
Development of a GPS-Based Transit Tracking System for Corvallis

by

Daniel F. Urbanski

A PROJECT

submitted to

Oregon State University

University Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science (Honors Scholar)

Presented August 29, 2012
Commencement June 2012

	

AN ABSTRACT OF THE THESIS OF

Daniel F. Urbanski for the degree of Honors Baccalaureate of Science in Computer

Science presented on August 29, 2012. Title: Development of a GPS-Based Transit

Tracking System for Corvallis.

Abstract approved:
 __
 Mike Bailey

Buses can be impractical for those who must adhere to a strict schedule or

depend on them for emergencies. While variations from the official bus schedule are

understandable and largely unavoidable, a lack of communication discourages

adoption at a rate disproportionate with their actual likelihood. Even if a bus is

running exactly on schedule, bus users have no easy way of knowing that

information and those that have alternative modes of transportation will be less

likely to ride the bus regardless of its actual timeliness.

 The CTS BusTracker system utilizes modern technologies to provide Corvallis

bus users with accurate, real-time information about the arrival times of buses

within the city. The project consists of two main parts: a GPS (Global Position

Satellite) tracking system that uses the bus’s positional data and route information

to calculate estimated arrival times, and a communication infrastructure that allows

potential bus users to query and receive this information in real time.

Key Words: Android, ASP.NET, bus, GPS, MySQL, smartphones, transit, website

Corresponding e-mail address: urbanski@gmail.com

©Copyright by Daniel F. Urbanski

August 29, 2012

All Rights Reserved

Development of a GPS-Based Transit Tracking System for Corvallis

by

Daniel F. Urbanski

A PROJECT

submitted to

Oregon State University

University Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science (Honors Scholar)

Presented August 29, 2012

Commencement June 2012

Honors Baccalaureate of Science in Computer Science project of Daniel F. Urbanski

presented on August 29, 2012.

APPROVED:

Mentor, representing Computer Science

Committee Member, representing Computer Science

Committee Member, representing Computer Science

Chair, Department of Computer Science

Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon

State University, University Honors College. My signature below authorizes release of

my project to any reader upon request.

Daniel F. Urbanski, Author

Table of Contents

I. INTRODUCTION ... 1

Problem Description ... 1

Related Work .. 3

Project Goals ... 4

II. REQUIREMENTS... 5

System Features .. 5

Software/Hardware Requirements .. 7

III. SYSTEM ARCHITECTURE .. 8

Overview ... 8

User Interface .. 8

Class Structure .. 10

IV. TECHNOLOGIES USED .. 14

Programming Languages / Software ... 14

Development Tools ... 16

Services ... 18

V. CONCLUSIONS .. 20

Challenges ... 20

Future Plans .. 23

Table of Contents (continued)

Final Thoughts .. 23

BIBLIOGRAPHY ... 25

Helpful Links .. 25

APPENDICES ... 27

Appendix A – Use Case/ Dataflow Map... 27

Appendix B – Essential Code Listings ... 28

Appendix C – Data Structure of CT_GTFS Database .. 34

List of Figures

Figure 1: BusTracker Website ...9

Figure 2: QR Code Containing URL with Stop ID..9

Figure 3: Class Dataflow Map ...10

Figure 4: Bus Class Diagram ...10

Figure 5: Stop Class Diagram ..12

List of Acronyms

ASP – Active Server Page

CTS – Corvallis Transit System

DDL – Dynamic Link Library

ETA – Estimated Time of Arrival

GPS – Global Positioning System

GTFS – General Transit Feed Service

IDE – Integrated Development Environment

MAX – Metropolitan Area Express

MSDNAA – Microsoft Developers Network Academic Alliance

OS – Operating System

QR Code – Quick Response Code

SDK – Software Development Kit

SMS – Short Message Service

SQL – Structured Query Language

TfL – Transport for London

URL – Uniform Resource Locator

I. INTRODUCTION

Problem Description

 As population numbers in cities increase and gas prices rise, public transportation

is often suggested as an easy, cheap, and environmentally friendly alternative to driving,

but the uncertainty inherent to the system combined with a lack of communication often

prevent its widespread adoption by commuters. Busses in particular can be impractical

for those who must adhere to a strict schedule or depend on them for emergencies. Buses

that are running particularly behind schedule can lead to late arrivals or missed

connections while busses running ahead of schedule can indirectly cause travelers to be

late if they end up waiting for a bus that has already passed. While these variations from

the official bus schedule are understandable and largely unavoidable, the lack of

communication discourages adoption at a rate disproportionate with their actual

likelihood. Even if a bus is running exactly on schedule, bus users have no easy way of

knowing that information and those that have alternative modes of transportation will be

less likely to ride the bus regardless of its actual timeliness.

In this modern era of technological communication, it is increasingly easy for

people to stay in contact at all times with the use of smartphones and other internet-

capable mobile devices. While business has traditionally been conducted during specified

business hours and preplanned locations, communication and scheduling software

advances in recent years have made it easier to facilitate impromptu meeting or work

schedule changes. Many employees in time-critical jobs and industries are given smart

2

phones specifically so they can stay in communication and come in to work at unusual

times if necessary. Because of these advances, more precision is required in scheduling

activities, and employees are expected to be able to give more accurate time estimates.

These technologies have helped make businesses run more efficiently but put commuters

who use public transportation at a significant disadvantage. Workers who are unable to

provide employers or clients with up-to-date time arrival estimates or warn of delays in a

timely manner risk endangering their careers. The lack of certainty that public transit

users face potentially applies to everyone and not just commuters in the business world.

Students, for instance, need to arrive on time for classes and meetings with professors and

their peers, and commuters traveling to social engagements risk missing events or being

seen as rude for not notifying of their tardiness.

If, however, there were a way for potential bus users to be aware of delays in real-

time, it would provide reassurance for those who have other means of transportation and

would help eliminate some of the uncertainty for those who completely reliant. Bus users

who know ahead of time that their bus is running behind or has already been missed can

potentially try to make other arrangements and secure alternative modes of transportation,

rather than waste time waiting at a stop. Even if the bus user has no other means of

getting to their destination, knowing about potential bus delays ahead of time allows them

to prepare others for their eventual tardiness. Employees can notify their managers or

business clients and possibly reschedule meetings, and students can notify their group

project members to wait or start working without them.

3

Related Work

 One of the first publically accessible transit tracking systems was London’s

“Countdown” service which was first implemented in 1992. This program started as a

collection of 480 display signs on one bus route that provided estimated arrival-time

information [1] but was later expanded to cover all of London’s 19,000 stops. The

notifications system proved very popular with customers, and a follow-up study found

that the additional information helped reduce anxiety about whether a bus had been

missed and actually made users think that the buses had a higher on-time arrival rate than

their actual on-time arrival rate [2]. In 2011, Transport for London (TfL) further

expanded the Countdown service to allow commuters to check arrival information online

and SMS [3]. London has over 140 times the population of Corvallis, so the usage

requirements for their system are quite different, but Countdown also served as the

inspiration for Portland TriMet’s TransitTracker service.

 TransitTracker offers Portland transit users a way of tracking buses and MAX

trains using satellites and sensors in the tracks [4]. Each bus or MAX stop has a unique

numeric ID code that the user can use with the system. By specifying this code through a

web form or SMS text, the user can receive information about the next transit vehicles to

arrive at that stop. TransitTracker relies on a Bus Dispatch System (BDS) implemented

by TriMet in 1997 that includes on-board Automatic Vehicle Location (AVL) devices

[1]. This system, while accurate and efficient, relies on an infrastructure of specialized

technologies that not all transit services have access to. A city would need to develop

their own AVL to work with TransitTracker, and since these technologies are not

standardized, any existing system would most likely need to be heavily modified for

4

compatibility. The biggest downside to implementing TransitTracker in a new city would

be the lack of flexibility and the overhead costs of outfitting the buses with compatible

technologies.

Project Goals

 The goal of this project is to develop a system that utilizes modern, publically

available technologies to provide Corvallis Transit System (CTS) bus users with accurate,

real-time information about the arrival times of buses within the city. The project consists

of two main parts:

1. A GPS tracking system that uses the bus’s positional data and route

information to calculate estimated arrival times.

2. A communication infrastructure that allows potential bus users to query and

receive this information in real time.

 This project serves as a proof-of-concept to show how this system can be

implemented using publically available technologies with minimum cost. While more

expensive and potentially more accurate GPS-based tracking solutions exist, this project

uses well documented and easily accessible technologies, and therefore it will be simpler

for other programmers to understand. This approach offers the key advantage of making

it easier for new programmers to maintain, adapt, and expand upon this code in the

future. Additionally, the project requirements were designed with budget in mind, and so

the designed system has very little start-up and ongoing maintenance costs.

5

II. REQUIREMENTS

 When working on the CTS BusTracker, it was important to outline the initial

requirements for the system in order to facilitate development and evaluate performance.

This project is a proof-of-concept and was mostly self-led, so there was no specific client

in mind. Instead, I established these requirements early on in the development process

and used them as a way to schedule my time working on the project and to check my

progress towards the project goals. This section is divided into System Features, Interface

Requirements, and Software/Hardware Requirements. In System Features, I outline the

specific capabilities of the project from the perspectives of both the transit system

operators and potential bus riders using the system dividing these into a section for the

Android app and the web server, and in Software/Hardware Requirements, I outline the

necessary software and hardware components required to implement the system.

System Features

Android App
 The Android app’s primary purpose is to facilitate the communication of the

device’s precise geographical location using the phone’s Global Position Systems (GPS).

This location is then used in calculations performed by the web server.

 The app frequently sends the GPS coordinates and compass direction to a remote

database (Note: Originally, the GPS information was to be transmitted directly to

the web server via TCP socket communication, but this was decided against. See

Conclusion).

 The user can simply turn the transmission of the devices GPS coordinates on and

off

6

 The user can specify a unique id number for the particular bus and device

 The user can select the current route and trip id

Web Server
 The web server is in charge of keeping track of the bus GPS information,

performing the calculations to estimate arrival times, and hosting the website that

displays this information to the user.

 Database

o The database stores the route information for the Corvallis Transit System

(CTS)

o The database contains the latest transmitted locations from the bus GPS

devices along with the date and time of transmission

 The web server calculates the estimated time of arrival (ETA) for buses at a

specified stop

 The website displays the ids of the next 5 buses to arrive at the given stop, their

route IDs, and their ETA

 The user can scan an automatically generated QR Code to find arrival information

for their specific stop

 The web site allows the user to manually select or type in their stop id and

optionally select a specific bus route

 The user can bookmark the page for their particular route and stop

 The web site is formatted so that it can be clearly viewed and used from an

internet-capable mobile device

7

Software/Hardware Requirements

Android Smartphone
 Android OS 2.3 or higher

 GPS-Enabled

 Internet connection

Windows Web Server
 Windows Server 2008 or higher

 ASP.NET installed

 MySQL installed

 PHP installed

 .NET 4.0 Framework installed

Additional Requirements
 Access to the latest CTS route information in GTFS format

 A phone network data plan for Internet access

 Administrator privileges for creating a new tables in MySQL

8

III. SYSTEM ARCHITECTURE

Overview

The website runs on the ASP.NET framework. Besides the main class that

handles the user interface, the BusTracker system consists of two custom classes that

perform most of the queries and calculations for estimating bus arrival times. In addition,

I use a custom structure created to hold GPS coordinates that is based on the

GeoCoordinate class that is only available in the .NET 4.5 Framework. When a user

searches for the next bus arrival times from their browser, a Stop object is created for

their stop ID. This Stop object creates a list of the next bus trips that will hit that stop and

then uses these to create a list of Bus objects. These Bus objects are then able to perform

calculations and communicate with the Google Maps API to return the ETAs that are

then displayed on the main page for the user. For a more complete picture of how this

information is communicated, see the Use Case / Dataflow Map in Appendix A.

User Interface

 This website is designed to be simple for the user to enter their stop and route

specification and easy for them to see the ETA information. The user input consists of

two drop down lists, a textbox, and two separate submit buttons. The first drop down list

is automatically filled with all the routes in CTS_GTFS database. Once the user selects a

value, the other drop down list becomes available and is populated with all the stops on

that particular route. After the stop is selected, the top submit button becomes enabled

and the user can receive the ETA information for that route and stop combination. If the

9

user does not want to specify a route, they can type the stop ID manually into the textbox

and click the lower submit button.

After the user clicks the

appropriate submit

button or enters the

parameters directly

through the URL, a table

displaying the estimated

arrival information for

the next five buses to

pass through the given

stop appears. If the route

ID is specified, the table

only displays the information for buses on the given route. The table displays the bus

routes, approximate time until arrival in minutes, estimated arrival time, and the trip id. In

addition to the table, a map from Google is displayed that highlights the bus’ current

location in relation to the user’s stop.

 If the user does not want to enter the stop ID manually

and has access to a smartphone with a camera, they can use a

barcode scanning app to scan a unique QR code for that stop

that will take them to the correct page. The site is setup so that

it can detect when a mobile browser is viewing it and reset the

layout accordingly so that is can be easily viewed.

Figure 1: BusTracker Website

Figure 2: QR Code

containing URL and stop ID

10

Class Structure

 Bus Class

As its name implies, the Bus class represents the buses

equipped with the GPS-device and BusTracker app. Each bus

object stores the information for a specific bus at the time of

the object’s creation. Each instance contains that vehicle’s

geographic coordinates, bearing, current trip ID, and the time

that this information was recorded. The object also contains

functions that can retrieve this information and make

calculations using the Google Maps API.

 The constructor for the Bus class takes the connection

string for the CTS_GTFS database and a trip ID as a

parameter. A trip ID is a string that CTS uses to identify each

embarkation of a route (e.g.

“R4_MonTueWedThuFri_1045”). At any given time, each

Figure 3: Class Dataflow Map

Figure 4: Bus Class Diagram

11

bus on route has only one trip ID, and it is unique to that bus. After a route has been

completed, the bus is assigned a new trip ID for the new departure time, even if it is

repeating the same route. On the Android app, the bus driver manually selects this trip ID

at the beginning of each new trip, although it could be theoretically calculated using the

current route information and time of departure. When a Bus object is created, the

constructor uses the specified trip ID to query the “bus” table on the MySQL database

and retrieve the most recent geographic information for the bus on that trip.

 One of the key methods in the Bus class is the “GetETA” function that takes a

Stop object as a parameter and calculates the estimated time of arrival for a bus at the

given stop. The first thing that the function does is try to estimate the delay for bus to see

how close it is to its schedule. This value is an integer representing the number of

milliseconds delay and can be negative if the bus is running ahead of schedule. This value

is calculated by calling the Bus object’s “GetNextTStop” functions to query the “bus”

table for the next stop on its route that has a listed arrival time. Only some stops on a

given route have listed arrival times, and these will be referred to as timed stops. The

program then makes a list with the GPS coordinates for bus’ current location plus all the

intermediary stops to get to the next timed stop. This list is then sent to the Google Maps

API to receive the travel time estimate. The travel time is then added to the current time

to create an ETA for timed stop, and this is compared to the time of the scheduled arrival

to calculate the delay.

 If the requested stop is a timed stop, the “GetETA” function simply adds the delay

to the scheduled arrival time and returns the new time. If the stop isn’t a timed stop, the

function sends the GPS coordinates of the last timed stop and intermediary stops to the

12

Google Maps API to get the travel duration. This time is then combined with the delay

and then added to the scheduled arrival time of the last timed stop to get the ETA of the

requested stop.

Stop Class
 Stop objects are created when the user specifies

the bus stop location for which they want to

calculate the ETA. This location is conveyed

through a stop ID string that is passed as a

parameter in the URL of the BusTracker web

page. Users can specify the stop ID by selecting it

from a drop down list for their route, typing it into

a textbox, entering it manually into the URL, or

by scanning an automatically generated QR code

for that stop. Additionally, users have the

option of selecting a specific route so that

only information about buses on that route will be displayed.

 The constructor for the Stop class takes the connection string for the CTS_GTFS

database and a stop ID as a parameter. A stop ID is a unique string assigned by CTS to

represent a specific bus stop. When a Stop object is created, the constructor queries the

“stop” table of CTS_GTFS database and records the id, full name, and geographical

coordinates in a Stop object for later retrieval.

 The Stop class also contains the “GetTripIDs” function that can be used to get the

trip IDs of the next buses scheduled to reach that stop. The function can take the day of

the week, the current time, the route ID, and the number of results to return as

Figure 5: Stop Class Diagram

13

parameters. To simplify the code, overloads were created so that the number of results is

the only required parameter. Route ID is optional and if no day or time is specified, these

will be defaulted to the current day of the week and time. The function uses these

parameters to form a query for the CTS_GTFS that returns the trip IDs of the next buses

to arrive at the specified location at the specified time. The specified time is extended by

15 minutes if the stop has a set arrival time and 7.5 minutes if it doesn’t. This is done to

account for buses that are running very behind schedule and these results are later filtered

out if it is determined that the bus has already passed the stop when its GPS coordinates

are retrieved. The “GetTripIDs” function returns a list object containing the retrieved trip

IDs.

14

IV. TECHNOLOGIES USED

Programming Languages / Software

Android SDK / Java
Android is an open source operating system for mobile devices developed by

Google. One of the key features of Android is its ability to extend the functionality of

devices through new applications (or apps). These apps are developed by a large

community of professional and hobbyist programmers using a customized version of Java

[5]. Because of this large community, Android has a lot of documentation and support for

new developers.

The Android SDK is a collection of APIs and tools that facilitate Android

application development. The Android SDK Manager allows developers to install

individual API components for different versions of the Android OS with relative ease.

One of the key tools of the SDK is the Android emulator which allows developers to

deploy and test their code on a number of virtual Android phones with different hardware

specifications.

I chose to develop an Android application for this project because most modern

Android smartphones contain a GPS system that can be easily accessed with the correct

security permissions. Java is also a language with which I am very familiar so learning

the specific quirks of Android Java seemed like a reasonable goal.

ASP.NET w/ C#
 ASP.NET is Microsoft’s web application framework for developing and

publishing full-featured web sites and web applications. The layout for sites and web

behavior can be dynamically formatted using ASP code, and the backend code can be

15

written in any Microsoft .NET language [6]. I chose to write this code in C# because it is

the language I am most familiar with and because of its similarities to Java, which I

needed to use for the Android components of the system.

Because ASP.NET needs to run on a machine with a version of Microsoft

Windows, I needed to rent an online Windows Server. Attempting to host the web site

from my home desktop could have posed potential security risks for my personal

computer, and so this solution was safer. The setup process proved to be a relatively

painless process and much more straightforward than installing the appropriate

technologies on my local desktop and configuring it to be accessed from the web. I used a

Microsoft technology called WebDeploy to allow me to publish the site to the remote

server from Visual Studio 2010 with one click.

MySQL
MySQL is an open-source database management system that is licensed for free

under the terms of the GNU General Public License. Because of its open license, MySQL

is one of the most popular database management systems for both commercial and

personal use [7]. Data is inserted and modified using commands sent to the database in

Structure Query Language (SQL) syntax. I chose to use MySQL in particular because all

students are provided with a setup MySQL database for their onid accounts. This allowed

easier testing before I switched over operations to the rented Windows server.

Although Visual Studio 2010 does not support MySQL database connections out

of the box, I used a driver called Connector/Net to facilitate communication between the

website and the MySQL server. There are several other MySQL connection drivers

available, but I chose to use Connector/Net because the library is self-contained in a .dll

16

file. The advantage to this is that the .dll file can be uploaded to the server running the

website without having to have privileges to install new software.

PHP-GTFS-MYSQL
To import the GTFS feeds, I used some open-source software written by Steffen

Martinsen called php-gtfs-mysql. This is essentially a PHP website that walks you

through the steps of creating and filling tables from GTFS text files. The system was

designed for the importing the data from the creator’s hometown in Norway, so I had to

alter the code a little to accommodate variations in the CTS’s GTFS format [8]. I had to

alter the structure of the tables created by the code to make various IDs strings, rather

than integers. I also had to write code to remove the surrounding double quote marks

from various fields of the feed and change them to single quotes, so they would be

recognized by MySQL. Additionally I had to fix a bug that was causing an error when a

line finished with a comma, and I also made the DateTime fields nullable. This allows so

null times to be entered for stops that don’t have set arrival times. Before, stops that had

blank arrival times were getting set for 00:00:00, and this was causing problems with the

site’s calculations.

Development Tools

Eclipse Java
 Eclipse is one of the most popular open-source programming language editors or

IDE around today. It is primarily targeted for Java development but a number of plugins

and alternative builds have been developed to allow it to be used for C++ and other

programming languages. One of the most popular of these plugins in recent years allows

the IDE to interface with the Android SDK. After the SDK is properly linked, the Eclipse

17

environment allows the user to compile and automatically upload their code to an

Android phone or Android phone emulator.

Eclipse came recommended as the ideal development environment for

programmers starting in mobile development by Head First Android Development and

several online tutorials [9]. Eclipse was also the environment on which I first learned

Java, and so the familiarity helped simplify the process of learning Android programming

for the first time. Another key advantage of using Eclipse is that it is multi-platform,

meaning that it can be run from Windows, Mac, and Linux operating systems. This

allowed me to develop on both my Windows desktop, as well as my MacBook.

Visual Studio 2010
 Visual Studio 2010 is the latest released version of Microsoft's industry-standard

IDE. I was able to obtain a license to use this program for free because of a partnership

the Oregon State University College of Engineering has with the MSDNAA. VS2010

offers several custom tools, layouts, and features for various .NET programming

languages. Although many of these features are extraneous for my uses, and I don't mind

using simple or command-line coding tools, I saw many advantages in choosing VS2010

for the development environment of the site. VS2010 offers a design preview mode that I

thought would be beneficial in setting and previewing the layout of the graphical

components. The suite also offers several built-in tools for communicating with databases

and websites. After setting up the connection in VS2010, I was able to browse and edit

the MySQL database with bus route info from within the IDE. VS2010 interfaces with

ASP.NET, and using Microsoft's Web Deploy technology, I was able to compile and

publish my site to the rented Windows Server with the click of a button.

18

Services

Google Maps API

 According to its website, the Google Maps API is “a free service that lets you

embed Google Maps in your freely accessible web pages or mobile apps” [10]. The API

serves as a way of allowing developers to quickly access information provided by Google

without having to manually go to the site and deal with the user interface. In addition, the

API offers a number of advanced features that help coders get the specific information

that need from a particular service. In this project, I used both the Directions Web Service

and Distance Matrix Web Service to calculate the estimated travel duration between GPS

coordinates.

 In order to communicate with the Google Maps API, a unique string or “API key”

must be set for your Google account and specified for all service requests. Google uses

this information to track which applications are performing requests in order to create

usage data. A limitation of relying on the API for performing calculations is that Google

limits the number of requests per day for each service to 2,500. In addition, the Terms of

Service stipulates that the end product must be available for free and that a Google Map

image must be embedded in any pages that use one of their web services [11]. These

limitations only apply to the free version of the API service, and they are waived and the

request limit is upped to 100,000 requests per day if the developer pays for a business

license. I wasn’t originally planning on including a map with the bus’ location on the

results page, but this became the simplest way to abide by the Google terms of use.

19

General Transit Feed Specification
 The General Transit Feed Specification (GTFS) is a common format used by

public transit agencies to publish their schedule and geographic data so that it can be

easily displayed and used by application developers [12]. A GTFS feed is composed of a

collection of text files that each models a particular aspect of transit information: stops,

routes, trips, and other schedule data. Although not all transit agencies publically post this

information, it is becoming increasing common as Google uses the documents for their

Google Transit service. I was fortunate because CTS has this information publically

available and posted multiple lists of available GTFS data [13].

Although this format is great for publishing route information, its file-based

nature does not make it ideal for quick information retrieval. I chose to store the CTS

route information in a database because I knew that the information would need to be

easily updatable and the site would need to be able to quickly sort and filter out the

information for its calculations. Importing the GTFS files into a data structure and

filtering through them to find the correct information would have been to memory

intensive and not very scalable. In order to import the GTFS data into the database, I used

a modified version of a tool called PHP-GTFS-MYSQL.

20

V. CONCLUSIONS

Challenges

 One of the hardest parts of this project was deciding on specific implementation

elements and actually starting to code them. Because this project was self-led, I did not

have a client who was giving specific requirements. As a result, plans changed frequently

in the beginning. The goal for this project was always to calculate more accurate ETAs

for the bus system, but how this was accomplished changed frequently in the early stages

of development.

 I spent a lot time going through sample route data and attempting to form my own

algorithm for calculating the ETA for stops. Initially, I relied heavily on the scheduled

stop times and attempted to calculate the arrival times for the stops without times by

dividing the time between stops with schedule arrival time and adding an averaged

“stopping” delay. I kept trying to tweak this algorithm, but just when I thought I had it, I

would find a route that completely threw everything off. I eventually realized that some

of the scheduled stop times posted by CTS were completely unrealistic and I couldn’t

rely on them too much to provide realistic time estimations.

 To get more accurate travel times, I started looking into the Google Maps API and

factoring in their calculations to my own algorithm. I found that in most cases, the

Google Maps duration estimate was way more accurate than the posted schedule, and so I

started rewriting my algorithm to rely more on the API. Eventually, I decided on a

balance that uses both the Google Maps time estimations and the bus schedule to provide

a more accurate arrival time. The Google estimates are used to calculate theoretical

21

arrival times for stops that don’t have them listed and to compare to the scheduled arrival

times to work out a delay for the bus.

 The Android app also posed a lot of problems in the development process. The

Android SDK comes with an Android phone emulator that can be booted directly from

Eclipse for testing. Unfortunately, the emulator runs quite slow and has a lot of bugs that

really hindered its usefulness in the testing process. It’s possible to manually set the GPS

coordinates of the emulator through a window in Eclipse or by connecting to the virtual

phone over telnet, but this features does not always work predictably. Even if you set the

phone to have access to the emulated GPS service, it doesn’t always enable it. This is a

known bug in the Android development community, and the best workaround I found

was to launch Google Maps every time before running the BusTracker app to force the

GPS to be enabled. This extra step combined with the slow speeds of the emulator made

the debugging quite slow and painful.

Another problem I ran into with the emulator was communicating with it from a

different computer. Originally I was planning on having the Windows server and Android

phone communicate directly over the internet using TCP Sockets. The idea was that the

BusTracker app would send its geographical information only after it had been directly

connected to and sent an information request. The “bus’ table in the database was only

used to store the Android device’s assigned bus ID, trip ID, and IP address. When the

user on the site wanted a time estimate, the server would look up the IP address and

attempt to form a connection with that particular device and send a location request. I

could connect to the app running on the emulator, when I was testing it from a temporary

Java server running from the same computer, but connecting to the emulator device from

22

an outside computer proved to be very difficult. I spent a lot of time researching this

problem and attempting to set up proxies and port forwarding so that I could

communicate with the virtual device. Eventually, I managed to get a signal through but

this experience left me very wary of the direct communication approach.

I originally chose to do things this way because I thought it would give more

timely estimates of the bus’ location, but it ended up causing a lot of headaches. In this

implementation, getting access to the phone is critically important, and the system falls

apart when it can’t be instantly reached. Since the location information wasn’t being

stored in a database, if the connection didn’t go through, there was no easy way to find

even the most recent known location.

Additionally, the old method for communication had potential scalability issues.

Although the app was multithreaded, it still had to deal with each incoming request

individually. This meant that if there were a lot of requests for a particular device, the

performance would slow. This wasn’t really noticeable during testing, but could have

definitely posed a problem for a system that was fully implemented with lots of users. I

didn’t want to have to rely on the Android phone’s processing power to handle a large

number of requests.

Once I decided to periodically publish the geographic information directly to a

database, the process became much simpler and less problematic. The server was no

longer communicating directly with the phone, which avoided a lot of communication

and security pitfalls and also took care of the potential scalability issues. The data was

actually more accurate too because I could then store the time of the last location update.

If the phone lost service and temporarily stopped transmitting its coordinates, for

23

instance, the last known location would still be stored in the database and the calculations

would use its last update time.

Future Plans

 I consider this project and the proof-of-concept a total success, but a lot more

work would have to be done to make this system implementable on a mass scale. Above

everything else, a lot more testing would need to be done to ensure the predictions stay

accurate and system holds up after an extended period of time. For the project I created a

simulator that would emulate multiple buses and update the database periodically with

their locations for testing purposes, but I was never able to test how the system handled

multiple devices running the app in the real world. In order to bring this project to the

public, I would need to go through an additional stage of testing with multiple devices

running the app to ensure that it still held up. Additionally, the system would need to

have improved error handling to keep users in the loop if something went wrong. The

ETA algorithm itself works pretty reliably, but it can always be more fine-tuned to get

better results.

Final Thoughts

 This project was a great experience for me and tested my coding, researching, and

scheduling abilities. I think I have grown a lot as a software engineer, since starting this

project, and I have already found ways to adapt my new skills. One of the main reasons I

decided on this project was to learn more about web development and database

management. Although I have worked on and developed new features for ASP.NET web

pages and applications in the past, this was my first time designing a site from the ground

up. Through this project, I have gained a much deeper knowledge of ASP.NET, C#,

24

Windows Server management, MySQL databases, Android app development, and

working with APIs.

 The most important skills I learned from this project, however, relate to time

management. My initial approach to the project was very free-form and I didn’t have

much of a specific plan or schedule. I would just add components, attempt to put them

together and fix bugs when they arose. Because of this, there were times when things

were progressing very slowly, and I found myself getting bogged down in specific design

issues or bugs that later turned out to be trivial or obsoleted. As time progressed,

however, I increasingly found myself turning to design tools and methods that I learned

from the software engineering, senior design, and project management courses that I took

in college. This was an interesting experience for me because when I was taking these

classes I found creating data flow charts and project schedules time consuming and a

little tedious, I found them invaluable during the later stages of development.

 Overall, working on this project has been a very fulfilling experience, and I enjoy

looking back on my work and seeing my idea go through the software design process. It’s

interesting to see my idea evolve as it went through initial planning, early designs,

development, and finally a functional system. By working on this project, I have not only

created something that I am proud of, I have developed many professional and personal

skills that I look forward to bringing to many more projects in my future.

25

BIBLIOGRAPHY

[1] D. Crout, “Innovations in Public Transit,” Jan. 4,

2005,http://www4.uwm.edu/cuts/bench/tracker.pdf

[2] Transit Cooperative Research Program, “Strategies for Improved Traveler

Information,” Project A-20A(1), FY 1997

[3] “London bus countdown checker website tested,” Sep. 4, 2011,

http://www.bbc.co.uk/news/uk-england-london-14779558

[4] “TriMet TransitTracker,” 2012, http://trimet.org/transittracker/about.htm

[5] S. Shankland, “Google’s Android parts ways with Java industry group,” Nov. 12,

2007, http://news.cnet.com/8301-13580_3-9815495-39.html.

[6] M. Harper, “What is ASP.net?” http://www.javascriptkit.com/howto/aspnet.shtml

[7] R. Schumacher and A. Lentz "Dispelling the Myths," http://ftp.nchu.edu.tw/MySQL

/tech-resources/articles/dispelling-the-myths.html.

[8] S. Martinsen, “PHP-GTFS to MySQL,” 2012, http://steffen.im/?p=13.

[9] J. Simon, Head First Android Development. Sebastopol, CA: O’Reilly Media, Inc.,

2011.

[10] “Google Maps API licensing,” 2012, https://developers.google.com/maps/licensing.

[11] “Google Maps/Google Earth APIs Terms of Service,” 2012, https://developers

.google.com/maps/terms.

[12] “What is GTFS?” 2012, https://developers.google.com/transit/gtfs/.

[13] “googletransitdatafeed,” 2012, http://code.google.com/p/googletransitdatafeed

/wiki/PublicFeeds.

Helpful Links

 The following is a collection of links to tutorials and sties that proved helpful

while dealing with the above technologies.

Android General
 http://www.vogella.com/articles/Android/article.html

 http://developer.android.com/training/basics/firstapp/starting-activity.html

26

 http://www.brighthub.com/mobile/google-android/articles/82805.aspx

Android GPS
 http://developer.android.com/reference/android/location/Criteria.html

 http://developer.android.com/reference/android/location/LocationListener.htm
l

 http://www.vogella.com/articles/AndroidLocationAPI/article.html

Communication
 http://android-er.blogspot.com/2011/01/simple-communication-using.html

 http://developer.android.com/tools/help/adb.html

 http://www.codeproject.com/Articles/10649/An-Introduction-to-Socket-
Programming-in-NET-using

ASP.NET
 http://www.asp.net/whitepapers/add-mobile-pages-to-your-aspnet-web-forms-

mvc-application

 http://www.frederikvig.com/2009/10/creating-a-mobile-version-of-a-web-site/

 http://www.mono-project.com/ASP.NET

MySQL
 https://github.com/steffenz/php-gtfs-mysql

 http://www.connectionstrings.com/Providers/mysql-connector-net-
mysqlconnection

27

APPENDICES

Appendix A – Use Case/ Dataflow Map

28

Appendix B – Essential Code Listings

Bus Class
public Bus(String tripID, String conString)
 {
 MySqlConnection conn = new MySqlConnection(conString);
 try
 {
 conn.Open();

 MySqlCommand cmd = new MySqlCommand();
 cmd.Connection = conn;

 cmd.CommandText =
 @"SELECT bus_id, bus.trip_id, trips.route_id, bus_lat,
bus_lon, bus_dir, last_update FROM bus JOIN trips ON bus.trip_id = trips.trip_id
WHERE bus.trip_id = @tripID";

 cmd.Prepare();

 // Add parameters to query
 cmd.Parameters.AddWithValue("@tripID", tripID);

 MySqlDataReader queryResults = cmd.ExecuteReader();

 if (queryResults.Read())
 {
 try
 {
 busID = queryResults.GetInt32(0);
 tripID = queryResults.GetString(1);
 routeID = queryResults.GetString(2);
 Double tlat = queryResults.GetMySqlDecimal(3).ToDouble();
 Double tlon = queryResults.GetMySqlDecimal(4).ToDouble();
 loc = new GeoCoordinate(tlat, tlon);
 busDir = queryResults.GetFloat(5);
 lastUpdate = queryResults.GetMySqlDateTime(6).Value ;

 }
 catch (InvalidCastException) { }
 }
 conn.Close();
 }
 catch (MySqlException er)
 {
 throw er;
 }

 }

GetETA Function
 public DateTime GetETA(Stop stop)
 {
 Stop nextTStop = GetNextTStop();
 int derp = GetPrevStop().GetDuration(nextTStop.GetStopID(), tripID,
GetCoordinates());

29

 DateTime stime = nextTStop.GetArrivalTime(GetTrip());
 DateTime ttime = GetLastUpdate().AddSeconds(derp);

 int delay = (int)(ttime - stime).TotalSeconds;

 SetDelay(delay);

 Stop t_next = stop.GetNextTStop(GetTrip());

 int dur;
 if (stop.IsTimed())
 dur = 0;
 else
 dur = stop.GetDuration(t_next.GetStopID(), tripID,
stop.GetLocation());
 DateTime eta = t_next.GetArrivalTime(GetTrip());
 eta = eta.Subtract(new TimeSpan(0, 0, dur));
 eta = eta.Add(new TimeSpan(0, 0, delay));
 return eta;
 }

Stop Class
public Stop(String t_stopID, String t_conString)
 {
 conString = t_conString;
 stopID = t_stopID;
 MySqlConnection conn = new MySqlConnection(conString);
 try
 {
 conn.Open();

 MySqlCommand cmd = new MySqlCommand();
 cmd.Connection = conn;

 cmd.CommandText =
 @"SELECT stop_id, stop_name, stop_lat, stop_lon FROM stops
WHERE stop_id = @stopID";

 cmd.Prepare();

 // Add parameters to query
 cmd.Parameters.AddWithValue("@stopID", stopID);

 MySqlDataReader queryResults = cmd.ExecuteReader();

 if (queryResults.Read())
 {
 try
 {
 stopID = queryResults.GetString(0);
 stopName = queryResults.GetString(1);
 Double tlat = queryResults.GetMySqlDecimal(2).ToDouble();
 Double tlon = queryResults.GetMySqlDecimal(3).ToDouble();
 loc = new GeoCoordinate(tlat, tlon);
 }
 catch (InvalidCastException) { }

30

 }
 conn.Close();
 }
 catch (MySqlException er)
 {
 throw er;
 }
 }

GetTripIDs Function
public List<String> GetTripIDs(string routeID, int n)
 {
 List<String> tripList = new List<String>();
 String today = System.DateTime.Now.DayOfWeek.ToString().ToLower();

 // Connect to route info database
 MySqlConnection conn = new MySqlConnection(conString);
 try
 {
 conn.Open();

 MySqlCommand cmd = new MySqlCommand();
 cmd.Connection = conn;

 cmd.CommandText =
 "SELECT DISTINCT trips.trip_id AS trip, stop_times.stop_id,
stop_times.stop_sequence AS seq, " +
 "IF(stop_times.arrival_time IS NOT NULL,
ADDTIME(stop_times.arrival_time, '00:15:00'), " +
 "ADDTIME((SELECT stop_times.arrival_time FROM stop_times "
+
 "WHERE stop_times.trip_id = trip " +
 "AND stop_times.arrival_time IS NOT NULL " +
 "AND stop_times.stop_sequence > seq " +
 "LIMIT 1), '00:07:30')) " +
 "AS latestTime " +
 "FROM trips " +
 "JOIN stop_times ON trips.trip_id = stop_times.trip_id " +
 "JOIN calendar ON trips.service_id = calendar.service_id " +
 "WHERE calendar." + today + " = true ";
 // Add route_id if specified
 if (!routeID.Equals(""))
 cmd.CommandText += "AND route_id = '" + routeID + "' ";
 cmd.CommandText +=
 "AND stop_times.stop_id = @stopID " +
 "HAVING latestTime > CURRENT_TIME()" +
 "ORDER BY latestTime LIMIT @n";

 cmd.Prepare();
 // Add parameters to query
 cmd.Parameters.AddWithValue("@stopID", stopID);
 cmd.Parameters.AddWithValue("@n", n);

 MySqlDataReader queryResults = cmd.ExecuteReader();

 while (queryResults.Read())
 {
 try

31

 {
 tripList.Add(queryResults.GetString(0));
 }
 catch (InvalidCastException) { }
 }

 conn.Close();
 }
 catch (MySqlException er)
 {
 throw er;
 }
 return tripList;
 }

GetDuration Function
public int GetDuration(String tStopID, String ttripID, GeoCoordinate loc)
 {
 MySqlConnection conn = new MySqlConnection(conString);
 try
 {
 conn.Open();

 List<String> stopIDList = new List<String>();
 MySqlCommand cmd = new MySqlCommand();
 cmd.Connection = conn;
 cmd.CommandText =
 "SELECT stop_id FROM stop_times " +
 "WHERE trip_id = @tripID " +
 "AND stop_sequence > (SELECT stop_sequence FROM stop_times " +
 "WHERE stop_id = @prevStopID " +
 "AND trip_id = @tripID LIMIT 1) " +
 "AND stop_sequence <= (SELECT stop_sequence FROM stop_times "
+
 "WHERE stop_id = @tStopID " +
 "AND trip_id = @tripID LIMIT 1)";
 cmd.Prepare();
 cmd.Parameters.AddWithValue("@tripID", ttripID);
 cmd.Parameters.AddWithValue("@prevStopID", stopID);
 cmd.Parameters.AddWithValue("@tStopID", tStopID);

 MySqlDataReader queryResults = cmd.ExecuteReader();

 while (queryResults.Read())
 {
 try
 {
 stopIDList.Add(queryResults.GetString(0));
 }
 catch (InvalidCastException er)
 {
 throw er;
 }
 }
 List<Stop> stopList = new List<Stop>();

 // Add stops to list
 foreach (String sID in stopIDList)

32

 {
 stopList.Add(new Stop(sID, conString));
 }

 // Form Google Maps API string

 // Add waypoints to array
 String[] wp = new String[stopList.Count - 1];
 for (int i = 0; i < stopList.Count - 1; i++)
 {
 wp[i] = stopList[i].GetLocation().ToString();
 }

 DirectionsRequest directionsRequest = new DirectionsRequest()
 {
 Origin = loc.ToString(),
 Destination = stopList[stopList.Count -
1].GetLocation().ToString(),
 Waypoints = wp,
 Sensor = false
 };

 DirectionsResponse directions =
MapsAPI.GetDirections(directionsRequest);
 double sumDur = directions.Routes.First().Legs.Sum<Leg>(dur =>
dur.Duration.Value.TotalSeconds);

 conn.Close();

 return (int)sumDur;
 }
 catch (MySqlException er)
 {
 conn.Close();
 throw er;
 }
 }

GeoCoordinate Struct
 public struct GeoCoordinate
 {
 private readonly double latitude;
 private readonly double longitude;

 public double Latitude { get { return latitude; } }
 public double Longitude { get { return longitude; } }

 public GeoCoordinate(double latitude, double longitude)
 {
 this.latitude = latitude;
 this.longitude = longitude;
 }

 public override string ToString()
 {
 return string.Format("{0},{1}", Latitude, Longitude);
 }

33

 public override bool Equals(Object other)
 {
 return other is GeoCoordinate && Equals((GeoCoordinate)other);
 }

 public bool Equals(GeoCoordinate other)
 {
 return Latitude == other.Latitude && Longitude == other.Longitude;
 }

 }
}

34

Appendix C – Data Structure of CT_GTFS Database

Table structure for table agency

Column Type Null Default

agency_id varchar(55) No

agency_name varchar(255) Yes NULL

agency_url varchar(255) Yes NULL

agency_timezone varchar(255) Yes NULL

agency_lang varchar(255) Yes NULL

agency_phone varchar(255) Yes NULL

Table structure for table bus

Column Type Null Default

bus_id varchar(55) No

trip_id varchar(55) Yes NULL

bus_lat decimal(13,10) Yes NULL

bus_lon decimal(13,10) Yes NULL

prev_stop varchar(55) Yes NULL

next_tstop varchar(55) Yes NULL

last_update timestamp NO

Table structure for table calendar

Column Type Null Default

service_id varchar(55) Yes NULL

monday tinyint(1) Yes NULL

tuesday tinyint(1) Yes NULL

wednesday tinyint(1) Yes NULL

thursday tinyint(1) Yes NULL

friday tinyint(1) Yes NULL

saturday tinyint(1) Yes NULL

sunday tinyint(1) Yes NULL

start_date varchar(255) Yes NULL

end_date varchar(255) Yes NULL

start_date_timestamp int(11) Yes NULL

end_date_timestamp int(11) Yes NULL

Table structure for table calendar_dates
Column Type Null Default

service_id varchar(55) Yes NULL

date varchar(255) Yes NULL

date_timestamp int(11) Yes NULL

35

exception_type int(2) Yes NULL

Table structure for table routes
Column Type Null Default

route_id varchar(55) No

agency_id varchar(255) Yes NULL

route_short_name varchar(255) Yes NULL

route_long_name varchar(255) Yes NULL

route_type int(2) Yes NULL

route_text_color varchar(255) Yes NULL

route_color varchar(255) Yes NULL

route_url varchar(255) Yes NULL

route_desc varchar(255) Yes NULL

Table structure for table stops
Column Type Null Default

stop_id varchar(55) No

stop_code varchar(255) Yes NULL

stop_name varchar(255) Yes NULL

stop_desc varchar(255) Yes NULL

stop_lat decimal(13,10) Yes NULL

stop_lon decimal(13,10) Yes NULL

zone_id int(11) Yes NULL

stop_url varchar(255) Yes NULL

location_type int(2) Yes NULL

parent_station int(11) Yes NULL

Table structure for table stop_times

Column Type Null Default

trip_id varchar(55) Yes NULL

arrival_time time Yes NULL

arrival_time_seconds int(11) Yes NULL

departure_time time Yes NULL

departure_time_seconds int(11) Yes NULL

stop_id varchar(55) Yes NULL

stop_sequence int(11) Yes NULL

stop_headsign varchar(255) Yes NULL

pickup_type int(2) Yes NULL

drop_off_type int(2) Yes NULL

shape_dist_traveled varchar(255) Yes NULL

36

Table structure for table trips

Column Type Null Default

route_id varchar(55) Yes NULL

service_id varchar(255) Yes NULL

trip_id varchar(55) No

trip_headsign varchar(255) Yes NULL

trip_short_name varchar(255) Yes NULL

direction_id tinyint(1) Yes NULL

block_id int(11) Yes NULL

shape_id int(11) Yes NULL

	

	coverpage
	blank
	abstract-copyright-title
	approval page
	Thesis-body2
	blank

