Stand Volume and Growth: Getting the Numbers

S. Bowers, N. Coleman, R.A. Fletcher

Contents

Key numbers that you'll generate ... 2 Measuring stand volume and growth \qquad 3

Calculating stand volume and growth \qquad8
Using the numbers 10
Where to go from here 13
For further reading 14
Appendices Al-A6
(Tarif access tables) 15-20
Appendices B1-B3(Tree volume tables)
\qquad21-23
Appendix C
(Tree Tally Card)

\qquadAppendix D(Volume Computation Form) 25

[^0]The procedures outlined in this publication show you how to estimate standing volume and annual growth of timber stands-areas that are uniform in age, stand characteristics, and species. Estimates of volume and growth are helpful in planning when to harvest or how much to remove in a thinning operation. These estimates also can assist you with financial analysis and the tax implications of a timber harvest.

Don't confuse the simplified procedure that we describe for collecting and analyzing tree volumes with the more complex and precise techniques that professional foresters use to estimate timber values for sales, land appraisals, or legal purposes. Our system allows you to get reasonably accurate gross volumes of timber but does not address net volumes, log grades, or monetary values.

Volume and growth numbers generated by any tree measuring system are estimates. You usually can't afford the time and money to measure all your trees, so you'll measure a few sample trees. You'll use the sample to obtain an index called a tarif number, which will be used to compute individual tree and stand volumes.

Of European origin, the tarif system was adapted for Pacific Northwest use by the State of Washington. The tarif system shows the gross volume of trees based on species, tree diameter, and total height. It's one of several types of tree-volume tables. The tree-volume tables supported by this publication are for Douglas-fir, grand fir, western hemlock, ponderosa pine, western redcedar, and red alder.

If you have a question about the appropriateness of the tarif system for management decisions regarding your timber stand-or if you need help with a complex situation - contact the Extension forestry agent who serves your county, or your state service forester from the Oregon Department of Forestry, or a consulting forester.

Key numbers that you'll generate

By following the procedures we outline, you'll be able to generate the following kinds of numbers that describe your stand and help you evaluate its performance.

Number of trees per acre

This is a good start, but other numbers generated through the use of this publication are more valuable in making management decisions.

Number of trees per acre by diameter class

Also called a stand table, these numbers can be used to plan logging jobs and to evaluate the tree size that's available to merchandise. We'll also use these numbers as the starting point for projecting future stand growth.

Average stand diameter

This is valuable when making decisions on merchantability, in selecting appropriate logging equipment, and for projecting stand growth. Average stand diameter, along with
number of trees per acre, can be useful in making thinning decisions.

Basal area

This is the area of a cross-section of the tree at a point 4.5 feet above the ground on the uphill side of the tree, a point commonly called breast height. The sum of the basal area for all trees in the stand is the total stand basal area, a common measure of stand density.

Tarif number

A tarif number identifies the taper or shape of your trees and is the key to determining volumes. A tarif number is the cubic foot volume of a tree with a basal area of 1 square foot and a given height. For example, a tree that's 13.56 inches in diameter has a basal area of 1 square foot. If this tree had a volume of 35 cubic feet, its tarif number would be 35 . Trees with lots of taper have low tarif numbers; trees with high tarif numbers have a minimum of taper.

Stand volumes

Using the tarif numbers of your sample trees, you can look up volumes of trees of various diameters in board-foot or cubicfoot volume tables. To convert these into per-acre volumes by diameter class, multiply the individual tree volumes by the number of trees per acre. Tree volumes are probably the most useful numbers you'll generate. It's important to remember, however, that they are gross volumes - they don't consider losses for defects and breakage.

Board-foot volume often is of greatest interest, since most timber in the Pacific Northwest is sold at a price per 1,000 board feet (MBF). There are several methods of scaling or measuring board feet; we've used the most common for the Pacific Northwest, the Scribner Volume Table.

Table 1.-Steps to measuring a stand's volume and growth.

Procedure	How	Tools needed
1. Identify distinct stands.	Mark on map or photo, using field data.	Aerial photo, map, EC 1133
2. Choose a sampling plan. Follow procedures in EC 1133. 3. Estimate the plot size you'll need. Begin with a plot of $1 / 20(0.05)$ acre; adjust if needed after 3 or 4 plots.	EC 1133, aerial photo, map Compass, tape	
4. Collect plot information.	Establish a plot.	Tape, compass, Tree Tally Card (Appendix C)
	Measure tree diameters.	Diameter tape
	Measure tarif trees.	Tree Tally Card (Appendix C), clinometer
	Take increment cores.	Increment borer

Cubic-foot volume of the tree stem is a basic measure of wood volume that's independent of how the tree is cut into logs. It's also useful in determining some basic growth relationships for the stand and for comparison with other stands or species.

Using the numbers described above, along with measuring the tree ring widths from increment cores, you'll be able to measure past growth and estimate future growth. This will allow you to determine:

Growth projection factor (GPF) This can be used in conjunction with board-foot or cubic-foot volumes to determine future stand volumes given current growth rates.

Mean annual increment (MAI) This is the average volume growth per year over the life of the stand.

Periodic annual increment (PAI) This is the annual volume growth measured over a specified period, usually 5 or 10 years. We recommend you use the growth over the past 5 years to calculate PAI.

Our example:
 "Coleman's Conifers"

Beginning on page 5, you'll find boxes like this, on a shaded background. Text in the boxes describes our example to help you work through the procedures. Each time you see one of these boxes, we're applying the steps explained in nearby text and are moving our calculations one step farther.

Measuring stand volume and growth

Table 1 summarizes the necessary steps for measuring your stand*, how to accomplish those steps, and the tools you'll need to perform the task. Steps 1 through 4 explain the information in Table 1.

Step 1. Identify distinct stands

Carefully select the area or stand you wish to sample. It should be relatively uniform in stocking (trees per acre or space between trees) and in size of trees. Publication EC 1133 explains how to divide your land into logical stand types. You can do this on an aerial photo, but you must verify your decisions on the ground by walking through the stand.

Here are some ways to deal with different stand characteristics.

- If one area of your stand contains trees consistently and substantially smaller (by 6 inches or more) in diameter at breast height (DBH) than trees in the rest of the stand, treat the two areas as separate stands.

[^1]

Figure 1.-Establishing plot 1 for Coleman's Conifers (consisting of nine "in" trees).

- If you have a few trees of larger diameter mixed uniformly into a younger stand, sample it as one stand, but estimate the volumes separately based on different tarif numbers measured from the large and small trees. Combine the results to obtain total stand growth and yield.
- If you have a distinct smaller area (1 to 3 acres) with poor stocking in a larger well-stocked area, exclude the smaller area from your sample and volume estimate; measure it separately.
- If you have several openings of 0.25 to 0.5 acre scattered through a larger stand that is otherwise uniform, sample the entire area. The confidence you place in your estimate may be lower, but the numbers you generate will be more accurate than if you had ignored the openings.
- If you have a mixed-species stand of conifers and hardwoods, sample each species separately and combine the volumes for total stand growth and yield.

Step 2. Choose a sampling plan

Once you determine which areas are similar enough to be sampled together as stands, it's time to make your sampling plan. To avoid any bias, you must locate samples using systematic measurements. If you wander through your stand and pick likely looking spots, your estimates will be inaccurate. As publication EC 1133 shows you, mark intended plot locations on your photo or map. One plot per 1 to 2 acres
generally will give you a good estimate for uniform stands, but more diverse stands require at least one plot per acre.

Step 3. Estimate the plot size you'll need

Your objective is to select a plot size that will give you five to eight sample trees per plot. The proper plot size to use for sampling depends on the number of trees per acre, which is directly related to distance between trees.

Before you leave for the field, use Table 2 as a checklist to ensure that you have the proper equipment.

To begin, refer to the sampling plan you determined for the stand under step 2. Locate on the ground the point where you'll start the sample.

Measure a straight line, in your planned compass direction, to the first plot center. The dots in Figure 1 represent trees in a hypothetical stand. An asterisk (*) marks the center point for your plot. Note that the plot center does not need to be a tree. It is simply the center point according to your measurements.

From your plot center, proceed to measure all trees within a radius of 26 feet and 4 inches. This plot size-which is onetwentieth of an acre (0.05 acre) -often gives you a sufficient number of trees per plot. If you don't achieve the desired five to eight trees after recording plot 1 , don't change your plot size yet.

Proceeding along your planned compass direction, in plot 2 measure the number of trees within the plot radius of 26 feet and 4 inches. If you continue to have too many or too few sample trees after measuring three or four plots, then return to plot 1 and adjust plot size accordingly.

Remember, it is much better to have a few more trees than you'd planned than to not have enough, so be sure you have an adequate plot size. Eight to ten trees per plot may seem a lot of trees to measure and record, but it is much better than getting only two to four trees per plot and risking an inaccurate volume estimate.

Once you have obtained the proper plot size, continue with your sampling plan for the entire stand.

Needs A. To obtain volume information: 1. Logger's or similar tape	Purposes
2. Diameter tape or Woodland Stick	Measure distance to plot boundaries and tarif trees.
3. Clinometer or Woodland Stick	Measure tree diameters. Measure tree heights.
4. Tarif access tables and tarif volume tables in the appendices.	Provide information needed to transform measurements to volumes.
5. A second person (optional but recommended)	Hold one end of the tape when measuring boundaries; tally information while you take measurements; hold one end of the tape when measuring distance from tarif trees; shake tarif trees so you can see the tops when measuring heights.
B. To obtain growth information:	Extract a core sample from tarif trees. (Also an option for
1. Increment borer	determining tree age.)
2. Small ruler	Take the core sample home for measurement.
3. A carrier for core samples	
(optional but recommended)	

*See publication EC 1129 for details about selecting measurement tools.

Step 4. Collect plot information

Establish a plot

Using point * as your plot center (see Figure 1) and the plot radius you determined in step 3 , identify the trees within your plot. It's not necessary to mark the entire outer limits of the plot or to measure the distance to trees that are clearly "in" the plot. From the plot center, measure the distance only to trees near the perimeter.

As you traverse your compass line and reach the location for your next plot, immediately locate the plot center. Do not deviate from your compass line! Moving the plot center one way or the other to get more trees in the plot may overstate actual stand volume. A temporary marker (a flag or stick) at the plot center is fine for most purposes. Establish a more permanent plot center if you have a long-range plan to sample the same stand repeatedly.

Measure free diameters

Recording plot trees Moving clockwise from your compass line, begin recording the trees in the plot. Remember the first tree
you measured so you don't accidentally count it a second time. A tree is "in" the plot if its center falls inside the plot boundary. Measure DBH and record these numbers on the Plot Trees section of the Tree Tally Card. Figure 3 (page 7) is a sample completed Tree Tally Card for Coleman's Conifers. A blank card is available in Appendix C.

Be sure to read the key that explains the Tree Tally Card's dot-tally system. Record diameters to the nearest full inch. If a tree measures exactly at the 0.5 -inch mark, round the diameter down to the nearest full

Estimating plot size

To estimate plot size and location, first find the center of plot 1 by pacing off from the stand boundary. You can measure virtually any timber stand with a plot of one-fiftieth (0.02), one-twentieth (0.05), or one-tenth (0.1) acre. A 0.05 -acre plot is the default. After measuring three or four plots, you may find there are too few or too many trees per plot. If so, return to plot 1 and adjust plot size accordingly. Discuss stands that fall outside this suggested plot range with a professional forester before proceeding with sampling.

Figure 2.-Increment core sampling to determine radial growth.
inch. Make a mental note of this decision; when you encounter the next tree measuring at the 0.5 -inch mark, round the diameter $u p$ to the nearest full inch. Repeat this process as necessary.

Recording tarif trees To find your tarif tree in the plot, look in a clockwise direction from your compass line; ordinarily, your tarif tree will be the first tree you

Taking plot data

You're ready to record plot information (refer to Figures 1 and 3). You identify nine "in" trees on plot 1 (see Figure 1). The first tree measures 12.2 inches DBH, so tally a dot under Plot Trees on plot 1 next to 12 inches DBH. The second tree is 13.3 inches; tally a 13. Continue to measure and record DBH for the remaining seven trees in the plot.

Now you need the tarif tree for plot 1. Remember, the first "in" tree on the plot is your tarif tree. The first tree measures 12.2 inches DBH, so you record 12 in the DBH column under Tarif Trees. You measure its height as 94 feet and record 95 in the Height column. This tree had nonuniform growth over the past 10 years, so you measure the distance from the outermost five rings and find 0.6 inch radial growth, which you record in the radial growth column of the Tarif Trees section.

Figure 3 shows a completed sample of 10 plots for our stand. The next step is to find a comfortable place to calculate the Tree Tally Card data and turn it into some valuable stand volume and growth information.
the Tarif Trees section of the Tree Tally Card.

Pick a vantage point from which you can see the top of the tarif tree. Your estimates will be more accurate if you take your observations from about the same level as the base of the tree. Record its height, to the nearest 5 feet, on the Tarif Tree section of the Tree Tally Card. See publication EC 1129 for more information on measuring the heights of your trees.

Taking increment cores for stand age and growth rates If you have not determined the age of your stand from old records or by counting growth rings on stumps, now is the time. If counting rings on a stump, remember to add the number of years since the tree was cut.

To determine stand age using an increment borer, bore on an exactly horizontal line into the center of the tree at breast height. Bore slightly farther than the tree's radius (for example, bore 8 inches if tree radius is 7 inches). You can recognize the center of the tree by viewing the direction of the slight arc in the growth rings from the extracted core (Figure 2). To properly determine stand age, you will have to add 6 to 10 years to the number you obtained from your increment core. Add 6 years for a high-growth-rate site, 10 years for a lowrate site, to account for the years it took the tree to grow to breast height.

Next, use your increment borer to take a growth rate measurement from your tarif

Figure 3.- Sample Tree Tally Card, completed.

User name	Plot size1/20 Stand name Coleman's Conifers
SpeciesDoug-fir DateStand age $\quad 50$	

Multiplication factor* 2
Average tarif number 39

Plot Trees

	Plot number										Total trees	Total trees per acre
(in.)	1	2	3	4	5	6	7	8	9	10		
7												
8			-							-	2	4
9									-		1	2
10	-		-	-	-					-	5	10
11		-	- •	-	-	-		-	-	- -	10	20
12	-	-	-	- .	- -		- •	- •		-	14	28
13	- -	- -	-	-	-	- .	$\bullet \bullet$	\bullet	-	- -	19	38
14	- .	- -			- -		- •	$\stackrel{-}{\bullet}$	- -	-	15	30
15	- •			-		-	-	-	-		7	14
16		-	-		-	-				-	5	10
17					-				-		2	4
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												
36												
										Total	80	160

Recommended plot sizes	Distance between trees				
less than 8 ft.	$8-16 \mathrm{ft}$.	$16-24 \mathrm{ft}$.	more than 24 ft.		
Plot size (acres)	$1 / 100 \mathrm{th}$	$1 / 50 \mathrm{th}$	$1 / 20 \mathrm{th}$	$1 / 10 \mathrm{th}$	
Plot radius (ft \& in.)	$11^{\prime} 10^{\prime \prime}$	$16^{\prime} 8^{\prime \prime}$	$26^{\prime \prime} 4^{\prime \prime}$	$37^{\prime \prime} 2^{\prime \prime}$	
Plot radius (ft.)	11.8	16.7	26.3	37.2	
Plot size correction factor	100	50	20	10	

Remember
The first tree
from each plot
is recorded as a Plot Tree and as a Tarif Tree.
tree. You can use the same core sample used to determine stand age. If you didn't use a core for the stand age, you need to bore only far enough (2 to 4 inches) to see growth for the most recent 5 to 10 years.

Count five growth rings from the outermost ring, and measure the distance in tenths of an inch (Figure 2). Record this measurement in the fourth column of the Tarif Trees section of the Tree Tally Card.

You can store cores in a plastic straw and examine them later, but it's important to label them properly and to examine them before they dry out and shrink.

Use your compass and proceed to the second plot. Repeat all the steps used to measure your Plot Trees and Tarif Trees on each of the other plots and record the information on your Tree Tally Card.

Calculating stand volume and growth

Now that you've collected the plot information, you can take it home and

Calculating trees per acre

Looking at Figure 3, Coleman's Conifers has a total of 80 trees on 10 plots. The multiplication factor is 2 (a plot size correction factor of 20 divided by the number of plots, which is 10). For example, we have 14 trees with a 12 -inch diameter, thus we have 28 (14 plot trees times the multiplication factor of 2) 12 -inch trees per acre in the stand.

Getting the tarif numbers

In our example, we measured 10 tarif trees in the Douglas-fir stand. Adding the tarif numbers for all sample trees (see Appendix A1) and dividing by 10, we find an average of 39.1. Rounding to the nearest whole number, 39 is the tarif number for the stand.

Computing average radial growth (ARG)

In the Tarif Trees section of the Tree Tally Card, the total of column 4 is 6.0. This means the average tree had 0.6 inch in radial growth ($6.0 \div 10$ trees measured) in the 5 -year period. Diameter growth was 1.2 inches (0.6 radial growth times 2).
translate it into numbers that will more accurately describe your stand. The numbers to generate include:

- Trees per acre
- Tarif number for the stand
- Average radial growth
- Stand volume
- Basal area and average stand diameter
- Volume projections

Trees per acre

We will use the completed Tree Tally Card for Coleman's Conifers (Figure 3) for the data in our computations, and we'll consult the completed Volume Computation Form (Figure 4, page 11) for our completed stand volume and growth calculations. A blank Tree Tally Card (Appendix C) and Volume Computation Form (Appendix D) have been provided for you to copy and use in your own timber stand calculations.

To determine the total trees per acre, refer to the Plot Trees section of your Tree Tally Card (Figure 3). Total the trees tallied for each diameter class and enter the number in the Total Trees column.

The next step is to calculate total trees per acre. First, find your plot size in the bottom table in the Tree Tally Card; the corresponding plot size correction factor is at the bottom of that column. Divide this factor by the number of plots in your sample to get the multiplication factor.

The multiplication factor expresses how many trees per acre are represented by each tree in a sample plot. To find how many trees per acre are in each diameter class, look at the Plot Trees section and multiply the value in the Total Trees column for each diameter class by the multiplication factor. Next, add the values in the Total Trees per Acre column to calculate total trees per acre. Transfer this information to column 1 of your Volume Computation Form (Figure 4, page 11).

Tarif number for the stand

The average tarif number for the stand is the average of the tarif numbers for all the tarif trees you sampled.

Determine the tarif number for each sample tree on the Tarif Trees section of your Tree Tally Card by looking up the value in the tarif access table for that tree species (Appendices A1 through A6). These tables list a tarif number based on tree species, DBH, and total tree height.

In our example, we record height to the nearest 5 feet and diameter to the nearest whole inch. We then look in the appropriate appendix and record the corresponding tarif number on the Tarif Trees section of the Tree Tally Card.

Next, we total these values and divide by the number of tarif trees to determine the average tarif number of the stand. Place this number at the top of your Volume Computation Form (Figure 4). Average tarif number identifies the taper of your trees, and it's the key to determining tree volumes.

Using VARPLOT: Stand Measurement Software, you can measure tarif trees to the nearest tenth of an inch in diameter and the nearest foot in height. In some-but not all-instances, these more accurate measurements will give slightly different figures than the rounded numbers used in our example.

Average radial growth (ARG)

Estimate radial growth for the stand by adding the core samples recorded in column 4 of the Tarif Trees section of the Tree Tally Card (Figure 3). Compute average radial growth by dividing the total of the column by the number of tarif trees measured. Remember, this is a radial-not a diameter-measurement. (Figure 2 illustrates radial growth.) Transfer this information to the average radial growth line in the upper right of your Volume Computation Form.

Estimating stand volume

The next step is to estimate stand volume from field measurements and the average tarif number.

In column 1 of the Volume Computation Form, write in the number of trees per acre by diameter class, drawing that information from the Total Trees per Acre column on the Tree Tally Card.

Next, record average radial growth and your average tarif number at the top of the Volume Computation Form. Don't worry about average basal area/tree or average stand diameter at this time; you'll fill in these lines during the next step.

Tree volume tables are in Appendices B1 through B3. The volumes you use are in the column under the appropriate tarif numbers. For our example, we determined 39 as our average tarif number for the stand.

To estimate board-foot volumes in 32 -foot logs, use Appendix B1. (Appendix B2 is for volumes in 16 -foot logs, and cubic-foot volumes are in Appendix B3.) Record board feet in column 2 and cubic feet in column 4 of the Volume Computation Form.

To get the total board-foot and cubic-foot volumes per acre for each diameter class, multiply trees per acre (column 1) by volume per tree (columns 2 and 4, respectively) on the Volume Computation Form. Enter total volumes per acre for each diameter class in columns 3 and 5. The sum of column 3 is your total board-foot volume per acre, and the sum of column 5 is your total cubic-foot volume per acre.

Estimating stand volume

Assume you want to estimate board-foot volumes in 32 -foot logs with 8 inches DBH. The Tree Tally Card shows four trees per acre with a DBH of 8 inches. Using Appendix B1, our average tarif number of 39 shows a volume of 40 board feet for each tree with an 8-inch DBH.

On the Volume Computation Form, multiply four trees (column 1) by 40 board feet (column 2) to get 160 board-foot volume per acre for trees in our 8-inch diameter class (column 3). Repeat this process for each diameter class. Adding the values in columns 1 and 3 shows a total of 160 trees per acre with a volume of 23,900 board feet per acre.

Basal area and average stand diameter

In column 6 of the Volume Computation Form, basal area per tree has been calculated for each diameter class on the form. To determine basal area per acre of trees by diameter class (column 7), multiply values in column 1 by those in column 6 . Add column 7 to get total basal area per acre and record at the bottom of the column.

To compute average basal area per tree, we need the total basal area per acre (column 7) and trees per acre (column 1). The formula is:

Average basal area/tree $=$ Total basal area/acre (i.e., Total of col. 7) \div Total trees/acre (i.e., Total of col. 1)

Average stand diameter is the diameter of a tree with average basal area. To find this diameter, convert from basal area (square feet) to diameter (inches):

Average stand diameter = square root
of (Average basal area/tree $\div 0.005454$)
Now, record average basal area/tree and average stand diameter on the appropriate lines at the top of the Volume Computation Form.

Calculating basal area

On the Volume Computation Form, still on the line for 8 -inch DBH, multiply 4 trees per acre (column 1) by 0.349 basal area per tree (column 6) to get a total basal area of 1.396 square feet. Repeat this process for all the diameter classes and add column 7 to get the total basal area per acre, 147.46 square feet.

Computing average basal area/tree

Per acre, total basal area is 147.46 square feet, and you have 160 total trees per acre. Therefore:
$\begin{gathered}\text { Avg. } \\ \text { basal area/tree }\end{gathered}=\frac{147.46 \mathrm{sq} . \mathrm{ft} .}{160}=0.922$ sq. ft.

Computing average stand diameter

Given an average basal area per tree of 0.922 square feet, average stand diameter is:
$\sqrt{\frac{0.922 \text { sq. } \mathrm{ft} .}{0.005454}}=13.00 \mathrm{in}$.

Using the numbers

Volume projections

Your completed Volume Computation Form (Figure 4) includes all the information you need to determine past and present stand volumes and the volume growth rate of your trees and to project future volumes. Upon completing the volume projections for your stand, you'll have information that is essential to making well-informed decisions about managing your woodland property. To project volumes, you need to perform some basic calculations and follow a few simple steps.

Step 1. Calculate beginning average stand diameter

We want to calculate average stand diameter at the beginning of the most recent 5 -year growth period. (We are using 5 years as our measurement period because, when we took our increment core, growth rings in the core were quite different for the most recent 5 years.) First, double the average radial growth figure recorded on your Volume Computation Form (remember, we need diameter growth, so we double the radial growth figure). Subtract diameter growth from your current average stand diameter to find the average diameter of your trees 5 years ago.

Beginning average stand diameter $=$ Current average stand diameter - (2 x
Average radial growth)

Step 2. Calculate beginning average basal area per tree

Now we'll determine the basal area per tree at the beginning of the 5-year growth period. Convert from diameter (in inches) to basal area (in square feet) with the formula:

Beginning average basal area/tree $=$ (Average diameter at beginning of growth period) ${ }^{2} \times 0.005454$

Figure 4.- Sample Volume Computation Form, completed.

Stand name Coleman's Conifers
Species Doug-fir
Stand age 50
Average tarif number 39
Multiplication factor_ 2

Date
Average radial growth 0.6
Average basal area/tree 0.922
Average stand diameter $\quad 13.002$
Board-foot volumes (16^{\prime} or 32^{\prime}) 32

	1	2	3	4	5	6	7
DBH	$\begin{gathered} \text { Trees/ } \\ \text { acre } \end{gathered}$	Board ft. vol./tree (from Tree Volume Tables)	Board ft. vol./acre (col. 1 x col. 2)	Cubic ft. vol./tree (from Tree Volume Tables)	Cubic ft. vol./acre (col. 1 x col. 4)	Basal area/tree	Basal area/acre by diameter class (col. 1 x col. 6)
7						0.267	
8	4	40	160	11	44	0.349	1.396
9	2	70	140	15	30	0.442	0.884
10	10	90	900	20	200	0.545	5.45
11	20	100	2000	24	480	0.66	13.2
12	28	120	3360	30	840	0.785	21.98
13	38	150	5700	36	1368	0.922	35.036
14	30	180	5400	42	1260	1.069	32.07
15	14	210	2940	49	686	1.227	17.178
16	10	230	2300	56	560	1.396	13.96
17	4	250	1000	64	256	1.576	6.304
18						1.767	
19						1.969	
20						2.182	
21						2.405	
22						2.64	
23						2.885	
24						3.142	
25						3.409	
26						3.687	
27						3.976	
28						4.276	
29						4.587	
30						4.909	
31						5.241	
32						5.585	
33						5.939	
34						6.305	
35						6.681	
36						7.068	
	160		23,900		5724		147.458
	Total trees/acre		Total board-foot volume/acre		Total cubic-foo volume/acre		$\begin{gathered} \text { Total } \\ \text { basal orea/acre } \end{gathered}$

Projecting volumes

Beginning average stand diameter

Average stand diameter 5 years ago (the beginning of the growth period) is:
13.002 (Current avg. stand diameter)
$-[2 \times 0.6$ (Avg. radial growth)]
$=11.8 \mathrm{in}$.

Beginning average basal area/tree

Given a beginning average stand diameter of 11.8 in., the average basal area per tree at the beginning of the growth period is:

$$
(11.8 \mathrm{in} .)^{2}
$$

$\times 0.005454$
$=0.759 \mathrm{sq} . \mathrm{ft}$.

Growth projection factor (GPF)

Inserting average basal area into the GPF formula gives the growth projection factor. Once you have determined this number, you can look to the future. GPF equals:
$\frac{0.922 \text { (Current avg. basal area/tree) }}{0.759 \text { (Beginning avg. basal area/tree) }}$
$=1.215$

Future volumes

Multiplying current stand volume by the GPF shows us the stand in 5 years should have a volume of approximately $29,039 \mathrm{bd}$. ft. $(23,900 \times 1.215)$ or $6,955 \mathrm{cu} . \mathrm{ft}$. (5,724 x 1.215).

Calculating mean annual increment

MAI is calculated for the life of the stand. Divide current total volume per acre by stand age:

```
    23,900
=478 bd. ft./acre per year
```


Periodic annual increment

To calculate PAI for the next 5 years, subtract the stand's current total volume per acre from its future volume and divide by the number of years in the growth period. (Remember, future volume was determined by using the growth projection factor.)

$$
\begin{aligned}
& \frac{29,039-23,900}{5} \\
= & 1,028 \text { bd. ft./acre per year for the next } 5 \text { years }
\end{aligned}
$$

In this case, PAI exceeds MAI, suggesting the stand is not biologically mature and should be allowed to continue growing, although it may need thinning.

Step 3. Calculate growth projection factor

To estimate how fast your stand is growing, calculate its growth projection factor (GPF). Find the current average basal area per tree on your Volume Computation Form. You calculated beginning average basal area per tree in step 2.

Growth projection factor $=$ Current average basal area/tree \div Beginning average basal area/tree

Step 4. Calculate future volume per acre

Now you can project the future volume per acre. Multiply current volume (from your Volume Computation Form) by the growth projection factor. This assumes that current stand volume growth will continue at the same rate as in the previous 5 -year period, so the projection's accuracy will depend on how consistently your stand is growing. For most young stands (less than 50 years old), this estimate may be on the conservative side - that is, it may be slightly less than actual growth. As the stand ages beyond 50 years, tree growth rate tends to slow (see Figure 5).

Future stand volume = Current volume x GPF

Step 5. Calculate mean annual increment (MAI)

Another useful stand number is the mean annual increment (MAI) of volume growth. This represents the average volume growth per acre per year over the life of the stand. You already have generated the numbers necessary to determine MAI. They are:

Mean annual increment $=$ Total current volume/acre \div Stand age (years)

You can calculate cubic-foot MAI for stands of any age, but you can't calculate board-foot MAI until trees in a stand reach a minimum merchantable size. Think of MAI as the long-term average or track record of the stand's growth.

Step 6. Calculate periodic annual increment (PAI)

The average annual volume growth of a timber stand measured over a specific period is its periodic annual increment (PAI). This figure is useful because volume growth per acre can vary substantially as the stand ages. The PAI of either board-foot or cubic-foot volumes can be calculated for any period, but 5 - or 10-year periods are most common. Calculate PAI:

Periodic annual increment $=($ Total volume/acre at end of period - Total volume/acre at beginning of period) \div Number of years in the period

PAI can measure previous growth or project future growth. Core samples enable you to take measurements back from the present, and your calculated growth projection factor enables you to estimate a future periodic annual increment. This enables you to determine how your stand is growing by taking a "snapshot" in time.

Hypothetical ideal harvest time

Foresters have a long tradition of analyzing timber stand growth. Figure 5 shows the growth pattern for Douglas-fir, but the pattern for even-age stands tends to be similar for all tree species.

From analyses and long experience, foresters have derived the general rule that when PAI falls below MAI, the timber stand is "mature"-that is, it has passed its peak of wood growth production in the biological sense. Thus, the stand might be harvested if growth rate is the overriding factor in the harvest decision.

The point where the PAI line crosses the MAI line also is the highest value for MAI. This point, therefore, is referred to as culmination of MAI. The stand will continue to add volume after this point but at a slower rate than before. Thus, by comparing estimates of PAI and MAI, we can test whether our stands are biologically mature. Thinning stands can boost the growth of residual trees and delay the culmination of MAI.

Often, factors such as cash flow or market cycles dictate a timber harvest before or after culmination of MAI. By

Figure 5.-Periodic and mean annual increments of board-foot volume for Douglas-fir, showing culmination of mean annual increment at about 80 years. Absolute age of culmination varies, but the pattern in this graph is similar for all species. Adapted from McArdle et al., The Yield of Douglas Fir in the Pacific Northwest, USDA Technical Bulletin 201, 1961.
combining this biological information with financial analysis, you can tailor your management decisions to your own situation and objectives.

Where to go from here

Good stand information is essential to making the decisions necessary for managing your woodland property. Stand measurements are critical to logging and marketing options. They are also important as indicators of a stand's health and vigor and its susceptibility to insect and disease problems. And, measurements might be important in deciding whether a harvest operation will generate the desired cash flow.

Measurements taken according to the procedures described here are suitable for understanding how a timber stand may develop over time; however, they're no substitute for professional timber appraisals or inventories done by foresters.

If you want to refine these techniques or to study timber growth further, contact your Extension forestry agent for possible opportunities.

For further reading

Mapping and Managing Poorly Stocked Douglas-fir Stands, EC 1133. 1997. Green, Daniel, Michael C. Bondi, and William H. Emmingham. \$1.50
Tools for Measuring Your Forest, EC 1129. 2004. Bowers, Steve. $\$ 2.00$

Measuring Timber Products Harvested from Your Woodland, EC 1127. 2003. Oester, Paul and Steve Bowers. \$3.00

To order copies of the above publications or additional copies of this one, send the complete title and publication number, along with your payment, to:

Publication Orders
Extension \& Station Communications
Oregon State University
422 Kerr Administration
Corvallis, OR 97331-2119
Tel. 541-737-2513
Fax 541-737-0817
e-mail: puborders@oregonstate.edu
Orders of 100 copies or more of any one title receive a 25% discount. Shipping and handling charges are per order, as follows:
$\$ 10.00$ or less $\quad \$ 3.00$
\$10.01-\$20.00 \$4.00
\$20.01-\$40.00 $\$ 5.00$
\$40.01-\$60.00 \$6.00
\$60.01-\$80.00 \$7.00
\$80.01-\$100.00 \$8.00
over $\$ 100.00 \quad 10 \%$ of total order
outside continental U.S., please request
price quote
Payment can be: by check or money order in U.S. funds, made payable to Oregon State University; by purchase order; or by Visa or MasterCard. For security reasons, please do not send credit card information via e-mail.

Many OSU Extension publications can be viewed on the Web at http://
eesc.oregonstate.edu/
Appendix A1.—Tarif access table for Douglas-fir. Condensed from VARPLOT Tree Volume Tarif Access Tables (2002).

Appendix A2.-Tarif access table for grand fir. Condensed from VARPLOT Tree Volume Tarif Access Tables (2002).

Appendix A3.-Tarif access table for ponderosa pine. Condensed from VARPLOT Tree Volume Tarif Access Tables (2002).

Appendix A4.—Tarif access table for red alder. Condensed from VARPLOT Tree Volume Tarif Access Tables (2002).

Appendix A5.-Tarif access table for western hemlock. Condensed from VARPLOT Tree Volume Tarif Access Tables (2002).

Appendix A6.—Tarif access table for western redcedar. Condensed from VARPLOT Tree Volume Tarif Access Tables (2002).

$\mathfrak{~}$

 Tarif numbers

 (รэ૫)!!) НяО

 $\infty=セ$ ニ~

Appendix C
User name
Stand name
Date \qquad
Plot Trees

	Plot number										$\begin{aligned} & \text { Total } \\ & \text { trees } \\ & \hline \end{aligned}$	Total trees per acre
(in.)	1	2	3	4	5	6	7	8	9	10		
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												
36												
										Total		

Recommended plot sizes	Distance between trees				
less than 8 ft.	$8-16 \mathrm{ft}$.	$16-24 \mathrm{ft}$.	more than 24 ft.		
Plot size (acres)	$1 / 100 \mathrm{th}$	$1 / 50 \mathrm{th}$	$1 / 20 \mathrm{th}$	$1 / 10 \mathrm{th}$	
Plot radius (ft \& in.)	$11^{\prime} 10^{\prime \prime}$	$16^{\prime \prime} 8^{\prime \prime}$	$26^{\prime} 4^{\prime \prime}$	$37^{\prime \prime} 2^{\prime \prime}$	
Plot radius (ft.)	11.8	16.7	26.3	37.2	
Plot size correction factor	100	50	20	10	

Iree Tally Card

Plot size \qquad Multiplication factor* \qquad
Species \qquad Average tarif number \qquad

Tariff Trees

1	2	3	4	5
Plot no.	Height to DBH (in.)	Radial nearest g ft.	Tarif no. for 5 yrs. (in.)	from access tables
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

* Multipliction factor $=\frac{\text { Plot size corection factor }}{\text { Number of plots }}$

$$
\begin{gathered}
\begin{array}{c}
\text { Dot count } \\
\text { key } \\
\bullet \\
=
\end{array} \\
\bullet \bullet= \\
\bullet .
\end{gathered}
$$

Remember
The first tree
from each plot is recorded as a Plot Tree and as a Tarif Tree.

Volume Computation Form

Stand name
Species \qquad
Stand age \qquad
Average tarif number \qquad
Multiplication factor
\qquad
\qquad

	1	2	3	4	5	6	7
DBH	$\begin{aligned} & \begin{array}{l} \text { Trees/ } \\ \text { acre } \end{array} \end{aligned}$	Board ft. vol./ftree (from Tree Volume Tables)	Board ft. vol./acre (col. 1 x col. 2)	Cubic ft. vol./tree (from Tree Volume Tables)	Cubic ft. vol./acre (col. 1 x col. 4)	$\begin{gathered} \text { Busal } \\ \text { crea/tree } \end{gathered}$	Basal area/acre by diameter class (col. 1 x col. 6)
7						0.267	
8						0.349	
9						0.442	
10						0.545	
11						0.66	
12						0.785	
13						0.922	
14						1.069	
15						1.227	
16						1.396	
17						1.576	
18						1.767	
19						1.969	
20						2.182	
21						2.405	
22						2.64	
23						2.885	
24						3.142	
25						3.409	
26						3.687	
27						3.976	
28						4.276	
29						4.587	
30						4.909	
31						5.241	
32						5.585	
33						5.939	
34						6.305	
35						6.681	
36						7.068	
	$\begin{gathered} \text { Total } \\ \text { trees/acre } \end{gathered}$		otal board-Foot volume/acre		Total cubic-foot volume/acre		$\begin{gathered} \text { Total } \\ \text { basal area/acre } \end{gathered}$

Trade-name products and services are mentioned as illustrations only. This does not mean that the Oregon State University Extension Service either endorses these products and services or intends to discriminate against products and services not mentioned.

The Woodland Workbook is a series of some 60 publications prepared by Oregon State University Extension foresters specifically for owners and managers of private, nonindustrial woodlands. Workbook publications contain information of long-range and day-to-day value for anyone interested in wise management, conservation, and use of woodland properties. Publications are available for purchase separately. For information about how to order, and for a current list of titles and prices, contact the OSU Extension Service office that serves your county. Or, visit the Extension Web site at http:// eesc.oregonstate.edu/ then Publications \& Videos, then Forestry.

This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties.

Oregon State University Extension Service offers educational programs, activities, and materials - without regard to race, color, religion, sex, sexual orientation, national origin, age, marital status, disability, and disabled veteran or Vietnam-era veteran status - as required by Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973. Oregon State University Extension Service is an Equal Opportunity Employer.

Revised September 2002. Reprinted May 2004.

[^0]: Steve Bowers, Extension forester,
 Lane County, Oregon State
 University; Nate Coleman, OSU
 Extension Master Woodland Manager volunteer, Lane County; Richard A. Fletcher, Extension forester, Linn and Benton counties, Oregon State University.

[^1]: *This publication is not designed to obtain precise total volumes for your timber stands. If you need this kind of information, you should take a larger sample and precisely calculate acreage for each stand. Or, hire a consulting forester.

