ELASTIC STABILITY OF

CYLINDRICAL SANDWICH SHELLS

UNDER AXIAL AND LATERAL LOAD

(Report)
No. 1852
July 1955

This Report is One of a Series
issued in cooperation with the
ANC-23 PANEL ON SANDWICH CONSTRUCTION
of the Departments of the
AIR FORCE, NAVY, AND COMMERCE

UNITED STATES DEPARTMENT OF AGRICULTURE

ELASTIC STABILITY OF CYLINDRICAL SANDWICH SHELLS UNDER AXIAL AND LATERAL LOAD ${ }^{1}$

By

eVErett eugene haft, Engineer
Forest Products Laboratory, ${ }^{2}$ Forest Service
U. S. Department of Agriculture

Summary

A linear solution for the determination of the loads under which a cylindrical sandwich shell will buckle is presented. The facings of the sandwich cylinder are treated as cylindrical shells and the core as an orthotropic elastic body. The method of solution is of interest in that it is of sufficient generality to be applied to many problems in sandwich analysis. The characteristic determinant that represents the solution to the problem is solved numerically. Curves that show how the buckling load changes as the parameters of the problem change are given.

[^0]
Introduction

Sandwich construction is a result of the search for a strong, stiff, and yet light weight material. It is usually made by gluing relatively thin sheets of a strong material to the faces of relatively thick but light weight, and often weak, material. The outer sheets are called "facings" and the inner layer is called the "core."

Such a layered system presents difficult design problems. What is offered here is a straightforward method for dealing with some of these problems.

The problem to which the method is applied is that of the elastic stability of a sandwich cylinder under uniform external lateral load and uniform axial load.
$\mathbf{r}, \theta, \mathbf{z}$
a
b
t
ℓ

E
μ

G
E_{c}
$\mathbf{G}_{\mathbf{r} \theta}$
$G_{r z}$
q
k
σ_{r}
$\boldsymbol{T}_{\mathbf{r} \theta} \boldsymbol{\prime}^{\boldsymbol{T}} \mathbf{r z}^{\mathbf{r}}$
$\mathbf{u}, \mathrm{v}, \mathrm{w}$
n
radial, tangential, and longitudinal coordinates, respectively
radius to middle surface of outer facing radius to middle surface of inner facing thickness of each facing
length of cylinder modulus of elasticity of facings

Poisson's ratio of facings modulus of rigidity of facings modulus of elasticity of core in direction normal to facings
modulus of rigidity of core in $r \theta$ plane modulus of rigidity of core in ri plane intensity of uniform external lateral loading
\qquad
Et $\log b$
$1+\frac{b}{a}-\frac{E_{c} a}{a}$
normal stress in core in radial direction
transverse shear stresses in core
radial, tangential, and longitudinal displacements, respectively
number of waves in circumference of buckled cylinder
number of half waves in length of buckled cylinder
λ
$\frac{m \pi a}{\ell}$
$\delta_{n \theta}$
$\frac{E_{c}}{2 G_{r \theta}}-\frac{n^{2}}{2}$
δ_{z}

$$
\frac{E_{c}}{G_{r Z}}
$$

$N_{\theta}, N_{z}, N_{\theta z} \quad$ normal forces and shear force per unit length of facing
$Q_{\theta}, Q_{z} \quad$ transverse shear forces per unit length of facing
$M_{\theta}, M_{z} \quad$ bending moments per unit length of facing
$\mathrm{M}_{\mathrm{z} \theta}, \mathrm{M}_{\theta \mathrm{z}} \quad$ twisting moments per unit length of facing
$R, \theta, Z \quad$ surface forces per unit area of facing
β
$\frac{E_{c} a\left(1-\mu^{2}\right)}{E t}$
ϕ_{1}
$\frac{\text { qa }\left(1-\mu^{2}\right)}{E t}$
ϕ_{2}

a
$\frac{t^{2}}{12 a^{2}}$
a^{\prime} $\frac{t^{2}}{12 b^{2}}$
\log natural logarithm
$A, B, C, D, K, L, A^{\prime}, B^{\prime}, A^{\prime}, B^{\prime \prime} \quad$ arbitrary constants
note -- any of the above terms that appear with a prime (as $\mathrm{N}_{\mathrm{z}}{ }^{\prime}$) refer to the inner facing.

As previously stated, the core is relatively weak. Because of the high strength of the facings the core need carry little tension or compression except in a direction perpendicular to the facings. The facings are able to resist shearing deformation in their plane and it is necessary only that the core be able to resist shear in the radial direction in planes perpendicular to the facings. In this analysis the core is considered to be an orthotropic elastic body. It is unable to resist deformations other than those just mentioned. This assumption makes it possible to determine explicitly how the stresses vary through out the thickness of the core.

The facings are treated as shells.
Interdependance of the core and the facings is gained by equating their displacements at the interfaces. To simplify the analysis the core is assumed to extend to the middle surface of each facing.

Figure 1 shows the cylinder and the coordinates that are used.

Prebuckling Stresses

Before buckling occurs the cylinder is in a state of uniform compression. The axial load is carried by the facings since the core material is assumed to be incapable of carrying load in this direction. With facings of like material the stress is the same in both facings.

If, in addition, the facings have the same thickness, then the loading per unit length of facing, N_{z} or N_{z}, will be the same. This means that for a total load \underline{P},

$$
2 \pi a N_{z}+2 \pi b N_{z}^{\prime}=P
$$

The calculation of stresses due to the lateral pressure is a problem in rotational symmetry. Differential elements of the core and of the facings are shown in figure 2 .

Summing forces in the radial direction gives for the core

$$
\frac{\partial \sigma_{r}}{\partial r}+\frac{\sigma_{r}}{r}=0
$$

for the outer facing

$$
a q-a\left(\sigma_{r}\right)_{x=a}-N_{\theta}=0
$$

and for the inner facing

$$
b\left(\dot{\sigma}_{r}\right)_{r=b}-N_{\theta}^{\prime}=0
$$

Since $\sigma_{r}=E_{c} \frac{\partial u}{\partial r}$,

$$
\begin{aligned}
& N_{\theta}=E t\left(+\frac{u}{a}\right)_{r}=a^{\prime} \text {, and } \\
& N_{\theta}^{\prime}=E t\left(+\frac{u}{b}\right)_{r=b} \text {, these equations can be solved for } \sigma_{r}, N_{\theta}
\end{aligned}
$$

and $\mathrm{N}_{\theta}{ }^{\prime}$. The results are*

$$
\begin{aligned}
& \sigma_{r}=q \frac{a}{r} k \\
& N_{\theta}=q a(1-k), \text { and }
\end{aligned}
$$

$$
\mathbf{N}_{\theta}^{\prime}=q a k \quad \text { where } \quad \frac{1}{1+\frac{b}{a}-\frac{E t \log \frac{b}{a}}{E c_{c}}}
$$

As P and q increase, $N_{z}, N_{z}^{\prime}, N_{\theta^{\prime}} N_{\theta^{\prime}}^{\prime}$, and σ_{r} also increase.
Eventually a condition may be reached where a slight increase in load causes the cylinder to lose its state of uniform compression and buckle as a result of elastic instability. This buckling is assumed to cause only a small change in the stress distribution. These small changes will now be considered.

Buckling Stresses

The Core
A free body diagram of an element of the core is shown in

figure 3.

Neglecting terms which are products of more than three differentials, a summation of forces in the r, θ, and z direction gives

$$
\begin{align*}
& \sigma_{r}+r \frac{\partial \sigma_{r}}{\partial r}+\frac{\partial \tau_{r} \theta}{\partial \theta}+r \frac{\partial \tau_{r z}}{\partial z}=0 \tag{1}\\
& r \frac{\partial \tau_{r a}}{\partial r}+2_{r} \tau_{r \theta}=0 \tag{2}\\
& \boldsymbol{T}_{r z}+r \frac{\partial \tau_{r z}}{\partial r}=0 \tag{3}
\end{align*}
$$

Equation (2) may be integrated to give

$$
\begin{equation*}
T_{r \theta}=\frac{B}{r^{2}} f_{1}(\theta) f_{1}(z) \tag{4}
\end{equation*}
$$

Equation (3) may be integrated to give

$$
\begin{align*}
& \boldsymbol{T}_{\mathbf{r z}}=\frac{\mathrm{A}}{\boldsymbol{r}} \mathrm{f}_{2}(\theta) \mathrm{f}_{2}(\mathrm{z}) \tag{5}\\
& \sigma_{r}, \tau_{r \theta} \text { and } \tau_{r z} \text { as defined in terms of } u, v \text {, and ware } \\
& \boldsymbol{\sigma}_{\boldsymbol{r}}=\boldsymbol{E}_{\mathbf{c}} \frac{\partial u}{\partial r} \tag{6}\\
& \boldsymbol{T}_{r \theta}=\mathbf{G}_{\mathbf{r} \theta}\left[\frac{1}{r} \frac{\partial u}{\partial \theta}+\frac{\partial v}{\partial r}-\frac{v}{r}\right] \tag{7}\\
& \mathbf{T}_{\mathbf{r} \mathbf{Z}} \neq \mathbf{G}_{\mathbf{r} \mathbf{Z}}\left[\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}\right] \tag{8}
\end{align*}
$$

It is convenient to assume the displacements u, v and w in the form

$$
\begin{align*}
& u=f_{1}(r) \cos n \theta \cos \frac{\lambda}{a} z \tag{9}\\
& v=f_{2}(r) \sin n \theta \cos \frac{\lambda}{a} z \tag{10}\\
& w=f_{3}(r) \cos n \theta \sin \frac{\lambda}{a} z \tag{11}
\end{align*}
$$

This form will permit a unique determination of $f_{1}(r), f_{2}(r)$, and $f_{3}(r)$; assumes upon buckling n circumferential waves and m longitudinal half waves; results in zero displacements in the radial and circumferential directions at the ends; and imposes no moment upon the facings at the ends.

From a consideration of equations (4), (5), (7), (8), (9), (10) and (II) it is clear that

$$
\begin{align*}
& f_{1}(\theta) f_{1}(z)=\sin n \theta \cos \frac{\lambda}{a} z \\
& f_{2}(\theta) f_{2}(z)=\cos n \theta \sin \frac{\lambda}{a} z, \text { so that } \\
& r_{r \theta}=\frac{B}{r^{2}} \sin n \theta \cos \frac{\lambda}{a} z \text { and } \tag{12}\\
& T_{r z}=\frac{A}{r} \cos n \theta \sin \frac{\lambda}{a} z . \tag{13}
\end{align*}
$$

Substituting equation (9) into (6) and then equations (6), (12) and (13) into equation (1) gives

$$
\begin{equation*}
E_{c} \frac{\partial f_{1}(r)}{\partial r}+E_{c} r \frac{\partial^{2} f_{1}(r)}{\partial r^{2}}+\frac{n B}{r^{2}}+\frac{\lambda}{a} A=0 \tag{14}
\end{equation*}
$$

which upon integration shows that

$$
\begin{equation*}
f_{1}(r)=C+D \log r+A^{\prime} r+B^{\prime} \frac{1}{r} \tag{15}
\end{equation*}
$$

Equations (9), (10) and (12) are substituted into equation (7) to give

$$
\begin{equation*}
\frac{B}{r^{2}}=G_{r \theta}\left[\frac{n}{r}\left(C+D \log r+A^{\prime} r+\frac{B^{\prime}}{r}\right)+\frac{\partial f_{2}(r)}{\partial r}-\frac{f_{2}(r)}{r}\right] \tag{16}
\end{equation*}
$$

from which

$$
\begin{equation*}
f_{2}(r)=F r+C n+D n(1+\log r)+A^{\prime} n r \log r+\frac{B^{\prime \prime} n}{r} \tag{17}
\end{equation*}
$$

Equations (9), (11) and (13) are substituted into equation (8) to give

$$
\begin{equation*}
\frac{A}{r}=G_{r z}\left[C+D \log r+A^{\prime} r+B^{\prime} \frac{1}{r}+\frac{\partial f_{3}(r)}{\partial r}\right] \tag{18}
\end{equation*}
$$

from which

$$
\begin{align*}
& f_{3}(r)=K+A^{\prime \prime}\left(r^{2}+\log r\right)+C r+\operatorname{Dr}(\log r-1) \\
& +B \log r . \tag{19}
\end{align*}
$$

It is convenient to have the constants of $f_{1}(r), f_{2}(r)$ and $f_{3}(r)$ in nondimensional form. Redefining the constants the following form is obtained.

$$
\begin{align*}
u= & \left(A a+B r+C \frac{a^{2}}{r}+D a \log \frac{r}{a}\right) \cos n_{\theta} \cos \frac{\lambda}{a} z \tag{20}\\
v= & {\left[-A n a+B n r \log \frac{r}{a}+C \frac{a^{2}}{n r} \delta_{n \theta}-D \ln \left(\log \frac{r}{a}+1\right)+\right.} \\
& F r] \sin n \theta \cos \frac{\lambda}{a} z \tag{21}\\
w= & {\left[A \lambda r+B a \lambda\left(\frac{r^{2}}{2 a^{2}}-\frac{\delta_{z}}{\lambda^{2}} \log \frac{r}{a}\right)+C \lambda a \log \frac{r}{a}+D \lambda r\right.} \\
& \left.\left(\log \frac{r}{a}-1\right)+L a\right] \cos n \theta \sin \frac{\lambda}{a} z \tag{22}
\end{align*}
$$

The Facings

Free body diagrams of a facing element showing the forces and moments are shown in figures 4 and 5. It is necessary, in this type of problem, to include components of forces which result from elastic deformation of the element. The geometry of the situation is such that it is difficult to write equations of equilibrium. It is safest to use results obtained from a mathematical theory of thin shells. Such theory, as developed by Osgood and Joseph (ref. 2), when applied to cylindrical shells yields, for the outer facing at $r=a$, the following equations
$\underset{\sim}{N}$
(25)
©
$\stackrel{\uparrow}{N}$

ΣM_{r}	$=0=M_{z}\left(\frac{\partial^{2} u}{\partial z} \partial^{\theta}\right.$
$\left.-\frac{\partial v}{\partial z}\right)-M_{\theta}\left(\frac{\partial^{2} u}{\partial \theta \partial z}-\frac{\partial v}{\partial z}\right)+a M_{z \theta} \frac{\partial^{2} u}{\partial z^{2}}-M_{\theta z}\left(1-\frac{1}{a} \frac{\partial^{2} u}{\partial^{2}}+\frac{1}{a} \frac{\partial v}{a \theta}\right)-$	
	$a\left(N_{z \theta}-N_{\theta z}\right)-a\left(N_{z}-N_{\theta}\right)\left(\frac{\partial v}{\partial z}+\frac{1}{a} \frac{\partial w}{\partial \theta}\right)$

As is customary in such problems the stretching of the middie surface is taken into account by substituting in equations (23) to (28)

$$
\begin{aligned}
& N_{z}\left(1+\epsilon_{\theta}\right) \text { for } N_{z}, \\
& N_{\theta}\left(1+\epsilon_{z}\right) \text { for } N_{\theta}
\end{aligned}
$$

and multiplying the surface forces by

$$
\left(1+\epsilon_{\theta}\right)\left(1+\epsilon_{z}\right) .
$$

In these expressions
$\epsilon_{\theta}=\frac{1}{a} \frac{\partial v}{\partial \theta}+\frac{u}{a}$ and
$\epsilon_{z}=\frac{\partial w}{\partial z}$.
N_{z} and N_{θ} of equations (23) to (28) are replaced by $\left(\frac{P}{2 \pi(a+b)}+\right.$
ΔN_{z}) and $\left[q a(1-k)+\Delta N_{\theta}\right]$, and in the corresponding equations for the inner facing N_{z} and $N_{\theta^{\prime}}^{\prime}$ are replaced by $\left(\frac{P}{2 \pi(a+b)}+\Delta N_{z}{ }^{\prime}\right)$ and $\left(q a k+\Delta N_{\theta}{ }^{\prime}\right)$. This is necessary because the forces in the buckled shell are the prebuckling forces plus the forces due to buckling. The ΔN_{z}, $\Delta N_{z}^{\prime}, \Delta N_{\theta}$, and $\Delta N_{\theta}^{\prime}$ are the forces due to buckling which are later to be expressed in terms of displacements.

All forces, moments, and twists other than the prebuckling forces are considered to be small quantities resulting from the buckling. The displacements u, v and w, and their derivatives, are also small quantities resulting from the buckling. In equations (24) to (28) products of any two
such small quantities are neglected. Equation (26) is solved for Q_{θ} and equation (27) for Q_{z}. The results are substituted into equations (23), (24) and (25). This gives:

$$
\begin{aligned}
& \text { 区 } \\
& \text { (31) }
\end{aligned}
$$

$\Sigma F_{z}=0=a \frac{\partial\left(\Delta N_{z}\right)}{\partial z}+\frac{\partial N_{\theta z}}{\partial \theta}-q a(1-k)\left(\frac{\partial^{2} v}{\partial z \partial \theta}+\frac{\partial u}{\partial z}\right)+a z$
$\Sigma F_{\theta}=0=a \frac{\partial N_{z \theta}}{\partial z}+\frac{\partial\left(\Delta N_{\theta}\right)}{\partial \theta}+\frac{\partial M_{z \theta}}{\partial z}-\frac{1}{a} \frac{\partial M_{\theta}}{\partial \theta}-N_{z} \frac{\partial^{2} w}{\partial z \partial \theta}+a \theta$
$\Sigma F_{r}=0=-a \frac{\partial^{2} M_{z}}{\partial^{2}}-\frac{\partial^{2} M_{\theta z}}{\partial \theta \partial z}+\frac{\partial^{2} M_{z \theta}}{\partial z z^{2}}-\frac{1}{a} \frac{\partial^{2} M_{\theta}}{\partial^{2}}+a N_{z} \frac{\partial^{2} u}{\partial z^{2}}-q a(1-k)$
$\left(1-\frac{1}{a} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{1}{a} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}\right)+\Delta N_{\theta}+a R\left(1-\frac{1}{a} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{1}{a} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z}\right)=0$
(These equations are for the outer facing. A similar set is obtained for the inner facing.) Into equations (29), (30), and (31) expressions for the forces, moments and twists in terms of the displacements (ref. 3) are substituted. The surface forces

$$
R=q a-\left(q \frac{a}{r} k+\Delta \sigma_{r}\right)_{r}=a \quad \text { (far outer facing) where } q \frac{a}{r} k \text { is the }
$$ prebuckling stress and $\Delta \sigma_{r}$ the stress due to buckling,

$$
\begin{array}{ll}
\theta=-\left(\tau_{r \theta}\right)_{r}=a & \text { (for outer facing), and } \\
Z=-\left(\tau_{r Z}\right)_{r}=a & \text { (for outer facing), }
\end{array}
$$

are also expressed in terms of u, v and w and substituted into the three equations.

This leads to three equations in terms of u, v, and w for the outer facing and three similar equations for the inner facing. The equations for the outer facing are:

To achieve proper interaction, between the core and the facings, the displacements of the middle surfaces of the facings are set equal to the displacements of the core at $x=a$ and $r=b$.

Thus displacements u, v and w in equations (32), (33), and (34) are replaced by equations (20), (21), and (22) with r made equal to a. In this manner three equations in six arbitrary constants (A, B, C, D, L, and F) are written for the outer facing. In a like fashion three equations are written for the inner facing. The coefficients of the six arbitrary constants are shown in the form of a determinant on the following page.

$\begin{aligned} & =\left[-\mu \lambda+k \phi_{1}(1-k)\right]- \\ & =\left[-\frac{1+\mu}{2} n \lambda+n \lambda \theta_{1}(1-k)\right]+ \\ & \Leftrightarrow\left[-\lambda^{2}-\frac{1-\mu}{2} n^{2}\right] \end{aligned}$	$\begin{aligned} & =\left[-\mu \lambda+\mu_{1}(1-k)\right]+ \\ & \frac{A x}{2}\left[\left.-x^{2}-\frac{1-\mu}{2} n^{2} \right\rvert\,+\right. \\ & \frac{2}{\lambda} \beta \end{aligned}$	$\begin{aligned} & a\left[-\mu x+x_{1}(1-k)\right] . \\ & \frac{2}{n} \delta_{n 0}\left[-\frac{\left.1+\frac{1}{2} n n+n \phi_{1}(1-k)\right]}{}\right. \end{aligned}$	$\begin{aligned} & -\pi=\left\lvert\,-\frac{\mid+1}{2} n x+n \lambda \phi_{1}(1-k\| \|-\right. \\ & n A\left\|-x^{2}-\frac{1-\mu}{2} n^{2}\right\| \end{aligned}$		$=\left[-x^{x} \cdot \frac{1-2}{2} n^{2}\right]$
$\begin{aligned} & \text { - }\left[-\mu \lambda \frac{b}{2}+x \frac{b}{2}+1^{k}\right] \text {. } \\ & n=\left[-\frac{1+\mu}{2} n \lambda \frac{b}{2}+n \lambda \frac{2}{2} \phi_{1} k\right]+ \\ & \text { s }\left[-x^{2} \frac{b^{2}}{2^{2}}-\frac{1-\mu}{2} n^{2}\right] \end{aligned}$		$\frac{a^{2}}{b}\left[-\mu \frac{b}{a}+x \frac{b}{a} \phi_{1} k\right] \quad$ $x \log \frac{b}{x}\left(-x^{2} \frac{b^{2}}{a^{2}}-\frac{1-\mu}{2} n^{2}\right)$	$2 \log \frac{b}{a}\left[-\mu x \frac{b}{a}+x \frac{b}{2} \phi_{1} k\right]$ $x \mathrm{x}\left(\log \frac{b}{4}-1\right)\left[-x^{2} \frac{b^{2}}{2^{2}}-\frac{1-\mu}{2} n^{2} 1\right.$		$=\left[-x^{2} \frac{b^{2}}{z^{2}}-\frac{1-\mu}{2} z^{2}\right]$
	$\begin{aligned} & =\left[-n-a^{3} \cdot \cos k^{2}\right]+ \\ & \frac{2 \pi}{2}\left[\left.\cdot \frac{1+n}{z} \cdots n_{k}+3 n t_{2} \right\rvert\,\right. \end{aligned}$	$=1 \cdot n \cdot a n^{3}-\operatorname{con}^{2} 1+$ $\begin{aligned} & \frac{2}{n} b_{n O}\left[-\frac{1-\mu}{2} n^{2}-n^{2} \cdot a n^{2}\left(1-\mu \mu^{2} n^{2} \mid 1\right.\right. \\ & \frac{2}{n} \beta \end{aligned}$	$\begin{aligned} & =a n\left[\left.-\frac{1-\mu}{2} x^{2}-n^{2} \cdot m^{2} \cdot\{1-\mu) x^{2} \right\rvert\,=\right. \\ & 4\left[-\frac{1+\mu}{2} n x+\operatorname{An} \phi 2\right] \end{aligned}$	$2+\frac{1-\mu}{2} x^{2}-n^{2}+a^{2}-(1-\omega) a x^{2} 1$	
				bl $-\frac{1-4}{2} x^{2} \frac{b^{2}}{a^{2}} \cdot n^{2} \cdot \cdots a^{2}-(1-\mu)+x^{2} \frac{b^{2}}{a^{2}}$	
$\begin{aligned} & \left.\left.=1-1-a x^{4}\right]-a n^{4}-2 a x^{2} n^{2}-x^{2}+2+(1-k) \phi_{1}-(1-k) n^{2}+1\right]- \\ & n=\left[-n-a n^{3}-(2-n) \operatorname{an} x^{2} 1+\right. \\ & x=[-\mu x] \end{aligned}$	$\begin{aligned} & a\left[-1-a \lambda^{4} \cdot m^{4}-20 a^{2} n^{2} \cdot x^{2} \phi_{2}+(1-k) \phi_{1}-(1-k) n^{2} \phi_{1}\right]+ \\ & \frac{2 x}{2}[-\mu x] \text {. } \\ & a \beta \end{aligned}$			$\cdots \mathrm{F}-\mathrm{n}-\mathrm{cos}^{3}-(2-\mu) \cos ^{2} \mathrm{l}$	* $1-\infty$]
			b β	$01 \cdot n \cdot \cos ^{3} \cdot(2-\mu) \operatorname{cin}^{2} \frac{b^{2}}{2^{2}}$	- $\left(-\mu \times \frac{b}{2}\right)$

It is possible to find simultaneous values of ϕ_{1} and ϕ_{2} for which these six equations will be satisfied for any values of the arbitrary constants. Mathematically this means that for such a combination of loads the deflections are indeterminate. The shell becomes elastically unstable and the loads that bring about this condition are called critical loads.

Numerical Computations

A literal solution of the sixth order determinant for the eigenvalues is not feasible. A numerical solution, from which curves may be drawn, is possible if a digital computer is used. A CPC Model 2 was available to make computations. Even with the CPC the task seemed overwhclming. If, however, E_{c} is made infinite, some of the terms of determinant vanish. The assumption that E_{c} is infinite is common in work with sandwich construction and has been found to give satisfactory results in most cases. The sixth order determinant with E_{c} made infinite is represented below:

A_{1}	B_{1}	C_{1}	0	F_{1}	L_{1}
A_{2}	B_{2}	C_{2}	0	F_{2}	L_{2}
A_{3}	0	C_{3}	0	F_{3}	L_{3}
A_{4}	B_{4}	C_{4}	0	F_{4}	L_{4}
A_{5}	B_{5}	C_{5}	$-\gamma$	F_{5}	L_{5}
A_{6}	B_{6}	C_{6}	$+\frac{b}{a} \gamma$	F_{6}	L_{6}

This determinant is then reduced to a fourth order determinant shown below:
$\mathrm{A}_{1} \mathrm{C}_{3}-\mathrm{C}_{1} \mathrm{~A}_{3} \quad \mathrm{~B}_{1} \quad \mathrm{C}_{1} \mathrm{~L}_{3}-\mathrm{L}_{1} \mathrm{C}_{3} \quad \mathrm{~F}_{1} \mathrm{~L}_{3}-\mathrm{L}_{1} \mathrm{~F}_{3}$
$A_{2} C_{3}-C_{2} A_{3}$
B_{2}
$C_{2} L_{3}-L_{2} C_{3}$
$\mathrm{F}_{2} \mathrm{~L}_{3}-\mathrm{L}_{2} \boldsymbol{F}_{3}$
$A_{4} C_{3}-C_{4} A_{3}$
B_{4}
$C_{4} L_{3}-L_{4} C_{3}$
$\mathrm{F}_{4} \mathrm{~L}_{3}-\mathrm{L}_{4} \mathrm{~F}_{3}$
$\left(A_{5} \frac{b}{a}+A_{6}\right) C_{3}-$
$\mathrm{B}_{5} \frac{\mathrm{~b}}{\mathrm{a}}+$
$\left(C_{5} \frac{b}{a}+C_{6}\right) L_{3}-$
$\left(F_{5} \frac{b}{a}+F_{6}\right) L_{3}$ -
$\left(C_{5} \frac{b}{a}+C_{6}\right) A_{3}$
B_{6}
$\left(L_{5} \frac{b}{a}+L_{6}\right) C_{3}$
$\left(L_{5} \frac{b}{a}+L_{6}\right) F_{3}$

The determinant is then programmed for the CPC. A trial and error solution is made by substituting values of ϕ_{1} or ϕ_{2} until a value is found that will make the determinant zero. This was done by finding values on each side of zero and interpolating to find the eigenvalue.

Discussion of Results

Since the problem is solved by numerical methods the results are presented by the curves shown in figures 6, 7, 8 and 9. The
values of $\frac{b}{a}=0.97$ and $\frac{a}{t}=1,000$ were used for all of the curves.
Figure 6 is a family of curves in which $-\phi_{2}$ is plotted against
$\frac{\ell}{m a}$ for different values of n. In these curves the values $\frac{E}{G_{r \theta}}=10,000$
and $\frac{E}{G_{r z}}=1,000$ were used. Such a set of curves is used in the
following manner.
Knowing $\frac{\ell}{a}$ of the cylinder one picks a value for m and $n . A$ value of $-\phi_{2}$ is determined by reading above $\frac{l}{m a}$ on the corresponding n curve. This procedure is repeated until the lowest possible value of $-\phi_{2}$ is found. The axial load under which the cylinder will buckle can then be determined.

The curves of figure 7 differ from those of figure 6 as a result of making a and a^{\prime} zero. This is equivalent to neglecting the bending stiffnesses of the facings. A comparison of the curves of figure 7 with those of figure 6 shows that for values of $\frac{\ell}{\text { ma }}$ greater than 0.15 there is little difference. It can be concluded that only for very short cylinders need the bending stiffnesses of the facings be considered. For $\frac{\ell}{m a}$ less than 0.15 the curves of figure 7 approach

$$
-\phi_{2}=\frac{G_{r z} a\left(1-\mu^{2}\right)\left(1-\frac{b}{a}\right)^{2}}{E t \log \frac{b}{a}\left(1+\frac{b}{a}\right)}
$$

This value is obtained by making n and ℓ zero and expanding the determinant. Solving for N_{z} and replacing $\log \frac{b}{a}$ by the first term of its series expansion shows that

$$
N_{z}=-\frac{(a-b)}{1+\frac{b}{a}} G_{r z}
$$

The curves of figure 8 are the result of increasing $G_{r z}$ and $G_{r \theta}$
tenfold. The value of $-\phi_{2}$ corresponding to

$$
N_{z}=-\frac{(a-b)}{1+\frac{b}{a}} G_{x z}
$$

appears as a flattening of the curve in the region of $\frac{\ell}{\mathrm{la}}=0.01$. For smaller values of $\frac{\ell}{m a}$ the curve rises due to the stiffness of the facings. For values of $\frac{l}{m a}$ greater than 0.1 the curves show a considerably lower buckling load.

From a comparison of figures 6 and 8 it appears that as $G_{r z}$ is decreased the buckling load for all cylinders, except those long enough to fail as an Euler column, will approach

$$
N_{z}=-\frac{(a-b)}{1+\frac{b}{a}} G_{r z}
$$

This limit has been recognized (ref. 4) as the critical load for shells with a low value of $G_{r z}$. It should be noted that this load depends only upon the thickness and the modulus of rigidity of the core.

Figure 9 shows curves of $-\phi_{1}$ plotted against $\frac{\ell}{m a}$ for different values of $n_{1} \phi_{2}$ for these curves was taken to be

$$
\phi_{2}=\frac{\phi_{1}}{2\left(1+\frac{b}{a}\right)}
$$

This represents the case for an end load equal to $q \pi a^{2}$. The situation is like that of a cylinder, with ends, under uniform pressure. The ends of course stiffen the cylinder, but, if the cylinder is not too short, reasonable results can be expected. Since ϕ_{1} decreases as $\frac{\ell}{\mathrm{ma}}$ is increased it must be concluded that the cylinder will buckle with $\mathrm{m}=1$. The critical pressure can be determined by reading ϕ_{1} from the lowest n curve.

Conclusions

Although only a few curves were drawn it is apparent that this analysis is helpful in understanding the effect produced by a variation of the parameters that enter the problem. Further study is required before it will be known whether the actual buckling load may be predicted.

It is felt that the method by which this problem is solved can be applied with advantage to many problems of sandwich construction. Unfortunately in most cases a numerical solution will be required.

References

(1) Raville, M. E. "Analysis of Long Cylinders of Sandwich Construction under Uniform External Lateral Pressurel (in: Forest Products Laboratory Report No. 1844. Nov. 1954).
(2) Osgood, W. R., and Joseph, J. A. "On the General Theory of Thin Shells' (in: Journal of Applied Mechanics, Vol. 17, No. 4, Dec. 1950).
(3) Timoshenko, S. "Theory of Elastic Stability" lst ed., N. Y. 1936.
(4) Teichmann, F. K., Wang, C., Gerard, G. "Buckling of Sandwich Cylinders Under Axial Compression' (in: Journal of the Aeronautical Sciences, Vol. 18, No. 6, June 1951).

Figure 1.--Sandwich cylinder.

2 M 106 9.38

Figure 2, --Differential elements of core and facing before buckling.
Z M 206899

Figure 3. --Differential element of core.

Figure 4. --Differential element of facing showing forces.

Figure 5. - - Differential element of facing ohowing momente and twists.

Figure 7.--Critical axial load in terms of ϕ_{2} verdus $\frac{I}{m a}$

Figure 8. --Critical axial load in terme of ϕ_{2} versus $\frac{1}{m a}$

Figure 9. - Critical presaure in terms of ϕ_{1} versus $\frac{\ell}{\operatorname{lna}}$
z M 206306

[^0]: $\underline{1}^{1}$ This report is one of a series prepared by the Forest Products Laboratory under U. S. Navy, Bureau of Aeronautics Order No. 01593.
 ${ }_{-}^{2}$ Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

