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Summary

A linear solution for the determination of the loads under which
a cylindrical sandwich shell will buckle is presented. The facings of
the sandwich cylinder are treated as cylindrical shells and the core as
an orthotropic elastic body. The method of solution is of interest in that
it is of sufficient generality to be applied to many problems in sandwich
analysis. The characteristic determinant that represents the solution to
the problem is solved numerically. Curves that show how the buckling

load changes as the parameters of the problem change are given.
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Introduction

Sandwich construction is a result of the search for a strong, stiff,
and yet light weight material. It is usually made by gluing relatively
thin sheets of a strong material to the faces of relatively thick but
light weight, and often weak, material. The outer sheets are called
"facings'" and the inner layer is called the 'core."

Such a layered system ‘presents difficult design problems. What
is offered here is a straightforward method for dealing with some of
these problems.

The problem to which the method is applied is that of the elastic

stability of a sandwich cylinder under uniform external lateral load

and uniform axial load.




Notation
r, 0, z radial, tangential, and longitudinal coordinates,
respectively
a radius to middle surface of outer facing
b radius to middle surface of inner facing
t thickness of each facing
2 length of cylinder
E modulus of elasticity of facings

Poisson's ratio of facings

G modulus of rigidity of facings
| Ec modulus of elasticity of core in direction normal to
. facings
|
G.g modulus of rigidity of core in r8 plane
Grz modulus of rigidity of core in rz plane
q intensity of uniform external lateral loading
k 1
I
Et log b
1 + =« 2
a E a
(&
o, normal stress in core in radial direction
T , T transverse shear stresses in core
rd rz
u, v, w radial, tangential, and longitudinal displacements,
respectively
n number of waves in circumference of buckled
cylinder

m number of half waves in length of buckled cylinder




Y mma
1
510 E. . _11_2;
ZGrG 2
6, Ec
G2
Ne, Nz’ Nez normal forces and shear force per unit length of
facing
Qg Qg transverse shear forces per unit length of facing
Mg» M, bending moments per unit length of facing
M, o Mg, twisting moments per unit length of facing
R, 0, Z surface forces per unit area of facing
2
B E.a (1 - p9)
Et
2
¢, qa (1 - p7)
Et
FA
¢, N, (1 -p%)
Et
a tZ
12a2
o t2
12b%
log natural logarithm
A B,C,D,K L, A, B, A", B" arbitrary constants

note -- any of the above terms that appear with a prime (as Nz')
refer to the inner facing.




Mathematical Analysis

As previously stated, the core is relatively weak., Because of
the high strength of the facings the core need carry little tension or
compression except in a direction perpendicular to the facings. The
facings are able to resist shearing deformation in their plane and it
is necessary only that the core be able to resist shear in the radial
direction in planes perpendicular to the facings. In this analysis the

‘core is considered to be an orthotropic elastic body. It is unable to
resist deformations other than those just mentioned. This assumption
makes it possible to determine explicitly how the stresses vary through-
out the thickness of the core.

The facings are treated as shells.

Interdependance of the core and the facings is gained by equating
their displacements at the interfaces. To simplify the analysis the
core is assumed to extend to the middle surface of each facing.

Figure 1 shows the cylinder and the coordinates that are used.

Prebuckling Stresses

Before buckling occurs the cylinder is in a state of uniform
compression. The axial load is carried by the facings since the core

material is assumed to be incapable of carrying load in this direction.

With facings of like material the stress is the same in both facings.
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If, in addition, the facings have the same thickness, then the loading
per unit length of facing, N, or N,', will be the same., This means
that for a total load _1_9_,
2ma N, + 2mb N ' = P.
The calculation of stresses due to the lateral pressure is a
problem in rotational symmetry. Differential elements of the core and
of the facings are shown in figure 2.

Summing forces in the radial direction gives for the core

for the outer facing

a'q"a(o'r) 'N =0‘
r=a

and for the inner facing

b (<'rr)r S © Ne' = 0,

1‘—

Since'c ='E -32 .
C ar

= L
Ne Et ( a]:r=a' and

N '=Et (+E) » these equations can be solved for o, N
2] b r r 0

=b

and N.'. The results are¥*

0

-, a
G'r'?q;—k
Ng = qa (1 -k), and

*For a more detailed derivation of these terms see Reference 1.




a E a
c

As P and q increase, Nz, Nz'. N, N

0 6' , and o'r also increase.

Eventually a conditiorT may be reached where a slight increase in load

causes the cylinder to lose its state of uniform compression and buckle

as a result of elastic instability. This buckling is assumed to cause
only a small change in the stress distribution. These small changes

|
| will now be considered.

Buckling Stresses

The Core

\
A free body diagram of an element of the core is shown in
figure 3.

Neglecting terms which are products of more than three differ-

entials, a summation L)f forces in the r, 6, and z direction gives

T S
GO Y R = oL O SO R SN (1)
or o Dz
T, ‘
r ar + ZTre & 0 (2)
T +1r9rz =0 (3)
rz




Equation (2) may be integrated to give

B
o =7 f1 (O£ (2)

Equation (3) may be integrated to give

A
Tz =1 £, (0) 1, (2)

T, T S and * as defined in terms of u, v, and w are
r r rz

. oW
Trz’:GrZ Ez' +a]

(4)

(5)

(6)

(M)

(8)

It is convenient to assume the displacements u, v and w in the form

us=f (r) cos nd cos %z
v=f_ (r)sinnb cos-)lz
2 a

- in M
w=f, (r) cos no sin = z

This form will permit a unique determination of f; (r), £; (r),

fa (r); assumes upon buckling n circumferential waves and m

(9)

(10)

(11)

and

longitudinal half waves; results in zero displacements in the radial

and circumferential directions at the ends; and imposes no moment

upon the facings at the ends.

From a consideration of equations (4), (5), (7), (8), (9),

and (11) it is clear that

(10)




f, (6) £f; (z) = sinne cos%z and

f, () f, (z) = cos né sin -:-:- z, so that

B A

T.o -r—z 8in n6 cos ; z and (12)
A A

Teg = P cos no sin 3 2 (13)

Substituting equation (9) into (6) and then equations (6), (12) and (13)

into equation (1) gives

3£, (r) 2. (r) nB A
.__1_(_.+Era_‘._1.._(_2+-—+-A=0 (14)
€ ar ¢ yre ré a

which upon integration shows that

1
fl(r)=C+Dlogr+A'r+B"; (15)

Equations (9), (10) and (12) are substituted into equation (7) to give
B n B dM2(r) £2 (x) :
:E=Gre[-17(C+Dlogr+A'r+‘-;,—)+ar -1 .(16)

from which

B
\fz(r)=Fr+Cn+Dn(l+logr)+A‘nrlogr+—r£. (17)

Equations (9), (11) and (13) are substituted into equation (8) to give

A .1, ¥f3(r)
o= +D1 1 1= 4 , 18
- - [c Dogr+Ar+Br T ] (18)
from which
f3 (r) =K + A" (r2+log r)+ Cr+Dr (logr - 1)
+ B log r. (19)

It is convenient to have the constants of fl (r), £, (r) and £ (r) in non-

dimensional form. Redefining the constants the following form is

obtained.




2
u=(Aa+Br+Ca?- +Dalog§)cosnecosa)tz (20)
r a
r
v=[-Ana + Bnrlog3 + Cy Sn¢ - Dan (log -+ 1) +
Fr] sin n@ cos-;‘Tz (21)
r? ) 4 r
= r__9% x r
w = [A)\r+Ba)\(zaZ i loga)+C)\aloga+D)\r
r . N
(log > - 1) + La] cos ne sin = z (22)

The Facings

Free body diagrams of a facing element showing the forces and
moments are shown in figures 4 and 5. It is necessary, in this type
of problem, to include components of forces which result from elastic
deformation of the element. The geometry of the situation is such that
it is difficult to write equations of equilibrium. It is safest to use
results obtained from a mathematical theory of thin shells. Sucﬁ
theory, as developed by Osgood and Joseph (ref. 2), when applied to
cylindrical shells yields, for the outer facing at r = a, the following

equations
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As is customary in such problems the stretching of the middie surface
is taken into account by substituting in equations (23) to (28)

Nz (1 + Ee)for NZ’

Ng (1+e¢ z) for Ng,
and multiplying the surface forces by

(1+ee)(l+ez).

In these expressions

1

€9 =;%‘é+§ and
oW
€z" )

N, and Ny of equations (23) to (28) are replaced by (E?(a—;ﬁ +

ANz) and [qa (1 - k) + ANg], and in the corresponding equations for the

P
inner facing sz and Ny are replaced by (m + ANZ') and

(gak + ANg'). This is necessary because the forces in the buckled shell
are thé prebu;:kling forces plus the forces due to buckling. The AN,
AN,', ANy, and ANg' are the forces due to buckling which are later to
be expressed in terms of displacements.

All forces, moments, and twists other than the prebuckling forces
are considered to be small quantities resulting from the buckling. The

displacements u, v and w, and their derivatives, are also small quantities

resulting from the buckling. In equations (24) to (28) products of any two
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such small quantities are neglected. Equation (26) is solved for Qg
and equation (27) for Q.. The results are substituted into equations

(23), (24) and (25). This gives:
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(These equations are for the outer facing. A similar set is obtained for
the inner facing.) Into equations (29), (30), and (31) expressions for
the forces, moments and twists in terms of 'the displacements (ref. 3)

are substituted. The surface forces

g ing 2kist
R =9qa - (Qgk + Ao,) . = 5 (for outer facing) where q =k is the
prebuckling stress and A 0. the stress due to buckling,

0

- (Tre)r _ {for outer facing), and

Z (for outer facing),

- (Trz‘)r

a

are also expressed in terms of u, v and w and substituted into the three
equations.

This leads to three equations in terms of u, v, and w for the outer facing
and three similar equations for the innér facing. The equations for the

outer facing are:
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To achieve proper interaction, between the core and the facings, the
displacements of the middle surfaces of the facings are set equal to the
displacements of the core atr =aand r =b.

Thus displacements u, v and w in equations (32), (33), and (34)
are replaced by equations (20), (21), and (22) with r made equal to a.
In this manner three equations in six arbitrary constants (A, B, C, D,
L, and F) are written for the outer facing. In a like fashion three
equations are written for the inner facing. The coefficients of the six
arbitrary constants are shown in the form of a determinant on the

following page.
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It is possible to find simultaneous values of ¢y and ¢, for which

these six equations will be satisfied for any values of the arbitrary
constants. Mathematically this means that for such a combination of
loads the deflections are indeterminate. The shell becomes elastically
unstable and the loads that bring about this condition are called

critical loads.

Numerical Computations

A literal solution of the sixth order determinant for the eigenvalues
is not feasible. A numerical solution, from which curves may be drawn,
is possible if a digital computer is used. A CPC Model 2 was available
to make computations. Even with the CPC the task seemed over-
whclming. If, however, Ec is made infinite, some of the terms of
determinant vanish. ‘The assumption that E_ is infinite is common in
work with sandwich construction and has been found to give satisfactory

results in most cases. The sixth order determinant with EC made

infinite is represented below:
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1 ] ] 1 1
A, B, c, 0 F, L,
A 0

X c, 0 F, L,
A, B, c, 0 F, i,
A B . L

5 5 5 v Fg 5
A B bo +2 F L

6 6 6 zY 6 6

This determinant is then reduced to a fourth order determinant shown

below:

A C_ - A - -L F
173 Cl 3 B1 c;11‘3 L1C3 Fl L3 13

A, Cy-C, Ay B, CaLj;-L,C, FoLy-L, Fj

A, Cy-C, A, B, C,L;-L,Cy F,L;-L,F,
b ) b b _ b )

(A5 =+ Ag) C3 B 2> + (C5 2+ Cg) L3 (F52+Fg) L3
b b b

The determinant is then programmed for the CPC. A trial and error
solution is made by substituting values of ¢ 1 °F 4)2 until a value is
found that will make the determinant zero. This was done by finding

values on each side of zero and interpolating to find the eigenvalue.
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Discussion of Results

Since the problem is solved by numerical methods the results

are presented by the curves shown in figures 6, 7, 8 and 9. The

values of g. = 0.97 and % = 1, 000 were used for all of the curves,

Figure 6 is a family of curves in which -¢ 2 is plotted against

_ for different values of n. In these curves the values E_. = 10, 000
ma ro
and = = 1,000 were used. Such a set of curves is used in the

rz
following manner.
Knowing -‘;- of the cylinder one picks a value for mand n. A

value of -¢z is determined by reading above fm.a_- on the corresponding
m

n curve. This procedure is repeated until the lowest possible value of
-¢ 2 is found. The axial load under which the cylinder will buckle can
then be determined.

| The curves of figure 7 differ from those of figure 6 as a result of
‘ making a and a' zero. This is equivalent to neglecting the bending

| stiffnesses of the facings. A comparison of the curves of figure 7 with

those of figure 6 shows that for values of £—a greater than 0. 15 there is
m

‘. little difference. It can be concluded that only for very short cylinders

1

need the bending stiffnesses of the facings be considered. For

less than 0. 15 the curves of figure 7 approach
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2 b
Gypa(l-p%)(1-3)°
b b
Etlog;(1+5)

-¢2=

This value is obtained by making n and { zero and expanding the
determinant. Solving for N, and replacing log -g- by the first term

of its series expansion shows that

N =-_(i_-..£).- G
Z 1+E rz
a

The curves of figure 8 are the result of increasing G, and G.gq

tenfold. The value of -¢, corresponding to

N, =-zb) g

# 1+b FZ
a

appears as a flattening of the curve in the region of£._=0,01. For
ma

: 2
smaller values of e the curve rises due to the stiffness of the

facings. For values of . greater than 0. 1 the curves show a
ma

considerably lower buckling load.

From a comparison of figures 6 and 8 it appears that as G,, is
decreased the buckling load for all cylinders, except those long enough
to fail as an Euler column, will approach

N =_.£E_:_E) GI‘

% 1+ B2 z

a
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This limit has been recognized (ref. 4) as the critical load for shells

with a low value of G, It should be noted that this load depends only

upon the thickness and the modulus of rigidity of the core.

Figure 9 shows curves of -¢; plotted against 1 for different
ma

values of nlq)z for these curves was taken to be

¢
¢2= -
2(1+;)

This represents the case for an end load equal to qnaz. The situation

is like that of a cylinder, with ends, under uniform pressure. The ends
of course stiffen the cylinder, but, if the cylinder is not too short,

reasonable results can be expected. Since ¢, decreases as L s

ma

increased it must be concluded that the ‘cylinder will buckle with m = 1.
The critical pressure can be determined by reading ¢, from the lowest

n curve,
Conclusions

Although only a few curves were drawn it is apparent that this
analysis is helpful in understanding the effect produced by a variation
of the parameters that enter the problem. Further study is required
before it will be known whether the actual buckling load may be predicted.
It is felt that the method by which this problem is solved can be
applied with advantage to many problems of sandwich construction.

Unfortunately in most cases a numerical solution will be required.




(1)

(2)

(3)

(4)
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Figure 2. --Differential elements of core and facings before buckling.
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Figure 3, --Differential element of core.
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