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Abstract Freshwater ecosystems in the mid- to

upper-latitudes of the northern hemisphere are partic-

ularly vulnerable to the impact of climate change as

slight changes in air temperature can alter the form,

timing, and magnitude of precipitation and consequent

influence of snowmelt on streamflow dynamics. Here,

we examine the effects of hydro-climate, flow regime,

and hydrochemistry on Plecoptera (stonefly) alpha (a)

diversity and distribution in northern freshwater eco-

systems. We characterized the hydroclimatic regime of

seven catchments spanning a climatic gradient across

the northern temperate region and compared them with

estimates of Plecoptera genera richness. By a space-

for-time substitution, we assessed how warmer tem-

peratures and altered flow regimes may influence

Plecoptera alpha diversity and composition at the

genus level. Our results show wide hydroclimatic

variability among sites, including differences in tem-

poral streamflow dynamics and temperature response.

Principal component analysis showed that Plecoptera
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genera richness was positively correlated with catch-

ment relief (m), mean and median annual air temper-

ature (�C), and streamflow. These results provide a

preliminary insight into how hydroclimatic change,

particularly in terms of increased air temperature and

altered streamflow regimes, may create future condi-

tions more favorable to some Plecopteras in northern

catchments.

Keywords Catchment inter-comparison � Northern

temperate regions � Hydroclimatic � Streamflow �
Plecoptera � Alpha diversity � Climate change

Introduction

Freshwater ecosystems in the mid- and upper latitudes

of the Northern hemisphere are particularly vulnerable

to impacts of climate change (Vincent & Pienitz,

1996). Within this circum-polar climatic region,

precipitation partitioning between rain and snow,

snowpack accumulation and melt are critical temper-

ature-dependent processes with large implications for

hydrologic function and annual streamflow dynamics

(Helliwell et al., 1998; Barnett et al., 2005). Changes

in the intensity and seasonal distribution of precipita-

tion due to increasing temperatures are anticipated to

result in alterations to flow regimes and the frequency

and severity of flood and drought events (Kundzewicz,

2008). For example, climate change scenarios predict

that increasing temperatures will lead to reduced snow

relative to rain, higher winter stream flows, and earlier

spring melt, and reduced flows in summer and autumn,

with concomitant changes in stream hydrochemistry

(Easterling et al., 1997; Barnett et al., 2005; Hodgkins

& Dudley, 2006; IPCC, 2007; Prowse et al., 2010).

Inevitably, habitat changes resulting from such

hydroclimatic change will impact upon aquatic eco-

systems in general (e.g., Hrachowitz et al., 2010a) and

freshwater invertebrates specifically (Dewson et al.,

2007; Pastuchová et al., 2008; Prowse et al., 2009;

Tierno de Figueroa et al., 2010). Species distributions

in time and space are governed not only by life history

strategies but also by genetic variation in niche

requirements, where each species often exhibit a

specific environmental tolerance to parameters such as

temperature and in-stream hydraulic indices (Whit-

taker, 1972; Power et al., 1988; Brittain, 1990; Holt,

2003). Those species that are under the greatest threat

have often been identified as having relatively narrow

environmental tolerances (Foden et al., 2008). One

group of aquatic insects that is of particular interest is

the order Plecoptera (stonefly) due to their ability to

act as bioindicators of environmental perturbation

(Helešic, 2001; Fochetti & Tierno de Figueroa, 2008).

Plecoptera are environmentally sensitive aquatic

organisms that mainly inhabit cold, unpolluted, fast-

flowing, and well-oxygenated running waters (Brit-

tain, 1990; Fochetti & Tierno de Figueroa, 2008).

Climatically driven changes in streamflow and tem-

perature regimes have the potential to change Plecoptera

assemblages which in turn would project wider changes

to the structure and function of aquatic communities

(Bunn & Arthington, 2002). Plecoptera assemblages are

important constituents of river and stream food web

interactions, serving both as primary and secondary

consumers, as well as prey for other macro-invertebrates

and higher order predators such as fish and birds (Fochetti

& Tierno de Figueroa, 2008). Many freshwater biomon-

itoring programs which underpin sustainable river man-

agement strategies are based on understanding the

geographic distributions of species and how different

groups of organisms respond to changing abiotic condi-

tions (Zalewski, 2002; Roque et al., 2008). There are

limited empirically based studies of the hydroclimatic

controls on the biodiversity of lotic insects within the

climatic-sensitive northern temperate region. Part of the

problem is that only few consistent datasets are available

that include long-term time-series of invertebrate abun-

dance and composition and their related flow, thermal,

and hydrochemic regimes, which would allow cross-

regional site comparison.

Most empirical studies have generally been

restricted to individual catchments—often nested—

or single geomorphic provinces (e.g., Sheldon &

Warren Jr., 2009). Thus, it is unclear how findings

from individual investigations may be extrapolated to

other catchments or different geographic regions

(Tetzlaff et al., 2009). Comparison of catchment

ecosystem functioning in different geographic regions

is an obvious need that will aid catchment classifica-

tion leading to a more systematic understanding of

similarities and dissimilarities in catchment form and

function (Burgmer et al., 2007; Tetzlaff et al., 2008;

Wagener et al., 2010).

Here, we analyze and present data from the North-

Watch (Northern Watershed Ecosystem Response to

Climate Change: http://www.abdn.ac.uk/northwatch/)
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international inter-comparison project that allows

examination of the inter-linkages between climate,

hydrology, and ecology. We combine indices based on

hydroclimatic data with estimates of genera richness

of Plecoptera to provide an increased regional under-

standing of how hydroclimatic and selected hydro-

chemical (alkalinity and pH) factors may impact the

alpha diversity of these sensitive freshwater inverte-

brates. Furthermore, by means of a latitudinal gradient

as a substitution for future warming (space-for-time

substitution) across a hydroclimatic gradient (mean

annual air temperature range 2–9�C and mean annual

precipitation ranging from 650 to over 2,600 mm), we

hypothesised how a warmer climate and altered flow

regimes may influence future Plecoptera diversity and

composition. Our specific objectives are to: (i) char-

acterize the hydroclimatic regime of the cross-regional

study sites using long term data and identify groupings

among them; and (ii) investigate the relationship

between hydroclimatic factors and Plecoptera alpha

diversity to identify the most important controlling

variables and possible sensitivity of sites to change.

Materials and methods

Study sites

The seven study sites included in the North-Watch

network are among the most intensively studied long-

term research catchments across the circum-boreal

region, and there has been considerable research on

the hydrologic functioning and biogeochemical char-

acteristics of these catchments. The study sites span

different hydroclimatic zones, including northern

temperate and boreal environments, providing an

inter-comparison framework across the circum-boreal

region (Fig. 1). Catchment characteristics are sum-

marized in Table 1, and have been discussed in more

detail by Carey et al. (2010).

The Scottish sites range from 8 to 30 km2 in area; at

Strontian (56�450N, 5�360W) in the maritime northwest

(Hrachowitz et al., 2010a), the Allt a’ Mharcaidh

(57�60N, 3�500W) in the subarctic Cairngorms (Soulsby

et al., 2006) and the eastern Girnock (57�20N, 3�060W)

(Tetzlaff et al., 2007). Geology is dominated by igneous

and metamorphic rocks (Robins, 1990), soils range from

acid peaty soils to free draining podzols, and vegetation

cover ranges from forest (mainly Pinus sylvestris) on

lower slopes to heather (Calluna spp.) on steeper slopes

with blanket bog (Spagnum spp.) in poorly drained areas

(Bayfield & Nolan, 1998).

Krycklan (Svartberget, 0.50 km2) (64�140N,

19�460E) on the Fennoscandian shield is the most

northerly site with the lowest mean annual air temper-

ature and precipitation. It is primarily forested with

Scots Pine (P. sylvestris) in upslope areas on podzolic

soils with Norway Spruce (Picea abies) in wetter, low-

lying areas (Buffam et al., 2007) and Sphagnum spp.

rich wetlands dominating flatter peat-dominated areas.

The Canadian study sites are Dorset (Harp 4,

1.19 km2, Ontario) and Catamaran Brook (Middle

Reach, 28.7 km2, New Brunswick). Harp 4 (45�230N,

79�080W) is an inlet stream to Harp Lake at the

Fig. 1 Location of the

North-Watch study

catchments
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transition to the southern Boreal ecozone (Mackay &

Kersey, 1985; Eimers et al., 2008). In the humid

continental climate, soil frost is rare and restricted

mainly to wetlands in winter. Catamaran Brook

(46�530N, 66�060W) is a third order tributary of the

Miramichi River and underlain by Paleozoic volcanic

and sedimentary basement malted by coarse glaciof-

luvial deposits. Forest cover is mainly second-growth

with white spruce (Picea glauca), balsam fir (Abies

balsamea), birch (Betula papyrifera), and maple (Acer

rubrum). At both sites, podzols dominate steeper

slopes with peats and gleys in valley bottom areas.

The steepest site is Mack Creek (5.8 km2)

(44�120N, 122�090W) in the Pacific Northwest, USA.

The geology is volcanic and the catchment is covered

by old growth Douglas fir (Pseudotsuga menziesii)

forest growing on cambisols. Climate is characterized

by wet mild winters and warm dry summers (Ander-

son, 1992); it is the warmest of the sites.

Data and inter-site comparison metrics

Hydroclimatic and hydrochemical data for each site

has been collated by the North-Watch Program. This

includes more than 10 years of daily time-series of air

temperature, precipitation, discharge, derived evapo-

transpiration, and selected stream chemistry (pH and

alkalinity). To standardize comparisons, all data for

the same 10 years (1998–2008), except for the Allt a’

Mharcaidh (4 years) and Catamaran Brook (6 years),

have been used (Table 2). Annual runoff ratio (Q/

P) describes the relationship between mean annual

runoff (Q) to mean annual precipitation (P). Area

normalized streamflow statistics Q5 (equaled or

exceeded 5% of the time), Q50, and Q95 were used to

describe the variability between high and low flows

and have been described as biologically meaningful

descriptors of flow variability (Puckridge et al., 1998;

Monk et al., 2006). The median flow, Q50, expresses

the central tendency (Clausen & Biggs, 2000). Sim-

ilarly, T5, T95, and T50 were used as extreme and

average descriptors of temperature variability.

Seventeen variables related to catchment physiog-

raphy, hydroclimate, hydrochemistry, and Plecoptera

alpha diversity were examined for each site (Tables 1,

2). Initially, seasonal variables were analyzed, but

were later rejected from the analyses due to differ-

ences in the timing of Plecoptera sampling and lack of

statistical correlation. T
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Ecological data

Data on aquatic insect richness were collated from all

available literature for each site for published taxa

lists, species assemblages, and estimated richness.

Considering the difficulties of taxonomic identifica-

tion and the limited number of studies that have made

complete invertebrate surveys, we focused our efforts

on the insect order, Plecoptera, and quantitative

estimates of genera found. Zoogeographically, the

North-Watch sites lie within the Palaearctic region

(Canada and America) with 108 described genera of

Plecoptera, whereas the Nearctic region (including

Scotland AND Sweden) has 102. At species level,

Europe is estimated to have 426 Plecopterans, whereas

northern America has 650 (Fochetti & Tierno de

Figueroa, 2008).

In its broadest sense, we define Plecoptera alpha

diversity as the estimated number of different genera

that have been found within a study site. Raw datasets

for HJ Andrews (Mack Creek) and Krycklan (Svartb-

erget) were obtained due to limitations in published

data. A summary of the taxonomic data obtained and

associated sampling methodology is presented in

Table 1. Criteria for inclusion were: (i) a regular

methodological sampling effort between the years

1981–2006 that represented all but the rarest genera at

a site; and (ii) studies that captured the flow dynamics

of the stream by focusing on sampling that had

predominantly been conducted within the riffles, a

common microhabitat for many benthic invertebrates

(Carter & Fend, 2001).

Statistical analyses

Normalized mean daily flow (mm) and air temperature

(�C) data were used to examine the temporal hydro-

climatic variability among sites through time-exceed-

ance curves. In addition, a principal component

analysis (PCA) was conducted to examine the spatial

heterogeneity in hydroclimate for the study catch-

ments and to assess whether distinct hydroclimatic-

hydroecological groupings of catchments could be

identified. The PCA used 15 independent variables:

number of Plecoptera genera, catchment area (km2),

altitude (m), relief (defined as maximum minus

minimum elevation) (m), annual temperature (�C),

T5, T50, T95, precipitation (mm), discharge (mm), Q5,

Q50, Q95, runoff ratio, alkalinity (leq/l), and pH.

Associations among hydroclimatic variables,

catchment characteristics and Plecoptera genera rich-

ness were examined by Pearson’s product moment

correlation (rp) before development of stepwise

multiple linear regression modeling. Scatterplots were

analyzed to assess the nature of hydro-ecological

associations and the presence of outliers. Forward and

backward stepwise multiple linear regression analysis

was used to seek out the most important predic-

tor(s) governing Plecoptera alpha diversity. The entry

and removal criterion was set at an alpha probability of

0.05 (n = 7). For all regression and correlation

analyses, the variables’ altitude and Q5 were normal-

ized by logarithmic transformation. All other variables

were normally distributed. All analyses were per-

formed using MINITAB (Minitab Inc., USA). Signif-

icance levels were taken at P B 0.05.

Results

Hydroclimatic and hydrochemical

characterization of the study sites

Scatterplots of mean annual air temperature against

mean annual precipitation and mean annual discharge

showed that both precipitation and discharge increased

with temperature within the climatic gradient examined

(Fig. 2). Differences in the long-term temperature and

area-normalized discharge of the sites were evident

from time exceedance curves (Fig. 3). Steeper curves

indicated greater variability in temperature regimes—

thus, stronger seasonality (including prolonged stream

freezing)—in Dorset, Catamaran, and Krycklan. In

contrast, the other sites, and particularly the Scottish

sites, had a moderate temperature response with lower

maximum values and higher minimum values.

The convex character of most of the time exceed-

ance curves reflected the highly responsive nature of

most of the streams, with low baseflows compared

with storm runoff and flows ranging over four orders

of magnitude. The Allt a’ Mharcaidh showed the most

subdued curve—an indication of the importance of

groundwater contributions (Soulsby et al., 2006).

Median discharge (Q50) was greatest at HJ Andrews

and smallest at Krycklan (Table 2), consistent with

differences in mean annual precipitation.

In terms of the hydro-chemical properties, stream

alkalinity (mean values based on the specific duration
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of Plecoptera sampling period from which estimate is

derived) ranged from -50 to 419 leq/l and pH ranged

from 5.0 to 7.3 (Table 2). Most sites are acidic,

reflecting the dominance of peaty soils; the strongly

acidic character of Krycklan is noteworthy, where the

low pH is caused by natural organic acidity from

extensive peat bogs (Bishop et al., 2000), which does

not adversely affect invertebrate diversity in the region

(Dangles et al., 2004). Catamaran and Girnock were

the least acidic sites with a mean annual pH of [7.3

reflecting the more base-rich geology.

Plecoptera distribution and spatial heterogeneity

of the study sites

Estimated Plecoptera alpha diversity ranged from four

genera in Krycklan to approximately eleven or greater

at Mack Creek, HJ Andrews (Table 3). Most families

were widely distributed in all four countries. The

genera richness exhibited a strong correlation with

mean annual air temperature (r2 = 0.79, P \ 0.05).

Although the specific genera distribution was

unknown for Harp 4 (Dorset), Mackay & Kersey

(1985) noted that the majority of genera found at these

sites were within the families Perlodidae and Chlo-

roperlidae. The genus Leuctra was the most frequently

represented genus found at all the study sites. The

Scottish sites were uniquely characterized by Amphi-

nemura genera, even though they occur in our study

regions of northern Sweden, Canada and USA [Cat-

alogue of Life: 2007 Annual Checklist, Species 2000

& ITIS Catalogue of Life Hierarchy, Edition 1 (2007)

(accessed through GBIF data portal, http://data.

gbif.org/datasets/resource/1542, 26/9/2011].

PCA analysis of catchment groupings indicated that

the first two principal components explained 78% of

the variance in catchment characteristics (Fig. 4). The

first principal component explained 59% of the

variance and largely reflected Q50, runoff ratio,

and mean annual air temperature (Web Appendix

1—Electronic supplementery material). The second

principal component explained 18% of the variance

and reflected stream water alkalinity, pH and to a

lesser extent catchment area. Warmer and wetter

catchments with higher runoff ratios were situated in

the right PCA quadrant, as were catchments associated

with greater Plecoptera genera richness. Cooler and

drier catchments with reduced Plecoptera genera

richness were plotted to the left of the PCA quadrant.

Catchments with greater pH and alkalinity generally

plotted lower than catchments situated higher on the

PCA. Although geographically distant, HJ Andrews

and Strontian plotted closely together highlighting

similarities in their hydroclimatic characteristics and

higher Plecoptera genera diversity.

Fig. 2 Scatterplot of mean annual air temperature (�C) versus a mean annual precipitation (mm) and b mean annual discharge (mm) for

the study sites. Key for sites: M Allt a’ Mharcaidh, G Girnock, S Strontian, K Krycklan, C Catamaran Brook, D Dorset, H HJ Andrews
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Hydroclimatic relationships

Catchment relief, air temperature (T50), and some

streamflow statistics (Q5 and Q50) exhibited significant

and positive correlations with Plecoptera genera

richness and yielded coefficients greater than 0.70

(Web Appendix 2—Electronic supplementery mate-

rial). Although not statistically significant, mean

annual precipitation, discharge, and runoff ratio also

showed moderate correlations with Plecoptera genera

richness (r = 0.72, 0.70, 0.69, respectively). There

was no correlation found between number of samples,

sampling duration and estimated Plecoptera genera

richness (r = -0.05, -0.14, respectively; not shown

here).

Although statistically limited by low degrees of

freedom (n = 7), a stepwise multiple linear regression

incorporating all 15 variables indicated that approx-

imately 75% of the variance in the total number of

Plecoptera genera was explained by mean annual air

temperature alone, which emerged as the single and

most important factor governing their distribution

(Plecoptera genera = 1.79 ? 0.846 Temp, r2 = 0.75;

P = 0.007). However, over the hydroclimatic gradi-

ent investigated temperature also exerts an obvious

influence on stream flow as increasing temperatures

reduces the seasonality of snowmelt on streamflows,

resulting in more variable and higher flow regimes.

Discussion

We characterized the hydroclimatic regime of cross-

regional study sites and found that it was possible to

informally differentiate the sites into four groups

along gradients characterized by air temperature and

precipitation/streamflow (Figs. 2, 4). Krycklan is the

coldest and driest; Catamaran and Dorest are wetter

and have cold winters but warmer summers; Girnock

and Mharcaidh are also wetter but have cool winters

and summers; while Strontian and Andrews are clearly

wettest and warmest, though the latter has colder

winters and warmer summers.

Plecoptera genera richness was largely ordinated

with mean annual temperature and streamflow (Q50),

indicating a strong correlation with alpha diversity

which was greatest in streams with higher temperatures

and greater flow variability (Fig. 5). Stepwise multiple

linear regression modeling indicated that a significant

proportion of the variance in Plecoptera diversity among

the sites can be explained by air temperature alone.

Consequently, it is reasonable to hypothesise that such

changes in air temperatures and associated changes in

water temperature and flow regimes are likely to affect

Plecoptera. With warmer conditions and projected

changes from snowmelt regimes, we can hypothesise

that habitat conditions in many such northern catch-

ments are likely to become more favorable for many

Plectopterans in future. Although geographically dis-

tant, some of the sites had similar hydroclimatic

characteristics and associated Plecopteran genera rich-

ness (e.g., Strontian and Andrews). Such association

Fig. 3 Daily mean air temperature (�C) and discharge (mm/

day) time exceedance curves for the study sites
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links to similar characteristics in terms of catchment

hydroclimate and hydrologic function. Earlier work on

the North-Watch sites by Carey et al. (2010) described

this in terms of the hydrologic resistance of catchments

(i.e., the strength of coupling between precipitation and

discharge) and their resilience (i.e., the degree to which a

catchment can sustain its precipitation-runoff relation-

ships under change).

Clearly, these associations are likely to have signif-

icant influences on biotic communities. Temperature is

one of the most important abiotic drivers governing

invertebrate assemblages (e.g., Brittain, 1990; Petts,

2000) due to its strong influence on physiological,

reproductive, and evolutionary processes (Clarke, 1996;

Voelz & McArthur, 2000; Burgmer et al., 2007).

Likewise, streamflow plays a key role in regulating

biodiversity and assemblage structure in aquatic sys-

tems of varied size (Poff & Allan, 1995; Clausen &

Biggs, 2000; Monk et al., 2006). Flow regimes not only

maintain and structure the physical habitat of streams,

but also influences life history strategies of aquatic

species which in turn drives biotic composition (Puck-

ridge et al., 1998; Bunn & Arthington, 2002). Early

work showed that Plecoptera have a clear preference for

colder streams and lakes; their distribution in warmer

streams is much more restricted (Baumann, 1979).

Similarly, Plecoptera have often been identified as

having specific hydraulic flow preferences, with a

general preference for higher flows (rheobiont), but

ability to tolerate standing waters (limnobiont) in some

groups so long as temperatures are low (Mérigoux et al.,

2009; Korte, 2010; Tierno de Figueroa et al., 2010).

Thus, based on previous research examining the

ecological tolerance of Plecoptera (Baumann, 1979;

Houseman & Baumann, 1997), it is possible to

hypothesize how changes in some of the abiotic

Table 3 Distribution and composition of Plecoptera genera within the study sites

Family Genus Mharcaidh Girnock Strontian Krycklan Catamaran Brook HJ Andrews

Capniidae Capnia ?

Chloroperlidae Alloperla ?

Chloroperla ? ? ?

Siphonoperla ?

Sweltsa ? ?

Leuctridae Despaxia ?

Leuctra ? ? ? ? ?

Nemouridae Amphinemura ? ? ?

Malenka ?

Nemoura ? ?

Nemurella ? ?

Paranemoura ?

Protonemura ? ? ?

Zapada ? ?

Perlidae Calineuria ?

Dinocras ?

Doroneuria ?

Perla ?

Perlodidae Helopicus ?

Isoperla ? ? ? ?

Megarcys ?

Skwala ?

Peltoperlidae Yoraperla ?

Pteronarcyiidae Pteronarcys ? ?

Taeniopterygidae Brachyptera ? ?

Based on published data as shown in Table 1, excluding Harp 4, Dorset, where no data available
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drivers may affect Plecoptera at different North-

Watch sites and which groups may be more suscep-

tible to change, and which may be more resilient.

Variability in habitat diversity can also be related to

levels of disturbance, with intermediate levels of

disturbance promoting greater diversity by maintain-

ing habitat heterogeneity (Townsend et al., 1997;

Voelz & Mcarthur, 2000; Lepori & Hjerdt, 2006).

When habitats are intensely and frequently disturbed,

the ability of species to colonize these disturbances is

greatly reduced (e.g., due to physiologic stress), while

low intensity of disturbance increases the likelihood

that fewer numbers of competitively superior taxa

(Poff et al., 1997; Townsend et al., 1997) will

dominate. Thus, ‘‘intermediate’’ variations in envi-

ronmental hydrologic conditions are an important

component in shaping evolutionary and ecological

processes in these ecosystems (Poff & Ward, 1989,

1990; Lake, 2000; Poff et al., 2007). As climate

warming reduces the influence of snow and snowmelt

on northern catchments, the disturbance regimes is

likely to change, though the exact impacts will differ

from site to site. High proportions of winter precip-

itation falling as rain, may increase winter peak flows

and reduce the frequency of icing events in streams

(e.g., Herbst & Cooper, 2010). Spring melt events are

likely to become less pronounced with an earlier onset

and completion. The frequency and magnitude of ice

flows in streams may also decline. Similarly, summer

flows may decline both because summer snowpack

influence declines, and in many areas, rainfall declines

and evapotranspiration increases. Such shifts are

likely to be most pronounced at sites with the strongest

snow regimes like Krycklan, Catamaran, and Dorest,

and less pronounced where snow is already a relatively

minor input but increases in stream temperature have

already been observed (e.g., Girnock and Strontian)

(Langan et al., 2001).

Obviously, it is difficult to make any precise

projections using the available data at the family level,

but it is possible to hypothesize which groups may be

more susceptible to the effects of such change at the

North-Watch sites. For example, Nemouridae are a

widespread cold water family, but a genus like Zapada

has endemic species identified that may be vulnerable to

the effects of warming in some areas (e.g., Newell et al.,

2006). Conversely, members of the Peltoperlidae found

at HJ Andrews are more geographically more restricted

among the North-Watch sites to the Cascades Moun-

tains, but they are also found in low altitude coastal

streams and hence likely to be able to tolerate projected

increased temperatures. Other families like Chloroper-

lidae and Leuctridae may be more susceptible to

warming temperatures and they are adapted to cold

water streams, though some genera, such as Leuctra

have adapted to warmer streams (Baumann, 1979).

Similarly, the Perlodidae are large carnivores and

numbers tend to be small in colder, less productive

Fig. 4 Principal

component analysis (PCA)

for the study sites. Each

catchment was

characterized using the

following indices:

Plecoptera alpha diversity

(PLEC), catchment area

(km2) (AREA), altitude

(m) (ALT), relief

(m) (REL), air temperature

(�C) (TEMP), T5 (�C), T50

(�C), T95 (�C), precipitation

(mm) (PRE), discharge

(mm) (DIS), Q5 (mm), Q50

(mm), Q95 (mm), runoff

ratio (RAT), alkalinity

(leq/l) (ALK), and pH
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streams, though species of genera like Isoperla are also

found in warmer streams. However, the nature of

adaptation of some groups is not related to temperature

in a straightforward sense. For example, while the

Capnia genus of the Capniidae family can tolerate warm

lotic conditions, some species require ice-cover and

break-up to trigger various life stages (Baumann, 1979).

Conversely, many genera of Perlidae are widespread in

warmer streams and rivers and may have extended

ranges as climate change effects progress.

In addition to temperature and flow regimes,

hydrochemistry also exerts a major influence on

benthic invertebrate communities, in terms of both

density and diversity of species (Rosemond et al.,

1992; Soulsby et al., 1997). Although no significant

relationships were observed between Plecoptera alpha

diversity and pH or alkalinity, many field studies

reveal significant relationships between benthic inver-

tebrates and these parameters (Økland & Økland,

1986; Rosemond et al., 1992; Vrba et al., 2003; Tixier

& Guérold, 2005). Indeed, the more alkaline condi-

tions of Catamaran and the Girnock, are likely to help

explain their higher Plectoptera diversity compared

with Dorest and the Mharcaidh sites (Fig. 4). Chem-

ical recovery of many acidified freshwaters has seen

not only an increased trend toward more acid-sensitive

macroinvertebrate assemblages in some places (Mal-

colm et al., 2012), but also in some cases, an increased

abundance of macroinvertebrate predators in several

lakes and streams, (Monteith et al., 2005). Despite

Perlodidae being prevalent in northern Swedish

streams (Malmqvist & Mäki, 1994), their absence in

the Krycklan catchment may also be a response to low

pH values within this catchment, as has been noted in

other studies (e.g., Mackay & Kersey, 1985).

These results, although preliminary in nature,

provide a valuable insight into how hydroclimatic

variability and potential changes may influence the

Fig. 5 Relationship

between catchment relief

(m), mean annual air

temperature (�C), area

normalized stream flow

statistics (Q5, Q50, mm), and

estimated Plecoptera alpha

diversity for the study sites.

Key for sites: M Allt a’

Mharcaidh, G Girnock,

S Strontian, K Krycklan,

C Catamaran Brook,

D Dorset, H HJ Andrews.

r represents Pearson’s

product moment correlation

coefficient
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biodiversity and composition of freshwater inverte-

brates within northern freshwater ecosystems in the

future. Although difficult to predict, alterations in

composition and a reduction in taxa with specific

thermal and flow tolerances are likely. This is

particularly true for invertebrates with limited dis-

persal ability and that show a high rate of endemism,

like Plecoptera, where migration to more favorable

environments may not be possible (Briers et al., 2002;

Fochetti & Tierno de Figueroa, 2008). A major

research challenge in the future is not only to

understand past ecological systems and their compo-

sition (Landres et al., 1999) but also how biota within

climate-sensitive regions may alter with time and how

more complex interactions such as food webs evolve

in a changed environment (Stenseth et al. 2002).

Moreover, the potential for adaptive management to

mitigate changes is further unknown. For example, in

catchments without extensive riparian tree cover (e.g.,

the Girnock and Mharcaidh), tree planting could

significantly mitigate projected temperature increases

by moderating net radiation inputs (Hrachowitz et al.,

2010b). Though, such land use change would also

alter the quantity and quality of nutrient inputs

from allochthonous sources, with further impacts on

species assemblages and interactions (Malcolm et al.,

2008).

Given the lack of long-term data, the use of space-

for-time substitution has become an increasingly

important methodological approach to project the

likely consequences of environmental change on

ecosystems along environmental gradients at the

supra-regional scale (Fukami & Wardle, 2005).

Although this study selected a relatively narrow

habitat niche (i.e., riffles) in which to observe Plecop-

tera genera distribution, such scales has the advantage

of standardizing the influence of habitat type on the

invertebrate fauna (Carter & Fend, 2001). Despite this,

although riffles are a common microhabitat for many

benthic invertebrates, various studies have shown that

macroinvertebrate species composition can vary

among habitat types (e.g., riffle, pool, and run), and

thus habitat type is an important element to consider

when comparing ecologic dynamics, even at larger

spatial scales (Giberson & Garnett, 1996; Pastuchová

et al., 2008) and will undoubtedly influence and buffer

the response of invertebrate groups to environmental

change. Clearly, integrated long-term monitoring at

experimental sites like those in the North-Watch

project in conjunction with an increased emphasis on

standardized ecological data will be key to provide

evidence-based approaches to understanding and

managing the effects of climate change on freshwater

ecosystems.
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