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Introduction

In high school I had a vision. I held that if I could understand the mathematics behind physics
problems; the physical interpretation would naturally follow. Rather quickly I realized the naivety
of my perspective toward physics. After I purchased texts on relativity, quantum mechanics, and
string theory, it was apparent that I held an ill-conceived approach to physics, as nearly each text I
bought was almost unreadable. The content that lay within each text was no different than a
foreign language. Although I didn’t understand the material in each text, I found what was needed
to comprehend each of these physical theories; finding the road to understanding string theory was
a long one.

After enrolling at Oregon State University to study both math and physics, I continued to study
the texts I collected as a high school student. It became clear in my independent studies that the
texts I referred to had a specific audience in mind, graduate students, and advanced ones at that.
Searching for the ultimate source on string theory, I began filling my personal library with a
plethora of texts on the subject, some of which became more accessible as my academic career
continued, however still out of reach. And the reason for this was simple: each text assumed that
the reader had background in quantum field theory, general relativity, and supersymmetry, along
with a fair understanding of a variety of branches of mathematics. Of course, each of these subjects
require background in other physical theories and mathematical tools. The task of learning string
theory was a daunting one; at times I felt like Sisyphus. Just as I reached a pinnacle in my studies,
I would come across a new but crucial detail necessary for understanding the basics of string
theory; the boulder I pushed would roll back down the hill. During this process I could only dream
of finding that sole text which had everything I needed to know about string theory. I was aiming
for a shortcut; a text which would not only provide the details of string physics, but would also
present the necessary background material. Of course I would not find such a text, as such a text
had not been written yet, particularly at the level an undergraduate could hope to understand.

This is the point of my thesis project. Specifically, the project consisted of drafting a text which



presents a detailed introduction on string theory to the reader new to the subject. The document
here is an article specifying the motivation for, and process of, writing the text. The text, A
Detailed Introduction to String Theory [1], will also be compared with the present literature
availble on the market, marking the similarities and differences between this text and the
alternatives. An outline of what is to be discussed is given below.

At the time this text is being written, there are three main graduate level books on the topic of
superstring theory, and one text aimed at undergraduates. The graduate texts include the two
volume series Superstring Theory by Green, Schwarz, and Witten (GSW) [2],[3]; String Theory and
M-Theory: A Modern Introduction by Becker, Becker, and Schwarz (BBS) [4], and the two volume
series Bosonic String Theory and Superstring Theory by Polchinski [5], [6]. The text aimed for
undergraduates is Zwiebach’s A First Course in String Theory [7]. As I have been independently
studying this subject for quite some time, I have found that each of these sources have both
benefits and deficiencies. Firstly, the graduate texts make it difficult for the undergraduate to
follow by assuming the reader has a formidable background in both physics and mathematics.
Moreover, as the texts are graduate level, they rarely detail the results, leaving most of the
derivations to the reader, a serious problem for someone new to the subject. Nonetheless, these
texts summarize the more difficult topics of the subject, and include fairly modern avenues for
research in string theory and, more broadly, quantum gravity.

Alternatively, Zwiebach’s text is particularly thorough in discussing the bosonic string, making
it a widely accessible book for undergraduates, especially those aiming for self-study. The cost of
this however is that it does not provide a rigorous treatment of superstrings, nor does it go into
detail on the subjects which are necessary for further study in string theory, marking its deficiency.
In this sense, after a student completes a first reading of Zwiebach’s text, they will only have the
tools to understand the first chapter of the mainstream graduate level texts, limiting the reader’s
ability to grasp fundamental topics, let alone advanced topics.

The overarching goal of my text [1] is to resolve this issue. With A Detailed Introduction to
String Theory 1 aim to bridge the material presented in Zwiebach’s text and the graduate level
texts on string theory. In a sense, my work presents only a few new topics in string theory. A
student studying string theory, depending on their level, can already obtain necessary information
from other resources, including the ones above, in which case my text gives nothing new. What is
different about this text is the presentation of the subject. Synthesizing the material already
available, this book also augments the current information with additional computational details to

aid the reader as they study this text. As Zwiebach provides a suitable approach toward the



fundamentals of bosonic string theory and D-branes, much of the first half of this text closely
follows his methods. In the second half of this text, for the more advanced material, particularly
the work done on superstrings, much of the material was synthesized from the three mainstream
texts as well as other books and online sources. For the reader who is interested in this subject, it
is strongly encouraged that they review the source materials on which my text is based as the
authors of those texts and papers have a far better understanding of the subject than the author of
[1] does. In short, my work aims to be a sole resource on the basics of string theory: a detailed

introduction assuming minimal background knowledge on the part of the reader.



Chapter 1

Motivation

My project involves the writing of another ‘textbook’ on string theory. The reason for this is that
through my own studies I found that most of the texts out there do little to make the material
accessible to an undergraduate, and for those who pursue self-study. It is my goal to resolve this
issue, creating a document which provides a thorough introduction to string theory aimed for the
undergraduate, as well as a document that could be used for self-study. In order to observe how
my own text differs from the other books already on the market, a brief summary of the content in
these texts is necessary. But before reviewing the standard texts, a brief introduction to string

theory is necessary.

1.1 The History of String Theory

At the turn of the 19th century, it was thought that the studies of physics were coming to a close.
Newtonian mechanics described the motion of everything from the trails of the comets to the
trajectories of falling apples. Maxwell’s equations elegantly summarized the relationship between
stationary and moving charges, and even going as far as providing a mathematical treatment of
electromagnetic radiation. The work completed by Boltzmann lent insight to chemical kinetics and
the laws of thermodynamics, supplying a near complete understanding of chemical reactions and
the microscopic world. Physicists at the time found that the natural world seemed to have fewer
and fewer mysteries. Even Lord Kelvin, purportedly, in 1900 announced to the British Association
of the Advancement of Science that “[T]here is nothing new to be discovered in physics now. All
that remains is more and more precise measurement” [1]. Whether Kelvin said it or not is unclear,

but the same tone was felt among many of his contemporaries, and they couldn’t have been more



wrong.

The 20th century gave rise to two big pillars of physics: relativity theory and quantum
mechanics. In 1905 a bright young physicist going by Albert Einstein developed his theory of
special relativity, a work which revolutionized the laws of physics and our entire conception of
reality. Space and time were no longer the rigid objects that Newtonian mechanics required. In
order to provide an accurate description of the universe, absolute space and absolute time were
thrown out to be replaced by a malleable structure known as space-time. For the laws of physics to
remain invariant, our notion of time and space had to become dynamic. Ten years after his special
theory of relativity, Einstein published his general theory of relativity, correcting Newton’s ideas
about gravity. There Einstein showed that one is to interpret gravity as the curvature of
space-time, and that the universe has a structure to a type of malleable fabric.

If the physics community wasn’t disturbed by relativity, they were almost certainly horrified
quantum mechanics. Not long after Einstein’s special theory of relativity, Max Planck, among
others (including Einstein) was able to show that at a microscopic level dynamics of systems
include uncertainty. That is, quantum mechanics is inherently non-deterministic. Moreover,
physical observable quantities such as position, momentum, and energy become discretized, losing
continuous structure as given in classical physics, including relativity theory.

As quantum mechanics and special relativity came on the scene around the same time, the
natural progression was to proceed in unifying both theories, a theory of relativistic quantum
mechanics, quantum field theory (QFT). For starters, QFT posited the existence of antiparticles,
particles which have the same mass but have opposite additive quantum numbers. For example, if
the positron, or anti-electron, were to come into contact with the electron, the two would abruptly
annihilate each other, leaving only a radiation signature behind. As time went on, quantum field
theory was felt to be the correct candidate in accurately describing the entirety of interacting
particles, supplying a deeper understanding of the microscopic world.

Just as physicists had unified quantum mechanics and special relativity with quantum field
theory, the natural expectation was to unify quantum mechanics with general relativity. To their
dismay however, a successful theory of quantum gravity was out of reach. For technical reasons,
the issue lies with renormalization theory, which when applied to the quantization of the
gravitational field leads to unphysical results. In short, general relativity and quantum mechanics
describe different realms of physics. General relativity describes the macroscopic world; the motion
of planets, galaxies, and the evolution of the cosmos. Alternatively, quantum mechanics specializes

in describing the microscopic world: the motion of elementary particles, particle decay,and the



fundamental properties of matter. The theories, by themselves, perform well in their respective
realms, but in the microscopic limit, general relativity breaks down, and the instant quantum
mechanics attempts to absorb gravity, the theory blows up.

For several decades now theorists have been working to achieve a theory of quantum gravity; to
develop a coherent framework in which quantum mechanics and gravity can coexist. There are
several approaches in accomplishing this, but in a general sense there are three main approaches:
(1) String Theory, being the most popular at this point; (2) Loop Quantum Gravity (LQG), being
the second most popular, and (3) Causal Dynamical Triangulation (CDT), which is closely related
to (2). In general LQG and CDT are quite different from string theory, specifically in their
approach. LQG and CDT are considered to be branches of canonical quantum gravity, theories
born from a relativist’s perspective, in which theorists elevate space and time to quantum
operators, i.e. quantize space-time itself. The reason for this is in general relativity space and time
are dynamical entities. In this way theorists are able to build quantum space-time, in which
gravity would then emerge from. The precise difference between LQG and CDT is somewhat
subtle (it involves the fact that in CDT the space-time manifold is granularized in such a way that
causality is preserved [8],[9]) but subtle enough that they have become their own distinct
approaches. These alternate routes however are quite different from string theory, which in a
historical sense was born from a particle physicist’s perspective.

Historically, string theory was first introduced in the 1960’s as an attempt to understand the
strong nuclear force through interacting hadrons. It turned out that a theory based on
one-dimensional extended objects, referred to as strings, solved some of the issues that the
point-like behavior of hadronic interactions introduced. The crucial idea of using strings is that
specific particles would correspond to oscillation modes (quantum states) of a string, much like the
oscillation modes on a violin string producing a variety of musical notes. With the string
description, a single one-dimensional object retains the ability to explain the differences of the
myriad of observed hadrons [3]. In the early 1970’s however, another theory, Quantum
Chromodynamics (QCD), was developed to describe the strong nuclear force. With this
development, as well as technical issues of using strings, string theory fell out of favor with the
masses of the physics community. Some, however, weren’t ready to abandon the elegance string
theory seemed to offer.

In 1974, around the same time QCD was being fine tuned, physicists Julius Wess and Bruno
Zumino developed a solution to eliminate tachyons from the models of particle physics. Not only

did the theory eliminate undesired tachyons it also provided a symmetry between bosons and



fermions. Such a symmetry is formally known as supersymmetry. Not long after the presentation
of global supersymmetry, work was done in extending the theory to local supersymmetry or
supergravity, an extension which includes general relativity.

The year 1984 became known as the first superstring revolution amongst theoretical physicists.
Due to the importance of supersymmetry, it is expected that string theory should contain local
supersymmetry. The revolution was marked by the discovery that to maintain quantum
mechanical consistency with a ten-dimensional supersymmetry requires one of two possible Lie
algebras: SO(32) and Eg x Eg. It turns out that the superstring formalism gives rise to five
distinct theories: type I, type ITA, type 1IB, and two Heterotic string theories. This realization
that there were five different string theories posited an intuitive problem: if there is only one
universe, why are there so many theories? In the late 1980s, a property known as T-duality was
found to relate the type II theories and the two heterotic theories, suggesting that they shouldn’t
be viewed as distinct theories [3]. But what of the other theories?

The mid-1990s for theoretical physicists has become known as the second superstring revolution.
Similar to T-duality, another type of duality, called S-duality was discovered, which relates the
type I theory and one of the heterotic string theories and the type IT B theory to itself [3].
Remarkably, it was found that if an 11th dimension was introduced, a quantum theory called
M-theory emerges. Together with the S and T dualities, the five superstring theories and
11-dimensional supergravity are connected by a web of dualities. That is, each theory separately
can be viewed as different corners of the same theory, a single model of string theory describing
quantum gravity. To this date however, there is not yet a complete or compelling enough
formulation of M-theory. As it stands, the physics community is waiting for the upcoming
theoretical physicists to either complete the description, or abandon M-theory altogether.

String theory is not without its issues. The number one problem with string theory, and every
approach to quantum gravity for that matter, is that it lacks predictive power. That is to say, so
far string theory is unable to provide any verifiable claims. This problem should be taken seriously
as any good science requires the ability to make predictions about the physical world. A related
issue is the fact that string theory requires the existence of extra dimensions and supesymmetry. If
an experiment were to come out providing evidence that our physical world does not include
supersymmetry or extra dimensions, string theory would almost certainly fall apart as it hinges on
these two requirements. Alternatively, LQG and CDT do not require the existence of extra

dimensions or supersymmetry, however LQG and CDT can include these features if need be

([10],[11]).



In short, string theory is one of three main candidates to a quantum theory of gravity. Since
string theory can also be viewed as an extension of the standard model, it is also considered to be
a candidate for a unified field theory. LQG and CDT are only concerned with gravity and are
therefore not candidates of a unified field theory. Despite its shortcomings, string theory has much
to offer, making it a highly active area of research and the most popular approach toward quantum
gravity.

With this brief summary of string theory, one is now equipped with enough terminology to

review the basic elements of the current standard texts on the subject.

1.2 The Standard

There are numerous sources for an introduction to string theory, but there are a few works which
have become the standard documents for this subject. These texts include the two volume series
Superstring Theory by Green, Schwarz, and Witten (GSW) ([2],[3]); String Theory and M-Theory:
A Modern Introduction by Becker, Becker, and Schwarz (BBS) [4]; the two volume series Bosonic
String Theory and Superstring Theory by Polchinski ([5],[6]), and lastly Barton Zwiebach’s A First
Course in String Theory [7]. Although these texts may be the standard, by all means there are a
variety of other texts out there on the subject, some of which are better than others. Regardless,
here T will only review the standard texts, as it is these texts I wish to bridge.

First consider the two volume series GSW ([2],[3]). The first volume of this series has a
copyright date of 1987, coming out a year after the so-called first string theory revolution, and is
therefore somewhat dated. A variety of special topics including D-branes, black holes, and
M-theory, where some of the most exciting research is currently taking place, are no where to be
seen. GSW is meant, however, to give a ‘brief’” summary of the results of string theory up to that
point in history, most of which largely focused on the mathematical framework necessary for string
theory, and the string theory models which included superstrings. For this reason, GSW is
indispensable, as it was the first major text on the subject to come out. This does not mean,
however, GSW is an ideal text for learning string theory, especially from the perspective of an
undergraduate. GSW assumes a background in a variety of other fields. Rarely are the results in
the text derived explicitly, leaving most of the computations for the reader to do in the privacy of
their own home. Of course, GSW is a Cambridge Monograph on mathematical physics, and it is
therefore written for an advanced audience, one assumed to have experience in all of these fields.

The other standard graduate texts aren’t much better in this respect. String Theory and



M-Theory [4], being written after the second string theory revolution, is certainly far more modern
than GSW ([2],[3]) and includes several exciting topics currently being researched. BBS [4] is also
a graduate level textbook and includes several worked out examples and homework problems,
making it accessible to a wider, albeit still limited, audience. Despite all of this, from a
pedagogical standpoint, BBS fails in the sense that it does not provide explicit derivations of many
of the results. Additionally, BBS is notorious for skipping several steps in the ‘worked out’
examples, making it difficult for the reader new to the subject to approach the material and fully
grasp the mathematics and physics of string theory.

Polchinski’s two volume series String Theory ([5],[6]) is certainly different from BBS [4] and
GSW ([2],[3]) as far as approach is concerned, but it also expects a lot from the reader. One of the
major difficulties of Polchinski’s text is that it uses the path integral approach as the main
quantization procedure, a hurdle for many who are only mildly familiar with the path integral
formulation of quantum theory. Certainly Polchinski’s text is unique, however it is a difficult text
to get through for first time reader, let alone the undergraduate eager to learn string theory.

After reviewing each of the graduate level texts, a theme emerges. In similar spirit as GSW
([2],13]), nearly all of the graduate texts on string theory begin first with a brief history of string
theory, and then spend a chapter, sometimes two, on the various quantization procedures of the
bosonic string. The bosonic string is important because it is in many ways a toy model, one which
is not realistic as the model does not include fermions, but it introduces several of the ideas
imperative to the various superstring theories. Therefore, the bosonic string is crucial, as it paves
the way toward the more realistic, and more complicated, superstring theories. The issue with the
standard graduate texts is that the bosonic string is typically covered in a single dense chapter. In
other words, the model which inspires the physics of superstrings is only lightly covered, leaving
the student confused about the importance of the bosonic string.

In this respect alone, Barton Zwiebach’s undergraduate themed text, A First Course in String
Theory (7], sets itself apart from the standard graduate texts. Published around the same time as
BBS [4], Zwiebach remains as one of the more modern texts on string theory. Dissimilar to BBS
and the other standard texts however, Zwiebach assumes that the reader has had minimal
experience with special relativity, Lagrangian mechanics, quantum mechanics, and the other core
subjects. Zwiebach builds from the ground up, from classical strings all of the way to the
quantization of the open and closed bosonic string. D-branes and other special topics are also
considered, however typically only with bosonic strings. Zwiebach indeed includes a chapter on

superstrings, and mentions their importance throughout the text, however the chapter is rather



qualitative, making it hard for the student to fully grasp the essential tenets of supersymmetry as
well as superstring theory. This is Zwiebach’s greatest downfall. Zwiebach is particularly successful
at being a first course in the subject, however, due to the lack of material on supersymmetry and
superstrings, the student is likely to only be prepared to read the material on the bosonic string in
the graduate texts, which is only the first chapter.

Simply put, the transition from Zwiebach’s undergraduate text to the standard graduate level
books is not a smooth one. Indeed, the transition from undergraduate to graduate is unlikely to be
smooth as well, however it is in my opinion that work can be done to make the transition from

Zwiebach to the graduate texts easier. The gap evident in the standard textbooks can be bridged.

1.3 The Theoretical Minimum and Bridging the Gap

While I was still in high school, I began scouring the internet for online lectures on relativity and
quantum mechanics. I was looking for anything that wouldn’t completely dumb the material down,
however still at a level I could hope to understand. Doing my search I came across string theorist
Leonard Susskind’s two year lecture series titled The Theoretical Minimum [12] that was being
filmed and uploaded to youtube. The goal of the series was to provide a foundation in the physical
theories necessary to understand more advanced topics in theoretical physics, particularly string
theory. The courses ranged from classical field theory to general relativity to supersymmetry, and
ended with a two term series on string theory. Susskind’s lectures indeed were what I was looking
for, a method of learning advanced physics topics without having to be enrolled in the Stanford
graduate program.

Not long after reviewing all of Susskind’s lectures, I discovered Zwiebach’s text [7]. Despite my
satisfaction with his work, I felt that the book could go into more detail on other crucial subjects
necessary to fully appreciate superstring theory, while still keeping the content at a level that an
undergraduate could understand. I saw that had Zwiebach spent some time fleshing out the
physics of general relativity or quantum field theory, the more esoteric topics laid forth in the
standard graduate texts could be brought to a level that an undergraduate could understand.

This is precisely the aim of my project; to bridge the gap that exists between Zwiebach’s
detailed text on bosonic string theory, and the graduate level texts. And the best way I think that
this can be achieved is to write a textbook in similar spirit as Susskind’s theoretical minimum. To
form this bridge I have put together what I call the ‘crash course chapters’ to act as background

information that allow the reader to continue on with the main subject. Essentially, the layout of



the book is to provide as much of the building blocks of string theory as possible until it is
absolutely necessary that an important and fundamental physical theory is reviewed, such as
quantum field theory. In this way, as the reader moves through the text, not only do they learn the
basics of string theory, but also become acquainted with the other fields of physics comprising the
‘theoretical minimum’, providing, in principle, an easier transition from Zwiebach [7] to the

standard graduate texts ([2]-[6]).



Chapter 2

Methodology

2.1 Learning while Writing

In its initial conception, the primary objective of this thesis project was to investigate the basics of
string theory, and then provide a summary on the physics of black holes in the context of string
theory. The project quickly changed as my mentor, Professor Stetz, suggested that the best way to
learn a subject is to write a book about it. And thus I began writing a textbook.

One of the major challenges of writing this text has been striking a balance between the
learning and writing processes. But this balance provides the basis of the methodology I used to
complete this project. The first task was to learn the subject. As mentioned above, I had begun
perusing a variety of texts on the fields which string theory builds itself from years prior to the
conception of this thesis project. Moreover, the summer before I began writing the text I worked
through Zwiebach’s A First Course in String Theory [7]. Using this background, gathering
resources for the project was a relatively simple task. I reviewed a plethora of texts, papers, and
online lectures to gain an overview, while working through the entirety of Zwiebach’s text, as well
as selected exercises of BBS [3]. Along with homework exercises, I would work through all of the
derivations from Zwiebach and the other texts explicitly, as to understand nearly all of the
mathematical and physical details of each calculation.

I filled a multitude of notebooks, pulling from various resources, learning the introductory
elements of string theory in a variety of ways. Using these notes I began constructing my own text.
In this sense, my thesis project is not much more than a well organized compilation of notes. It is

also from this perspective that I have been able to determine the strengths and weaknesses of each
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of the standard texts, allowing me to elaborate on details not given in the graduate texts, and
enhance the derivations given by Zwiebach. Of course, credit is given where it is due, as many of
the derivations shown are not original. Rather, by utilizing the notes from a range of texts and

papers, I have been able to construct a detailed introduction to string theory.

2.2 Lecturing while Writing

A textbook with the aim of reaching undergraduates should, naturally, be tried by the intended
audience. Certainly, as an undergraduate myself, I have heard and understood the majority of
complaints most undergraduates have about courses and the textbooks used in those courses.
However, as the author of an introductory text on string theory, I am no longer an arbitor for what
is deemed as the ‘undergraduate level’. Students that have not had the extensive training I have
had in this subject must be the individuals in which this text is tested against. Only then can my
thesis project be viewed as a success.

For this reason it is necessary that the text be tested on my fellow peers. So far, I have only had
the opportunity of lecturing to a single individual. During the summer I began lecturing on the
basics of supersymmetry to a single student. Not only did I learn the subject better coming from
the persepective of a lecturer, I was also able to determine where the text needed pedagogical
improvements; finding gaps within the presentation of the material. Based on these few lectures, 1
made some changes in my writing, looking to fill in these holes with either more explicit
mathematical computations, or with more physical examples. All in all, the mix of lecturing while
writing has offered me a chance to determine whether the material as presented in the text is
sufficient as is, or whether it needs improvements. Again, I have only been able to lecture to one of
my fellow peers, and only on a single topic, a poor sample size to base results off of, however still
insightful. One of the long term goals of this project is to teach an entire class using the written

text as a core set of notes, thereby allowing me to determine how the book may be augmented.



Chapter 3

Results: A Detailed Introduction

to String Theory

The end result: an organized collection of notes providing a detailed survey of string theory.
Ranging from the historical origins to the description of black holes, this collection of notes has
been arranged such that the reader is given a thorough tour of the basics, as well as an
introduction to more advanced topics in string theory. All of the results presented in this text have
indeed been presented before, and therefore do not distinguish it from the currently available texts
on the market. We will not focus on these aspects of the text. Rather, there are a number of
features that distinguish this set of notes from what is currently available. Here we will emphasize

these features as they are what act as the bridge between the standard texts.

3.1 The Track System: How to read this book

As the author of the text, naturally my preference would be for the entire book to be read.
However this is unfeasible for the student new to the material, and the amount of material in the
text itself would take more than one semester to get through if this book was going to be used as
the core resource. For that reason a “track system” has been devised to guide the reader based on
their level. To understand this system let us consider two types of potential readers, avoiding all of
the possible combinations of sub-types: the undergraduate senior, and the first-second year
graduate student. For the undergraduate senior, it is assumed they have had roughly a year’s

worth of quantum mechanics, and have had core classes in electromagnetism, classical mechanics
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(with an emphasis on both the Lagrangian and Hamiltonian formalisms), thermal physics,
mathematical methods, and a minimal amount of special relativity. Also, any amount of experience
with modern algebra, differential geometry, and topology help, but are not required, as these
subjects are discussed when necessary. For the first-second year graduate, it is expected they have
all of the above requirements as well as more mathematical methods (including a little bit group
theory and complex variables), and some experience with field theory and gauge transformations.
Before we get to discussing the details of the two track systems, a brief summary of each
chapter is necessary. Chapter 1 is primarily concerned with giving a historical introduction to
string theory as well as the unit system to be used throughout the text. In chapter 2 a review of
special relativity, and an introduction to index notation for tensors and vectors is given. Chapter 3
is a review of Lagrangian mechanics, an introduction to field theory, and an introduction to the
classical dynamics of non-relativistic strings. Chapters 4-6 give a detailed introduction to
relativistic strings, including conserved quantities. Chapter 7, the first of the “crash course”
chapters, is an introduction to quantum field theory, particularly focusing on free scalar fields and
free spinor fields. Chapter 8 quantizes the relativistic point particle using light-cone coordinates.
Chapters 9-11 give the three main approaches to quantizing the bosonic string in order of
increasing difficulty: light-cone quantization, covariant quantization, and BRST quantization (an
approach which makes use of conformal field theory and so-called BRST symmetry); the second
‘part’ of the text begins with chapter 11. A survey of D-branes in both bosonic string theory and,
briefly, superstring theory, is given in chapter 12. Chapter 13 details T-duality in bosonic string
theory and qualitatively outlines the basics of compactification. The second of the “crash course”
chapters, chapter 14, gives a dense introduction to supersymmetry (this chapter is also
supplemented by two appendices on notation and Grassmann calculus). A brief introduction to
superstring theory is given in chapter 15. Chapter 16 reviews some results from thermal physics
and gives an introduction to the thermodynamics of strings, mainly the bosonic string; chapter 16
also marks the beginning of the ‘third’ and final part of the text. In chapter 17 an introduction to
elements of differential geometry, including differential forms and covariant differentiation, is given.
Chapters 18-19 introduce the tenets of general relativity, and provide a quick, albeit dense, survey
of black holes as viewed in general relativity and semi-classical gravity; chapter 18 is the third
“crash course” chapter. Chapter 20 provides an introduction to black holes as interpreted in string
theory. The final chapter, chapter 21, provides a critique of string theory, and a qualitative
introduction to the other approaches to quantum gravity. With that, let’s move on to the details of

the track system.



The track devised for the undergraduate senior is as follows:

For a single semester course, chapters 1-3, excluding section (3.8); chapters 4-7, excluding
sections (7.8)-(7.10); chapters 8-10, and conclude with the final chapter, chapter 21. For a year
long course, the teacher might choose to include the sections first excluded, or could go through
chapters 12-13, skip chapters 14-15, and then move on to chapter 16. From here chapters 17-20
flow together, as they all pertain to general relativity and black holes in string theory and are

relatively self-contained, however this set of chapters might be too much for the first time reader.

Alternatively, the track devised for the first-second year graduate is as follows:

For a single semester course, chapters 2-4, excluding sections (2.1)-(2.3); chapters 4-7 excluding
sections (7.8)-(7.10); chapters 8-13, 16, and conclude with chapter 21. For a year long course,
include sections (7.8)-(7.10) as well as chapters 14-15. If the students have a background in

general relativity, then chapters 17-20 could be tackled without too much difficulty.

It should be pointed out that the two track systems are not strikingly different from one
another. The prime decision on creating the track system is to come up with a guide for students
with particular experience and abilities. For a student who has not had too much experience with
group theory, complex variables, or quantum fields, the chapters which rely heavily on these
mathematical and physical concepts should not be stressed on the first time through. The student
who is experienced with these subjects, could very well handle the material presented in this text.
Moreover, a student who has gone through the first track, would then be prepared to tackle the
second track, reading through the material previously omitted.

Aside from these two track systems, it should also be noted that this text also has the intention
of acting as a guide for self-study. This was in fact one of the chief aims of writing this book: to
create a document which may be used by teachers or by the individual willing to study the subject
independently. Of course, a teacher experienced with the material would prove far more beneficial
than simply reading the text on one’s own.

In summary, my text [1] may be read in which ever way the reader or lecturer prefers. However,
as the author and a student who undertook the process of learning this material, it is my belief
that the devised track systems would prove to be the most effective means of learning the material

for the first time. Most of all, once the student is experienced with the contents of this text, they



will be far better prepared for the advanced standard works on the subject.

3.2 “A Crash Course in...”

The point of string theory is to provide a unified description of all the forces and particles in
nature. In a sense, string theory is the culmination of several fields of physics that appear to be
incomplete in some way; that is, to come up with a theory that goes beyond the present models of
modern physics. Part of the issue of learning string theory is that one should be familiar with each
of these models, or previous modes of thought. It was found that this is also the crucial difficulty
in moving from Zwiebach’s text to the graduate level standards: Zwiebach [7] assumes very little
background and the graduate texts assume too much. Moreover, Zwiebach does little to provide
details on background in other fields that are absolutely essential in understanding string theory.
As noted earlier, this is one of the main problems A Detailed Introduction to String Theory [1]
aims to resolve. In short, this text includes several “ crash course” chapters on background that is
fundamental to the student continuing on. Here we will examine excerpts from these “crash
course” chapters and observe how this text bridges the current undergraduate books with the
graduate level standards.

How these crash course chapters were organized is also important. One goal of this book is to
introduce the basic elements of string theory without cutting too many corners and with a text of
finite length. Keeping this in mind, several chapters would be written on topics in string theory,
avoiding the formalism of physical theories, such as quantum field theory, until absolutely
necessary. From the perspective of the author, the book focuses solely on strings as much as it can
until a concept from an ‘old’ field is needed: e.g. scalar fields. From the perspective of the reader,
the text reads like a book on string theory, with the occasional detour toward other fundamental
fields of physics. Due to this feature, only a few “crash course” chapters are included in the overall
structure of text, maintaining a strong focus on string theory, but using details from other theories
to aid in the discussion.

In this section the topics and goals of each of the “crash course” chapters is given, along with
short excerpts. Appendix A gives longer excerpts from these chapters elucidating how these
chapters were structured. For a more complete view of these chapters, the entire document, A
Detailed Introduction to String Theory, can be found amongst the other references in the

bibliography [1].



3.2.1 Quantum Field Theory

Historically, string theory was an attempt at describing the interaction of gluons. In this sense,
string theory in its original form belongs to the realm of particle physics. Of course, the interaction
of gluons, governed by the strong nuclear force, is described by another physical theory, Quantum
Chromodynamics (QCD), pushing string theory to the side for a time. Despite its mathematical
evolution, string theory has its primitive roots in particle physics, where quantum field theory
reigns supreme. Therefore, to have an understanding of string theory (and most fields of modern
theoretical physics for that matter), one should be fairly experienced with quantum field theory.

For this reason, the first of the “crash course” chapters is one pertaining to quantum fields. In
no way is this chapter meant to be a thorough introduction to quantum fields; rather it is intended
as a brief discussion of the very basics. In this chapter the reader will not find any real discussion
on interacting fields, Feynman calculus, or the various methods of field quantization. Instead the
focus is on free fields, particularly free scalar fields, though there is some detail on free spinor fields
and the Dirac equation. Ultimately the point of this chapter is to provide some basic insight into
the physics of quantum field theory without doing away with all of the mathematics.

One particular feature of this chapter is the relation given between quantum fields and
light-cone coordinates. Since much of this text considers dealing with the light-cone quantization
procedure of the string, it is imperative that the reader witness the relationship between light-cone
coordinates and the different types of quantum fields (specific to this chapter are scalar fields,
photon fields, and gravitational fields). Below is a brief excerpt exemplifying the relation between

scalar fields and light-cone coordinates [1]:

It will be useful later on to consider scalar fields in terms of light-cone coordinates.
Let #p denote a vector whose components are transverse coordinates !

iy = (22,23, .. .29 (3.1)

The collection of space-time coordinates then becomes (z+,z~, #7). Using light-cone
coordinates, the Klein-Gordon equation is written as

0 9 9 9
Ozt 0x—  Oxl Ox!

m2) dat o, Bp) =0 (3.2)

To simplify, we Fourier transform the spatial dependence of the field, changing x~
into p* and 2! into p’. Similarly then,

pr = 0% ..p% (3.3)

The Fourier transform of the field is given by [7]:



aP—2p T,
o(axt 7, Tr) / / e P AT DT g (0 T ) (3.4)
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Substituting this into the Klein-Gordon equation, (7.81), we find
0 . .
< 25— (=ip") —p'p’ - m2> ¢(a*,p*,pr) =0

Dividing by 2p™ we find

0

('W - 2;+ (p'p" +m )> p(z*,p",pr) =0 (3.5)

To make things even simpler, let’s introduce a new time parameter, 7, which is
related to T in the following way:

+
+_P7
allowing us to write
i2 L pip +m?)) o(rpt ) = 0 (3.7)
or 2m?2 o

Before moving on, let’s briefly consider what we have just shown. We started with
the Klein-Gordon equation, a second order equation in space and time, and rewrote it
using light-cone coordinates to yield a first order differential equation in light-cone
time. This expression appears to have the same structure as the Schrédinger equation,
a feature we will exploit in the next chapter.

Moving right along, to describe quantum states of scalar fields in light-cone
coordinates we label the oscillators (creation/annihilation operators) with p™ and pr.
Single particle states are then constructed via

Ot 5r10) (3.8)

In light-cone coordinates, one can show that the momentum operator becomes three

operators [7]:

pt= 30t g (3.9)
pt.pr

pl = Z pla;tﬁTaptﬁT (3.10)
p+.pr

P = Z pia’LJr’ﬁTaer,ﬁT (3.11)
p+.pr

If we use the mass-shell condition (p? +m?) = 0, and the momentum in light-cone
coordinates, yielding p?> = (—pTp~ —p~p* + pp!), we find that

1
o W ¢ 2 -
2pp” =(p'p" +m”) = p 2er(pp +m?)
which allows us to rewrite the above as
- 1 i
P = Z % +(p pl +m?)a Qs 5 Opt iy (3.12)

pt.pr



These expansions are important in the analysis of the relativistic quantum point
particle which we consider in the next chapter.

This is the final section of the chapter concerning scalar fields. As the reader discovers, the
basic procedure of determining single particle states in light-cone coordinates is identical to the
procedure given before; the only real difference is using different coordinates. More interesting is
the brief comparison between the Klein-Gordon equation written using light-cone coordinates, and
the Schrédinger equation-like structure. This relationship is used later on when the reader learns
how to quantize the relativistic point particle using light-cone coordinates.

All in all, the prime focus of this chapter is the quantization of free scalar fields. They are the
simplest to deal with mathematically, and also lend insight into the physics of quantum fields,
particles, and antiparticles, topics which are not really addressed in either Zwiebach [7] or the
other standard texts ([2]-[6]). On this basis, “A Crash Course in Quantum Field Theory” is one of

the first chapters which exemplifies the bridging nature of this text.

3.2.2 Supersymmetry

Bosonic string theory, despite its elegance, lacks (at least) one fundamental ingredient: fermions. A
theory without fermions is a theory without matter. In order to be considered a semi-plausible
theory, let alone a theory which describes all possible types of interactions, string theory must
include a description of fermions. The way this is achieved is to use supersymmetry (SUSY), which
associates every boson with a fermion, and every fermion with a boson. The marriage of bosonic
string theory with supersymmetry is known as superstring theory, and to have any hopes in
understanding it, it is imperative one have a fair background with supersymmetry, leading to the
second “crash course chapter”.

To make the material accessible, details on interacting fields, non-Abelian gauge fields, and the
quantitative structure of the minimal supersymmetric standard model (MSSM), are all avoided.
Rather the chapter focuses heavily on developing Lorentz invariant spinor quantities,
understanding SUSY transformations, and developing the supersymmetric algebra. Moreover,
there are basically two approaches to studying supersymmetry: one being from a more canonical
approach, building the supersymmetric algebra from studying left chiral spinors; the other being
the more elegant superspace formalism. Superstring theories are typically written using this latter
formalism. For this reason, after some time is spent developing the SUSY algebra in the canonical

way, the reader is introduced to superspace. The superspace formalism involves the inclusion of



superfields which must be dealt with using Grassmann calculus. To aid this “crash course”
chapter, two appendices are included in the text to give further information on van der Waerden
notation and Grassmann calculus.

One particular feature of this chapter which sets itself apart from other texts is the discussion
surrounding the set up of a ‘simple’ supersymmetric Lagrangian. Motivated by [13], the method of
constructing a supersymmetric Lagrangian was aided by a ‘guess’ type approach, as can be

observed below [1]:

... The simplest supersymmetric theory we may consider is composed of two massless
fields, one that is bosonic and one that is fermionic. For our purposes, we will consider
a Weyl spinor and a complex scalar field. Since we are only concerned with left-chiral
spinors, we start with the Lagrangian density

L =0,00"¢" + xTic"d,x (3.13)

We recognize that this is the correct starting point as it is simply the sum of the
usual scalar field part we are now familiar with from studying quantum scalar fields,
and the appropriate part of the Dirac Lagrangian. We must now introduce SUSY
transformations that will leave this Lagrangian invariant. Since SUSY transformations
are non-trivial, let’s spend some time to understand how they are constructed.

Let us consider the transformation of the scalar field, as this will be the easier one
to deal with first. We will consider a transformation that is proportional to some
space-time independent, infinitesimal parameter (. By space-time independent we
mean that the parameter is not a function of space-time, thereby vanishing under a
derivative, 0,,¢ = 0. If we think back to our earlier discussion on gauge transformations,
we recognize that the transformation for our scalar field is global, contrary to local
transformations which do depend on space-time. In short, we will only consider global
SUSY transformations. Some call this rigid supersymmetry. Had we decided to
examine local SUSY transformations, where ¢ does depend on space-time, we would be
forced to introduce a gauge field that has the properties of a graviton. Theories with
local SUSY invariance are supergravity theories, and are a modern research avenue for
theoretical physicists studying various approaches to quantizing gravity [13].

Let us assume that the variation of the scalar field is proportional to the Weyl
spinor x. The reason for this choice is because scalar fields, which describe spin-0
bosons, should transform into fermionic fields. That is the fundamental consequence of
SUSY. Therefore, we consider the transformation

d— ¢ =¢+d¢ (3.14)

with d¢ =~ (x. Notice we have not written an ‘equal’ sign. This is because when we
write down transformations we must make sure that both sides of the equation have
the same dimension, and behave the same way under Lorentz transformations.
Considering this second requirement first, since ¢ is a scalar field, we must build a
Lorentz invariant out of ¢ and x. Since x is a Weyl spinor, we are forced to make ¢ a
Weyl spinor. Hence, the constant parameter of our global SUSY transformation is
infact a Weyl spinor independent of space-time, and, by convention, we declare ¢ to be
a left-chiral spinor. Luckily, we already know of a Lorentz invariant constructed from
left-chiral spinors: the spinor dot product between the two spinors, ¢ - x. We are then
tempted to write the SUSY transformation of the scalar field as



66 =C- X (3.15)

To be certain however, we must check that the dimensions of both sides match up. In
natural units we have ¢ = A = 1. Moreover, recall that the action S is the integral over
all four dimensional space of the Lagrangian density £, and is dimensionless (since we
are working with natural units). In such a system, we only have one independent
dimension left, that of energy, or mass M. We say that mass has dimension 1 (M?!).
On the other hand, since ¢ = 1, length L and time T have the same dimension of M ~!,
since A = 1. What this means is for the action to remain dimensionless, we require that
the Lagrangian density have dimension M* (coming from the fact that the action is an
integral over four dimensional space-time). Since gradients 9, have dimension M, we
can read off the dimensions of the scalar field ¢ and spinor field x from looking at the
Klein-Gordon and Dirac Lagrangian densities, yielding

[gl=M [\]=M?

In order to make the dimensions of our SUSY transformation work out, we require that
[¢] = M~=. Let us now move on to the SUSY transformation of the Weyl spinor x. We
would like the transformation to be linear in the infinitesimal parameter ¢ and either ¢
or ¢!, since dealing with non-linear transformations is much too difficult. For reasons
which will become clear shortly, we will use the complex scalar field, allowing us to
make our first guess for the SUSY transformation of y:

ox ~ CCol

where C' is some constant yet to be determined. Just as before, we must ensure that
this guess has both sides transforming in the same way under Lorentz transformations.
The left-hand side would transform as a left-chiral field, and since ¢! is a scalar field,
the right-hand side also transforms as a left-chiral spinor. There is a problem however:
the dimensions don’t match up: the left-hand side has a dimension of M %, while the
dimensions of the right-hand side are M %, meaning we need to raise the dimension by
M. To keep a linear transformation, we introduce d,, which has dimension M.
Therefore, our next guess is

Sx =~ CCO, "

The dimensions are certainly correct, however introducing d,, caused a discrepancy in
the Lorentz properties of both sides. In short, the indices don’t match, meaning we
must apply another object such that it contracts with 0,,. It must also be an object
that is dimensionless. A natural choice is one of the Pauli matrices o or ¢*. For
reasons which will become clear momentarily, we choose ¢, and make another guess

Sx ~ C(9,0")a"¢

But this is still incorrect! Recall that 0, x transforms like a right-chiral spinor. This
is exactly our same issue since, although the derivative is acting on ¢, it does not
actually affect the behavior of the expression under a Lorentz transformation. Meaning
that the right-hand side transforms like a right-chiral spinor while the left hand side
still transforms like a left-chiral spinor. Luckily, this problem can be easily resolved.

Remember that we showed —io?n” transforms as a left-chiral spinor. Applying this
to our latest guess, we have

ox = —io?(C(0u0")a )"

Since the operation of 17" on anything other than a quantum field, including (, is
nothing more than simple complex conjugation *, we have



§x = —i0?C*(9,9)a"*(* = —C*(9u0)ic*a"* ("
Then, if we use the fact that ** = 7*T and (0?)? = I we find

oy = —C*(8M¢)io25“TJ2J2C*

2

Lastly, using 026#T 02 = o* we find that the correct SUSY transformation for y is

5x = —C*(0,0)o™io*C* (3.16)

It remains to be seen whether we may choose a value for C'. The easiest way to go
about doing so is ensure that our Lagrangian is indeed invariant under the SUSY
transformations we have developed, (14.58) and (14.59). Let us vary our Lagrangian
density, (14.56):

6L = 0,(09)0" " + 0,00"5¢" + (6x1)ic" 8, x + xi5" 8, 0%

= 0u(60)0" " + 8,00"(39)" + (5x)Tia" D, x + xTi5" 8,6 x

where we made use of §¢! = (6¢)" and 6t = (6x). Taking Hermitian conjugates of
our transformations (14.58) and (14.59), we find that

(60)" =x-C=x"0*)¢"  (0x)" = C (9N io?o" (3.17)
If we substitute everything in, we find that the variation of the Lagrangian is
6L = (0"x")io?(*0uep — (0" 97T (i0) D, x
+C(0,0")¢T (i0%) 0 i D, x — C*xVic" " (0,0, ¢)(i0*C*)

As an exercise, the reader will prove that

ot 0,0,x = 0"0,x = Ox (3.18)

which will help us show that the Lagrangian is invariant under our SUSY
transformations. To see this explicitly, consider the sum of the first and last term of
our variation above:

(0"x")io?¢* 0,0 — iC*xTio?¢C*O¢
where we moved [J¢ around to the end of the second term since it is not a matrix
quantity. We can make these two terms cancel if we use integration by parts, allowing
us to get the derivatives to act on the same fields. Applying integration by parts to the
first term, keeping in mind that ¢ is space-time independent, we find that the above
becomes

—xTio?¢*0¢ — iC*xVio?¢* 0o

At this point it is easy to see that indeed these two terms cancel as long as C' = —i.

Completing a similar analysis shows that the second and third term of the variation
also cancel when C' = —i. In summary, we have introduced SUSY transformations

§op=C-x ot =C-x (3.19)

Sx = —i(0up)atio®cr  oxT = —i(9,9")(Tio% " (3.20)



that leave the Lagrangian

L =0,00"¢" + xTig"0,x

invariant. We have completed our first supersymmetric theory! However we are not

done yet. As we will see, when we determine the supersymmetric algebra we will be

forced to introduce a new field to maintain consistency. Let us proceed to examining
the supersymmetric algebra now...

Although this model is overly simplistic, it allows the reader to become familiar with the
techniques of constructing a lagrangian in SUSY, techniques which will be used later on in the
chapter.

In short, “A Crash Course in Supersymmetry” and its supplemental appendices provide a brief |
although dense, introduction to supersymmetry. When compared to Zwiebach, A Detailed
Introduction to String Theory includes far more details on supersymmetry and superstring theory
in the sense that a thorough discussion is given on the elements of SUSY. Zwiebach avoids these
details to make the chapter on superstrings more readily accessible to the undergraduate.
Unfortunately, for this reason when the reader moves on to more advanced texts suchs as BBS,
they are immediately lost as it is assumed SUSY is a prerequisite for the standard graduate level
books. In this way, “A Crash Course in Supersymmetry” is another example of bridging the gap

between Zwiebach and the other standard texts.

3.2.3 Differential Geometry and General Relativity

String theory is the culmination of theories of the known forces, including gravity. Although
considered to be part of the realm of classical field theories, the most ‘modern’ theory of the
gravitational force is in the language of Einstein’s general relativity (certainly, there exist
‘semi-classical’ theories of gravity, but these are really just extensions of Einstein’s original theory).
Gravity therefore enters string theory through Einstein’s general relativity. Thus a student of
string theory needs to be familiar with the fundamentals of general relativity, yielding yet another
necessary prerequisite, and leading to another “crash course” chapter.

Instead of a single chapter devoted to all of the mechanics of general relativity, the “crash
course” chapter was broken up into three separate chapters: “Elements of Differential Geometry”,
“A Crash Course in General Relativity”, and “Black Holes in General Relativity”. The first of
these chapters is to lay down the groundwork for the majority of the mathematics used in classical
general relativity, including tensor calculus, differential forms, and determining the various

curvature tensors. The second is the actual “crash course” chapter which develops the physical



intuition of general relativity and connects it to the mathematics developed in the previous
chapter. The third chapter is concentrated solely on various black hole solutions, extending the
work completed in the previous two chapters. All in all, the focus of the first two chapters is to
provide the reader with a brief, though detailed summary of the important elements of general
relativity. The third chapter in the sequence pays close attention to particular solutions to
Einstein’s field equations, the black hole solutions, and develops a context which is assumed as
background in the following chapter.

A particular feature of “Elements of Differential Geometry” is its focus on two methods for
computing curvature. The first is to use tensor calculus and the covariant derivative. Learning how
to compute curvature in this way is often the conventional approach when one learns the
mathematics of general relativity. The issue is that this approach is a rather tedious way to
calculate the components of the Riemann curvature tensor. For this reason another, perhaps, more
pragmatic route using differential forms is given. To aid in the introduction of the use of
differential forms and to become familiar with exterior differentiation, some time is spent doing
explicit calculations using the Hodge star operator and the wedge product; calculations which
cannot be found in any other standard text on the subject. Below is an excerpt where the

Laplacian in spherical coordinates is derived:

The Hodge star operator also allows us to define the three famous vector calculus
operators: div, grad, curl. Given a 1-form field F', one can prove that the divergence
and curl of F are given by

V - F = x(d+F) V X F = «dF (3.21)

Moreover, given any scalar function f, one can show that the gradient of f and
Laplacian of f can be written as

Vf-di=df  Af = xdx(df) (3.22)

From these identities it is straightforward to prove that, as a consequence of the
Poincaré lemma d? = 0, we obtain the familiar rules

V- (VxF)=0 Vx(V-F)=0 (3.23)

Conversely, if one assumed these rules, one could work backwards and show that the
Poincaré lemma must hold.

For concreteness, let us work out the Laplacian in spherical coordinates. First let us
work out the gradient of some scalar function f in spherical coordinates. This isn’t too
bad since all we have to do is apply a total differential to f:
of  o_0f of of

Gaa o™ = Gydr + 550+ 5odo

df =

which may be rewritten as
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Then, taking the Hodge dual gives us

_ f2. 1of . 1 of
*df = r 00 06 ¢

Taking the exterior derivative of xdf yields

dxdf = [87‘ (8?“0 ?sin 9) dr + 20 ((af?"Q 51119> de + 90 (fr2 sin 9) dgb} A dO A do

o o (10f o (10f
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0 0 1 of 0 1 of
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Since a A a = 0, we can see that we will only get one non-zero term from each of
these lines. In the first line, the only term we get is

— —fr 2sin@ | dr AdO A dp = 2f(?“ sin ) + af(27“sin6') dr NdO A do
8r or or? or

B 0*f 20f
_<8r2+ra >r sin @dr A df A d¢

In the second line, the only non-zero term is

of _ (9] of
89( aerblnﬁ)dﬁ/\drAqu—(wsnG—FCObH dr Adf A do

00
1 0%f 1 of
— <7~2692 + TQSlneaHCOS9> rsinfdr A df A do

Finally, in the third line, the only non-vanishing term is

o [ 1 of 1 82f
%(TSM%T)dmdee_ 5 g Ao N do

1 0%f ,
= Tan? 98¢2T Zsin Odr A df A dé

Summing these results together and taking the Hodge dual yields

02f 20f 1 92f  coth Of 1 o
*d*df:(+)+(r2392 Tz ae) "2 sin? 992

(3.24)

which we recognize as the Laplacian given in spherical coordinates



For more excerpts of these chapters, review appendix A, or even better, see [1].

One way in which Zwiebach [7] is able to reach a wider audience is he avoids most of the finer
mathematical details of general relativity. Occasionally a metric other than the usual Minkowski
metric is given, but one will not find any computations done with differential forms or covariant
derivatives. This in itself is no real issue, as Zwiebach’s essential goal is to provide the reader with
a background in bosonic string theory. However, as one moves from Zwiebach’s text to the
graduate level texts, it is soon realized that the reader is assumed to be comfortable with the
mathematical language of general relativity, making for a difficult transition from Zwiebach to
these more advanced texts. A Detailed Introduction to String Theory [1], by including a few

chapters devoted to the basics of general relativity, aims to ease this transition.

As a final note, it is important to point out that it is not the material in each of these “crash
course” chapters which set this text apart from other textbooks. Rather what sets this text apart
from the other standards is the fact that the liberty was taken to include this material within a
textbook on string theory. Certainly one could learn much more about quantum field theory from
Peskin and Schroeder [14], or general relativity from D’Inverno [15]. nut this would defeat one of

the purposes of this text: replacing multiple books with a single document.

3.3 Exercises

Just like any other textbook, A Detailed Introduction to String Theory includes exercises at the
end of each chapter. In general, the goal of homework exercises is twofold: to test the student’s
understanding of the material, and expand on the presented topics. The exercises given in this text
followed the same criteria, yielding two different ‘types’ of homework problems. One type is for the
reader to derive certain expressions given, forcing the reader to go through the details of some of
the discussed computations; checking the reader’s understanding of the mathematics involved. The
second type of exercise is to expand on some of the details briefly or not at all discussed in the
chapter. These exercises are usually longer than the first type, and typically has the reader to
connect some of the concepts in string theory with ideas in other fields of mathematics and physics.

Here are examples of the two different types of exercises that are given. For example, in chapter
four, “Classical Relativistic Strings”, the first exercise asks the reader to derive a particular

expression for the magnitude of the cross product between two vectors [1]:



1. Derive the expression |z x y| = \/(z - 2)(y - y) — (z - y)? using the conventional
rules of dot products and cross products.

The motivation for this calculation was that the result is used during the derivation of the
Nambu-Goto string action, and for the reader unfamiliar with the identity, completing this exercise
allows them to prove the relation. Another example is from chapter seven, “A Crash Course in
Quantum Field Theory”. The first exercise asks the reader to derive the commutation relation
between the creation and annihilation operators from the canonical commutation relations between
the position and momentum operators.

The second type of homework exercise is meant to expand on the material given in the text. For
example, in chapter eight, “Quantizing the Relativistic Point Particle”, in exercise two the reader
is asked to derive the given form of the Poisson bracket, and work out some of its interesting

identities [1]:

2. In a sense, when we canonically quantize a classical theory we are really
promoting our observables (dynamical variables) to operators, and insist that they
satisfy an appropriate set of commutation relations that have a classical
correspondence. Here we will explore this classical correspondence. (a) Let w(p, q) be
some function of the state variables p, ¢ with no explicit time dependence. Show that
the time variation of w is

dw OwOH  OwIH\
E B Z (a%' Op; a Op; 3(11') - {UJ’H}

i
where H is the classical Hamiltonian, and where we have defined the Poisson
bracket {-,-}.

The reader is then asked to compare these identities to the canonical commutation relations of

ordinary quantum mechanics.

(b) Show that

4 ={a, M1} pi = {pi, H}

Compare this result to what was considered in problem 1. What can we say about
Ehrenfest’s theorem?

(¢) Prove that

{gi4;} = {pi,p;} =0 {gi,pj} = 0i;



Compare this to the canonical commutation relations for the operators X; and P;.
Write a brief statement describing what is meant by canonical quantization, i.e. how
does one choose the canonical commutation relations?

In short, this exercise lends the reader insight into the method of ‘canonical quantization’.
Another example can be found in chapter nine, “Light Cone Quantization of the String”. In this
chapter the reader is introduced to the definition of a Lie algebra, and it is shown that the
commutation relations of the Virasoro operators satisfy the definition. To augment this, in the
third exercise the reader is asked to show that the Poisson bracket satisfies two of the properties

necessary for a Lie algebra [1]:

3. A more complete definition for a Lie algebra is: L, a real or complex vector space
with a law of composition given by the bracket [X,Y], is a Lie algebra if the following
are satisfied:

() [XvY] = _[Y7X]
(i) [X,aY +b7] = a[X, Y] + X, Z]
(4d4) [Xv [Y> Z]] + [Y, [Z7 X” + [Z7 [X> Y]] =0

(a) Check that the Virasoro operators for both the open and closed string satisfy
property (i).

(b) Determine whether the Poisson bracket given in the last chapter constitutes a
Lie algebra (Hint: Don’t bother showing property (éi%), although it does hold. Rather
check the first two properties.)

Ultimately, this exercise reveals that the Lie bracket need not be commutators, and also informs

the reader that Lie algebras show up in various fields of physics.

Lastly, recall that A Detailed Introduction to String Theory was also designed for those who
enjoy independent study. As one who studies other fields of physics independently, I have found
that texts with hints or partly worked solutions to homework exercises can be extremely useful for
going through the material on one’s own. Remember that the goal of exercises is an educational
one, and therefore a student who is unable to complete an exercise misses out on an educational
opportunity. For this reason, the final appendix in the text gives partly worked solutions to all of
the exercises, leaving most of the details up to the student, however acting as a guide for the
student who is completely lost. All in all, the exercises coupled with the solutions further

strengthen the reader’s overall understanding of the material.



Chapter 4

Conclusion and Final Remarks

String theory, despite its popular interest, tends to remain a mystery to many young physics
students. One reason for this is that learning string theory is at first a very daunting task,
especially with the current standard texts on the subject. In light of this, Zwiebach has
successfully written a “first course in string theory”, one which allows the young physicist to
approach the subject with minimal prior knowledge. Unfortunately, after reading his text, the
student who wishes to move on to the core of string physics will have a difficult time doing so. To
resolve this issue, I took on the task of writing A Detailed Introduction to String Theory, a text
aimed for undergraduates (and also includes material for the beginning graduate student) with the
hope of providing a bridge between Zwiebach’s wonderful book and the current graduate level
standards. One of the ways in which this text acts as a bridge is through the implementation of
“crash course” chapters. These chapters provide the reader with brief introductions on material
that is assumed to background in the graduate standards, such as quantum field theory,
supersymmetry, and general relativity; providing many of the necessary ideas to continue on with
string theory. Another way in which this book assists the student is through the inclusion of
homework exercises provided with worked solutions.

In spite of the approach taken in A Detailed Introduction to String Theory [1], an imperative
question remains: does this text succeed in its aim? There have only been a select few who have
read through this book, making it difficult to determine how effective this approach really is. In
short, a larger sample size must be used before any conclusive results on the effectiveness of this
text can be given. One way in which I hope this can be accomplished is by making these extensive

set of notes widely accessible and free of charge. I have also placed the text online so that anyone
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who wishes to read through them can at their own leisure. Moreover, the next step would be to
lecture from these set of notes for the intended audience, yielding information on how they might
be augmented or changed. Simply put, now that the writing part of this project is nearly
complete, the more difficult task of teaching the material awaits.

A long term goal for future work is provide an undergraduate themed series on modern
theoretical physics. So far, the loose outline includes a three volume text: Background, String
Theory, and Quantum Gravity. The background volume would be the first book in the series and
include material reviewing and expanding on many of the topics an undergraduate is assumed to
know. This volume would also include “crash course” motivated parts, i.e. longer introductions to
quantum field, SUSY, and general relativity. Other chapters would likely cover some of the more
advanced topics in mathematics, such as Lie groups and topology. The second volume would
essentially be A Detailed Introduction to String Theory, however with more material on modern
research avenues. Lastly, the third volume would consist of an undergraduate introduction to
canonical quantum gravity, a field which is certainly different to string theory in approach, however
may in fact be connected in some way (so far it has not been determined if the two are
compatible). Before this task is begun however, A Detailed Introduction to String Theory must be
revised and lectured from.

As a final remark, a banal question is often raised: what if string theory is wrong? What if an
experiment comes out showing explicitly that the universe is not higher dimensional, or that
supersymmetry does not actually exist in our world, what is to become of string theory? Like all
theories, string theory would have to be reimagined in some way; it would have to be reworked to
see if the theory can accomplish its original goals without these ‘requirements’. If this is not
possible, if string theory cannot be mended, then as good scientists we must take it upon ourselves
to move on. This would not mean however that the efforts of string theory would have been
fruitless; string theory has had tremendous influence on other fields of mathematical physics and
several branches of pure mathematics. Similarly, regardless of whether string theory ends up being
the “right” theory of everything, the student who reads this document is likely to learn the
methods of modern theoretical physics, lessons which prove invaluable for any subject in physics
and mathematics. All in all, whether string theory is found to be true or not, our perspective of

physical reality will likely never be the same.



Appendix A

Excerpts from A Detailed

Introduction to String Theory

A.1 Excerpt 1: Quantum Field Theory

Presented below are a few excerpts from “A Crash Course in Quantum Field Theory” from A
Detailed Introduction to String Theory. To read the complete chapter, the reader is pointed to the
entire text, which can be found in the references. To note, the majority of this chapter was based
on material from [16]-[18].

After a brief outline, the chapter begins with short discussion on the Klein-Gordon equation and

scalar fields [1]:

The first attempts to merge relativity with quantum mechanics involved the
relativistic generalization of the Schrodinger equation. Schrodinger himself actually
came with this equation, known as the Klein-Gordon equation, however he abandoned
it because it gave solutions with negative energy (which, as noted earlier, must stay),
and gave the incorrect energy spectrum for hydrogen. It turns out the Klein-Gordon
equation is successful in describing spin-0 bosons, and is therefore a tool we must
become familiar with.

In relativity, time and space are on equal footing. To make a relativistic wave
equation, we seek to make the Schrédinger equation on equal footing with time and
space. Recall that the Schrodinger equation may take the form

oy  —R? o
ih—=—V?. 9+ V Al
5 = oV VTV (A.1)
Immediately we see that space and time are not on equal footing; there is a first
derivative in time while there is a second derivative in space. Therefore, we cannot
start with the Schrodinger equation, but instead must use a different method. Recall
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Einstein’s famous formula
E? = p*c? + m?c? (A.2)

Then, using the more general form of the Schrodinger equation

o = Ev (A.3)

we decide to promote the energy F to become an operator. That is, let

0

Using (7.4) and the usual definition the quantum mechanical momentum operator,
the Einstein relation for energy becomes

2
—h2% = —h?cAV? + m?c! (A.5)

Applying (7.5) to a function of space and time, ¢(Z,t) and using natural units, we
have

H? -
th — V% +m2p=0 (A.6)
which also takes the form
(O+m?)¢=0 (A7)
where 52
_ 9 &
0= ot? v

Since both O and m? are scalars, the operator (0 + m?) is a scalar as well.
Therefore, the Klein-Gordon equation is said to apply to scalar fields, which have been
found to represent spin-0 particles [18]. We may also write the Klein-Gordon equation
as

(00" + m?)¢ =0 (A.8)
As written, the Klein-Gordon equation describes a free particle. Therefore it has a
classical plane-wave solution, namely

OF 1) = e P

Remember that when we are working in relativity p and x are actually 4-vectors
and therefore the scalar product is given by

—

p-x=put =FEt—p-%

Notice then
00 0 _imi-pa)

ot ot°
V¢ = Ve UF=F8) — 54

= —iE¢

Together, we find
(B> —p> —m?) =0— E =42 +m? (A.9)

where we have kept both signs of the energy for a reason...

...Equation (7.9) implies that the energy of the particle takes on both positive and
negative energy states. The issue of negative energy states turns out to not be a
problem, as it is also a consequence of imposing causality in our theory, which we desire.



There is another issue however which also troubled Schrédinger when he arrived to the
Klein-Gordon equation. The Klein-Gordon equation leads to a negative probability
density in the free particle case. To see this explicitly, consider one spatial dimension
for simplicity and assume that the probability current takes the usual form [19]:

a *
—i¢* ﬁ + (;5 ¢ (A.10)
Taking the spatial derivative of the probability current yields
8J 0? 62d)
A LA
x
Using the Klein-Gordon equation in one dimension
0%  0%¢
gz o T
we find
aJ 82¢ 82¢ L 0% 0%
e —¢ ¢ —< 8152_¢6t2> (A11)

A fundamental result from quantum mechanics is that the probability density p and
the probability current J satisfy the conservation of probability equation [19]:

Op | 0J
2% " r =0 (A.12)
Hence,
O _ (g0 00
ot ot? ot?
Leading to
0 0p*
<¢ 00,00 ) (A13)
Using our plane wave solution, we find
9p 09"\ _
(¢ 5 o ) =2F (A.14)

But E = £++/p? + m?2. Therefore, allowing the negative energy solution to exist
yields a negative probability density

p=—-2p2+m2<0

which doesn’t make any sense at alll A first step to solve this problem is to quantize
the fields by promoting ¢ to become an operator.

Notice that the essential motivation of this section is to provide an introduction to the concept
of a field, as well as an interesting consequence from keeping both signs of the energy (a first
inkling of particle and antiparticle states). From here the chapter discusses the quantization

procedure for a free scalar field:



The process of quantizing a field basically involves us imposing commutation
relations. Canonical quantization refers to the process of imposing the fundamental
commutation relations in position and momentum

[2,p] =i (A.15)

A similar procedure holds for quantizing classical fields. This method is formally
known as second quantization, although it is a misleading name. To quantize fields we
must continue to place space and time on equal footing. In quantum field theory,
momentum and position revert back to parameters, just as they were in ordinary
classical mechanics, and instead we promote the fields to operators, imposing equal
time commutation relations on fields and their conjugate momentum fields. The fields
are operators in the sense that they act on quantum states to destroy or create
particles, which is important since particle number is not fixed in relativity theory [18].

But changing the number of particles has its roots in the simple harmonic oscillator
from ordinary quantum mechanics. Let’s briefly review. Recall that the Hamiltonian
for a simple harmonic oscillator in quantum mechanics is [18]:

>z (A.16)

Let us define the creation and annihilation operators (also known as the raising and
lowering operators):

. mw ([ T

@=4/— <x + mwp> (A.17)
e (i AL
a 5 <ac mwp) (A.18)

Using the commutation relation of Z and p, as the reader will show, one finds
[a,af] =1 (A.19)
In terms of the creation and annihilation operators, the Hamiltonian takes the form
H=w(@'a+2) (A.20)
We define the number operator as
N =ata (A.21)
which satisfies the eigenvalue equation,

N|n) = n|n)

The Hamiltonian can then be written as
H=w(N+:2) (A.22)
The eigenstates of the Hamiltonian satisfy

mmzwm+§m> (A.23)



Implying the eigenenergy is

By = win+ %) (A.24)

The annihilation operator has its name because it drops the eigenstate |n) by one
unit in the following way:

aln) = v/nln — 1) (A.25)
Alternatively, the creation operator increases the eigenstate |n) by one unit as
alln) = vn +1|n +1) (A.26)

There is a lowest lying energy state in quantum mechanics called the ground state
or vacuum state. We enforce the condition that the vacuum state is annihilated:

a0y = 0 (A.27)

But a' raises the energy of the system without limit. Therefore, we can obtain a
generic state from the vacuum state as

10) (A.28)

We call the collection of all states spanned by the states formed by operating on the
vacuum state with any number of the creation operators a Fock space [18].

In quantum field theory, we take the notion of the number operator literally. The
state |n) is not a state of a single particle, but rather a state of a field with n particles.
The creation operator adds one particle to the field while the annihilation operator
removes one particle from the field. Moreover, as we will see, the physical vacuum |0)
has no particles present, however the fields remain, indicating that the vacuum state is
not entirely void of everything.

Let’s move on to quantizing the free scalar field. For now, consider a real scalar field
that satisfies the Klein Gordon equation

2
ng ~ V2o +m?p=0 (A.29)

The free field solution of the Klein-Gordon equation is
¢((E,t) — e—i(Et—pw)

If we use the wave number instead, then we let £ — k% = wy, and p — E, allowing us

to write -
$(x) = e~ lre kD) (A.30)

Doing this allows us to write the general solution of the Klein-Gordon equation in
terms of a Fourier expansion [18]

_ [ BE  Re iR | g ()eilenn® —R2)
o) = [ Grroa= o 6" (R)e ] (A1)

We now promote the field ¢(z) to become an operator by having ¢(k) — a(k) and
#* (k) — a'(k). Therefore, the field operator is given by

~ >k - . 0_ 7. S 0 7
8) = [ G (AR D R ED] )
2 k



To impose the commutation relations, we also require a conjugate momentum to the
field. The Klein-Gordon Lagrangian is

1 1
L= iauaﬂa; - §m2q§ (A.33)

The conjugate momentum of the field is then

oL
I(z) = 9@00) = oo (A.34)
A brief calculation yields the conjugate momentum operator:
3 L o o
Ooo(z) = 0y / Ciik [@(k‘)e_i(wkwo_k'm) n &T<k’)ez(wk$0—k'$)i|
(27m)2 v/ 2wie

A3k LN, —i(wra®—F-E) | At D\ (s i(wpa®—k-&)
= et () (i e " D) 1 a1 () (i ) re” )]
T

)% 2wk
Sk - . 0 70 = - . 0 7=
=i / (sﬂ)% % [&(l@)e”(“” k) _ gt eilwns *’m} (A.35)

The commutation relations we impose follow from the canonical commutation
relations from non-relativistic quantum mechanics:

(2, 05] = ibi; (A.36)
[, 2;] = [Pi, D] = 0 (A.37)
For fields we impose the equal time commutation relations:
[b(x), TI(y)] = id(F — ) (A.38)
[b(x), d(y)] = [ll(x), 11(y)] = 0 (A.39)

We call these the equal time operators since although Z # ¢, we assume that we
looking at the fields at the same time, i.e. 20 =1°...

...Now that we know how to write the field operators in terms of the creation and
annihilation operators, we can see how the operators act on the state of the fields. Due
to our understanding of the simple harmonic oscillator from ordinary quantum
mechanics, we already have an idea on how the operators behave. Let’s begin by
considering the vacuum state |0). Analogous to the harmonic oscillator, the vacuum
state is destroyed by the annihilation operator

a(k)[0) =0 (A.40)
where we use the wave vector k to notate our states. On the other hand
k) = at(k)[0) (A.41)

which describes a one-particle state. If we use multiple creation operators of
different modes, we may construct a Fock space

— —

k1, ko, . kn) = al (Fy)at (B2)...at (,)]0) (A.42)

The accurate interpretation of the action of creation operator is that each creation



operator aT(Ei) creates a single particle with momentum hl% and energy hw;; where

wp = \/Eg—FmQ

Alternatively, the annihilation operator destroys particles with the same momentum
and energy.

We can construct the number operator from the creation and annihilation operators
analogously to the number operator defined in non-relativistic quantum mechanics:

N(k) = a’(F)a(k) (A.43)

The eigenvalues of the number operator, n(E) are called occupation numbers and are
integers, telling us how many particles there are of momentum k for a given state.
Therefore (7 53) is a state consisting of n part1cles with a single particle with
momentum kl, a single particle of momentum kg and so on. We can also have states
where there are multiple particles of the same momentum. Consider for example the

state . .
CLT (k‘l)aT (k‘l)

ki, ki, ke) =
k1, k1, ka) NG

a' (k2)[0)
We may rewrite this state as
v, Ky, ko) = n(kr)n(k2))
where n(k1) = 2 and n(ky) = 1. Therefore,

(aT)n(E1) (aT)n(Ez)!

In(k1)n(kz)) = = —10)
In general, the Fock space takes the form [18]:
- - o (ahynthi)
n(En(Re)...n(fn) = [T L0y (A.44)
i=1 \/n(k;)!

As written, the number N (I;) is actually a number density. To get the total number
of particles, we integrate over all states in momentum space

at(K)a(k) (A.45)

/\/ 2 32wk

Moreover, in terms of the number operator, it can be shown that the Hamiltonian
and momentum take the form...

By the time the reader is at the level of this text they would have likely encountered the
quantization procedure of the harmonic oscillator. Using this as an analogy, the reader can then
see the basic idea behind quantizing free scalar fields, and, more interestingly, free scalar fields may
interpreted as a collection of “harmonic oscillators”.

In the rest of this section, and several sections after, various aspects of free scalar fields are

explored, including charged scalar fields, briefly, scalar fields using light-cone coordinates, and,



briefly, the Feynman propagator. Eventually, the reader is given an introduction to free spinor

fields and the Dirac equation:

One the issues with the Klein-Gordon equation is that it does not give the correct
spectra of the hydrogen atom, which was one of the original reasons why Schrodinger
abandoned the Klein-Gordon equation. Moreover, the Klein-Gordon equation included
negative energy solutions. We were able show that these negative energy solutions
correspond to antiparticles, but in 1928, the physics community was unaware of
antiparticles. Paul Dirac approached the difficulties of the Klein-Gordon equation by
inventing his own equation, which we will go on to discuss briefly here.

The Klein-Gordon equation is second-order in space and time. Dirac went the other
way and instead chose an equation which is first order in space and time. His reason for
this is that it eliminated the negative probability density which appeared to plague the
Klein-Gordon equation. Moreover, to maintain Lorentz covariance, space and time
should be treated on equal footing, another reason for having both derivatives in space
and time be of the same order. A possible candidate for a relativistic wave equation
fitting this description is given by

B B
ia—f = —id- 8—1; + Bmy (A.46)

We would like the components of ¥ to satisfy the Klein-Gordon equation so that the
relativistic relation of energy and momentum for a free particle holds. In the
non-relativistic case, ¥ can have two components, spin up and spin down, thereby
requiring that a; and 8 be matrices, making the Dirac equation a matrix equation. If
we apply the operators F = i% and p; = —ia% twice to the Dirac equation, the
Klein-Gordon equation should fall out. If we demand this to be true, one can show that
the matrices must satisfy [17]

{ou, a5} = 20y (A.47)
{ei, 8} =0 (A.48)
B2 =1 (A.49)

Moreover, since a? = 1, the eigenvalues of ; and 8 are 1. It follows then that «;
and 8 must be traceless:

tr(a;) = tr(a;B?) = tr(BayB) = —tr(B%a;) = —tr(a;) — tr(e;) =0

Since the eigenvalues are +1 and the matrices are traceless, «; and 8 must be even
dimensional. If we picked two dimensions we would simply choose the Pauli-spin
matrices. Our next option is dimension four with the Dirac matrices:

o = B ‘6] (A.50)
3= [é _OJ (A.51)

where the o;’s are the familiar Pauli-spin matrices. It turns out to be more
convenient to work with the gamma matrices defined as v° = 8 and 7 = Ba;, and they
satisfy

{77} =2 (A.52)



In terms of the gamma matrices, the Dirac equation is of the form

(if — m)y =0 (A.53)

where we have employed Feynman’s slash notation, ¢ = 7“%. Finally, so that we
don’t spend too much time on the Dirac equation, without proof, however well

established, the Dirac equation in fact describes spin—% particles, i.e. fermions.
With the Dirac equation we can also find the conserved current that it produces.
However, we must also know the conjugate equation. Taking the complex conjugate of

(7.92), we find
oYt oyt

ot T ar
since a; and § are Hermitian. To recover the form with the gamma matrices, we
multiply the right hand side of (7.100) by 1 = 42, in turn causing ¥ to be everywhere

multiplied by 8. We then define

+ mB! (A.54)

O =1ig =yfy° (A.55)
Therefore,
o o -
—ia—:/;fyo = ia—i ¥+ Ym (A.56)
Or,
(i +m)y =0 (A.57)

To find the current, we multiply (7.99) by +, multiply (7.103) by 1 and sum the
two, yielding,

By + 7" 9t = 8 (") = 0 (A.58)

Thus, the conserved current is -
JHyHe (A.59)

Moreover, the charge density is given by
70 =ty (A.60)

Remember, the Dirac equation describes spin—% fermions, but v is 4-component
column vector called a spinor. Since we forced the components of ¥ to satisfy the
Klein-Gordon equation, we, inevitably, introduced negative energy solutions, one that is
spin-up and one that is spin-down. Therefore, the components of the spinor describes
an electron with both spin states, and a positron (antielectron) with both spin states.
Let’s denote the positive energy solution by

i = e Tu(p) (A.61)

where u(p) is a 4-component spinor. Similarly, we denote the negative energy solution
as

b = ereu(p) (A.62)
Subsituting both 1, and v _ into the Dirac equation, we find

(¥ —m)u(p) =0 (A.63)

(¥ +m)v(p) =0 (A.64)

For particles at rest, p = 0 and therefore p° = E = m. The positive energy solution



then becomes
(B —=1)u(0) =0 (A.65)

Giving rise to two independent solutions:

(A.66)

o o= O

The solution u!(0) describes a positive energy particle which is spin up, while u2(0)
describes a positive energy particle which is spin down. Similarly, for the negative
energy solution we have

(8 + 1)v(0) =0 (A.67)

giving rise to

v (0) = (A.68)

— o o o

where v*(0) describes a negative energy particle with spin up, and v2(0) describes a
negative energy particle that is spin down. For particles not at rest, we solve (7.109)
and (7.110) noting that (y — m)(y+ m) = p?> — m? = 0 such that
u'(p) = N(§+ m)u'(0),where N is a normalization constant, satisfies (7.109), and
v'(p) = N(—p+ m)v'(0) satisfies (7.110). With a bit of algebra, one can show that the
resulting spinors for the positive and negative energy solutions to the Dirac equation
take the form

1 0
0 1
u'(p)=| p. |, W)= o (A.69)
E+m E+m
b+ _ _ D=
LE+m ] L E+mJd
[_P= r _pP— 7
Ez;s—m E+4+m
1 _ E++m 2 — _Elrm A.70
vip) = | B vt = | (A.70)
(- O - L 1 -

(NI

where py = p, £ ip,, and E = (p? + m?)z.

Dirac succeeded in producing a non-negative current density, getting rid of the
negative probability densities that seemed to plague the Klein-Gordon equation,
however, he could not get rid of the negative energy solutions. Faced with the problem
of having an energy spectrum which is unbounded from below, Dirac supposed that all
negative energy states, the negative electron sea, were filled. Since the equation
describes fermions, by Pauli’s exclusion principle no two electrons can occupy the same
state. Therefore, the positive energy electrons are prevented from falling into the
negative energy sea because there are no vacancies. Solving this issue implicitly
assumed that one was no longer dealing with a one particle system. Moreover, the
ground state with no positive energy electrons is no longer empty since the negative
energy electrons would still be present. Rather, the bare vacuum, is the vacuum void of
positive and negative energy electrons. It turns out however that the bare vacuum is
unstable.

There are quantum fluctuations in the bare vacuum, making it unstable. Therefore,



if we start with an empty vacuum, eventually a fluctuation will create a pair of
electrons, one with negative energy, and one with positive energy, thereby causing the
total energy of the new state to be zero. This system can lower its energy however by
letting a particle pair “fall” to the bottom of the sea. This means that the bare vacuum
is no longer empty, nor is the energy zero since it has been lowered. These fluctuations
continue to occur until the negative energy sea is full. The fluctuations will no longer
be able to create a zero energy pair because there will be no place to put the negative
energy pair (the sea is “full”). This is what we call the physical vacuum, a vacuum
which is stable against quantum fluctuations. What’s more is the physical vacuum is
not empty, as one might assume.

Particles and antiparticles can be distinguished by their charge. For scalar fields, we

introduced a complex field ¢* to distinguish between particles and antiparticles.

Suppose we did not want to describe spin—% fermions with charge. This is analogous to

our theory of real scalar fields. We therefore wish to make 1 real. This is possible if we
work in a different representation of the gamma matrices. Instead we use the Majorana

representation where we take

0 __ O g2 1 _ i0'3 0
V= |:0_2 0:| , V= |: 0 i03:| (A7]‘)
2 0 —02 3 —i03 0

If we multiply v* by ¢, all four matrices are real. The Dirac equation then is

(ig —m)¢p = (iv"0y —m)p = 0 (A.73)

which has solutions that are real. Therefore, with Majorana fermions, we cannot
expect to distinguish between particles and antiparticles since now we are dealing with
a real spinor field.

Finally, a last case to consider is when we are dealing with massless fermions. The
Dirac equation is simply,

ighp =0 (A.74)

By a proper choice of representation of the gamma matrices, we may decouple the
4-component spinor into 2-component spinors. Such a choice of representation is known
as the Weyl representation or chiral representation, where the gamma matrices take the
form

,70 _ |:_01 01:| 7 'Yl _ |:7/gz _?Ui:| (A75)
When we restrict 1 to two components, we lose the antiparticles, but with a real

four component we cannot distinguish the particles from antiparticles since there is no
charge. We can distinguish particles from antiparticles through their chirality however.
When the projection of spin of the particle onto the direction of motion is positive, we
say that the particle has positive chirality. If the opposite hold, the particle has
negative chirality. It turns out that particles and antiparticles have opposite chirality
[17]. The operator which distinguishes chirality is the v° matrix,

7? =75 = ir’y!y%y° (A.76)

In the Weyl representation, the chirality operator takes the form

5 = [(1) _01] (A7)



If this is your first time seeing spinor fields, chirality, and helicity, don’t be too
alarmed, as when we quantize the bosonic string one doesn’t need to work with
fermions. However, in a later chapter when we examine the basics of supersymmetry,
and move on to superstring theories these notions are fundamental, and will be
examined in more detail there...

As can be observed by this final note at the bottom, the reader new to quantum fields is not
expected to work too much with fermions and spinor fields. This is due to the fact that the text
primarily deals with bosonic string theory, which is free of fermions. Of course, in the “Advanced
Topics” section, superstrings are considered, and there the reader should be familiar with the Dirac
equation and free spinor fields (note that the first track skips the sections on fermion fields as well

as superstrings).

A.2 Excerpt 2: Supersymmetry

The bulk of this chapter is based around Patrick Labelle’s Supersymmetry Demystified [13], a real
tour de force seeking to provide a basic background on this subject. If the reader is interested in
the topics presented in this chapter, they are urged to peruse Labelle’s text. Another fair text on
the subject, though a bit more advanced, is Aitchison’s Supersymmetry in Particle Physics [20].
“A Crash Course in Supersymmetry”, after beginning with a brief discussion on the history and

physical motivation of supersymmetry (SUSY), Weyl spinors and the Dirac equation are reviewed

[1]:

In the chapter on quantum field theory, we found that the Dirac equation could be
written in the form

WP =map (A.78)

where P, = ¢0,, and 1 is a four component Dirac spinor. Remember, the Dirac
equation and spinor fields describe fermions. Moreover, recall the Dirac Lagrangian
density

£ =D P — m)y (A.79)

where 1) = 1)T~0. We are going to be using dagger notation in this chapter to denote
the Hermitian conjugate, as we will use the asterisk symbol to denote typical complex
conjugation. As we mentioned before in the chapter on quantum field theory, there are
alternative representations for the matrics 4 and ¥. When we study supersymmetry,
we will make use of the representation

TR X



where I is the 2 X 2 identity matrix and ¢ are the Pauli matrices we are familiar
with from ordinary quantum mechanics

1|01 o 10— 3 |1 0
o= [1 0 =10 =1y _1 (A.81)
One property of the Pauli matrices is that the product of any two Pauli matrices is

olod =69 ik gt (A.82)
where §% is the Kronecker delta, and €% is the totally antisymmetric Levi-Civita
tensor, having that €23 = €231 = €312 = 1, and €3?! = €213 = ¢!32 = —1, and has all

other components equal to zero. Equation (14.5) allows us to compute the commutator
and anticommutator between two Pauli matrices:

[0%,07] = 0'0? — oiot = 2ieiik g (A.83)
{0,097} = 0'0? + i’ = 269 (A.84)

We can use (14.3) to define

7 =(9) (A.85)

Moreover, using the mostly minus convention of the Minkowski metric yields the
covariant version of (14.3):

Voo = My’ = (7%, =) (A.86)
We had also defined the 75 matrix which is important for defining chirality

s = {é _OI] (A.87)

The 75 matrix comes in handy when we define Weyl spinors. Let’s do that now.
First let us write the four component Dirac spinor in terms of two two component
spinors. That is,

Y= [ﬂ (A.88)

These two component spinors, 1 and x are called Weyl spinors. For reasons which
will become clear shortly, we decompose the Dirac spinor into two spinors because the
Weyl spinors separately transform under Lorentz transformations, which will help us
build Lorentz invariants. More precisely, we say that a Dirac spinor is a reducible
representation of the Lorentz group while Weyl spinors form an irreducible
representation, which, in a sense, suggests that Weyl spinors are more fundamental
than Dirac spinors.

It is important to note that if we set either Weyl spinor equal to zero in the Dirac
spinor, we find the eigenstates of the 5 matrix. In particular,

wf =i =L

We call the eigenvalue of 5 the chirality of the spinor. A Weyl spinor with positive
chirality is sometimes referred to as a right-chiral spinor, while a Weyl spinor with
negative chirality is referred to as a left-chiral spinor. In that sense, we see that 1 is a
right-chiral spinor and x is a left-chiral spinor. We therefore sometimes denote 1 by ng,



and x by xr. We will only use 1 to mean right-chiral spinors, and x to mean left chiral
spinors in this text, so we avoid using the subscript. As we will see in this chapter,
left-chiral spinors, though mostly through convention, are of particular importance in
supersymmetry.

We leave it to the reader to show that substituting (14.11) into the Dirac equation
yields two coupled equations

—

(BEI-¢-Pyp=mx (EI+&-P)x=mng (A.89)
Before moving on, let us introduce some further notation that will prove useful later

on. Let us first define

ot =(1,d) ot =(I,-79) (A.90)
Then, using the fact that (¢2)? = I, we find

o?do? = —G* 0?6T0% = -7
from which gives us the useful identities
o?(e")To? = g# o?(e")To? = ot (A.91)
Or, taking the transpose, and using (02)7 = —02, we find
o?oto? = (a")T o?5'e? = (o)T (A.92)

Another identity that is rather trivial in proving is
a'o¥ +a"o" = g5” + oV 5t = 2 (A.93)
Finally, using the definitions of ¢* and ¢*, the coupled equations become
P,otn =my Pty =mn (A.94)

Moreover, we may write the gamma matrices y* as

= {0 0’”} (A.95)

a* 0

In terms of Weyl spinors, the Dirac Lagrangian can be written, as the reader will
prove, in the form

L =n'a"idm+ x'd"i0,x — mn'x —mx'n (A.96)

As noted above, supersymmetry requires a fair understanding of fermions and the Dirac
equation. It is for this reason that this “crash course” chapter is left out of the first time reader’s
track. Moreover, this chapter should not be attempted until after the sections on the Dirac
equations and spinor fields in chapter seven are worked through.

From here a fair amount of time is spent devoted to becoming familiar with the language of left
chiral spinors; developing Lorentz transformations of spinors, the spinor ‘dot product’, charge

conjugation, and massive spinors. Once all of these details have been discussed, the chapter shows



the reader how to construct the simplest supersymmetric Lagrangian possible, as noted above. The
real meat of the chapter is discussion on the SUSY charges, and the supersymmetric algebra
formed by the commutation and anticommutation relations formed by these charges. No details
are left out, providing the reader with a detailed guide to the mathematical structure of SUSY.

Below is an excerpt of discussion on the SUSY algebra:

...We will now make use of (14.79) to find the algebra of supersymmetric charges.
First of all, since we are using a two component spinor ¢ and its complex conjugate (*,
we have a total of four charges, denoted as @1, @2, QI, Q;, and may form a Weyl
spinor, which we shall simply label as Q, and it has a Hermitian conjugate Q. These
are our supersymmetric charges which are often called supercharges.

We require that the argument in the exponential of our unitary operator be Lorentz
invariant. What’s more is we may also choose that @) is a left-chiral spinor, in which
case we have the two possible Lorentz invariants

Q-¢=Q(-ic*>)¢  Q-(=Qlig*¢" (A.97)
Using this in our unitary operator U that generates SUSY transformations is given

by
U = eap(iQ- ¢ +iQ - ) (A.98)

If we then apply (14.66), and our SUSY transformations given in (14.62) and
(14.63), we find

(-Q+C-Qdl=—iC-x [(-Q+(-Q,x]=—i(d.p)0"aC" (A.99)

which imply
C-Q,¢]=—iC-x [(-Q,x]=—i(0.p)o"c*C* (A.100)
[C-Q.,¢l=1C-Qx]=0 (A.101)

Just as we did near the end of the last section, let us consider two successive SUSY
transformations in the same way as before. This time (§ as the infinitesimal parameter
of the second transformation, which is generated by Up = exp(iQ - 8 + iQ - B) If we
apply (14.79) to a scalar field ¢ our supersymmetric Lagrangian in (14.56), we find

556 — 0¢85 =[Q-C+Q-(,Q B+ Q- A, ¢]

Let us first examine the right hand side and the commutators between the charges
first. Using our results of the spinor dot product (14.28) and (14.34), the first
commutator is just

(Q-¢Q- 8] = [Q(=i0*)¢, Q(=io*)B] = —[Q(0®) "G, Qe(0*)™'B4]

As a warning to the reader, we remind ourselves that the (; and f; are Grassmann
numbers while the @ are Grassmann operators, meaning that as we pass them through



each other, we will pick up extra minus signs as they anticommute with each other.
Therefore, the above becomes

—(0H)® (%) Q0bQcBa — QeBaQals) = (62)(02)° ¢ Ba(QuQc + QeQu)

= (6%)*(0”) "¢ Ba{Qa, Qc} (A.102)

Rather than commutation relations, we have instead found that anticommutators
between the supercharges arise. However this could be expected as we are dealing with
fermionic variables instead of ordinary commuting numbers. Using the same method,
the three other commutators are:

[Q-¢.Q Bl = —(0")"(0*)*CB1{Qu, QL) (A.103)
[@-¢,Q- 8] = —(0°)"(0*)¢; Ba{QL, Qc} (A.104)
[Q-¢,Q- 8] = ()™ (0*)*¢; 8:{QL, QLY (A.105)

In summary, we have

dg6cp — 0c0p =[O, @]

...3ince v and 8 and their complex conjugates are completely arbitrary, we are led
to four anticommutation relations [13]:

{Qa, @} =0 {Q,Ql}=0 (A.106)

{QanI} = (U#)acpu {leQc} = (U#)capu (A.107)

These last two anticommutators are of particular interest as it shows that the
anticommutator of two supercharges yields space-time translations, further indicating
the deep connection SUSY has with space-time transformations...

From here the reader is shown that an auxiliary field must introduced into the SUSY lagrangian
developed previously in order for the SUSY algebra to be closed (a bit of ad hoc argument is used),
and then the reader is shown how to physically interpret the results by observing the action of the
SUSY charges on particular quantum states. It isn’t until the last few sections does the reader
become introduced to superspace and superfields. An excerpt of this material will not be given.

Altogether, between this “crash course” chapter and the two supplemental appendices, the
reader is given a fairly detailed introduction to SUSY, giving them most of the necessary

background to understand the basics of superstrings.



A.3 Excerpt 3: General Relativity

As discussed above, the “crash course” on general relativity can be really thought as being
composed of three chapters. Each of these chapters augment each other, and each subsequent
chapter is really continuation of the previous one. A majority of the material was based on
McMahon [21], Carroll [22], D’Inverno [15], and my own notes collected from three courses on the
subject.

The first of these chapters is “Elements of Differential Geometry”, in which the reader learns
the mathematical content of general relativity. Beginning with a quick review of a differentiable

manifold, the reader is introduced to the notion of tensors, and covariant differentiation [1]:

...A problem arises however: when we compute the ordinary partial derivative of a
tensor, we don’t get a tensor back in general. Partial differentiation of tensors does not
yield tensorial objects. To see this, consider the contravariant vector V' and let us
differentiate this vector with respect to z’¢. We see that,

oV = 0 (Wvb) = Lxdi <6$/avb>
¢ dz'e \ Oxb dz'e Oz \ Oxb
_ Oa' 92 0%z’ 9zt
= Oxb dx'e dabdxd da'
From our transformation law of tensors, we can easily show that a (1,1) tensor
transforms as

oVl +

‘o Oz 0z,
7 Oxb Oxre” ?

Therefore we see that the first term above transforms like a (1,1) tensor, however
the presence of the second term makes it so the resulting object is not tensorial since as
a whole it does not transform as a tensor. All in all, a partial derivative of a tensor
does not yield a tensor in general, a result which we strongly desire. To fix this
problem, we end up introducing an auxiliary field onto the manifold, similar to the
auxiliary field we introduced in the supersymmetric Lagrangian to make it so the SUSY
algebra would close. In effect, we will come up with a new type of derivative, the
covariant derivative which will allow us to differentiate tensors and get back tensors...

...Exchanging dummy indices by letting I‘Cbavbec — Tt Ve, we find

b
g;/a - (gga + FbcaV“’> ey = VaVley (A.108)

where we have defined the covariant derivative to be

B oV
T Oz

V. VP + 10, Ve (A.109)



Eventually the reader is introduced to the Riemann curvature tensor through the failure of

covariant derivatives to commute:

...It is interesting to point out that, unlike ordinary partial differentiation, covariant
differentiation is not commutative in general. For any general tensor T%;" , we define
its commutator as

Ve VT —NagV T (A.110)
To explicitly show that the commutator does not vanish in general, let us work out
the case for some vector V¢. That is, we will work out
Vo ViV =V, V, V€
First recall that the covariant derivative of a contravariant vector is simply

ove
Oxb

Earlier we noted that the covariant derivative of a contravariant vector returns a
tensor of rank (1, 1), therefore it is also useful to recall the covariant derivative of a
(1,1) tensor, namely

VoV = o 4T,V

VCTab = acTab + FaCdeb - decTad (A].].].)
Using this we see that

Vo VpV© = va(abvc + Fcebve)
Since the term inside is a (1,1) tensor, we may use (17.23) yielding

VoVoVe = Vo (QVE +T°,, V) = 0,(0VE +T¢,, V) +T°,,(0,V¢ + T4, V)

T, (04VE+T°, V)
Similarly,

VoVaVE =040,V +T°, V) +T¢,,(0,VE+T Ve -T2, (0,V¢ +T¢,,V°)

Now we subtract the last two expressions term by term. Examining the first term in
each expression, the difference is

aa(abvc + Fcebve) - ab(aavvc + Fceave) = aa(rcebve) - ab(rceave)
= V(0. — OIC,,) +T°,0.VE =T, 0V®

For the other terms, we will assume that we are considering torsion free
connections, therefore I'*, . = I'* ;. Subtracting these terms yields

e, (0 Ve4Te Ve T4, (89,Ve+TC V) =T, (8, VEI+TL, V) +T2 , (0gVE+TC, V)

=T°, 00V —T°,0,V?+T¢, 4, Vve -1, 1 Ve



Relabeling indices and again using the fact we are considering torsion free
connections, the above just becomes

re,,0Ve—T°,0,Ve+1°,1,ve—-1°,1 Ve

Altogether, after some cancellation, we find that the commutator of V¢ is
VoVpVe = ViV Ve = V9,1, — 9TC,,) + €%, Ve — T¢I, Ve

= (8aT gy = BT g + T T gy = T T, )V
Defining the term in the parentheses as the tensor

R gap = 0al gy = 061 g + T eI qp — T g (A.112)
we see that the commutator is

[Va, V]VE =V, V)V -V, V, V¢ = R°,,, V? (A.113)

The tensor R¢,,, defined in (17.24) is known as the Riemann tensor or sometimes
the curvature tensor...

From here the reader is introduced to parallel transport, geodesics, and how to quantitatively
characterize the curvature of a manifold. The covariant derivative is often the conventional way of
first learning the mathematics of computing space-time curvature in general relativity. There is a
more practical approach through differential forms however. This alternative method was the way
I first learned it, and it makes heavy use Cartan’s structure equations. Due to its pragmatic use,
and since differential forms show up in other contexts as well, the reader is introduced to this
alternative method for computing curvature. After the wedge product, Hodge star operator, and
Cartan’s structure equations are properly defined, two example calculations are given: one being
the ordnary 2-sphere, and the other being the general form of the Schwarzschild line element;
introducing the reader early on to the vacuum solution, as well as breaking up the lengthy

calculation:

...We start with the more general form of the Schwarzschild line element

ds? = —e?*Mar? + 2NN dr? 1 12(dh? + sin? 0dg?) (A.114)
from which we extract our basis of orthonormal 1-forms

{w£7wf,wé,w(£} = {e”(r)dt, N dr, rdf, rsin 0do}

Using Cartan’s first structure equation we may calculate the Ricci rotation
coefficients. Starting with w? we have

dw£+F£f/\wf+Ffé/\wé+Fiqg/\w$:



J A A X R . .
:%ev(r)dr/\dprr%/\wr+Fté/\w0+Ft¢3/\w¢:0
r

= d—ve_A(T)wr Aw' +T" AW —|—Fté Aw? + Ftdg Aw? =0 (A.115)
”

For w" we have

dwf+Ff£AwE+FféAwé+Ff’d;Aw$:0

dX N N 5 R 5 R S . N .
= (T)e/\(T)dr/\dr—H"TA/\wt+FTA/\w0+I‘TA/\w‘z’:I‘TA/\wt—i—I‘TA/\we—i—FTA/\wqﬁ:
dr £ ] ® i ] é
(A.116)
We also have for w?
dwé—l—FétA/\th—l—Féf/\wﬁ—i—Féqg/\wi’
AT S T T S S S
= W AW +T7 Aw +F;/\wT+F$/\w¢:O (A.117)
,
Lastly,
dw‘$+F‘££/\w£+F¢gi,/\w’ﬁ+F‘£é/\wé:0
=A(r) N t0 N N R N N - N
=5 wr/\w‘b—i—&wg/\w‘b—i—Fd}/\wt—&—Fﬂ/\wr—i—F(bé/\we=O (A.118)
r r

...Using this same procedure we can find all of the other non-vanishing components
of the Riemann tensor. Altogether we have

: v (dv\® d\dv
Rt == ) 22| g2 A.119
Tt [er + (dr) dr dr] ¢ ( )
RéAAA:R@AA:@(%m RfW:RfM:dle_wr) émzﬂ
rO7 rOHP dr r PPt 00t dr r 00 r2

(A.120)

This calculation concludes “Elements of Differential Geometry”. The next chapter is really “A
Crash Course in General Relativity”. Using the mathematics developed in the previous chapter,
the energy-momentum tensor is introduced and explored before the reader is led to the two
conventional derivations of Einstein’s field equations. The first derivative is more of a physical

approach, while the second is based on varying the Einstein-Hilbert action:

...For a rather simple guess approach to Einstein’s field equations, recall the Poisson
equation describing the Newtonian gravitation potential:



V3¢ = 4nGp (A.121)

If we look for a relativistic generalization of this equation, or rather a tensorial
equation, we see may argue that the gravitational potential of Newtonian theory is to
be replaced by the metric, as it is the metric which encodes the information of the
gravitational field distribution. Moreover, the tensorial generalization of the mass
density p is, as examined in the previous section, the energy-momentum tensor 7,,.
Now notice that the left hand side of the Poisson equation has a second ordered
differential operator acting on the field. This means in our generalization we would
guess a second order differential operator on the metric. Now recall that in the explicit
representation of the Riemann curvature tensor there are second order derivatives on
the metric tensor. So a guess might be

R,y x T

vpo

Immediately we know this isn’t right as the indices between both sides are not
balanced. To get indices to match we contract the Riemann tensor, yielding the Ricci
tensor. Therefore our next guess would be

R, = kT,

where k is some constant. Remember now that the energy-momentum tensor must
obey the conservation law: V#T,,,, = 0. If one recalls the Bianchi identity,

kapa;u/ + vaokuV + VUR)\puV =0

we can easily see that V#R,,,, # 0. Contracting the Bianchi identity twice gives us

0=9g""9"* (VaRpouv + VpRoruw + VoRrpu) = VFR,, — V,R+ V'R,
where we used metric compatibility. Rearranging leads us to conclude that
1
VHRPH = §va

From here it is easy to see that in order for the conservation of 7}, to be satisfied
we must have

1
Rl“’ — §Rgl“’ = le“’

With a bit of work, one can show that the constant &k = 87G, which allows us to
write out the correct form of Einstein’s field equations:

1
G =R, — iRgW =81GT,, (A.122)

... The great mathematician Hilbert showed that the simplest possible choice for a
Lagrangian depending on the metric that is also a Lorentz scalar is just the Ricci scalar
R, yielding the Einstein-Hilbert action

S = / V—gRd"z (A.123)

As it happens, the Einstein-Hilbert action is the action which yields Einstein’s field
equations. To see this, let us vary the above action, which gives us three integrals:



0S = /d”x«/—gg’“’éRW+/d”x\/—gRW5gW+/d”xRéx/—g (A.124)

where we have written R = ¢g"” R,,,,. Since we the metric tensor g"” is the dynamical
variable here, we seek terms that strictly have the variation §dg#”. Thus, we don’t have
to do anymore work to the second integral as this term is already present. Let’s focus
on the more difficult term first, the first integral. Recall that the Ricci tensor is simply
the contraction of the Riemann tensor, which we found to be written as

R”MV =\’ +1°,, 17, — aVrPM e A AW

Therefore, when we vary the Ricci tensor, we can think of it as varying the Riemann
tensor, which is done by varying the connection via the arbitrary variation

re,, =10, +*,,

The variation 6I'7, , is actually a tensor, allowing us to take its covariant derivative,
yielding

v)\(érpl/u) = 8>\FP + FpA05FUU# - FJAV5FPUIL - FU}\#(stva

I

From here it is straightforward but tedious to show that the variation of the
Riemann tensor is simply

SRy, = VA(OT?,,) =V, (617, ) (A.125)
This allows us to write the first integral in (18.20) as

/dnx\/jggyu [VA((SFAVM) - Vu(érAku)}

where we have contracted over p and A to get the right Ricci tensor. Moreover, by
metric compatibility and some minor relabeling of indices, the above becomes

/ d"x\/=gV o [9" (017 ,) = g"7 (6T*y,)]

As written, we can see that we have the covariant divergence of some vector as it is
integrated over a volume element. By Stoke’s theorem then this integral is simply equal
to a boundry contribution out at infinity, which we are free to set equal to zero. Hence,
this integral vanishes and does not contribute to the overall variation of the Einstein
Hilbert action [22]. Let’s move on to the third integral. As one might recall, we have
actually computed a variation similar to this one before, back when we varied the
Polyakov action. To calculate this variation we need the identity

In(detM) = Tr(inM)

which is true for any square matrix M. Remembering that the variation acts like a
derivative, the variation of this identity is

1 _ —1

As an exercise, the reader will show that this is true for 2 x 2 matrices. Letting
g = detM and M = g, it follows that

89 = 9(9"" oguv)

since g"” is the inverse of g,,,. Now recall that g""g,, = constant. This means that



uv

6(guy‘guu) = 5guvgw + glw(s.gul/ =0= gw/(sguu = _59 Guv

Therefore,

69 = 9(9""69u) = —9(gu09"")

Again using the fact that the variation acts like a derivative we find that

1
0/—g=——=9
2y/—g 9

Altogether then, the variation of the Einstein-Hilbert action is

1
— V990" (A.127)

0S8 = /d"m\/—g [RW — ;Rgm,} ogh (A.128)

By setting 4.5 = 0, the only way this happens for arbitrary dg” is if the integrand
itself is zero, i.e.

1
R;w - QRg'uy - 0 (A129)

After these derivations, particular solutions to Einstein’s field equations are explored, including
the second portion of the calculation to derive the Schwarzschild line element, as well as arriving
the Friedmann equations fundamental to basic cosmology. The Friedmann universe concludes the
“crash course” chapter on general relativity. Beyond this chapter is a tour of the various classical
black hole solutions, as well as an introduction to black hole thermodynamics, and the information
paradox, as presented by [23]. The reason for this chapter was to give the reader a glimpse into
one of string theory’s biggest results: the statistical derivation of the Beckenstein-Hawking entropy
formula, as shown by Strominger and Vafa in the mid-1990s [24]. An excerpt of this chapter will

not be given.



References and Further Reading

[1] Svesko, Andy M. “A Detailed Introduction to String Theory.” Thesis. Oregon State
University, 2013. Dec. 2012. Web.

hitp : [ /people.oregonstate.edu/ ~ sveskoa/introductiontostringtheory.pdf

[2] Green, M., John H. Schwarz, and E. Witten. Superstring Theory. Vol. I. Cambridge:
Cambridge UP, 1987. Print.

[3] Green, M., John H. Schwarz, and E. Witten. Superstring Theory. Vol. II. Cambridge:
Cambridge UP, 1987. Print.

[4] Becker, Katrin, Melanie Becker, and John H. Schwarz. String Theory and M-theory: A
Modern Introduction. Cambridge: Cambridge UP, 2007. Print.

[5] Polchinski, Joseph Gerard. String Theory. Vol. I. Cambridge, UK: Cambridge UP, 1998.

Print.

[6] Polchinski, Joseph Gerard. String Theory. Vol. II. Cambridge, UK: Cambridge UP, 1998.

Print.

[7] Zwiebach, Barton. A First Course in String Theory. New York: Cambridge UP, 2004.

Print.

[8] J. Ambjorn, J. Jurkiewicz, R. Loll, “Causal Dynamical Triangulations and the Quest for
Quantum Gravity”, hep-th/1004.0352.

55



[9] Loll, Renate. “Quantum Origins of Space and Time.” Lecture. Quantum Origins of Space
and Time. Perimeter Institute, Waterloo. 27 Dec. 2012. Renate Loll on the Quantum
Origins of Space and Time. Youtube, 24 June 2011. Web. 27 Dec. 2012.
http://www.youtube.com/watch?v=fv2gBjQ8xlo&list=PLF244E3EDOBCDAF23

[10] R. Gambini, J. Pullin. “Spin Foams”. A First Course in Loop Quantum Gravity. New
York: Oxford UP, 2011. 149-56. Print.

[11] Rovelli, Carlo. “General Ideas and the Heuristic Picture”. Quantum Gravity. Cambridge,
UK: Cambridge UP, 2004. 3-33. Print.

[12] Susskind, Leonard. “The Theoretical Minimum.”Lecture. The Theoretical Minimum.
Stanford University. Summer 2011. The Complete Leonard Susskind Lectures. Ted Young,
11 Jan. 2011. Web. 1 Jan. 2013.
http://tedyoung.me/2011/01 /22 /leonard-susskind-lectures/

[13] Labelle, Patrick. Supersymmetry Demystified. New York: McGraw-Hill, 2010. Print.

[14] Peskin, Michael Edward, and Daniel V. Schroeder. An Introduction to Quantum Field
Theory. Reading, MA: Addison-Wesley, 1995. Print.

[15] D’Inverno, Ray. Introducing Finstein’s Relativity. Oxford [England: Clarendon, 1992.

Print.

[16] Griffiths, David. “Quantum Electrodynamics.” Introduction to Elementary Particles.
Wein- heim: Wiley- VCH, 2008. 225-35. Print.

[17] Hatfield, Brian F. Quantum Field Theory of Point Particles and Strings. Reading;:
Addison-Wesley, 1998. Print.

[18] McMahon, David. “Scalar Fields.” Quantum Field Theory Demystified. New York, NY:
McGraw-Hill, 2008. N. pag. Print.



[19] Shankar, Ramamurti. “The Continuity Equation for Probability.” Principles of Quantum
Mechanics. 2nd ed. New York: Plenum, 1994. 164-67. Print.

[20] Aitchison, Ian Johnston Rhind. Supersymmetry in Particle Physics: An Elementary
Introduction. Cambridge: Cambridge UP, 2007. Print.

[21] McMahon, David. Relativity Demystified. New York: McGraw-Hill, 2006. Print.

[22] Carroll, Sean. Spacetime and Geometry: An Introduction to General Relativity.

San Francisco: Addison Wesley, 2004. Print.
[23] Susskind, Leonard, and James Lindesay. “The Laws of Nature”. An Introduction to
Black Holes, Information and the String Theory Revolution: The Holographic Universe.

Hackensack, NJ: World Scientific, 2005. 69+. Print.

[24] A. Strominger and C. Vafa, hep-th/9601029 (1996).



