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Summary

A linear solution for the determination of the loads under which

a cylindrical sandwich shell will buckle is presented. The facings of

the sandwich cylinder are treated as cylindrical shells and the core as

an orthotropic elastic body. The method of solution is of interest in that

it is of sufficient generality to be applied to many problems in sandwich

analysis. The characteristic determinant that represents the solution to

the problem is solved numerically. Curves that show how the buckling

load changes as the parameters of the problem change are given.
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1.

Introduction

Sandwich construction is a result of the search for a strong, stiff,

and yet light weight material. It is usually made by gluing relatively

thin sheets of a strong material to the faces of relatively thick but

light weight, and often weak, material. The outer sheets are called

"facings" and the inner layer is called the "core."

Such a layered system presents difficult design problems. What

is offered here is a straightforward method for dealing with some of

these problems.

The problem to which the method is applied is that of the elastic

stability of a sandwich cylinder under uniform external lateral load

and uniform axial load.
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Notation

r, 0, z	 radial, tangential, and longitudinal coordinates,
respectively

a	 radius to middle surface of outer facing

b	 radius to middle surface of inner facing

t	 thickness of each facing

length of cylinder

E	 modulus of elasticity of facings

Poisson' s ratio of facings

G	 modulus of rigidity of facings

Ec
	modulus of elasticity of core in direction normal to

facings

Gre	
modulus of rigidity of core in re plane

Grz	 modulus of rigidity of core in rz plane

q	 intensity of uniform external lateral loading

k	 1

T
r 

, T
0 rz

u, v, w

Et log b

1 +
	 T.
a	 E

c
a

normal stress in core in radial direction

transverse shear stresses in core

radial, tangential, and longitudinal displacements,
respectively

n	 number of waves in circumference of buckled
cylinder

m	 number of half waves in length of buckled cylinder



14,

42

3.

mica
1

6n0
	 Ec - n2

2G
rO 

2

6z

N9'
	 N

0'	 z'	 Oz

Ec

Grz

normal forces and shear force per unit length of
facing

transverse shear forces per unit length of facing

bending moments per unit length of facing

Mae' MOz	
twisting moments per unit length of facing

R, 0, Z	 surface forces per unit area of facing

Eca (1 - 1/2)

Et

qa (1 - p.4)
Et

N z
 (1 - H.2)

Et

a
	 t2

12a2

at
	

t
2

12b 2

log	 natural logarithm

A, B, C, D, K, L, , , A", B"	 arbitrary constants

note -- any of the above terms that appear with a prime (as Nzi)
refer to the inner facing.
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Mathematical Analysis

As previously stated, the core is relatively weak. Because of

the high strength of the facings the core need carry little tension or

compression except in a direction perpendicular to the facings. The

facings are able to resist shearing deformation in their plane and it

is necessary only that the core be able to resist shear in the radial

direction in planes perpendicular to the facings. In this analysis the

core is considered to be an orthotropic elastic body. It is unable to

resist deformations other than those just mentioned. This assumption

makes it possible to determine explicitly how the stresses vary through-

out the thickness of the core.

The facings are treated as shells.

Interdependance of the core and the facings is gained by equating

their displacements at the interfaces. To simplify the analysis the

core is assumed to extend to the middle surface of each facing.

Figure 1 shows the cylinder and the coordinates that are used.

Prebuckling Stresses 

Before buckling occurs the cylinder is in a state of uniform

compression. The axial load is carried by the facings since the core

material is assumed to be incapable of carrying load in this direction.

With facings of like material the stress is the same in both facings.
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If, in addition, the facings have the same thickness, then the loading

per unit length of facing, NZ or Nz l , will be the same. This means

that for a total load P,

2tra NZ + 2trb NZ' = P.

The calculation of stresses due to the lateral pressure is a

problem in rotational symmetry. Differential elements of the core and

of the facings are shown in figure 2.

Summing forces in the radial direction gives for the core

)(rr +r	 0 •
)r	 r

for the outer facing

aq - a (a-
r

)	 -N =0,

	

r = a	 0

and for the inner facing

b	 )	 - N, 1 =0.r r = b	 u	 -

	

Since 'a. = E	 •r	 c )1.

N
o 

=, Et (+11a	 , and
r= a

N t = Et (+11-)
b r = bo these equations can be solved for (rr e NO

and N 1 . The results are*0
aa- = q — kr	 r

N0 = qa (1 - k ), and

*For a more detailed derivation of these terms see Reference 1.



(1)

(2)

(3)
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N ' =qak where

k=

b Et log a 1 +
	a 	 E

c

As P and q increase, N , N 1 , N N I and cr
r
 also increase.

	

z	 z	 0' 0

Eventually a condition may be reached where a slight increase in load

causes the cylinder to lose its state of uniform compression and buckle

as a result of elastic instability. This buckling is assumed to cause

only a small change in the stress distribution. These small changes

will now be considered.

Buckling Stresses 

The Core

A free body diagram of an element of the core is shown in

figure 3.

Neglecting terms which are products of more than three differ-

entials, a summation of forces in the r, 0, and z direction gives

	

NY /.	 ro ,	 r z
Cr + r —+	 r	 - 0

Tra
2T re k°

T + r )T rz = 0rz
ar



Equation (2) may be integrated to give

T 	 fl (8) f l (z)ry r 2

Equation (3) may be integrated to give

A
r	 = 7 f (0) f (z)rz	 _ 2	 2

CT , T and T as defined in terms of u, v, and w are
r re	 rz

)u
CT = E
r	 cr

T = G E.101r_
r0	 r0 r

)/
T	 G	 )z + 6rrz	 rz

It is convenient to assume the displacements u, v and w in the form

Xu = f 1 (r) cos ne cos 7. z

v = f2

	

	 a
X(r) sin nO cos — z

w = f3 (r) cos n0 sin 2"- za

This form will permit a unique determination of f 1 (r), f 2 (r), and

f3 (r); assumes upon buckling n circumferential waves and in

longitudinal half waves; results in zero displacements in the radial

and circumferential directions at the ends; and imposes no moment

upon the facings at the ends.

From a consideration of equations (4), (5), (7), (8), (9), (10)

and (11) it is clear that

7.

(4)

(5)

(6)

(7)

(8)

(9)

(10)



A
T =rz r

X
cos no sin —a z. (13)

8.

f l (0) f l (z) = sin n	 Xcos z	 and

f 2 (0) f2 (z) = cos no sin 1 z,	 so that
a

Tr

	

	k9 = — sin no cos —a z and
r2

Substituting equation (9) into (6) and then equations (6), (12) and (13)

into equation (1) gives

6 f l (r) E	 +Er  
2 f/ (r) 

+
nB
— +

X
— A = 0	 (14)

c	 6r 2	r2	 a

which upon integration shows that

1
f 1 (r) = C + D log r + Al r + B 1 —2,	 (15)

Equations (9), (10) and (12) are substituted into equation (7) to give

B	 f2 (r) f2
;2- = Gre [ 1-11:(C + D log r + At r +7, ) + r	 - r(r) , (16)

from which

,f2 (r) = Fr + Cn + Dn (1 + log r) +	 r log r +
	 n .
	 (17)

Equations (9), (11) and (13) are substituted into equation (8) to give

A
= G zr [C + D log r + Al r +	 +  

6r
(r) ],	 (18)

from which

f3 (r) = K + A" (r 2 + log r) + Cr + Dr (log r - 1)

+ B log r.	 ( 1 9 )

It is convenient to have the constants of f 1 (r), f2 (r) and f 3 (r) in non-

dimensional form. Redefining the constants the following form is

obtained.



a 2
-F-u = (Aa + Br + C 	 + Da log 3: ) cos no cos  za

a2
v= [ -Ana + Bnr log 5: + C	 A-ne Dan (log + 1) +

9.

(20)

Fr ] sin ne cos z

w= [ Mr + Bak (
r2

2a2

z
-	 log — + Cka log -a-. + Dkra

(21)

(log — - 1) + La ] cos ne sin — za	 a

The Facings

Free body diagrams of a facing element showing the forces and

moments are shown in figures 4 and 5. It is necessary, in this type

of problem, to include components of forces which result from elastic

deformation of the element. The geometry of the situation is such that

it is difficult to write equations of equilibrium. It is safest to use

results obtained from a mathematical theory of thin shells. Such

theory, as developed by Osgood and Joseph (ref. 2), when applied to

cylindrical shells yields, for the outer facing at r = a, the following

equations

(22)
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12.

As is customary in such problems the stretching of the middle surface

is taken into account by substituting in equations (23) to (28)

Nz (1 + E 9 ) for Nz,

No (1 + e z ) for No,

and multiplying the surface forces by

(1 + e0 ) (1 + e z).

In these expressions

1 v
eo	 a )?,0	 a and

=E z

Nz and Ne of equations (23) to (28) are replaced by ( 	
27r (a + b)

LiNz) and [qa (1 - k) + AN0 ], and in the corresponding equations for the

,  P 
inner facing Nz' and Not are replaced by 21T	 + z ) and(a + b)

(qak + No, ). This is necessary because the forces in the buckled shell

are the prebuckling forces plus the forces due to buckling. The A Nz,

Nz' , /IN, and A N0' are the forces due to buckling which are later to

be expressed in terms of displacements.

All forces, moments, and twists other than the prebuckling forces

are considered to be small quantities resulting from the buckling. The

displacements u, v and w, and their derivatives, are also small quantities

resulting from the buckling. In equations (24) to (28) products of any two



such small quantities are neglected. Equation (26) is solved for Qe

and equation (27) for Q z. The results are substituted into equations

(23), (24) and (25). This gives:

13.
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rdr = (for outer facing), and

(for outer facing),

0 = - (T

Z = - (Trz)r = a

15.

(These equations are for the outer facing. A similar set is obtained for

the inner facing. ) Into equations (29), (30), and (31) expressions for

the forces, moments and twists in terms of 'the displacements (ref. 3)

are substituted. The surface forces

aR= qa - (q Trk + w	 ar) r = a (for outer facing) where q — k is the

prebuckling stress and frr the stress due to buckling,

are also expressed in terms of u, v and w and substituted into the three

equations.

This leads to three equations in terms of u,	 and w for the outer facing

and three similar equations for the inner facing. The equations for the

outer facing are:
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To achieve proper interaction, between the core and the facings, the

displacements of the middle surfaces of the facings are set equal to the

displacements of the core at r = a and r = b.

Thus displacements u, v and w in equations (32), (33), and (34)

are replaced by equations (20), (21), and (22) with r made equal to a.

In this manner three equations in six arbitrary constants (A, B, C, D,

L, and F) are written for the outer facing. In a like fashion three

equations are written for the inner facing. The coefficients of the six

arbitrary constants are shown in the form of a determinant on the

following page.



•

•

:•77

0	 01c	 'td'

..131"4
4.4

•

"te h.	 Z
et,	 7

n ...

N.,

b —.4I ::: 0 N::

-..r. "a .1 I
..e. . 2

''' •
aill 5 Z.'

".	 'T., 	..., -
nT.	 I,	 .

. L I ' 	1'	 ....	 ; 71
,	 I

/A	 I	 a 	 /



1 9.

It is possible to find simultaneous values of 4 and 4)
2
 for which

1

these six equations will be satisfied for any values of the arbitrary

constants. Mathematically this means that for such a combination of

loads the deflections are indeterminate. The shell becomes elastically

unstable and the loads that bring about this condition are called

critical loads.

Numerical Computations 

A literal solution of the sixth order determinant for the eigenvalues

is not feasible. A numerical solution, from which curves may be drawn,

is possible if a digital computer is used. A CPC Model 2 was available

to make computations. Even with the CPC the task seemed over-

whclming. If, however, E is made infinite, some of the terms of

determinant vanish. The assumption that E c is infinite is common in

work with sandwich construction and has been found to give satisfactory

results in most cases. The sixth order determinant with E c made

infinite is represented below:
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Al B 1 C11 0 F 1 L1

A2 B 2 C2 0 F 2

A3 U C3 0 F3 L3

A4 B 4 C4 0 F4 L4

A5 B5 C5 -V F5 L5

A6 B 6 C 6 + —a y F 6 L 6

This determinant is then reduced to a fourth order determinant shown

below:

A 1 C3 - C 1 A3 1

A2 C 3 - C2 A3 B2

A4 C 3 - C4 A3	B4

(A5 1
1.+ 

A6) C 3 - B5 +

C l L3 - L 1 C 3

C2 L3 - L2 C3

C4 L3 - L4 C3

(C 5	C6) L3 -

F 1 L3 - L 1 F 3

F 2 L3 - L2 F3

F4 L3 - L4 F 3

(F 5	F6) L 3 -

(C5 .1.1+ C 6) A 3 B 6 (L 5 12+ L6) C3
a

(L5 + L6) F3

The determinant is then programmed for the CPC. A trial and error

solution is made by substituting values of 4 1 or 4 2 until a value is

found that will make the determinant zero. This was done by finding

values on each side of zero and interpolating to find the eigenvalue.
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Discussion of Results

Since the problem is solved by numerical methods the results

are presented by the curves shown in figures 6, 7, 8 and 9. The

values of — = 0.97 and = 1, 000 were used for all of the curves.a

Figure 6 is a family of curves in which -4) 2 is plotted against

for different values of n. In these curves the values E	 = 10, 000ma	 Gre

and	 - 1, 000 were used. Such a set of curves is used in the
Grz

following manner.

Knowing --I of the cylinder one picks a value for m and n. Aa

value of -4 4 is determined by reading above ma on the corresponding

n curve. This procedure is repeated until the lowest possible value of

-4 2 is found. The axial load under which the cylinder will buckle can

then be determined.

The curves of figure 7 differ from those of figure 6 as a result of

making a and at zero. This is equivalent to neglecting the bending

stiffnesses of the facings. A comparison of the curves of figure 7 with

those of figure 6 shows that for values of — greater than 0. 15 there isma

little difference. It can be concluded that only for very short cylinders

need the bending stiffnesses of the facings be considered. For ma
less than 0. 15 the curves of figure 7 approach
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b
Grz a (1 - 1.1.

2
) (1 -	

2

-4) 2 - 

	

	
Et log 7. (1 + 5-)

This value is obtained by making n and 1 zero and expanding the

determinant. Solving for Nz and replacing log -a by the first term

of its series expansion shows that

N _ (a - b) 

1+ b
	 rz

a

The curves of figure 8 are the result of increasing Grz and Gre

tenfold. The value of -4 2 corresponding to

N =
(a - b)

1 + b
a

Grz

appears as a flattening of the curve in the region of 	 = 0.01. For
ma

smaller values of 
I ma

the curve rises due to the stiffness of the

facings. For values of	 greater than 0. 1 the curves show a
ma

considerably lower buckling load.

From a comparison of figures .6 and 8 it appears that as G rz is

decreased the buckling load for all cylinders, except those long enough

to fail as an Euler column, will approach

7,T _ (a - b) G

'z	 b	 rz
1 + —

a



23.

This limit has been recognized (ref. 4) as the critical load for shells

with a low value of G. It should be noted that this load depends onlyrz

upon the thickness and the modulus of rigidity of the core.

Figure 9 shows curves of -4, plotted against I	 for different
ma

values of n14)2 for these curves was taken to be

41
2

2 (1 + -;)

This represents the case for an end load equal to qira 2 . The situation

is like that of a cylinder, with ends, under uniform pressure. The ends

of course stiffen the cylinder, but, if the cylinder is not too short,

reasonable results can be expected. Since 4 1 decreases as I	 is
ma

increased it must be concluded that the •cylinder will buckle with m = 1.

The critical pressure can be determined by reading 41 from the lowest

n curve.

Conclusions

Although only a few curves were drawn it is apparent that this

analysis is helpful in understanding the effect produced by a variation

of the parameters that enter the problem. Further study is required

before it will be known whether the actual buckling load may be predicted.

It is felt that the method by which this problem is solved can be

applied with advantage to many problems of sandwich construction.

Unfortunately in most cases a numerical solution will be required.
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