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Abstract

Operational forest planning is characterized by a lack of formal planning often

using only the intuition and experience of the forest planners. There are a

number of sources of variability found in operational planning. Like most

businesses there is significant variability in the demand forecasts obtained from

customers. Forestry differs from many other businesses with significant variability

in the supply due to the high sampling errors commonly used in forestry to in the

statistical prediction of the volume, the non uniform distribution of the trees in the

stand and finally the variability regarding the harvesting production. The aim of

this project is to develop some the tools and processes to improve the

forecasting of logging production at both the unit and daily levels. Data was

collected from the Oregon State University student logging crew operating on the
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McDonald-Dunn forests. For the unit forecasting model, an existing production

model from the literature was used, since no unit model was developed in this

study due to the small data set and the limited timeframe. This statistical model

was selected because it uses a prediction variable that can be estimated prior

the operation is executed. For the daily production forecasting level, the following

data was collected: location map, number of pieces, crew size, hours worked and

weather conditions. This data was then analyzed using linear regression

analysis The statistically significant variables found in this study to predict daily

production were skidding distance, average temperature and hours worked. The

model was able to explain 76 % of the variation in the daily production from the

sampled area. One of the significant variables found from this study was skidding

distance. A decision support system was developed using GIS techniques that

easily measure this variable. The GIS system found the path from the landing to

the stump by applying a shortest path algorithm to minimize the total cost

incurred in the operation. Both the unit and daily level forecasts were applied to

two scenarios to demonstrate the system. The first scenario forecasts the

production using the actual stream pattern, and the second scenario uses a high

density stream pattern that in some cases affects the path distance. The decision

support system was able to capture these differences on the forecasted

productivity.

Keywords: operational planning, harvesting productivity, geographic information
systems
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Introduction

Today's market conditions have made the standing resource-to-customer supply

chain an extremely complex process just to manage and optimal planning

extremely more difficult (Penfold, 2003). In forestry, there is a need to improve

profit making amidst increasing financial pressures to lower operating costs and

a desire to improve customer service. Thus, supply chain management has

become the dominant business practice in the forestry industry with the aim of

increasing the chain's profitability, by improving the overall efficiency of all the

different components in forestry supply chain operations.

Supply chain management, first defined in the late 1970's and early 1980's by

business practitioners, is considered a distinct business management approach

or philosophy. SjOstrOm (2000) defines it as: "[1]he concepts and tools of

business management which seek to inte grate business processes across

boundaries among corporations, organizations and functions, and along any

supply chain from raw materials through all sorts of operations and production to

final consumption, in order to add value"

The implementation of supply chain practices have improved the efficiency in

some of the largest and most successful companies in a range of industries: e.g.,

Procter & Gamble, National Semiconductor, Wal-Mart, IBM, International Paper,

Dell Computer (Simchi-Levi et aL, 2000). Jones (1999) states that depending on

business efficiency, the following improvements are achievable in the forestry
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industry when the supply chain is well-managed: (15%-60%) inventory reduction,

(20-30%) supply chain cost reduction, and (20%-30%) improved delivery

performance.

In deciding which supply chain management improvement techniques to

implement, a company must first answer the basic question of, which supply

chain management strategy should the company adopt; pull-based or demand

driven, push-based or production driven, or a combination of pull-push that

includes elements of both systems. In general, a push strategy is characterized

by focusing on cost and efficiency, including: (a) resource allocation, (b) cost

minimization, (c) emphasis on economies of scale that can result in long lead

times. Alternatively, pull strategies are distinguished by focusing on customer

service, including: (a) a focus on responsiveness, (b) creation of short lead times,

(c) order fulfillment process and maybe incur a higher production costs.

Differentiating the characteristics of the business industry is the first step in

selecting appropriate supply chain techniques such as: e-business, cross-

docking, just-in-time inventory, information technology and decision support

systems, and forecasting techniques (Simchi-Levi etal., 2004). In North America,

forestry companies typically adopt push based strategies, in which forecasting

techniques are very important to anticipate changes in the supply. In other parts

of the world, companies are adopting a pull-push supply chain, where customer
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demand drives part of the supply chain, but the co-production of additional

products is sold through a push process to assure that the entire tree is sold.

There are significant gains to be made with the full adoption of supply chain

management techniques. The following examples show some of the potential of

improvements when only one portion of the supply chain is improved.

Weyerhaeuser showed a 40 percent increased the returns on capital investment

after effectively implementing a manufacturing decision system to maximize the

return of a forest product mill from the raw material flowing to it. The system was

able to optimize the allocation of logs to various mills. Temple-Inland Forest

Products sawmills also reported an improvement in profit margin of 3.3 percent.

They implemented a simulation program to solve the problem of valuation and

allocation of logs to their mills (Wagner et aL 1996). The gains from the supply

chain are not limited to just the allocation of logs to sawmills, but can enhance

the performance of the logistics portion of the supply chain. Weintraub and

Epstein (2002) describe the logistic portion of the forestry supply chain beginning

with logging operations, log loading and trucking logs to customers. The

implementation of the Chilean truck scheduling system, (ASICAM) had

remarkable impacts in the Chilean forestry industry savings of 15 to 35 percent of

transportation cost were reported (Epstein etaL, 1999).

As described above, there are a variety of areas in the forestry industry where

the supply chain can be improved. The variety of products generated in the

forestry sector leads to a number of branches in supply chains, with the common
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goal of integrating the supply and demand to improve both customer service and

economic efficiency of the total operation.

In general, the wood allocation systems can be partitioned into a threestep

hierarchical planning process which involves a large spectrum of a company's

activities from the strategic, tactical and operational levels (Penfold, 2003). The

strategic level addresses the company's long-term competitive position.

Decisions, on what silvicultural regime to use and which facilities to develop or

close, are usually analyzed for multiple crop rotations. The tactical level planning

involves decisions on a shorter period of time, up to half of the rotation. At the

tactical level, decisions involve the selection of individual units to be harvested

and associated road management projects. Often, the tactical schedule identifies

the desired mix of ground and cable logging systems. The final level in the

hierarchy is the operational level that usually accounts for the annual, monthly

and weekly planning horizons that schedule operations to meet customer orders

and assigns the culling instructions to individual harvesting crews.

Annual decisions are centered around the scheduling of harvesting crews to

logging units to best meet the overall demands. The monthly decision determines

which orders will be promised to be fulfilled based on the forecasted production

for the next week. While the weekly schedule assigns the culling instructions to

crews to fulfill those orders. At the operational level, there is a significant amount

of variability regarding the production system that can be assigned to the
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characterization of the supply and the logging production. Weintraub and Epstein

(2002) on a study of the Chilean forestry industry stated that one of the

weaknesses of the supply chain is the coordination of harvesting decisions. They

argue that improvements in the daily coordination of timber harvesting, along with

the transportation to the first destination, would strengthen the overall supply

chain.

Variation in harvesting production is one of the largest causes of variations found

throughout the forestry supply chain. This variation is caused by diverse factors,

and the system may be considered more complex than most other production

systems because of the large variability imposed by site conditions (climate, soil,

topography, tree density, tree size and the spatial distribution of trees on the

forest.) Therefore, estimating the production in logging systems is always a

difficult task. Forecasting harvesting production would help to improve the overall

coordination of activities within the supply chain by improving the data used in

the annual, monthly and weekly production estimates. Having the ability to

accurately forecast harvesting production also allows the matching of harvesting

systems capabilities with the harvesting units that best meet customer demand. It

facilitates the evaluation of alternative harvesting system options and resources

harvesting crews with the people and equipment to ensure that desired

production is maintained. Appropriate estimations of these production rates

would expedite a harmonious flow of activities within the primary forestry supply
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chain leading to increased efficiency and customer order fulfillment (Craig 1970,

Dey 2004).

Methods for development of productivity forecastinq equations

The most common methods that have been used to collect production data are

detailed time studies and shift-level studies. Detailed time studies collect data on

each production cycle where the conditions of each cycle are also recorded.

Shift-level techniques estimate daily production by averaging the total output

divided by hours for each day. These techniques differ in labor costs, accuracy of

results, and type of information collected.

Detailed times studies work well for collecting delay free production; however

because of their short duration, large delays are often not properly recorded and

they also imprecisely estimate long-term trends and the range of logging

conditions that are measured (Olsen et al., 1998). Shift-level time studies are

collected over longer periods of time representing a broad range of conditions

and long term productivity of harvesting system(s). This type of study describes

the operation's daily activities summarized by the logging crew. One

disadvantage of these studies is that they don't record small delays which are

confounded with productive time (Olsen et aL, 1998).

Reviewing these shift-level time studies provides us with insight into those

variables that might be useful in a logging production forecasting system. Murphy
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(1978) mentioned some likely reasons for daily variations in a cable logging

operation on Pinus radiata in New Zealand. He found that yarding distance is

highly significant, as well as shifts to new landings or where native logs were

pulled in addition to exotic logs. Daily productivity was also considerably higher in

the directionally felled areas. Evanson and Kimberley (1992) showed that daily

variations on cable logging production in Pinus radiata were affected by the

mean extracted piece size, number of chokers, and yarder type.

Regression analysis of ground skidding operations repeatedly showed a common

set of independent variables including: load weight, number of pieces per load,

skidding distance, slope, total volume per turn. Many others included horse

power and machine type (Tufts et aL 1988, Johnson 1988, Legault and Powell

1975, Andersson and Young, 1998). However, these studies include variables

with a high degree of collinearity such as total volume versus number of logs per

turn that may decrease precision due to the loss in degrees of freedom.

There are numerous other production studies that describe forest operations, but

very few of them focus on forecasting logging production. Most of these

equations have variables that lack the characteristic needed for forecasting, in

that these variables are difficult to be estimated prior to harvesting the unit. An

efficient forecasting model must contain variables that are easily collectable prior

to the operation's execution. These studies show that a recurrent variable with
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potential forecasting capabilities is the skidding or yarding distance and the

machine type.

Decision support system for forecastinq productivity

Halleaux and Greene (2003) state that harvesting planning will rapidly increase in

the future as more environmental regulations are adopted and as the

marketplace insists on the adoption of a certification system. Currently, there are

few formal planning tools used in operational harvesting planning. A number of

systems have been developed to support harvesting planning but few have found

long term practical applications.

Simulation techniques, weighting systems and mobility models have been widely

used to develop decision support systems for harvesting planning and operation

management. Windsauer and Bradley (1981) developed a computer simulation

model designed to provide cost and productivity estimates under different stand

harvest conditions. An interactive computer program, LOGCOST, developed by

Giles (1986) predicts stump to mill logging and transportation costs adapted for

conditions in southwestern Idaho. The program was intended to evaluate the

economic tradeoffs of different stand management strategies.

Wang and Greene (1999) published an interactive simulation system to model

the interaction among stand characteristics, harvesting methods and machinery.

The program is able to evaluate the interaction when performing activities such
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as: forwarding, skidding or felling. A limitation of this program is that it does not

consider the effect of slope in any of the analysis as it was generated for the

southeastern US with its flatter terrain when compared to the western US.

Machine productivity is based on previous production studies and one will need

to carefully consider the appropriateness to extrapolate the results to another

harvest area. A ground-based timber harvesting production model through

computer simulation was developed by Wang and LeDoux (2003); the system

evaluates impacts on costs, production and traffic intensity for soil compaction.

Both of these applications required a stand generator program to create stand

conditions necessary to perform the harvesting simulations.

SKIDPC was developed to estimate mobility of ground vehicles, and provide

estimates of production per hour and unit cost per hour. It calculates the velocity

of a skidder based on the mechanics of the vehicle. The variables are geometry

of the skidder and horsepower mechanics, tree or log geometry and soil strength

(Olsen and Gibbons (1983), Spong (2001)). It is able to generate an estimate of

the total turn time, given knowledge regarding the load size

PLANS is a system of computer programs that was developed to help harvest

planners to make decisions in harvesting operations. This system supports trial

and error process when designing a harvesting plan, then the best plan is

selected by comparison. SIMYARD is a simulation model in PLANS for steep

terrain operations. SIMYARD predicts yarding cost and production for cable
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logging operations; this program requires input information from time-studies and

stand description (McGaughey and Twito, 1987).

Halleux and Green (2003) developed a spatial simulation tool to assist in forest

planning. Their tool was an Arc-view extension to assist harvest planners by

using spatial information obtained from scanned air photos or detailed data from

a geographic information system. The program estimates harvesting cost

components and site disturbance. The model creates travel patterns for ground

based machines and compares different harvesting settings based on projected

average skidding cost and site disturbance levels. It does not account for the

slope of the terrain on skidding distance calculations.

STHARVEST software is a spreadsheet application designed to estimate costs

for harvesting small-diameter stands; it is becoming widely used by the USDA

Forest Service (per. comm. G.E. Murphy, 2005). It combines production

equations from numerous studies to estimate cost and productivity using a

relevance weighting system (Hartsough et aL, 2001). This tool is designed to

support the appraisal of stand management decisions by the USDA Forest

Service.

Currently, harvest schedulers make decisions based on personal experience,

which can result either in overstocking of raw material that leads to additional

storage costs or shortages that can significantly decrease customer service. The
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use of decision support tools may reduce the uncertainty of their forecasts.

Decisions taken on a daily basis regarding landing location and areas to be

skidded have a great deal of variation. To help facilitate the decision making

process a decision support system is needed that can forecast production both at

harvest unit level and on a daily basis.
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Objectives

The main objectives of this study are to determine the variables that affect

production at the operational level, and the amount of variability that can be

explained by a prediction model using variables that can be easily measured

prior to the beginning of harvesting operations. Additionally, this study seeks to

develop a support system that integrates the daily and unit level forecast system

on a geographic information system platform.
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Methodology

The purpose of this paper is to develop the analytical methods used to support

the forecasting of logging production. One application is to forecast the average

production for the entire unit that would be achieved prior to logging while the

second will assist in forecasting the daily production. To develop the forecasts at

these two levels, a four-part methodology has been developed. They are: (1) A

description of the stand and harvesting operations, (2) a description of the data

collection procedures, (3) steps to develop the forecasting model and (4) the

procedures for developing the GIS framework.

Stand and Operation descriptions

The study area (Figure 1) was in the MacDonald-Dunn Research Forest which is

located on the hills surrounding Corvallis. It is managed by Oregon State

University, College of Forestry (OSU), and is primarily used for teaching,

research and outreach activities, but it is also utilized for recreation purposes.
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Study Site
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Figure 1. Study location

The area used in the study is a forty year old Douglasfir stand with a total area

of 96.49 acres, from which approximately 13-acres were harvested during this

study. According to the forest inventory information obtained from the College of

Forestry staff, the unit had a dominant height of 33.25 m (109.08 ft), an average

diameter breast height (dbh) of 26.41 cm (10.39 in), a basal area of 13.01 m2 per

hectare (186 ft2 per acre), volume of 467 m3 per hectare (6674.08 ft3 per acre).

The logging operation in the study used a John Deere 540B skidder. The trees

were felled manually and bucked in the forest. The togs were then skidded along

skid trails to one of the two landings. The student logging crew performed all

work on the unit. The student logging crew is a training program for interested

'! ! ! :
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students to gain experience in practical logging skills; the students carry out all

phases of logging operations. The members have little or no experience in

logging, but were trained and supervised by Jeff Wimer, who has 26 years

logging experience.

Data collection

Production data was collected during the beginning of August through to mid-

September 2004. A total of 15 days of data were collected during this period. The

student logging crew were provided with forms to record daily productivity and a

set of potential independent variables that were thought to affect the productivity.

The variables that were measured are:

- Daily production (number of logs extracted that day)

- Location of skidding area to be used to calculate skidding distance

- Crew size

Shift length (hours worked)

Weather conditions (temperature and precipitation)

To estimate skidding distance, the logging crew supervisor was provided with a

map on which he drew the approximate location that the crew worked and the

location of the landing used for each day. The average skidding distance (ASD)

was calculated afterwards for each day from each of the maps, by drawing a

straight line from the landing to the center of the approximate location the crew
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worked. The daily temperature was obtained from records1 online. The weather

station used was located near Corvallis at the coordinates 44 35 ' 25 " N

latitude and 123 17 '28 "W longitude, at an elevation of 121 m (400 It) . Table

I shows the summary statistics for the different variables recorded during this

study period.

Table 1. Summary statistic of the variables measured during the operation

Developinq the model

A multiple linear regression model was selected to be the first attempt to forecast

logging production as suggested by (Olsen et a!, 1998). The modeling was

carried out using S-PLUS 6.1 for Windows Academic Site Edition, Release 1.

1http://w.wunderground.com/weatherstationxDaiIyHistory.asp?ID=KQRCQRVM&day=1 O&year=2004&month=8&gr

aphspan=month
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Statistic
Number

of
Logs

Ave. T°
(F°)

Average
skidding
distance

(if)

Shift
(hours)

Crew
size

Pp
(mm)

Mm 23 61 114.29 6.5 3 0

Mean 89.33 70.33 353.93 8.43 5.20 0.05

Max 183 76 510.44 10.25 6 0.6

Std. Error 13.82 1.45 28.35 0.27 0.24 0.04

Std. Dev 53.53 5.60 109.81 1.05 0.94 0.16



The steps taken during the modeling process are described in the following

sections.

Testing Independence Assumption

In this study, average daily production observations are collected on a daily

basis. When data is collected over time or space, there is a chance that the

assumption of independence among the variables will be violated. Some of the

potentially correlated variables likely to be found in production studies are piece

size and volume per turn, or turn time and skidding distance. When the

assumption of independence is violated, the model results tend to be further from

the long- run mean than is expected. In addition, serially correlated samples tend

to be closer to each other, decreasing the variability and causing misleading

results. Therefore, it is important to perform the appropriate analysis to determine

the independence of the dependent variable's observations.

Serial correlation analysis was based on the "First Order Auto-Regressive Error'

model which simply says, the error is composed of a random error that fulfills the

linear model assumption plus another component at time (t-1) which is weighed

by the autocorrelation coefficient (Ramsey and Shafer, 2002) . Visual analysis

using lag plots and numerical analysis using Durbin-Watson statistic were

calculated for testing first-order autocorrelation in regression residuals. If the test

indicates that correlation exists, then a correction or transformation to the data

must be applied. If serial correlation is not present, the least squared method can

Page 22 of 72



be used. In this data set, there was no evidence of serial correlation and no

transformations to the data were required, the least squared method was used.

Potential problem points

The least squared regression analysis can be unduly influenced by outlier points

(Ramsey and Schafer, 2002). Outlier points are observations that come from

populations that do not correspond to the one being analyzed, therefore they

must be excluded. To omit an observation just because it is influential is not

justified; therefore, a case-influence exploration was performed. The following

statistics tests were used to indicate possible statistically significant problem

points.

Cook distance assesses the overall changes in the coefficient when an

observation is omitted.

High leverage measures usualness of the explanatory variables.

Studentized residual is a measure for outlierness.

If some observations are case-influenced, then a further analysis must be

completed to discover the nature of the problem point(s). If case influences exist,

the model will be reported with all the observations, then subsequently without

the potential problem points. To avoid any problem points the data collection

guidelines must be clearly defined before the study starts. In this data set no

problem significant problem point were found.
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Variable selection and model refinement

The response variable (daily productivity) was plotted against the explanatory or

independent variables to check for possible relationships. A series of correlation

coefficients were calculated between each independent variable and the

response. A high correlation between the response and independent variables is

an indicator of a potential variable for the model.

A high correlation among independent variables suggests that only one of the

two variables should be used; otherwise, a spurious coefficient may result (Olsen

et aL, 1992). When too many predictors are used, degrees of freedom can be

lost, leading to a large standard error.

The variable selection was completed using stepwise analysis. The analysis

starts with a saturated model from which the most influential variables are

retained in the model until a desirable model is found.

The saturated model to stepwise analysis is described as follow:

IU(P/ASD,CS,SL,PP,T)=/30+ASDXJJI+CSX/32 -i-SLx/33+Ppxfl4+Tx/35

Where,

- ASD = Average skidding distance (It)

CS = Crew size (workers per day)

- SL = Shift Length (hr)

- Pp = precipitation (mm)
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- T = Average daily temperature (F°)

- P = Production (number of logs per day)

The criterion for the selection is to first identify the variable with the largest p-

value statistics; if this is greater than 0.05, the explanatory variable is removed to

form a new model. This is repeated until no more explanatory variables can be

removed from the model.

The following criteria were used to assess the lack of fit of the model and

included penalties for over-parameterization of the model. These criteria include

penalties for having extra parameters in the model.

The adjusted R2 indicates how much variability is explained by a model,

penalizing for any extra parameter included in the model.

The (Cp) statistic (and plot) measures the trade-off between the bias due

to excluding important explanatory variables and variance explained due

to including too many variables. It corresponds to the amount by which the

mean in the sampling distribution of the ith fitted value differs from the

mean it is attempting to estimate. A model without bias should have a Cp

equal to the number of parameters in the model. Thus, the smaller the Cp

then the better the model.
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After a suitable model is found, a residual analysis can be used to locate any

remaining unwanted outliers; if the model is adequate, then the residuals must be

normally distributed around a mean of zero.

Finally, if several models are found to be good alternatives, the adjusted R2 and

the Cp will lead in the model selection. The Akaike Information Criterion (AIC)

statistic was also calculated to discriminate between model alternatives. This

criterion includes a penalty for too many parameters. The selection among

models is made by choosing the model with the smallest AIC value. A

combination of these statistics addresses the selection of a model that suits this

project's general objective.

Testing for other Assumptions

The robustness of each model was checked in terms of the following regression

model assumptions: linearity, constant variance and normality. The assumptions

are discussed for one of the models (See appendix A for details on plots). The

QO plot shows the relationship between the response values versus the fitted

values. In a perfect model both values should be equal and follow a straight line.

A common plot used to check for the equal variance assumption is the residual

plot, which showed if the residuals are normally distributed or not.
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Validation

The utility of production equations derived from time study data for forest

harvesting operations is questionable when they are published without

documented validation (Howard, 1992). It is necessary to statistically test the

differences between the actual productivity and the productivity obtained by using

the prediction equations. In this study, due to the small sample size, validation

was not possible. Ramsey and Schafer (2002) recommend that the validation

dataset should be about 25% of the entire set when the purpose of the

regression analysis is prediction. Unfortunately this study had a small data set

and validation was not completed.

Developinq the GIS framework

The results from statistical analysis and the literature review show the importance

of skidding distance as a key variable to forecasting logging production. To aid in

the calculation of skidding distance, a GIS-decision support system was

developed to help forest planners to efficiently manage the primary supply chain

in the forestry industry. Besides estimating the skidding distance, the GIS system

will allow a variety of production equations to be easily integrated in a single

forecasting system.
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Description of the model

The models were constructed in ArcGIS 9 developed by ESRI using the visual

modeling functionality of ArcGIS 9 known as Model Builder2. Model Builder

allows complex models to be built visually and performs consecutive tasks.

Figure 2 shows an example of two simple consecutive tasks performed with

Model Builder; buffering and clipping. A buffer is a zone of a particular distance

around a feature or features (for example, finding all streams within 400 feet of a

planned logging area); clipping computes the geometric intersection of the input

and clip features.

udd E& n uu,Jow I

A buffer of2Ofl is applied to the
streams shapefile

2 www.esri.com

Stands features are clippled to streams
buffer using the clip function.
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This figure shows how to
perform a simple buffering and
clipping using the Model
Builder functionality ofArc GIS...
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Figure 2. Model Builder diagram example of buffering and clipping

The Spatial Analyst and 3D analyst were used since the forecasting models

required many raster-based calculations. The Spatial Analyst and 3D analyst



extensions for ArcGIS 9 allow the display, creation, manipulation and analysis of

grid raster data.

Input data

The models, unit and daily level, require both GIS and user defined data. The

GIS data includes a digital elevation model of the area, road, vegetation, stream

and unit boundaries. The user must locate the following data on these map

layers, landings and skidder pick-up locations. Pick-up locations, the source of

the volume within the unit, for the unit analysis corresponds to a grid of points

distributed in a homogeneous pattern throughout the unit. They can be fixed

directly by the user or randomly located. An important aspect in the analysis is

the cell size. It affects processing time and file size, as well as the degree of

precision of the results. The skidder being used in the operation is approximately

3-4 meters wide, therefore a cell size of 3 meters was used in this analysis. This

cell size is similar to that used in other studies such as Halleux and Greene

(2003) and Wang (1997). Using a different cell size would inaccurately estimate

the skid trail width. This is particularly important when modeling potential

environmental impacts. A digital elevation model, using USGS 30 meter DEM, is

used to generate a slope raster and a contour vector layer. The unit boundary is

the outer boundary of the unit that is scheduled to be harvested. If not readily

available, it may have to be digitized by the user. The landings and pick-up

locations have to be created by the user before continuing the analysis.
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Description of the process

A flow diagram of the analysis model is displayed in Figure 3, which is composed

of: total cost model, unit level model, and daily level model. The total cost model

is a common process for both forecasting models. The output of this process is

the total cost raster used as input in the unit and daily level model. The analysis

model uses a series of existing Spatial Analyst and 3D Analyst functions that are

implemented in Model Builder environment, and in Arc Map environment.

The process begins by confirming that the user has supplied all of the required

input data, and selling the environment's properties (extent, mask, cell size) for

the process. The model builder flow diagram is attached in Appendix 2.
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Figure 3. Flow diagram of the decision support system
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Total cost model

The total cost is the summation of travel cost, an artificial stream barrier cost and

road cost. The travel cost considers the operational cost of the skidder and the

travel time per cell. The skidder used during the operation is a medium size

skidder with an approximate cost per productive machine hour of $85/PMH or

$1 .42/mm (pers. corn. Glen Murphy). The travel cost per cell is obtained for each

cell by multiplying the operational cost per minute by travel time per cell. Travel

time is a variable function of the velocity and the distance. The distance is the

slope distance which is obtained from the slope raster. Velocity is calculated

based on machine capabilities which depend on the slope of the terrain, slip, and

log load.

A program was written in Visual Studio.Net to calculate the travel time of the

skidder as it crosses each cell. Figure 4 displays this process. The program

needs some parameters about the geometry of the skidder, an estimate of the

load and cone index. These parameters are held constant similar to the skidder

model developed by Gibbons and Olsen (1983). The program considers the

following assumptions: initial velocity at each cell of zero, (100 horsepower)

engine capability, constant load of 3.40 tonne (7,500 Ib) and a cone index of

551.58 kilopascal (80 psi). The velocity is calculated for each individual cell

where the slope from each cell is used to calculate the normal forces and

resistances for the front and rear tires. The next step is to iteratively solve for the

tire slip to compute available thrust. If the gross thrust is greater than the
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resistance then the velocity is calculated and stored. The program then goes to

the next cell, otherwise it stops the process.

Go to next cell

Giea the parwiietam:
Cone Index; Load, mS*,e

Slope

Cafojte:
Nr. NIT, Nc Ra. R

Guess Slip

Ctitote
VSccity

smp

Figure 4. Flow diagram to calculate velocity per cell

Stream cost

Skidding over a stream must be avoided to minimize environmental impact and

reduce cost. This factor was included in the analysis by associating a high cost to

each cell that represents a stream. In this way, traffic over a stream would be
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Where:
Nr; Normal force rear axle
Nf: Normal force front axle
Rr: Resistance rear axle
RI: Resistance front axle
GT: Gross Thrust
R: Resistance



minimized. The streams in this study are small streams, type N, according to

Oregon Forest Practices Rules and a no leave-tree retention is required;

however, a 20 feet buffer was required as part of the College of Forestry

management plan. A range of penalty values per cell were tested from $500 to

$1 to severely penalize the skidding through riparian areas; the results showed

using $1 is a satisfactory penalty value as it is far more expensive than the travel

cost through other grid cells.

Road cost

No road penalties were used in the model since it was assumed that

maintenance would not be applied to this operation. The travel cost, stream and

road cost rasters were summed to obtain a total cost raster, or skidder cost which

is an input in the models.

Cost distance function

The "Cost Distance" function is used to produce an output raster in which each

cell is assigned a value that is the least accumulative cost of getting back to the

nearest source (landings). Cost distance functions are based on the node/link

cell representation used in the graph theory (McCoy and Johnston, 2002). This

function also calculates the backlink (machine path) which was used to retrace

the cost path from the pick up point to the landing over the cost distance surface.

The algorithm used to compute the backlink assigns a code to each cell that

identifies which of its neighboring cells is on the least cost path back to the
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source (McCoy and Johnston, 2002). For example, in Figure 5, the backlink

code zero represents each cell in the raster, each cell is assigned a value

representing the direction of the cheapest cell on the way to the nearest source.
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Figure 5 Diagram representing the backlink and accumulative cost

The cheapest way to get from the cell with a value of 9.9 to its source is to go

diagonally to the cell of value 4.9. In the backlink or direction a value of 4 is

assigned to 9.9 and to 4.9, because this is the cheapest way to go from this cell

to the nearest source.

The backlink and accumulated travel cost raster generate a cost surface for the

unit, which can be used to determine areas with high and low skidding costs. The

machine path and accumulated travel cost raster can also be used to optimally

calculate the skid trail pattern path that minimizes the skidding cost from the

landing to any point in the forest.

The optimal skid trail pattern was calculated by applying the shortest path

function available in Spatial Analyst extension to the total cost raster. This

function determines the lowest cost path from a pick up point to the nearest



landing. The path analysis uses the accumulated travel cost and machine path

raster previously calculated using the cost distance function.

Unit Level Productivity Calculations

For the present study, no unit forecasting model was constructed because the

dataset available was small for this purpose; therefore, an alternative model was

selected from the literature. This model was used because estimates production

based on a variable that is collected prior the operation is executed, and also

expresses the variability at the unit level.

The unit productivity calculations were based on a productivity function

developed by FERIC (Andersson, B and Young G. 1998) which is shown in Table

2. This equation was selected because it expresses the production as a function

of the skidding distance which can be easily calculated prior to commencing the

operation, Other variable required by this model is the average turn size. Any

simple unit level production function that represents the geometry of the unit,

characterization of the tree, and description of the harvesting unit can easily be

integrated into the unit level forecasting system.
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Table 2. Production equations to estimate productivity developed by FERIC

Travel time (mm/turn): :TTVL = 0.46+0.0166x [Distance, m)

Fixed turn time (mm) :TF = 6.55

Total Turn time (mm) :TT=TTVL +TF

Minor Delay (%) DEL = 5.0% of iT

Turn size (m3) :VTURN = 3.2 m3

Productivity per day :PSHIFT= (60/ (iT +DEL))x SHIFT x VTURN

The average skidding distance was based on the approximation method

described by Suddarth and Herrick (1964) which divides a unit into sub-areas

where the distance from the center of each sub-area to the landing is weighted

by the area of each sub-area. The average skidding distance is then estimated

by summing the individual weighted distances and dividing by the total area.

The average skidding distance is calculated separately for each landing, based

on the optimal allocation of skidding paths, and then is weighted by the area of

each landing to obtain the overall skidding distance. The harvesting unit is

divided into cells of 0.1 ha; the optimal path was calculated from the nearest

landing to the center of each 0.1 ha cell. This procedure gives an estimate of the

harvested area that will go to each landing.
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Daily Level Productivity Calculations

To demonstrate the capabilities of the system to forecast daily production, a

sample of 10 harvesting points were randomly selected within the unit. The daily

production for each point was calculated using the empirical equations obtained

in this study for this unit and for this crew. Both production regression equations

are used to assess the advantages or disadvantages of the two equations.

The rough topography conditions found in the Pacific Northwest makes it

necessary to account for the slope when calculating the skidding distance. Once

the shortest path was known for a point, a correction for the slope was applied

using the surface length function included in the software which calculates the

length of a line considering changes on the elevation of the terrain. This skidding

distance value was then used to estimate the daily production for each of the

sample points.

Scenarios

Stream density is considered an important variable in logging operations

because it affects the operation costs by limiting the skidding direction that can

be used. Two types of stream density, current and high, were selected to

demonstrate the ability of the model to forecast productivity at the daily and unit

levels. For high density streams, more streams were added to the current density

using the current pattern of stream.
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The production for the unit forecasting level was calculated under two scenarios

using one and two landings to compare the impact of skidding distance on

production.. The landing allocation, for the two landing scenarios, remained the

same as those landings used by the actual logging operation.. The single landing

scenario was allocated in an intermediate location.

Results

Production forecastinq model

The data was collected during the summer harvesting season, with a total of

fifteen days worked. There were numerous mechanical problems with the skidder

that reduced the productivity of this operation; therefore, the crew did not work

during the entire season. The limited data is used to demonstrate the forecasting

methods; in practice, however, one would acquire significantly more data points.

Statistical analysis of the data was performed. The first test was for temporal

correlation due to concerns regarding the lack of independence. The results

showed no evidence of serial effects. Using the Durbin-Watson test there was no

significant correlation. Therefore no transformations were necessary to the data.
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Figure 6. Matrix of relationships of the variables measured in the operation

Where,

Ave.T° Average temperature

SD Skidding distance

Pp Precipitation

The first approach to analyze the data was completed by plotting the response

variable against the explanatory variables to check for possible relationships.

Figure 6 is a matrix of scatter plots for the potential explanatory variables and

their responses. It can be seen that there is a strong inverse relationship

between the independent variable, average temperature (Ave.To), and the

response variable (N° of Sawlogs). As the temperature decreases the number of
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logs produced in a day increases. The relationship of the skidding distance (SD)

is also inversely proportional. As the skidding distance increases the daily

productivity decreases. Alternatively, hours worked (Shift) has a direct

relationship with the response variable. Crew size (Crew Size) and precipitation

(pp) did not show a clear graphical relationship. These results are quantified by

the correlation coefficients shown in Table 3.

Table 3. Correlation coefficients for independent and the response variables

number of sawlogs.

Variable Correlation Coefficient

Ave. T° -0.625

ASD -0.481

Shift 0.685

Precipitation 0.106

Crew Size 0.269

A good model must not include independent variables that are highly correlated;

otherwise, a spurious coefficient may result. For example, when correlation

coefficients are high between two variables, only one of them should be used.

Table 4 shows the matrix of the correlation coefficients among potential

independent variables. Precipitation has high correlations with average

temperature and skidding distance, and crew size has a high correlation with

number of hours worked.
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Table 4. Matrix of correlation coefficients among explanatory variables

Therefore, the independent variables were selected using their correlation

values. Precipitation for instance, was not used in the modeling process because

of the high correlation with average temperature, because the days that

registered precipitation were too small.

Three statistics were calculated to investigate for potential problem points. This

analysis showed three high leverage points that could adversely influence the

model, therefore further tests on the model were needed. The (standardized)

residuals and the Cook's distance statistics showed that the points do not

significantly affect the coefficients and therefore no alterations to the data were

performed.

The stepwise analysis showed that the independent variables for this daily

productivity model were average temperature, hours worked (shift) and skidding

distance. The adjusted R2 for this model is 0.764; this means that 76.4% of the
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variability in the data is explained by the model. The standard error of the model

is 26.02 pieces with a 95% confidence interval for the mean production of (32.82,

146.03) daily production. Table 5 shows the coefficients and p-values for each of

the regression models. Average temperature is a highly significant variable with a

p-value of 0.001. For each degree increase in temperature the production

estimated is decreased by 5.7 pieces. Skidding distance is also significant with a

p-value of 0.01 36. The effect of this variable is a reduction of 0.21 in the number

of pieces per day for each foot increased in distance. Hours worked is significant

with a p-value of 0.0594. For each additional hour there is an increase in

production of 16.6 pieces.

Table 5. Coefficients and p-values for forecasting production model (pieces/day)

Where:

Ave. T° = Daily average temperature (F°)

SD = Average Skidding Distance, (ft)

Shift length = Number of hours worked per day

Page 43 of 72

Variables Coefficients p-values Adjusted R2

Intercept 430.84 0.01 59 0.764

Ave. T° -5.767 0.0015

SD -0.216 0.0136

Shift length 16.669 0.0594



For those cases when temperature can not be accurately forecast, another

model was developed using hours worked and skidding distance. This model

allows assessing the benefits of adding an extra variable in the model, and

therefore the potential improvements on the production forecasting model. The

results of this model are depicted in Table 6. The adjusted R2 for this model is

0.564 with a standard error of 36.48 giving a 95% confidence interval for the

mean of (9.84, 168.82).

Table 6. Coefficients and p-values for the comparative model without average

temperature
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The loss of temperature as an independent variable resulted in a decrease in the

variability that can be expressed by the model, as the value of adjusted R2

decreased from 0.764 to a 0.564. This resulted in an increased estimate of

standard error from 26.02 to 36.48.

Unlike the full model, the shift-skidding model was affected by influential points.

Statistics applied showed that one of the data points had a high influence in the

coefficients of the model, varying their values and decreasing the variation

explained by the model. Therefore, this point was not included in the analysis.

Coefficients p-values Adjusted R2

Intercept -189.448 0.117 0.564

SD -0.154 0.150

Shift length 38.856 0.005



Table 7. shows the values for the confidence interval in both models and their

associated standard errors.

Table 7. Confidence intervals for the coefficient of the models with and without

temperature as an independent variable.

Figure 7 displays the effects of average temperature and skidding distance on

forecasting productivity for a constant 8 hours worked. The surface shows that

the productivity decreases as the average temperatUre and skidding distance

increase, resulting in a minimum forecasted productivity of 17 pieces, at 76

degrees F and 500 if, for these two combined factors. The maximum production

could be reached at minimum values of temperature (62 degrees F) and the

smallest skidding distance of 140 if. It can be seen that for constant skidding

distance, as the temperature declines the production increases.
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Coefficient SE

With Ave.T°

Cl. lower Cl.upper

Without Ave.T°

SE Cl.lower Cl.upper

Intercept 151.382 97.65 764.03 111.607 -435.09 56.198

Ave. T° 1.370 -8.78 -2.75 -

SD 0.074 -0.38 -0.05 0.100 -0.374 0.065

Shift length 7.930 -0.79 34.12 11.256 14.081 63.631



SD

Figure 7. Effect of temperature and skidding distance on productivity, for constant

8 hours worked.

The results from the second model fitted, without considering the temperature,

are shown in Figure 8, for 8 hours worked. The figure shows that the production

forecasting is homogeneous for the range of temperature values. This model is

less powerful and underestimates forecasting when the temperature conditions

are favorable (low) and overestimates when temperatures are adverse (high).

From figure 8 it can be seen that these differences are significant.
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SD

Figure 8. Effect on productivity when temperature is not included as explanatory

variable, for constant 8 hours worked.

One of the advantages of implementing the system on a GIS plafform is that it

allows for the integration of a number of production functions and forecasting

functions. Therefore, the two forecasting models developed here were

implemented in the GIS support system.
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Decision support system

The results given in this section are for the stream pattern and landing scenarios

described in an earlier section. The purpose is to demonstrate the use of the

geographic information system to determine the skidding distance that is

important predictor in forecasting logging production at the operational level by

forecasting the unit and daily skidding production. The results have been placed

into three sections: (1) the total cost results, (2) the unit production model, and

(3) the daily production model. The processes to build the decision support

system are shown as a sequence of rasters graphics in Figure 9. The figure

shows the flow of results for the total cost model, unit and daily level, individually.
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Figure 9. Flow diagram of the main raster graphics results
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Total cost model

The main components of the total cost model include the travel cost and stream

cost. They are the first results created in the total cost model. The summation of

travel cost and stream cost is the resultant total cost raster, which represents the

cost to cross each cell in the unit.

The resultant total cost and landings were used to generate the backlink (which

represent the path from each cell to the landing) and accumulated cost raster, by

applying the cost function. These two outputs were used in the unit model and

daily model as input for the shortest path function. Figure 10 shows an example

of the resultant shortest path for a set of sampled points. The figure shows the

slope raster in the background, the unit boundary, the stream raster and the path

to each point. A stream crossing has a high cost associated with it and the

optimal route changes when stream density changes. The changes in path mean

that the distance traveled will change and consequently affect the forecasted

productivity.
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Figure 10. Shortest path to sample point for current stream and high stream

scenario

Unit production model

The unit model was developed to estimate the productivity at the unit level by

calculating the slope corrected AYD. In this example, a model developed by

Andersson and Young (1998) was used to forecast productivity. The model

requires the average skidding distance as a main input, tonne per turn, and hours

worked. Two scenarios were analyzed to demonstrate how the model can be

used to forecast the productivity for the unit; the first placed two landings in the

unit while the second had only one landing available. For the first scenario, the

results from the shortest path showed the area that goes to each of the two

landings according to the number of paths. The area for subunit 1(left) was 2.35

ha (5.8 acres) and for subunit 2 (right) was 3.12 ha (7.7 acres). The average

skidding distance for subunit 1 was 78.7 m (258.4 ft), for subunit 2 was 122.7 m

Path to point Path to point
Current stream High stream



(402.7 ft), and the resultant weighted average skidding distance for the unit was

103.95 m (341.1 if). For the one landing scenario, the average skidding distance

for the unit was 126.3 m (414.4 if). The forecasted production calculations for the

unit under the two scenarios are shown in Table 8. A production of 100.48 m3 per

schedule day was estimated for two landings and 96.38 per schedule day for one

landing. The equations used, which were developed by FERIC, are described in

Table 2.

Table 8. Productivity at the unit level for one and two landings

Given the unit has 467 m3 I ha (from inventory data), under scenario 1 it will take

about 25 days to harvest the unit and under scenario 2 it will take about 26 days.
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Scenario I Scenario 2

Landings 2 1

TTVL (mm/turn) 2.19 2.56

TF (mm/turn) 6.55 6.55

TTT (mm/turn) 8.74 9.11

DEL (mm/turn) 0.44 0.46

VTLJRN m3 2.4 2.4

Effective day (80%) (hr) 6.4 6.4

Days to harvest the unit 25 26

Productivity per day 100.48 96.38



Daily production model

The daily production model used the empirical production equations developed in

the previous sections of this paper to predict the production for one day, given an

area that is to be skidded that day. The idea is to forecast the skidder production

given that the crew is working in a specific area. The two scenarios analyzed

were current and high stream density as was used in the unit scheduling model.

The results of productivity when applying both models are shown in Figure 11.

Model 1 is function of average temperature, hours worked, skidding distance;

and model 2 is function of hours worked and skidding distance.

Forecasted production for the current stream density scenario was higher for the

majority of the sample points than when using high stream density scenario, for

both statistical models. This reflects the effect of increasing the density of the

streams causing an increase in the skidding distance. The production for several

of the selected points was similar for both scenarios, high and actual stream

density, because the increase of stream density did not affect these skid paths

for these areas.
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Figure 11. Production results for two stream densities and for two daily

production functions, model 1 as a function of SD, Ave.Tem and Shift length and

model 2 as a function of Shift and SD.

The overall production was higher, for all sample points, when model 1 was used

because the significance of the predictors used by the two models is different.

For model I the most significant variable is average temperature followed by

skidding distance, and in the second model the most significant variable is shift

length which was kept constant for this surface for comparisons. The graph

shows the expected average daily variation that is possible to encounter on a

given unit when a harvesting operation is performed.
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Discussion

Estimating the productivity in a harvesting operation is always a difficult task due

to the high variability caused by site conditions, the changing weather and

changing volume characteristics. There is little information in the literature about

the ability to forecast productivity rates on a daily or weekly basis, or for the

entire harvest unit. The majority of the studies on productivity have focused on

determining production based on cycle time prediction equations. In most cases

production is predicted for specific machines, comparing productivity or

estimating the time required for harvesting a unit under specific conditions. This

study presents a valid methodology to forecast productivity on a unit level and on

a daily basis.

The statistical forecastinq model

The least squared analysis showed that the most significant variables to estimate

productivity on a daily basis were skidding distance, hours worked and average

temperature during the day. Skidding distance is an important variable affecting

productivity. All other variables being equal, the farther the machine travels the

lower the production will be (Conway, 1982). It was found in this study, that as

skidding distance increases production decreases, and for a shorter skidding

path the production was higher. Skidding distance has the advantage of being

easy to calculate prior to the operation being performed.
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The number of hours worked, also an important variable in the model, can vary

among loggers due to maintenance schedules and training policies. When the

hours worked are reduced the daily production will be affected (Pers. Com. Kevin

Boston, 2005). Conversely, some loggers may decide to extend number of hours

they work if there is insufficient volume to fulfill customer's orders. Productivity

rates for these extended hours can decrease if they are implemented without

addressing operational needs, safety, environmental conditions (Nicholls et aL,

2004).

The statistical analysis showed that changes in average temperature affect

productivity. As the temperature increases the productivity decreases. At high

temperatures loggers are working at sub-optimal hydration levels, if they don't

consume appropriate fluids to replace sweat losses (Bates et aL, 2001). It has

been demonstrated that body hydration damages performance, physical strength

and aerobic power, and moreover the combination of heat stress and

dehydration has a more significant effect on performance than hydration alone

(Paterson, 1997). Data for this study was collected over the summer, meaning

that most of the days had temperatures above the average annual temperature.

Therefore, there is a need to study a broad range of weather conditions and their

effect on production, such as including situations with precipitation and a broader

range of temperature values. Nicholls et aL (2004) highlighted that a poor

understanding of human factors may jeopardize profitable harvesting and

contribute to low productivity. It is anticipated that productivity will be a nonlinear
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curve with low productivity at both high and low temperatures, or when it is

raining.

Suøport system

The unit prediction model is intended to assist annual planning on scheduling

crew capacity to meet the demands. This study uses a prediction production

equation previously developed; however, other appropriate models could be

used in its place that may improve the forecasts. The daily decision support

model is not intended to be a validation of the statistical model, but to

demonstrate the benefits of implementing the prediction model using a

geographic information system platform. The model can quickly compute the

average skidding distance for a variety of shaped harvesting units and stream

densities. The model has the ability to find the lowest-cost skidding path from any

stump to a landing location in a unit, given slope, stream and road layers. This

provides the model with the ability of capturing site conditions that may be

difficult to be considered in a statistical prediction model and that may affect the

skidding pattern. For instance, stream density, archeological sites or any other

environmental aspects easy to be managed by means of GIS. The 018 support

system facilitates the displaying of the results and future incorporation of

prediction models. This system is similar to the one developed by Halleux and

Greene (2003) which estimates harvesting cost and environmental disturbance,

but differs in the incorporation of slope of the terrain and the empirical production

models.
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Limitations of the models and future developments

The current statistical model was developed for a specific range of site conditions

which limits its application to different stands. The conditions in a forest operation

may vary by average piece size, slope of the terrain, direction of the slope, and

machinery among others. Many of these conditions were not included in the data

set used in this statistical model. Therefore, a broader range of site conditions

need to be included in future modeling efforts. Average temperature was found to

be an important variable in this model; therefore, it is necessary to extend the

variables for weather conditions. Additional functionality needs to be added to the

model to allow it to accommodate multiple crews as well as being able to predict

productivity at a weekly level.

Skidding distance used to develop the model was obtained from maps that

indicated the position the crew worked each day. This is just an estimation of the

real location where the harvesting crew worked, therefore it would be important in

future to include a GPS unit in the skidder to record the true skidding distance,

and then use this average value in the statistical model.

The statistical model predicts production on a daily level with the objective of

assisting the daily operational planning, but the production at the unit level is also

important in annual operational planning. The model used in this study considers

only skidding distance as the main variable that predicts production, therefore it
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is important to analyze which other variables influence the variation on unit level

production.

A bigger data set is necessary to validate the results of the prediction model. The

actual sample size's variability indicates that a sample of 44 days is needed to

develop prediction equations with a margin of error of 10%, for an operation that

will take 60 days. This will produce future equations that estimate production

within a 10% marginal error. A 10% margin of error is a compromise between

samples needed and production variability allowed.

Applvinq the model to a commercial sefting

The next step in the research is to apply the model to a commercial selling where

multiple crews will need to be forecasted. The process requires developing

individual production equations for the harvesting crews. The equations will

include variables used in this work which are: hours worked, skidding distance

and temperature, and perhaps variables that describe the variability of the stand

that were not included in this application since only one stand was used. These

potential stand variables might be volume per ha, stems per ha or average

volume per tree. Site variables such as average or maximum slope might be

included, again emphasizing variables that can be obtained from the GIS

analysis. These would then be applied to conditions in the existing stand and

would be used to forecast either the average production forecasts for the entire
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unit, or would be part of a daily forecasting system that could predict the volume

from a single day or week.

Conclusions

This project developed a forecasting production model using a GIS framework

that facilitates the coordination of activities to support improved performance of

the primary forestry supply chain. The following main conclusions were obtained

from this study:

- The main variables found in this study that estimate production on a daily

basis are skidding distance, average temperature and hours worked; the

model is able to explain 76 % of the variation in the daily production. A

limited number of variables that can be measured prior to harvesting can

be used to forecast production.

A decision support system was developed that facilitates the forecasting of

production at the unit and daily level. The unit level model uses a

production equation from the literature that was scaled at the unit level

production. We recommend that additional unit level forecasting be

developed that considers average skidding distance, stand characteristics

such as volume per ha, maximum piece size, and crew type

A larger sample size is needed to validate the statistical model that was

developed in this study. The variability in the current study shows that a
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sample of 44 days will be needed for an operation that may take 60 days,

with a margin of error of 10%.

By integrating statistical models, machine mechanics and GIS techniques,

such as least-cost path, a forecasting model was developed for calculating

unit and daily productivity for a ground-based harvesting system.
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Appendix 2. Model builder model
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