

g′ρ(θn−1)
(3.13)

with

g′ρ(θ) =
1 − ( ρR )2

(1 − ( ρR )2 cos2 θ)3/2

(

√

1 −
( ρ

R

)2
cos2 θ − ρ

R
cos θ cos−1

( ρ

R
cos θ

)

)

. (3.14)

3.2 Variable Pitch and Radius Helix

Now consider the following curve

y(s) = (R cos(s), R sin(s), h(s)) (3.15)
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where R denotes the radius and h(s) is a strictly monotone continuous function. Condi-

tions for the existence and uniqueness of π-lines with a variable pitch helix have appeared

in [26, 14]. Katsevich showed the π-lines exist if h′(s) + h′′′(s) > 0 almost everywhere in

s [14].

The goal is to extend the construction of a chip to a variable pitch helix and then to

use the chips to indentify the π-intervals. We must first redefine the chip axis as the line

from y(s) to (0, 0, h(s)). We can construct the chip C(0) by utilizing the construction

of (3.6) for the constant pitch helix

z = (1 − t)h(−α) + th(α)

t =
y − 〈y(−α), e2〉

〈y(α), e2〉 − 〈y(−α), e2〉
.

(3.16)

This yields

t =
y −R sin(−α)

2R sin(α)
(3.17)

and
(

x, y,
(h(α) − h(−α))y

2
√
R2 − x2

+
h(α) + h(−α)

2

)

∈ C(0) (3.18)

for α = cos−1(x/R). Suppose we use polar coordinates ρ, θ and let α = cos−1( ρR cos θ)

(

ρ cos θ, ρ sin θ,
(ρ/R) sin θ(h(α) − h(−α))

2
√

1 − (ρ/R)2 cos2 θ
+
h(α) + h(−α)

2

)

∈ C(0). (3.19)

Suppose we have cylindrical coordinates ρ, γ, z for x ∈ S. If θ is now the angle in the xy

plane measured with respect to the chip axis as in Figure 3.2, θ + s = γ mod 2π, then

(

ρ cos(θ + s), ρ sin(θ + s),

(ρ/R) sin θ(h(s + α) − h(s − α))

2
√

1 − (ρ/R)2 cos2 θ
+
h(s + α) + h(s− α)

2

)

∈ C(s).

(3.20)

As with the standard helix, the π-lines in each chip remain in parallel planes orthogonal

to the chip axis. Unlike the standard helix the π-lines do not necessarily intersect the

chip axis.
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Lemma 3.5. Suppose y(s) = (R cos(s), R sin(s), h(s)) where h(s) is a strictly monotone

continuous function. Then

(y(s + α) − y(s − α)) · ((0, 0, h(s)) − y(s)) = 0. (3.21)

That is to say π-lines in a chip are orthogonal to the chip axis.

Next we shall study the chips of the helix with a variable pitch and radius,

y(s) = (R(s) cos(s), R(s) sin(s), h(s)) . (3.22)

Conditions for existence and uniqueness of π-lines for the variable radius with a constant

pitch are given in [25]. We construct C(s) directly for each s by

z = (x, y, (1 − t)h(s − α) + t h(s+ α)) ∈ C(s) (3.23)

with α such that

z = (1 − t)y(s − α) + ty(s + α) (3.24)

and

t =
y − 〈y(s − α), e2〉

〈y(s + α), e2〉 − 〈y(s − α), e2〉

=
y −R(s− α) sin(s− α)

R(s+ α) sin(s+ α) −R(s− α) sin(s − α)
.

(3.25)

As observed in Figure 3.4 the term α can no longer be determined geometrically because

θ and ρ are independent of R(s + α). In the two previous cases we were able to relate

α to the radius R. However R is no longer constant and we must identify the correct

α such that (x, y) lies on the line between y(s − α) and y(s + α) projected onto the

xy plane. The problem becomes no easier if we assume h(s) is linear in (3.22). We see

that much of elegance found in the construction of the original chips, such as C(s) is a

rotation and translation of C(0), is lost as we generalize the behavior of the curve y(s)

to act as a helix in a local sense. In particular the π-lines on a chip with a variable radius

source curve are no longer in parallel planes.
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Figure 3.4: C(s) projected onto the xy plane. For y(s) = (R(s) cos s,R(s) sin s, h(s)).

To determine the chip C(s) that contains x we shall define the distance between C(s)

and x as

|C(s) − x| = min
α
d(l(s, α),x) (3.26)

where l(s, α) is the line segment from y(s+α) to y(s−α) and d(l(s, α),x) is the distance

from l to x. We then find s such that |C(s) − x| = 0.

3.3 Calculating π-Intervals for Variable Pitch and Radius Helix

We shall now demonstrate how to calculate π-intervals for variable pitch and variable

radius helical scanning trajectories. In each case our method minimizes the distance

from the point (x, y, z) to the chip C(s) by varying the anchor point s. This numerical

method is different than that of Izen’s since he proposes solving for the angle θ of each

point relative to the chip’s axis and then identifies the chip’s anchor point by equation

(3.11).

First we shall show how to calculate the π-intervals of (3.15). Let ρ, γ, z be the

cylindrical coordinates for x ∈ S. We know γ = s+ θ mod 2π and

z =
(ρ/R) sin θ(h(s+ α) − h(s− α))

2
√

1 − (ρ/R)2 cos2 θ
+
h(s+ α) + h(s − α)

2
(3.27)
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where α = cos−1( ρR cos θ). With θ = γ − s mod 2π, then we have

f(s) = z − (ρ/R) sin θ(h(s+ α) − h(s − α))

2
√

1 − (ρ/R)2 cos2 θ
+
h(s + α) + h(s − α)

2

and then solve

f(s) = 0. (3.28)

Then the π-interval of x is Iπ(x) = [s− α, s + α] where α = cos−1( ρR cos θ).

To calculate the π-intervals of the curve (3.22) we have a less direct approach than the

variable pitch method. We no longer have an explicit description of each chip. Instead

we must determine the surface of a chip at (x, y) by applying an optimization scheme.

The scheme varies α such that the projection of the line from y(s − α) to y(s + α) in

the xy plane passes through the point (x, y). Thus to calculate the chip that contains a

point (x, y, z) we find the root of

f(s) = z − (1 − t)h(s − α) + t h(s+ α)

t =
y −R(s− α) sin(s− α)

R(s+ α) sin(s+ α) −R(s− α) sin(s − α)

(3.29)

with respect to s. For each s we must calculate α given by the root of

D(α) = (x2 − x1)
⊥ · (x0 − x1)

x0 = (x, y)

x1 = (R(s+ α) cos(s + α), R(s + α) sin(s+ α))

x2 = (R(s− α) cos(s − α), R(s − α) sin(s− α)).

(3.30)

When D(α) = 0 we have x0 is on the line from x1 to x2. The π-interval is given by

[s− α, s + α].

3.4 Chips and π-Line Filtration Formulas

An alternative algorithm to Katsevich’s cone-beam inversion formula has been developed

by Pan et al [32]. To reconstruct a point x ∈ S the competing inversion formula (1.6),

(1.7), (1.8), and (1.9) requires the backprojection of the points along the π-line of x. The
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formula then applies an inverse Hilbert transform to recover f(x) along the π-line of x.

Pan et al’s formula is a backprojection filtration, or BPF formula. Katsevich’s formula

is often implemented as FBP and therefore has the capability to reconstruct at a point

x without having to reconstruct any other points.

Let us remark that it is possible to implement the π-line filtration formula as a

FBP formula [20, 34]. Rewriting the method this way would reduce the dependency of

reconstructing f(x) along its π-lines and reduce the number of points to backproject.

However this method is not advantageous because it places a much higher burden on the

filtering in the local detector coordinates. Now for each source position the projection

of the π-line of x onto the detector surface is filtered. The location of a π-line changes

on the detector surface for each source position and hence the filtering curves change

for each source position. This task seems daunting when compared to Katsevich’s FBP

formula. Here each filtering occurs along the same set of curves on the detector surface

for every source position.

Suppose we wish to reconstruct in the set V = [0, 1]3. One difficulty with the BPF

formula has been finding a manageable set of π-lines that intersect V . We can discretize

V over a uniform grid of dimensions Mx by My by Mz in x, y, and z and perform

a reconstruction over the Mz Mx by My xy planes. This is a suitable method for

Katsevich’s 3D formula. However such a method would be wasteful with Pan’s π-line

filtration formula. This is because the choice of discretizing V is at conflict with the

BPF formula’s reconstruction along π-lines. We can perform P reconstructions in the

xy plane but at the cost of making redundant calculations of f(x). A π-line of x can

intersect more than one of the P xy planes and hence be calculated more than once.

What is needed is a clever way to fill V such that there is no redundant calculations by

the BPF formula.

We propose decomposing the volume V into Mz chips. Each chip is disjoint and

therefore we would have no redundant BPF calculations, that is calculating f(x) along

the π-line of x more than once. After the reconstruction is complete a simple tri-linear

interpolation in the x3 coordinate would yield f(x) over the same coordinate system

which works well with Katsevich’s formula.

One common criticism of BPF algorithms is their speed is slower than that of the

FBP methods [15]. If we were reconstructing a region contained in the support of the

function then the BPF would require more backprojected points than the FBP. Suppose
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# of Chips FBP BPF # filterings for FBP # filterings for BPF

1 232 sec 189 sec 188160 512
2 331 sec 275 sec 188160 1024
4 431 sec 386 sec 188160 2048
8 636 sec 615 sec 188160 4096
16 1031 sec 1063 sec 188160 8192
32 1837 sec 1960 sec 188160 16384

Table 3.1: Runtime of the Katsevich’s FBP and Pan’s BPF for the Shepp-Logan phan-
tom over chips with anchor points uniformly spaced over [−.53, .53]. Reconstruction
parameters P = 896 source positions per turn, Q = 2070 fan angles distributed over
[−π/2, π/2], p = .274, and 210 κ curves.

we want to reconstruct a volume containing the support of f(x). We decompose our

volume into chips and perform the reconstruction over each chip restricted to points in

S. The number of backprojections required for each chip is the same whether the BPF

or the FBP method is used. However the FBP has to perform many filtering steps for

each source position. The BPF only needs to perform one filtering per π-line. Table 3.1

shows the runtime of the FBP and BPF reconstructions with 894 source positions per

turn, 224 by 448 detector elements and with 210 filtering curves for the FBP method.

The reconstruction is that of the Shepp-Logan phantom on the chips of size 512 by 512

pixels. As we can see the BPF algorithm has a significant speed advantage over the

FBP when we reconstruct on 1 chip. However as the number of chips, uniformly spaced

over [−.53, .53], increases we have equal or faster runtime for the FBP over the BPF.

As we increase the number of chips to reconstruct over the same interval the filtering

cost for the FBP remains the same while the BPF’s filtering costs increase with each

chip. In each case the quality of the two reconstructions are identical visually and in

the l2 sense; cf. Figure 3.5. The overhead in our implementation of the inversion of the

Hilbert transform reduces the performance of the BPF algorithm as the number of chips

increases. We remark that our implementation of the BPF algorithm is not as accurate

as the FBP method when reconstructing smooth phantoms. The cause of this problem is

believed to be a first order numerical method to handle the singularities at the endpoints

of integration in (1.9).
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bpf fbp

Figure 3.5: Reconstructions of Shepp-Logan phantom on the chip C(0). In each case the
relative l2 error is 19%. The parameters are P = 768, Q = 1774, R = 3, p = .274 and
139 κ curves.

Another advantage to using chips in the BPF formula is a simplification of the nu-

merical implementation. We can design our chips of size M by N so the points in the

same column lie on the same π-line. Hence we would apply an inverse Hilbert transform

along each column of every chip to get f(x). Katsevich’s formula, which applies its

filtering before the backprojection, does not need such a coordinate system since all the

calculations of x are done with respect to the local detector coordinates.

The implementation of the two methods is discussed in Section 6. The difficult step

in the Katsevich code is rebinning, or change of coordinates from the w coordinate to

the κ curves. The remaining steps in the algorithm follow naturally from the standard

reconstruction formula. Pan’s BPF formula has additional overhead in the backprojec-

tion step because projection data from y(sb(x)) and y(st(x)) needs to be stored for the

filtering. Furthermore the filtering in Pan’s formula is more complicated than that of

Katsevich’s because of the of Hilbert inversion formula (1.7). The inversion formula has

a singularity at the endpoints of the filtering and this makes our current implementation

of the formula less accurate with smooth functions compared to Katsevich’s formula. For

discontinuous functions and sufficient projection data the two methods produce favorable

results with an equal amount of resolution and accuracy as shown in Figure 3.5.

Regardless of which formula is used, the chips form a natural coordinate system for

the general scanning curves. One can simply decompose the generalized helix cylinder
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Figure 3.6: A stack of chips for h(s) = .2740
2π s2 − .2740

2π + s with R = 1 and r = 3/4.

into chips and reconstruct f(x) on each chip. The chips provide an orderly method

to group π-lines into sets which are helpful in implementing cone beam reconstruction

formulas with general source curves. However, the chip surfaces have a drawback. As

seen in Figure 3.6 the distance between two chips is not uniform. Therefore if we recover

a function over many chips we cannot expect to know the function f over a uniform grid

without using tri-linear interpolation.
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4 Comet Tails

A new type of artifact is present in reconstructions from π-line dependent formulas. The

artifact, called a comet tail artifact, is easy to illustrate with the reconstruction in Figure

4.1. Here a large artifact, originating from the reconstructed smooth function, resembles

the appearance of a comet’s tail. Comet tail artifacts have been found in reconstructions

by formulas that allow the π-intervals to change with respect to x. This includes, but is

not restricted to, the 2D π-line formula (1.12) and Katsevich’s 3D (1.5) formula. See [28]

for a discussion on other types of artifacts in reconstructions by (1.5). The comet tail

artifact discussed here is not to be confused with the comet tail artifact in ultrasound

reconstructions [6]. The size of the error of the comet tail artifact is not large and it

does not affect the rate of convergence of our algorithm. Our goal is to justify why the

comet tail artifact occurs and to understand where it will occur.

In Section 4.1 we introduce a set called the region of backprojection that tells us

which points have position s inside their π-intervals. We describe a heuristic principle

for the appearance of the comet tail artifact in terms of the region of backprojection.

Our claim is the comet tail artifact will appear strongest along the boundary of the

region of backprojection. We derive properties of the region of backprojection that hold

for fan-beam and helical scanning geometries.

Section 4.2 details the appearance of the comet tail artifact in helical tomography

under our hypotheses. We observe that the region of backprojection and its boundary are

collections of π-lines. We use disjoint surfaces called chips from Chapter 3 as a method

to collect the π-lines that make up the region of backprojection for the helix. We then

describe the comet tail artifact restricted to each chip. Our work determines that it is

easier to describe the comet tail artifact on a chip rather than on a plane.

In Section 4.3 we construct the region of backprojection in 2D fan-beam tomography

for special families of π-lines. In each case we have that the region of backprojection

and its boundary is no longer made up of a collection of π-lines. A method to explicitly

calculate a subset of the support of the comet tail artifact for the 2D π-formula (1.12)

is presented and verified under our hypotheses about the comet tail’s appearance.
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Figure 4.1: Left: Original smooth function. Right: Reconstruction by (1.12) with a
comet tail artifact present. Reconstructed with P = 2560, Q = 579, R = 3, and D = 6.
The image grayscale range is [−8E − 5, 8E − 5]. The reconstructed function is (2.67)
with x0 = (−1,−1), u = .3, v = .3,m = 3 and ψ = 0.

The theory presented here proves useful in Section 5 after we observe comet tail arti-

facts in reconstructions where the location of the detector array for the given projection

data is not known exactly.

Let R = 1 unless otherwise stated, define Ω to be the open unit ball in R
2 and

S = Ω × R be the helix cylinder in R
3.

4.1 Region of Backprojection

The shape of the comet tail artifact is dictated by the π-lines. A distinctive feature

of π-line reconstruction formulas is that for reconstruction at a point x only data from

source positions from the π-interval of x are used. Viewed in another way, this means

that data from a give source position s contributes only to the reconstruction of points

in a certain region. This observation motivates the following definition.

Definition 4.1. We call RBP (s) = {x ∈ Ω | s ∈ Iπ(x)} the region of backprojection of

position y(s). Let ∂RBP (s) be the boundary of RBP (s). For 3 dimensions RBP (s) =

{x ∈ S | s ∈ Iπ(x)}. We denote ∂′RBP (s) as ∂RBP (s)∩Ω in 2D and ∂RBP (s)∩S in

3D.

A point x is in the region of backprojection if the current source position is in the

point’s π-interval. For 2π algorithms we don’t have a notion of π-intervals and the
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points where we reconstruct is the set Ω. The boundary of RBP (s) is the feature of

interest. Suppose x is inside Ω and in ∂RBP (s) and that sb(x) and st(x) are continuous.

This implies that f(x) will be reconstructed with data from source position s. There

exists a point x′ in any neighborhood of x outside of RBP (s) and thus f(x′) will not be

reconstructed from data from source position s. Hence ∂RBP (s) represents the cutoff

of the points where the function receives a backprojection contribution from position s

and contains points where s is an endpoint of their π-intervals. We shall give a better

justification for this in Lemma 4.3.

The following definition is also central to describing the shape of the support of the

comet tail artifact.

Definition 4.2. A point x is in Γx0
if there exists s ∈ R such that x ∈ ∂′RBP (s)

and x, x0 and y(s) are collinear. Equivalently x0 ∈ Lπ(x). If π-lines are unique then

Lπ(x) = Lπ(x0).

Suppose the support of f is a small region around x0, ie f is an approximate δ

function centered at x0. Then for a given s the filtered data g ∗ k will be large for the

line connecting x0 to y(s) and a contribution to the artifact occurs at the intersection

of this line with ∂RBP (s). Alternatively we can define Γx0
as

Γx0
= ∪s[∂′RBP (s) ∩ L(x0,y(s))]

= {x | ∃s,x ∈ ∂′RBP (s) and x0, x, and y(s) are collinear}.
(4.1)

Lemma 4.3. Suppose x ∈ ∂′RBP (s) and y(s) = (cos(s), sin(s)) or x ∈ ∂RBP (s) ∩
S and y(s) = (cos(s), sin(s), hs) with Iπ(x) = [sb(x), st(x)]. If sb(x) and st(x) are

continuous at x, then x ∈ RBP (s) and s = sb(x) or s = st(x).

Proof. We begin with the first statement. Suppose xn → x and xn ∈ RBP (s) for all

n. Let Iπ(xn) = [bn, tn] and Iπ(x) = [sb(x), st(x)]. By the continuity of Iπ(x), we have

bn → sb(x) and tn → st(x) as n → ∞. Now for each n we have bn ≤ s ≤ tn for all n.

Hence s ∈ [sb(x), st(x)] and x ∈ RBP (s).

Suppose x ∈ ∂RBP (s). We know s ∈ [sb(x), st(x)]. Let U be an open neighborhood

of x. Then the set U\RBP (s) is nonempty. Let xn → x and xn ∈ U\RBP (s) for all n.

Let Iπ(xn) = [bn, tn]. Then by construction s /∈ [bn, tn] for all n and we can construct a

subsequence bnk
such that bnk

> s or a subsequence tnk
such that tnk

< s.
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Suppose s < bnk
for all k ∈ N, then

s ≤ lim
k→∞

bnk
= sb(x). (4.2)

We have s ≤ sb(x) and s ∈ [sb(x), st(x)]. Therefore s = sb(x). The s > tnk
case follows

by the same argument. Hence s = sb(x) or s = st(x).

Corollary 4.4. Suppose x ∈ ∂′RBP (s). Then the line segment from x to y(s) is

contained in the π-line of x.

Proof. By Lemma 4.3 we know if x ∈ ∂RBP (s) then s = sb(x) or s = st(x) where

y(sb(x)) and y(st(x)) are points on the π-line through x.

Lemma 4.3 tells us that if x belongs to the boundary of RBP (s), restricted to Ω or

S, then s is an endpoint of the π-interval of x. As we shall see in the next example, the

converse is not true in the 2D case.

Example 4.5. Suppose we have the following π-lines

Iπ(x) = [sb(x), 2π]

sb(x) = π − 2α∗(0,x)
(4.3)

where α∗ is defined in (1.1).

The construction of the π-line at x follows from Figure 4.2. We take the line from

y(0) through x. To calculate sb(x) we use the local detector coordinate of x at y(0).

Then 0 ∈ Iπ(x) for all x ∈ Ω. Hence a point can be in the interior of RBP (s) when

s = sb(x) or s = st(x).

4.2 Region of Backprojection for Helical Scanning Trajectories

It is difficult to analytically describe the region of backprojection for the helical π-lines

in the plane x3 = 0 for either the 2D or 3D formula. As seen in Figure 4.3, numerical

results show that RBP (s) ∩ {x3 = 0} changes its size as s varies and that it does not

rotate with the source curve. To prove the following result we shall describe the region

of backprojection on surfaces that are not parallel planes.
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x

y(0)

y(sb(x))

α∗(0,x)

Figure 4.2: Construction of π-lines from Example 4.5.

Lemma 4.6. Suppose y(s) = (cos s, sin s, hs) and Iπ(x) = [sb(x), st(x)], then sb(x) and

st(x) are continuous functions for x ∈ S.

Proof. Let x ∈ C(s), h = 1, and suppose xn → x where x has chip coordinates (s, ρ, θ)

and xn = (sn, ρn, θn) where

x =

(

ρ cos(θ + s), ρ sin(θ + s), s+
ρ sin θ cos−1 (ρ cos θ)
√

1 − ρ2 cos2 θ

)

.

As n→ ∞, (sn, ρn, θn) → (s, ρ, θ) provided ρ, ρn < 1 for all n.

Now st(x) = s+α = s+ arccos(ρ cos(θ)). Let zn = (s, ρn, θn) ∈ C(s). Then |st(x)−
st(xn)| ≤ |st(x) − st(zn)| + |st(xn) − st(zn)| = | arccos(ρ cos(θ)) − arccos(ρn cos(θn))| +
|s− sn|. As n→ ∞, |st(x) − st(xn)| → 0.

Theorem 4.7. Suppose y(s) = (cos s, sin s, hs). Then x ∈ ∂′RBP (s) if and only if

s = sb(x) or s = st(x).

Theorem 4.7 tells us that ∂RBP (s) intersected with S is the surface of all π-lines that

contain y(s). We note that the ∂′RBP (s) is the union of the lower and upper π-surfaces

described in [21]. The proof of Theorem 4.7 depends on the uniqueness of π-lines in the
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Figure 4.3: Region of backprojection for the 3D formula, white in color, for helical π-lines
for the plane x3 = 0 with R = 3.

helix by utilizing all points on a π-line have the same π-line. The results of Theorem 4.7

can be generalized to hold for π-lines and RBP (s) with scanning trajectories where the

π-lines exist and are unique. To simplify our work will we focus on collections of π-lines

that lie in parallel planes. We use the subset of the helix cylinder discussed in Section

3.1 called a chip.

Lemma 4.8. Let C(t) be a chip anchored at t and suppose y(s) = (cos s, sin s, hs). Then

RBP (s) ∩ C(t) is

{x ∈ C(t) | Iπ(x) = [t− α, t+ α], |t− s| ≤ α < π}

and

∂RBP (s) ∩ C(t) = {x ∈ C(t) | Iπ(x) = [t− α, t+ α], |t − s| = α < π}.
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Figure 4.4: C(t) projected onto the xy plane.

Proof. Observe from Figure 4.4

RBP (s)∩C(t) = {x ∈ C(t) | s ∈ Iπ(x)} = {x ∈ C(t) | Iπ(x) = [t−α, t+α], |t−s| ≤ α < π}.

Let U be an open neighborhood of x ∈ ∂RBP (s)∩C(t). Then the set U\(RBP (s)∩
C(t)) is nonempty. Let xn → x and xn ∈ U\(RBP (s) ∩ C(t)) for all n where Iπ(xn) =

[sb(xn), st(xn)] = [t − αn, t + αn] with αn < |t − s|. By the continuity of sb and st we

know

lim
n→∞

sb(xn) = sb(x)

lim
n→∞

st(xn) = st(x)

and that x ∈ RBP (s)∩C(t) by Lemma 4.3. Then Iπ(x) = [t−α, t+α] with α = |t−s|.

Proof of Theorem 4.7. By Lemma 4.3 and Lemma 4.6 we know x ∈ ∂′RBP (s) implies

s = sb(x) or s = st(x).

Let x ∈ S, then there exists a unique t ∈ R such that x ∈ C(t). Suppose s = sb(x)

then the π-interval of x is centered at t, with t > s, and has length 2α where α = t− s.
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RBP (−2)

•y(0)

RBP (.75)

•y(0)

Figure 4.5: On each chip, RBP (s) expands towards the anchor point and then retracts.
Shown is RBP (s) ∩C(0).

Thus Iπ(x) = [t−α, t+α] = [s, s+2(t− s)] = [s, 2t− s]. Therefore x ∈ ∂RBP (s)∩C(t)

by Lemma 4.8. The case s = st(x) follows in a similar manner.

The region of backprojection for the chip C(t) expands from y(t − π) to the chip’s

anchor point y(t) and then retracts; cf. Figure 4.5. Suppose s < t, then the intersection

of the boundary of the region of backprojection RBP (s) with the chip C(t) is the π-line

from y(s) to y(2t − s). Recall that the helix cylinder can be decomposed into disjoint

chips. It is now possible to describe the region of backprojection of the entire helix

cylinder by the behavior of the RBP (s) on any given chip. Then RBP (s) for the helix

cylinder is a rotated and translated copy of RBP (0) because of the same behavior found

in the chips. With our description of RBP (s) and ∂RBP (s) on a chip C(t) we can now

describe the support of the comet tail artifact on S.

Theorem 4.9. Let y(s) = (cos s, sin s, hs), then Γx0
= Lπ(x0) ∩ S.

Proof. Let x ∈ S. Then x ∈ Γx0
occurs if and only if there exists s such that x ∈

∂RBP (s) and x ∈ L(x0,y(s)). By Lemmas 4.3 and 4.6 x ∈ Γx0
is equivalent to s = sb(x)

or s = st(x) and x ∈ L(x0,y(s)) for some s. By Corollary 4.4 this occurs if and only

if L(x0,y(s)) = Lπ(x). By the uniqueness of π-lines we have x0 ∈ Lπ(x) if and only if

x ∈ Lπ(x0).

By Theorem 4.9 we have Γ is the set of all π-lines that pass through the support of

the function. We see in Figure 4.6 that comet tail artifacts construction along the π-lines

that pass through the support of f . Here the π-lines on the chip C(.4) are orthogonal
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Figure 4.6: Left: 3D reconstruction with (1.5) in the plane x3 = 0. Right: Same
function as before but reconstructed on C(.4). Reconstructed with P = 2560, Q = 579,
R = 3, and D = 6 and p = .274. The image grayscale range is [−1E − 4, 1E − 4]. The
reconstructed function is (2.67) with x0 = (−1,−1, 0), u = .3, v = .3, w = 2,m = 3 and
ψ = 0.

to the chip axis that passes through the point y(.4) as shown in Lemma 3.5. Thus the

support of the comet tail artifact shown in the plane x3 = 0 is the collection of all π-lines

that pass through the support of f and intersects the plane x3 = 0.

4.3 Region of Backprojection for Fan-Beam Geometry

Every point inside Ω lies on a line that passes through the boundary of Ω twice. However

the π-lines for a circle are not unique since there exists infinitely many such lines that

intersect the scanning circle and x.

For the 2D case we consider a few special families of π-lines. The first correspond to

the π-intervals from a helix, modulo 2π, for the points that lie in the plane x3 = 0. We

remark that for points in the plane x3 = 0 their π-intervals are independent of the helix

pitch h/(2π) [8]. See Section 3.3 for a method to calculate the helical π-lines.

Another type of π-lines we use are orthogonal-long π-lines. For the π-interval we

take a line through x that is perpendicular to the line segment from the origin to x. We

then select the longest arc corresponding to the intersection of this line and the circle.

Let x have polar coordinates (ρ, θ), then the orthogonal-long π-line interval is given by

sb(x) = θ+γ and st(x) = θ−γ where γ = arccos(ρ/R). We let Iπ(0) = [−π, π] and note
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Figure 4.7: Orthogonal-long and tilted-long π-lines

that these π-lines do not vary continuously at the origin. If Iπ(x) = [sb(x), st(x)] is the

orthogonal-long π-interval then the orthogonal-short π-interval is [st(x), sb(x)].

Our next family is tilted-long π-lines where the angle between the radial ray through

x and the line through x have a fixed angle of intersection ψ. The tilted-long π-line of a

point x is the orthogonal-long π-line for the point x′ where x′ = Ax and A is given by

the matrix

A = sin(ψ)

[

sin(ψ) − cos(ψ)

cos(ψ) sin(ψ)

]

(4.4)

with Iπ(0) = [−π, π]. We derive Ax as the rotation of x by ψ − π/2 and dilated by

sin(ψ). For ψ = 0 the matrix A is not defined as above because we don’t have continuity

of the orthogonal-long π-lines at the origin. We define the radial π-lines, ψ = 0, as the

π-intervals Iπ(x) = [θ, θ + π] with Iπ(0) = [−π/2, π/2].
We now constructRBP (s) for orthogonal and tilted π-lines in the fan-beam geometry.

Our first result deals with nesting of orthogonal-long π-intervals.

Lemma 4.10. Let x and y be points inside the unit circle, neither of them 0, with

polar coordinates (ρx, θ) and (ρy, θ) respectively. Furthermore let Iπ(x) = [s1, s2] and

Iπ(y) = [t1, t2] be the π-intervals corresponding to the orthogonal-long family of π-lines.
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If ρx < ρy, then Iπ(x) ⊂ Iπ(y). For the orthogonal-short π-lines we have Iπ(x) ⊃ Iπ(y).

Proof. We shall only focus on the orthogonal-long π-lines. The case of the orthogonal-

short π-lines follows a similar argument. Let x have polar coordinates (ρ, θ). Recall that

the orthogonal-long π-intervals are defined as sb(x) = θ + γ and st(x) = θ − γ where

γ = arccos(ρ/R).

The radial components satisfy 0 < ρx < ρy < 1 and thus arccos(ρx) > arccos(ρy)

since arccos is a decreasing function on [0, 1]. Hence s1 = θ + arccos(ρx) ≥ θ +

arccos(ρy) = t1 and s2 = θ − arccos(ρx) ≤ θ − arccos(ρy) = t2. Thus Iπ(x) ⊂ Iπ(y).

The following is an immediate consequence and is shown in Figure 4.8.

Corollary 4.11. For the π-lines of the orthogonal-long type we have

RBP (s) =

{

Ω ∩D(s)c s ∈ [−π/2, π/2]
Ω ∩D(s)c\{0} s /∈ [−π/2, π/2]

(4.5)

where D(s) = {x : |x − c| ≤ 1/2} and c = (cos(s)/2, sin(s)/2). For the orthogonal-short

π-lines we have

RBP (s) =

{

Ω ∩D(s) s ∈ [−π/2, π/2]
Ω ∩D(s)\{0} s /∈ [−π/2, π/2]

(4.6)

as shown in Figure 4.8.

Proof. Again, we shall only focus on the orthogonal-long π-lines. It suffices to show the

result holds for s = 0 modulo 2π. Let x = (ρ, θ) and suppose Iπ(x) = [sb(x), st(x)].

If π/2 < θ < 3π/2 then π/2 < sb(x) < 2π and st(x) = θ− γ where γ = arccos(ρ). In

particular st(x) > 0 since π/2 < θ < 3π/2 and γ ∈ [0, π/2]. Hence s ∈ [sb(x), st(x)].

Now let 0 ≤ θ ≤ π/2. Suppose x′ is the point of the form (ρ′, θ) with Iπ(x
′) =

[sb(x
′), st(x

′)] such that st(x
′) = 0 which occurs if and only if cos(θ) = ρ′. Then 0 ∈

[sb(x
′), st(x

′)] and by Lemma 4.10 we have 0 ∈ [sb(x), st(x)] provided ρ > ρ′. If ρ < ρ′

then

st(x) = θ − arccos(ρ)

= arccos(ρ′) − arccos(ρ)

< 0

(4.7)
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D(0)

y(0)

Figure 4.8: Region of backprojection for orthogonal-long π-lines is the region inside the
curve y(s) and outside of D(s).

since arccos is decreasing on [0, 1]. Thus 0 /∈ [sb(x), st(x)] if ρ < cos(θ). A similar

argument holds if 3π/2 ≤ θ < 0. Thus {(ρ, θ) | − π/2 ≤ θ ≤ π/2, cos(θ) ≤ ρ} =

D(s) ∩ Ω.

For each source position the points where we reconstruct using orthogonal-long π-

lines in formula (1.12) lie in the region (4.5). This region is shown in Figure 4.8.

Corollary 4.12. Consider y(s) = (cos s, sin s) with the π-lines of the tilted-long type.

Let s ∈ [0, 2π), then s ∈ Iπ(x), for all x ∈ Ω∩D(s)c where D(s) = {x ∈ Ω | ‖x−A−1c‖ ≤
1

2 sin(ψ)}, A defined by (4.4), c = (cos(s)/2, sin(s)/2).

Proof. Recall

A = sin(ψ)

[

sin(ψ) − cos(ψ)

cos(ψ) sin(ψ)

]

.

is the matrix that transforms orthogonal-long π-lines to tilted-long π-lines. We will show

{x ∈ Ω | |x − A−1c| ≤ 1
2 sin(ψ)} = {x ∈ Ω | |Ax − c| ≤ 1

2}. By construction x is the

point on the tilted π-line l such that l is the orthogonal π-line of Ax. By Corollary

4.11 we know s ∈ Iπ(x) if x ∈ Ω ∩ {x ∈ Ω | |Ax − c| ≥ 1
2}. For A as above we have
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A∗ = sin2(ψ)A−1. Now |Ax − c| ≤ 1
2 yields

1

4
≥ 〈Ax − c,Ax − c〉

= 〈Ax −AA−1c,Ax − c〉
= 〈x −A−1c,A∗Ax−A∗c〉
= 〈x −A−1c, sin2(ψ)x − sin2(ψ)A−1c〉
= sin2(ψ)〈x −A−1c,x −A−1c〉.

Hence |Ax − c| ≤ 1
2 if and only if |x −A−1c| ≤ 1

2 sin(ψ) . Thus x ∈ Ω ∩ {x | |x −A−1c| ≥
1

2 sin(ψ)} implies s ∈ Iπ(x).

If ψ = 0 then A and A−1 are not defined. However it is still easy to see that D(0) is

the right half of the plane rotated about the origin as s increases.

The rotation of the RBP (s) comes from a fundamental difference between the π-

intervals from the helix in the plane x3 and those of the orthogonal-long type. Every

π-interval from the helix will contain the source position that intersects the x3 = 0 plane

since y(sb(x)) is below the x3 = 0 plane and y(st(x)) is above it. The orthogonal-long

π-lines do not have this property, the intersection of all π-intervals is empty. However

these two choices π-intervals share a feature not found in the collection of all helical

π-lines. No two points lie on the same π-line for helical or orthogonal-long π-lines. If

we do not restrict the helical π-lines to points in the plane x3 = 0 then this is no longer

the case. We showed in Section 4.2 that ∂RBP (s) for the helix is a surface of π-lines.

The ∂RBP (s) for the orthogonal-long π-lines is a circle and is therefore not a union of

π-lines.

For the orthogonal-long π-lines we have RBP (s) is a convex set and therefore Γx0

has only one point x for every s such that x0 ∈ Lπ(x) and x ∈ ∂′RBP (s). We then end

up with a curve γ that identifies the set Γx0
. More precisely

γ(s,x0) = {z ∈ ∂′RBP (s) | α∗(s,x0) = α∗(s, z)} = ∂′RBP (s) ∩ L(x0,y(s)) (4.8)

and by (4.1)

Γx0
= ∪sγ(s,x).
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Theorem 4.13. Suppose y(s) = (cos s, sin s). Then for the π-lines of the orthogonal-

long or short type we have Γx0
is a circle centered at x0/2 with radius |x0/2|.

Theorem 4.13 predicts that the comet tail artifact for the orthogonal-long and short

π-lines is a circle centered halfway between the object and the origin. In Figure 4.10 and

Figure 4.1 we observe that the artifact changes with our choice of π-lines. The artifact

for the orthogonal-long π-lines is located where our theory predicts.

Proof. We will use a geometric argument, that follows from Figure 4.9, to argue that Γx0

is a circle. Let A = (x0, y0), C = (0, 0), and G = y(s). Let B be the midpoint between

A and C and let D be the midpoint between C and E. Note that E is the point on

the boundary of D(s) and the line connecting A to the source position G. Let F be the

center of D(s).

The line segment CE is perpendicular to line segment AG since E lies on a circle

centered between points C and G. We remark that AG is on the π-line of E and that

E is the location of the artifact, ie E = γ(s,x0). Triangle ACE is similar to triangle

BCD. Furthermore triangle BCD is congruent to triangle BED. In particular we have

that line segments BA, BC and BE have the same length.

We have shown that the distance between A and B is equal to the distance between

E and B for all s ∈ [0, 2π). Thus Γx0
is a circle centered at B with radius d/2.

The following result gives us a parametrization of Γ with respect to s.

Corollary 4.14. Suppose y(s) = (cos s, sin s). Then for the π-lines of the orthogonal-

long or short type we have

Γx0
= ∪sγ(s,x0)

γ(s,x0) = R(s)z(s)

R(s) =

[

cos(s) − sin(s)

sin(s) cos(s)

]

z(s,x0) =

[

1
2 cos(π − 2α∗(s,x0)) + 1

2
1
2 sin(π − 2α∗(s,x0))

]

.

(4.9)



87

A

B

C
D

E

F

GG

α

Figure 4.9: Diagram for proof of Theorem 4.13 with A = x0, B = (x0/2, y0/2), C = 0

and G = y(s).

where Γx0
= ∪sγ(s,x0). The term α∗ is the curved detector coordinate defined by (1.1).

Proof. The argument follows from Figure 4.9. We may view the curve γ in terms of the

fan-beam detector coordinates. Let s = 0. We shall calculate the position of E along

the boundary of RBP (0). First we calculate ∠EFG, the angle between x0’s projection

onto the boundary of D(0), the center of D(0), and y(0). Hence ∠EFG = π−2α∗(0,x0)

and the position of E in terms of ∂′RBP (0) is given by

E =

[

1
2 cos(π − 2α∗(0,x0)) + 1

2
1
2 sin(π − 2α∗(0,x0))

]

. (4.10)

For s ∈ (0, 2π) we exploit that RBP (s) of the orthogonal-long π-lines rotates about the

origin counterclockwise with respect to s. Now ∠EFG is given by π − 2α∗(s,x0) and

the position of ∂RBP (s) is R(s)∂D(0) where

R(s) =

[

cos(s) − sin(s)

sin(s) cos(s)

]

(4.11)
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Figure 4.10: Left: Comet tail artifact for orthogonal-long π-lines Reconstructed with
P = 2560, Q = 668, R = 3, and D = 6. The image grayscale range is [−8E − 5, 8E − 5].
The reconstructed function is (2.67) with x0 = (−1,−1), u = .3, v = .3,m = 3 and
ψ = 0. Right: Support of comet tail artifact predicted by Theorem 4.13.

is a rotation matrix. Let z = R−1(s)E. Next we calculate the position of z along the

boundary of R−1(s)D(s), which is ∂D(0),

z(s,x0) =

[

1
2 cos(π − 2α∗(s,x0)) + 1

2
1
2 sin(π − 2α∗(s,x0))

]

. (4.12)

Thus

γ(s,x0) = E = R(s)z(s,x0). (4.13)

The change of coordinate method used to construct γ(s,x) = R(s)z(s,x) in the above

proof allows us to determine where the comet tail artifact will appear when we use tilted-

long π-lines. We need only use the description of D(s) given to us by Corollary 4.3 and

reparametrize z so that it corresponds to ∂′RBP (s) of the tilted-long π-lines. The only

drawback to this method is that it will not lead to a simple geometric argument that

determines the shape of the comet tail artifact. Instead, it will give a parameterization

of the artifact with respect to s.

This change of coordinates method found in Corollary 4.14 will work for any RBP (s)

that is convex, connected and has a fixed shape that rotates around the origin with
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Figure 4.11: Left: Region of backprojection, white in color, for the π-lines given by
Example 4.15 with R = 3 for points with |x| < 2.8. Right: Reconstructed by (1.12) with
P = 2560, Q = 579, R = 3, and D = 6. The image grayscale range is [−8E − 5, 8E − 5].
The reconstructed function is (2.67) with x0 = (−1,−1), u = .3, v = .3,m = 3 and
ψ = 0.

respect to s. This class of region of backprojections is not limited to the ones we have

described thus far. The next two sets of π-lines violate one of the conditions above.

Example 4.15. Let Iπ(x) = [sb(x), st(x)] correspond to π-lines of the orthogonal-long

type . Consider the following set of π-lines

I ′π(x) =

{

[sb(x), st(x)] if |x| < R
2

[st(x), sb(x)] if |x| ≥ R
2

. (4.14)

Then the RBP (s) is Ω ∩ D(s)c if |x| < R
2 and is Ω ∩ D(s) if |x| ≥ R

2 . As seen in

Figure 4.11, the RBP (s) need not be connected and thus the construction of γ(s,x) will

not work as in Theorem 4.13. We also observe that the support of the comet tail artifact

is the same as we see in Figure 4.10 with orthogonal-long π-lines. This occurs because

Corollary 4.11 tells us the boundary of the region of backprojections for orthogonal-long

and short π-lines is the same. However the values of comet tail artifact from Example

4.15 are clearly different from that of orthogonal-long..
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Figure 4.12: Region of backprojection, white in color, for the π-lines given by Example
4.16 with R = 1.

Example 4.16. Let Iπ(x) = [sb(x), st(x)] correspond to π-lines of the orthogonal-long

type and (ρ, θ) be the polar coordinates of x. Let

I ′π(x) = Iπ(Ax) (4.15)

where ψ = (R − ρ)π and

A = sin(ψ)

[

sin(ψ) − cos(ψ)

cos(ψ) sin(ψ)

]

As we see in Figure 4.12, RBP (s) for 4.16 is not convex.
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5 Aligning CT Data

A CT reconstruction requires two key pieces of information from the x-ray data g. The

first is the value of the line integral from the position s in the direction α, g(s, α). The

value of the angle of measurement α is as important as the measured value g(s, α) because

errors in α can reduce image resolution. The angle α is given and we calculate g(s, α).

In a x-ray machine the value g(s, α) is given by the measurements in the detector bin.

The detector bin counts the number of photons that arrived since the last measurement

at that detector bin was recorded. The photon count from the bin allows us to measure

the loss of x-ray photons as they travel through the object and reach the detector. If

G0(s, α) is the number of photons emitted from the x-ray source towards the detector

bin in direction α and Gm(s, α) is the measured photon count at that detector bin then

g(s, α) = − log

(

Gm(s, α)

G0(s, α)

)

. (5.1)

The terms G0 and Gm are recorded by the CT machine and estimate g(s, α). The values

α are provided as well, but are not always stored with G0 and Gm. We want to study the

situation where g(s, α) is known and we only have approximate information about α. In

practice each CT machine is calibrated using a calibration phantom. The measurements

are saved and used for the following reconstructions. We shall see that our method

proposed in Section 5.2 works for phantoms not intended for calibration.

A few assumptions about α can be made from the scanning acquisition pattern. First,

the detectors are placed on a gantry that rotates around the patient. The location of the

detector bin at angle αi relative to the bin at αj is fixed in s for all i and j. Furthermore

we will assume that we know the angular spacing between all the adjacent detectors.

For our purposes the spacing is uniform, ie ∆α = αi+1 − αi for all i.

We must locate the correct value of αi for all i. Our assumptions on the fan angles

reduces the problem to finding αi for some i. We can then characterize our problem as

identifying the detector bin in our measured data that corresponds to α = 0. We call

the detector bin located at α = 0 the center of rotation of the projection data because,
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in our coordinate system, the line with angle α = 0 passes through the axis of rotation

of y(s).

In Section 5.1 we introduce an error term to estimate the behavior of the reconstruc-

tion formulas when the x-ray data is uniformly shifted in the α coordinate. A method

to correct the reconstructions from shifted data is presented for the fan-beam geometry

in Section 5.2.

5.1 Shifted Data with Katsevich’s 2D Formula

We are motivated by the reconstructions of a Siemen’s calibration phantom by Katse-

vich’s 2D formula (1.12) in Figure 5.1. We have 512 x-rays equally spaced over 40◦ from

each source position. Here we have shifted the location of the x-ray detector bins to

the right by either zero or one detector. The center of rotation is assumed to be the

256th detector bin. The effects of the shift are apparent as the image with a detector

shift of zero in Figure 5.1 has a comet tail artifact originating from the densest block in

the phantom, the block that is all white. A smaller comet tail artifact appears in the

reconstruction with a shift of 1 detector bin. A reconstruction from the full scan formula

(1.13) does not have any comet tail artifacts. Our theory from Section 4 implies that we

should not expect to see any comet tail artifacts in the reconstruction because the region

of backprojection for the full scan (1.13) is all points inside the scanning circle. Our

goal is to verify that the comet tail artifact is present in the reconstructions from (1.12)

with misaligned data and if we can use its presence to identify the center of rotation of

the projection data g(s, α). Contrast this with the reconstructions in Figure 5.1 in the

bottom row which lack any comet tail artifact. The reconstructions from (1.13) appear

nominal with the reconstruction with a shift of zero having slightly smoother straight

edges.

Suppose that our measured x-ray data has a uniform alignment error in the α co-

ordinate. That is for some h ∈ R we have gh(s, α) = g(s, α + h). Let fh(x) be the

reconstruction from gh. The question is how does this error term propagate in the re-

construction of fh from Katsevich’s formula (1.12)? Assume that we have smooth data

g(s, α). Then by a Taylor series with respect to α we have

Gh(s, α) = g(s, α) + h
∂g

∂α
(s, α) (5.2)
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Figure 5.1: Calibration phantom from the 1980s. Shift in the data is relative to the
256th detector bin. Top Row: Reconstructions from π-line formula (1.12). Bottom

Row: Reconstructions from 2π formula (1.13).

where Gh(s, α) ≈ gh(s, α). The reconstruction of Gh(s, α) gives us

fh(x) ≈ 1

2π2

∫

Iπ(x)

1

|x− y(s)|

∫ 2π

0

(

∂Gh
∂s

+
∂Gh
∂α

)

k(α∗ − α) dα ds

=
1

2π2

∫

Iπ(x)

1

|x− y(s)|

[
∫ 2π

0

(

∂

∂s
(g(s, α) + h

∂g

∂α
(s, α))

)

k(α∗ − α) dα

+

∫ 2π

0

(

∂

∂α
(g(s, α) + h

∂g

∂α
(s, α))

)

k(α∗ − α) dα

]

ds.

(5.3)
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Now we have an error term

e(h) = f(x) − fh(x)

≈ − h

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

(

∂

∂α

∂g

∂s
(s, α) +

∂2g

∂α2
(s, α)

)

k(α∗ − α) dα ds.

(5.4)

After taking an integration by parts with respect to α, we have

e(h) ≈ − h

2π2

∫

Iπ(x)

1

|x − y(s)|

∫ 2π

0

(

∂g

∂s
(s, α) +

∂g

∂α
(s, α)

)

k′(α∗ − α) dα ds. (5.5)

seeing that the boundary term vanishes since g is the x-ray data of a compactly sup-

ported function. This gives us a new formula with the same structure as Katsevich’s

reconstruction formula (1.12) but with a different convolution kernel. To implement (5.5)

it is necessary to discretize the new kernel. We follow our method from Section 6.1.2 by

writing the kernel as
1

sin(α)
=

α

α sin(α)
(5.6)

and then use the following band-limited approximation for our convolution kernel

1

sin(α)
≈ 1 − cos(bα)

sin(α)
(5.7)

where b is our cut-off frequency. Differentiating with respect to α gives us our new kernel

k′(α) ≈ b sin(bα)

sin(α)
− (1 − cos(bα)) cos(α)

sin2(α)
(5.8)

since differentiating and bandlimiting a function commute. We must use a Taylor series

to approximate the new kernel near 0.

Let us briefly study how accurate our approximation of the shifted data is. We let

O be the mathematical phantom (2.67). We recover f(x) with P = 360, Q = 591 and
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h ‖fh −O‖ ‖fh + e(h) −O‖ ‖f −O‖
∆α
8 0.021905 0.0026654 0.0049773

∆α
4 0.043132 0.0011116 0.0049773

∆α
2 0.085889 0.00078741 0.0049773

∆α 0.17097 0.0049358 0.0049773

Table 5.1: Relative l2 errors of reconstructions for shifted x-ray data. Here f(x) and
fh(x) are reconstructed by (1.12) with no shift in α and a shift of h respectively. The error
term e(h) is calculated by (5.5) and O is the function (2.67). For each reconstruction we
have P = 360, Q = 591 and R = 3.

R = 3 on 256 by 256 grid. We then calculate the relative l2 error

‖f −O‖ =





∑

i,j

(f(xi, yj) −O(xi, yj))
2

O(xi, yj)2





1/2

. (5.9)

For this experiment we also reconstruct fh(x) with a shift of h = 2−j∆α for j = 0, 1, 2, 3.

As we can see in Table 5.1, error term e(h), calculated by (5.5), does well as a local

approximation for the errors introduced by shifted data. In each case the term fh(x)

corrected by e(h) has a lower l2 error than the reconstruction of f(x) from properly

centered data.

Furthermore, as seen in Figure 5.2, the approximate error term for e(h), (5.5), and

e(h) contain the comet tail artifacts found in the calibration phantom reconstruction.

The images of (5.5) and e(h) are very similar and thus validating the approximation

used in (5.2). The placement of the comet tail artifact varies with our selection of Iπ(x)

and the artifact appears in the locations predicted by Theorem 4.13. We note that the

presence of the comet tail artifact from Katsevich’s 2D formula (1.12) suggests that the

center of rotation of the x-ray data is incorrectly calculated. The evidence for comet

tail artifacts implying incorrectly calculated center of rotation is strengthened when the

object function is discontinuous. Our experiments have shown the comet tail artifact

discussed in Section 4 is not easily visible in well aligned projection data of discontinuous

functions. We have observed that the comet tail artifact, from misaligned data, is of the

same order of magnitude as the density values of the function and thus a leading source

of error.
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Figure 5.2: Top Left: Approximate error term (5.5) for e(h) with orthogonal-long π-
lines. Top Right: Approximate error term (5.5) for e(h) with helical π-lines. Bottom

Left: Actual error term e(h) with orthogonal-long π-lines. Bottom Right: Actual
error term e(h) with helical π-lines.

5.2 Centering Fan-Beam Data

One method to calibrate fan-beam data is to use a phantom with small support and

applying a nonlinear optimization method [9]. A common method to centering CT

data involves a series of reconstructions with different values of h and then selecting

the reconstruction that looks the best to the viewer. Typically, reconstructions from

improperly centered data will have edges that are not well resolved. In the case of the

calibration phantom, shown in Figure 5.1, the straight edges in the phantom have a kink

along the longer sides of the rectangular objects. In Figure 5.2 the kink can also be seen

in the error term for the orthogonal-long π-lines as a change in sign along the boundary

of the block’s edge. In Figure 5.3 we have (2.67) for m = 0 reconstructed by the full scan

formula (1.13). A shift of 5 detector bins, for Q = 591, distributes the boundary of the

object outside the support of the function but fails to introduce any comet tail artifacts.
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Figure 5.3: Left: Object function (2.67) with m = 0. Right: Reconstruction with h = 5
reconstructed with a full scan.

We now wish to exploit that formula (1.12) is more sensitive to the placement of the

center of rotation. Ideally we wish to have an algorithm that can correctly place the

center of rotation in our data provided we have a good idea of where to start from. We

will assume that we know the proper center of rotation within a few detector widths.

This is not unreasonable to assume because it is easy to tell if the selected choice of h is

in the neighborhood of the exact value of h.

As observed in Table 5.1, we need to know the correct shift h for e(h) to accurately

remove the artifacts found in fh. This condition makes e(h) impractical for calculating

the center of rotation because of its dependence on the unknown term h. However e(h)

is still useful for justifying the appearance of comet tail artifacts from formula (1.12)

with a shift in x-ray data.

Our idea is that an ignored shift in α will reduce the resolution of f ’s boundaries and

introduce comet tail artifacts. We introduce a penalty function

Jtv(h) =

∫

|∇fh| dx. (5.10)

The expectation is that Jtv(h) will be smaller for f with well aligned edges and large

otherwise.

We therefore study Jtv and its effectiveness at identifying the proper center of rotation

in our x-ray data. We first present a plot of Jtv versus the shift in α to verify that

minimizing Jtv will give us the correct center of rotation when there is no shift in α.

Figure 5.4 shows that Jtv has a minimum and that the minimum corresponds to having
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shift in α versus Jtv(α)

-2 0 2
.9

1

shift in α versus Jtv(α)

-2 0 2

1.5

1.9

Figure 5.4: Left: For f(x), m = 3, h = −2∆α, , . . . 2∆α, Right: m = 0. Each
reconstruction calculates Jtv(h) with (1.12) in the plane x3 = .1

no shift, h = 0. We can now expect the minimization of Jtv to give us an estimate to

the proper shift in the data.

For each experiment we will assume R = 3, D = 6, 360 source positions per turn and

128 x-rays uniformly distributed across the unit circle, Q = 591. We reconstruct (2.67)

with u = .35, v = .25 and ψ = 25π/180 and density 1.

The first step will identify a good initial guess for the shift in α variable. Let us

assume h = ±∆α. We minimize Jtv numerically with the MATLAB function fminbnd.m.

We discretize Jtv using central difference schemes in both coordinates

Jtv(h) ≈
∑

i,j

(

(

fh(xi+1, yj) − fh(xi−1, yj)

2∆x

)2

+

(

fh(xi, yj+1) − fh(xi−1, yj−1)

2∆y

)2
)1/2

.

(5.11)

To test the method we assume that the correct center of rotation in our x-ray data

requires a shift of half of a detector to the left, h0 = −.5, and the correct value to calculate

is h = 0. Suppose m = 3, then our minimization method converges to h = −.0061 after

18 iterations. Thus we have calculated the proper shift in our x-ray data within 1/150th

of a detector width. It is remarkable that our scheme is accurate to within a small

fraction of a detector width.

Now consider f(x) with m = 0. If we repeat the same experiment as above we

now have a solution h = .052 or 1/20th of a detector width. The lesser degree of

accuracy compared to the smooth case could be explained by the fact that the function is

discontinuous. However if we examine the graph in Figure 5.4 we can conclude something

different. Here we do not have a minimum value of Jtv when for the correct shift of h = 0.
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detector shift of 0.7467
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-0.3

0

0.3

Figure 5.5: Centered data reconstruction for the calibration phantom.

We return to our original example, the calibration phantom. Our method yields

h = 0.7467 of a detector width which is consistent with the shift of 3/4 of a detector

provided with the projection data. We show the image reconstructed from h = 0.7467

in Figure 5.5 and immediately see a great reduction of the artifact from the previous

reconstructions in Figure 5.1. This validates that our method can handle real x-ray data.

Our choice of the total variation semi-norm is not the only functional we have ex-

plored. We have found similar results as above with the following functional

J1(h) =

∫

|fh| dx. (5.12)
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6 Implementing π-Line Reconstruction Algorithms

Now we will now focus on the details for implementing π-line reconstruction formulas.

We first begin by discussing the steps involved in the 3D formula. Then we discuss the

2D formula because much of the details follow directly from the 3D case. We conclude

with the details for the π-line filtration 3D formula.

6.1 3D Katsevich Implementation

We scan an object that we assume to be have support in a cylinder of radius r centered

at the point (0, 0, 0) with the cylinder’s axis of rotation in the z-direction. Our spatial

discretization is xm,n,t = (m∆x, n∆y, p∆z).

The source curve of the helix, y(s), has P sources per turn at a pitch of p and is

discretized by y(sk) =
(

R cos(sk), R sin(sk),
psk
2π

)T
for sk = k∆s, where ∆s = 2π

P . The

range of k is such that the smallest and largest π-interval endpoints, of the points where

the function is to be construction, have three source positions before and after them.

We assume that we have angular discretization αi = (i + shiftα)∆α, for i =

−q2 . . . q2 − 1, and ∆α = sin−1(r/R)
q2

. The w-component of the detector is discretized

by wj = (j+shiftw)∆w, for k = −q1 . . . q1−1, where ∆w = D∆α. The κ curves will be

parameterized on the detector by αi and the angle ψ whose discretization is ψl = l∆ψ,

for l = −M . . .M .

Our algorithm is as follows. First we calculate the π-intervals for all the points where

f is calculated. For each position sk we acquire the projection data from y(sk+1) and

calculate a derivative. The data is then corrected for the length of the line from y(s)

to d(s, αi, wj). Next we interpolate or rebin the data from detector coordinates to the κ

curves. The data is then filtered with a Hilbert kernel and rebinned from the κ curves

to the regular detector coordinates. Finally the filtered data is then backprojected for

all points in RBP (sk).
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6.1.1 Numerical Difference Schemes

We require an effective discretization of the following derivative of our measured data

g(s, α,w)

g′(s, α,w) =
d

ds
g(s, α,w) =

∂g

∂s
(s, α,w) +

∂g

∂α
(s, α,w). (6.1)

We suggest the following discretization from Section 2.1

∂g

∂s
(sk, αi+1/2, wj) ≈

1

4∆s
[g(sk+1, αi, wj) − g(sk−1, αi, wj)]

+ g(sk+1, αi+1, wj) − g(sk−1, αi+1, wj)]

∂g

∂α
(sk, αi+1/2, wj) ≈

1

∆α
[g(sk, αi+1, wj) − g(sk, αi, wj)].

(6.2)

6.1.2 Filtering

It is necessary to interpolate equation (6.1) along the κ curves before we apply the

convolution term 1/(sin(α∗ − α)). That is we must perform what is called forward

height rebinning, that is changing from coordinates in w to those in terms of the κ

curves. The rebinning step is necessary because the filtering in equation (1.5) does not

occur strictly in the w coordinate. Recall that Figure 1.4 shows κ curves that are not

parallel to the α axis.

First we apply a length correction to the data

g′lc(s, α,w) =
w√

w2 +D2
g′(s, α,w). (6.3)

The rebinning is

gκ(s, α, ψ) =
∂glc
∂s

(s, α,wκ(α,ψ)) +
∂glc
∂α

(s, α,wκ(α,ψ)) (6.4)

where

wκ(α,ψ) =
Dp

2πR

(

ψ cosα+
ψ

tanψ
sinα

)

. (6.5)

A Taylor series approximation for wκ(α, 0) is necessary to avoid the singularity at zero.

Recall that the choice of the difference scheme shifts α coordinate and it is necessary

to take this shift into account when calculating the κ curves. This computation follows
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directly from linear interpolation of (6.1) in the w coordinate. That is

gκ(s, α, ψ) ≈ (1 − c)g′lc(s, α,m
′) + c g′lc(s, α,m

′ + 1)

where m′ = ⌊t⌋, c′ = t− ⌊t⌋, and t = ⌊wκ(αi, ψl)/∆w− shiftw⌋. It is worth noting that

the κ curves are independent of the of source position s and thus the values c and m′ are

the same for all s. This observation allows us to calculate the values of c and m′ once

and save them in a table for reuse at each source position.

We now focus on the discretization of the term

1

sin(α∗ − α)
.

We use the idea from [17] of expressing

1

sin(α∗ − α)
=

1

α∗ − α

(α∗ − α)

sin(α∗ − α)

giving us a Hilbert transform divided by a sinc function. Next we use the following

bandlimited approximation for the Hilbert transform kernel

1

α
≈ (2π)−1/2

∫ b

−b

(

−i
√

π

2
sign(σ)

)

eiσα dσ =
1 − cos(bα)

α
(6.6)

with b < 1/(2∆α) a user chosen cut-off frequency. The result is the approximation of

1/ sin(α∗ − α) by k(α) where

k(α) =
α

sinα

1 − cos(bα)

α
=

1 − cos(bα)

sinα
(6.7)

From the trapezoidal rule we end up with the following discretization

Gκ(s, i∆α,ψ) =

∫ 2π

0
gκ(s, i∆α,ψ)k(i∆α − α) dα

≈ ∆α
∑

l

gκ(s, i∆α,ψ) k((i − l)∆α).
(6.8)

We take care in sampling the kernel near zero by using a Taylor series approximation.

We use Fourier transforms to speed up the convolution.
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Suppose we calculate equation (6.1) on the shifted grid (sk+1/2, αi+1/2, wj). The grid

may be shifted to its original detector coordinates, (sk+1/2, αi, wj), by the filtering kernel

or the shift can be taken into account during the backprojection step. It was shown in

[8] that it is beneficial to remove the shift in α by using a shifted filtering kernel.

It is necessary to return the filtered 2D data from the κ curve coordinates to the

native detector coordinates to speed up the interpolation in the backprojection step.

We follow the backward height rebinning method of Noo, Pack and Heucsher [19] and

linearly interpolate from wk to w using the κ curve of smallest ψ through w. That is

G(s, α,w) ≈ (1 − c(α,w,ψ))Gκ(s, α, ψ) + c(α,w,ψ)Gκ(s, α, ψ + 1). (6.9)

In particular for α ≥ 0 we loop l from −m to m until wκ(α,ψl) ≤ wj < wκ(α,ψl+1)

and then let c = (wj − wκ(α,ψl))/(wκ(α,ψl+1) − wκ(α,ψl)). For α < 0 we now

loop ψl from −m to m until wκ(α,ψl−1) ≤ wj < wκ(α,ψl) and then let c = (wj −
wκ(α,ψl−1))/(wκ(α,ψl) − wκ(α,ψl−1)). The weight calculation need only be done once

and stored for future use. If a detector coordinate lies outside of the Tam-Danielsson

window, wj > |wk(α,ψl)| for some l, it is not possible to use linear interpolation. One

may overcome this complication by using nearest neighbor interpolation. Again, as with

the forward height rebinning, the weights from the interpolation are independent of the

source position s, and need only to be calculated once and then saved in a table. It

is necessary to calculate the κ curves on the grid corresponding to the detector coordi-

nates which result from applying the filtering kernel. For this calculation a Taylor series

approximation for wκ(α, 0) is necessary to avoid the singularity at zero.

6.1.3 Backprojection

The process of backprojection is as follows. From the current source position we stere-

ographically project a point x we wish to reconstruct onto the detector. The projected

point has local detector coordinates (α∗, w′). We then use bilinear interpolation to ap-

proximate the value at (α∗, w′) of the filtered, measured data. Finally the interpolated

value of (α∗, w′) is weighted and added to the density map of x. In essence, for each
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point x, we compute

f(x) ≈ ∆s

2π

N−1
∑

j=0

ρ(sk, Iπ(x))

v̄(sk,x)
cos(α∗)G(sk, α

∗(s,x), w′(s,x))

G(sk, α
∗(s,x), w′(s,x)) ≈ (1 − c1)(1 − c2)G(sk, αi′ , wj′) + c1(1 − c2)G(sk, αi′+1, wj′)

+ (1 − c1)c2G(sk, αi′ , wj′+1) + c1c2G(sk, αi′+1, wj′+1)

(6.10)

where l′ = ⌊t1⌋,m′ = ⌊t2⌋, c1 = t1 − ⌊t1⌋, c2 = t2 − ⌊t2⌋, t1 = ⌊α∗(s,x)/∆α − shiftα⌋,
and t2 = ⌊w′(s,x)/∆w − shiftw⌋. The detector coordinates are defined as follows

v̄(s,x) = R− x cos(s) − y sin(s)

α∗(s,x) = arctan

(

1

v̄(s,x)
(−x cos(s) + y sin(s))

)

w′(s,x) =
D cos(α∗(s,x))

v̄(s,x)

(

z − p

2π
s
)

(6.11)

We now focus our discussion on the weight term ρ(s, Iπ(x)). The role of ρ is to

implement the trapezoidal rule over Iπ(x) for all x. We require that ρ is 1 in an open

interval contained in Iπ(x), 0 outside an open interval containing Iπ(x) and ρ(sb(x),x) =

ρ(sb(x),x) = 1/2. The discretization of s makes it impossible to have for all Iπ(x) =

[sb(x), st(x)], sk = sb(x) for some j ∈ N. It is therefore necessary to use a form of

interpolation to faithfully implement the trapezoidal rule over Iπ(x).

The linear interpolation cutoff function is given by

ρ(sk, Iπ(x)) =























































0 sk ≤ sb(x) − ∆s
1
2 (∆s− (sb(x) − sk)(1 +

sk+1−sb(x)
∆s )) sb(x) − ∆s ≤ sk < sb(x)

∆s− (sb(x)−sk−1)2

2∆s sb(x) ≤ sk < sb(x) + ∆s

1 sb(x) + ∆s ≤ sk ≤ st(x) − ∆s

∆s− (sk+1−st(x))2

2∆s st(x) − ∆s < sk ≤ st(x)
1
2(∆s− (sk − st(x))(1 +

st(x)−sk−1

∆s )) st(x) < sk < st(x) + ∆s

0 st(x) + ∆s ≤ sk
(6.12)

and it is equivalent to equation (57) from [19].
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6.2 3D π-Line Filtration Implementation

We use the same parameters as in Section 6.1. We reconstruct our function on rotated

and translated copies of C(0), the chip anchored at 0. The coordinate system for each

chip C(t) is relative to the chip’s axis y(t) and y(t+ π/2). Thus we reconstruct f(x) on

C(t) with C(t) discretize by xm,n,t = (x′m, y
′
n, zm,n,t) where

zm,n,t =
hyn cos−1 xm/R
√

R2 − x2
m

+
tp

2π
(6.13)

and
[

cos(t) − sin(t)

sin(t) cos(t)

][

xm

yn

]

=

[

x′m

y′n

]

. (6.14)

Thus as we vary y′ in each chip we traverse the π-line corresponding to the π-interval

[t− α, t+ α] where α = arccos(xm/R).

The algorithm is broken down into the following steps. First we calculate the π-

intervals for all the points where f is calculated. For each position sk we aquire the

projection data from y(sk+1) and calculate a derivative. The differentiated data is then

backprojected on each chip C(t). If x ∈ ∂RBP (s) then the projection data for x is saved.

Once all of the backprojections have been completed for all source positions necessary,

a Hilbert transform is applied to each π-line. In this case that implies we apply the

transform strictly in the y coordinate of each chip. Trilinear interpolation is then used

to interpolate from each chip to the cartesian grid.

6.2.1 Derivatives

Again we differentiate our data by (2.7)

G(sk, αi+1/2, wj) =
∂g

∂s
(sk, αi+1/2, wj) +

∂g

∂α
(sk, αi+1/2, wj). (6.15)
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6.2.2 Backprojection

For each chip we compute

Hf(xm,n,t) ≈ ∆s

N−1
∑

j=0

ρ(sk, Iπ(xm,n,t))

|xm,n,t − y(sk)|
G(sk, α

∗(s,xm,n,t), w
′(s,xm,n,t)) (6.16)

with

G(sk, α
∗(s,xm,n,t), w

′(s,xm,n,t)) ≈ (1 − c1)(1 − c2)G(sk, αi′ , wj′)

+ c1(1 − c2)G(sk, αi′+1, wj′)

+ (1 − c1)c2G(sk, αi′ , wj′+1)

+ c1c2G(sk, αi′+1, wj′+1)

(6.17)

where l′ = ⌊t1⌋,m′ = ⌊t2⌋, c1 = t1 − ⌊t1⌋, c2 = t2 − ⌊t2⌋, and t1 = ⌊α∗(s,xm,n,t)/∆α −
shiftα⌋, t2 = ⌊w′(s,xm,n,t)/∆w − shiftw⌋. The terms α∗ and w′ are defined by (6.11).

If sk is near the endpoints of the π-interval of xm,n,t then we store the value of sk and

g(sk, α
∗(s,xm,n,t), w

′(s,xm,n,t)) to later calculate the inverse Hilbert transform.

6.2.3 Calculating c

Recall that the inversion formula requires us to calculate

c = 2
Df(y(sb(x)),Θ(sb(x),x))

|y(sb(x)) − y(st(x))| . (6.18)

By observing that Df(y(sb(x)),Θ(sb(x),x)) = Df(y(st(x)),Θ(st(x),x)) we can use an

average of the two terms to get a more accurate approximation to c. We use linear

interpolation in s to calculate Df(y(sb(x)),Θ(sb(x),x)) and Df(y(st(x)),Θ(st(x),x)).
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Thus

Ct =
(1 − cb)g(si, α

∗(si,xm,n,t), w
′(si,xm,n,t))

|y(sb(xm,n,t)) − y(st(xm,n,t))|

+
cbg(si+1, α

∗(si+1,xm,n,t), w
′(si,xm,n,t))

|y(sb(xm,n,t)) − y(st(xm,n,t))|

+
(1 − ct)g(si′ , α

∗(si′ ,xm,n,t), w
′(si′+1,xm,n,t))

|y(sb(xm,n,t)) − y(st(xm,n,t))|

+
ctg(si′+1, α

∗(si′+1,xm,n,t), w
′(si′+1,xm,n,t))

|y(sb(xm,n,t)) − y(st(xm,n,t))|

(6.19)

with

cb =
si − sb(xm,n,t)

∆s

ct =
si′ − st(xm,n,t)

∆s

(6.20)

and si ≤ sb(x) ≤ si+∆s and si′ ≤ st(x) ≤ si′ +∆s. The term Ct need only be calculated

for one point x on the π-line because in the continuous case Df(y(sb(x)),Θ(sb(x),x))

is constant for the points on the same π-line as x. In the discrete case the average over

all points on the π-line provides a more stable approximation

c ≈ 1

t

∑

t

Ct. (6.21)

6.2.4 Filtering

Recall Hf(xm,n,t) is the Hilbert transform of f(x) along the π-line of x. Note xm,n,t ∈
C(t) and as we vary n the point xm,n,t traverses the π-line from y(t − α) to y(t + α)

where α = arccos(xm/R). We shall apply the Hilbert inversion formula (1.9) in the y

coordinate of each chip.

Suppose Iπ(xm,n,t) = [t− α, t+ α]. We determine a and b such that |π(xm,n,t, a)| =

|π(xm,n,t, b)| = r where

π(xm,n,t, T ) = (1 − T )y(sb(xm,n,t)) + Ty(st(xm,n,t)).
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We can calculate a and b by using linear interpolation

a =
|(R cos(sb(xm,n,t)), R sin(sb(xm,n,t))) − (R cos(−β), R sin(−β))|

|(R cos(sb(xm,n,t)), R sin(sb(xm,n,t))) − (R cos(st(xm,n,t)), R sin(st(xm,n,t)))|

b =
|(R cos(sb(xm,n,t)), R sin(sb(xm,n,t))) − (R cos(β), R sin(β))|

|(R cos(sb(xm,n,t)), R sin(sb(xm,n,t))) − (R cos(st(xm,n,t)), R sin(st(xm,n,t)))|
β = arccos(xm/r).

(6.22)

To invert Hf we first compute

F (x, n∆y, z) = ∆y
∑

l

√

(b− τ)(τ − a)Hf(x, n∆y, z)W ((n− l)∆y)

≈
∫ b

a

√

(b− τ)(τ − a)

n∆y − t′
Hf(x, n∆y, z) dt′

(6.23)

with

τ =
n∆y −R sin(sb(xm,n,t))

|(R cos(sb(xm,n,t)), R sin(sb(xm,n,t))) − (R cos(st(xm,n,t)), R sin(st(xm,n,t)))|
(6.24)

is such that π(xm,n,t, τ) = xm,n,t. We utilize the following Hilbert kernel W

W (t) =
1 − cos(πt)

πt
(6.25)

with a shift of −∆y/2.

We then calculate

f(xm,n,t, τ) =
F (xm,n,t) + c

2π
√

(b− τ)(τ − a)
(6.26)

and thus we have reconstructed f for points on the chip C(t) with the coordinate system

on the chip given by y(t) and y(t+ π/2).

6.3 2D Katsevich Implementation

We scan an object that we assume to be have support in a circle of radius r. The

source curve of the circle, y(s), has P sources per turn and is discretized by y(sk) =
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(R cos(sk), R sin(sk))
T for sk = k∆s, for k = 0 . . . P , where ∆s = 2π

P . We assume that we

have angular discretization αi = (l+shiftα)∆α, for l = −q . . . q−1, and ∆α = sin−1(r/R)
q .

6.3.1 Derivatives

We implement the derivative (6.1) by M4

∂g

∂s
(sk, αi+1/2) ≈

1

4∆s
[g(sk+1, αi) − g(sk−1, αi)

+ g(sk+1, αi+1) − g(sk−1, αi+1)]

∂g

∂α
(sk, αi+1/2) ≈

1

∆α
[g(sk, αi+1) − g(sk, αi)].

6.3.2 Filtering

We follow the idea from the 3D case and perform the following convolution

G(s, n∆α) =

∫ 2π

0
g′(s, n∆α)k(n∆α− α) dα

≈ ∆α
∑

l

g′(s, l∆α) k((n− l)∆α).
(6.27)

6.3.3 Backprojection

The process of the backprojection is similar to the 3D case. For each x in the circle of

radius r it is necessary to compute

f(x) ≈ ∆s

2π

N−1
∑

j=0

ρ(sk, Iπ(x))

v̄(sk,x)
G(sk, α

∗(s,x))

G(sk, α
∗(s,x)) ≈ (1 − c)G(sk, αi′) + cG(sk, αi′+1)

(6.28)

where l′ = ⌊t⌋, c = t−⌊t⌋and t = ⌊α∗(s,x)/∆α− shiftα⌋. The detector coordinates are

defined as follows

v̄(s,x) = R− x cos(s) − y sin(s) (6.29)

α∗(s,x) = arctan

(

1

v̄(s,x)
(−x cos(s) + y sin(s))

)

(6.30)
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Unlike the 3D case, we would like to scan around the object only once. To that end we

need to know for which s are in Iπ(x) = [sb(x), st(x)] where sb(x) is not necessarily less

than st(x) modulo 2π. To over come this we apply a change of coordinates that maps the

interval [sb(x), st(x)] to [sb(x)′, st(x)′] where sb(x)′ = ∆s and st(x)′ = st(x)−(sb(x)−∆s)

along with s′ = s− (sb(x) − ∆s). This change of coordinates allows us to verify quickly

if 0 < sb(x)′ ≤ s′ ≤ st(x)′ < 2π.
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7 Numerical Experiments

We conclude with a few experiments designed to investigate behavior of π-line algo-

rithms. The first experiment is a convergence study to validate the accuracy of our

implementation of formula (1.5). We perform reconstructions in the x− y plane for the

3D formula and across a volume for the 3D reconstruction formula.

The second experiment looks at the accuracy of (1.5) when the helical pitch is large

or small and the size of the detector elements is held constant.

7.1 Asymptotic Behavior

We shall investigate the order of convergence of the 3D Katsevich algorithm implemen-

tation. Our phantom is the smooth single ellipse and we will reconstruct a 256 by 256

image of the phantom in the plane z = .1. The function is (2.67) with u = .35, v =

.25, ψ = 25π/180 and m = 3. We have a scanning geometry with a radius R = 3, a

source to detector distance D = 6, and a helical pitch P = .274. The differentiation

method for the 3D case is method M4. We double the number of detectors, filtering

lines, and source positions for each experiment. From Table 7.1 we see that we have

quadratic convergence. Next we will test reconstruction of the smooth single ellipse in

the unit circle crossed with [0, .2]. Our image is a volume 256 by 256 by 26, and again

we see that in Table 7.2 that the rate of convergence is quadratic.

P q2 q1 M l2 error O(p−α)

128 32 4 5 0.097233 —
256 64 8 11 0.025816 1.9132
512 128 16 23 0.0055083 2.2286
1024 256 32 47 0.0013618 2.0161
2048 512 64 95 0.00035066 1.9574
4096 1024 128 191 8.6436×10−5 2.0204

Table 7.1: 3D Katsevich x− y slice reconstruction
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Figure 7.1: Slice z = .1 of the smooth single ellipsoid scaled between 0 and 1. The
function is (2.67) with u = .35, v = .25, ψ = 25π/180 and m = 3.

P q2 q1 M l2 error O(p−α)

128 32 4 5 0.11298 —
256 64 8 11 0.032469 1.7990
512 128 16 23 0.0062335 2.3809
1024 256 32 47 0.0016582 1.9104
2048 512 64 95 0.00040495 2.0338
4096 1024 128 191 0.00010053 2.0102

Table 7.2: 3D Katsevich volume reconstruction

7.2 Large and Small Helical Pitches

We now investigate the behavior of the pitch of the helix on the accuracy of the recon-

struction. The motivation is to determine if a large pitch with a large number of detector

rows is less accurate than a smaller pitch with a fewer number of detector rows. The

pitches are such that 90 or 10 detector columns lie within the Tam-Danielsson window.

For the case of the smooth single ellipse the errors differ slightly but no real advantage is

realized by choosing one pitch over another. For the case of the Shepp-Logan phantom

the relative l2 errors are nearly identical and have the same visually quality.
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P # effective columns relative l2 error

0.27400 90 0.024622
0.027400 10 0.051670

Table 7.3: Large pitch and small pitch results for smooth single ellipse phantom. Scan-
ning Parameters, p = .274, .0274, r = 1, R = 3, D = 6, P = 256 and Q = 591 and 23 κ
curves. Reconstructed on 256 by 256 by 16 grid over [−1, 1]2 × [0.2].

P # effective columns relative l2 error

0.274 90 0.32916
0.0274 10 0.32996

Table 7.4: Large pitch and small pitch results for Shepp-Logan phantom. Scanning
Parameters, p = .274, .0274, r = 1, R = 3, D = 6, P = 256 and Q = 591 and 23 κ
curves. Reconstructed on 256 by 256 by 16 grid over [−1, 1]2 × [−.1.1].
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8 Conclusions

We have presented results that cover many areas of π-line reconstruction formulas. In

each problem, we presented new methods to handle the challenges of recovering a function

from its x-ray projection data. We have shown that in 2D that M4 and M5 have the

same order of convergence and that M5 has more error terms than M4. To do this we

required a decomposition of M5 in the local detector coordinates. Our analysis provides a

method to compare direct methods with chain rule based methods for (2.1). Overall the

performance of M4 is better than that of M5. We suggest using M4 because it is simpler

to implement than M5 and the error terms of M4 do not depend on α. Furthermore we

developed rational for the higher performance of M4 compared to M3.

We have presented a new method to compute the π-lines of general scanning trajec-

tories by utilizing the notion of a chip. We also defined the region of backprojection. We

have shown that the region of backprojection for the helix is easy to describe on each

chip. In doing so we have simplified the description of the comet tail artifact on each chip

and justified the artifact’s appearance and location based on our hypothesis. We have

shown the boundary of the region of backprojection identifies points x where s is the

endpoint of [sb(x), sb(x)]. We defined the region of backprojection for orthogonal-long

and tilted long π-lines and showed that the comet tail artifact for orthogonal-long π-lines

is a circle centered halfway between the point source function and the origin.

We demonstrated that the misalignment of data in helical and fan-beam π-line re-

construction formulas introduces a comet tail artifact. We developed an error term for

the misaligned data in the 2D case. We proposed minimizing the reconstruction’s TV

norm to properly center the misaligned data. Our heuristic method worked for clinical

and exact x-ray projection data.

We presented complete implementation notes on three π-line reconstruction formulas

including Katsevich’s and Pan’s formulas. We demonstrated that our numerical imple-

mentation of Katsevich’s 3D formula had second order convergence and that Katsevich’s

3D formula is not sensitive to the pitch of the helix.



115

Bibliography

[1] K. E. Atkinson, Introduction to Numerical Analysis, Wiley, 1989.

[2] K. Champley, Unpublished lecture notes. 2006.

[3] P.-E. Danielsson, P. Edholm, J. Eriksson, and M. S. Magnusson, Toward
exact reconstruction for helical cone-beam scanning of long objects. a new detector
arrangement and a new completeness condition, in Proceedings of the 1997 Interna-
tional Meeting on Fully ThreeDimensional Image Reconstruction in Radiology and
Nuclear Medicine, D. W. Townsend and P. E. Kinahan, eds., 1997, pp. 141–144.

[4] M. Defrise, F. Noo, R. Clackdoyle, and H. Kudo, Truncated hilbert trans-
form and image reconstruction from limited tomographic data, Inverse Problems, 22
(2006), pp. 1037–1053.

[5] M. Defrise, F. Noo, and H. Kudo, A solution to the long-object problem in
helical cone-beam tomography, Phys. Med. Biol., 45 (2000), pp. 623–43.

[6] V. Dogra and D. J. Rubens, Ultrasound secrets, Elsevier Health Sciences, 2003.

[7] A. Faridani, Fan-beam tomography and sampling theory, in The Radon Transform,
Inverse Problems, and Tomography (Proceedings of Symposia in Applied Mathe-
matics), G. Olafsson and E. T. Quinto, eds., vol. 63, Providence, Rhode Island,
2006, American Mathematical Society.

[8] A. Faridani, R. Hass, and D. C. Solmon, Numerical and theoretical explorations
in helical and fan-beam tomography, J. Phys.: Conf. Ser., 124 (2008).

[9] G. Gullberg, B. Tsui, and C. Crawford, Estimation of geometrical parameters
for fan beam tomography, Phys. Med. Biol, (1987), pp. 1581–1594.

[10] G. Herman and A. Naparstek, Fast image reconstruction based on a radon in-
version formula appropriate for rapidly collected data, SIAM J. Appl. Math., (1977),
pp. 511–533.

[11] S. H. Izen, A fast algorithm to compute the π-line through points inside a helix
cylinder, Proc. Amer. Math. Soc., 135 (2007), pp. 269–276 (electronic).

[12] A. Katsevich, Analysis of an exact inversion algorithm for spiral cone-beam ct,
Phys. Med. Biol., 47 (2002), pp. 2583–97.



116

[13] , Improved exact fbp algorithm for spiral ct, Adv. Appl. Math, 32 (2004),
pp. 681–697.

[14] A. Katsevich, S. Basu, and J. Hsieh, Exact filtered backprojection reconstruc-
tion for dynamic pitch helical cone beam computed tomography, Phys. Med. Biol.,
49 (2004), pp. 3089–3103.

[15] A. Katsevich and M. Kapralov, Filtered backprojection inversion of the cone
beam transform for a general class of curves, SIAM Journal on Applied Mathemat-
ics, 68 (2007), p. 334.

[16] A. Katsevich and G. Lauritsch, Filtered backprojection algorithms for spiral
cone beam ct, in Sampling, Wavelets, and Tomography (Applied and Numerical
Harmonic Analysis), J. Benedetto and A. I. Zayed, eds., Birkhäuser, 2004, pp. 255–
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