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Reactor modeling is largely limited by the computational time required to 

perform accurate full core calculations. There are many different methods and 

techniques employed in different reactor simulation codes, but properly modeling all 

of the physics that takes place in the system requires extensive computational effort. 

The Coarse Mesh Finite Differencing (CMFD) technique was proposed in 1983 by 

Kord Smith as a spatial acceleration scheme to combat this problem. It is a nonlinear 

iterative method that reduces the storage requirement of the problem by reducing the 

number of unknowns in the system. It is a diffusion based method that can be applied 

to diffusion and transport problems. The macroscopic cross sections and diffusion 

coefficients are homogenized accordingly to a coarser mesh. The reaction rates in the 

new coarse mesh cells are preserved along with the higher order surface currents. A 

current correction coefficient is introduced to maintain these currents. The finite 

differencing numerical approximation can then be applied to the 3-Dimensional 



steady-state neutron diffusion equation resulting in a linear system of equations that is 

readily solvable.  

This project has involved implementing the CMFD Acceleration into the 

reactor simulation code PARCS. PARCS was developed jointly between Purdue 

University and the University of Michigan to model Pebble Bed Modular Reactors. 

Although PARCS contains numerous numerical techniques, the focus of this research 

has been to accelerate the Fine Mesh Finite Differencing approximation in cylindrical 

geometry. Cylindrical coordinates prevents a higher order nodal method from being 

used as the primary scheme, but it allows for a more accurate representation of the 

core. The CMFDA was employed using a 2 group cross section library for fast and 

thermal neutrons.  
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Accelerating the Convergence of the k-Eigenvalue Problem using a Coarse Mesh Finite 
Differencing Scheme in Cylindrical Geometry  

 

Chapter 1 Introduction 

 

 One of the pitfalls of modern day nuclear reactor analysis is the amount of 

computational time and storage needed to properly simulate all of the physics that takes 

place in the reactor system. The equations that model different phenomena such as 

neutron transport and heat transfer are well understood, and operational procedures have 

been developed to safely generate nuclear electricity. This is clearly evidenced by the 

abundance of commercial nuclear power and research reactors. Real time data can be 

acquired from a reactor’s operational history and used to help generate improved 

computational models. These models serve as a basis for future reactor designs and for 

the simulation of existing reactor behavior under off-normal and accident conditions.   

 The evolution of reactor modeling began with simple experiments to determine 

the parameters of the four and six factor formulas. With the information gained, scaled 

reactors were built. Additional data such as energy-dependent cross section libraries 

could then be tabulated and the iterative process between modeling and experimentation 

continued. These early models were rudimentary compared to today’s three-dimensional 

coupled physics codes because of advances both in physics and the capability of 

computers to process data. Over the years, empirically-derived parameters such as cross-

sections have been determined to a great degree of accuracy through reactor operating 

experience and improved experimental capabilities. With increasing insight into the 



 
 
 

2 

physical behavior of nuclear systems, more accurate simulation tools have been 

developed. 

 Today’s three-dimensional reactor physics models are based on one of three 

general mathematical formulations. When choosing which physical model to use, it is 

important to consider the type of reactor being modeled, the appropriate coordinate 

system, the desired accuracy of the solution, and the time available to obtain the 

solution.  The most accurate treatment of neutron behavior in a reactor is the transport 

model. The transport equation cannot be analytically solved except in very simple, 

unrealistic conditions. Several different approaches have been developed to generate 

approximate solutions. One common method in Cartesian geometry is to transverse 

integrate the transport equation to obtain three coupled 1-D equations (Ougouag & 

Terry, 2002). These 1-D solutions are averaged over the other two directions leading to 

3-D nodal solutions. However, if a different coordinate system is used, such as spherical 

(𝑟,𝜃,𝜙) or cylindrical (𝑟,𝜃, 𝑧), the transverse integration no longer becomes a viable 

method for separating the spatial directions and other more complex methods must be 

employed (Ougouag & Terry, 2002). The second model used for reactor analysis is 

based on the diffusion equation, an approximation to the transport equation. Finite 

differencing can be easily applied to the diffusion equation, leading to a set of linear 

equations that can be directly solved. This process has been used in a variety of 

coordinate systems and mesh types. A third and most intensive model for simulating 

neutron behavior involves Monte Carlo (MC) techniques. MC uses random statistical 

sampling from cumulative probability distribution functions (CPDF) to determine a 
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neutron’s path length, type of interaction, and position, energy, and direction at birth. 

MC can be utilized in any coordinate system and does not require a spatial mesh. 

However, its results are subject to statistical error. Therefore, very large amounts of 

sampling may be needed to reduce the standard deviation of the results to appropriate 

levels.  

 All three models described above are employed in a wide range of reactor 

physics codes, and they are all burdened by the enormous number of unknowns present 

when performing a full core calculation. Based on the number of assemblies, the number 

of pins per assembly, the number of axial planes, and other factors depending on the 

model used, it is estimated that it would be 2030 at the earliest before a full core MC 

calculation could be completed on a single CPU in 1 hour (Smith, 2003). Deterministic 

transport calculations are not constrained by statistical error, but they have even more 

unknowns. This has lead to the development of acceleration schemes to improve 

computational performance. One of the most widely used acceleration techniques is 

Coarse Mesh Finite Differencing (CMFD). Although applicable to transport problems, 

this is a diffusion based method that accelerates the convergence of the eigenvalue 

calculation. It involves representing the interface current at nodal intersections with the 

average fluxes of the two adjacent nodes (Downer, Lee, Xu, Kozlowski, & Staudenmier, 

2007). This method has been employed in the code PARCS (Purdue Advanced Reactor 

Core Simulator) which is used to analyze light water, heavy water, and gas-cooled 

reactor systems.  
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 The inherent benefit of the CMFD method stems from the fact that it reduces the 

number of unknowns in the system. These unknowns include coupling coefficients and 

nodal fluxes that must be computationally stored throughout the iteration process 

(Smith, 1984). By spatially homogenizing cross section data to a coarser mesh, the size 

of the problem can be drastically reduced. However, reconstruction of the heterogeneous 

properties associated with a given zone or region that has been homogenized is nearly 

impossible, so preservation of the spatial integrals over the homogenized region is 

generally the goal (Smith, 1986). The quantities preserved are then the eigenvalue, node 

averaged reaction rates, and surface averaged currents. The node and surface averaging 

comes from the homogenization process described in section 2.3.  

The eigenvalue, k, is the multiplication factor of the system and is defined by: 

𝑘 =
𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

. 

If k=1 then the system is critical and will sustain a chain reaction. Supercritical and 

subcritical systems are defined when k is greater or less than 1 respectively. The 

reaction rate density is the number of collisions of a particular type x per second per 

cubic centimeter. In terms of the macroscopic cross section and neutron flux, this is 

defined by the following integral: 

� Σ𝑥(𝐸)𝜑(𝐸)𝑑𝐸
∞

0

. 

The macroscopic cross section is the probability of interaction of type x per cm at a 

given energy (Lewis, 2008). Example interactions include fission, absorption, or 
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scattering. The neutron current or leakage is the net number of neutrons passing through 

a surface per second per unit area.  

 With many of today’s nuclear power plants reaching the end of their designed 

lifetime, there has been much research into the design of the next generation of nuclear 

plants. In the early 1990’s a renewed interest in Very High Temperature Reactors 

(VHTR) surfaced due to a growing need for improved reactor standards (Huda & Obara, 

2008). These gas-cooled, graphite-moderated reactors come in two general designs as 

shown in Figure 1.1. The prismatic core design uses graphite fuel blocks embedded with 

TRISO (tri-structural isotropic) fuel particles while the Pebble Bed Modular Reactor 

(PBMR) design involves circulating fuel pebbles containing the TRISO fuel particles in 

an annular core (INL, 2004). An inherent safety feature of the latter design stems from 

the fact that the spherical fuel particles act as tiny pressure vessels that contain the 

fission products (Huda & Obara, 2008). PARCS has been modified to model the 

behavior of this reactor to help determine its viability as a next generation alternative. 

Typical operating parameters for PBMRs are given in Table 1.1. 

Table 1.1 – Typical PBMR specifications taken from Next Generation Nuclear Plant – Design Methods 
Development and Validation Research and Development Program Plan, INL 

Power Output (MWt) 600 
Plant Design Life (Years) 60 

Thermal Efficiencies 45 
Fuel Enrichment (%) 8 

Fuel Burnup (MWd/ton) 90,000 
Inlet Temperature (°C) 490 

Outlet Temperature (°C) 1000 
Maximum Fuel Temperature (°C) 1028 

 

  



 
 
 

6 

 
Figure 1.1 – Typical VHTR core configurations [INL, 2004]  
 

 Unlike typical boiling water reactors (BWR) and pressurized water reactors 

(PWR) that use water as a coolant and moderator, PBMRs use graphite as a moderator 

and helium as the gas coolant. The moderator is needed to slow neutrons down from fast 

to thermal energies. Most all neutrons resulting from fission are born in the fast energy 

range with greater than 1 mega electron-volt (MeV) of kinetic energy. Through 

collisions with the moderator medium, structural materials, and fuel, the neutrons will 
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lose energy until they become thermalized. A thermal neutron is in thermal equilibrium 

with its surroundings with an average energy dictated by the material temperature. 

Thermal neutrons are desired because uranium has a high thermal fission cross section. 

The coolant is used to transfer heat out of the core. Helium is used due to its chemical 

inertness, low absorption cross section, and ability to efficiently transfer heat (Huda & 

Obara, 2008). 

To model the neutronic behavior of the PBMR, PARCS solves the diffusion 

approximation in cylindrical geometry. Fine Mesh Finite Differencing (FMFD) is used 

to obtain the heterogeneous solution, and the mesh size used leads to a slow 

convergence rate of the iterative solvers. The goal of this research was to develop and 

implement a CMFD solver within PARCS to improve the computational efficiency of 

the solution of PBMR FMFD diffusion problems. In Chapter 2 we introduce the 

diffusion equation in (𝑟,𝜃, 𝑧) geometry and derive the CMFD equations. Several test 

problems were used to evaluate the accuracy and efficiency of the implementation, and 

Chapter 3 reviews the results of those problems and their implications. Chapter 4 

contains a discussion of the results, conclusions, and offers suggestions for possible 

future work.   
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Chapter 2 Methods 

2.1 Diffusion Equation: 

 The diffusion equation is shown with 𝜙, 𝑣, J, 𝛴, 𝜐, k, and S representing the 

scalar flux, neutron speed, neutron current, macroscopic cross section, neutrons per 

fission, and source respectively. Q is an external source. The independent variables for 

spatial location, energy, and time are r, E, and t respectively.  

 

𝟏
𝒗(𝑬)

𝝏𝝓(𝒓,𝑬, 𝒕)
𝝏𝒕

+ 𝜵 ∙ 𝑱�𝒓,𝑬, 𝒕� + 𝜮𝒂�𝒓,𝑬�𝝓�𝒓,𝑬, 𝒕� = 𝑺�𝒓,𝑬, 𝒕�                             (𝟐.𝟏) 

 

𝑺�𝒓,𝑬, 𝒕� = 𝝊𝚺𝒇�𝒓,𝑬�𝝓�𝒓,𝑬, 𝒕� + � 𝚺𝒔

∞

𝟎

�𝒓,𝑬′ → 𝑬�𝝓�𝒓,𝑬′ → 𝑬, 𝒕�𝒅𝑬′ + 𝑸                          

 

Diffusion theory relies on the approximation that neutrons in a given system flow from 

areas of high concentration to areas of low concentration. In fact, neutrons travel in 

straight lines and only experience changes in kinetic energy and direction upon direct 

collision with nuclei. Fick’s law given by Eq. 2.2a governs this diffusion process, and 

the quantity, D, is the diffusion coefficient which is introduced in the derivation of the 

diffusion equation and is defined in Eq. 2.2b.   

 

                           𝑱�𝒓,𝑬� = −𝑫(𝒓,𝑬) ∙ 𝛁𝝓(𝒓,𝑬)                                                    (𝟐.𝟐𝒂) 

 



 
 
 

9 

𝑫�𝒓,𝑬� =
𝟏

𝟑𝚺𝒕𝒓(𝒓,  𝑬)
                                                            (𝟐.𝟐𝒃) 

In the case of isotropic scattering, Σ𝑡𝑟�𝑟,𝐸� = Σ𝑡�𝑟,𝐸�. A similar expression exists for 

anisotropic scattering. Applying the steady-state assumption to Eq. 2.1 removes the 

temporal dependence from the other parameters and makes the time derivative term 

equal to zero. The eigenvalue, k, is introduced by replacing v with v/k and setting the 

external source to zero (Lewis & Miller, 1993). The resultant equation is the 3-D 

diffusion approximation in k-eigenvalue form.  

𝛁 ∙ 𝑱�𝒓,𝑬� + 𝚺𝒂�𝒓,𝑬�𝝓�𝒓,𝑬�         

=    
𝟏
𝒌 �
𝝊𝚺𝒇�𝒓,𝑬�𝝓�𝒓,𝑬�� +� 𝚺𝒔

∞

𝟎

�𝒓,𝑬′ → 𝑬�𝝓�𝒓,𝑬′ → 𝑬�𝒅𝑬′                            (𝟐.𝟑) 

                                                                                                   

PARCS then employs FMFD to numerically solve this equation. Using an initial guess 

for the source and multiplication factor on the right hand side of equation 2.3, the only 

unknowns are the fluxes. A preconditioned Krylov subspace method is then used to 

solve the linear system (Downer et al, 2007).    

 

2.2 Finite Differencing:   

 In this section we derive the discretized form of the diffusion equation in (𝑟,𝜃, 𝑧) 

geometry in a single energy group. We divide the spatial domain into nodes with the 

subscripts i, j, and k indicating r, 𝜃, z subdivisions. Figure 2.1 shows that neighboring 
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cells in the radial direction are coupled together through the interface currents at the cell 

boundaries.  

 
Figure 2.1: Neighboring cells shown coupled by their currents. 

 
By integrating equation 2.3 over the volume of cell i, j, k the new equation can be 

written as 

 

 𝑱𝒈,(𝒊+𝟏/𝟐,𝒋,𝒌)
𝒏+𝟏/𝟐

 
– 𝑱 𝒈,(𝒊−𝟏/𝟐,𝒋,𝒌)

𝒏+𝟏/𝟐 + 𝑱𝒈,(𝒊,𝒋+𝟏/𝟐,𝒌)
𝒏+𝟏/𝟐

 
– 𝑱 𝒈,(𝒊,𝒋−𝟏/𝟐,𝒌)

𝒏+𝟏/𝟐 + 𝑱𝒈,(𝒊,𝒋,𝒌+𝟏/𝟐)
𝒏+𝟏/𝟐

 
– 𝑱 𝒈,(𝒊,𝒋,𝒌−𝟏/𝟐)

𝒏+𝟏/𝟐

+ 𝚺𝒕(,𝒊,𝒋,𝒌)𝚫𝑽(𝒊,𝒋,𝒌)𝝓𝒈,(𝒊,𝒋,𝒌)
𝒏+𝟏/𝟐  

= 𝛘𝐠
 𝟏
𝒌
�  
𝐆

𝐠′=𝟏

[ 𝛖𝚺𝒇,𝒈′,(𝒊,𝒋,𝒌)𝚫𝑽(𝒊,𝒋,𝒌)𝝓𝒈′,(𝒊,𝒋,𝒌)
𝒏 ] + � 𝚺𝒔,𝒈′𝒈,(𝒊,𝒋,𝒌)

𝑮

𝒈′=𝟏

𝚫𝑽(𝒊,𝒋,𝒌)𝝓𝒈′,(𝒊,𝒋,𝒌)
𝒏       (𝟐.𝟒) 

with 

∆𝑽(𝒊,𝒋,𝒌) = 𝒓�𝒊∆𝒓𝒊∆𝜽𝒋∆𝒛𝒌      and      𝒓�𝒊 =
𝒓𝒊+𝟏/𝟐 + 𝒓𝒊−𝟏/𝟐

𝟐
. 

Here n refers to the iteration index, g the energy group, and the scattering term includes 

only down scatter into the energy group of interest. Finite differencing is applied to Eq. 

(2.4) to obtain two approximations for each of the surface currents in the r, 𝜃, and z 

directions. 𝜙𝑘±1/2 are the fluxes at the respective surfaces.  

𝒂) 𝑱𝒌+𝟏/𝟐 = −𝑫𝒌
𝝓𝒌+𝟏/𝟐 − 𝝓𝒌

𝚫𝒛𝒌/𝟐
              𝒃)  𝑱𝒌+𝟏/𝟐 = −𝑫𝒌+𝟏

𝝓𝒌+𝟏 − 𝝓𝒌+𝟏/𝟐

𝚫𝒛𝒌+𝟏/𝟐
      (𝟐.𝟓) 
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𝒂)  𝑱𝒌−𝟏/𝟐 = −𝑫𝒌−𝟏
𝝓𝒌−𝟏/𝟐 − 𝝓𝒌−𝟏

𝚫𝒛𝒌−𝟏/𝟐
            𝒃)  𝑱𝒌−𝟏/𝟐 = −𝑫𝒌

𝝓𝒌 − 𝝓𝒌−𝟏/𝟐

𝚫𝒛𝒌/𝟐
      (𝟐.𝟔) 

Setting 2.5a equal to 2.5b and 2.6a to 2.6b will yield two expressions for the interface 

fluxes as shown below. 

𝝓𝒌+𝟏/𝟐 =

𝑫𝒌𝝓𝒌
𝚫𝒛𝒌/𝟐 + 𝑫𝒌+𝟏𝝓𝒌+𝟏

𝚫𝒛𝒌+𝟏/𝟐
𝑫𝒌

𝚫𝒛𝒌/𝟐 + 𝑫𝒌+𝟏
𝚫𝒛𝒌+𝟏/𝟐

                                                     (𝟐.𝟕) 

𝝓𝒌−𝟏/𝟐 =

𝑫𝒌𝝓𝒌
𝚫𝒛𝒌/𝟐 + 𝑫𝒌−𝟏𝝓𝒌−𝟏

𝚫𝒛𝒌−𝟏/𝟐
𝑫𝒌

𝚫𝒛𝒌/𝟐 + 𝑫𝒌−𝟏
𝚫𝒛𝒌−𝟏/𝟐

                                                     (𝟐.𝟖) 

Equation (2.7) can be substituted back into Eq. (2.5a) yielding an expression for the 

current as: 

 𝑱𝒌+𝟏/𝟐 =
−𝑫𝒌
𝚫𝒛𝒌
𝟐

∗

⎝

⎜
⎛

𝑫𝒌𝝓𝒌
𝚫𝒛𝒌
𝟐

+ 𝑫𝒌+𝟏𝝓𝒌+𝟏
𝚫𝒛𝒌+𝟏
𝟐

𝑫𝒌
𝚫𝒛𝒌
𝟐

+ 𝑫𝒌+𝟏
𝚫𝒛𝒌+𝟏
𝟐

− 𝝓𝒌

⎠

⎟
⎞

                                       (𝟐.𝟗) 

A similar substitution can be made with Equations (2.8) and (2.6b) to generate the 

current at 𝐽𝑘−1/2. Following some minor algebra, the fine mesh currents are given 

below. The quantity 𝐷� represents the base nodal coupling coefficient.  

 𝑱𝒌+𝟏/𝟐 =
−𝑫𝒌
𝚫𝒛𝒌
𝟐

∗

⎝

⎜⎜
⎛

𝑫𝒌+𝟏(𝝓𝒌+𝟏 − 𝝓𝒌)
𝚫𝒛𝒌+𝟏
𝟐

𝑫𝒌
𝚫𝒛𝒌
𝟐

+ 𝑫𝒌+𝟏
𝚫𝒛𝒌+𝟏
𝟐 ⎠

⎟⎟
⎞

= −
𝑫�𝒌+𝟏
𝚫𝒛𝒌

(𝝓𝒌+𝟏 − 𝝓𝒌)                (𝟐.𝟏𝟎) 

𝑱𝒌−𝟏/𝟐 = −
𝑫�𝒌−𝟏
𝚫𝒛𝒌

(𝝓𝒌 − 𝝓𝒌−𝟏)                                                    (𝟐.𝟏𝟏) 
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𝑱𝒊+𝟏/𝟐 = −
𝑫�𝒊+𝟏
𝚫𝒓𝒊

(𝝓𝒊+𝟏 − 𝝓𝒊)                                                       (𝟐.𝟏𝟐) 

𝑱𝒊−𝟏/𝟐 = −
𝑫�𝒊−𝟏
𝚫𝒓𝒊

(𝝓𝒊 − 𝝓𝒊−𝟏)                                                       (𝟐.𝟏𝟑) 

𝑱𝒋+𝟏/𝟐 = −
𝑫�𝒋+𝟏
𝚫𝜽𝒋

�𝝓𝒋+𝟏 − 𝝓𝒋�                                                      (𝟐.𝟏𝟒) 

𝑱𝒋−𝟏/𝟐 = −
𝑫�𝒋−𝟏
𝚫𝜽𝒋

�𝝓𝒋 − 𝝓𝒋−𝟏�                                                      (𝟐.𝟏𝟓) 

 

These current definitions can be used in Eq. (2.4) to form the following FMFD equation.   

𝝓𝒈,(𝒊+𝟏,𝒋,𝒌)
𝒏+𝟏/𝟐 (−𝑫�𝒈,(𝒊+𝟏,𝒋,𝒌)

 )𝚫𝜽𝒋𝚫𝒛𝒌 + 𝝓𝒈,(𝒊−𝟏,𝒋,𝒌)
𝒏+𝟏/𝟐 (−𝑫�𝒈,(𝒊−𝟏,𝒋,𝒌)

 )𝚫𝜽𝒋𝚫𝒛𝒌 + 

𝝓𝒈,(𝒊,𝒋+𝟏,𝒌)
𝒏+𝟏/𝟐 (−𝑫�𝒈,(𝒊,𝒋+𝟏,𝒌)

 )𝚫𝒓𝒊𝚫𝒛𝒌 + 𝝓𝒈,(𝒊,𝒋−𝟏,𝒌)
𝒏+𝟏/𝟐 (−𝑫�𝒈,(𝒊,𝒋−𝟏,𝒌)

 )𝚫𝒓𝒊𝚫𝒛𝒌 + 

𝝓𝒈,(𝒊,𝒋,𝒌+𝟏)
𝒏+𝟏/𝟐 (−𝑫�𝒈,(𝒊,𝒋,𝒌+𝟏)

 )𝚫𝒓𝒊𝚫𝜽𝒋 + 𝝓𝒈,(𝒊,𝒋,𝒌−𝟏)
𝒏+𝟏/𝟐 (−𝑫�𝒈,(𝒊,𝒋,𝒌−𝟏)

 )𝚫𝒓𝒊𝚫𝜽𝒋 +   

𝝓𝒈,(𝒊,𝒋,𝒌)
𝒏+𝟏/𝟐  [ �𝑫�𝒈,(𝒊+𝟏,𝒋,𝒌) + 𝑫�𝒈,(𝒊−𝟏,𝒋,𝒌)�𝚫𝜽𝒋𝚫𝒛𝒌 + � 𝑫�𝒈,(𝒊,𝒋+𝟏,𝒌) + 𝑫�𝒈,(𝒊,𝒋−𝟏,𝒌)�𝚫𝒓𝒊𝚫𝒛𝒌 + 

�𝑫�𝒈,(𝒊,𝒋,𝒌+𝟏) + 𝑫�𝒈,(𝒊,𝒋𝒌−𝟏)�𝚫𝒓𝒊𝚫𝜽𝒋 + 𝚺𝒕,(𝒊,𝒋,𝒌)𝚫𝑽(𝒊,𝒋,𝒌)] = 

𝛘𝐠
 𝟏
𝒌
�  
𝐆

𝐠=𝟏

 𝛖𝚺𝒇,𝒈′,(𝒊,𝒋,𝒌)𝚫𝑽(𝒊,𝒋,𝒌)𝝓𝒈′,(𝒊,𝒋,𝒌)
𝒏 + � 𝚺𝐬,𝐠′𝐠,(𝐢,𝐣,𝐤)

𝑮

𝒈′=𝟏

𝚫𝑽(𝒊,𝒋,𝒌)𝝓𝒈′,(𝒊,𝒋,𝒌)
𝒏             (𝟐.𝟏𝟔) 

PARCS then employs power iteration to calculate the eigenvalue. Using an initial guess 

for the source and multiplication factor on the right hand side of Eq. (2.3), the only 

unknowns are the fluxes. A preconditioned Krylov subspace method is then used to 

solve the linear system (Downer et al, 2007).   
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2.3 Homogenization: 

 Once a fine mesh (FM) flux is generated through power iteration, it can be used 

to homogenize this cross section data on a coarse mesh (CM). The homogenization 

process must preserve the net reaction rate over all fine mesh nodes that lie in each 

coarse mesh node. This is achieved by imposing the following two constraints: 

� 𝚺𝒙,𝒈
𝒄𝒎(𝒓)𝝓𝒈

𝒄𝒎(𝒓)𝒅𝒓 = � 𝚺𝒙,𝒈
𝒇𝒎(𝒓)𝝓𝒈

𝒇𝒎(𝒓)𝒅𝒓
 

𝑽,𝒇𝒎

 

𝑽,𝒄𝒎
                                     (𝟐.𝟏𝟕) 

� 𝛁 ∙ 𝑱𝒈𝒄𝒎(𝒓)
 

𝑺,𝒄𝒎
∙ 𝒅𝑺 = � 𝛁 ∙ 𝑱𝒈

𝒇𝒎(𝒓)  ∙ 𝒅𝑺
 

𝑺,𝒇𝒎
                                        (𝟐.𝟏𝟖) 

Here x refers to a nuclear reaction (t, s, f) for a specific cross section, cm the coarse 

mesh node index, fm the FM node index, g the energy group, V the volume, and S the 

surface. The homogenized CM data are then defined by: 

𝚺𝒙,𝒈
𝒄𝒎 ≡

∫ 𝚺𝒙,𝒈
𝒇𝒎(𝒓) 

𝑽,𝒇𝒎 𝝓𝒈
𝒇𝒎(𝒓)𝒅𝒓

∫ 𝝓𝒈
𝒄𝒎(𝒓)𝒅𝒓 

𝑽,𝒄𝒎
                                                          (𝟐.𝟏𝟗) 

𝑫𝒈
𝒄𝒎 ≡

∫ 𝑱𝒈
𝒇𝒎(𝒓) ∙ 𝒅𝑺 

𝑺,𝒇𝒎

−∫ 𝛁𝝓𝒈
𝒄𝒎(𝒓) ∙ 𝒅𝑺 

𝑺,𝒄𝒎
                                                           (𝟐.𝟐𝟎) 

It is important to note that every coarse mesh node has six surfaces and only one 

diffusion coefficient. In order to preserve the fine mesh current on the surface of each 

coarse mesh cell, another parameter,𝐷�, must be introduced. Equation 2.17 defines 𝐷� in 

terms of known node average fluxes. For example, in the arbitrary z-direction, we find 

𝑱𝒈
𝒄𝒎+𝟏/𝟐 = −

𝑫�𝒈𝒄𝒎

𝚫𝒛𝒄𝒎
�𝝓𝒈

𝒄𝒎+𝟏 − 𝝓𝒈
𝒄𝒎�  −

𝑫�𝒈𝒄𝒎

𝚫𝒛𝒄𝒎
�𝝓𝒈

𝒄𝒎+𝟏 + 𝝓𝒈
𝒄𝒎�                           (𝟐.𝟐𝟏) 
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𝑤𝑖𝑡ℎ         𝝓𝒈
𝒄𝒎 =

∫ 𝝓𝒈
𝒇𝒎(𝒓)𝒅𝒓 

𝑽,𝒇𝒎

∫ 𝒅𝒓 
𝑽,𝒄𝒎

                                       

 This new variable called the Corrective Nodal Coupling Coefficient is derived 

from the solution of a higher order problem, in this case the FMFD method in PARCS. 

It simply forces the current on the surface of the CM to equal that of the FM by adding a 

degree of freedom in the CMFD.   

2.4 CMFD Formulation: 

 Once the FM flux solution is obtained, all of the CM parameters can be 

calculated. Equation (2.21) can then be used to replace the current in terms of unknown 

CM fluxes, 𝐷�, 𝐷�, and mesh spacing. Using Eq. (2.21) in Eq. (2.4) yields a linear system 

of equations for the CM flux. Each node m is coupled to six other nodes designated east, 

west, north, south, top, and bottom (e, w, n, s, t, b). 

𝝓𝒈,𝒆
𝒍+𝟏𝟐(−𝑫�𝒈,𝒆

 −𝑫�𝒈,𝒆)𝚫𝜽𝚫𝒛 + 𝝓𝒈,𝒘
𝒍+𝟏𝟐(−𝑫�𝒈,𝒘

 + 𝑫�𝒈,𝒘)𝚫𝜽𝚫𝒛 + 

𝝓𝒈,𝒏
𝒍+𝟏𝟐(−𝑫�𝒈,𝒏

 + 𝑫�𝒈,𝒏)𝚫𝒓𝚫𝒛 + 𝝓𝒈,𝒔
𝒍+𝟏𝟐(−𝑫�𝒈,𝒔

 −𝑫�𝒈,𝒔)𝚫𝒓𝚫𝒛 + 

𝝓𝒈,𝒕
𝒍+𝟏𝟐(−𝑫�𝒈,𝒕

 −𝑫�𝒈,𝒕)𝚫𝒓𝚫𝜽+ 𝝓𝒈,𝒃
𝒍+𝟏𝟐(−𝑫�𝒈,𝒃

 + 𝑫�𝒈,𝒃)𝚫𝒓𝚫𝜽 +   

𝝓𝒈,𝒎
𝒍+𝟏𝟐  [ �𝑫�𝒈,𝒆 − 𝑫�𝒈,𝒆�𝚫𝜽𝚫𝒛 + �𝑫�𝒈,𝒘 + 𝑫�𝒈,𝒘�𝚫𝜽𝚫𝒛 + � 𝑫�𝒈,𝒏 + 𝑫�𝒈,𝒏�𝚫𝒓𝚫𝒛 + 

�𝑫�𝒈,𝒔 − 𝑫�𝒈,𝒔�𝚫𝒓𝚫𝒛 + �𝑫�𝒈,𝒕 − 𝑫�𝒈,𝒕�𝚫𝒓𝚫𝜽+ �𝑫�𝒈,𝒃 + 𝑫�𝒈,𝒃�𝚫𝒓𝚫𝜽+ 𝚺𝒂,𝒈,𝒎𝚫𝑽𝒎]  

= 𝝌𝒈
𝟏
𝒌
𝛖𝚺𝒇,𝒈′,𝒎𝚫𝑽𝒎𝝓𝒈′,𝒎

𝒍 + � 𝚺𝒔,𝒈′𝒈,𝒎

𝑮

𝒈′=𝟏

𝚫𝑽𝒎𝝓𝒈′,𝒎
𝒍 ]                                   (𝟐.𝟐𝟐) 
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This leads to a hepta-diagonal matrix and is solved using exactly the same procedure as 

on the FM. The eigenvalue and fission source are checked for convergence after every 

iteration. Each must meet the convergence criteria for the iteration procedure to stop. 

Each iteration solves for the flux and fission source of the linear equation for all spatial 

nodes in a given energy group. The new coarse mesh flux is then used to update the fine 

mesh flux with the following relation:  

𝝓𝒇𝒎
𝒍+𝟏 =

𝝓𝒇𝒎
𝒍

𝝓𝒄𝒎
𝒍 𝝓𝒄𝒎

𝒍+𝟏/𝟐                                                         (𝟐.𝟐𝟑) 

2.5 Implementation: 

 The CMFD was integrated into a special version of PARCS containing only the 

cylindrical geometry solver, PARCS-CYL. Several new routines were created, and 

several existing routines were modified. Although PARCS utilizes a Graphical User 

Interface (GUI), it was strictly the source code and input deck that were modified.  

 PARCS reads in cross-section data, which includes all material properties, the 

number of FM nodes, and the FM node dimensions from the input deck. It does this by 

first incorporating a problem-dependent number of material regions. The number of FM 

nodes that compromise the region are then specified. Finally, the dimensions of each 

material region are specified. 

 The first modification required specifying in the code the number of CM nodes 

to be used and the number of FM nodes in each CM node. A good reasonable starting 

point for these values would be to use the material regions as the CM nodes. This 

definition or choice would lead to homogenized nodes with uniform fine-mesh material 
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properties. This choice is arbitrary, and the material mesh does not necessarily lead to 

the most efficient acceleration. Below is an example graphical representation of the 

relationship between the material regions (MR), FM and CM nodes.  

 
Figure 2.2 – Schematic of how information is passed from the MM to the FM to the CM. 

 
This shows three different material regions of specified dimensions being divided into 

six FM nodes that are then arbitrarily grouped into two CM nodes. The FM dimensions 

determine the dimensions of the CM nodes. Every CM node boundary must coincide 

with a FM node boundary, and this leads to CM nodes of varying dimension. We will 

consider problems where the CM boundary overlaps the MR nodes, but this does not 

guarantee the CM nodes will be of equal dimension.   

 Node averaged fluxes and coupling coefficients are used in the CMFD, and they 

are obtained from the FMFD calculation. The first complete power iteration provides an 
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estimate of fluxes and the eigenvalue that will be used for the first iteration of the 

CMFD. Each iteration on both mesh sizes yields more accurate solutions, but the 

information gained per iteration compared to the computation time required favors 

doing as much of the work as possible with the CMFD.  

 After each power iteration on the FM problem, the information is used to 

perform a converged CM solution. Once converged, the CM flux is propagated back to 

the FM along with the eigenvalue, and the process is repeated until the fission source 

and eigenvalue are converged to the specified tolerance shown in Table 2.1.  

Table 2.1 – Convergence Criteria 

Local Fission Source 1.0e-5 
Global Fission Source 1.0e-6 

Eigenvalue 1.0e-6 
 

2.6 PARCS Control Logic: 

 A diagram showing the entire control flow logic of PARCS is shown in Figure 

2.3. The initialization process consists of reading information from the input deck, 

establishing cross section data, and initializing computational parameters to their 

appropriate settings. The FMFD coupling coefficients are then determined, and the 

FMFD linear system is setup. The preconditioners needed for the Bi-Conjugate Gradient 

Stabilized (BiCGSTAB) algorithm are then constructed (Downer et al, 2007) . The 

BiCGSTAB method is used because it has proven successful for nonlinear problems and 

because the conjugate gradient (CG) method only works for symmetric positive definite 

linear systems (SPD) (Downer et al, 2007). While the linear system for the FMFD 

problem is SPD, the CMFD equations are not. Specific criteria must be met on the  
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Figure 2.3 – Schematic of the control logic used in PARCS for the eigenvalue calculation  

 
residual vector before the FM flux is updated. The Wielandt Shift option, if turned on, 

will calculate the new eigenvalue. This option serves to speed up the fission source 

iteration. Tests for the convergence criteria in Table 2.1 then determine whether the 

eigenvalue calculation is complete.  
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 Only the yellow boxes in Figure 2.3 are relevant to this project. The Need 

Nodal box refers to updating the flux with a higher order nodal method. There is no 

higher order nodal method in PARCS for cylindrical geometry. The Need T/H, 

Xe/Sm, and XSUPD boxes can only be invoked during a transient. These steps are 

important in normalizing the power distribution, updating the Xenon/Samarium 

number densities, and updating the cross sections (Downer et al, 2007). The flow logic 

for setting up the CMFD linear system is shown in Figure 2.4. 

Figure 2.4 – CMFD control logic 

Upon convergence of the CM problem, another FMFD iteration takes place. This 

process continues until the FM problem passes all convergence tests, at which time the 

eigenvalue calculation is complete. 
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Chapter 3 Results 

In this Chapter we present the results of several test problems designed to 

evaluate the performance of the CMFD implementation in cylindrical geometry. 

3.1 Homogeneous Infinite Medium Problem:  

 Our first test problem is a homogeneous medium with reflecting conditions on 

all external boundaries. These boundary conditions model an infinite medium (no 

leakage of neutrons from the system). The material properties are from material region 1 

in the OECD-PBMR400 cross section library and are given in Table 3.1. For the 

complete library refer to Frederik Reitsma’s paper in the references.  

Table 3.1 – Homogeneous Material Properties 
Parameter Fast Group Thermal Group 

𝐷 2.104250e+00 1.56790e+00 
Σ𝑎 6.267630e-04 2.969320e-03 
𝜈Σ𝑓  1.808830e-04 4.529160e-03 
Σ𝑓 7.382980e-05 1.848637e-03 

Σ𝑠(1 → 2 𝑜𝑟 2 → 1) 1.287270e-03 0 
 

The system is governed by the two diffusion equations representing the fast and thermal 

energy groups as shown in Eqs. (3.1) and (3.2).  

−𝛁 ∙ 𝑫𝟏𝛁𝝓𝟏 + 𝚺𝒓,𝟏𝝓𝟏 =
𝟏
𝒌
�𝝂𝚺𝒇,𝟏𝝓𝟏 + 𝝂𝚺𝒇,𝟐𝝓𝟐�                                    (𝟑.𝟏) 

−𝛁 ∙ 𝑫𝟐𝛁𝝓𝟐 + 𝚺𝒂,𝟐𝝓𝟐 = 𝚺𝒔,𝟏→𝟐𝝓𝟏                                                (𝟑.𝟐) 

Eliminating the leakage terms, the infinite medium multiplication factor for the system 

can then be calculated as follows: 

𝒌∞ = �
𝝂𝚺𝒇,𝟐

𝚺𝒂,𝟐
� �

𝚺𝒔,𝟏→𝟐

𝚺𝒔,𝟏→𝟐 + 𝚺𝒂,𝟏
� �

𝝂𝚺𝒇,𝟏𝝓𝟏 + 𝝂𝚺𝒇,𝟐𝝓𝟐

𝝂𝚺𝒇,𝟐𝝓𝟐
�                               (𝟑.𝟑) 
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Using the data in Table 3.1 yields a 𝑘∞ of 1.1203466. Table 3.2 shows that for all the 

geometries tested, the solution was achieved in three fine mesh iterations. The CMFD  

Table 3.2 – Homogeneous Problem Results 

Test Problem 
Cells Fine Mesh 

Iterations k Net Acceleration 
Factor R Z 

Geometry 1 20 29 3 1.1203466 0.726 
Geometry 2 45 29 3 1.1203466 0.733 
Geometry 3 20 45 3 1.1203466 0.736 
Geometry 4 45 45 3 1.1203466 0.699 
Geometry 5 10 29 3 1.1203466 0.740 
Geometry 6 20 15 3 1.1203466 0.741 
Geometry 7 10 15 3 1.1203466 0.749 
Geometry 8 105 70 3 1.1203466 0.636 

Fine Mesh Answer 213 145 3 1.1203466   
 
 
actually slows down the solution to this problem, but this is expected. The initial 

eigenvalue and fission source guess make it impossible for the FM solution to converge 

in the first two iterations. This is because the first iteration yields the correct solution to 

the problem, but this solution is much different than the initial guess, so there is no 

convergence. The second iteration on the FM also yields the correct solution, and all 

convergence tests are now passed. However, on the FM the convergence tests must be 

passed in two consecutive iterations to complete the eigenvalue problem. Three 

iterations are therefore the minimum needed, and that is how many it takes for this 

problem. The CMFD is unnecessary and causes the calculation to be slower than the 

FMFD solver on its own for all versions of this test problem. Appendix A has the 

dimensions of each CM geometry including the FM cell distribution. The net 

acceleration factor is the total improvement in computational speed including all FM 
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and CM solves, the homogenization process, calculation of the CNCCs, and 

convergence testing. It is calculated by dividing the total time the FMFD solver takes to 

converge the eigenvalue by the time required when the CMFD is used.  

 
3.2 Homogeneous Medium Problem with Top Vacuum Boundary Condition: 

 This problem is exactly like the one described in section 3.1 except that there is a 

vacuum boundary condition imposed on the top axial plane, allowing neutron leakage 

through this boundary. The analytic solution can be obtained by solving the partial 

differential equation.   

 The geometric buckling is the solution to a Helmholtz equation, which 

characterizes the spatial dependence of the neutron flux (Lewis). This equation is shown 

below along with the formula for the geometric buckling for a cylindrically shaped 

reactor (Lewis, 2008) .  

𝛁𝟐𝝓 + 𝑩𝟐𝝓 = 𝟎                                                            (𝟑.𝟓) 

𝑩𝟐 = (
𝟐.𝟒𝟎𝟓
𝑹�

)𝟐 + ( 
𝝅
𝑯�

 )𝟐                                                       (𝟑.𝟔) 

Here R is the radius and H is the height of the core. For the problem at hand, the radial 

direction extends infinitely because of the reflecting boundaries making the radial term 

become zero. The geometric buckling only depends on H�, the extrapolated height which 

is H + 2𝜆, where 𝜆 is the extrapolation distance. 𝑅� is the extrapolated radius, and it is 

equal to R + 2λ. This extrapolation distance is the distance beyond the boundary of the 

core at which the flux theoretically goes to zero.     
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Equations (3.7) and (3.8) define the fast and thermal diffusion lengths 

respectively. The diffusion length is the distance between where a neutron is born and 

where it is absorbed (Lewis).  

𝑳𝟏 = �𝑫𝟏 𝚺𝒓,𝟏⁄                                                              (𝟑.𝟕) 

𝑳𝟐 = �𝑫𝟐 𝚺𝒂,𝟐⁄                                                                       (𝟑.𝟖) 

Using these expressions in equations 3.1 and 3.2 respectively yields the following 

equations: 

𝑳𝟏𝟐𝚺𝒓,𝟏𝐁𝟐𝝓𝟏 + 𝚺𝒓,𝟏𝝓𝟏 =
𝟏
𝒌
�𝝂𝚺𝒇,𝟏𝝓𝟏 + 𝝂𝚺𝒇,𝟐𝝓𝟐�                                  (𝟑.𝟗) 

𝑳𝟐𝟐𝚺𝒂,𝟐𝐁𝟐𝝓𝟐 + 𝚺𝒂,𝟐𝝓𝟐 = 𝚺𝒔,𝟏→𝟐𝝓𝟏                                            (𝟑.𝟏𝟎) 

Both sides of equations 3.9 and 3.10 can be divided by the thermal flux, and equation 

3.9 will then yield an expression for the fast to thermal flux ratio which can be 

substituted into equation 3.10. This results in the expression for k shown below. 

𝒌 =
𝝂𝚺𝒇,𝟏

�−𝑳𝟏𝟐𝚺𝒓,𝟏𝑩𝟐 + 𝚺𝒓,𝟏�
+

𝝂𝚺𝒇,𝟐𝚺𝒔,𝟏→𝟐

�−𝑳𝟏𝟐𝚺𝒓,𝟏𝑩𝟐 + 𝚺𝒓,𝟏��−𝑳𝟐𝟐𝚺𝒂,𝟐𝑩𝟐 + 𝚺𝒂,𝟐�
             (𝟑.𝟏𝟏) 

Using the data in Table 3.1, k = 1.1182219. This analytic solution is also achieved by 

PARCS to within 1.0e-05, and the results are shown in Table 3.4. 
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Table 3.3 – Results for the homogenous problem with a vacuum boundary on the top axial plane 

Test Problem 
Cells Fine 

Mesh 
Iterations 

k 
Average 
Iteration 

Time (sec) 

Iteration 
Improvement 

Net 
Acceleration 

Factor R Z 
Geometry 1 20 29 10 1.1182686 0.086 64.1 24.7 
Geometry 2 45 29 10 1.1182686 0.133 41.6 16.3 
Geometry 3 20 45 24 1.1182686 0.095 57.9 7.81 
Geometry 4 45 45 24 1.1182686 0.215 25.7 3.53 
Geometry 5 10 29 10 1.1182686 0.061 90.2 34.6 
Geometry 6 20 15 45 1.1182686 0.049 113 6.89 
Geometry 7 10 15 45 1.1182686 0.041 135 8.22 
Geometry 8 105 70 8 1.1182686 0.962 5.74 3.34 

Fine Mesh Answer 213 145 577 1.1182686 5.518     
 

In each case, the iteration converges regardless of the choice of coarse mesh. The 

leakage of neutrons requires many iterations on the fine mesh to reach convergence. The 

iteration improvement is the average iteration time on the FM (5.518 sec) divided by the 

average iteration time for each CM geometry. On the coarsest mesh, the iteration 

improvement is a factor of 135, but there are many more FM iterations needed to 

converge the solution making the net acceleration minimal for this case. This results 

because the heterogeneous properties of each FM node are not preserved in the 

homogenization process, and as the CM nodes increase in size, these properties become 

more spatially smeared. For all the geometries, coarsening the radial mesh while holding 

the axial mesh fixed results in an increased acceleration. The flux is constant along each 

radial node since the material properties are the same everywhere and the system has an 

outer reflecting boundary. The flux is not flat in the axial direction and is greatest at 

𝑧 = −𝐻/2. It appears that using the material mesh size of 29 in the axial direction yields 

the greatest benefit. The default number of FM nodes in each of the 29 material regions 
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is five. Varying the number of FM nodes in each CM caused poorer performance. 

Because the size of the core is so much greater in the axial direction, maintaining an 

even distribution of FM cells per CM converges the solution most effectively. This 

assertion is corroborated by the flux errors seen in Table 3.5.  

Table 3.4 – Flux errors for the homogeneous problem with vacuum boundary 

Test Problem 
Cells Max Flux % 

Error 
R Z 

Geometry 1 20 29 0.125 
Geometry 2 45 29 0.122 
Geometry 3 20 45 5.66 
Geometry 4 45 45 5.66 
Geometry 5 10 29 0.122 
Geometry 6 20 15 0.278 
Geometry 7 10 15 0.278 
Geometry 8 105 70 1.54 

Fine Mesh Answer 213 145   
 

 
Geometries 3 and 4 both yield the largest errors in the flux. The last CM node at the top 

of the core in both of these cases measures 130 centimeters compared to the other coarse 

mesh nodes which are 10 cm. These values result from the arbitrary placement of FM 

nodes in each CM and could stem from homogenizing too coarsely. However, even the 

most refined case produces a high error, and it has only 4 FMs in the top CM.  

 

3.3 Heterogeneous Infinite Medium Problem: 

 This heterogeneous problem contains two different materials. These materials 

alternate each axial plane and are constant across any given radial direction. One is the 
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fissile material used in the previous two problems, and the other is a non-fissionable 

material with the properties shown in Table 3.6. 

Table 3.5 –Cross-section data for the non-fissionable material 
Parameter Fast Group Thermal Group 

𝐷 9.800900e-01 8.013910e-01 
Σ𝑎 8.054710e-06 1.795710e-04 
𝜈Σ𝑓  0 0 
Σ𝑓 0 0 

Σ𝑠(1 → 2 𝑜𝑟 2 → 1) 9.862810e-03 0 
 

Although an analytic solution is not readily obtainable for this problem, it is important 

to observe the behavior of the CMFD under such conditions. The two materials that are 

used in the homogenization process have very different properties. The stark difference 

between the two materials along with the size of the axial mesh, make it difficult for the 

CMFD operator to converge. Table 3.7 shows that some of the geometries fail to offer 

any acceleration, and some yield negative fluxes, causing the solution to diverge. 

Table 3.6 – Results for the heterogeneous infinite medium problem 

Test Problem 
Cells Fine Mesh 

Iterations k 
Average 

Iteration Time 
(sec) 

Iteration 
Improvement 

Net 
Acceleration 

Factor R Z 
Geometry 1 20 29 13 1.2294141 3.91 2.40 0.849 
Geometry 2 45 29 13 1.2294141 6.44 1.46 0.540 
Geometry 3 20 45 - - - - - 
Geometry 4 45 45 - - - - - 
Geometry 5 10 29 13 1.2294141 0.0377 249 23.2 
Geometry 6 20 15 19 1.229414 1.85 5.08 0.644 
Geometry 7 10 15 19 1.229414 0.0934 101 12.2 
Geometry 8 105 70 10 1.229414 1.38 6.82 0.805 

Fine Mesh Answer 213 145 324 1.2294141 9.39     
 

Defining the coarse axial mesh such that it spans material boundaries causes the 

solution to diverge in cases 3 and 4. The most refined CM (case 8) converged in less 
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CPU time than cases 1 and 2. Case 8 has more unknowns, which results in a bigger 

matrix. Case 5 has a coarser radial mesh than cases 1 and 2, but they all have the same 

axial mesh. However, cases 1 and 2 offer no acceleration, and case 5 reduces the 

convergence time by a factor of 23. All 3 cases required 13 FM iterations to converge. 

Case 7 has a coarser radial grid by a factor of two compared with case 6. This leads to 

an improvement by a factor of nearly 20 for both the iteration time and net acceleration 

factor. This leads to the conclusion that because the flux remains relatively flat in the 

radial direction and the material is uniform, a very coarse grid a very coarse radial grid 

can be used. The flux errors are shown in Table 3.7. 

Table 3.7 – heterogeneous infinite medium flux

 
 

In this test problem, the results for all differ by less than a tenth of a percent 

compared to the FMFD solution, aside from case 8. This same behavior is observed in 

the homogeneous problem with a vacuum boundary. Geometries 3, 4, and 8 for both 

problems have flux solutions that deviate greatly from the FM solution. All three have 

the most refined axial mesh. We might expect them to yield no acceleration, but they 
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should be the least likely to have results that do not agree with the actual solution. It 

appears that homogenizing over material regions is the best approach for the CMFD. 

 

3.4 OECD-PBMR400 Benchmark Problem: 

  The problem description is given in Table 3.8. The total number of active mesh 

cells does not include the baffle region around the core or the outer and bottom reflector 

regions for they are not included in the steady-state calculation.  

Table 3.8 - PBMR400 Description 
Radial Meshes 213 
Theta Meshes 1 
Axial Meshes 145 

Total Active Meshes 30885 
Core Radius 4.62 m 
Core Height 17 m 

Radial Material Zones 23 
Theta Material Zones 1 
Axial Material Zones 34 

 

The geometry of the core consists of concentric rings which are not necessarily 

equidistant from each other. Figure 3.1 shows how the core is separated into different 

nodes in cylindrical geometry.   
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Figure 3.1 – Diagram of node formation in cylindrical geometry 

 

 Since there is only one cell in the theta dimension for the PBMR400, it is 

essentially a 2 dimensional problem. Figures 3.2 and 3.3 give detailed descriptions of 

the core layout. In figure 3.2, CC is graphite, F is the fuel, V is a void, and TR, BR, and 

SR are the top, bottom and side reflectors respectively. In an accident scenario, small 

borated graphite balls can drop into the Reserve Shutdown System (RSS). Another 



 
 
 

30 

Figure 3.2 – Layout of the PBMR400 core 
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Figure 3.3 –Material distribution in the PBMR400  
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safety feature of the PBMR design is the Reactor Core Cooling System. If the He 

coolant is no longer able to remove heat from the system, the decay heat will reach the 

RCCS and slowly heat vertical water columns. These columns will passively transfer the 

heat upward out of the core where the water is cooled naturally by air. The core barrel, 

reactor pressure vessel, and inlet and outlet plena can also be seen in figure 3.2. The 

numbers outside of the outlined figure are the dimensions in cm in the radial and axial 

directions and represent the material regions. Figure 3.3 shows the material distribution 

in the PBMR400 design. The cross section library with all material information is 

included in Appendix B.  

Table 3.9 shows the results of the PBMR400 problem. The eigenvalue, k, is 

identical for all the variations of the CM used. The only case that fails to yield physical 

results is geometry 7. This solution initially behaves like the others for about 10  

Table 3.9 – PBMR400 Results 

Test Problem 
Cells Fine Mesh 

Iterations k 
Iteration 

Time 
(sec) 

Iteration 
Improvement 

Net 
Acceleration 

Factor R Z 
Geometry 1 20 29 11 1.0046159 0.0382 132 16.1 
Geometry 2 45 29 11 1.0046159 0.175 28.8 9.46 
Geometry 3 20 45 8 1.0046159 0.0390 129 19.5 
Geometry 4 45 45 9 1.0046159 0.137 36.9 9.35 
Geometry 5 10 29 13 1.0046159 0.0139 362 17.1 
Geometry 6 20 15 419 1.0046159 0.00890 565 0.501 
Geometry 7 10 15 - - - - - 
Geometry 8 105 70 8 1.0046159 1.06 4.73 2.14 
Geometry 9 40 29 11 1.0046159 0.179 28.1 10.4 

 Geometry 10  40 58 8 1.0046159 0.185 27.2 7.96 
Geometry 11 20 58 8 1.0046159 0.0566 88.9 16.9 

Fine Mesh Answer 213 145 266 1.0046159 5.03     
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iterations before producing negative fluxes. Using too coarse a grid makes it harder to 

maintain the higher order FMFD problem characteristics. It can also be seen from 

geometry 6 that even when the CMFD yields physical results, it may actually slow the 

convergence rate down. Here, more FM iterations are required with the acceleration than 

without it.  

 The benefit of the CMFD modification is evident from the net acceleration 

factors above. These include both the FM and CM loops used to obtain the final 

solution. The FM solution converges without the CMFD after 266 iterations. Some of 

the CM solutions are obtained after over 300 iterations, but these iterations are 

significantly less computationally expensive. The net acceleration is also the key 

determinant for gauging the optimal mesh size. In case 1, the coarse mesh is the material 

region; some cases are based on the material region dimensions while others are 

completely arbitrary. Case 8 roughly cuts the number of FM cells in half and yields just 

over a factor of 2 improvement. Using a constant number of radial cells, refining the 

number of axial cells from case 1 to 6 increases the convergence rate, but then from case 

6 to 4 the convergence rate decreases. This demonstrates the balance that exists between 

the inherent reduction in computational speed in solving a smaller, coarser problem and 

the lack of accuracy associated with the solution. A much more detailed analysis would 

need to be carried out to find the optimal mesh sizes, but considering geometry 3 leads 

to a solution nearly 20 times faster, the CMFD appears to be very successful. 

 As the mesh size becomes coarser the calculation time is drastically reduced. 

This is due to a fewer number of unknowns and the smaller matrix that results. 
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However, this is not seen between geometries 2 and 9. Even though the problems differ 

by only 5 radial CMs, the FM node distribution in each is quite different. Again, this 

results from the fact that the number and dimension of the FM nodes cannot be altered 

in order to maintain the PBMR400 benchmark solution, and this might explain the 

discrepancy. The same behavior is seen in cases 2 and 4. Also, the variation in the 

number of radial mesh nodes has a greater impact on the iteration time than the variation 

in the number of axial meshes. 

  One other phenomenon that was observed was a loss of diagonal dominance in 

some of the rows of the matrix. Diagonal dominance is defined algebraically by 

equation 3.1 for a square matrix A. 

|𝑨𝒊𝒊|  ≥ ��𝑨𝒊𝒋
𝒋≠𝒊

�                                                               (𝟑.𝟏) 

The matrix is diagonally dominant if the absolute value of the diagonal element is 

greater than or equal to the absolute value of the sum of the off diagonal elements in a 

given row. This quality guarantees that the solution to the matrix equation 𝐴𝑥 = 𝑏 will 

always be positive. The FMFD numerical approximation of the diffusion equation will 

always lead to a diagonally dominant matrix. However, the 𝐷� that is introduced in the 

CMFD formulation can destroy diagonal dominance. Table 3.10 shows the number of 

times diagonal dominance was lost in each variant of the OECD-PBMR400 benchmark 

problem for the fast and thermal energy groups. 

 This loss of diagonal dominance arises in regions where homogenization has 

taken place over coolant channels. These channels are filled with He gas and lead to a 
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neutron streaming effect (Kim, Cho, Lee, Noh, & Zee, 2007). The neutrons enter these 

channels, and due to the low density of He, the chance of interaction is extremely small. 

Because of the directional-dependence of diffusion coefficients, this creates regions 

susceptible to anisotropic diffusion. PARCS accounts for this by multiplying the 

diffusion coefficients in these regions by scalars to obtain values comparable to the 

surrounding material. The computer code PEBBED also does this for the diffusion  

Table 3.10 – Loss of diagonal dominance is lost in each energy group. 

Test Problem 
Cells Loss of Diagonal Dominance 

R Z Fast Group Thermal Group 
Geometry 1 20 29 0 46 
Geometry 2 45 29 2 70 
Geometry 3 20 45 0 77 
Geometry 4 45 45 131 165 
Geometry 5 10 29 0 2 
Geometry 6 20 15 0 21 
Geometry 7 10 15 - - 
Geometry 8 105 70 149 297 
Geometry 9 40 29 1 41 

Geometry 10 40 58 18 68 
Geometry 11 20 58 3 88 

Fine Mesh Answer 213 145 0 0 
 

coefficients allowing for directional dependence (Gouger, 2006). There seems to be a 

correlation between the anisotropic regions and the loss of diagonal dominance, but the 

solution is unaffected except on the coarsest mesh, case 7.  

 Although the convergence criteria on the fission source and eigenvalue is 

reached in 10 of the 11 cases, it is important to compare the flux solutions from all the 

cases to that obtained from the higher order FMFD calculation. One of the most 
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important factors for the safe operation of a reactor is the peak pin power. This allows 

one to determine the minimum Departure from Nucleate Boiling Ratio (DNBR), which 

is an operational safety limit set to make sure pool boiling does not occur in the core for 

LWRs (Todreas). For gas reactors such as the PBMR400, it is still important to know 

the peak temperature to ensure the structural integrity of the fuel and moderator.  The 

maximum difference in the fluxes generated from the CMFD and standard FMFD for all 

30,885 FM nodes is less than 1% except in case 6. Table 3.11 shows the maximum error 

for each geometry over both energy groups. It appears that homogenizing the meshes 

over different material regions yields slightly more error.  

Table 3.11 – Flux Errors for PBMR400 Problem 

Test Problem 
Cells Number 

of Cells 
Flux % 

Difference R Z 
Geometry 1 20 29 580 0.0938 
Geometry 2 45 29 1305 0.129 
Geometry 3 20 45 900 0.202 
Geometry 4 45 45 2025 0.177 
Geometry 5 10 29 290 0.355 
Geometry 6 20 15 300 5.45 
Geometry 7 10 15 150 - 
Geometry 8 105 70 7350 0.316 
Geometry 9 40 29 1160 0.0649 

Geometry 10 40 58 2320 0.919 
Geometry 11 20 58 1160 0.892 

Fine Mesh Answer 213 145 30885 0 
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Chapter 4 Conclusion and Future Work 

4.1 Conclusions: 

 The goal of this work was to integrate the Coarse Mesh Finite Differencing 

Acceleration technique in cylindrical geometry into the reactor simulation code PARCS. 

Multiple test problems were used to assess the accuracy and efficiency of this method. 

The analytic solutions for a homogenous infinite medium problem and homogenous 

medium with a vacuum boundary condition on the top axial plane were obtained and 

compared to the solution generated by PARCS. The flux and eigenvalue solutions were 

in excellent agreement. The benchmarked PBMR400 solution generated with the FMFD 

method was also achieved with the CMFD. Coarsening the grid eventually led to the 

production of negative fluxes, but an acceleration was achieved for all of the PBMR400 

cases and for most of the others.   

   

4.2 Future Work: 

  The CMFD was tested on problems with two energy groups representative of 

fast and thermal neutrons. Future work will include testing CMFD on multi-group 

problems. This will allow for both spatial and energy acceleration. A 23 group cross 

section library has already been generated for use in PARCS, and the PARCS_CYL 

version of the code is being modified to utilize this library. The CMFD will then be able 

to spatially accelerate the solution for each energy group, or the multi-group parameters 

can be collapsed from 23 groups down to two. Both accelerations can be used together 

or separately. 
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 Another area of future work should include analysis of the stability of the CMFD 

method. Work has been published showing the convergence behavior in 1-D, and there 

is the possibility that this analysis could be applied to a 3-D problem (Lee, Downer, & 

Kim, 2004). The results for the 4 problems presented here definitely show that the 

solution is highly dependent on the number of CMs used and the number of FM nodes 

per CM. Further investigation into the stability of the method in 3-D might reveal 

limiting conditions on the CM node size.    

 Finally, the homogenization of cells with different material properties should be 

more closely examined, specifically when this homogenization occurs over coolant 

channels. The neutron streaming effect is apparent, and it is accounted for in PARCS 

and VSOP94 by multiplying the diffusion coefficients here by scalars. There might be a 

better way to represent these regions when using CMFD, even though the solutions 

seem to be unaffected. The homogenization process does not retain the heterogeneities 

associated with the FM cells, and homogenizing over like materials may prove to be the 

most robust option. Analyzing the solutions to other complex benchmarked problems 

may shed more light on this.  
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Appendix A- Cell Dimensions and Distributions 
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Table A.1 – Fine mesh cell dimensions  

Radial 
FM cells 

Radial 
Dimension 

per cell 
(cm) 

Radial 
FM cells 

Radial 
Dimension 

per cell 
(cm) 

Radial 
FM cells 

Radial 
Dimension 

per cell 
(cm) 

Axial 
FM cells 

Axial 
Dimension 

per cell 
(cm) 

1-4 2.5 83-102 .85 185-191 2.4285714 1-5 50 

5-12 3.875 103-122 .85 192-198 2.0571429 6-150 10 

13-20 4.075 123-142 .85 199-205 1.7857142   

21-26 1.1583333 143-152 .795 206-213 .625   

27-32 1.9166667 153-162 1.15 214 17.5   

33-42 .795 163-170 .86875 215 18   

43-62 .85 171-177 1.9428571 216 134   

63-82 .85 178-184 2.6571428     
 

Table A.2 – Geometry 1 and material region dimensions 

Radial 
CM cell 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial 
CM cell 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 10.0 4 1-5 50 1 
2 31.0 8 6-34 50 5 
3 32.6 8    
4 6.95 6    
5 11.5 6    
6 7.95 10    
7 17.0 20    
8 17.0 20    
9 17.0 20    

10 17.0 20    
11 17.0 20    
12 7.95 10    
13 11.5 10    
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14 6.95 8    
15 13.6 7    
16 18.6 7    
17 17.0 7    
18 14.4 7    
19 12.5 7    
20 5.0 8    
21 17.5 1    
22 18.0 1    
23 134.0 1    

 

Table A.3 – Geometry 2 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 10 4 1-5 50 1 
2 15.5 4 6-34 50 5 
3 15.5 4    
4 16.3 4    
5 16.3 4    
6 4.63333333 4    
7 6.15 4    
8 7.66666667 4    
9 3.18 4    

10 3.18 4    
11 3.29 4    

12-30 3.4 4    
31 5.1 6    
32 5.1 6    
33 5.1 6    
34 4.99 6    
35 4.77 6    
36 6.19 6    
37 6.9 6    
38 6.95 8    
39 13.6 7    
40 18.6 7    
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41 17.0 7    
42 14.4 7    
43 12.5 7    
44 2.5 4    
45 2.5 4    
46 17.5 1    
47 18.0 1    
48 134.0 1    

 

Table A.4 – Geometry 3 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell 
(cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell 
(cm) 

Number of FM 
cells in each 
Axial CM cell 

1 10.0 4 1-5 50 1 
2 31.0 8 6-49 30 3 
3 32.6 8 50 130 13 
4 6.95 6    
5 11.5 6    
6 7.95 10    
7 17.0 20    
8 17.0 20    
9 17.0 20    

10 17.0 20    
11 17.0 20    
12 7.95 10    
13 11.5 10    
14 6.95 8    
15 13.6 7    
16 18.6 7    
17 17.0 7    
18 14.4 7    
19 12.5 7    
20 5.0 8    
21 17.5 1    
22 18.0 1    
23 134.0 1    
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Table A.5 – Geometry 4 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 17.75 6 1-5 50 1 
2 23.25 6 6-49 30 3 
3 24.45 6 50 130 13 
4 12.7833333 6    
5 9.98333333 6    
6 7.01333333 6    
7 4.77 6    

8-23 5.1 6    
24 4.99 6    
25 4.77 6    
26 6.19 6    
27 6.9 6    
28 5.2125 6    
29 9.50892857 6    
30 13.8 6    
31 25.2 10    
32 20.4 10    
33 1.78571429 1    
34 1.78571429 1    
35 1.78571429 1    
36 1.78571429 1    
37 1.78571429 1    
38 0.625 1    
39 0.625 1    
40 0.625 1    
41 0.625 1    
42 0.625 1    
43 0.625 1    
44 0.625 1    
45 0.625 1    
46 17.5 1    
47 18.0 1    
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48 134.0 1    
 

Table A.6 – Geometry 5 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 79.3916667 25 1-5 50 1 
2 27.4083333 25 6-34 50 5 
3 21.25 25    
4 21.25 25    
5 21.25 25    
6 20.81 25    
7 29.7542857 25    
8 57.45714286 25    
9 9.553571429 6    

10 4.375 7    
11 17.5 1    
12 18.0 1    
13 134.0 1    

 

 

Table A.7 – Geometry 6 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 10.0 4 1-5 50 1 
2 31.0 8 6-19 100 10 
3 32.6 8 20 50 5 
4 6.95 6    
5 11.5 6    
6 7.95 10    
7 17.0 20    
8 17.0 20    
9 17.0 20    

10 17.0 20    
11 17.0 20    
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12 7.95 10    
13 11.5 10    
14 6.95 8    
15 13.6 7    
16 18.6 7    
17 17.0 7    
18 14.4 7    
19 12.5 7    
20 5.0 8    
21 17.5 1    
22 18.0 1    
23 134.0 1    

 

 
Table A.8 – Geometry 7 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 79.3916667 25 1-5 50 1 
2 27.4083333 25 6-19 100 10 
3 21.25 25 20 50 5 
4 21.25 25    
5 21.25 25    
6 20.81 25    
7 29.7542857 25    
8 57.45714286 25    
9 9.553571429 6    

10 4.375 7    
11 17.5 1    
12 18.0 1    
13 134.0 1    

 
 
Table A.9 – Geometry 8 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1-2 5.0 2 1-5 50 1 
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3-6 7.75 2 6-73 20 2 
7-10 8.15 2 74 50 5 

11-13 2.31666667 2 75 40 4 
14-16 3.83333333 2    
17-21 1.59 2    
22-71 1.7 2    
72-76 1.59 2    
77-81 2.3 2    
82-85 1.7375 2    
86-88 3.88571429 2    
90-92 5.31428571 2    
93-95 4.85714286 2    

96 4.48571429 2    
97-99 4.11428571 2    

100-102 3.57142857 2    
103 2.41071429 2    
104 1.25 2    
105 3.125 5    
106 17.5 1    
107 18.0 1    
108 134.0 1    

 
 

Table A.10 – Geometry 9 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 17.75 6 1-5 50 1 
2 23.25 6 6-34 50 5 
3 24.45 6    
4 12.7833333 6    
5 9.98333333 6    
6 7.01333333 6    
7 4.77 6    

8-23 5.1 6    
24 4.99 6    
25 4.77 6    
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26 6.19 6    
27 6.9 6    
28 5.2125 6    
29 9.50892857 6    
30 13.8 6    
31 10.6285714 4    
32 9.71428571 4    
33 9.34285714 4    
34 8.22857142 4    
35 5.9 3    
36 5.35714285 3    
37 5.35714285 3    
38 1.875 3    
39 1.875 3    
40 1.25 2    
41 17.5 1    
42 18.0 1    
43 134.0 1    

 

 

Table A.11 – Geometry 10 dimensions 

Radial 
CM cells 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial CM 
cells 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 17.75 6 1-5 50 1 
2 23.25 6 6-36 30 3 
3 24.45 6 37-62 20 2 
4 12.7833333 6    
5 9.98333333 6    
6 7.01333333 6    
7 4.77 6    

8-23 5.1 6    
24 4.99 6    
25 4.77 6    
26 6.19 6    
27 6.9 6    
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28 5.2125 6    
29 9.50892857 6    
30 13.8 6    
31 10.6285714 4    
32 9.71428571 4    
33 9.34285714 4    
34 8.22857142 4    
35 5.9 3    
36 5.35714285 3    
37 5.35714285 3    
38 1.875 3    
39 1.875 3    
40 1.25 2    
41 17.5 1    
42 18.0 1    
43 134.0 1    

 

 

Table A.12 – Geometry 11 dimensions 

Radial 
CM cell 

Radial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 

Radial CM cell 

Axial 
CM cell 

Axial 
Dimension 

per cell (cm) 

Number of FM 
cells in each 
Axial CM cell 

1 10.0 4 1-5 50 1 
2 31.0 8 6-36 30 3 
3 32.6 8 37-62 20 2 
4 6.95 6    
5 11.5 6    
6 7.95 10    
7 17.0 20    
8 17.0 20    
9 17.0 20    

10 17.0 20    
11 17.0 20    
12 7.95 10    
13 11.5 10    
14 6.95 8    
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15 13.6 7    
16 18.6 7    
17 17.0 7    
18 14.4 7    
19 12.5 7    
20 5.0 8    
21 17.5 1    
22 18.0 1    
23 134.0 1    

 

 

 

 

 

 

  



 
 
 

53 

 

 

 

 

 

 

 

 

Appendix B – PBMR400 Material Distribution by Axial Planes 
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Numbers correspond to material zones which can be found in 
Frederik Reitsma’s paper in the references. 
 
Planar_Reg 1 
132 132 132 132 163 124 115  115  115  115  115 143 188 151 151 
154 154 154 189 190 

Planar_Reg 2                                                                                                         
132 132 132 132 163 124 115  115  115  115  115 143 188 151 151 
154 154 154 189 190 

Planar_Reg 3                                                                                                         
132 132 132 132 163 124 114  114  114  114  114 143 188 151 151 
154 154 154 189 190 

Planar_Reg 4                                                                                                         
134 134 134 131 162 123 22   44   66   88   110 142 187 151 151 
153 153 153 189 190 

Planar_Reg 5                                                                                                         
134 134 134 131 162 123 21   43   65   87   109 142 186 151 151 
153 153 153 189 190 

Planar_Reg 6                                                                                                         
134 134 134 130 161 122 20   42   64   86   108 141 185 150 150 
153 153 153 189 190 

Planar_Reg 7                                                                                                         
134 134 134 130 161 122 19   41   63   85   107 141 184 150 150 
153 153 153 189 190 

Planar_Reg 8                                                                                                         
134 134 134 130 161 122 18   40   62   84   106 141 183 150 150 
153 153 153 189 190 

Planar_Reg 9                                                                                                         
134 134 134 129 160 121 17   39   61   83   105 140 182 149 149 
153 153 153 189 190 

Planar_Reg 10                                                                                                        
134 134 134 129 160 121 16   38   60   82   104 140 181 149 149 
153 153 153 189 190 

Planar_Reg 11                                                                                                        
134 134 134 129 160 121 15   37   59   81   103 140 180 149 149 
153 153 153 189 190 

Planar_Reg 12                                                                                                        
134 134 134 129 160 121 14   36   58   80   102 140 179 149 149 
153 153 153 189 190 

Planar_Reg 13                                                                                                        
134 134 134 128 159 120 13   35   57   79   101 139 178 148 148 
153 153 153 189 190 

Planar_Reg 14                                                                                                        
134 134 134 128 159 120 12   34   56   78   100 139 177 148 148 
153 153 153 189 190 

Planar_Reg 15                                                                                                        
134 134 134 128 159 120 11   33   55   77   99  139 176 148 148 
153 153 153 189 190 

Planar_Reg 16                                                                                                        
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134 134 134 128 159 120 10   32   54   76   98  139 175 148 148 
153 153 153 189 190 

Planar_Reg 17                                                                                                        
134 134 134 127 158 119 9    31   53   75   97  138 174 147 147 
153 153 153 189 190 

Planar_Reg 18                                                                                                        
134 134 134 127 158 119 8    30   52   74   96  138 173 147 147 
153 153 153 189 190 

Planar_Reg 19                                                                                                        
134 134 134 127 158 119 7    29   51   73   95  138 172 147 147 
153 153 153 189 190 

Planar_Reg 20                                                                                                        
134 134 134 127 158 119 6    28   50   72   94  138 171 147 147 
153 153 153 189 190 

Planar_Reg 21                                                                                                        
134 134 134 126 157 118 5    27   49   71   93  137 170 146 146 
153 153 153 189 190  

Planar_Reg 22                                                                                                        
134 134 134 126 157 118 4    26   48   70   92  137 169 146 146 
153 153 153 189 190 

Planar_Reg 23                                                                                                        
134 134 134 126 157 118 3    25   47   69   91  137 168 146 146 
153 153 153 189 190 

Planar_Reg 24                                                                                                        
134 134 134 125 156 117 2    24   46   68   90  136 167 145 145 
153 153 153 189 190 

Planar_Reg 25                                                                                                        
134 134 134 125 156 117 1    23   45   67   89  136 166 145 145 
153 153 153 189 190 

Planar_Reg 26                                                                                                        
133 133 133 133 155 116 111  111  111  111  111 135 165 144 144 
152 152 152 189 190 

Planar_Reg 27                                                                                                         
133 133 133 133 155 116 112  112  112  112  112 135 164 144 144 
152 152 152 189 190 

Planar_Reg 28                                                                                                        
133 133 133 133 155 116 113  113  113  113  113 135 164 144 144 
152 152 152 189 190 

Planar_Reg 29                                                                                                        
133 133 133 133 155 116 113  113  113  113  113 135 164 144 144 
152 152 152 189 190 
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Appendix C – Code 
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SUBROUTINE cmfdaccel2 
      USE impl 
      USE params 
      USE itrcntl 
      USE xsec 
      USE geovar 
      USE coupl 
      USE lscoef 
      USE solvec 
      USE cntl, ONLY: linearsolver 
      IMPLICIT NONE 
      INTEGER(ivp) :: i, j, k, lf, l, m, kb, kt, le, lw, ls, ln, 
jp, lp, md, mc, ib, ie, js 
      INTEGER(ivp) :: icm, jcm, kcm, lcm, l3, ii, jj, kk, ncmxyz, 
ncmxy, & 
                      m1, z, kbot, ktop, kbeg, kend, ibc, ka, ja, 
la, ia, & 
                      icomp, ipr, lcmold 
      REAL(rvp) :: albf, bcf 
      REAL(rvp) :: hcmxi, hcmxiw, hcmyj, hcmyjn, hcmzk, hcmzkb, 
hcmxie, & 
                   hcmxy, hcmxz, hcmyz, hcmyzL, hcmyzR, hzk, hyj, 
hxi, & 
                   hyz, hxz, hxy, hyzL, hyzR, difl, diflw, difln, 
diflb, diflz, diflzb, & 
                   dddccfz1, dddccfr1 
      LOGICAL, SAVE :: betapinit=.TRUE. 
 
      ncmxy = (ncmxe(1)-ncmxs(1)+1)*ncmy 
      ncmxyz = ncmxy*(ncmze-ncmzs+1) 
 
!homogenize parameters to coarse mesh  
      cmphicm=zero     !homogenized flux 
      cmxstfcm=zero    !homogenized total x-sec 
      cmxscatcm=zero   !homogenized scattering x-sec 
      cmscatvcm=zero 
      cmxstrfcm=zero   !homogenized transport x-sec 
      cmrvdeltcm=zero  !homogenized 1/v*dt 
      cmxsnffcm=zero   !homogenized fission x-sec 
      cmxschicm=zero   !homogenized fission distribution 
      cmbetapcm=zero   !homogenized prompt neutron fraction 
      cmafcm=zero      !homogenized nu fission x-sec 
      cmpsicm=zero     !homogenized source term 
      cmxsdfcmold=zero 
      cmxsdzcmold=zero 
 
      
 DO k = nzs, nze 
    kcm = ktokcm(k) 
           DO j = 1, ny 
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       jcm = jtojcm(j) 
       DO i = nxs(j), nxe(j) 
   icm = itoicm(i) 
   l = nodel(i,j) 
                 lcm = nodelcm(icm,jcm) 
                 DO m = 1, ng 
                    
cmphicm(m,lcm,kcm)=cmphicm(m,lcm,kcm)+phi(m,l,k)*volnode(l,k) 
                    cmxstfcm(m,lcm,kcm)=cmxstfcm(m,lcm,kcm)+                         
& 
                                        
xstf(m,l,k)*phi(m,l,k)*volnode(l,k) 
                    cmxstrfcm(m,lcm,kcm)=cmxstrfcm(m,lcm,kcm)+                       
& 
                                         
xstrf(m,l,k)*phi(m,l,k)*volnode(l,k) 
                    cmxsnffcm(m,lcm,kcm)=cmxsnffcm(m,lcm,kcm)+                       
& 
                                         
xsnff(m,l,k)*phi(m,l,k)*volnode(l,k) 
                    cmxschicm(m,lcm,kcm)=cmxschicm(m,lcm,kcm)+                       
& 
                                         
xschi(m,l,k)*phi(m,l,k)*volnode(l,k)    
                    cmrvdeltcm(m,lcm,kcm)=cmrvdeltcm(m,lcm,kcm)+                     
& 
                                          
rvdelt(m,l,k)*phi(m,l,k)*volnode(l,k) 
       !            cmbetapcm(lcm,kcm)=cmbetapcm(lcm,kcm)+                           
&  
       !                                  
betap(l,k)*phi(m,l,k)*volnode(l,k) 
                    cmxsdfcmold(m,lcm,kcm)=cmxsdfcmold(m,lcm,kcm) 
+ (1/xsdf(m,l,k))*volnode(l,k) 
                    cmxsdzcmold(m,lcm,kcm)=cmxsdzcmold(m,lcm,kcm) 
+ (1/xsdz(m,l,k))*volnode(l,k) 
                    DO m1 = 1, ng 
                       IF(m1.NE.m) THEN 
                         
cmxscatcm(m,m1,lcm,kcm)=cmxscatcm(m,m1,lcm,kcm)+            & 
                                               
xscat(m,m1,l,k)*phi(m,l,k)*volnode(l,k) 
                       END IF 
                    END DO 
                 END DO 
       END DO 
     END DO 
 END DO 
 
        DO k = ncmzs, ncmze 
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           DO j = 1, ncmy 
              DO i = ncmxs(j), ncmxe(j) 
                 l = nodelcm(i,j) 
                 DO m = 1, ng 
                    cmphicm(m,l,k)=cmphicm(m,l,k)/volcm(l,k) 
                    fmtocmphi(m,l,k)=cmphicm(m,l,k) 
                    
cmxstfcm(m,l,k)=cmxstfcm(m,l,k)/(cmphicm(m,l,k)*volcm(l,k)) 
                    
cmxstrfcm(m,l,k)=cmxstrfcm(m,l,k)/(cmphicm(m,l,k)*volcm(l,k)) 
                    
cmxsnffcm(m,l,k)=cmxsnffcm(m,l,k)/(cmphicm(m,l,k)*volcm(l,k)) 
                    
cmxschicm(m,l,k)=cmxschicm(m,l,k)/(cmphicm(m,l,k)*volcm(l,k)) 
                    
cmrvdeltcm(m,l,k)=cmrvdeltcm(m,l,k)/(cmphicm(m,l,k)*volcm(l,k)) 
       !            
cmbetapcm(l,k)=cmbetapcm(l,k)/(cmphicm(m,l,k)*volcm(l,k)) 
                    cmxsdfcm(m,l,k)=one/(cmxstrfcm(m,l,k) * 
3.0_rvp) !r/theta diffusion coefficeint 
                    cmxsdzcm(m,l,k)=one/(cmxstrfcm(m,l,k) * 
3.0_rvp) !z diffusion coefficient 
                    
cmxsdfcmold(m,l,k)=volcm(l,k)/cmxsdfcmold(m,l,k)     !to fix void 
                    
cmxsdzcmold(m,l,k)=volcm(l,k)/cmxsdzcmold(m,l,k)     !to fix void 
                    cmxsdfcm(m,l,k)=cmxsdfcmold(m,l,k)  !to fix 
void 
                    cmxsdzcm(m,l,k)=cmxsdzcmold(m,l,k)  !to fix 
void 
                    DO m1 = 1, ng 
                       IF(m1.NE.m) THEN 
                         
cmxscatcm(m,m1,l,k)=cmxscatcm(m,m1,l,k)/(cmphicm(m,l,k)*volcm(l,k)
) 
                       END IF 
                    END DO 
!                    
cmbetapcm(l,k)=cmbetapcm(l,k)/((cmphicm(1,l,k)+cmphicm(2,l,k))*vol
cm(l,k)) 
                 END DO 
       END DO 
    END DO 
 END DO 
      
                 
 
!calculate D-tildes on coarse mesh 
        DO k = ncmzs, ncmze 
           kb = k-1 
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           hcmzk = hcmz(k) 
           hcmzkb = hcmz(kb)         
           DO j = 1, ncmy 
              hcmyj = hcmy(j) 
              hcmyjn = hcmy(j-1) 
              IF(j.EQ.1 .AND. ibcy(1).EQ.0 .AND. hcmyj.NE.hcmyjn) 
hcmyjn=hcmyj                
              DO i = ncmxs(j), ncmxe(j) 
                 hcmxi = hcmx(i) 
                 hcmxiw = hcmx(i-1) 
                 l = nodelcm(i,j) 
                 lw = nodelcm(i-1,j) 
                 ln = nodelcm(i,j-1) 
                 DO m =1, ng 
                    difl=cmxsdfcm(m,l,k) 
                    diflw=cmxsdfcm(m,lw,k) 
                    difln=cmxsdfcm(m,ln,k) 
                    diflb=cmxsdfcm(m,l,kb) 
                    IF(hcmxiw.EQ.0) THEN 
                      dfwcm(m,l,k)=0 
                    ELSE 
                      
dfwcm(m,l,k)=2.0_rvp*difl*diflw/(difl*hcmxiw+diflw*hcmxi) 
                    END IF 
                    
dfncm(m,l,k)=2.0_rvp*difl*difln/(difl*hcmyjn+difln*hcmyj) 
                    dfncm(m,l,k)=dfncm(m,l,k)/centerxcm(i) 
                    diflz=cmxsdzcm(m,l,k) 
                    diflzb=cmxsdzcm(m,l,kb) 
                    
dfbcm(m,l,k)=2.0_rvp*diflz*diflzb/(diflz*hcmzkb+diflzb*hcmzk) 
                 END DO 
              END DO 
           END DO 
        END DO 
!          incorporate external boundary conditions 
!---------------------x/r - direction 
        DO ib = 1, 2 
           DO k = ncmzs, ncmze 
              DO j = 1, ncmy 
                 IF(ibcx(ib) .EQ. 0) THEN 
                   albf = zero 
                 ELSE IF(ibcx(ib) .EQ. 1) THEN 
                   albf = big 
                 ELSE IF(ibcx(ib) .EQ. 2) THEN 
                   albf = half 
                 END IF 
                 IF(ib.EQ.1) THEN 
                   i = ncmxs(j) 
                   ie = ncmxs(j) 
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                 ELSE 
                   i = ncmxe(j) 
                   ie = i + 1 
                 END IF 
                 hcmxi = hcmx(i) 
                 l = nodelcm(i,j)   
                 le = nodelcm(ie,j) 
                 DO m = 1, ng 
                    dfwcm(m,le,k)=bcf(cmxsdfcm(m,l,k),albf,hcmxi) 
                 END DO 
                 IF(ib.EQ.1 .AND. r_inner.EQ.zero) THEN 
                   DO m = 1, ng 
                      dfwcm(m,le,k)=zero 
                   END DO              
                 END IF 
              END DO 
           END DO 
        END DO 
!--------------------y/theta direction 
        DO ib = 1, 2 
           DO k = ncmzs, ncmze 
              DO i = ncmxs(1), ncmxe(1) 
                 IF(ibcy(ib).EQ.0) THEN 
                    albf = zero 
                 ELSE IF(ibcy(ib) .EQ. 1) THEN 
                    albf = big 
                 ELSE IF(ibcy(ib) .EQ. 2) THEN 
                    albf = half 
                 END IF 
                 IF(ib.EQ.1) THEN 
                    j = ncmys(i) 
                    js = ncmys(i) 
                    jp = ncmye(i) 
                 ELSE 
                    j = ncmye(i) 
                    js = j + 1 
                    jp = ncmys(i) 
                 END IF 
                 hcmyj = hcmy(j) 
                 hcmyj = hcmyj * centerxcm(i) 
                 hcmyjn = hcmy(jp) * centerxcm(i) 
                 l = nodelcm(i,j)   
                 ls = nodelcm(i,js) 
                 lp = nodelcm(i,jp) 
                 IF(ibcy(ib) == 3) THEN 
                    DO m = 1, ng 
                       difl=cmxsdfcm(m,l,k) 
                       difln=cmxsdfcm(m,lp,k) 
                       
dfnpcm(m,lp,k)=2.0_rvp*difl*difln/(difl*hcmyjn+difln*hcmyj) 
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                       dfncm(m,ls,k) = zero 
                    END DO 
                 ELSE 
                    DO m = 1, ng 
                       dfncm(m,ls,k) = 
bcf(cmxsdfcm(m,l,k),albf,hcmyj) 
                    END DO 
                 END IF 
              END DO 
           END DO 
        END DO 
!----------------- z-direction 
        DO ib = 1, 2 
           IF(ibcz(ib).EQ.0) THEN 
              albf = zero 
           ELSE IF(ibcz(ib) .EQ. 1) THEN 
              albf = big 
           ELSE IF(ibcz(ib) .EQ. 2) THEN 
              albf = half 
           END IF 
           IF(ib.EQ.1) THEN 
              k = ncmzs 
              kt = ncmzs 
           ELSE 
              k = ncmze 
              kt = k + 1 
           END IF 
           hcmzk = hcmz(k) 
           DO l = 1, ncmxy 
              DO m = 1, ng 
                 dfbcm(m,l,kt)=bcf(cmxsdzcm(m,l,k),albf,hcmzk) 
              END DO 
           END DO 
        END DO         
                      
 
       
!calculate fm currents 
        DO k=nzs, nze 
           kt=k+1 
           hzk=hz(k) 
           DO j=1,ny 
              hyj=hy(j) 
              hyz=hzk*hyj 
              js=j+1 
              DO i=nxs(j), nxe(j) 
                 hxi=hx(i) 
                 hyzL=(centerx(i)-hx(i)/2.0_rvp)*hyz 
                 hyzR=(centerx(i)+hx(i)/2.0_rvp)*hyz 
                 hxy=hxi*hyj 
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                 hxy=hxy*centerx(i) 
                 hxz=hxi*hzk 
                 l=nodel(i,j) 
                 le=nodel(i+1,j) 
                 ls=nodel(i,js) 
                 DO m=1,ng 
                    accw(m,l,k)=dfw(m,l,k)*hyzL 
                    accn(m,l,k)=dfn(m,l,k)*hxz 
                    accb(m,l,k)=dfb(m,l,k)*hxy 
                    acce(m,l,k)=dfw(m,le,k)*hyzR 
                    accs(m,l,k)=dfn(m,ls,k)*hxz 
                    acct(m,l,k)=dfb(m,l,kt)*hxy 
                    accbbb(m,l,k)=dnb(m,l,k)*hxy 
                    acctbb(m,l,k)=dnb(m,l,kt)*hxy 
                 END DO 
              END DO 
           END DO 
        END DO                     
 
        jw=zero 
        je=zero 
        jn=zero 
        jss=zero 
        jb=zero 
        jt=zero 
        kbot=nzs 
        ktop=nze 
        DO k=kbot, ktop 
           DO j=nys(1), nye(1) 
              i=nxs(j) 
              l=nodel(i,j) 
              lw=nodel(i-1,j) !lm 
              le=nodel(i+1,j) !lp 
              ibc=ibcx(1) 
              IF(ibc.EQ.0) THEN 
                jw(1,l,k)=zero 
                jw(2,l,k)=zero 
              ELSE IF(ibc.EQ.1 .OR. ibc.EQ.2) THEN 
                jw(1,l,k)=-(accw(1,l,k))*phi(1,l,k) 
                jw(2,l,k)=-(accw(2,l,k))*phi(2,l,k) 
              END IF 
              je(1,l,k)=acce(1,l,k)*(phi(1,l,k)-phi(1,le,k)) 
              je(2,l,k)=acce(2,l,k)*(phi(2,l,k)-phi(2,le,k)) 
 
              i=nxe(j) 
              l=nodel(i,j) 
              lw=nodel(i-1,j) 
              le=nodel(i+1,j) 
              ibc=ibcx(2) 
              IF(ibc.EQ.0) THEN 
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                je(1,l,k)=zero 
                je(2,l,k)=zero 
              ELSE IF(ibc.EQ.1 .OR. ibc.EQ.2) THEN 
                je(1,l,k)=acce(1,l,k)*phi(1,l,k) 
                je(2,l,k)=acce(2,l,k)*phi(2,l,k) 
              END IF 
              jw(1,l,k)=-accw(1,l,k)*(phi(1,l,k)-phi(1,lw,k)) 
              jw(2,l,k)=-accw(2,l,k)*(phi(2,l,k)-phi(2,lw,k)) 
 
              DO i=nxs(j)+1, nxe(j)-1 
                 l=nodel(i,j) 
                 lw=nodel(i-1,j) 
                 le=nodel(i+1,j) 
                 jw(1,l,k)=-accw(1,l,k)*(phi(1,l,k)-phi(1,lw,k)) 
                 jw(2,l,k)=-accw(2,l,k)*(phi(2,l,k)-phi(2,lw,k)) 
                 je(1,l,k)=acce(1,l,k)*(phi(1,l,k)-phi(1,le,k)) 
                 je(2,l,k)=acce(2,l,k)*(phi(2,l,k)-phi(2,le,k)) 
              END DO 
           END DO 
 
           DO i=nxs(1), nxe(1) 
              j=nys(i) 
              l=nodel(i,j) 
              ln=nodel(i,j-1) 
              ls=nodel(i,j+1) 
              ibc=ibcy(1) 
              IF(ibc.EQ.0) THEN 
                jn(1,l,k)=zero 
                jn(2,l,k)=zero 
              ELSE IF(ibc.EQ.1 .OR. ibc.EQ.2) THEN 
                jn(1,l,k)=-accn(1,l,k)*phi(1,l,k) 
                jn(2,l,k)=-accn(2,l,k)*phi(2,l,k) 
              END IF 
              IF(ny .GT. 1) THEN 
                jss(1,l,k)=accs(1,l,k)*(phi(1,l,k)-phi(1,ls,k)) 
                jss(2,l,k)=accs(2,l,k)*(phi(2,l,k)-phi(2,ls,k)) 
              END IF 
              j=nye(i) 
              l=nodel(i,j) 
              ls=nodel(i,j+1) 
              ln=nodel(i,j-1) 
              ibc=ibcy(2) 
              IF(ibc.EQ.0) THEN 
                jss(1,l,k)=zero 
                jss(2,l,k)=zero 
              ELSE IF(ibc.EQ.1 .OR. ibc.EQ.2) THEN 
                jss(1,l,k)=accs(1,l,k)*phi(1,l,k) 
                jss(2,l,k)=accs(2,l,k)*phi(2,l,k) 
              END IF 
              IF(ny .GT. 1) THEN 
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                jn(1,l,k)=-accn(1,l,k)*(phi(1,l,k)-phi(1,ln,k)) 
                jn(2,l,k)=-accn(2,l,k)*(phi(2,l,k)-phi(2,ln,k)) 
              END IF 
              DO j=nys(i)+1, nye(i)-1 
                 l=nodel(i,j) 
                 ln=nodel(i,j-1) 
                 ls=nodel(i,j+1) 
                 jn(1,l,k)=-accn(1,l,k)*(phi(1,l,k)-phi(1,ln,k)) 
                 jn(2,l,k)=-accn(2,l,k)*(phi(2,l,k)-phi(2,ln,k)) 
                 jss(1,l,k)=accs(1,l,k)*(phi(1,l,k)-phi(1,ls,k)) 
                 jss(2,l,k)=accs(2,l,k)*(phi(2,l,k)-phi(2,ls,k)) 
              END DO 
           END DO 
        END DO 
 
        k=nzs 
        kt=k+1 
        IF(ibcz(1).EQ.0) THEN 
          DO l=1,nxy 
             jb(1,l,k)=zero 
             jb(2,l,k)=zero 
          END DO 
        ELSE IF(ibcz(1).EQ.1 .OR. ibcz(1).EQ.2) THEN 
          DO l=1,nxy 
             jb(1,l,k)=-(accb(1,l,k)+accbbb(1,l,k))*phi(1,l,k) 
             jb(2,l,k)=-(accb(2,l,k)+accbbb(2,l,k))*phi(2,l,k) 
          END DO 
        END IF 
        DO l=1,nxy 
           jt(1,l,k)=acct(1,l,k)*(phi(1,l,k)-phi(1,l,kt)) - 
acctbb(1,l,k)*(phi(1,l,k)+phi(1,l,kt)) 
           jt(2,l,k)=acct(2,l,k)*(phi(2,l,k)-phi(2,l,kt)) - 
acctbb(2,l,k)*(phi(2,l,k)+phi(2,l,kt)) 
        END DO 
 
        kbeg=nzs+1 
        k=nze 
        kb=k-1 
        IF(ibcz(2).EQ.0) THEN 
          DO l=1,nxy 
             jt(1,l,k)=zero 
             jt(2,l,k)=zero 
          END DO 
        ELSE IF(ibcz(2).EQ.1 .OR. ibcz(2).EQ.2) THEN 
          DO l=1,nxy 
             jt(1,l,k)=(acct(1,l,k)-acctbb(1,l,k))*phi(1,l,k) 
             jt(2,l,k)=(acct(2,l,k)-acctbb(2,l,k))*phi(2,l,k) 
          END DO 
        END IF 
        DO l=1,nxy 
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           jb(1,l,k)=-accb(1,l,k)*(phi(1,l,k)-phi(1,l,kb)) - 
accbbb(1,l,k)*(phi(1,l,k)+phi(1,l,kb)) 
           jb(2,l,k)=-accb(2,l,k)*(phi(2,l,k)-phi(2,l,kb)) - 
accbbb(2,l,k)*(phi(2,l,k)+phi(2,l,kb)) 
        END DO 
 
        kend=nze-1 
        DO k=kbeg,kend 
           kb=k-1 
           kt=k+1 
           DO l=1, nxy 
              jb(1,l,k)=-accb(1,l,k)*(phi(1,l,k)-phi(1,l,kb)) - 
accbbb(1,l,k)*(phi(1,l,k)+phi(1,l,kb)) 
              jb(2,l,k)=-accb(2,l,k)*(phi(2,l,k)-phi(2,l,kb)) - 
accbbb(2,l,k)*(phi(2,l,k)+phi(2,l,kb)) 
              jt(1,l,k)=acct(1,l,k)*(phi(1,l,k)-phi(1,l,kt)) - 
acctbb(1,l,k)*(phi(1,l,k)+phi(1,l,kt)) 
              jt(2,l,k)=acct(2,l,k)*(phi(2,l,k)-phi(2,l,kt)) - 
acctbb(2,l,k)*(phi(2,l,k)+phi(2,l,kt)) 
           END DO 
        END DO 
 
        jwcm=zero 
        jecm=zero 
        jncm=zero 
        jscm=zero 
        jbcm=zero  
        jtcm=zero 
!z cm current 
        DO kcm = ncmzs, ncmze 
           kb = ktokmap(kcm) 
           kt = ktokmap(kcm+1)-1 
           IF(kcm.EQ.ncmze) kt=nze 
           DO j = 1, ny 
              jcm = jtojcm(j) 
              DO i = nxs(j), nxe(j) 
                 icm = itoicm(i) 
                 l = nodel(i,j) 
                 lcm = nodelcm(icm,jcm) 
                 DO m = 1, ng 
                    jbcm(m,lcm,kcm)=jbcm(m,lcm,kcm) + jb(m,l,kb) 
                    jtcm(m,lcm,kcm)=jtcm(m,lcm,kcm) + jt(m,l,kt) 
                 END DO 
              END DO 
           END DO 
        END DO 
!theta cm current 
        DO k = nzs, nze 
           kcm = ktokcm(k) 
           DO jcm = 1, ncmy 
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              j = jtojmap(jcm) 
              jp = jtojmap(jcm+1)-1 
              IF(j==1) jp=ncmy 
              IF(j==ncmy) jp=1 
              DO i = nxs(j), nxe(j) 
                 icm = itoicm(i) 
                 l = nodel(i,j) 
                 lp = nodel(i,jp) 
                 lcm = nodelcm(icm,jcm) 
                 DO m = 1, ng 
                    jncm(m,lcm,kcm)=jncm(m,lcm,kcm) + jn(m,l,k) 
                    jscm(m,lcm,kcm)=jscm(m,lcm,kcm) + jss(m,lp,k) 
                 END DO 
              END DO 
           END DO 
        END DO 
!r cm current 
        DO k = nzs, nze 
           kcm = ktokcm(k) 
           DO j = 1, ny 
              jcm = jtojcm(j) 
              DO icm = ncmxs(jcm), ncmxe(jcm) 
                 i = itoimap(icm)  
                 ii = itoimap(icm+1)-1 
                 IF(icm.EQ.ncmxe(jcm)) ii=nxe(1) 
                 l = nodel(i,j) 
                 le = nodel(ii,j) 
                 lcm = nodelcm(icm,jcm) 
                 DO m = 1, ng 
                    jwcm(m,lcm,kcm)=jwcm(m,lcm,kcm) + jw(m,l,k) 
                    jecm(m,lcm,kcm)=jecm(m,lcm,kcm) + je(m,le,k) 
                 END DO 
              END DO 
           END DO 
        END DO               
                     
!jwcm=zero 
!jecm=zero 
!jncm=zero 
!jscm=zero 
!jbcm=zero 
!jtcm=zero 
      
!define current correction coefficient 
        dhatw=zero 
        dhate=zero 
        dhatn=zero 
        dhats=zero 
        dhatb=zero 
        dhatt=zero 
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        dhatpn=zero 
        dhatps=zero 
        jpn=zero 
        jps=zero 
        DO k = ncmzs, ncmze 
           kb = k-1 
           kt = k+1 
    hcmzk = hcmz(k) 
    DO j = 1, ncmy 
       IF(j==1) jp=ncmy  !BC 
              IF(j==ncmy) jp=1  !BC 
              hcmyj = hcmy(j) 
              hcmyz = hcmyj * hcmzk 
       DO i = ncmxs(j), ncmxe(j) 
!                 IF(i == 1) THEN 
!                   hcmyzL = centerxcm(i) * hcmyz 
!                   hcmyzR = centerxcm(i) * hcmyz 
!                 ELSE 
                 hcmyzL = (centerxcm(i) - hcmx(i)/2.0_rvp) * hcmyz 
                 hcmyzR = (centerxcm(i) + hcmx(i)/2.0_rvp) * hcmyz 
!                 END IF 
                 hcmxi = hcmx(i) 
                 hcmxy = hcmxi * hcmyj 
                 hcmxy = hcmxy * centerxcm(i) 
                 hcmxz = hcmxi * hcmzk   
          l = nodelcm(i,j) 
                 lw = nodelcm(i-1,j) 
                 ln = nodelcm(i,j-1) 
          le = nodelcm(i+1,j)  
          ls = nodelcm(i,j+1)  
                 IF(j==1 .OR. j==ncmy) lp=nodelcm(i,jp) 
!                 IF(hcmyzL.EQ.0) hcmyzL=1 
!                 IF(hcmyzR.EQ.0) hcmyzR=1 
!                 IF(hcmxy.EQ.0)  hcmxy=1 
!                 IF(hcmxz.EQ.0)  hcmxz=1 
          DO m=1, ng 
                   IF(hcmyzL == zero) THEN 
                     jwcm(m,l,k) = zero 
                   ELSE 
                     jwcm(m,l,k)=jwcm(m,l,k)/hcmyzL 
                   END IF 
                   jecm(m,l,k)=jecm(m,l,k)/hcmyzR 
                   jncm(m,l,k)=jncm(m,l,k)/hcmxz 
                   jscm(m,l,k)=jscm(m,l,k)/hcmxz 
                   jbcm(m,l,k)=jbcm(m,l,k)/hcmxy 
                   jtcm(m,l,k)=jtcm(m,l,k)/hcmxy 
                   dhatw(m,l,k)=(-jwcm(m,l,k)-
(dfwcm(m,l,k)*(cmphicm(m,l,k)-cmphicm(m,lw,k))))/  & 
                                (cmphicm(m,l,k)+cmphicm(m,lw,k)) 
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                   dhatn(m,l,k)=(-jncm(m,l,k)-
(dfncm(m,l,k)*(cmphicm(m,l,k)-cmphicm(m,ln,k))))/  & 
                                (cmphicm(m,l,k)+cmphicm(m,ln,k)) 
                   dhatb(m,l,k)=(-jbcm(m,l,k)-
(dfbcm(m,l,k)*(cmphicm(m,l,k)-cmphicm(m,l,kb))))/  & 
                                (cmphicm(m,l,k)+cmphicm(m,l,kb)) 
                   dhate(m,l,k)=(-jecm(m,l,k)-
(dfwcm(m,le,k)*(cmphicm(m,le,k)-cmphicm(m,l,k))))/ &  
                                (cmphicm(m,le,k)+cmphicm(m,l,k)) 
                   dhats(m,l,k)=(-jscm(m,l,k)-
(dfncm(m,ls,k)*(cmphicm(m,ls,k)-cmphicm(m,l,k))))/ &  
                                (cmphicm(m,ls,k)+cmphicm(m,l,k)) 
                   dhatt(m,l,k)=(-jtcm(m,l,k)-
(dfbcm(m,l,kt)*(cmphicm(m,l,kt)-cmphicm(m,l,k))))/ &  
                                (cmphicm(m,l,kt)+cmphicm(m,l,k)) 
     IF(j==1) dhatpn(m,l,k)= & 
                                  (-jscm(m,lp,k)-
(dfnpcm(m,lp,k)*(cmphicm(m,l,k)-cmphicm(m,lp,k))))/  & 
                                  (cmphicm(m,l,k)+cmphicm(m,lp,k)) 
                   IF(j==ncmy) dhatps(m,l,k)= & 
                                  (-
jscm(m,lp,k)+(dfnpcm(m,lp,k)*(cmphicm(m,l,k)-cmphicm(m,lp,k))))/  
& 
                                  (cmphicm(m,l,k)+cmphicm(m,lp,k)) 
          END DO 
       END DO 
    END DO 
 END DO 
 
!       dhatn=zero 
!       dhats=zero 
!       dhate=zero 
!       dhatw=zero 
!       dhatt=zero 
!       dhatb=zero 
 
!define matrix coefficients for unknown coarse mesh fluxes 
!        IF(betapinit) THEN 
!          cmbetapcm=one 
!          betapinit=FALSE 
!        END IF 
        cmbetapcm=one !for ss the prompt neutron fraction is the 
same 
 
        DO k = ncmzs, ncmze 
           kt = k+1 
           hcmzk = hcmz(k) 
           DO j = 1, ncmy 
              hcmyj = hcmy(j) 
              hcmyz = hcmyj * hcmzk 
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              IF(j==1) jp=ncmy 
              IF(j==ncmy) jp=1 
              DO i = ncmxs(j), ncmxe(j) 
                 hcmyzL = (centerxcm(i) - hcmx(i)/2.0_rvp)*hcmyz 
                 hcmyzR = (centerxcm(i) + hcmx(i)/2.0_rvp)*hcmyz 
                 hcmxi = hcmx(i) 
                 hcmxy = hcmxi * hcmyj 
                 hcmxy = hcmxy * centerxcm(i) 
                 hcmxz = hcmxi * hcmzk 
                 l = nodelcm(i,j) !$$ 
                 le = nodelcm(i+1,j) !$$ 
                 ls = nodelcm(i,j+1) !$$ 
                 IF(j==1 .OR. j==ncmy) lp=nodelcm(i,jp) 
                 DO m =1, ng 
                    cmccw(m,l,k)=(-
dfwcm(m,l,k)+dhatw(m,l,k))*hcmyzL 
                    cmccn(m,l,k)=(-
dfncm(m,l,k)+dhatn(m,l,k))*hcmxz 
                    cmccb(m,l,k)=(-
dfbcm(m,l,k)+dhatb(m,l,k))*hcmxy 
                    cmcce(m,l,k)=(-dfwcm(m,le,k)-
dhate(m,l,k))*hcmyzR 
                    cmccs(m,l,k)=(-dfncm(m,ls,k)-
dhats(m,l,k))*hcmxz 
                    cmcct(m,l,k)=(-dfbcm(m,l,kt)-
dhatt(m,l,k))*hcmxy 
                    IF(j==1) cmccpn(m,l,k)=(-dfnpcm(m,lp,k)-
dhatpn(m,lp,k))*hcmxz 
                    IF(j==ncmy) cmccps(m,l,k)=(-dfnpcm(m,lp,k)-
dhatpn(m,lp,k))*hcmxz 
                    cmamcc(m,l,k)= 
(dfwcm(m,l,k)+dhatw(m,l,k))*hcmyzL & 
                                  
+(dfncm(m,l,k)+dhatn(m,l,k))*hcmxz & 
                                  
+(dfbcm(m,l,k)+dhatb(m,l,k))*hcmxy & 
                                  +(dfwcm(m,le,k)-
dhate(m,l,k))*hcmyzR & 
                                  +(dfncm(m,ls,k)-
dhats(m,l,k))*hcmxz & 
                                  +(dfbcm(m,l,kt)-
dhatt(m,l,k))*hcmxy  
                    IF(j==1 .OR. j==ncmy) 
cmamcc(m,l,k)=cmamcc(m,l,k) & 
                                  +(dfnpcm(m,lp,k)-
dhatpn(m,lp,k))*hcmxz 
                    
cmam(m,l,k)=cmamcc(m,l,k)+(cmxstfcm(m,l,k)+cmrvdeltcm(m,l,k))*volc
m(l,k) 
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                    cmafcm(m,l,k) = 
cmbetapcm(l,k)*cmxsnffcm(m,l,k)*volcm(l,k) 
                    cmpsicm(l,k) = cmpsicm(l,k) + 
cmafcm(m,l,k)*cmphicm(m,l,k) !calculate fission source 
                    DO m1 = 1, ng 
                       cmscatvcm(m,m1,l,k) = cmxscatcm(m,m1,l,k) * 
volcm(l,k) 
                    END DO 
                 END DO 
              END DO 
           END DO 
        END DO 
 
!zero out unnecessary boundary coupling coefficients 
        kb = ncmzs 
        kt = ncmze 
        DO l = 1, ncmxy 
           DO m = 1, ng 
              cmccb(m,l,kb) = zero 
              cmcct(m,l,kt) = zero 
           END DO 
        END DO 
        DO k = ncmzs, ncmze 
           DO i = ncmxs(1), ncmxe(1) 
              ln = nodelcm(i,ncmys(i))  
              ls = nodelcm(i,ncmye(i))  
              DO m = 1, ng 
                 cmccn(m,ln,k) = zero 
                 cmccs(m,ls,k) = zero 
              END DO 
           END DO 
           DO j = ncmys(1), ncmye(1) 
              lw = nodelcm(ncmxs(j),j)  
              le = nodelcm(ncmxe(j),j)  
              DO m = 1, ng 
                 cmccw(m,lw,k) = zero 
                 cmcce(m,le,k) = zero 
              END DO 
           END DO 
        END DO 
 
 
END SUBROUTINE cmfdaccel2 
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