

AN ABSTRACT OF THE THESIS OF

Marjan Adeli for the degree of Master of Science in Computer Science presented on

March 19, 2020.

Title: Facilitating Code Comprehension by Annotations in Canvas-Based IDE

Abstract approved:

Anita Sarma

Developers spend a considerable amount of time comprehending code and build-

ing accurate mental models of the code. Understanding the relationships between

software features within IDEs is difficult, with information split across different vi-

sual hierarchies making navigation cumbersome. Canvas-based IDEs mitigate some

of the navigation costs by allowing relevant information to be presented in groups.

However, these groups have no explicit way of capturing and sharing the meaning

of different spatial layouts. In this thesis, we present annotations in a canvas-based

IDE called Synectic to address this concern. Synectic allows users to arrange relevant

information in groups, attach meaning to the arrangement, and externalize thoughts

and relationships between artifacts through annotations. To study the effects of these

annotations on comprehension, we conducted a user study of newcomers performing

code comprehension tasks comparing Synectic and Eclipse. The results show anno-

tations in Synectic increase the developer’s accuracy, while reducing cognitive load

during newcomer comprehension tasks.

©Copyright by Marjan Adeli
March 19, 2020

All Rights Reserved

Facilitating Code Comprehension by Annotations in Canvas-Based
IDE

by

Marjan Adeli

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March 19, 2020
Commencement June 2020

Master of Science thesis of Marjan Adeli presented on March 19, 2020.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to
any reader upon request.

Marjan Adeli, Author

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my advisor, Dr. Anita Sarma, without

whose constant guidance and support I would not have been able to achieve this. I

am also indebted to Dr. Amir Nayyeri for his support throughout my early graduate

years, and through many tough times. I would also like to extend my gratitude to

my committee members Dr. Rakesh Bobba and Dr. Leonard Coop.

A very special gratitude goes out to my team members who I worked closely with.

Thank you Souti Chattopadhyay and Nicholas Matthew Nelson.

I also express my gratitude to my family and friends for their understanding and

encouragement throughout my years of study.

Finally, I appreciate the National Science Foundation for partially supporting

this project under the NSF Cooperative Agreement No. 1560526.

TABLE OF CONTENTS

Page

1 Introduction . 1

2 Background . 5

2.1 Information Foraging Theory . 5

2.2 Code Comprehension Questions . 6

2.3 Alternative user interfaces in IDEs . 7

3 Annotations in Synectic . 10

3.1 Support for Foraging . 11

3.2 Support for Understanding . 12

3.3 Support for Maintaining . 14

4 Study Design . 16

4.1 Participants and Treatments: . 16

4.2 Project and Tasks: . 18

4.3 Measurements and Constructs: . 20

5 Results . 23

5.1 RQ1: Accuracy . 23

5.2 RQ2: Time . 25

5.3 RQ3: Cognitive Load . 25

5.4 RQ4: Usability . 26

6 Discussion . 28

6.1 Using IFT to understand navigation and foraging behavior 28
6.1.1 Foraging in the document . 29
6.1.2 Foraging across code and document 31

6.2 Using Sillito’s four stages of questions to understand code comprehen-
sion behavior . 34

6.2.1 Finding an initial focus point 35
6.2.2 Building on those points . 39
6.2.3 Understanding concepts between related entities 40
6.2.4 Questions over groups of related entities 40

6.3 Threats to Validity . 42

TABLE OF CONTENTS (Continued)

Page

7 Conclusion . 43

Bibliography . 44

LIST OF FIGURES

Figure Page

2.1 An example of two information patches 6

2.2 An overview of four categories of code comprehension questions . . . 7

2.3 Code Bubble interface . 8

2.4 Patchworks interface . 9

3.1 Synectic interface . 13

5.1 Boxplots of accuracy scores . 24

5.2 Boxplots of time to completion . 24

5.3 Boxplots of cognitive load . 25

5.4 Boxplot of system usability scale . 26

6.1 Synectic IDE, project canvas . 36

6.2 Synectic IDE, Product group . 37

6.3 Synectic IDE, Product group with an opened web-browser card. . . . 38

LIST OF TABLES

Table Page

4.1 Study Participant Demographics . 17

4.2 Tasks . 19

4.3 System Usability Scale (SUS) questions 20

Chapter 1: Introduction

Code comprehension comprises a large portion of developers activities. For example,

developers were found to spend 58% of their effort on code comprehension [44]. The

effort to comprehend code is especially higher in large software projects [11]. To

help with comprehension, researchers have conducted several studies of developers’

process of code comprehension [37, 16, 3]. For example, Sillito et al. [37] identified

four categories of questions developers ask during maintenance tasks. These cate-

gories represent a model for understanding how developers explore and understand

code and highlight the process of finding a focus point, expanding understanding

around that point, and contextualizing that newly discovered knowledge within the

larger codebase. Throughout each of these categories of questions, developers must

“forage” for relevant information in order to build their mental model of the system.

Prior research has shown that foraging accounts for 35% of the developer’s time

during maintenance tasks [20, 8].

Moreover, developers face tremendous barriers while foraging for information.

One study found that 50% of the navigation yielded less information than devel-

opers expected and 40% of navigation required more effort than the developer pre-

dicted [30]. The cost of foraging would likely be considerably higher for newcomers to

a project, who haven’t yet formed a mental model of the feature set and the different

relationship between those features.

In particular, developers have difficulty understanding the relationships between

software features within traditional IDEs[12, 7]. A possible reason is that the features

2

in IDEs for managing multiple artifacts is unordered tab panes. Moreover, when

required information is split across different hierarchies (e.g. file explorer, tabs,

panes, etc.), navigation becomes cumbersome. This problem is further exacerbated

when we consider that software development requires artifacts beyond the codebase

(e.g. documentation, code examples, debugging outputs).

In this thesis, towards addressing these concerns, we focus our interest on three

needs of developers during software development: (1) using artifacts that are more

than just code, (2) placing relevant information closer together (either spatially or in

groups), and (3) externalizing and recording relationships between artifacts through

annotations. Past canvas-based approaches have been created to ease navigation and

understand project structure [2, 7, 6, 5, 12]. These systems have addressed (1) to

some extent (e.g. via augmenting code with debugger output inline [6]), (2) based

primarily on syntactic linking (e.g. bubbles containing code linked together by call

graph relationships [2]), but none have directly addressed (3).

To the best of our knowledge, no in-depth studies have been conducted to de-

termine whether and how freedom to group and arrange artifacts, and link relevant

information patches in-situ aid in code comprehension.

To address this gap in knowledge, we presented annotations in a canvas-based

IDE, Synectic, which allows relevant information to be arranged and group accord-

ing to the user needs, and externalizes relationships through annotations. To eval-

uate how annotations help with code comprehension, we conducted a user study

comparing how newcomers to a project perform code comprehension tasks within a

traditional IDE (Eclipse) and our canvas-based IDE (Synectic). In particular, the

evaluation investigated four research questions:

3

RQ1: Do annotations affect the accuracy of code comprehension during newcomer’s

onboarding tasks?

RQ2: Do annotations affect the time of code comprehension during newcomer’s

onboarding tasks?

RQ3: Do annotations affect newcomer’s cognitive load during onboarding tasks

that require code comprehension?

RQ4: Do users perceive annotations to be useful for code comprehension?

We chose newcomers for our user study since they require significant effort towards

comprehending and building understanding of a codebase. Additionally, newcomers

have not previously built mental models or developed navigation habits for working

with a specific codebase. We asked participants to complete four comprehension

tasks; each task comprised two parts–to locate code relevant to a particular feature,

followed by a question requiring deeper understanding of that feature.

We analysed our observations using two lenses. We identified the hurdles that

newcomers encounter in traditional IDEs (Eclipse) as compared to canvas-based IDEs

(Synectic) using the Information Foraging Theory (IFT) [32] lens. We then examined

support for newcomers’ code comprehension using the four categories of comprehen-

sion questions defined by Sillito et al. [37] to see whether annotations and links can

alleviate some of the difficulties.

The rest of this thesis is organized as follows. Chapter 2 presents a review of

the background and prior research related to this work. Chapter 3 provides a brief

description of Synectic and its annotations feature. Chapter 4 describes the method-

ology of the user study we conducted. In Chapter 5, we present the results of the

4

user study. Chapter 6 builds upon the collected metrics from users doing the code

comprehension tasks and relates them to (i) the hurdles to foraging that newcomers

encounter in traditional IDEs, and (ii) the support for code comprehension in our

canvas-based IDE. Finally, Chapter 7 concludes the thesis with a brief summary of

the key takeaways.

5

Chapter 2: Background

2.1 Information Foraging Theory

Information Foraging Theory (IFT) explains and predicts how humans seek informa-

tion within information-rich environments. This provides a theoretical foundation

to investigate why some software engineering tools fail, or succeed, at supporting

software developers’ work. IFT [32] explains how humans seek information is anal-

ogous to how animals forage for prey in the wild. Originally applied to user-web

interactions, researchers expanded IFT to suitably explain human behavior during

software development [20, 21, 8, 27, 28]. IFT has also be applied to design tools

supporting development activities [8, 29, 20].

IFT describes a human seeking information as akin to a predator (person seeking

information) pursuing prey (valuable sources of information) through a collection of

patches of information in an informational environment. Patches are connected by

traversable links that can lead to other patches of information. Each patch contains

information features that the predator can process.

The information features have value, as well as cost (in the form of time for

the human to read and process them). Traversing a link also has a cost (time to

go from one patch to the other). Figure 2.1 graphically depicts an example of two

information patches. The central proposition of IFT is that a predator tries to

maximize the value of information gained from a patch over the cost of traversing to

the patch and processing the information [30]. However, predators cannot accurately

6

determine a patch’s value and cost prior to processing, so they make choices based on

their expectations of value and cost. These expectations are based on the previously

processed information, and perceived potential for future patches.

Figure 2.1: An example of two information patches

The directed edges is a navigable link from one patch to another, and the weight on each
link indicates the cost of traversing. Each patch contains a set of information features,
depicted as hexagons and the number inside each hexagon shows the procesing cost of the
information feature. Figure adapted from [33].

2.2 Code Comprehension Questions

Developers decide on the value of particular patches of information during foraging,

and in particular they must read and comprehend the underlying code in order to

evaluate whether it is relevant to their specific task. This comprehension process

requires that developers formulate and ask questions of the underlying information

(primarily comprised of code in the case of software development).

Several studies have examined the types of information that developers seek dur-

ing development tasks [16, 37, 36, 18, 22, 40]. In particular, we use the four categories

of code comprehension questions identified by Sillito et al. [37]. These categories rep-

resent a model for understanding how developers explore and understand code during

7

change tasks, and consist of: (1) Questions related to locating an initial focus point,

(2) questions about expanding relevant entities through exploring relationships, (3)

questions used for building understanding of concepts that span multiple entities,

and (4) contextual questions that build upon knowledge that spans multiple groups

of related entities. Figure 2.2 illustrates these four categories.

Figure 2.2: An overview of four categories of code comprehension questions

An overview of the four categories of code comprehension questions illustrated by dia-
grams depicting source code entities along with connections between those entities. Figure
adapted from [37].

These questions enable developers to build mental models of the underlying code

and facilitate the ability to confidently make changes to that code [19]. Combined

with IFT, these models provide a foundation for examining the effectiveness and

efficiency of developer tools during change tasks.

2.3 Alternative user interfaces in IDEs

Traditional file-based IDEs use individual code files as the core component that all

interactions and interfaces are designed around. This model creates barriers to effort-

less coding. Prior literature has shown that developers working in traditional IDEs

spend considerable time foraging for relevant information [31], navigating code [15],

8

and managing context when switching tasks and environments [14].

Alternative IDEs attempt to tackle some of these deficiencies through novel user

interfaces. Code Bubble replaced the IDE’s typical set of tabbed windows with a pan-

and-zoom interface [2]. Code Bubble presented the code as a collection of lightweight,

editable fragments called bubbles (see Figure 2.3). It allowed the relevant bubble

to be clustered in a group of bubbles. Code Bubble also linked the relevant code

bubbles together (through call graph relationship) during debugging. Another IDE,

Code Canvas, Also was presented with the similar idea to Code bubble, and at the

same time [7]. Later Code Bubble and Code Canvas teams collaborated to release

Debugger Canvas, an industrial version of the Code Bubbles paradigm [6].

Figure 2.3: Code Bubble interface

An example of a working set of bubbles. (a) User opens a bubble via the pop-up search
box, (b) resulting bubble, (c) user opens definition of two more bubbles side-by-side (au-
tomatically grouped); (d) a large working set of bubbles, including a (f) bubble stack of
references; (e) an overview is shown in the panning bar; (g) hover preview. Figure adapted
from [2]. An example of a working set of bubbles.

The Patchworks code editor was another design that based on the idiom of a

sliding grid strip (called ribbon) of code fragments (called patches) [12]. The pro-

9

grammer can use the ribbon view to adjustthe visible patch grid. It was aimed to

ease navigation among open patches. Figure 2.4 depicts the Patchworks interface.

Figure 2.4: Patchworks interface

A Patchwork editor including, the patch-grid view (A) and the ribbon view (B). The
patch-grid view includes the package explorer (A1) and a 2 × 3 patch grid (A2). Four
of the patches contain code fragments and two are empty. The displayed patch grid is
actually a view into a larger patch ribbon (B) and the programmer can navigate by sliding
the view left or right along the ribbon. Figure adapted from [12].

All of these alternative IDEs have sought to reduce the costs of context switching

when navigating to relevant code, and lower the cognitive load required to understand

and operate on that code. However, improvements in these dimensions are still

possible and further work can help developers using both traditional and alternative

IDEs (since features developed in alternative IDEs don’t have to remain exclusive to

those IDEs).

10

Chapter 3: Annotations in Synectic

Synectic is an IDE designed as a canvas-based environment, similar to Code Bub-

bles [2] and Moldable Debugger [5], with spatial cognition as the central interaction

paradigm. Spatial cognition involves the human capabilities of object recognition,

object search, and navigation through space to enhance learning and knowledge ac-

quisition [17]. Conventional user interfaces impede the power of spatial cognition

and reduces the amount of usable information that can be embedded within a user

interface.

Synectic provides a spatially-oriented interface that mimics cards on a canvas

in order to allow contextually relevant information to be arranged and grouped ac-

cording to the needs of the user. To further capture the relationships between these

cards, we include an annotation overlay that includes annotations and links that

can be attached to cards placed on the canvas. Figure 3.1 presents a snapshot of

the Synectic interface, including three cards containing code editors and a browser

(displaying API documentation in this example), as well as annotations (shown as

yellow boxes) with links between cards and annotations (shown as black lines). These

annotations can attach to a single card (as shown in the bottom half of Figure 3.1),

or linked between two cards in order to annotate relevant relationships between in-

formation contained within those cards (as shown in the top half of Figure 3.1). This

annotation overlay is provided in order to capture and express the previously hidden

relationships that developers intuitively create in their minds [19].

11

3.1 Support for Foraging

Information Foraging Theory (IFT) [32, 21, 30] provides a model for understanding

the needs of developers navigating for relevant information patches within an IDE

(see Section 2.1). And according to IFT, the costs of foraging are directly related to

the level of navigation affordances provided in the user interface. Maintaining code

often requires revisiting the same prey multiple times and gathering information that

spans multiple information features [8, 16]. The navigation pathways undertaken

to locate a particular prey or information feature are typically left to the memory

capacity of individual developers, and if deemed valuable, might remain open on the

screen for future use; this process is ad hoc and temporary.

The annotation features within Synectic provide a system for exposing and archiv-

ing these pathways so that revisiting prey and information features for similar tasks

does not incur the same costs as the first foraging session. The annotations within

Synectic allow for both individual notes that are attached to a single card (i.e. prey

containing possibly relevant information features), and notes that are attached to

two cards in order to visually represent relationships that span multiple information

sources. Although these features do not reduce the initial costs of foraging when

a task is being undertaken for the first time, all subsequent foraging sessions can

benefit from the presence of notes that indicate the scope of tasks, value of infor-

mation features, and navigation pathways for particular cards (i.e. prey containing

information features).

12

3.2 Support for Understanding

Developers use IDEs (and code editors) to solve problems that expand beyond a

monolithic model of code. This requires developers to deal with different versions

of files, information stored in a variety of formats, and layers of abstractions (e.g.

hierarchical, syntactic, semantic) that reduce cohesion in order to accommodate the

needs of different software systems (e.g. compilers, build systems, testing, etc.) [24].

The conventional design for dealing with multi-dimensional relationships in IDEs

has been to add tabbed or multi-pane user interfaces that individually represent a

lens under which we examine code (e.g. a debugger pane for examining run-time

state, a version control pane for reconciling different versions of code files, and tabs

of editors for operating across multiple code files). However, these interfaces limit the

ability to visually describe relationships between different entities. The relationship

between different tabs of code is not immediately ascertainable by looking at the

arrangement of tabs, and often conveys no information beyond the order in which

they were opened [30].

Synectic attempts to expose these interdependent relationships through cards

that can be rearranged and grouped according to the specific lens under which the

developer is examining the code. For example, a developer attempting to locate and

resolve a bug can open a series of syntactically related code files into individual cards.

The developer can then create a group of cards that contain code that modifies the

code elements involved in the bug, and another group of the non-modifying code

cards (just in case they contain information relevant at a later time). Additionally,

annotations within Synectic allow the developer to add notes that specifically call

out the relevant information found in each card (or group of cards).

13

Figure 3.1: Synectic interface

Synectic provides a canvas-based environment containing spatially arranged cards of rele-
vant information (code, websites, etc.) with annotations that can be linked to individual
cards (bottom) or between cards (top).

14

3.3 Support for Maintaining

Mental models are constructed representations of real world that mirror a working

understanding of observed phenomena [13]. Within software development, mental

models contain a developers’ knowledge and insights into both code and external

constraints on the use of that code [19, 41]. Synectic provides direct representation of

these mental models through spatially arranged cards of information, and through the

annotating them which allow the intrinsic knowledge of developers to be extrinsically

archived in their IDE.

Research has shown that maintaining mental models incurs a cognitive cost on

developers [19]. This cost affects locating relevant information (see Section 3.1),

and sorting through that information to create a mental model that is relevant to

the current task (see Section 3.2). After incurring these costs, developers try to

reduce or remove these costs from future work by saving the relevant information in

code, comments, and documentation that maintains as much of the mental model as

possible.

During maintenance tasks, developers often seek to understand (or remember) dif-

ferent aspects of individual entities (known as information features in IFT), building

understanding of concepts that span multiple entities, and expanding to the larger

context of concepts that encompass groups of entities [37, 8]. These relationships

are often valuable for a variety of maintenance tasks, but left to each individual

developer to explore and build their mental model through direct experience with

reading and manipulating the code. The annotation features within Synectic pro-

vide a simplified method for capturing and storing this information so that future

developers (or the same developer working on future tasks) can quickly recover their

15

mental model; leveraging it to potentially reduce maintenance time and effort.

We further expand upon the use and benefits of annotations within a canvas-

based environment through user studies described in the Study Design and Results

chapters.

16

Chapter 4: Study Design

In this chapter, we describe the experimental design of the user study we conducted

to compare the annotations in Synectic with the notes functionality in Eclipse.

Our study has two treatments – Synectic (with annotations) and Eclipse (with

notes). Participants were randomly assigned to one of the two treatments (between-

subjects) and asked to complete four program comprehension task using the assigned

IDE. Each task required participants to answer questions about the code. After

completing each task, participants were asked to rate their perceived cognitive loads

for that task. At the and of all tasks, they were asked to rate the usability of

annotations/notes within their assigned IDE.

We describe the components of the user study in details below.

4.1 Participants and Treatments:

Our participants comprised graduate level computer science students recruited through

convenience and snowball sampling [10]. These participants represent our target

population of newcomers to some project and help our objective of studying how

appropriate annotations are for onboarding newcomers in.

22 participants were recruited through university mailing lists; Table 4.1 shows

the distribution of our participants (13 participants were men, 8 were women and

one participant preferred not to disclose their gender). The median of programming

experience was 5 years for both groups (with mean=7.4 years and SD=5.5 years for

17

Eclipse, and mean=7.0 years and SD=5.0 years for Synectic).

Ptc.i Gnd.ii Exp.iii Ptc.i Gnd.ii Exp.iii

E1 M 15 S1 M 16

E2 M 8 S2 F 3

E3 M 3 S3 M 5

E4 M 2 S4 M 5

E5 F 3 S5 M 3

E6 M 19 S6 M 12

E7 F 8 S7 F 8

E8 F 5 S8 F 2

E9 M 10 S9 P 4

E10 M 5 S10 M 15

E11 F 3 S11 F 4

Table 4.1: Study Participant Demographics

i Participant (E for Eclipse, S for Synectic) ii Gender (M for Male, F for Female, P for Prefer not
to disclose) iii Years of software development experience

11 participants were randomly assigned to each treatment. This assignment was

balanced based on the participant’s programming experience to keep mean experience

consistent. All 11 participants from the Eclipse treatment were familiar with Eclipse

to some degree, whereas, none of the 11 Synectic participants were familiar with

Synectic.

Each study session was time-boxed to two hours. We obtained participant’s con-

sent and walked them through their assigned IDE, the task project, and procedures.

Following these, participants were asked to complete a warm-up task to get used

to the study protocol. Participants were asked to think aloud and we recorded the

screen and audio of the them during the tasks. After the tasks, participants com-

18

pleted a usability survey related to the annotation/notes feature. At the end of the

study, participants were offered US$20 as compensation for their time.

4.2 Project and Tasks:

The tasks were based on a Java project (LOC ≈ 5000) designed for a bakery to

manage their orders and customers. It includes functions to keep inventory of prod-

ucts, customers, employees, and a visual dashboard to summarize all transactions 1.

The project was implemented using Vaadin framework. None of our participants was

familiar with this framework, making this project a good choice.

A senior developer from the project provided the necessary information aimed to

help newcomers understand the code base. The information was presented in two

formats: through the annotations in Synectic, and as a word document to be loaded

in Eclipse; both contained the same information.

Participants were given four comprehension tasks. These tasks were designed to

be representative of common problems that newcomers experience when onboard-

ing [1]. Each task comprised two parts. Part A involved locating the element

(method, class etc.) in the codebase related to a specific feature. Finding the initial

focus point of a programming task is a well known problem discussed by many re-

searchers[cite]. Part B included an in-depth question regarding the Part A feature,

such as, how a specific aspect of the feature has been implemented, or what needs to

be modified to change an aspect of the feature. see Table 4.2 for the specific prompts

and questions given to participants in the study prompt.

After each task, participants reported their perceived cognitive load for the task

1https://vaadin.com/start/latest/full-stack-spring

https://vaadin.com/start/latest/full-stack-spring

19

Task Part Question

A
Name the class(es) and method(s) in which we put the ”product”
menu item in the list of system menus.

1
B

To add a menu item in the body of ”configure” method, an instance
of ”AppLayoutMenuItem” has been created. Which parameters are
needed to create an ”AppLayoutMenuItem” for the “product” menu
item? Explain what each parameter means.

A
In which class(es) have “product” validations (e.g. not blank,
acceptable format for a field,...) been added?

2

B
How did we limit the maximum price of a product?How does the
system limit the maximum price of a product?

A
In which class(es) do we add the code to get the user access to the
“Product” pages?

3
B

We want only the user with role “Manager” be able to have access
to the “product” page. What changes would you apply?

A
Which class(es) are responsible for implementing a
”product”-related search?

4
B

We want to be able to search the products by product Name and
Price. What changes would you apply?

Table 4.2: Tasks

List of the code comprehension tasks. Each tasks comprised of two parts (A and B)

20

by answering “how mentally demanding was the task?” (using a balanced Likert-

scale response, where 1 is very low and 7 is very high) [25]. After completing all

four tasks, participants provided overall usability ratings for the annotations/notes

features of the assigned IDE by completing a questionnaire based on the System

Usability Scale [4]. Table 4.3 shows the six questions from our usability survey.

SUS Question

SUS.1
I think that I would use these on-boarding notes/annotations when
working on programming tasks.

SUS.2
I would imagine that most developers would like to use these
on-boarding notes/annotations when programming.

SUS.3
I found using these on-boarding notes/annotations unnecessarily
time-consuming.

SUS.4
I found these on-boarding notes/annotations helpful when completing
the tasks.

SUS.5
I found these on-boarding notes/annotations very
cumbersome/awkward to use.

SUS.6
I felt confident about completing my tasks when using these
on-boarding notes/annotations.

Table 4.3: System Usability Scale (SUS) questions

4.3 Measurements and Constructs:

To answer our research questions, we measured time and evaluated the accuracy of

responses for each prompt/question. We provide definitions of all relevant constructs

used in our results and discussions below:

Time. The time taken to answer each question was the duration between the

time the participant switched to the IDE after reading the question and the time

21

they hit the “next” button on the task form to proceed to the next question. Time

spent in each task is the sum of the time spent in the two parts of the tasks. The

overall time for each participant is the average time taken in all four tasks.

Accuracy (A): Accuracy of a response is dependent on the completeness and cor-

rectness of individual elements within that response. We use the balanced Sørensen–

Dice coefficient (F1-score) [39] to calculate accuracy:

A =
2T P

2T P + FP + FN

Where True Positive (TP) is the number of elements (e.g. class, method, etc.)

correctly identified in an individual response, False Positive (FP) is the number

of elements incorrectly identified in the response, and False Negative (FN) is the

number of elements missing from the response. For a concrete example, if a prompt

asks for the names of relevant classes for a specific feature and that feature has three

relevant classes. Then a response that correctly names two relevant classes (TP) and

failed to mention the third one (FN), but includes three other irrelevant classes (FP)

in the response, would result in an accuracy A = 2×2
2×2+3+1

= 0.5 (or 50%).

Since each task is comprised of two parts, we calculate the accuracy of a task

such that AT =
ATA

+ATB

2
(where ATA

represents accuracy from Part A, and ATB

represents accuracy from Part B). The overall accuracy for each participant is the

average accuracy in all four tasks.

Cognitive load. The perceived cognitive load was reported by participants after

each task using a seven-point Likert scale (where 1 is very-low, and 7 is very-high).

The overall cognitive load for a participant is the average over the four tasks.

Usability. The perceived usability of the onboarding document/annotations

22

were reported by participants at the end of the study using a seven-point Likert

scale (where 1 is strongly-agree, and 7 is strongly-disagree) and standardized System

Usability Scale (SUS) prompts [4]. Table 4.3 shows the questions. SUS.3 and SUS.5

were negatively-worded prompts, which required inverting the Likert scale (where 1

is strongly-disagree, and 7 is strongly-agree) to maintain consistency with positively-

worded prompts. The perceived usability score for each participant was the sum

of the scores across all question. The overall usability score of each participant

converted to a 0-100 scale.

Each participant was given four code comprehension tasks. This means we ob-

tained four measurements for each participants. These multiple measurements are

not independent data points and generally assumed to be correlated. One approach

to address this issue is calculating a summary measure for each participants which

is often the mean value of the measurements [26]. Therefore, we defined the overall

time, accuracy, and cognitive load for each participant as the summary measure for

each participant.

23

Chapter 5: Results

In this chapter, we present the results of the our analysis of the data obtained from

22 participants of the user study.

5.1 RQ1: Accuracy

RQ1: How do annotations affect the accuracy of a newcomer’s comprehension of the

code during onboarding tasks?

We measured accuracy of responses for each task using the balanced Sørensen–

Dice coefficient (F1-score) [39]. The overall accuracy for each participant is the

average accuracy in all four tasks.

Participants using Syntectic had a higher overall accuracy score, as shown in Fig-

ure 5.1. A Wilcoxon Rank-Sum test indicated that accuracy was higher for Synectic

participants (Median: 0.75) than for Eclipse participants (Median: 0.45), (W = 9.5,

p-value < 0.001, two-sided Wilcoxon rank-sum test). The analysis also showed a

large effect size (Cliff’s Delta δ = 0.84). Note that in the case of Task-3 the spread

for Synectic participants is much lower than Eclipse, this was because finding the

information for Part-B of the task was easily done because of the annotations. Sec-

tion 6.2 discusses this further.

24

Figure 5.1: Boxplots of accuracy scores

The figure shows boxplots for accuracy scores for each task T1–T4 (left bars), as well as
for overall accuracy scores(the right-most pair of bars) grouped by treatment (Synectic or
Eclipse).

Figure 5.2: Boxplots of time to completion

The figure shows the boxplots for time spent for each task T1–T4 (left bars), as well as for
overall time (the right-most pair of bars) grouped by treatment (Synectic or Eclipse).

25

5.2 RQ2: Time

RQ2: Do annotations affect the time of code comprehension during newcomer’s

onboarding tasks?

We measured the time taken to complete each task. The overall time for each

participant is the average of time over all four tasks.

The median of overall time taken by Synectic group (440 seconds) was smaller

than that of Eclipse group (607 seconds), as shown in Figure 5.2. However, the

difference failed to achieve statistical significance (W = 74, p-value = 0.40, two-

sided Wilcoxon rank-sum test).

5.3 RQ3: Cognitive Load

Figure 5.3: Boxplots of cognitive load

The figure shows the boxplots for reported cognitive load for each task T1–T4 (left bars),
as well as for overall cognitive load (the right-most pair of bars) grouped by treatment
(Synectic or Eclipse).

RQ3: Do annotations affect newcomer’s cognitive load during onboarding tasks

that require code comprehension?

26

The perceived cognitive load was reported by participants after each task using

a seven-point Likert scale. The overall cognitive load for a participant is the average

over the four tasks.

Synectic participants reported less overall cognitive load than Eclipse participants

as shown in Figure 5.3. A Wilcoxon rank-sum test indicated that Synectic partic-

ipants reported lower cognitive load cognitive load (Median: 3.5) than the Eclipse

participants (Median: 5), (W = 107, p-value = 0.002, two-sided Wilcoxon rank-sum

test). The analysis also showed a large effect size (Cliff’s Delta δ = 0.77).

5.4 RQ4: Usability

Figure 5.4: Boxplot of system usability scale

Boxplot of System Usability Scale (SUS) percentages grouped by treatment(Synectic,
Eclipse)

RQ4: Do users perceive annotations to be useful for code comprehension?

The perceived usability of the onboarding annotations/notes were reported by

participants at the end of the study using a seven-point Likert scale. The perceived

usability score for each participant was the sum of the scores across all question

converted to a 0-100. scale.

27

Participants rated Synectic as more usable than Eclipse. The average of usability

scores reported by Synectic participants (73.74) was higher than the average of us-

ability score reported by Eclipse participants (53.79). Figure 5.4 shows boxplot of the

usability score reported by participants. Also, a Wilcoxon rank-sum test showed that

the groups differ in usability score (p-value < 0.0123, two-sided Wilcoxon rank-sum

test) with the usability of Synectic (Median: 72.22) was higher than Eclipse (Median:

52.78). The difference between the groups was large (Cliff’s Delta δ = 0.64).

28

Chapter 6: Discussion

We observed participants in the Synectic group answered questions with higher ac-

curacy than participants in the Eclipse group. The Synectic group also incurred less

cognitive load when answering the study task questions.

In this chapter, to understand the observed differences between the Synectic group

and the Eclipse group, we will first look at how and where participants struggled with

navigation and foraging for information from the perspective of Information Foraging

Theory (IFT) [33]. Next, we examine code comprehension using the four categories

of questions that developers ask during change tasks in Silito et al. [37]. Combining

these models allows us to compare Eclipse and Synectic support for locating relevant

information and comprehending the code necessary to undertake code maintenance

tasks.

6.1 Using IFT to understand navigation and foraging behavior

Information Foraging Theory (IFT) describes how people seek information [32]. IFT

is a suitable theory for explaining and predicting developers behaviors, and can be

applied to tool design [8, 29, 20].

As mentioned in the study design (Chapter 4), participants were presented with

an onboarding document displayed as a set of annotations within Synectic, and as a

text document loaded within Eclipse; the information provided was identical for both

groups. In IFT terminology, each paragraph of the onboarding document provided

29

to the Eclipse group is an information patch, and the full document is a collection of

patches arranged in a sequential topology. For the Synectic group, each annotation

contains an information patch, but is arranged to be in proximity to the relevant

code discussed within the patch.

6.1.1 Foraging in the document

Participants in the Eclipse group had to forage for the right prey by navigating across

patches arranged sequentially in the onboarding document. Eclipse participants fol-

lowed two strategies to avoid having to read the entire document; visually skimming

the document and using keyword searching. Although successful some of the time,

these strategies also posed problems for participants.

6.1.1.1 Skimming can backfire:

All Eclipse participants, at least once, skimmed through the patches in an attempt

to mitigate the full costs of foraging across the entire document. However, skimming

still involved some cost as participants had to navigate through irrelevant patches

(i.e. paragraphs not relevant to the task at hand). Moreover, skimming backfired

when participants overlooked the patch containing the prey.

For example, E11 overlooked the information she needed while skimming the

onboarding document to complete Task-1 (see Table 4.2 for task descriptions). When

navigating the document, E11 tried to identify the class and method used to add an

item to the system menu. “I’m looking in the document to find something related

to the product”; she skimmed the document from bottom to top, passing by the

30

relevant patch several times. After 1.5 minutes of scrolling within the onboarding

document (i.e. foraging), she found the correct patch and began thoroughly reading

through the text within the patch. E11 was not the only participant who struggled

with skimming. Other participants (e.g., E10 during Task-3) were unable to find the

relevant patch even after multiple skimming attempts, and eventually gave up on

completing portions of the study tasks.

6.1.1.2 Searching by keyword can make or break:

Some participants used keyword search to reduce the number of potential patches.

However, this strategy was not always successful. Some participants used incorrect

keywords (or synonyms of relevant keywords), which returned no patches or irrelevant

patches.

During Task-4, which asks participants to locate and prepare to update the

product page with additional search functionality, E7 used the keyword “search” for

searching within the onboarding document “I’m just keep searching this document to

see if there is anything to do with search”. The search results included documenta-

tion describing the implementation of search functionality in the Storefront page,

but nothing in regards to the product page. Other participants (E4 and E5) also

faced the same problem and became stuck. In these cases, the keyword mismatch led

participants astray, and arose because the author of the onboarding document had

used the word “find” instead of “search” in the patches related to the product page.

This variation in terminology is a common problem for newcomers. Furnas et al. [9]

mention that people use a surprisingly large variety of words to refer to the same

thing, and new users often use the wrong words. This disparity causes newcomers

31

to fail more often in achieving the actions or information they want, which is known

as the “vocabulary problem”.

Among Synectic participants, information foraging was less of a challenge. Patches

were contained within annotations that were linked to cards containing directly re-

lated code. This interweaving of code and information patches takes advantage of

the Gestalt laws of perceptual organization, specifically proximity and continuity,

which allowed participants to understand information is spatially proximate to re-

lated information and following the link-directed pathways to find additional relevant

information [34, 43]. Synectic participants were able to visually skim groups of re-

lated cards to quickly narrow in on the information they needed. And once located,

participants were able to use annotations to connect relevant information to code,

which reduced their overall foraging costs.

6.1.2 Foraging across code and document

Foraging in the onboarding document was only the start for Eclipse participants.

After finding the right information in the document patch, participants had to refer

to the appropriate code patches in order to comprehend the code. Navigating between

the document and code patches imposed additional costs on foraging.

6.1.2.1 Hierarchy hides prey.

Code is hierarchical in nature; a method (patch) is contained inside a class (patch),

which is further contained in packages or components (patch). A relevant piece of

code required for a task could be at any level of this hierarchy. However, the Eclipse

32

user interface does not provide direct links between code and documentation (except

in the case of Javadocs and similar code comment standards that allow URLs for

linking sections of code to outside documentation). For example, Eclipse participants

relied on the Project Explorer view in order to navigate to potentially relevant code

patches during our study.

The Project Explorer view itself is a patch, providing cues about existing classes

and packages as well as the hierarchical structure of code (e.g. the structure of classes

contained in packages). Well-established projects can have many hierarchical levels,

and require developers to forage for prey buried deep within the project hierarchy.

The hierarchy of the project used in our study was 6-levels deep, which renders

foraging strategies involving systematic searches as non-trivial and cost-prohibitive.

For example, when working on Task-1 (see Table 4.2 for task descriptions), E6

believed that the relevant piece of code (prey) should be in a patch that discusses

the user interface; “I imagine it should be a UI kinda area.” However, the prey

(Mainview.java) was six levels deeper than the file that E6 was currently exam-

ining. He had to guess which path to further drill down into, and at some point

E6 complained, “why is this folder structure so deep? It’s horrible!” This process

of drilling down was made more difficult by the lack of cues indicating which paths

were more likely to yield the desired prey. When E6 became frustrated, he switched

strategy and began expanding each level of the tree hierarchy, saying, “let’s explore

them all.” Once all paths were expanded, he skimmed through the file names in order

to locate the right patch.

33

6.1.2.2 Prey scattered across hierarchy.

Foraging cost was higher when prey was scattered across hierarchy (e.g. relevant

classes were spread across file structure and packages). Participants had to navi-

gate across different levels of the hierarchical structure several times for each prey.

This imposed high cognitive loads, reduced their focus, and lengthened the time to

complete a task.

For example, in Task-2, E11 used the Project Explorer to locate two classes men-

tioned in the document–ProductsView.java and product.java. She first found

ProductsView.java in the Project Explorer and read the code patch contained

within it. She returned to the Project Explorer in order to locate the second class

(product.java) as well. She struggled with finding the second prey for more than

2.5 minutes:

“I don’t know where this product.java is. The only thing that I can do

is to go through every package and search.”

In total, she spent 4.5 minutes searching through the Project Explorer to find both

class files. During this search, she lost track of her original goal, “OK, what was the

question?” After rereading the task instructions, she had to reorient herself within

the Eclipse user interface before restarting her foraging. This process was repeated

for both class files.

In general, context switches between code and document patches incurs a cog-

nitive load [42]. Within our study, this cost increased as participants attempted to

answer task questions that were increasingly complex. First, when foraging for rel-

evant patches by navigating through the file hierarchy, participants had to manage

the context switches between examining a potentially relevant file and searching for

34

new potentially relevant files. Second, when attempting to correlate the information

found in particular files, participants had to switch between interfaces and informa-

tion formats (reading source code and reading text documentation have both similar

and different constraints for human comprehension and learning [35]). And finally,

when a sufficient number of relevant patches have been located, participants had to

switch between the files in the process of building understanding and developing a

mental model of the code.

The costs of these context switches impede comprehension and put a high cog-

nitive load on participants who may become disappointed and discourage if the cost

of extracting or locating information is higher than the expected costs[30]. Several

participants in our study reported becoming disappointed (and even abandoning par-

ticular tasks) when the high cost of locating prey across boundaries in user interfaces

and information formats exceeded their expectations.

In Synectic, however, the documentation patches were placed adjacent to the

relevant code patches. And visually joined through the use of annotations and links.

This combined interface creates a unitary source of information that requires less

attention splitting, and thus leads to substantially enhanced performance [42]. For

participants in our Synectic group, this reduced the cost of foraging across patches

and ultimately allowed for faster comprehension and reduced cognitive load.

6.2 Using Sillito’s four stages of questions to understand code com-

prehension behavior

To understand why Synectic participants outperformed Eclipse participants in code

comprehension tasks, we use the four categories of code comprehension questions

35

described by Sillito et al. [37] to evaluate affordances that effect developer compre-

hension. We find that annotations in Synectic provide additional affordances that

developers can use to more quickly answer code comprehension questions in each

category.

According to Sillito et al. [37], developers ask comprehension questions in four

categories during code change tasks: (1) questions about finding points in the code

that were relevant to the task, (2) questions that explore relationships of an entity

believed to be related to the task, (3) questions that build an understanding of

concepts that involve multiple relationships and entities, and (4) questions that build

an understanding over groups of related entities (contextual questions).

Exemplifying the full spectrum of comprehension questions, we examine partici-

pant S5 during Task-4 through each of the four categories. Task-4 required partic-

ipants to develop an understanding of the search functionality implemented in the

target Java project (see Table 4.2); understanding the code enough to make changes

to the search functionality so that search can use the product name and product

price fields in addition to the previous implemented search fields.

6.2.1 Finding an initial focus point

. Developers start their task by finding points/entities that are relevant to the

task [37]. In Synectic, starting from the main canvas, annotations can help developers

narrow down the search and direct them to the group(of cards) related to the task,

and from there to the related cards inside the group.

For example, S5 started from the main canvas (Figur 6.1 and looked at the

annotations to see which one was related to the task i.e. ‘product-related search’:

36

F
ig

u
re

6.
1:

S
y
n

ec
ti

c
ID

E
,

p
ro

je
ct

ca
n
va

s

A
sn

ap
sh

o
t

of
th

e
th

e
m

ai
n

ca
n
va

s
o
p

en
ed

in
th

e
S

y
n

ec
ti

c
ID

E
d

u
ri

n
g

th
e

u
se

r
st

u
d

y.
S

ee
se

ct
io

n
6.

2.

37

F
ig

u
re

6.
2:

S
y
n

ec
ti

c
ID

E
,

P
ro

d
u

ct
gr

ou
p

A
sn

ap
sh

o
t

of
th

e
th

e
P

ro
d

u
ct

gr
ou

p
d

u
ri

n
g

th
e

u
se

r
st

u
d

y.
S

ee
se

ct
io

n
6.

2.

38

F
ig

u
re

6.
3:

S
y
n

ec
ti

c
ID

E
,

P
ro

d
u

ct
gr

ou
p

w
it

h
an

op
en

ed
w

eb
-b

ro
w

se
r

ca
rd

.

A
sn

ap
sh

o
t

of
P

ro
d

u
ct

g
ro

u
p

w
it

h
an

op
en

ed
w

eb
-b

ro
w

se
r

ca
rd

d
u

ri
n

g
th

e
u

se
r

st
u

d
y.

S
ee

se
ct

io
n

6.
2.

39

“I’m in the main canvas and search for product-related search. I’m reading the notes”.

He found an annotation (Figur 6.1 A) connected to the group of cards titled product

(Figur 6.1 B). The annotation explained ‘how to add a CRUD page using product

page as an example’. He decided to expand this group; “I think I should go to this

group”. S5 found that the product group contained several cards and annotations

(Figur 6.2). He was hunting for the annotation which “gave [him] a clue to product

search”. After skimming through the annotations for two minutes, he decided to

open the code card ProductRepository.java (Figur 6.2 C) and read the methods

within this class.

6.2.2 Building on those points

. From the initial focus point, developers begin asking questions that explore rela-

tionships to expand entities believed to be related to the task [37]. Synectic provided

a set of connections between relevant cards (or annotations), which allowed partici-

pants to explore beyond their initial focus point (i.e. their initial card).

Once S5 had located ProductRepository.java as his initial focus point, he said,

“It contains a find method which seems to be interesting”. He minimized the card

and began to search for the location in which this ‘find’ class/method is called “there

should be some implementation related to the ProductRepository.java”. Using the

annotation link between the ProductRepository card and the ProductService.java

(Figure 6.2 D) card, he decided to open the ProductService.java card.

40

6.2.3 Understanding concepts between related entities

. Using the relevant entities, developers ask questions to build an understanding of

concepts in the code that involve multiple relationships and entities [37]. In Synectic,

annotations linked to the entities (i.e cards/groups) provide expert description of

the concept and relationships between them. This documentation helps to build an

understanding of the concepts spanning related cards and groups.

To understand how the two classes ProductService.java and ProductRepository.java

interact with each other to implement a search, S5 read the annotation connecting

these two classes (Figure 6.2 E). He then opened the two cards side-by-side to exam-

ine them simultaneously, and noticed that the find method in ProductRepository

was being called in ProductService. This helped him understand the relationship

between these two classes.

6.2.4 Questions over groups of related entities

. Finally, developers ask questions regarding related groups of entities, and the

relationships between those groups. The information within Synectic’s annotations,

and the links between cards, help to relate different concepts across the system to

build an overall understanding of the larger context.

Within our study, we asked participants to develop an understand of the overall

software in order to add additional functionality to the search feature. In order to

accomplish this task, participants need to know how search has been implemented,

and combine this understanding with how to make custom queries by method name

(using the Springs’ JPARepository API).

41

For S5, he checked the annotations to figure out how to adjust the implementation

to support search by both the name and price of the product. The annotation

connecting the ProductRepository card to a web-browser card explained how to

make custom query by method name (using Springs’ JPARepository)(Figur 6.2

F). He read the annotation and opened the web-browser card (Figur 6.2 G) which

lead to the API documentation related to custom queries (Figur 6.3) “I found the

documention for it”. The documentation explained how to create a custom query by

defining a method name. S5 was able to accomplish the task, even though he was

unfamiliar with the technology “Oh! I just should define a query method. I haven’t

used this before, but I think this example here shows how to do it.”. He combined the

the knowledge of creating custom queries with his previous knowledge of how and

where the search method works (ProductRepository and ProductService classes).

In summary, developers must gather relevant information at multiple levels in or-

der to constructively work with large codebases. Typical IDEs (e.g. Eclipse) provide

limited capabilities for expressing relationships at the conceptual levels (phases 3 and

4 from Sillito et al. [37]), when context becomes important. Synectic provides an-

notations and groupings that point toward good initial focus points, groupings that

highlight important related entities, and annotated links that explain the relation-

ships between these entities and even the larger context within a software project.

With these features, Synectic facilitates all four phases of code comprehension ques-

tions described in Sillito et al. [37].

42

6.3 Threats to Validity

Our user study has several limitations inherent to laboratory studies of program-

mers. Our participants were graduate students and may not be representative of

professional developers. However, all participants had at least two years of software

development experience, and would likely be considered newcomers to any software

projects they contribute to now or in the near future. The task and code bases were

related to a single Java-based framework project, which may not be representative

of large software projects. However, our participants’ tasks were examined by a se-

nior developer on the project to verify that they represent onboarding tasks that do

occur in real-world development scenarios. Additionally, we did not ask participants

to implement new features or change the code directly, which is actually a common

practice for newcomers that are just beginning to learn about a project [38].

As with any empirical research involving participant observation, responses could

have been affected by the Hawthorne effect [23]. To mitigate biases in participant

responses, we were careful not to disclose the comparisons we were making during

the study. Additionally, participants might have previous experience using Eclipse,

but none had previously used Synectic. Participants could have been aware of ad-

vanced features in Eclipse that are not present in Synectic, which would reduce some

of the navigational costs. However, even with this potential disadvantage, we ob-

served participants using Synectic generally performed better than participants using

Eclipse.

43

Chapter 7: Conclusion

In this Thesis, we have presented annotations in Synectic, a canvas-based IDE with

spatially-oriented interface which allows relevant information to be arranged and

group according to the user needs, as well as externalizes relationships through an-

notations and links. Our aim was to provide developers with support for foraging

information, code comprehension, and code maintenance. To validate annotations in

Synectic, we conducted a user study comparing newcomer task support for foraging

and comprehension with a traditional IDE (Eclipse) and our canvas-based IDE. The

results of our user study show promising evidence that Synectic fulfills these goals:

We observed participants using annotations in Synectic were able to answer navi-

gation and comprehension questions with significantly higher accuracy (RQ1) and

efficiency (RQ2) than those using Eclipse. Also, participants using Synectic reported

less cognitive load (RQ3) and rated Synectic as more usable (RQ4) than Eclipse on

average. However, we was not able to find a statistically significant differences in the

time (RQ2).

These findings also suggest promising directions for future research. One open

question is how developers might use annotations in Synectic to externalize their

own mental model, and how revisiting their own annotations might impact future

performance during software development tasks.

44

Bibliography

[1] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and
Marco Aurelio Gerosa. Newcomers’ barriers... is that all? an analysis of men-
tors’ and newcomers’ barriers in oss projects. Computer Supported Cooperative
Work (CSCW), 27(3-6):679–714, 2018.

[2] Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J
LaViola Jr. Code bubbles: a working set-based interface for code understanding
and maintenance. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2503–2512, 2010.

[3] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Fre-
quently asked questions in bug reports. Technical report, University of Calgary,
2009.

[4] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[5] Andrei Chiş, Marcus Denker, Tudor Gı̂rba, and Oscar Nierstrasz. Practical
domain-specific debuggers using the moldable debugger framework. Computer
Languages, Systems & Structures, 44:89–113, 2015.

[6] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P
Reiss. Debugger canvas: industrial experience with the code bubbles paradigm.
In 2012 34th International Conference on Software Engineering (ICSE), pages
1064–1073. IEEE, 2012.

[7] Robert DeLine and Kael Rowan. Code canvas: zooming towards better de-
velopment environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 2, pages 207–210, 2010.

[8] Scott D Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 22(2):14, 2013.

[9] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Du-
mais. The vocabulary problem in human-system communication. Communica-
tions of the ACM, 30(11):964–971, 1987.

45

[10] Leo A Goodman. Snowball sampling. The Annals of Mathematical Statistics,
pages 148–170, 1961.

[11] Nathan Hawes, Stuart Marshall, and Craig Anslow. Codesurveyor: Mapping
large-scale software to aid in code comprehension. In 2015 IEEE 3rd Working
Conference on Software Visualization (VISSOFT), pages 96–105. IEEE, 2015.

[12] Austin Z Henley and Scott D Fleming. The patchworks code editor: toward
faster navigation with less code arranging and fewer navigation mistakes. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 2511–2520, 2014.

[13] Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of
language, inference, and consciousness. Number 6. Harvard University Press,
1983.

[14] Mik Kersten and Gail C Murphy. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, pages 1–11, 2006.

[15] Andrew J Ko, Htet Aung, and Brad A Myers. Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective main-
tenance tasks. In Proceedings of the 27th international conference on Software
engineering, pages 126–135, 2005.

[16] Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering,
(12):971–987, 2006.

[17] Barbara Landau and Ray Jackendoff. “what” and “where” in spatial language
and spatial cognition. Behavioral and brain sciences, 16(2):217–238, 1993.

[18] Thomas D LaToza and Brad A Myers. Developers ask reachability questions.
In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 185–194, 2010.

[19] Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental mod-
els: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering, pages 492–501. ACM, 2006.

[20] Joseph Lawrance, Rachel Bellamy, Margaret Burnett, and Kyle Rector. Using
information scent to model the dynamic foraging behavior of programmers in
maintenance tasks. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1323–1332, 2008.

46

[21] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle
Rector, and Scott D Fleming. How programmers debug, revisited: An informa-
tion foraging theory perspective. IEEE Transactions on Software Engineering,
39(2):197–215, 2010.

[22] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the
comprehension of program comprehension. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 23(4):31, 2014.

[23] Rob McCarney, James Warner, Steve Iliffe, Robbert Van Haselen, Mark Griffin,
and Peter Fisher. The hawthorne effect: a randomised, controlled trial. BMC
medical research methodology, 7(1):30, 2007.

[24] Nicholas Nelson, Anita Sarma, and André van der Hoek. Towards an ide to
support programming as problem-solving. In PPIG, page 15, 2017.

[25] Fred Paas, Juhani E Tuovinen, Huib Tabbers, and Pascal WM Van Gerven.
Cognitive load measurement as a means to advance cognitive load theory. Ed-
ucational psychologist, 38(1):63–71, 2003.

[26] Nick R Parsons, M Dawn Teare, and Alice J Sitch. Science forum: Unit of
analysis issues in laboratory-based research. Elife, 7:e32486, 2018.

[27] D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan, A. Z. Henley,
J. Macbeth, C. Hill, and A. Horvath. To fix or to learn? how production bias
affects developers’ information foraging during debugging. In 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pages
11–20, Sep. 2015.

[28] D. Piorkowski, S. Penney, A. Z. Henley, M. Pistoia, M. Burnett, O. Tripp, and
P. Ferrara. Foraging goes mobile: Foraging while debugging on mobile devices.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 9–17, Oct 2017.

[29] David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher Bogart,
Margaret Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. Reactive
information foraging: An empirical investigation of theory-based recommender
systems for programmers. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1471–1480, 2012.

[30] David Piorkowski, Austin Z Henley, Tahmid Nabi, Scott D Fleming, Christo-
pher Scaffidi, and Margaret Burnett. Foraging and navigations, fundamentally:
developers’ predictions of value and cost. In Proceedings of the 2016 24th ACM

47

SIGSOFT International Symposium on Foundations of Software Engineering,
pages 97–108. ACM, 2016.

[31] David J Piorkowski, Scott D Fleming, Irwin Kwan, Margaret M Burnett,
Christopher Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. The whats and
hows of programmers’ foraging diets. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 3063–3072, 2013.

[32] Peter Pirolli and Stuart Card. Information foraging. Psychological review,
106(4):643, 1999.

[33] Peter L. T. Pirolli. Information Foraging Theory: Adaptive Interaction with
Information. Oxford University Press, Inc., New York, NY, USA, 1 edition,
2007.

[34] Philip T Quinlan and Richard N Wilton. Grouping by proximity or similarity?
competition between the gestalt principles in vision. Perception, 27(4):417–430,
1998.

[35] Darrell R Raymond. Reading source code. In CASCON, volume 91, pages 3–16,
1991.

[36] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How do
professional developers comprehend software? In 2012 34th International Con-
ference on Software Engineering (ICSE), pages 255–265. IEEE, 2012.

[37] Jonathan Sillito, Gail C Murphy, and Kris De Volder. Asking and answering
questions during a programming change task. IEEE Transactions on Software
Engineering, 34(4):434–451, 2008.

[38] Susan Elliott Sim and Richard C Holt. The ramp-up problem in software
projects: A case study of how software immigrants naturalize. In Proceedings
of the 20th international conference on Software engineering, pages 361–370.
IEEE, 1998.

[39] Thorvald Sørensen. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to analyses of
the vegetation on danish commons. Kongelige Danske Videnskabernes Selskab,
5(4):1–34, 1948.

[40] Jamie Starke, Chris Luce, and Jonathan Sillito. Searching and skimming: An
exploratory study. In 2009 IEEE International Conference on Software Main-
tenance, pages 157–166. IEEE, 2009.

48

[41] M-AD Storey, F David Fracchia, and Hausi A Müller. Cognitive design elements
to support the construction of a mental model during software exploration.
Journal of Systems and Software, 44(3):171–185, 1999.

[42] John Sweller, Paul Chandler, Paul Tierney, and Martin Cooper. Cognitive load
as a factor in the structuring of technical material. Journal of experimental
psychology: general, 119(2):176, 1990.

[43] Max Wertheimer. Laws of organization in perceptual forms. 1938.

[44] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. Measuring program comprehension: A large-scale field study with pro-
fessionals. IEEE Transactions on Software Engineering, 44(10):951–976, 2017.

	Introduction
	Background
	Information Foraging Theory
	Code Comprehension Questions
	Alternative user interfaces in IDEs

	Annotations in Synectic
	Support for Foraging
	Support for Understanding
	Support for Maintaining

	Study Design
	Participants and Treatments:
	Project and Tasks:
	Measurements and Constructs:

	Results
	RQ1: Accuracy
	RQ2: Time
	RQ3: Cognitive Load
	RQ4: Usability

	Discussion
	Using IFT to understand navigation and foraging behavior
	Foraging in the document
	Foraging across code and document

	Using Sillito's four stages of questions to understand code comprehension behavior
	Finding an initial focus point
	Building on those points
	Understanding concepts between related entities
	Questions over groups of related entities

	Threats to Validity

	Conclusion
	Bibliography

