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The conventional thesis deseribes some research or investigation
with its conclusions expressed in teelmical and learned language,
designed to convey information to the advanced scholar. In this thesis,
an attempt has been mesde to reverse the process; tensor analysis, a
subjeet ordinarily used for graduate material, is brought out of the

obscure and highly theoretical realm, and focused into elementary and
practical terms.

The subject matter has been presented in such & way that the
sophomore student in electrical engineering may appreciate the use=
fulness of this mathematical tool for solving network problems; the
ability of the student of sophomore level to grasp this subject was
tested durlng the last two weeks of the winter term and the first

week of spring term, 1943, at the Oregon State College School of Engie
neering with very encouraging results.

The engineer begins his mathematical study by accepting a mumber
system. Te ds its manipulations useful but needs something more
generalized to express physical laws which can be used for any number
of rumerical substitutions. Thus, algebra was accepted and a letter
stood for any number desired to fulfill the requirements of a speeific
case. A step upward was aclknowledged as the student passed from the
spe¢ific to the general in mathematioal lenguage.

Now a further generalization is proposed-=the step from alge=
braic analysis to tensor analysis, to be brought into the electrical
engineering curriculum during the latter part of the regular college
sophomore year. The class time required for a workeble understanding
of this mathemstical tool is estimated at from three to six term hours
of quarter-system length. The actual time required will be elarified
by further experimentation. :



. The introductory chapter discusses the place tensor analysis
should have in the mathematicsl training of the student in electrical
engineering. A brief history is included along with a few of the
needs for the replacement of ordinary algebraic processes. The results
of the teasching of two courses in the application of tensors to
electrical engineering sre discussed.

The manipulations of matrix algebra are explgined in the second
chapter along with the concept of the primitive or original cireuit.
In Chapter 3, Kirehhoff's laws are reviewed and a couparison made
with the mesh or connected impedance matrix and the results obtained
by application of Kirchhoff's voltage and current equations. The
significance of the components of this matrix are discussed in some detail.

The fundamental transformation tensor, or, more specifically, the
conmection matrix, "¢", which mathematically comnects the eireuit is
discussed in the following chapter; in Chapter 5, the impedance reduc~
tion formulas are derived and demonstrated.

With the beokground of tensor operations explained in the pre-
ceding chapters, the student is ready to use the primitive impedance
matrix for mathematieally carrying through mmtual impedance effeots
between coils of a networks. Finally, Chapter 7 presents e discussion
of the junctione-pair conecept Wwhich is important in the later study
of vacuunm tube eireuits and also finds application in particular types
of electrical circuits.
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PREFACE

The conventional thesis describes some research
or investigation with its conclusions expressed in
technical and learned language, designed to convey in-

- formation to the advanced scholar. In this thesis, an
attempt has been made to reverse the process; tensor
analysis, a subject ordinarily used for graduate material,
is brought out of the obscure and highly theoretical
realm, and focused into elementary and practicel terms.

The subject matter has been presented in such
a way that the sophomore student in electrical engi-
neering may appreciate the usefulness of this mathemati-
cal tool for solving network problems; the ability of
the student of sophomore level to grasp this subject
was tested during the last two weeks of the winter term
and the first week of spring term, 1943, at the Oregon
State College School of Engineering with very encourag-
ing results.

To Gabriel Kron of the General Electric Co. goes
the credit for trensforming the classical mathematical
study of tensor eanalysis into useful, engineering terms.
His books and articles were the only ones found which

deal directly with the subject matter described herein.
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INTRODUCTION TO THE
TENSOR ANALYSIS OF ELECTRICAL NETWORKS
CHAPTER I
INTRODUCTION

The science of engineering requires the man1; 
pulative tool of mathemetics for maximum output in
minimum time. For example, the calculation of the cost
of 15 electric motors at $18.50 apiece would be time-
consuming unless the manipulation of multiplication was
known. Also, through the algebra, equations can be de=-
veloped which satisfy any given set of numerical substi-
tutions for some electricel network. A combination of
the Laplace Transform and Heaviside's Operational calcu-
lus is expedient in dealing with electrical transients.

The engineer begins his mathematical study by
accepting a number system. He finds its manipulations
useful but needs something more generalized to express
physical laws which can be used for any number of nu-
merical substitutions. Thus, algebra was accepted and
a letter stood for any number desired. A step upward
was acknowledged as the student passed from the speci-
fic to the general in methematical language.

Now a further generalization is propoSed-—the

step from algebraic analysis to tensor analysis, to be



brought into the electrical engineering curriculum dur-
ing the latter part of the regular college sophomore year.

Before 1930, most books dealing with this subject
of tensor or spinor analysis were written by methemati-
cians; hence, the engineering world was unable to recog-
nize the significance of a very practical and useful
tool camouflaged under such titles as absolute differen-
tial calculus, differential geometry and topology. As
a matter of fact, the mathematical science of tensor
analysis dates back to 1869; but only recently its ap-
plications to engineering, as well as to other practical
sciences, have been discovered.

Perhaps the work of Ricei and Levi-Civita was
most instrumental in bringing tensor analysis to the
forefront. In 1916, Einstein contributed his ideas of
relativity to the new study which was about to define
its own dimensions. Subsequently, Euclidean geometry
no longer restricted the mathematical analysis of an
engineering problem. It is interesting to note that
much of the mathematics still in vogue is limited by
the three physical dimensions of space; tensor analysis
pulls itself out of this rut and uses as meny dimensions
as are needed to solve a given problem.

For the ordinary network problem, algebraic quan-



tities are assigned to each unknown and the solution
lies in a set of simultaneous equations. When these
become greater than three, the process becomes burden-
some and it is difficult to keep the substitutions in
mind. Also, the handling of electrical networks con-
taining mutual effects between coils by ordinary alge-
braic methods becomes quite a chore. All in all, there
is a demand at present for a shorter method of attack
for an electrical network other than the tedious and
lengthy processes involving ordinary algebraic notation.
In solving a given network, the basic theory
employed is often buried beneath a maze of algebraic
equations and substitutions. When the student completes
a rather complicated network problem, he may have the
answer but frequently has lost sight df the means by
which that solution was obtained. Thus, the mathematics
itself becomes the thing sought after rather than the
fundamental engineering concepts involved. Perhaps
one of the greatest needs in engineering education to-
day is that of inspiring creative thinking on the part
of the student. DBut how can this be done when the stu~-
dent must spend a great portion of his time trying to
menipulate an unwieldy conglomeration of algebraic

symbols which, in themselves, have little or no meaning



but simply supply a means to an end?

This brings up another need for a replacement of
ordinary algebraic notation and processes. Zach time a
problem in electrical engineering is undertaken, the
student must go back to the beginning and go through
the painful process of rebuilding the same algebraic
framework all over again. With the use of the trans-
formation tensor, it is possible to take a general net-
work and carry it through to the stage from which special
types of circuits may be evolved. Also the unknown
quantities desired may be transferred from one part of
the circuit to another by a simple matrix menipulation.
In this manner, the original processes need not be
repeated and that time previously spent in doing "setting
up" exercises may be consumed more profitably in in-
vestigating the possibilities of a given network.

Furthermore, tensor analysis provides a standard
mathematical approach for electrical problems where pre-
viously a variety of special attacks held sway. Now
it is possible to write the primitive quantities for
the most general network, the vacuum tube and the ro-
tating machine using the same mathematical concepts
in each case. The connected network, the vacuum tube

circuit and the generator supplying a load can all be



analyzed using the same theory of transformation. Also,
design characteristics can be investigated using the
common impedance reduction formulas and elemental posi-
tions of the active matrices may carry anything from a
simple number to a Heaviside representation of the unit
step.

The dual nature of electrical measurements and
physical phenomena becomes more apparent and useful as
the beginning student progresses in the applications of
tensor analysis. Since this is discussed in some detail
in Chepter 7 of this thesis, it will be mentioned here
only as a further advantage of tensor analysis.

Finally, tensor analysis lends itself to tre-
mendous future expansion. Gabriel Kron has pointed
out the versatility of this mathematics and has indi-
cated the similarity between the tensor equations used
in hydrodynemics, electrodynamics, optics and elasticity.
The following books are suggested for further study:

Kron, Gabriel. A Short Course in Tensor

Analysis for Electrical Engineers.
Ge E. Series. John Wiley & Sons, Inc.

1942, New York.

Kron, Gabriel. Tensor Analysis of Networks.



G. E. Series. John Wiley & Sons, Inc.

1939. New York.
There has been some rather colorful criticism in recent
years of the generalization of tensor theory; the begin-
ning student is urged to try it out for himself. I%
has been the experience of the autﬁor that it stimulates
1nvesfigation into phases of engineering which other-
wise might have been overlooked.

This thesis is written for the primary purpose
of proposing the use of a universal mathematical system
called tensor analysis in the engineering colleges as
a basic part of the undergraduate curriculum. It is
presented in a form which should be understandable %o
the college séphomore in electrical engineering who has
completed his basic course in physics and has become
acquainted with the fundamental electrical laws of Ohm
and Kirchhoff.

It is the belief of this author that tensor
analysis satisfies many of the needs pointed out. It
provides a systemetic method of writing simultaneous
equations by assigning components of geometric entities
to the coefficients involved. New symbols are introduced
by which & whole network can be drawn into one unit

or vector. Just as complex notation draws the real and



imaginery axes into one unit, so the matrix (the mathe-
matical tool of tensor analysis) unifies n-axes into

a single quantity. This will be more readily under-
stood as the student progresses in the study of tensor
analysis.

Only the most elementary consideration of tensor
analysis is covered in this thesis; however, a biblio-
graphy has been attached for further reference. Perhaps
a more suitable title for the material covered herein,
from a mathematical standpoint, might be "The Applica-
of Matrix Algebra to Electrical Networks,™" but the sub-
ject matter does provide an introduction to the use of
tensor theory.

A possible reaction from the beginning student
may be that the solutions of some of the simpler pro-
blems contained in this thesis could be worked more
quickly by the ordinary aigebraic methods. This is
probebly true in meny cases but the student will un-
doubtedly find it profitable to use the methdd pre-
scribed regardless of the simplicity of the problem
so that he may equip himself for later studies. The
initial steg of learning matrix algebra must be taken
more or less on faith, just as it was necessary for

the beginner to learn the manipulations of algebra



before he could apply it profitably.

Engineers and mathematicians must work hand in
hand for optimum results in the engineering field. 1In
grade school, the prospective engineer took up the study
of the number system and numbers were used in the mani-
pulations of arithmetic. Later in high school, he was
introduced to a shortcut called algebra, where letters
were used to designate numbers without particular regard
to their values; also, the axes of space and their re-
lationships to physical objects were investigated in
the study of geometry. Now a third step is suggested:
to take up the study of matrices so that equations may
be handled without regard to their particular sizes.
Just as algebra was used to organize the number system
and provide shortecuts, now tensor notatioh has been
developed for the purpose, among other things, of or-
ganizing the algebra into a more compact and useful
form.

Now the question may be asked: can an advanced
subject such as tensor analysis be absorbed by college
students to the point where it becomes of use in a rea-
sonable length of instructional time? In answer %o
this question, the results of the teaching of two courses

in the Department of Electrical Engineering at Oregon



First of all, a two-term course was given to
senior students involving four quarter-system term hours.
After the first term's work, the students were able to
apply transformation theory to complicated linear net-
works where mutual effects existed between coils. A4lso,
the impedance reduction formulas were applied to sim-
plify given networks, and the magnetic end dielectric
circuits were investigated using matrix notetion. Dur-
ing the second term, Heaviside's Operational calculus
in conjunction with the Laplace transform was introduced
and later used in metrices to study transient behavior
of series-parallel circuits; Campbell-Foster notation
supplemented this investigation. Then the junction=-pair
concept was studied and the students became acquainted
with the need for two approaches to the solution of net-
works (see Chapter 7). Finally, as an incentive for
further study, the tensor application to vacuum tubes
and vacuum-tube circuits was studied and those interested
commenced the more involved subject of rotating machinery.
The interest was evidenced by the fact that some students
wrote their reports on such subjects as transmission-
line regulation and synchronous machinery using the ten-
sor concepts, equations and manipulations.

Secondly, an experimental three-week course was
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given to sophomores in electrical engineering at the
same institution. The results appeared to be very
satisfactory. In the first place, much interest was
shown by the students themselves as evidenced by several
articles which appeared in school papers announcing the
course. The matrix operations were learned the first
week and at the end of four hours of computation, the

ma jority of the students could perform the basic mani-
pulations as outlined in Chapter 2 with ease. 1In the
second week, Kirchhoff's Laws and the transformation
tensor were introduced much in the same manner as is
done in Chapters 2 and 3 of this thesis. Finally, the
impedance reduction formulas and mutual effects were
studied during the last week. The students were
actually investigating networks using tensor analysis

at the end of this brief study period and meny were con-
tinuing work in this line.

Having observed the results of these courses,
this author believes that the sophomore student is
capable and willing to learn the applications of ten-
sor analysis to electrical networks. Furthermore, the
class time required for a workable understanding of
this mathematical tool is estimated at from three to

six term hours of quarterASystem length. Further ex-



X3
perimentation will clarify the time required.
The next chapter begins with a brief study of
matrix algebra from a prectical standpoint only.
It is necessary for the student to learn these meni-
pulations before continuing with the actual study

of tensor analysis.
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CHAPTER II
MATRIX ALGEBRA

l. Need for Matrix Algebra.

The study of tensor analysis hinges on the
system of matrix algebra. Before the student can
perform tensor operations, he must be familiar with

the fundamental manipulations of matrices.

2. Description of a Matrix.

A matrix,l in itself, has no definite signifi-
cance in a physical sense. It is a means by which a
desired result is obtained. Just as our number system
was devised to expedite value exchanges, the matrix is
now suggested to alleviate the burden of handling lengthy

algebraic equations.

3. Kinds of Matricess:

There are three types of matrices within the
scope of this text: (a) the O-matrix, (b) the l-matrix

and (¢) the 2-matrix.

lA matrix is defined in Elementary Matrices by
Frazer, Duncan and Collar thus: "Matrices are sets of
numbers or other elements which are arranged in rows
and columns as in a double entry table and which obey
certain rules of addition and multiplication."™ Cam-
bridge University Press. London. 1938.



The O-matrix has but one quantity involved and
is without dimensions. It may be illustrated by the

scalar, power, thus:

P=|36] watts. (1)

The l-matrix consists of a row arranged in the

following manner:
a b c d

The 2-matrix is arranged in the form of a rec-
tangle. The number of elements, or separate boxes, is
. determined by the product of the number of rows and the
number of columns. A special case of the 2-matrix is
the following square matrix which might represent the

impedance of a network:

zZ = ohms. (3)

‘The notation used here (that is, the symbols
a, b, ¢ and d labeling rows and columns) is called
direct notation and will be used in this text. Index

notation has many uses in later studies but will not

13
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be ineluded here.z

4., The Primitive Network.

This refers to the original eircuit which can be
represented by matrices. Consider the electrical net-

work shown in Fig. 1.

Z
Z) T @
- Z
> e
AT @ ST —
Figure 1

To analyze this circuit using tensor analysis,
each coil with its series generator is disconnected
from all others and studied individually. The result

of this dissection is shown in Fig. 2 and is called

] 2y a Jiataris I /242.
5.8l s
IZS‘:. 126;127:..

¢t 3
®t 3
8

Figure 2

the primitive network. This original network is the

ZSee Chapter 7, page 174, Tensor Analysis of
Networks by Gebriel Kron. G.E. Series. John Wiley &
Sons, Inc. New York. 1939.
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simplest network which can be formed from the given num-
ber of coils. Many different types of circuits could
be derived from it.

If there were no mutual effects between any of
the coils of the primitive network and only self-impe-
dance quantities existed, the primitive vector for Z

would be

N
[
g o o0 B MO
(]
N
S

All spaces in (4) that are blank represent zero values

of impedance. This type of matrix is called a "diagonal"
matrix, since all elements except those along the diago-
nal are zero, thus indicating that only self impedances
exist in the e¢ircuit to be connected. If mutual impe-
dances were present, it would be a simple matter to fill
these mutual elements as will be demonstrated in Chapter

6.
Perhaps this is the principal selling point of
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tensor analysis: it provides a standard system and

method of attack which can be used for practically all
types of network problems, regardless of their com-
plexities. By starting with the simple networks, the
correlation between past knowledge and future possibi-
lities can be established.

The currents flowing in each separate coil of
Fig. 2 may be written as components of the single vector,
I, thus:

X 2 3 4 5 6 7
I = il 12 13 14 15 16 117 amps. (5)

The voltage sources in series with each coil can

be combined into the single l-matrix thus:

30 2 3 4 5 6 4
E = ej|eg|ez|es]| 5| g | €7| Volts. (6)

If there were only one voltage impressed on the circuit
of Fig. 1, for example at the point of €1, the voltage
vector for this specific case would be:

1 2 S 4 5 6 *+%

E ;= |ep|Of O] O] O]O] O volts. (7)

Now it will be necessary to add, subtract, mul-
tiply and divide these matrices in order to accomplish

the results desired for a rigorous circuit analysis.
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5. Addition and Subtraction.

Addition and subtraction are performed in a
similar manner to that of complex numbers. Such opera-
tions can be performed only with matrices of the same
order; that is, with the same number of elements flanked
by identical notations.

The addition and subtraction of O-matrices (see
Art. 3) is simply the familiar operation performed on

ordinary scalar quantities thus:
3+ 2—-7+4=2.

Two l-matrices, however, are added or subtracted
by performing the operation on each component separately.

As an example, consider the two currents:

C

A B D
Il== 2| 4|-61| 3 amps. (8)
A B C D
12= 1] 8] 660 amps. (9)
Then
A B C D
Il+ IZ=|2+1 44+43]| -6+4+6 3+0
FOUAL RLN SEF
= r_g 71 0] 3 I amps. (10)

Also,
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A B c D
I, -I,=[2-1]4-5]-6-86]3-0
kB £ D
= I-_l 1]-12 %—] amps. (11)

Two-matrices are added by

adding components as

follows:
Gl o
=
Pl2|-4]| 6
4 -6 2 .
o . R
P3| 5] &
22 = 0] O0|=-2 (13)
R 9 8 "7 .
P < R
P|2+3 |=-4+5| 646
%ﬁ-zz= 1+0| 1+0 |~-2-—-2
4+9 |-6+8 )| 2-7
¥ 500 |
P| 5| 1|12
= 1]1]|-4 (14)
R|13 | 2| -5 .
Subtraction, obviously, is done by subtracting corres-

ponding components.
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6. Multiplication.
The order of the l- or 2-matrix is not as impor-

tant in this operation. A O-matrix, when multiplied
by another O-matrix, entails a simple arithmetical mul-
tiplication,

Multiplication of a O-matrix by a 1l- or 2-matrix
involves the multiplication of each component of the
dimensional matrix by the single quantity of the O-matrix.

An example is shown:

A R S SRS
al 3 3 al 6 2
{®) .* = (15)
bploOo| 6 p10j38] .

Multiplication of a l-matrix by another l-matrix
introduces what is called the arrow rule. These arrows
show the order in which successive components or elements
are multiplied. As an example, consider the multipli-
cation of current times voltage to obtain the scalar,A

- powere. Let

e ANl
3 (16)

~
»

2
I= [ig of o] . (17)

Then,
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e e G
P=E'I=[3]7]4a] -1|s
2| o
3|9
= 24+ 0+ 36 = [ (18)

Note the rule here: the first term of such a multipli-
cation is in the horizontal position while the second
is in the vertical position, giving a result which is

a O-matrix=--in this case, a scalar. This adjustment
must be made to make the arrow rule worke.

Another importent thing about notation in this
example is that the 1-2-3 axes drop out, the ones
coincident with the arrow. This is a general rule for
multiplication of matrices: those axes which are
coincident with the proper positions of the arrows
(these axes must always be the same) do not appear in
the final product.

As a further example, consider the multiplication

of a 2-matrix and a l-matrix

—_—D

8. b [ I
al 3| -1 2 al l
E=2"°*""1 =D59] 4 6 8 bl 3
c| 91 -101]0 38 [
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al| 3*1+=12+ 2.2 a 5}
= bl 4el+6¢2 +8¢2 = Db| 32 volts.(19)
¢c| 9¢1+-102+0.2 c|-11

Again the so-called dummy axes or "arrow" axes disappear
leaving only the single axis a-b=-¢ in the result. An

example of the multiplication of two 2-matrices is shown:

g N 4: o) q
al|l3|-1]2 all]| O
Z +C =Db|4]| 6 | 8 * B o 1
c|9]|-10] O c]l|~-1
&1 553
a 5] -3
= bll2 | -2 (20)

Corresponding components have been multiplied and the
products added according to the arrow rule. For example,

to obtain the element, (Z+C) ® in the product whose

ap’
value is (5), the (a) row of the first matrix, Z, is
multiplied by the (p) column of the second matrix, C,

in the order of the arrows:

(Z * Clap = (8)(1) + (-1)(0) + (2)(1) = 5.(21)

SIn the subscript notation, such as ap, the first
letter refers to the row and the second to the column.
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Similarly (Z ° C)bq could be solved thus:
(z - C)bq= (4)(0)+ (8)(1) +(8)(-1) = -2. (22)

7. Transpositione.

This operation involves the mechanical manipula-
tion of the positions of the components of a given

matrix. As an example, let

(23)

©

Il

20
ROk
|l |w]|o
HlHE | Qo

Now the transpose of C (written Ct) is, by de-
finition, an exchange of rows and columns. So the

transpose of the C in (23) is written

(24)

™
Q|lw| |+
| E] Ol
H| ] @l

8. Determinantse.

A brief review of determinants is necessary be-
fore division of matrices is possible.

A basic difference between a matrix and a deter-
minant is that a determinant represents just one num-

ber or scalar; whereas, a matrix stands for a set of



numbers or elements arranged in a definite order which

may geometrically portray some physical picture.

For example, the determinant,

3 2 1
6 4 &
0. % 1

represents the number, -6; it is evaluated thus:

(3)(4)(1) +(2)(3)(0) +(1)(6)(2)

- (0)(4)(1) - (2)(3)(3) - (1)(6)(2) = =6,

On the other hand, the matrix,

a b ¢
a| Zgg | Zgb | Zac
Z | Zpg| Zpp | Zpe
¢| Zea | Zeb | Zee

may represent the various impedances existing in an

’

(25)

(26)

(27)

electrical circuit where mutual impedances are present.

23

Perhaps another way of expressing the difference between

‘a determinant and a matrix is that a matrix has geome-

tric dimensions while a determinant has none.

9. Co-Factor.

This term must be explained before inverse cal-

culations can be made. Another term, the minor, will
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be introduced first, however. The minor of a quantity
is the value of the determinant formed from the matrix
determinant after the row and the column corresponding
to the element in question have been removed from the
matrix. An example may clarify this definition. In
the fbllowing matrix, it is desired to know the minor

of the AA element of value, 6:

(28)

b
> |o]| o=
o || olw
FAV I IS I ol K

To get the minor of this component, strike out the row

and column shown by the dotted lines:

A
A(-4-1-64--8
|
2]11]| 5 (29)

c%sz.

The value of the remaining determinant is:

5
= (2)(1) — (3)(5) = ~13. (30)
.8

So the minor of the AA element is =13 and cean be put in
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the new matrix in the corresponding position. The minors
of the other elements are calculated in a similar fashion

to give:

A B C

 acaant

Al=13 | -16 2

B|-24 | -20 18 (31)

c| -8 14 6 .

Now to get the co-factors, it is necessary to
ad just the signs of the minors just obtained in (31)

to fit the following pattern of unit multiplication:

===l rT

The signs of the various elements in (31) are changed
where necessary to give what is called the "adjoint"

matrix as follows:

24 |-20 | -18 - (33)
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10. Division.

Division by a O-matrix involves dividing each
component of the given matrix by the number of the O-
matrix. However, division by & 1= or 2-matrix is not
defined as such. Rather, the inverse of the divisor
is multiplied by the hatrix to be divided. For example,

a ramiliar division is written
i = (z2~1).(E). (34)

11l. Inverse Calculation.

There are two methods for calculating the inverse
of a matrix. Kron's method is outlined on page 29 of
his boock, "Tensor Analysis of Networks."® A refinement
of this method has the advantage of not requiring as
much determinant calculation as Kron's method. Also,
the steps are convenient for later calculations. It
will be presented here.

Suppose it is desired to calculate the value of
current, i, in (34). The following impedance matrix is

given:

450e Chapter I of Tensor Analysis of Networks
by Gabriel Kron. G.E. Series. John Wiley & Sons, Inc.
New York. 1939.
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(35)

N

I
Q W P
H|lo | &
o | i—'ﬂbd
o | oo

To meke the proper substitution, it is necessary to
take the inverse of the Z of (35). The steps are as
follows:

(1) Write Zy (called transpose of Z) by inter-

changing rows and columns (see Art. 7):

A B €
A[3]e |1
Z, = Bl 1|2 ]o0 (36)
cls|a|al.
(2) Write the adjoint® matrix of Z, which is

t
called M. ZEach component or element of M is calculated

by writing its co-factor (see Art. 9):

A B C
Al 8 -4 | -8
M = B|=22 7 24 (37)
C| -2 1 0 .

5For further investigation of the adjoint matrix,

refer to Elementary Matrices by Frazer, Duncan and Collar.
Cambridge Press. London. 1938.



(3) Calculate the determinant of Z by finding

the value of any diagonal term of the produect of M « 2

thus:
A B £ FINE
A 8 -4 -8 A] 3 1 8
M« Z2 = B| =22 7 24 * Bl 6 2 2
cl =2 15 0 cl 1l 0 4
A B C
A | 24-24-8 0 0
= =8
= B 0 -8 0 (38)
C 0 0Q|=-81].
Therefore,6
A = -8,

(4) Write the inverse matrix as the reciprocal

of the determinant times M thus:

oMl T Eiig
Al 8 = -8
-l MR Wes  GRISEE, s  SR E R (39)
A 8

28

6A check on the accuracy of calculations is pro-
vided by the resulting matrix of (38). If the diagonal
terms are all equal and all non-diagonal terms equal to
zero, the work is correct up to this point.
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CHAPTER III
THE NETWORK MATRIX

Chapter 1 dealt with the mathematical approach
to the subject of tensor enalysis. This, undoubtedly,
introduced many concepts which might be confusing if
no further steps were teken to show the tie between
past knowledge and this new study. Consequently, certain
laws familiar to the beginning electrical engineer will
be considered first; then their significance in tensor

notation will be illustrated.

1l2. Kirchhoff's Laws.

There are two important laws first stated by
Kirchhoff which are fundamental in electrical network
theory: (1) the algebraic’ sum of the curreﬁts flowing
into any point in a network is zero, and (2) the al-

gebraic7

sum of the produets of the current and resis-
tance8 in each of the conductors around any closed path
in a network is equal to the algebraie sum of the emfs.

An illustration of the use of these laws may be

7This term can be changed to vector sum when a.c.
values are used.

8This term can be changed to impedence when a.c.
is involved.
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Figure 3.

based on the circuit shown in Fig. 1 of Chapt. 2. It
is reproduced in Fig. 3 with Ip and Iq being the currents
flowing in the two assumed m.eshes.g Assumed directions
of current flow are shown by the straight arrows for
coil currents and circular arrows for mesh currents.
(See Art. 4).

Using Kirchhoff's first law, all currents flow-
ing into point (a) on the eircuit diagram of Fig. 3

must be equal to zero or,

I, $y Iq . (40)

s

where 14 is the current flow through 24.

Kirchoff's second law may be demonstrated by

9Although there is a generator in series with
each coil here, any other case might allow any of these
to be removed; then the corresponding voltage element
for the removed generator would be equal to zero.
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tracing the voltages around the P mesh shown by the

circular arrow labeled P in Fig. 3, thus:

e+ e2+ ezt e, = lep+ sz[p+ 251p+ Z4(Ip— Iq). (41)

A second equation is obtained by going around the Q
mesh but here it is necessary to watch the directions
of the voltages more carefully. Going around the &
mesh in a clockwise direction, starting at point (a),

gives

954- gte,-€, = ZSI + Z,7I 52 Zqu— Z4(I S 9 (42)

q q P q

The sign is minus on the last term since the direction

of Iq is opposite to that of I4 as originally assumed.

Now write the two simultaneous equations thus:
e+ egt+ ezt e, = (Zy+ Zo+ 2+ Z4)Ip - Z4(Iq). (43)

e7+ egt ey e, = -(24)IP+ (Z7+ Z6+ 25+ Z4)Iq. (44)

Ip and Iq are the Kirchhoff currents which can be solved

since there are two simultaneous equations involved.

13. Superposition Theory.

From the mathematical development presented in



32

Art. 12 and the circuit diagram of Fige. 3, it is pos~-
sible to postulate that the coil currents can be re-
presented by mesh currents for ordinary linear networks.
As shown in equation (40) and by the arrows in Fig. 3,
these mesh currents may not actually exist in all parts
of the eircuit. For instance, consider the actual cur-
rent flow through the impedance, Z,; its value is neither

I, or I_but is evaluated by a combination of the two.

P q

In other words, it is possible to consider a
portion of a circuit (a mesh) alone, forgetting the re-
mainder of the circuit for the time. The system of
tensor analysis enables the engineer to use this super-
position theory by beginning at the primitive network
which contains the basic, indivisible physical units
from which the network will be constructed. Just as
a chemist finds it convenient to break known sclutions
called compounds into their separate elements, the engi-
neer can attack a giveﬁ complex network more easily if

he breaks it up into simple components, forming the

‘primitive network.

l4., The Matrix Equation.

The basic matrix equation which follows Ohm's

law is
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et = gzv » 10,10 (45)

The dashes over the letters indicate that they represent
matrix quantities; but hereafter, the dash will be
omitted.

For example, the Kirchhoff equations for the cir-

cuit of Fig. 3,

--Loop P--
61 + 65+ 63 + 64 = (27 + Zp +Zg+ Z4)Ip - (Z4)Iq,
(486)
-=L0o0p Q=-
ep + €5 + €5 - e, = '(24)11) + (z7 + Zg t+ Zgt z4)qu )
; 47

can be written in the form of matrices as follows:

Pl 1 + €, + €2z + ©
atial 5 Tl ST, (48)
q| enp + €5 + e — €4

pl I
It = P (49)
: 4 Iq ’
P aq
P Zl+ Zg * Zs + Z4 -Z4_
g — (50)
| e ~Zy Zg + Zg + Zg t+ 74

OThese matrices are primed for reasons which
will be explained in Chapter 4. Briefly, they stand
for mesh quantities.
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Substitution in equation (45) of the quantities

in equations (48), (49) and (50) gives

S
P q
p| ejtegteste, =p L1t Dot ZgtZy -Z4 .p Ip
Q| eptegteg=e, qQ -2y Z7+26+25+Z4 q Iq
(51)

Multiply the right-hand side of equation (51) according
to the rules of multiplication in Chapter II and equate

b4 4

components on either side of the equation™" which gives

the resulting equations:

ep + gt ez te, = (2;+ 2y + 75+ Z4)Ip - (Z4)Iq,
(52)

37 <+ 86 = 65 =~ 34 = "(Z4)Ip . (Zv + Zs + Zs == Z4)Iqo
(53)

This compares the old method of writing algebraic equa-

tions with the new shortecut method of matrix notatione.

15. Meaning of Matrix Componentse.

Consider the network of Fige. 3 redrawn in Fig.
4 with switches (a) and (b) as shown. All the generators

have been gathered together into two large generators

llThis is similar to equating reals and imaginaries
in vector analysis.
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for each mesh so that

+e_+e_+ e (54)

%y "0 3 4’

eq = e7+ e6+ &g ~ €, (55)

e =

The arrows on the separate coils show the assumed direc=-
tions of the network current flowing in that particular
coil. The circular arrows show the assumed Kirchhoff
currents or mesh currents as to direction.

The impedance matrix has already been established

from the mesh standpoint thus:

D g
D |21+ Zg+ Zg + Z -Z
IR BT Ag T R 4 (56)

Now the establishment of the physical signifi-

cance of each of these components is desirable. The
Lo

Figure 4.

PP element, that is, the quantity, pr==(Zi+Zé+Zs+Z4),

represents the self-impedance around the P mesh. Nu-
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merically, it is equal to the sum of the voltage drops
around the P .mesh when unit current (or a current equal
to one ampere) is flowing from the generator, Ep. Dur-
ing this operation, switch (a) is closed and switeh (D)
left open in Fige. 4. The (qp) element in the left-hand,
lower corner, equal to (-24), is the voltage drop seen
by the Q mesh under these conditions. Note that the
sign is reversed since the assumed direction of Ip is

opposite to that of I, in the common path through Z4.

q
Now when the @ column is considered, switch (a)

is opened and switch (b) is closed. The qu element is

numerically equal to the voltage drop around the Q mesh
when unit current flows from the generator, Eq. The qu
element is the voltage drop seen by the P mesh when

this unit current flows in the Q mesh. It is called &
mutual-impedance component, the same name as that given

iz

to the Z The genera-

Qp element previously considered.
tor, Ep, may be considered as being shorted out in which
case the voltage appearing across the switch contacts at

(a) would be numerically equal to the mutual qu element.

l%Note that the two mutual elements have equal
values. This is typical of static bilinear networks
and can be used as a check on the arithmetic under these
conditions.



Another way of picturing the significance of the
separate elements is as follows: pr represents the
voltage drop around the P mesh when unit current is
supplied from Ep, with generator Eq being taken out of
the Q mesh thus leaving two open ends there. The open=-
circuit voltage appearing across these terminals in the

Q mesh is the numerical value of qu.

37
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CHAPTER IV
THE TRANSFORMATION TENSOR

The student has now seen a simple electrical net-

work handled in two ways. In Chapter 2, the primitive

Z for the network of Fig. 1 was written thus:

i S S 4 o 6 7
VA

&

Zg

(57)

o o » G v
N
™

Zg

7 Zn

This conforms with equation (4) and mathematically por-
trays the electrical properties of the isolated coils
of Fig. 2, Chapt. 2.

In Chapt. 3, equation (50) was written for the

same network but along different axes thus:

P g
P Zl+ Zz + Zs A= Z4 -Z4
s (58)
q -Z4 Z7+ ZG+ Z5+ Z4 s

Now the question is: 1if these matrices stand

for the impedances of the same network, how can they
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be derived from each other? Or, what intermediary matrix
or‘matrices must be introduced so that one can be ob-
teined from the other through manipulation rules out-

lined in Chapter 2%

16. Definition of a Tensor.

A tensor is a matrix,l3

subject to a definite law
of trensformation, which has axes that ordinarily methe-
matically portray a definite physical entity. This
transformation of axes is brought about mathematically

by means of the so-called "transformation matrix, C."

1l7. The Transformation Matrix, C.

The key for changing from one set of axes to
another is the connection matrix, C. This contains the
coefficients of the new variables in terms of the old,
or the "components of the transformation tensor along
the given reference frames."™ This C ordinarily con-

. tains either units or zeros since the elements represent
‘just the coefficients of the variables rather than the

variables themselves.14

13see Chapt. 2, Art. 2.
14The mathematical representation is:

JiX

Bl
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The transformation matrix is set up in terms of

the currents for most purposes. As an example, in the
network which has been considered thus far, the old cur-

rents or coil currents from the primitive network of

Fig. 2 were written:

1 2 3 4 S 6 7

The mesh currents of Art. 13, which might represent the

new currents, were determined by assuming two mesh cur-

rents in the matrix,

g
' = [1, 1?', (60)

Now it is possible to construct a set of equations

according to Kirchhoff's first law and the theory of
superposition (see Art. 13) by expressing the old cur-
rents in terms of the new (see Fig. 3):

0ld Currents New Currents

Il = I

g

b
(&
Il

I
I

(61)
I

laal
S
f
L= B - B o
e R - I -

H
3
[
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Figure 4.

After the student has constructed this set of equations,
the thought required to analyze such a network is com-
pleted--the rest is simply mechanical manipulation. ;It
is apparent that these equations could be developed with
ease from the most complicated type of ecircuit. TFor
practice, the student may make up a mesh eircuit like

that shown in Fig. 4. The table here would be:

0ld Currents New Currents

Il = Ia

I2 Ia

I — -I 4+ I

S a b

: 1 3 I oo
4 b c

I5 = Ic

16 = Ic + I(1
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This illustrates the importance of keeping signs straight

when writing the equations. With practice, the student »
will become accustomed to writing these coil currents

in terms of mesh currents. The direction assumed is not
important if one is certain to be consistent after these
initial assumptions have been made.

The trensformation matrix is simply constructed
by referring to the coefficients of the quantities in
the tables. For example, the C for the circuit of Fig.
3 from Table 61 is

P. 9
p ¥
2| 1
3|1
cC = (63)
4| 1]-1
5 1
6 3
7 i .

This matrix, in reality, is a shorthand form of the al-
gebraic equations written in (61).
The C for the circuit of Figure 4 can also be

constructed from the table of (62):
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> & B
2] 1
3|=1 %
C = (64)
4 i]-1
5] -1
6 -11 1
7 1 .

It is interesting to note that the primitive Z's for
these two circuits would be identicazl since both have
seven coils and no mutual impedances between coils

exist. Thus the distinction between the two circuits
in tensor notation is brought about by the different

connection matrices of (63) and (64).

18. Transformation Formulase.

The o0ld currents can now be written in terms

of the new by the following equation:
I =6€6++1Iv , (65)

To coordinate this relationship with the manipulations
of Chapt. 2, substitute the quantities of Art. 17 in

(65) and perform the multiplication:



O R Ay T D q
Sl bt ratachag] = 1l
2| 1
3| 1
W 5 s e

. i q Iq )
6| |1
7| |1

T e JORGR W mE Oh

” i | NN

(66)

Equating components just as reesls and unreals can be

equated in vector analysis:

H H H H
I
H o oH H A
- B - - B -

(67)

This checks table (61), thus verifying the process.

The o0ld coil voltages can also be written in

terms of the new mesh voltages by applying the following



e - Ct * e. (68)

Substituting the quantities of the illustrative exam-

ple:
L 8980 &6 6 %
pl 211} 3] 1 i e,
e' e [ ]
q -] L1 11 % 2 es
3 ez
5 65
6 66
71 e
7 \(
L P eI+ e2+ 33+ e4
&= volts, (69)
q en+ 66+ 85—64
or
ep= el+ 824- 85+34. (70)
eq= en+ ea-l- 35—64. (71)

This checks equations (54) and (55) of Chapt. 3, based
on Kirchhoff's laws.
Finelly, experimentation with the laws of mani-

pulation will reveal that

45
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% (72)

This is one of the most importent relationships of all
in changing from old quantities to néw. Primed quanti-
ties are always the new; unprimed, the old. Taking the
Z of equation (4), Art. 4 for the primitive network and

substituting it in (72),

1854 567 T ST GRU TR R R
Z;pllll .1%
q -1]1|1|1 2 22
3 Zg
4 z, e C
5 Zg
6 Zg
7 T ¢
38 B 4 5 -8 N pood
q =Z4|25|2g[2n| © 2[ 1
3] 1
412 1+1
5 3
6 1
” 1 Y
p g
- ‘ (73)
q -Z4 Z4+ 25+-Zﬁ+ Z? A

46

5See page 104, Tensor Analysis
Gabriel Kron. G.E. Series. John Wiley
1939. New York.

Networks by
Sons, Inc.

of
&



47
whieh checks the Z' of equatibn (50)

19. Summary.

So the three important equations for changing

from old to new quentities are:

I = ¢ I, (74)
e'=Ct-e i (75)
Bt= RUK v 6. | (76)

These should be memorized by the student. It is impor-
tant that the order be kept as shown for these equations.
They form the basis for nearly all calculations in ob-

taining circuit values in tensor analysis.
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CHAPTER V

IMPEDANCE REDUCTION FORMULAS

20, Elimination of lleshes.

The engineer is often interested in circuit va-
lues for only one part of a circuit without recard to
the remainder of the circuit. Also, the mathematician
may wish to obtain only ome or two unknowns from four,
five or more simultaneous equations. For one, two or
three simultaneous equations, algebra conveniently lends
itself for solution. But for more then three or four
equations, the algebra becomes burdensome. The student
in electrical engineering may wish to select two or
three unknowns from six or seven simultaneous voltage
equations without having to handle the whole group twice.

Métrix algebra provides the impedance reduction
formulas which allow the student to eliminate certain
meshes or other circuit axes by combining their effects
on the retained meshes or elements, without disturbing
the accuracy of the calculations. MNMathematically, it
is possible to solve for any unknowns desired without
going through the extensive work'required by ordinary

algebraic processes.
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2l. Impedance Reduction Formulas.

Thus far, two sets of axes have been described

in this treatise:

Xy By (primitive or original network) (77)

et, I', Z2*, (the mesh or connected network). (78)

Now a third set of quantities can be added which describe
axes of the meshes.retained after the effect of those
eliminated has been accounted for through the impedance

reduction formula stated in (80):
e", I", z", (79)

In Chapt. 4, equations (74), (75) and (76) made
it possible to transform the quantities of (77) into
those of (78). Now it is possible to write the quanti-
ties of (79) in terms of those of (78) thus meking a
further transformation. This is done by application

of the impedance reduction,

" = t B 3 t"'l [
Z zl 2y 2,7 2y o (80)

The corresponding voltage reduction formula

which will prove useful is:

v ZX AT e (81)

]
ot g4 %

e" =



The quantity, I", is initially assumed.
The derivationl® of equations (80) and (81)

is obtained by taking the equation,
e = Z - 1, (82)

and making the arbitrary substitution%7

—_—
@ Z Z i £
e o : i % 1 (83)
Byl Zg | 24 I .

The axes are unlabeled. Assume that the current, Iz,
and the impressed voltage, €y, are the quantities in
the mesh to be eliminated. ZEquation (83) is written

algebraically

€p= 2z I; + Zy I (85)

To eliminate I, from (85),

ISR Yol PR A TRy (86)

50

Kron. General Electric Series. John Wiley & Sons, Inc.

New York. 1942. DPages 15-16.

l7The primes are omitted in this derivation for
reasons of convenience.



Substituting (86) into (84),

o
1= 24 ;v 2,2, (eg-251, ),

% % b . -1
Z) I, v 2,27 6, - L, %, Zg I

o
[

l’

o =1 -1
Zo 2, et | Z) - 25 2, Ig ) I, (87)
from which
0. - 2.7 e, = (2 -2.27Y 32 )1 (88)
1 | e il 1 24 7B U

Adopting the proper primes for mesh quantities (see

footnote (17)), (88) can be written

= (2t -z 2"tz ) L (ee)

hx
- 7t 7t t
2 %y 0 - Tl Ko W BLEL

*
BE'T0g By Ry
This can be represented by the new axes thus:

g" = Eate TER i (90)

where I"™ is the retained current, in this case, Ii,

Then,
& ) -1
z" 2] - 25 2,7 23, (e1)
and
-1
"M = Pe == ] L] ]
e el Z2 Z4 ey - (92)

Some of the uses of equations (91) and (92), called im-

pedance and voltage reduction formulas respectively,

51
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will now be demonstrated.

22. Solving Ordinary Simultaneous Equations.

Suppose four simultaneous equations are given

which are representative of some network, and it is

desired to find only the unknown current, 11. The
equations follow:
31, + iy - 2ig + 41, = 15, (93)
-il - 512+ 315 - 14 - .l (94)
gi, + 21, - i, - 21, = -5, (95)
4i; + 1gp+4ig + 31y = 30. (96)

These equations can be written in matrix form to con-

form with the basic equation, E* = 2Z' I', thus:
3 3 ope. By .4t 5 2
€ =]l15]| -2 | -5 | 30 = |9 |®g} (97)
x 21 3! 4! X 2
20 P2 he ks %% = | 85 1 &gk (98)
3’ 3* 3 4!
1l 3 1| -2
3 1 2
' -1 -3 () -1 1|2 Z
7t = e 1] 2 (99)
3 2 2 -1 -2 2 25 Z4
4% 4 1 4 3

This introduces a new concept--that of compound matrices, -~

which is a matrix within & matrix. As an example, Z°'
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is shown divided into four sections in (99) and then re-

labeled. For the elements of the second matrix in (99):

l'
z, = 1'|3]| , (100)
2! 3’ 4!
Z,= 1'| 1]|-8] 4] , (101)
l'
2t|=1
Za= 3*'| 2 (102)
4'| ¢ |,
g 3 4
2'|l-3 | 3[-1
Z,= 8'| 2 |-1|~8 (103)
12 2% Bl s

Now it is possible to use (100), (101), (102) end (103)
for substitution in equation (91) to solve for Z":
—eip
A S 4 R B 4°

zn = 1'[8]- 1[1]-2] 4] - 2*[ 5]-18]-7 ] |,=1y.,
s'[-8|- e|-8 || 48 “°

4*'| 9| 15]-3 (104)
Fepr——
i 2t 5' 4 1
= 1'3]| - 1'|57|63]|-3 (-_l.) e2'|=-1
48 i
3 2 (1085)
4] 4




1! 1t in
=_L1 .|1[124 | +157 || = 1 [201 (106)
48 28| -

Then e" can be calculated by substitutingl8 the quanti-

ties of (97) and (99) in (92):

_—
3 Bt 52 4
e" = [15] - 1Y 57[e3]|-3| .2'|-2[| (=1) (107)
. 48
3'|-5
4'|30
3! 2!
3 4 1e
= =& |[20] - [519)| = [201 (109)
48],

With the values of both e"™ and Z" known, it is possible

to solve for the required current, il:
i"= i = e" = zn=Ll. gn
3 VAl
—
l"
= 1"| 48 |. 1"| 201} = 1" |1] . (110)
201 48
e il = lo (lll)

54

leIt is_desireble to retein the value of the pro-

duct of Z! z2'"L1 from impedance reduction calculations
for use heéere.
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If it were desired to obtain the values of two
of the unknown currents, the Zl of (99) would have been
a 4-element 2-matrix. The result, then, would contain
two simultaneous equations which could have been readily
solved. Sets of simultaneous equations can be broken
up by steps using these compound matrices and reduction
formulas; there is no longer a practical limitation
to the number of simultaneous equations which can be

solved in a systematic manner.

23. Calculation of Network Impedances Between Terminals.

Suppose it is necessary to know the impedance of

the network shown in Fig. 5; that is, the impedance which

45& ¢ Aj& would be measured by
P i ) 5 & impedance bridge
T between points A and
Ie\r i Aj\ B with the generator
Zy{gi} £ open circuited.
Figure 5.

Resistance values are

given for the impe-
dances, but complex quantities could be used if desired.
Furthermore, each element of the network might be matrix
in character.

The first step in tensor analysis of a problem

of this kind is to assume current directions in the in-



dividual coils.
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This can be done by laying out the pri-

mitive network as demonstrated previously or by redraw-

A VA
® = ®
i B
£ TN
&/
Figure 6.

ing the circuit with
arrows showing these
assumed directions.
The straight arrows
in Fig. 6, then, re-
present the positive

direction of current

flow in the individual coils as assumed before the cir-

cuit was connected.

After connection, the new mesh cur-

rents are indicated by the circular arrows--the meshes

being labeled p, q and r.

Assuming the existence of

no mutual effects between coils, the primitive z is

g & b c d 4
gl O
a 2
Z =D 4 ohms. (112)
c 6
a 3
f »

The connection matrix, C, which matches the old coil

currents with the new mesh currents, by inspection is
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p 49 r
g 1
el 1
C == : 3 (113)
el 1 |-1
d|-1 i
f -1 1 .

The impedance metrix, Z', can now be calculated from

equation (72):

7V = o« 7o
Z Ct Z+C

g & » o 4 £ g a'db e A t
0

o) 1 1l|=-1 g
= 4 1l|-1 -1 |°a 2
oC
zll rl1¥ln 4
¢ 6
d 3
. l\r
g a8 b ¢ g_;f_ pog P
plol2]of 6]|=3] 0 g  §
=q|0]|]0|4|-6| O|-1]| e« &1
rl0]0]0] 0] 3]1 b 1
qlj-1
d-1 1
4 [-1] 1]y
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Z=q| -6 | 11 | -1 | ohms. (114)

This is the new mesh Z' which represents the impedances
along the mesh axes. As the student becomes familiar
with these concepts, he will .be able to write out the
Z' for a simple network such as this by inspection.

For example, the value of pr is the sum of the resis-
tance values around the P circuit. qu is the drop
seen by the Q mesh when unit cecurrent flows in the P

mesh; since I_ is reversed in respect to Ip in that

q
C-leg, the sign must be minus, hence =-6. The R mesh
sees & drop of 3 volts in the opposite direction to Ir’
so the er element is =3. The other elements could be
written from inspection in a similar fashion.

Now to get the equivalent resistance of the cir-

cuit as seen by the generator, eS; that is, to get the

L value of R by which the

network of Fig. 5 may be

replaced (see Fig. 7),

® (33

apply the impedance reduc-

Figure 7.
tion formula (91) and

eliminate the P and § meshes.



So the mesh Z of (114) may be subdivided as follows: 19

P q T
pl 11 -6 -3 % 24 Z5
Z = q| -6 331 -1 Zg Zl : (115)
r| =3 -1 4

The student will note the rearrengement of subscripts

to suit the equation (83); this illustrates the freedom

of shifting indices as long as the relative order remains

unchanged.

Substitution in (91) gives:

[
E
i
N

VAL 3 5 2, 23
e e
r RO P__4q
JAN
a| 6|11
where
A = (11) (11) - (-6) (-6) = 85. (118)

lgAnother way to hendle this Z-matrix would be

to rearrange rows and columns thus:

r g
T R 5| %
3 = qia bl ] oz ] g (116)

pl-3 | -6 | 11




I D g r
z" = r| 4| - r|-89 |-29| .p|-3|[_1
85
q|-1
h o]
= r| 4| - rhlrae| = 4 - 1.72
85

= 2.28 ohms. (119)

The solution retains only the R mesh as the other two
meshes drop out in the multiplication. Thus, by this
mechanical process, ordinary delta-wye transformations

are carried out.

24, Esteblishing Equivalent Voltages.

The problem of Art. 23 illustrates how an impe=-

dance network may be replaced by a single impedance.

|
|
|
J)

321.

Figure 8. Figure 9.

However, it does not illustrate how voltages of a
network may be replaced by a single voltage. Consider

the circuit shown in Figure 8. Here there are three

60
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generators in parallel supplying a load, Z The

e
dotted line boxes in these power sources and Fig. 9
shows the equivalent circuit after the three generators
have been replaced by one.

The procedure followed in Article 23 would give
the value of Z" in Fig. 9. The P and Q meshes could be
eliminated, leaving only the R mesh. The impedance

around this mesh would equal the sum of Z" and Z the

L?
former being the required impedance.

To get the equivalent voltage, it is necessary
first of all to express the voltage in terms of the
P, Q and R meshes thus:

P 9 r - 2

e Gp eq Gr — el e

9 yr {180}

where the mesh voltages are obtained by (75). Then by
applying equation (92), the resulting e" may be obtained.
It is interesting to consider that ZL might also represent
some complicated network which has been replaced by a

single impedance.

25. Delte-Wye Transformations.

It can be shown that the impedance reduction
formulas perform the operation of transforming a given

network from a delta combination to a wye combination.



62

For example, consider the two three-phase circuits
in Fig. 10: circuit (a) has a balanced delta-connected
load and circuit (b) shows the equivalent wye-connected
load which eould replace that of (a) without changing
the power consumed. The voltage sources in each case are

identical.

Za

(D=
@ X

9
N
N

O

Circuit (b)
Figure 10.

The mesh impedance tensor for circuit (a) is

by inspection:



) 9 r

p| 24 0 ~Zg

Zlg)= 19| © 2y, =2y,
r|=Zg | =%y |2gt Zpt Zg

(121)

Now the R mesh may be eliminated from circuit (a) by

applying the impedance reduction formula,

" = Z! - 2 LT 2L,

14
1 2 4 )

(1220

D g r r P
Lo P Za O |- p|=2 oI " ; > .r[:%a
Qo 2, 9f-2 s R :
P g
2
| 2, - . ~ZgZyp
g Za+ Zb+ Zc Zd+ Zb+ Zc
- 2
q ~Zplg Zb - Zb
Zg¥ Zo+ Zg 2+ 2+ %,

(123)

By inspection, the mesh impedance tensor for

eircuit (b) can be written thus:

p' g’
7! = i ) B
(v)

(124)
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Since the power is invariant in the two circuits,
the impedances looking along the same axes must be equal.

Therefore, it is possible to equate the 2 element of

PP
(123) with the Zp'p' element of (124):
ZZ
2. +%. =24 % a se (125)
ik 2 a
Za+ Zb+-Zc

Equating the 2 element with the Z element:
ap q'p!

- G ~Zyp2g . (126)
Zg+ 2yt 2,
Then by substituting (126) into (125):
&y T e ; (127)
Lot 2t 2,

- which is the formula for changing from delta to wye.

Also it can be found that

By = ZaZp i (128)
Zg+ Zp+ Zg
Z3 = ZhZQ ’ (129)

Zo+ Zp+ Zg
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26. Solution of Three-Phase Unbalanced Wye Loads.

The derivation of the formule which gives the
voltage drop across a phase of an unbalanced three-
phase wye load is possible with the use of the tensor
analysis developed thus far. Consider the three-phase

circuit shown in

l ‘ Z, Fig. 11. Assume
Z;
2 t the impedances
T tha D
» are given and are
(& Z
not necessarily

equal in either

! phase angle or mag-

nitude. The vol-

& tages as given,

Ea and Eb, may

not be in terms of

what the student

Figure 12.

is accustomed to.
For clarity, Figure 12 gives the usual three-phase
voltages employed. The voltages of Figure 1l can be
written in terms of those in Figure 12 by inspection

as follows:

E = E | (130)
(131)

=2
|

i R :
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-E, - B = Eg_; ’ (132)

Eg + By = B g | - (138)

Assuming meshes A and B as shown in Fig. 11,

the connected Z*' can be written from inspection as follows:

a b
al 21+ 2 -7
7' = ct-z-c = L., 2 (134)

Since it is desired to find the voltage drop across a
phase of the load (for instance, el), the line current
flowing into that phase is of importance. This line

current is mesh current Ia’ and is found by teking the

inverse of (134) thus:

a b

a Zz+ ZS Z2 1

¥Y=2 = . (135)
LG TR PR B R T T

The voltages,

a b

S O R O

(136)

are also known. Zguations (135) and (1%6) are combined

to give the current equation,

I = YE, (137)
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from which

I =  BglZp+ Zg) +EyZy (138)
%, By + By %+ Dg Bg

But

S ¥ arig Zl e Ea(22+ Zs)?cl'i- Eb22zl . (139)
Z1Z2+ ZlZS+'Z2Z3

This is the voltage drop across Zl in terms of known
voltages and impedances. Replacing each impedance with

its admittance (Z=§l[-), and simplifying:

el_.
Yl+ Y2+ Y3

i (140)

Writing the voltages of (136) in terms of those used in
Fig. 12, employing equations (130), (131) and (133),

Ei_oYo+ Eq_2Y
el= 1=2°2 1=-3-3 2 (141)
Yl+ Y2+-Y3

This is the equatibn for the voltage drop across Zl in
ierms of given values of voltage and admittance.

With these reduction.formulas, complicated networks
can be simplified into their simplest form. As the stu-

dent works. sample problems using (91) and (92), he will

become aware of the tremendous power of this new tool.
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CHAPTER VI

MUTUAL EFFECTS

27. Omnipresence of lMutual Effects.

The physicist ordinarily analyses a single
element or physical entity as it exists in space alone.
He makes his investigations on the basis of the element
itself and attributes its behavior to certain inherent
peculiarities.

The engineer, then, must take these findings of
the physicist concerning the theory of ihe element it~
self and proceed with his work--that of analysing the
results of physical connection of a number of these com-
ponents. Thus mutual effects gain considerable impor-
tance--their éffects being determined by proximity of
the various entities and the nature of the medium sepa-
rating them.

In network theory, mutuval effects exist when two
independent circuits or electrical elements are in pro-
ximity to each other such that a change in the current
or voltage of the first will cause an induced voltage
or current, respectively, in the second. It is obvious
that mutual effects exist between all elements in the

universe, but only under special conditions are these

worthy of investigation.
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28. Balanced and Unbalanced Nutual Effects.

In the stationary cireuit containing resistance,
inductance and capacitance--the so-called static bilateral
network--the mutual impedance between any two coils is
the same regardless of whether it is taken from the first
to the second coil, or from the second to the first.
Thus, the primitive impedance tensor would be symmetri-
cal in respect to the diagonal terms. A current in the
first coil will induce an emf. in the second ecil of
the same magnitude as that induced in the first coil
when & similar current appears in the second coil.
Balanced mutual effects exist in practically all sta-
tionary, electrical networks which do not contain vacuum
tubes or moving elements.

Unbalanced mutual effects between coils exist in
electrical equipment where the relative positions of the
coils change with respect to time. Rotating machinery
is a notable example of unbalanced mutual impedances be-
tween coils since there is mechanical motion in the genera-
tion of emf. As a further example, vacuum-tube, mutual
admittances between elements are unequal because of the
movement of electrical charges. Copper-oxide circuits
and crystel detectors are also examples of circuits hav-

ing unbalanced mutual impedances or admittances.
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29. Representation of Mutual Effects.

The ebsolute value of a mutual effect between
two coils can be determined with a voltmeter and an
ammeter, If direction is also desired, a wattmeter
may be added.

In Fig. 13, there are two coils which are assumed

to be wound on the same magnetic structure. If these

coi/ (1) coils had no mutual effects
VT
between them (such as the ones
coil (z)
T studied thus far), the primi-
Figure 13. tive impedance matrix would
be:
5 4 2
1] 2
% 1 (142)
2 22 ¢

But since mutual effects are present, it is necessary

to make a new set of measurements. In Fig. 14, the

(i) SﬁdV (E)“ circuit for measuring the

coil () magnitude of the 221 element
YOO
is shown. With the a-c
coi/ (2)
<g> voltage source across coil
Figure 14. (1), the rheostat in series

is cut out until the ammeter,

I, records one ampere. Then the reading of the volt-
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meter, E, is the value which can be placed directly in
the Zzl element position in (142). The sign before this
mutual impedance may be either plus or minus; this can :
be determined by inserting a wattmeter with its current
coil in the coil (1) circuit and its voltmeter coil in
the coil (2) circuit. The wattmeter is connected so
that it should read positive for the directions which
have been assumed at the beginning, that is, the senses
of voltages in the primitive circuit. Then if the meter
reads negative, the sign before the mutual impedances
will be negative; if positive power registers, the sign
is positive.

The primitive circuit for two coils which have

mutual effects between them is shown in Fig. 15. The

_Zm coils are shown with an
—_— ———D
-4 2 assumed direction, just
(&) {EQ as heretofore. The
poties - curved line connecting
Figure 15.

the two coils indicates

the presence of a mutual
impedance from (1) to (2) as well as from-(2) to (1).
The magnitude, it might be assumed, is Zm’ indicating
that the wattmeter read positive for the connecﬁion of

Fig. 14. Note that each time a Z-matrix is written,



each element may be considered as being a real number,
a complex number, or even another matrix. The revised

primitive Z for the network of Fig. 15 is:

1 2
1| z
1| Zm
2 = (143)
8l 2y | 25| .

30 Mutual Effects Between Two Coils.

Suppose the coils of Fig. 15 are connected in
7

2
T e TIR series sueh that the

g
(£)
2

mutual effects are

e additive (see Fig. 16).

Figure 16.
The connection matrix

for the coils and mesh shown is:

A
&1 i
C = (144)
21 1 .
From (143) and (144), the mesh Z becomes:
1 2 1 2
Z'= C4eZeC = 4| 1| 1| e2 |2y | 2Zy|| 62|12
* (145)

15 1% 2| 1

A
= A 2.+ 2+ 22, ohms,
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defined along the (A) axis.

Now if the two coils are connected in series op-

posing (see Fig. 17), the connection matrix is:

Tl s s
110N O A
e . 112
/E\ c = (146)
U@— 2 -l .
Figure 17.
The mesh Z, or Z' is:
2 1. B A
Z'= Cy2C = A[L1T-1] «1[z [z, || [ 2
2l Z, | 25 || 2|-1
A
= 4| 21+ 25— 22 ohms. (147)

These simple derivations may give the student some idea
of the possibilities offered by this method of analysis.
A rigorous treatment of the transformer is also
possible. Laboratory measurements can be made so that
the elements of the mesh Z-matrix or the Y-matrix (the
admittence matrix) can be filled in from meter readings.
Since the transformer offers a study in itself, it will
not be introduced in this text. The student is referred

to Kron's, "Tensor Analysis of Electrical Networks."zo

2OSee page 28l. G.E. Series. John Wiley & Sons,
New York. 1939.
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3l. The Bridge Circuit.

The student may now be aware of the power of this
mathematical tool in analyzing an electrical eircuit.
Tensor analysis may also be used to derive useful equa-
tions which would ordinarily be burdensome using alge-
braic methods. Also, the thought carries through with

each logical step and the student is able to get a fir-

mer grasp on the

fundamental con-

cepts embodied in

a particular pro-

blem.

To demon-
Figure 18.

strate one of the
applications of tensor analysis, refer to the ordinary
bridge circuit of Fig. 18, where Zl’ ZZ’ 23 and Z4 re-
present the impedances of the four arms of the ordinary
Wheatstone bridge, one of which is the unknown impedance.
Eg represents the voltage source, assumed here to Dbe

without impedance, and E_ is the voltage that appears

a
across the detector. By inspecting this circuit in the
manner described in Art. 29, the primitive network can
be drawn. Assume it to be as shown in Fig. 19. Here

Zg and Zd are both zero; also the voltages El’ Ez, E5
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T — T

<9 Z,

@

N gl

— - e
Z5 Zg Zof
Figure 19.

and E4 are zero since there are no impressed voltages
on these coils. The network of Fig. 19, then, is the
most general circuit of the coils and voltages considered
in Figure 18.

The primitive or original quantities are all

brought together into the Z-matrix thus:

(148)

2 » - M o R |
[N

The primitive voltages and currents may be represented

thus:
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2
e = Eg 0 "dl : (149)

g
1= [1.]5 [2: [%5 [1a [1a] . (150)

o -
O o

sy
O >

The student may wonder about the sign of Ed as shown in
(149). Although it doesn't meke any difference in the
results whether this sign is teken positive or negative,
it is helpful in working problems of this nature to dis-
tinguish between a voltage receiver and a voltage supplier,
or a voltmeter and a voltage generator.

The next step is to interconnect the coils of Fig.
19 into the circuit shown in Fig. 20. Mesh currents,
e’ Il and ID’
are assumed to

I

flow. Note

that the currents

et e N

through the

’

generator and

Figure 20.

; detector are
.both pure mesh currentsj this is done to clarify the
results. Mathematically,‘the interconnection into the

network of Fig. 20 from the primitive is made by the use

of the following C:



= TR T < B - I R ¢

- S ) X
1
1
1| -1
1| -1
1| -1] 1
1
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(151)

The calculations necessary to obtain the new mesh quan-

tities, Z' and e', are shown:
3 b ]

Z' = C,2:C
g1 2 8 44 g1 8 3 4 @
1| |2 1| | glo
=1 |r|-1| 1]-2| [o2] |z1]2y
D -1 1] 2f (zg|zs
3
4 Z
a 0
£ 3 2 B4 oa 1
dolz. 12 | o] z.le g
= 1| 0|Z;-2, [2,-25| Zs|-2,]0] * 2 [ 1
o[ o 0 |24 2,|0 o[1[-1
3 | 1[-1
4[I[-1[ T
a 1

oC




G 1 D
D 5i ~Zg=Z4 ZotZg
21 8 8 44
W = A
e Ct e Gl 1 5 . 1 g hg
1 1j-1| 1|-1 e 1] O
D -1] 1|1 2| O
3| O
4] O
UEq ]y
G| E
&
= "378 (153)
D -Ed .

The mesh e' of (153) could have been written from
observation; but the mesh Z' of (152) is difficultlto
predict because of the mutual effects.

With these mesh quantities known, it is now
possible to find the mesh éurrents by the use of the

following matrix formula:
gt v"l e 't t
it = Z'"T.e!' = ylee' ., (154)

This involves solving for the inverse of Z*; first,

the adjoint matrix (see equation 37, Art. 1l) is

78
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obtained:

G i D
-Zm(Z3+Z4) 4-25Z4 - ZmZ4
4-Zm(Z4-Zs) -+ZmZ4 -+ZSZ4+ZIZ4 2

(155)

To calculate.ﬁk, the following equation is used giving

its value in each diagonal and zero in all other elements:

MeZ = ’ (156)

ole P |e

I TR
ol|D| ol

D
0
0

A

where A =

Z1Z22’3+ 212224 - - Z1Z32'4 e Z2Z5Z4

2 2
~2Z 7%y - ZoZn = ZoZg. - (187)

This matrix serves as a check on previous work. If
all diagonal values are equal and all other elements
equate to zero, the work previously done is correct.

The Y-matrix (inverse of Z) for the bridge eircuit is:
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G 1l D

Y= g A1 M| ¥4 | Mp (188)
Di¥pg| Mpy | ¥pp | -

where the M elements are shown in (155) and the value
of A im (157).

When the bridge is balanced, the voltage, Ed’
must be zero and no current will flow through the
detector. Mathematically, for balance the following

relations must be true:

Ed = o, (159)

0. (160)

T4
From equation (154), it is possible to substitute

(153) and (158) to give the following matrix expression:

P

¢~ 32 ‘P
Gii.B GlMag|Me1|Map| G Eg
Io |t Ip| = A |Ye|Ma|¥p| 2] O (161)
Dl¥pg|¥py |¥pp| D|-Eqf,

which cah'be_wripten algebraically as three simultéheous

' ‘equations,



I, = Elig - Egligp (162)
A A

Iy = BMag « By (163)
A A

I, = EQipg - Egipy 5 (164)
A A

substituting (159) and (160) in (164):

"0 = E B[-gg (165)
A

From this, it is necessary that

Vpg = Zglg = 21Zy + 2,2, = Z Zg = O. (166)

m-3
A A

since Eg is a finite voltage source. 4s A is some

finite. value, the'fOIIOW1ng expression must be true:

From this, it can be seen that if the ratio arms, Zy
and Zgz, were equal, the mutual effects would not hamper
the accuracy of the bridge. _For radio frequency mea-
surements, this might be of importance.

To check the accuracy of (167), the value of

Z, may be set equal to zero. The resulting equation

8l



is the simple Wheatstone bridge equation,

Bale = 05
el
N g S

(168)
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CHAPTER VII
JUNCTION PAIRS

32. The Dual Concept.

Recognition of the fundamental concept of duals
is important in order that the engineer may more fully
understand the possibility of mathematics as a tocl for
solving electrical networks. A constant, arbitrarily
assigned, is ordinarily teken as the quotient of the

cause and the effect; as an example,

Z =

| =l

’ (168)

m

where £ and I are two quantities which can be measured.

Because of the nature of our electrical world, it
has been found desirable to think of impressing generated
voltages on low-impedance circuits with a resulting cur-
rent flow. This is particularly true of networks whose
prime purpose is to deliver large blocks of power through
the medium of current.

The advent of vacuum tubes and circuits in recent
years has introduced a new concept. Here it is desirable
to consider that currents are established in the electrodes
of a vacuum tube due to a voltage; whereas, in the trans-
former, voltage appears across the windings as a result

of current flow.
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The study of tensor analysis lends itself nicely

to the study of duals because of its general, all-inclu-
sive nature. The connection matrix, previously used to
write old currents in terms of the new, may, in the

dual concept, be used to write the o0ld voltages of the
primitive network in terms of the new connected voltages
or junction pairs.

To define a "dual" would be pointless; a descrip-
tion serves better for sueh a concept. In this chapter,
the electrical duals, voltage and current, will be
discussed in the language of tensor analysis which has
been developed previously in this thesis. It is
interesting to note that these quantities are measured
in a similar fashion; that is, they both manifest them-
selves in driving the meter indicator with the use of
the same principle, but the ammeter has a low impedance
in respect to the test circuit while the voltmeter has
a very high impedance in comparison with the unknown.
But the brain 6f man must have some concrete manner of
comparing networks, so the dual assumption of voltage
and current has been expressed. Similarly, man has
created the duals of matter and energy, electric field
and megnetic field, magnetic flux linkages and current,
and many others. They may be thought of as dual mani-

festations of nature created by man to define some con-
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stant or comparison factor.

33+« Thevenin's Theorem.

This theorem must be understood by the student
before he can accept the accuracy of the dual concept
of voltage and current. Thevenin has stated that any
network as viewed from the terminals can be replaced
.by an impedance in series with a voltage where the
impedance is the impedance of the network as measured
from the terminals (with all internal voltage generators
short-circuited), and the voltage is the voltage appear-

ing across the terminals when open-circuited. For

—

Figure 21. Figure 22.

example, consider the complicated circuit of Fig. 21
with the two leads xx being brought out. The small
circles here represent generators in series with

impedances. Figure 22 shows the equivalent network
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which will replace that of Fig. 21 by Thevenin's theorem.

By replacing each term of Thevenin's theorem
with its electrical dual, the restatement is: any net-
work as viewed from the terminals can be replaced by

en admittance in parallel with a current where the ad-

Figure 23. Figure 24.

mittance is the admittance of the network as measured

from the terminals (with all internal current generators

open-circuited), and the current is the current estab-

lished across the terminals when short-circuited. As

an example, the circuit of Fig. 23 may be replaced by

the simple one of Fig. 24.

34. Reason for the Junction Pair Concept.

In Chapter 4, Article 17, the transformation
matrix, C, was written from the coefficients of Kirchhoff's

current equations. This connection tensor provided the
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step by which the original coil currents could be writ-
ten in terms of the desired mesh currents when the cur-
rents and impedances of the network were known. FHow-
ever, the question concerning the possibilities of
having voltages and admittences given naturally arises.
With the method used thus far, the student must find
the Z' for the network and then teke the inverse in
order to get the currents; this involves two sets of
calculations. To simplify the solution of such a pro-
blem, the junction-pair concept is introduced.

As will be noted in leter studies, certain types
of circuits lend themselves more readily to the junction-
pair idea. This will be discussed more fully in Article
37

To write the transformation matrix, C, in Chap-
ter 4, Kirchhoff's current equations were used. Now it
will be possible to use his voltage equations to write
the transformation matrix, A, which is associated with
the jundtion-pair concept. This tensor changes old
voltages or coil voltages into new voltages or those
across arbitrarily chosen junction pairs. The dual of
the word mesh is junction pair just as the dual of cur-
rent is voltage. Also, just as currents were shown
previously to have a direction, voltages may also be

represented by arrows, indicating whether the voltage
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is beiﬁg consumed or supplied by the network element.
' A Jjunction pair, as its name suggests, exists
in a circuit wherever there are two junctions or connec-
ting points describing a finite impedance lying between
them in the circuit. For example, in Fig. 25, AB and

o - ¢ AC are junction

pairs in the or-

GED :E dinary w-filter

A circuit. Another
illustration is
Figure 25.
in Fig. 26, the

B C D

T=transmission
line, where AB,
B =
p Jre ‘ AC and AD are the
A junction pairs of
the network. It
Figure 26.

may be of value

for the student to note that the network of Fig. 25 has
three meshes whereas that of Fig. 26 has but two. Con-
versely, the s-network has two junction pairs while the
T-network has three. This may give the student a clue
in regard to the selection of the type of approach to

a given network solution. Obviously, the circuit of
Fig. 25 would be more adaptable to the junction-pair

approach while that of Fig. 26 lends itself to the mesh
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approach; in both ceses the number of unknowns with
which the student must deal has been reduced to a mini-
mume.

To summarize: +the mesh approach to a problem
in tensor analysis embodies that which has been studied
thus far--the assigning of convenient currents to a
given circuit and solving for a mesh impedance tensor.
Mesh voltages may then be solved for but solution of
mesh currents requires an extra step. The junction-pair
approach involves the assigning of convenient voltages
across the available junction pairs of the given network
and then solving for the currents flowing in and out
of the bordering junctions. Here an extra step would
be necessary in order to solve for the unknown voltages.

The junction pair solution will now be taken up.

35. The Primitive Y.

Just as the primitive Z was illustrated in Chap-
ter 2, Article 4, it is possible to illustrate the
primitive admittance tensor, Y. Consider the ordinary
+«+ filter shown in Fig. 27. Here the power source is
represented by a current generator and may be the out-
put from some vacuum-tube circuit.

The electromagnetic generator may be thought of
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s w=e cnm =

QQ %Ys s . %n

P = o=

Figure 27.

as a voltage generator whose regulation is represented
by an impedance in series. A vacuum tube, on the other
hand is in reality a current generator with an admittance
in parallel limiting its output. For perfect regulation
in the former case, Z must be zeroj; for such a condition
in the latter case, the impedance must be infinite,
making the admittance equal to zero.

Referring again to 'the network of Fig. 27, the
student will note that each coil has been defined by

the admittance symbol, Y, where

Yy = z71 (169)
in each case.

The primitive network, drawn in Fig. 28, shows the
arrows in opposing directions to indicate that the
generator produces voltage while the admittance receives
voltage. In the G circuit of Fig. 28, current can flow

out at (a) if that same current is returned at (a').
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Figure 28.

The same is frue for each of the other elemental net-
works; for example, current can be tepped at (b) to
return to (b'), (e¢) to (e¢'), etec.

The primitive network of Figure 28 is mathematical-

ly represented thus:

g : ! 2 3 L
i= |I 0 0 0 0 (170)

(171)

B o R
&
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g 1| Eg Eg | Eg (172)

The matrix'equation involved is

i = Yee. (173)
To get the admittance matrix for the connected network
of Figure 27, an equation paralleling that of the trans-

formation tensor, C, in Chapter 4 is used:

Yt = AtOYOA. (174)

Here A is the connection matrix associated with the

junction-pair concept.

36. The Connection Matrix, A.

After the primitive network has been established

(see Fig. 28 and equations 170, 171 and 172), it is

A ey,
@T ‘éf {::1’\\ //)g::"’ l %
4 \/

A

Figure 29.

necessary to assume junction-pair voltages in location



and sense or direction. Just as mesh currents had to
be assumed in dealing with the circuits previously
studied, some initial assumptions must now be made be-
fore the mechanical process of connecting the circult
can be accomplished. In Fig. 29, the filter circuit
of Fig. 28 is redrawn with arrows on each coil and cur-
rent generator showing the assumed directions of the
voltages in relation to each other in the circuit. Al-
so the junction pairs AB and AC are assumed in the
directions shown by the diagonal arrows. Let Ea repre-
sent AB and Eb, AC.

Writing Kirchoff's voltage equations around all
possible closed paths (including the two fictious paths
introduced to connect the circuit), the following equa-

tions result:

It B, = 0, (175)
E,+E, = 0, (176)
E,+E,~E, = 0, (177)
Eg+ Ey = 0, (178)

CEptEy = Q. (179)

In order to prevent difficulties arising in the use of
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arrows and signs, two rules are suggested: (1) voltages

are added against the direction of the arrow when that
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voltage is taken across a current generator but added

with the arrow when the voltage is taken across a power-
receiving element and represents a voltage drop; (2)

the sum of the voltages around any closed loop is equal
to zero. As an example of the first rule, in going
across Ig, the positive direction is downward against
the arrow in Fig. 29 while the positive direction across
Y, is downward with the arrow. Equations‘(l75) to (179)
illustrate the second rule.

To write the connection matrix, A, it is neces-

sary to equate cld voltages in terms of the new. The

equation,
e = A.e? ) (180)

allows the following &4 matrix to be constructed from

the resulting coefficients:

a b
gl -1
1] =1
A= 2| -1 1 (181)
3 -1
L -1 1.

Applying equation (174) to (181) and (171):



Y'

g 1 gk & 3. K
-1l]-1|-1 o g Yg
1]-1|-1 G Yl
2 YZ
3 Y:3
L YL
PEOIE oy TN B a b
=Yo|-Y1]|-Yg] O 0 e gl-1
O O Yz "Y3 "YL l ’l
2|-1] 1
3 -1
L -11]\
a b
mhos.
b -Yz Y2+ Y5+YL

o A

(182)

Now to obtain the currents flowing into each junction

pair, equation (173) is applied thus:

b

Iy

o P

a b
-Y2 Y2+ Y3+ YL

Equation (183) is algebraically expressed as:

) ¢

Iy

a

(183)

(184)

(185)
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If the voltages Ea and Eb are known, it is easy to

solve for the currents, Ia and I Since

b*
e = A-e! (186)
from (180), the coil voltages can be calculated. Then
i= Ye, (187)

so the currents flowing in each coil can be obtained.
Also, the voltage drop across each element can be

gotten from
’io (188)

By teking the inverse of the Y' received in (182),
the Z' for the network could be obteined. This should
not be confused with the Z' of Chapter 4 which was

representative of mesh axes.

37. Selection of Attacke.

There are two general rules which may help the
student select the method of attack for a given network
problem: (1) study the circuit to see whether it has
fewer meshes or junction pairs and select the attack
that offers the minimum number of necessary assumptions;
(2) if the currents are known, select the mesh approach

and if the voltages are known, select the junction-pair



approach. If some voltages and other currents are
given, it is desirable to approach the problem by a
third method not within the scope of this text called

the orthogonal network.
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