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PRiC 

The conventional thesis describes some research 

or investigation with its conclusions expressed in 

technical end learned language, desicned to convey in- 

formation to the advanced scholar. In this thesis, an 

attempt has been made to reverse the process; tensor 

analysis, a subject ordinarily used for graduate material, 

is brought out o1 the obscure and highly theoretical 

realm, and focused into elementary and practical terms. 

The subject matter has been presented in such 

a way that the sophomore student in electrical enTîi- 

neering may appreciate the usefulness of this matheniati- 

cal tool for solving network problems; the ability of 

the student of sophomore level to grasp this subject 

was tested during the last two weeks of the winter term 

and the first week of spring term, 1943, at the Oregon 

State College School of Engineering with very encourag- 

ing results. 

To Gabriel Kron of the General lectric Co. goes 

the credit for transforming the classical mathematical 

study of tensor analysis into useful, engineering terms. 

Eis books and articles were the only ones found which 

deal directly with the subject matter described herein. 
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INTRODUCTION TO T 
ThNSOR ANALYSIS OF JLECTRICAL NETWORKS 

CI5APTER I 

INTRODUCTION 

The science of engineering requires the niani- 

pulative tool of niatheniatics for maximum output in 

u:inirdurn time. For exaniple, the calculation cf the cost 

of 15 electric motors at 18.5O apiece would be time- 

ccnsuming unless the manipulation of :ultiplication was 

known. lso, through the e1ebra, equations can te de- 

veloped which satisfy eny given set of nuericl substi- 

tutions for some electrical network. A combination of 

the Laplace Transform and eav1side's Operational calcu- 

lus is expedient in dealing with electrical transients. 
The engineer begins his nmthematical study by 

accepting a number system. He finds its manipulations 

useful but needs something more generalized to express 

physiocl laws which can be used for any number of nu- 

niericel substitutions. Thus, algebra was accepted and 

a letter stood for ny number desired. step upward 

was ac&nowledged as the student passed from the speci- 

fic to the general in mathematical lcnguage. 

Now a further generalization is proposed--the 

step from algebraic analysis to tensor analysis, to he 
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brought into the electrical engineering curriculuni dur- 

ïng the latter part of the regular eo11ee sophomore year. 

Before 1930, riost books dealing with this subject 

of tensor or spinor analysis were written by mathemati- 

cians; hence, the engineering world was unable to recog- 

nize the significance of a very practical and useful 

tool camouflaged under such titles as absolute differen- 

tial calculus, differential geometry and topology. s 

a matter of fact, the mathematical science of tensor 

analysis dates back to 1869; but only recently its ap- 

plications to engineering, as well as to other practical 

sciences, have been discovered. 

Perhaps the work of Ricci and Levi-Civita was 

most instrumental in bringin tensor analysis to the 

forefront. In 1916, Einstein contributed his ideas of 

relativity to the new study which was about to define 

its own dimensions. Subsequently, Euclidean geometry 

no longer restricted the mathematical analysis of an 

engineering problem. It is interesting to note that 

much of the mathematics still in vogue is limited by 

the three physical dimensions of space; tensor analysis 

pulls itself out of this rut and uses as many dimensions 

as are needed to solve a given problem. 

For the ordinary network problem, algebraic quan- 
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tities are assigned to each unknown and the solution 

lice in a set of sinultaneous equations. ihen these 

Ijecorue greater than three, the process becoLes burden- 

sorne and it is difficult to keep the substitutions in 

mind. Jso, the handling of electrical networks con- 

taming rnutual effects between coils by ordinary alge- 

braic methods becornes quite a chore. ll in all, there 

is a demand at present for a shorter method of attack 

for an electrical network other than the tedious and 

lengthy processes involving ordinary algebraic notation. 

In solving a given network, the basic theory 

employed is often buried beneath a maze of algebraic 

equations and substitutions. Vhen the student completes 

a rather complicated network problem, he may have the 

answer but frequently has lost sight of the means by 

which that solution was obtained. Thus, the mathematics 

itself becomes the thing sought after rather than the 

fundamental engineering concepts involved. Perhaps 

one of the greatest needs in engineering education to- 

day is that of inspiring creative thinking on the pert 

of the student. But how can this be done when the stu- 

dent must spend a great ortion of his time trying to 

manipulate an unwieldy conglomeration of algebraic 

symbols which, in themselves, have little or no meaning 
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but simply supply a means to an end? 

This brings up another need for a replacement oÍ 

ordinary a1ebraic notation and processes. ach time a 

problem In electrical engineering is undertaken, the 

student :rust go back to the beginning and go through 

the painful process of rebuilding the saïe algebraic 

rraniework all over again. '.vlth the use of the trans- 

formation tensor, it is possible to take a general net- 

work and carry it through to the stage frani which special 

types of circuits may be evolved. also the unknown 

quantities desired may be transferred from one part of 

the circuit to another by a sL'tple matrix manipulation. 

In this manner, the original processes need not be 

repeated and that time previously spent in doing "setting 

up" exercises may be consumed more profitably in in- 

vestigating the possibilities of a given network. 

Furthermore, tensor analysis provides a standard 

mathematical aoproach for electrical problems where pre- 

viously a variety of soecial attacks held sway. Tow 

it is possible to write the priitive quantities for 

the most general network, the vacuum tube and the ro- 

tating machine using the same mathematical concepts 

in each case. The connected network, the vacuum tube 

circuit and the generator supplying a load can all be 
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analyzed using the sanie theory of transformation. 1so, 

design characteristics can be investigated using the 

common impedance reduction formulas and elemental ïosi- 
tions of the active matrices may carry anything from a 

simple number to a Heaviside representation of the unit 

step. 

The dual nature of electrical measurements and 

physical rhenoniena beconies more apparent and useful as 

the beginning, student progresses in the applications of 

tensor analysis. since this is discussed in some detail 
in Chapter 7 of this thesis, it will 'be mentioned here 

only as a further advantage of tensor analysis. 
Finally, tensor analysis lends itself to tre- 

ìuendous future expansion. Gabriel Kran has pointed 

out the versatility of this mathematics and has indi- 

cated the similarity between the tensor equations used 

in hydrodynamics, electrodynamics, optics and elasticity. 
The following books are suggested for further study: 

Kron, Gabriel. A Short Course in Tensor 

Analysis for Electrical Engineers. 

G. E. Series. John 'Viley & Sons, Inc. 

1942. New York. 

i:ron, Gabriel. Tensor nalysis of Networks. 



G. E. Series. Tohn .i1ey & sons, Inc. 

1939. Tew York. 

There has been some rather colorful criticism in recent 

years of the generalization of tensor theory; the begin- 

ning student is urged to try it out for himself. It 

lies ieen the experience of the author that it stimulates 

investiotion into phases of engineering which other- 

wise might have been overlooked. 

This thesis is written for the primary purpose 

of proosing the use of a universal mathematical system 

called tensor analysis in the engineering colleges as 

a basic art of the undergraduate curriculum. It is 

presented in a form which should be understandable to 

the college sochomore in electrical e:gineering who has 

comoleted his basic course in physics and has become 

acquainted with the fundamental electrical laws of Ohm 

and Kirchhoff. 

It is the belief of this author that tensor 

analysis satisfies many of the needs oointed out. It 

provides a systematic method of writing simultaneous 

equations by assigning coriponents of geometric entities 

to the coefficients Involved. Tew symbols are introuced 

bu which a whole network can be drawn into one unit 

or vector. Just as complex notation draws the real and 
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imaginery axes into one unit, so the iatrix (the Liathe- 

niatical tool of tensor analysis) unifies n-axes into 

a single quantity. This will be riore readily under- 

stood as the student progresses in the study of tensor 

analysis. 
Only the i:ost elementary consideration of tensor 

analysis is covered in this thesis; however, a 'biblio- 

graphy has been attached for further reference. Perhaps 

a more suitable title for the material covered herein, 

from a mathematical standpoint, might be "The Applica- 

or Matrix lgehra to lectrical Networks," but the sub- 

ject matter does )rovide an introduction to the use of 

tensor theory. 

A possible reaction from the beginning student 

may be that the solutions of some of the simnier pro- 

blems contained in this thesis could be worked more 

quickly by the ordinary algebraic methods. ih1 is 

prolmbly true in irany cases but the student will un- 

doubtedly find it profitable to use the method pre- 

scribed regardless of the simplicity of the problem 

so that he may equip himself for later studies. The 

initial steg of learning matrix algebra must be taken 

more or less on faith, just as it was necessary for 

the beginner to learn the manipulations of algebra 
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before he could apply it profitably. 

ngineers and mathematicians must work hand in 

hand for optimun: results in the engineering field. In 

grade school, the prosective engineer took up the study 

of the number system and nuLlbers were used in the mani- 

pulations of arithmetic. Later in high school, he was 

introduced to a shortcut called algebra, where letters 

were used to designate numbers without particular regard 

to their values; also, the axes of space and their re- 

lationships to ohysical objects were investigated in 

the study of geometry. KOW a third step is su'gested: 

to take up the study of matrices so that equations may 

be handled without regard to their particular sizes. 

Just as algebra was used to organize the number system 

and provide shortcuts, now tensor notation has been 

developed for the urpose, among other things, of or- 

ganizin the algebra into a more compact and useful 

f o ria. 

ow the question may be asked: can an advanced 

subject such as tensor analysis be absorbed by college 

students to the point where it becomes of use in a rea- 

sonable length of instructional time? In answer to 

this question, the results of the teaching of two courses 

in the Department of lectrical ingineering at Oregon 



First of a two-term course was given to 

senior students invo1vin four quarter-system term hours. 

after the first ter:'s work, the students were atle to 

apply transformation theory to complicated linear net- 

works where mutual effects existed between coils. 1so, 

the inroedance reduction fornu1as were applied to sim- 

Dlify given networks, and the magnetic and. dielectric 

circuits were investigated using matrix notation. Dur- 

ing the second term, Heaviside's Operational calculus 

in Conjunction with the Laplace transform was introduced 

and later used in matrices to study transient behavior 

of series-parallel circuits; Can.pbell-Foster notation 

supplemented this investigation. Then the junction-pair 

concent was studied and the students became acquainted 

with the need for two approaches to the solution of net- 

works (see Chapter '7). Finally, as an incentive for 

further study, the tensor aoplication to vacuum tubes 

end vacuum-tube circuits was studied and those interested 

commenced the more involved subject of rotating machinery. 

The interest was evidenced by the fact that some students 

wrote their reports on such subjects as transmission- 

line regulation and synchronous machinery using the ten- 

sor oonce?ts, equations and manipulations. 

3econdly, an experimental three-week course was 



given to sophomores in electrical engineering at the 

sante institution. The results appeared to be very 

satisfactory. In the first piace, much interest was 

shown by the students themselves as evidenced 'by several 

articles which appeared in school papers announcing the 

course. The matrix operations were learned the first 

week and at the end of four hours of computation, the 

majority of t:!e students could perform the basic iani- 

pulations as outlined in Chapter 2 with ease. In the 

second week, Iiircbhoff's Laws and the transformation 

tensor were introduced much in ti-ie saae manner as is 

done in Chapters 2 and 3 of this thesis. Finally, the 

Impedance reduction formulas and mutual effects were 

studied during the last week. The students were 

actually investigating networks usin' tunsor analysis 

at the end of this 'brief study period and many were con- 

tinuing work in this line. 

Having observed the results of these courses, 

this author believes that the sophomore student is 

capable and willing to learn the applications of ten- 

sor analysis to electrical networks. Furthermore, the 

class time required for a workable understanding of 

this mathematical tool is estimated at from three to 

six terni hours of quarter-system length. Further ex- 
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perimentation will clarify the time required. 

The next chapter begins with a brief study of 

matrix algebra from a oractical standpoint only. 

it is necessary for the student to learn these mani- 

pulations before continuing with the actual study 

of tensor analysis. 
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CHAPTER II 
MATRIX ALGEBRA 

1. Ueed for Idatrix Algebra. 

The study of tensor analysis hinges on the 

system of matrix algebra. Before the student can 

perform tensor operations, he must be familiar with 

the fundamental manipulations of matrices. 

2. Description of a Matrix. 

A matrix,1 in itself, has no definite signifi- 
cance in a physical sense. It is a means by which a 

desired result Is obtained. Just as our namber system 

was devised to expedite value exehanes, the matrix is 
now suggested to alleviate the burden of handling lengthy 

algebraic equations. 

3. Kinds of iietrices 
There are three types of natrices within the 

scope of this text: (a) the 0-matrix, (b) the 1-matrix 

and (c) the 2-matrix. 

1A matrix is defined in Elementary Matrices by 
Frazer, Duncan and Collar thus: "I\'atrices are sets of 
numbers or other elements which are arraiaged in rows 
and columns as in a double entry table and which obey 
certain rules of addition and niultiulication." Cam- 
bridge TJñiversity Press. London. 1938. 
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The 0-matrix has hut one quantity involved and 

is without dimensions. It may be illustrated by the 

scalar, power, thus: 

= I3I watts. (1) 

The 1-matrix consists of a row arranged in the 

following manner: 

a b e d 

= -a b 'o idi amps. (2) 

The 2-matrix is arranged in the form of a rec- 

tangle. The niunber of elements, or separate boxes, is 

determined by the product of the number of rows and the 

number of columns. A special case of the 2-matrix is 

the following square matrix which might represent the 

impedance of a network: 

a 

b 

C 

d 

a b e d 

aa ZSb -ac 

a Zbb :bC Zbd 

¿ Zeb Zed 

'da Zdb 'dc Zdd 

ohms. (3) 

The notation used here (that is, the symbols 

a, b, e and d labeling rows and columns) is called 

direct notation and will be used in this text. Index 

notation has many uses in later studies hut will not 
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be included here.2 

4. The Primitive Uetwork. 

This refers to the original circuit which can be 

represented by matrices. Consider the electrical net- 

work shown in Fig. 1. 

7_ 

Figure 1 

z7 

To analyze this circuit using tensor analysis, 

each coil with its series generator is disconnected 

from all others and studied individually. The result 

of this dissection is shown in Fig. 2 and is called 

/ z, 2 / I Z3 z / Z4 

r'ir1r'11(i 

z z:7 

L®JL©JL®J 
Figure 2 

the primitive network. This original network is the 

2See Chapter 7, page 174, Tensor itnaiysis of 
Networks by Gabriel Kron. G.E. Series. Tohn Viley & 
Sons, Inc. New York. 1939. 
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simplest network which can be formed from the given num- 

ber of coils. iviany different types of circuits could 

be derived from it. 

If t'nere were no mutual effects between any of 

the coils of the primitive network and only self-impe- 

dance quantities existed, the primitive vector for Z 

would be 

1 2 3 4 5 6 7 

i 

2 Z2 

3 
o 

Z 4 (4) 

5 

6 
C 

7 
'_7 

All spaces in (4) that are blank represent zero values 

of impedance. This type of matrix is called a "diagonal" 

matrix, since all elements except those a1on the diago- 

nal are zero, thus indicating that only self impedances 

exist in the circuit to be connected. If mutual impe- 

dances were present, it would be a simple matter to fill 

these mutual elements as will be demonstrated in Chapter 

6. 

Perhaps this is the prii:cipal selling Doint of 
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tensor analysis: it provides a standard system and 

method of attack which can be used for practically all 

types of network problems, regardless of their com- 

plexities. By starting with the simple networks, the 

correlation between past knowledge and future possibi- 

lities can be established. 

The currents flowing in each separate coil of 

Fig. 2 may be :ritten as components of the single vector, 

I, thus: 

1 2 3 4 5 6 7 

I 
= ii 1 1 i4 i i6 

J 

i7 amps. 

The voltage sources in series with each coil can 

be combined into the single 1-matrix thus: 

1 2 3 4 5 6 7 

E = e1 e2 e3 e4 
J 

e5 
J 

e6 e7 volts. (6) 

If there were only one voltage inioressed on the circuit 

of Fig. 1, for example at the ooint of e1, the voltage 

vector for this specific case would be: 

1 2 3 4 5 6 7 

E5 = e1 O O 
J 

O O 
J 

o 
J 

o 
J 

volts. (7) 

Now it will be necessary to add, subtract, inul- 

tiply and divide these matrices in order to accoraolish 

the results desired for a rigorous circiit analysis. 
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5. Addition and Subtraction. 

Addition and subtraction are performed in a 

similar manner to that of complex numbers. Such opera- 

tions can be performed only with matrices of the sanie 

order; that is, with the same number of elements flanked 

by identical notations. 

The addition and subtraction of O-matrices (see 

Art. 3) is simply the familiar operation performed on 

ordinary scalar quantities thus: 

3 + 2 - 7 + 4 = 2. 

Two 1-matrices, however, are added or subtracted 

by performing the operation on each comonent separately. 

As an example, consider the two currents: 

A B C D 

11= L2 I 

-6 amps. (8) 

12=111316101 amps. (9) 

Then 

A B C D 

I -- I- = 2+1 4+31 -6+6 
J 

3+0 
J 1 

A B C D 

= 
I 

3 
I 

' 

I 

o 3 amts. (io) 

Also, 



A B 

IJ - 12 = 2-1 
J 4-31 

A B C 

= Ji J1J-12 

Two-matrices are added by 

follows: 

P 

z1 = Q. 

R 

P 

z2= 

R 

P 

z1+ z2= Q 

R 

P 

=Q 
R 

I. 

C D 

-6-6 
J 

3-O 
J 

D 

J 

amps. (ii) 

adding components as 

n.. 
'-A ! 

n.. n.. 
-p 

2-f-3 -4+5 6+6 

1+0 1-I-0 -2-2 

4+9 -6+8 2-7 

-p û -p 

5 1 12 

1 1 -4 

13 2 -5 

(12) 

(13) 

(14) 

$ubtraction, obviously, is done by subtracting corres- 

ponding components. 
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6. Multiplication. 

The order of the 1- or 2-matrix is not as impor- 

tant in this operation. A 0-matrix, when multiplied 

by another 0-matrix, entails a simple arithmetical mul- 

tiplication. 

Multiplication of a 0-matrix by a 1- or 2-matrix 

Involves the multiplication of each component of the 

dimensional matrix by the single quantity of the 0-matrix. 

An example Is shown: 

a b a b 

a 3 1 a 6 2 

(2) = (15) 
b O 6 b 0 12 

Multiplication of a 1-matrix by another 1-matrix 

Introduces what is called the arrow rule. These arrows 

show the order in which successive conionents or elements 

are multiplied. As an exaiple, consider the multipli- 

cation of current times voltage to obtain the scalar, 

power. Let 

1 2 3 

E = 3 
f 

7 
I I 

. (16) 

u. 

1 2 3 

I 8 (17) 

Then, 
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t. 

1 2 3 P=E1 141 l S 

20 
39 

124+0+361 = 60 . (la) 

Note the rule here: the first term of such a multipli- 

cation is in the horizontal 3osition while the second 

is in the vertical :osition, giving a result which is 

a 0-matrix--In this case, a scalar. This adjustment 

must he made to make the arrow rule work. 

Another important thing about notation in this 

example is that the 1-2-3 axes drop out, the ones 

coincident with the arrow. This is a general rule for 

multiplication of matrices: those axes which are 

coincident with the proper positions of the arrows 

(these axes must always be the same) do not appear in 

the final product. 

As a further example, consider the multiplication 

of a 2-matrix and a 1-matrix 

h e 

a - al 
E=Z'i=b b 2 

c c 2 

NBi 



a 

C 

3 1+-l. 2 -1- 2 2 

4.l-- 6.2 +8.2 

9 1+ -10.2 + O 2 

a 5 

= b 32 volts.(19) 

C -11 
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Again the so-called dummy axes or "arrow" axes disappear 

leaving only the single axis a-b-c in the result. An 

example of the multiplication of two 2-matrices is shown: 

a 

Z'C =b 
o 

h e ug 
nun 

p q 

al 0 

bO i 

o 1 -1 

p 

a 5 -3 

b 12 -2 

C 9 -10 

(20) 

CorresDonding components have been multiplied and the 

products added according to the arrow rule. For example, 

to obtain the element, (ZSC)ap3 the product whose 

value is (5), the (a) row of the first matrix, Z, is 

multiplied by the (p) colunin of the second ìrtrix, C, 

in the order of the arrows: 

(z C)ap = (3)(l) + (1)(0) f (2)(1) 5.(21) 

3in the subscript notation, such as ap, the first 
letter refers to the row and the second to the co1uin. 
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Similarly (z C)q could be solved thus: 

(Z C)bq= (4)(o)+(5)(i)+(5)(-1) = -2. (22) 

7. Transposition. 

This operation involves the mechanical manipula- 

tion of the 3ositions of the components of a given 

matrix. s an exa!1ple, let 

i 

C=2 
3 

a b c 

,u1 lUE am (23) 

Now the trans3ose of C (written Ct) is, by de- 

finition, an exchange of rows and columns. ¿o the 

transpose of the C in (23) is written 

a 

r' - 
t 

8. Determinants. 

1 2 3 

.k D G 

B H 

C F I . 

(24) 

A brief review of determinants i necessary be- 

fore division of matrices is ?ossible. 

A basic difference between a matrix and a deter- 

minant is that a determinant represents just one narn- 

ber or scalar; whereas, a natrix st&nds for a set of 



numbers or elements arranged in a definite order which 

may geometrically portray some physical Dicture. 

For example, the determinant, 

321 
6 4 3 (25) 

021, 

represents the number, -6; it is evaluated thus: 

(3)(4)(l) + (2)(3)(0) + (1)(e)(2) 

- (0) (4)(1) - (2)(3)(3) - (i)(e) (2) = -6 . (26) 

On the other hand, the matrix, 

a 

C 

a b e 

Zaa Zab Zac 

Zba Zbb Zbc 

Zea Zeb Zcc 

(27) 
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may represent the various impedances existing in an 

electrical circuit where mutual impedances are present. 

Perhaps another way of ecoressing the difference between 

a determinant and a matrix is that a matrix has geonie- 

trie dimensions while a determinant has none. 

9. Co-actor. 

This term must be exolained before inverse cal- 

culations can be made. nother term, the minor, will 
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be introduced first, however. The minor of a quantity 

is the value of the determinant formed from the matrix 

determinant after the row and the colunrn corresonding 

to the element in question bave been removed from the 

matrix. n example may clarify this definition. In 

the following matrix, it is desired to know the rinor 

of the element of value, 6: 

A B C -A 
DArn 

A 

B (2e) 

C 

To get the minor of this conmonent, strike out the row 

and column shown by the dotted lines: 

A 

B 

C 

A B C 

imrn 

The value of the remaining deteriinant is: 

(29) 

i 5 

= (2)(l) - (3)(5) = -13. (SO) 
3 2 

So the minor of the element is -13 and can be put in 
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the nev matrix in the corresonding position. The minors 

of the other elements are calculated in a similar fasbion 

to give: 

r-! 

B 

C 

k R C 

-13 -16 2 

-24 -20 18 

-8 14 6 . 

(31) 

Now to get the co-factors, it is necessary to 

adjust the signs of the minors just obtained in (31) 

to fit the following pattern of unit multiolication: 

i.... 
u,... 

(32) 

The signs of the various elements in (31) are changed 

where necessary to cive hat is called the "adjoint" 

niatrix as follows: 

a 

R 

C 

À. B C 

-13 16 2 

24 -20 -18 

-8 -14 6 . 

( 33) 
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10. Division. 

Division by a 0-matrix involves dividing each 

comionent of the given matrix by the number of the 0- 

matrix. However, division by a 1- or 2-matrix is not 

defined as such. Rather, the inverse of the divisor 

is multiplied by the matrix to be divided. For example, 

a familiar division is written 

i = (z1)(E). (34) 

11. Inverse Calculation. 

There are two methods for calculating the inverse 

of a matrix. Kron's method is outlined on page 29 of 

his book, "Tensor À.nalysis of Hetworks."4 A refinement 

of this method bas the advantage of not requiring as 

much determinant calculation as Kron's method. Also, 

the steps are convenient for later calculations, it 

will be presented here. 

Suppose it is desired to calculate the value of 

current, i, in (34). The following impedance matrix is 

given: 

4See Chapter I of Tensor Analysis of Networks 
øy Gabriel Kron. G.E. Series. John Wiley & Sons, Inc. 
New York. 1939. 



A 

Z=B 
C 

k R C 

Aufl Ano 
ODO 

(35) 

To make the proper substitution, it is necessary to 

take the inverse of the Z of (35). The steps are as 

follows: 

(i) Write Z. (celled transpose of Z) by inter- 

changing rows and columns (see Art. 7): 

A 

= B 

C 

A B C 

unu 
U.. AU. 

(36) 

(2) Write the adjoint5 matrix of Z. which is 

called M. Each component or element of M is calculated 

by writing its co-factor (see Art. 9): 

A 

C 

B C 

(37) 
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5For further investigation of the adjoint matrix, 
refer to Elementary Matrices by Frazer, Duncan and Collar. 
Cambridge Press. London. 1938. 



I.I 

(3) Calculate the determinant of Z by finding 

the value of any diagonal terni of the product of M Z 

thus: 

Z = B 

C 

Therefore, 6 

A C 

-5 
Â 

C 

C 

A B C 

null 
À 

C 

w' 

'J 

(4) write the inverse matrix as the reciprocal 

of the determinant times M thus: 

Â 

z_l = i . M -1 B 
¡ 

C 

A E C 

( 39) 

6Â check on the accuracy of calculations is pro- 
vided by the resulting matrix of (38). If the diagonal 
terms are all equal and all non-diagonal terms equal to 
zero, the work is correct up to this point. 
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CHAPTER III 

TEE NETWORK MATRIX 

Chapter 1 dealt with the mathematical aDproach 

to the subject of tensor analysis. This, undoubtedly, 

introduced many concepts which might be confusing if 

no further steps were taken to show the tie between 

past knowledge and this new study. Consequently, certain 

laws familiar to the beginning electrical engineer will 

be considered first; then their significance in tensor 

notation will be illustrated. 

12. Kirchhoff's Laws. 

There are two important laws first stated by 

Kirchhoff which are fundamental in electrical network 

theory: (1) the algebraic7 sum of the currents flowing 

into any point in a network is zero, and (2) the al- 

ge'braic7 sum of the products of the current and resis- 

tance8 in each of the conductors around any closed path 

in a network is equal to the algebraic sum of the ernfs. 

An Illustration of the use of these laws may be 

7This term can be changed to vector sum when a.c. 
values are used. 

8This term can be changed to impedance when a.c. 
is involved. 
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t 

z7 

z3 

Figure 3. 

z' 

based on the circuit shown in Fig. i of Chapt. 2. It 

is reproduced in FIg. 3 with I and 'q being the currents 

flowing in the two assumed meshes.9 .àssumed directions 

of current flow are shown by the straight arrows for 

coil currents and circular arrows for mesh currents. 

(See rt. 4). 

Using Kirchhoff's first law, all currents flow- 

Ing into point (a) on the circuit diagram of Fig. 3 

must be equal to zero or, 

- IQ 
- 14 0. 

14 
= - 'q 

(40) 

where 14 Is the current flow through Z4. 

Kirchoff's second law may be demonstrated by 

9lthough there is a genertor in series with 
each coil here, any other case might allow any of these 
to be reioved; then the corresponding voltage element 
for the re.caoved generator would be equal to zero. 



31 

tracing the voltages around the P mesh shown by the 

circular arrow labeled P in Fig. 3, thus: 

e1+ e2+ e3-t- e4 = ZI+ Z2I+ Z3i 4 z (I - I ). (41) 
p 4p q 

Â second equation is obtained by going around the 

mesh but here it is necessary to watch the directions 

of the voltages more carefully. Going around the 

mesh in a clockwise direction, starting at point (a), 

g i ve s 

e5+e5+e7-e4= Z5Iq# Z7Iq4 Z6Iq Z4(I_ Iq) (42) 

The sign is minus on the last teri since the direction 

of 'q is oposite to that of 14 as originally assumed. 

Now write the two siniultaneous equations thus: 

er-f e2+ e3+ e4 = (Z1+ Z2+ Z3+ Z4)I ¿4(Iq) (43) 

e7+ e5+ e- e4 = _(z4)i+ (Z7+ Z6-f Z54 Z4)Iq* (44) 

I and 'q are the Kirchhoff currents which can be solved 

since there are two simultaneous equations involved. 

13. Superposition Theory. 

Proni the mathematical development presented in 
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art. 12 and the circuit diagraa of Fig. 3, it is os- 

siijie to postulate that the coil currents cen be re- 

presented by mesh currents for ordinary linear networks. 

.as shown in equation (40) and by the arrows in Fig. 3, 

these mesh currents may not actually exist in all parts 

of the circuit. For instance, co:sider the actual cur- 

rent flow through the impedance, Z4; its value is neither 

I or 
'q 

but is evaluated by a combination of the two. 

In other words, it is possible to consider a 

portion of a circuit (a mesh) alone, forgetting the re- 

mainder of the circuit for the time. The system of 

tensor analysis enables the engineer to use this super- 

position theory by beginning at the primitive network 

which contains the basic, indivisible physical units 

from which the network will be constructed. Just as 

a chemist finds it convenient to break known solutions 

called compounds into their separate elements, the engi- 

neer can attack a given comalex network more easily if 

he breaks it up into simple components, forming the 

primitive network. 

14. The Matrix .Eq.uation. 

The basic matrix equation which follows Ohm's 

law is 



33 - - - lo 
(45) e' Z' I'. 

The dashes over the letters indicate that they reoresent 

matrix quantities; but hereafter, the dash will be 

orlitted. 

For exarìijle, the Kirchhoff equations ror the oir- 

cuit of Fig. 3, 

--Loop P-- 

e1 e2 + e3 + e4 = (Z1 -t- Z2 + Z3 -I- Z4)I - (Z4)Iq, 

( 46) 
--Loop '- - 

e7 + e5 + e5 - e4 = _(Z4)I + (Z,, + Z6 + Z + Z4)Iq 
. (47) 

can be written in the forni of matrices as follows: 

z' = 

pi e1 -- e2 + e3 + e4 
e' = _____________________ 

q1_e7±e6-t-e5 -e4 

t - p 
I 

(49) I - 
q 1qi 

P Q 

z1+ z2 z3+z4 -z4 

-z4 z7-l- z6+ z5 +z 
( 50) 

10 . 
These matrices ere primed for reasons which 

will be explained in Chapter 4. Briefly, they stand 
for riesh quantities. 



Substitution in equation (45) of the quantities 

in equations (48), (49) and (50) gives 

p e1-fe2-s-e3+e4 p 

q e7-ie6+e5-e4 q 

a 

z1+z2*z3+z41 -z4 

I 

-z 4 
1z7+z5+z5#z4j 

34 

P 
Ip 

q 

(51) 

Multiply the right-band side of equation (51) according 

to the rules of multiplication in Chapter II and equate 

components on either side of the equation11 which gives 

the resulting equations; 

e1 -f e2 + e3 + e4 = (Z1 + Z2 + Z3 + Z4)i - (Z4)Iq 

(52) 

e7 + e6 + e5 - e4 _(Z4)I + (z7 + z6 + Z5 + Z4)Iqs 

(53) 

This compares the old method of writing algebraic equa- 

tions with the new shortcut method of matrix notation. 

15. Lleaning of Matrix Components. 

Consider the network of Fig. 3 redrawn in Eig. 

4 with switches (a) and (b) as shown. All the generators 

have been gathered together into two large generators 

-1This is similar to equating reals and. imaginaries 

in vector analysis. 
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for each mesh so that 

e = e -i-e +e +e, (54) 
p 1 2 3 4 

e =e +e +e -e. (55) q '7 6 5 4 

The arrows on the separate coils show the assumed direc- 

tions of the network current flowing in that particular 

coil. The circular arrows show the assumed Kirchhoff 

currents or mesh currents as to direction. 

The impedance matrix has already been established 

from the mesh standooint thus: 

p 
z' = 

q 

O 

z1+ z2+ z3+z4 -z4 

Z4 Z7+ L6+ Z5±Z4 
(56) 

Now the establishment of the physical signifi- 

cance of each of these components is desirable. The 
-7 

-- L_3 

Figure 4. 

z7 

PP element, that is, the quantity, (Z1+Z2+Z3+Z4), 

represents the self-impedance around the P mesh. Nu- 
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inerically, it is equal to the sum of the voltage drops 

around the P mesh when unit current (or a current equal 

to one atr)ere) is flowing from the generatör, E Dur- 

in this operation, switch (a) is closed and svitch (b) 

left open in Fig. 4. The (qp) element in the left-hand, 

lower corner, equal to (-Z4), is the voltage drop seen 

by t1e . mesh under these conditions. iiote that the 

sign is reversed since the assumed direction of I is 

opposite to that of in the cornm.on path through Z4. 

Now when the column is considered, switch (a) 

is opened and switch (b) is closed The element is 

numerically equal to the voltage drou around the Q mesh 

when unit current flows from the generator, Eqs The 

element is the voltage drop seen by the P mesh when 

this unit current flows in the Q, mesh. It is called a 

mutual-impedance component, the same name as that given 

to the Z element previously considered.12 The genera- 

tor, E, may be considered a being shorted out in which 

case the voltage appearing across the switch contacts at 

(a) would be numerically equal to the mutual Zpq element. 

12Tote that the two mutual elements have equal 
values. This is typical of static bilinear networks 
and can be used as a check on the arithmetic under these 
conditions. 
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itnother way of icturing the significance of the 

seoarate elements is as follows: Z reoresents the 
- pp 

voltage drop around the P mesh when unit current is 

suplied from with generator Eq being taken out of 

the Q mesh thus leaving two open ends there. The open- 

circuit voltage apDearing across tese terminels in the 

Q mesh is the numerical value of Zqp 
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CHAPTER IV 

THE TRANSFORMATION TENSOR 

The student has now seen a siniDle electrical net- 

work handled in two ways. In Chapter 2, the primitive 

Z for the network of Fig. i was written thus: 

i 

2 

3 

4 

5 

6 

7 

1 2 4 7 

h ___ 

b 

(r7) 

This conforms with equation (4) and mathematically por- 

trays the electrical proerties of the isolated coils 

of Fig. 2, Chaut. 2. 

In Chapt. 3, equation (50) was written for the 

sanie network but along different axes thus: 

p 
Z' = 

q 

O a 

Z14-Z2+Z3-t-Z4 -Z4 

_Z4 Z7+ Z+ Z5+ Z4 
( 58) 

Now the question is: if these matrices stand 

for the impedcnces of the same network, how can they 



39 

be derived from each other? Or, what intermediary matrix 

or matrices must be introduced so that one can be ob- 

tined from the other through manioulation rules out- 

lined in Chapter 2? 

16. Definition of a Tensor. 

A tensor is a niatrix,13 subject to a definite law 

of transformation, which has axes that ordinarily mathe- 

matically portray a definite uhysical entity. This 

transformation of axes is brought about mathematically 

by means of the so-called "transformation matrix, C." 

17. The Transformation atrix, C. 

The key for changing from one set of axes to 

another is the connection matrix, C. This contains the 

coefficients of' the new variables in terms of the old, 

or the "components of the transformation tensor along 

the given reference frames." This C ordinarily con- 

tains either units or zeros since the elements represent 

just the coefficients of the variables rather than the 

variables themselves.14 

135ee Chapt. 2, .rt. 2. 

14The mathematical reoresentation is: 

X 
C, - 



The transformation matrix is set up in terms of 

the currents for most purposes. s an example, in the 

network which has been coisidered thus far, the old cur- 

rents or coil currents from the primitive network of 

Fig. 2 were written: 

1 2 4 F7 

I 
= Il 12 13 14 15 15 17 amps. (59) 

The mesh currents of rt. 13, wbich might represent the 

new currents, were determined by assuming two mesh cur- 

rents in the matrix, 

I, 
= I 

'ql (SO) 

1\TOW it is possible to construct a set of equations 

according to Lirchhoff's first law and the theory of 

superposition (see .rt. 13) by expressing the old cur- 

rents in terms of the new (see Fig. 3): 

Old Currents New Currents 

Il = 'p 

12 = 'p 

13 = IP 

14 
'p 

- 'q 

15 = 'q 

Io = 'q 

17 = 'q 

(si) 



2; 

z6- 

Figure 4. 
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fter the student has constructed this set of equations, 

the thought required to analyze such a network is coni- 

pleted--the rest is simply mechanical manipulation. It 

is anparent that these equations could be developed with 

ease from the most comlicated tye of circuit. For 

practice, the student may make up a mesh circuit like 

that shown in Fig. 4. The table here would be: 

Old Currents New Currents 

I = 
i 

I 
a 

12 = 'a 

13 = a+ 'b 
(62) 

I = 
4 

I -I 
b o 

= IC 

16 = 

17 = 
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This illustrates the importance of keeing signs straight 
when writing the equations. With practice, the student 

will beconìe accustomed to writing these coil currents 
in terms of mesh currents. The direction assumed is not 

important if one is certain to be consistent after these 

initial assuiaotions have been made. 

The transformation matrix is simply constructed 

by referring to the coefficients of the quantities in 

the tables. For example, the C for the circuit of Fig. 

from Table 61 is 

i 

2 

0= 
4 

Z) 

6 

(6) 

This matrix, in reality, is a shorthand form of the al- 
gebraic equations written in (61). 

The C for the circuit of Figure 4 can also be 

constructed froni the table of (62): 



J- 

2 

3 

4 

5 

5 

L 

u 
u 

u. u.. 
u u 

(a) 

It is interesting to note that the primitive Z's for 

these two circuits would be identical since both have 

seven coils and no mutual impedances between coils 

exist. Thus the distinction between the two circuits 

in tensor notation is brought about by the different 

connection matrices of (63) and (84). 

18. Transformation Formulas. 

The old currents can now be written in terms 

of the new by the following equation: 

I = C P . (65) 

To coordinate this relationship with the manipulations 

of Chapt. 2, substitute the quantities of .rt. 17 in 

(65) and perform the multiolication: 



IJ '21 '3 I 
' 

J 
' 

I '61 '7 
I = 

6 

7 

r 
Iq 

1 2 3 4 5 8 7 

Ip 1p 'p 
¡ 

'p'q 
f 

Iq Içj 
f 

Iq 

(66) 

Equating components just as reals and unreals can be 

equated in vector analysis: 

1=1 
i p 

1=1 
2 p 1=1 
3 p 

14 
= 'p - 'q 

15= 'q 

16= 'q 

I7 
'q 

(67) 

This checks table (61), thus verifying the processe 

The old coil voltages can also be written in 

terms of the new mesh voltages by applying the following 
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e' = C e. (ea) 

Substituting the quantities of the illustrative exam- 

pie: 

or 

1234567 
p 1 1 1 1 e1 

e'= 
1 

q -1 1 1 1 2 e2 

3 e3 

4 e4 

5e 
6 e6 

7 e7 

p e1-'- e2+ e3-,- e4 

- volts, (69) 
q e7+e6+e5-e4 

ep= e1-t- e2-i-e3+e4. (70) 

eq= e7-t-e6+ e5-e4. (71) 

This checks equations (54) and (55) of Chapt. 3, based 

on Kirchhoff's laws. 

inal1y, experimentation with the laws of mani- 

pulation will reveal that 
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z' = z c.15 (72) 

This is one of the most iinportnt relationships of all 

in changing froni old quantities to new. Primed quanti- 

ties are always the new; unprimed, the old. Taking the 

Z of equation (4), .rt. 4 for the primitive network and 

substituting it in (72), 

1234 567 1 2 3 4 5 6 7 ,p[ijiii i 

-1111 2 

4 

5 

6 

7 

1 2 4 F A 

z1z2z3 z4 
S ¿5 ¿7 

I 
rai 

11 
21 
31 
4 

5 

6 

7 

p q 

1 -1 

1 

1 

1 

C! 

Zl Z2±Z31-Z4 i 
-z4 Z4-t- Z5-I. Z51- Z7 . 

.0 

(73) 

15ee page 104, Tensor Analysis of Networks by 
Gabriel Kron. G.E. 3eries. John Wiley & Sons, Inc. 
1939. New York. 
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which checks the Z' of equation (50). 

19. Summary. 

So the three important equations for changing 

from old to new quantities are: 

I = TP (7g) 

e' = e (75) 

Z'= CZC. (go) 

These should be memorized by the student. It is impor- 

tant that the order be kept as shown for these equations. 

They form the basis for nearly all ciculations in ob- 

taming circLit values in tensor analysis. 



CHAPTER V 

ThTEDANCE REDUCTION FORLtL..3 

2'. Elimination of :eshes. 

The engineer is often interested in circuit va- 

luas for only one part of a circuit without reTard to 

the remainder of the circuit. .lso, the mathematician 

may wish to obtain only one or two unknowns from four, 

five or more simultaneous ecivaticns. For one, two or 

three simultaneous equations, algebra conveniently lends 

itself for solution. But for more than three or four 

equations, the algebra becomes burdensome. The student 

in electrical engineering may wish to select two or 

three unknowns from six or seven simultaneous voltage 

eauations without having to handle the whole group twice. 

Matrix algebra provides the impedance reduction 

formulas which allow the student to eliminate certain 

meshes or other circuit axes by combining their effects 

on the retained meshes or elements, without disturbing 

the accuracy of the calculations. Mathematically, it 

is possible to solve for any unknowns desired without 

going through the extensive work required by ordinary 

algebraic processes. 
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21. Impedance Reduction Foruulas. 

Thus far, twa sets of axes have been described 

in this treatise: 

e, I, Z, (pri.Llitive or oriina1 network) (77) 

e', I', Z', (the mesh or connected network). (78) 

Now a third set of quantities can he added which describe 

axes of the meshes retained after the effect of those 

eliminated has Leen accounted for through the impedance 

reduction formula stated in (eO): 

e" Tfl ?, (7g) J.., 

In ChaDt. 4, equations (74), (75) and (76) made 

i-t possible to transform the quantities of (77) into 

those of (78). Now it is oossible to write the quanti- 

ties of (79) in terms of those of (78) thus making a 

further transformation. This is done by application 

of the impedance reduction, 

Z" = Z - z z . (80) 

The corresponding voltage reduction formula 

which will prove useful is: 

e" = e - Z e . (81) 



The quantity, I", is initially assumed. 

The derivation16 of equations (80) and (81) 

is obtained by taking the equation, 

e = Z I , (82) 

and making the arbitrary suhstitution7 

e1 
Izi Z2 Il 

____ = _________ (83) 
e2 1Z3 Z4 12 

The axes are unlabeled. ssume that the curent, I2 

and the impressed voltage, e2, are the quantities in 

the mesh to be eliminated. Equation (83) is written 

algebraically 

e1= Z1 I + Z2 12 , (84) 

e2= Z3 I + Z4 12 e (85) 

To eliminate 1.2 from (85), 

Z4 12 = e2 - Z3 I 

12 Z4 ( e2 - Z3 I 
) (86) 

163ee .. Short Course in Tensor analysis by Gabriel 
Kron. General Ilectric $eries. John Wiley & Sons, Inc. 
New rorIç 1942. Pages 15-16. 

17The primes are omitted in this derivation for 
reasons of convenience. 
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Substituting (86) into (84), 

e1 = Z1 I-- Z2 Z1 ( e2 - Z3 I ), 

- Z1 11+ Z2 Z4 e2 - Z2 Ç1 z i, 

= Z2 e2+ ( Z1 - Z2 z1 z ) i, (87) 

f roi which 

e1 - Z2 Ç1e2 = - Z2 Ç1 z3 ) i (88) 

dopting the iroper priflies for ntesh quantities (see 

footnote (17)), (88) can be written 

ej - Z Z e = ( Z - Z Z ) I . (89) 

This can be represented by the new axes thus: 

e" Z" (90) J. 

where I" is the retained current, in this case, I 
Then, 

and 

Z" = Zj - Z Z1 Z , (91) 

e" e - Z Z,1 e (92) 

Some of the uses of equations (91) and (92), clled ini- 

pedence and voltage reduction fornu1as resectiveiy, 



will now be demonstrated. 

22. Solving Ordinary Simu1tneous guations. 

Suose four simultaneous equations are given 

which re representative of some network, and it is 

desired to find only the unknown current, i1. The 

equations follow: 

311+ 12 - 213 + 414 = 15, (93) 

11 - 3i2+ 313 - 14 = -2, (94) 

2i1 + 212 - 13 - 214 = 5, (95) 

-f- i2-f 413 + 314 = 30. (96) 

These equations can be written in matrix form to con- 

form with the basic equation, E' = Z' I', thus: 

1' 2' 3' 4' 1 2 
e' 

= J 

15 -2 - 
J 

30 
J = lei 

I 

e2 

1' 2' 3' 4' 1 2 

1' 
J 

l 
I 

'2 
I 
'3 

J 

14 
J = I 

1 
I 

2 
J 

1' 2' 3' 4' 

1 

2 

Z' = 
3 

ri 

1 2 

=1 Z1 Z2 

2 Z3 Z4 

(97) 

( 98) 

(99) 
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This introduces a new cancept--that of comound matrices1 

which is a matrix within a matrix. As an example, Z' 
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is shown divided into four sections in (99) and then re- 

labeled. For the elements of the second matrix in (99): 

Z1 = 1' 

2' 3' 4? 

Z2= l'i i 
i 1 

2' 

Z4= 3' 

4, 

it 

2' -1 

3' 2 

4? 4 

2' 3' 4' 

-3 3 -1 

2 -1 -2 

1 4 3 s 

(100) 

(101) 

(102) 

(103) 

L\TOW it is possible to use (100), (101), (102) and (103) 

for substitution in equation (91) to solve for Z": 

1' 2' 3' 4' 2' 3' 4' 

Z" = 1' - l'i li-21 4 
j 

. 2' 

3, 

4' 

gI 

1' 2' 3' 4' 1' 
= 1t _ 

i'1571631-31 () 

48.Z3 

C 104) 

( io s) 



1' 1' 1" 

=a.1tI144I+i?157I1 ___ ______ ____ 1" I 201 

I 

(loo) 

Then e" can be calculated by substituting18 the quanti- 

ties of (97) and (99) in (92): 

le 

e" = 115I - 

2' 3? 4? 

1'[7 63 

le i' 

= JisJ - 15191 

ri? 
= i 

[ioi - 

48 

2' -2 7-1 

3? _5 

4' 30 

i'l i" 

151911 = 201 
J 48 

(107) 

(108) 

(109) 

With the values of both e" and Z" known, it is possible 

to solve for the required current, 

i" = i1 = e" = Z"' e" 
____ Z" 

it' ____ 
= l'ti . l" 20111 = 1" . (110) 

iTl [48I 

il 
= 1. (iii) 
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l8E is desirable to retain the value of the pro- 
duct of Z Z- from impedance reduction calculations 
for use here. 
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If it were desired to obtain the values of two 

of the unknown currents, the Z1 of (99) would have been 

a 4-element 2-matrix. The result, then, would contain 

two simultaneous equations which could have been readily 

solved. Sets of simultaneous equations can be broken 

up by steps using these compound matrices and reduction 

formulas; there is no longer a practical limitation 

to the nuihber of simultaneous equations which can be 

solved in a systematic manner. 

23. Calculation of Network Impedances Between Terminals. 

Suppose it is necessary to know the impedance of 

the network shown in FIg. 5; that is, the impedance which 
2. 4 

Jilgure b. 

would be measured by 

an impedance bridge 

between points A and 

B with the generator 

open circuited. 

Resistance values are 

given for the impe- 

dances, but complex quantities could be used if desired. 

Furthermore, each element of the network might be matrix 

In character. 

The first step in tensor analysis of a problem 

of this kind is to assume current directions in the in- 
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dividual coils. This can be done 'by laying out the pri- 

raitive network as detnonstrated previously or by redraw- 

I 'E 

].fl the circuit with 

1 

c4 
4:: 

arrows showing these 

-m j ç_ 
assumed directions. 

q' 

(7;'\ The straight arrows 

c 

- 
in Fig. , then, re- 

Figure 6. 
present the positive 

direction of current 

flow in the individual coils as assumed 'before the cir- 

cuit was connected. fter connection, the new mesh cur- 

rents are indicated by the circular arrows--the meshes 

being labeled p, q. and r. &issuming the existence of 

no mutual effects between coils, the prbitive z is 

-& -- -- -- -- L 
gO 
a 2 

Z= b ohms. 

C 6 

d 3 

f 

(112) 

The connection matrix, C, which matches the old coil 

currents with the nev.T mesh currents, by inspectión is 



a 

C = h 

a 

f 

D Q r n 
n n_ 
nu -u . 

(113) 

The impedance matrix, Z', can now be calculated froni 

equation (72): 

Z' = C.ZeC 

gab cd f 
p 

=cj 
r 
u.n.a 
II-I. 

gab cd f 
p 

=9 
r 

g 

s a 

b 

C 

a 

IDINRU 
Rua.'. u... 
u...,. 
u'..'. 

ma 
imu um 

( 

C 

5? 



Z =q 

r 

o a r 

ohms. (114) 

This is the new mesh Z' which represents the impedances 

along the mesh axes. As the student becomes familiar 

with these concepts, he will be able to write out the 

Z' for a simple network such as this by insoection. 

For example, the value of Z is the sum of the resis- 

tance values around the P circuit, Z is the drop 
qp 

seen by the mesh when unit current flows in the P 

mesh; since 'q 
is reversed in respect to I in that 

C-leg, the sign must be íinus, hence -6. The R mesh 

sees a drop of volts in the ouosite direction to 
'r' 

so the Zrp element is -3. The other elements could be 

written froni inspection in a similar fashion. 

Now to et the equivalent resistance of the dr- 

cuit as seen by the generator, e; that is, to get the 

z' value of R by which the 

Figure 7. 

network of Fig. 5 may be 

replaced (see Fig. 7), 

eliminate the P and meshes. 

apPlY the impedance reduc- 

tion formula (91) and 

5e 



So the mesh Z of (114) may be subdivided as follows:19 

D Q I' 

p - - Z4 Z 

Z2 Z1 

r 

(115) 
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The student will note the rearrngernent of subscripts 

to suit the equation (83); this illustrates the freedom 

of shifting indices as long as the relative order remains 

unchanced. 

Substitution in (91) gives: 

zfl= Z1 -Z2ZZ3 

r p g p g 

= rl 4 J 
- rl -3 -1 

J 

.p 11 6 
I 

i .213,(ii7) 

IL 
g 6 11 

wh e r e 

= (11) (11) - (-6) (-6) = 85. (118) 

19 . 

Another way to hanale this Z-rnatrix would be 
to rearrange rows and columns thus: 

r n 

I 

i 

4 -1 -3 

-1 11 -6 

'z - L) 

(116) 
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Z" = r 4 
f 

- r 
J 

-39 -29 

: 
ft 

r r 

= r[ 4 
I 

- r -F146 = 4 - 1.72 
85 

= 2.28 ohms. (119) 

The solution retains only the R mesh as the other two 

meshes drop out in the multiplication. Thus, by this 

mechanical process, ordinary delta-wye transfornations 

are carried out. 

24. stablishing Equivalent Voltages. 

The problem of art. 23 illustrates how an impe- 

dance network may be replaced by a single impedance. 

Figure 8. 

r- 

4 

Figure 9. 

however, it does not illustrate how voltages of a 

z'- 

network may be replaced by a single voltage. Consider 

the circuit shown in Figure 8. Here there are three 



generators in parallel supolying a load, ZL. The 

dotted line boxes in these power sources and Fig. 9 

shows the equivalent circuit after the three generators 

have been reolaced by one. 

The procedure followed in rticle 23 would give 

the value of Z" in Fig. 9. The P and Q. meshes could be 

eliminated, leaving only the R mesh. The impedance 

around this mesh would equal the sum of Z" and ZL, the 

former being the required impedance. 

To et the equivalent voltage, it is necessary 

first of all to express the voltage in terms of the 

P, and R meshes tus: 

e = 
a r 

le 1e Ieri 
I 

q i = I 

1:21 (120) 
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where the mesh voltages are obtained by (75). Then by 

applying equation (92), the resulting e" may be obtained. 

It is interesting to consider that Z might also represent 
some oom?licated network which has been replaced by a 

single impedance. 

25. Delta-Wye Transformations. 

It can be shown that the impedance reduction 

foru1as erform the operation of transforming a given 

network from a delta combination to a wye combination. 
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For example, consider the two three-phase circuits 

in Fig. 10: circuit (a) has a balanced delta-ccnnected 

load and circuit (b) shows the equivalent wye-connected 

load which could replace that of (a) without changing 

the ower consumed. The voltage sources in each case are 

identical. 

Circuit (a) 

Circuit (b) 

Figure 10. 

The mesh impedance tensor for circuit (a) is 

by ins ection: 

zc- 



p 

q 

r 

O V 

Za O Za 

O Z.1 

Za Zb 

__________ 
Za+ Zb+ Zc 

(121) 

Now the R mesh mnay be eliminated from circuit (a) by 

applying the impedance reduction formula, 

z't = z1 - z z1 z , (1220 

which allows t1e following substitution: 

pq r r p q 

I 
Z O - piZ I . rl i I r _zI _Zb 

I 
a I pl I ________ ,z+ z +z I _______ - ZJ a b c] 

n a 

Z - ZaZb 
Za+ Zi- z-; Za+ Zb+ Z 

bZa z2 
Z.b - b 

Z+ Zb+ Zc Za+ Zb+ Zc . 

(123) 

By inspection, the mesh impedance tensor for 

circuit (b) can be written thus: 

n' 

p'IZ1+Zl -z2 I Z'- I i 
I (br _2 z2 z31 

(124) 
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Since the power is invariant in the two circuits, 

the impedances looking along the same axes must be equal. 

Therefore, it is possible to equate the Z element of 
pp 

(123) with the Z element of (124): 
p,p, 

Z2 z+z = z a (125) 
1 2 a Za+Zb+Zc 

Equating the Z element with the Z element: 
q'p' 

-z = ZbZa 
2 

Za+ Zb+ Z 

Then by substituting (126) into (125): 

(126) 

Z = ZaZo 
, (12?) 

4+Z +Z 
a b o 

which is the formula for changing from delta to wye. 

Also it can be found that 

z = ZaZb 
2 , (128) 

Za4 Zb4 Z0 

z3 = ZbZc (129) 

Za+ Zb+ Z0 



26. Solution of Three-Phase Unbalanced iye Loads. 

The derivation of the formula which gives the 

voltage drop across a phase of an unbalanced three- 

phase wye load is ?ossih1e with the use of the tensor 

analysis developed thus far. Consider the three-phase 

___________________________________ circuit shown in 

I 
z. / i g. 11 s s urne 

Figure ii. 
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that the impedances 

are given and are 

not necessarily 

equal in either 

phase angle or mag- 

nitude. The vol- 

>_._r& I 
2 tages as given, 

4('3) 

La and b' 
may 

/7 
I 4' 

- 

not be in terms of 

what the student 
Figure 12. 

is accustomed to. 

For clarity, Figure 12 gives the usual three-phase 

voltages e:p1oyed. The voltages of Figure 11 can be 

written in terms of those in Figure 12 by inspection 

as follows: 

E E12 (130) 

= E23 (131) 



- = 3-1 (132) 

+ thb = '1-3 
(133) 

.ssu.ruing meshes and B as shown in Fig. 11, 

the connected Z' can te written from inspection as follows: 

a 

Z' = C Z'C = 
b 

a h 

Z1+ Z2 -Z2 

Z2+ z3 
(134) 

Since it is desired to find the voltae drop across a 

phase of the load (for instance, e1), the line current 

flowing into that phase is of importance. This line 

current is mesh current 
'a' 

and is found by taking the 

inverse of (134) thus: 

Y=Z_ = 
b 

a b 

Z2+ Z3 

Z2 ¿+ Z2 

The voltages, 

i 
z1z2+ z1z3+z2z3 (135) 

E 
= aIb1 , (13o) 

are also known. aquations (135) and (136) are co:bined 

to give the current equation, 

I = Y'E , (137) 
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from which 

But 

i Ea(Z2tZ3)+EòZ2 (13S) 
a + 1 2 

e1= 'a l= a(Z2+Z3)ZlbZ2Zl (139) 
Z1Z2-F Z1Z3+ Z2Z3 

This is the voltage droo across Z1 in terra of hriown 

voltages and impedances. Replacing each inroedance with 

its admittance (Z=), and simplifying: 

e = + (a+ Eb)Y3 
i Yl+Y2+Y3 

. (140) 

Writing the voltages of (136) in terms of those used in 

Fig. 12, erri1oying equations (130), (131) and (133), 

e1 i1_2Y2+ E1_3Y3 
(141) 

Yi+ Y2-l-Y3 

This is the equation for the voltage drop across Z1 in 

terms of given values of voltage and adrittance. 
With these reduction formulas, complicated networks 

can be simplified into their sialest forni. .à.s the stu- 

dent workssaniple 7Drobleats using (91) and (92), he will 
become aware of the tremendous rower of this new tool. 



CHÁPT.R VI 

tJTUAL EFFECTS 

27. Omnipresence of L:utual Effects. 

The physicist ordinarily analyses a single 

element or physical entity as it exists in space alone. 

He makes his investigations on the basis of the element 

itself and attributes its behavior to certain inherent 

peculiarities. 

The engineer, then, niust take these findings of 

the physicist concerning the theory of the element it- 

self and proceed with his work--that of analysing the 

results of physical connection of a number of these com- 

ponents. Thus mutual effects gain considerable impor- 

tance--their effects being deterr:ined by proximity of 

the various entities and the nature of the edium sepa- 

rating them. 

In network theory, mutual effects exist when two 

independent circuits or electrical e1e.ents ere in aro- 

ximity to each other such that a change in the current 

or voltage of the first will cause an induced voltage 

or current, resaectivaly, in the second. It is obvious 

that mutual effects exist between all elements in the 

universe, but only under secial conditions are these 

worthy of investigation. 



28. Balanced and Unbalanced :utual ffects. 

In the stationary circuit containing resistance, 

inductance and. caDacitance--the so-called static bilateral 

network--the mutual impedance between any two coils is 

the same regardless of whether it is taken from the first 

to the second coil, or from the second to the first. 

Thus, the primitive impedance tensor would be symmetri- 

cal in respect to the diagonal terms. current in the 

first coil will induce an enif. in the second. ccii of 

the same magnitude as that induced in the first coil 

when a similar cLrrent appears in the second. ccii. 

Balanced mutual effects exist in practically all sta- 

tionary, electrical networks which do not contain vacuum 

tubes or moving elements. 

Unbalanced mutual effects between coils exist in 

electrical equipment where the reletive positions of the 

coils change with respect to time. Rotating machinery 

is a notable example of unbalanced mutual impedances be- 

tween coils since there is mechanical motion in the genera- 

tion of enif. s a further example, vacuum-tube, mutual 

admittances between elements are unequal because of the 

movement of electrical charges. Copper-oxide circuits 

and crystal detectors are also examples of circuits hay- 

Ing unbalanced mutual impedances or admittances. 
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29. ReDresentation of Tutua1 Effects. 

The absolute value of a mutual effect betv'een 

two coils can be determined with a voltmeter and an 

ammeter. If direction is also desired, a wattmeter 

may be added. 

In Fig. 13, there are two coils which are assumed 

to be wound on the same magnetic structure. If these 

coils had no mutual effects 

between them (such as the ones 
co,! iz) 

studied thus far), the primi- 

Figure 13. tive impedance matrix would 

be: 

1 2 

lIzlt 
I 

Z I 

i 

i (142) 

21 1Z2 
I 

Eut since mutual effects are present, it is necessary 

to make a new set of measurements. In Fig. 14, the 

magnitude of the Z21 element 

circuit for measuring the 

Coi! (I) 

________ _________ is shown. With the a-c ,w I 

co/I (2) i 

0 1 

voltsge soiree across coil 

Figure 14. (1), the rheostat in series 

is cut out until the ammeter, 

I, records one ampere. Then the reading of the volt- 
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meter, E, is the value which can be placed directly in 

the Z21 element position in (142). The sign before this 

mutual impedance may be either )lus or minus; this can 

be determined by inserting a wattmeter with its current 

coil in the coil (i) circuit and its voltmeter coil in 

the coil (2) circuit. The wattmeter is connected so 

that it should read positive for t1e directions which 

have been assumed at the beginning, that is, the senses 

of voltages in the primitive circuit. Then if the meter 

reads negative, the sign before the mutual impedances 

will be netive; if positive power registers, the sign 

is ositive. 

The primitive circuit for two coils which have 

mutual effects between them is shown in Fig. 15. The 

z,,7 

rirn 
Figure 15. 

coils are shown with an 

assumed direction, just 

as heretofore. The 

curved line connecting 

the two coils indicates 

the presence of a mutual 

imoedance from (1) to (2) as well as from (2) to (1). 

The magnitude, it might be assumed, is Zm indicating 

that the wattmeter read ositive for the connection of 

Fig. 14. Note that each time a Z-rnatrix is written, 
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each element may be cosidered as being a reel number, 

a complex number, or even another matrix. The revised 

primitive Z for the network of Fig. 15 is: 

1 2 

Z - lr1 
I 

Z 
(143) 

2 ZIZI 
flu 21 

30. Mutual Effects Fetween Two Coils. 

Sup ose the coils of Fig. 15 are connected in 
z; 

series such that the 

mutual effects are 

additive (see Fig. le). 
Figure 16. 

The connection metrix 

for the coils and mesh shown is: 

11 
C = (144) 21 

From (143) and (144), the mesh Z becomes: 

i 2» 1 2 

z' = CZ'C = AI i 
I 

1 Z1 ZmI .1 1 

(145) 
. Z Z21 2 1 

A 

= 1.I 
zl+ Z2-t- 2Z 

J 
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defined a1on', the (A) axis. 

Now if the two coils are connected in series op- 

posing (see Fig. 17), the connection matrix is: 
z, - 

A 

i I il 

21-1 
(146) 

Figure 17. 

The mesh Z, or Z' is: 
i 2 1 2 A 

z' = zc = A i 
J 

-1 j 1Lz1 Zm i i 
21 Zm Z2 2 -i 

k 
= AJ Z1+ Z2 2Zm ohns. (147) 

These sirio1e derivations may give the student some idea 

of the nossibilities offered by this method of analysis. 
A rigorous treatment of the transformer is also 

possible. Laboratory measurements can be made so that 
the elerents of the mesh Z-niatrix or the Y-matrix (the 
admittance natrix) can be filled in from meter readings. 
Since the transformer offers a study in itself, it will 
not be introduced in this text. The student is referred 
to KroL''s, 'tTensor Analysis of Electrical Networks."2° 

20ee nae 26i. G.E. Series. John iLey sons, 
New York. 19. 
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l. The Bridge Circuit. 

The student may now be aware of the power of this 

mathematical tool in analyzing an electriesi circuit. 

Tensor analysis may also be used to derive useful equa- 

tions v:hich would ordinarily be burdensome using alge- 

braic methods. also, the thought carries through with 

each logical step and the student is able to get a fir- 

iigure 18. 

mer grasp on the 

fundamental con- 

cepts ebodied in 

a particular pro- 

blein. 

To demon- 

strate one of the 

applications of tensor analysis, refer to the ordinary 

bridge circuit of Fig. 18, where Z1, Z2, Z3 and Z4 re- 

present the impedances of the four arms of the ordinary 

iiheattone bridge, one of which is the unknown imped&nce. 

Bg represents the voltage source, assumed here to be 

without impedance, and Ed is the voltage that aooears 

across the detector. Ly inspecting this circuit in the 

manner described in art. 29, the primitive network can 

be drawn. .ssume it to be as shown in Fig. 19. Here 

and are both zero; also the voltages E1, E2, L3 



I-® 

EL1 

Zm 

ri" 

Figure 19. 

and E4 are zero since there are no impressed voltages 

on these coils. The network of Fig. 19, then, is the 

most general circuit of the coils and voltages considered 

in Figure 18. 

The 3rirdtive or original quantities are all 

brought together into the Z-matrix thus: 

z= 

-e 4 

u 

(148) 

The primitive voltages and currents may be represented 

thus 



e = 

i = 

i 4_ ri 

g 1 2 3 4 d 

'g 13 
J 

12 13 114 
I 
'd 

(149) 

(150) 
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The student may wonder about the sign of Ed as shown in 

(149). Although it doesn't make any difference in the 

results whether this sign is taken ositive or negative, 

it is helpful In working problems of this nature to dis- 

tinguish between a voltage receiver and a voltge supplier, 

or a voltmeter and a voltage generator. 

The next step Is to interconnect the coils of Fig. 

19 into the circuit shown in Fig. 20. Mesh currents, 

,--- -.-- T T 
..' -' , . , 

Z . 

: r 
Í' 

c 

are assumed to 

1'E9 
t 3)4\(4 J ¿ 

flow. Note 

L_ _1::: 
generator and. 

Figure 20. 
. detector are 

both Dure mesh currents; this is done to clarify the 

results. Mathematically, the interconnection into the 

network of Fig 20 from the prir:iitive is made by the use 

of the following C: 



c= 

g 

i 

2 

3 

4 

d 

(; -1 fl 

E 

mm mm 
(151) 

The calculations necessary to obtain the new mesh q.uan- 

tities, Z' and e', are shown: 

z? =. ct.zc 

1 2 :3 4d 

=] IBEEU 

e. i P L 

.1 

2 

4 

d 

1 2 3 4 

ii 

___ 11 _ 

t--,' 

7? 



-4 

1 = 

i T) 

Z2Z4 1m24 Z4 

24 Z$-Z2-2Z-Z3+Z4 -Z3-Z4 

Z4 -Z3-Z4 

e' = C e = G 

1 

D 

2 % 

iimmu 
iitiii 

g 

.1 0 

20 

40 
d 

(152) 

g 

= i 0 (153) 

The mesh e' of (153) could have been written front 

observation; but the mesh Z' of (152) is difficult to 

predict because of the mutual effects. 

With these mesh quantities known, it is now 

possible to find the mesh currents by the use of the 

following matrix formula: 

i' = Z'.e' = y'.e' . (154) 

This involves solving for the inverse of Z'; first, 

the adjoint matrix (see equation 37, Art. il) is 



obtained: 

G 

i 

a i -n 

Z1Z3+Z2Z3+Z1Z4 

+ Z2Z42Zm( Z3+Z4) 

Z2Z3+Z2Z4 

Zm(Z3+Z4) 

Z2Z3 Z1Z4 

+ Z( z4z3) 

Z2Z4tZ2Z3 Z2Z3+Z2Z4 Z2Z3+L3L4 

-z(z34z4) +z3z4 t zfl1z4 

z2z3-z1z4 z2z3+z3z4 z1z2+z2z3 
+(z4-z3) +zflz4 

79 

(155) 

To calculate , the following equation is used giving 

its value in each diagonal and zero in all other elements: 

where = 

G 

LI'Z = i 

D 

G- i D 

rn-u 
DflU (156) 

Z1Z2Z3 Z1Z2Z4+ Z1Z3Z4+Z2ZZ4 

-2Z,Z3Z4 - zz3 - zz4. (157) 

This matrix serves as a check on previous work. If 

all diagonal values are equal and all other elements 

equate to zero, the work previously done is correct. 

The Y-rriatrix (inverse of Z) for thebridge circuit is: 



G 

Y=-;L-.1 

D 

G i D 

MGG MG1 GD 

LuG 11 1'1D 

''DG MDI ''1DD 
. 

(15e) 

where the M elements are shown in (155) and the value 

oî A. in (157). 

When the bridge is balanced, the voltage, 
d' 

must be zero and no current will flow through the 

detector. Mathematically, for balance the following 

relations must be true: 

= 0, (159) 

- 0. (160) 

From equation (154), it is possible to substitute 

(l5) and (158) to give the followine matrix expression: 

G1D G 

I'GIhlI'DI = k 

G i 1 

MGG M.1 MGD 

MiS M11 MiD 

MDG MDl MDD 

G Eg 

.1 0 

DEd 
(161) 

which can be written algebraically as three simultaneous 

equations, 



ai 

'g = EgMOG 

Ii = EgM1j. 

A 
= EÌ1DG 

dGD (162) 

A 
EdiD , (163) 

A 
EdMDD ; (164) 

A 

substituting (159) and (160) in (164): 

o = gDG (165) 

From this, it is necessary that 

I:DG= Z2Z3 - Z1Z4-)- ZZ4 -ZZ3 0. (166) 

since Eg is a finite voltage source. As A is some 

finite, value, the following expression must be true: 

Z2Z3 - Z1Z4+ Zm(Z4 - z3) = O. (16?) 

From this, it can be seen that if the ratio arms, Z4 

and Z3, were equal, the mutual effects would not hamper 

the accuracy of the bridge. For radio frequency mea- 

surements, this might be of intortance. 

To check the accuracy of (16?), the va].ue of 

Zm may be set equal to zero. The resulting equation 
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is the simple Whoatstone bridge equation, 

z2z3 = 

z1 Z3 

s (168) 
2 4 



CHÀITR VII 

JUNCTION PAIRS 

32. The Dual Concept. 

Recognition of the fundamental concept of duals 

is important in order that the engineer may more fully 

understand the possibility of mathematics as a tool for 

solving electrical networks. constant, arbitrarily 

ussined, is ordinarily taken as the quotient of the 

cause and the effect; as an examle, 

Z=E 
r (168) 

where L and I are two quantities which can be measured. 

Because of the nature of our electrical world, it 

has been found desirable to think of impressing generated 

voltages on low-impedance circuits with a resulting cur- 

rent flow. This is particularly true of networks whose 

prime ourose is t deliver large blocks of power through 

the medium of current. 

The advent of vacuum tubes and circuits in recent 

years has introduced a new concept. Here it is desirable 

to consider that currents are established in the electrodes 

of a vacuum tube due to a voltage; whereas, in the trans- 

former, voltage appears across the windings as a result 

of current flow. 



The study of tensor analysis lends itself nicely 
to the study of duals because of its general, all-inclu- 
sive nature. The connection matrix, previously used to 

write old currents in ternis of the new, may, in the 

dual concept, be used to write the old voltages of the 

primitive network in terms of the new connected voltages 

or junction ¿airs. 
To define a "dual" would be ?ointless; a descrip- 

tion serves better for such a concept. In this chapter, 

the electrical duals, voltage and current, will be 

discussed in the language of tensor analysis which has 

been developed previously in this thesis. It is 

interestin. to note that these quantities are measured 

in a similar fashion; that is, they both manifest them- 

selves in driving the meter irdicator with the use of 

the same principle, but the ammeter has a low impedance 

in respect to the test circuit while the voltmeter has 

a very high impedance in comparison with the unknown. 

But the brain of man must have sorne concrete manner of 

comparing networks, so the dual assumption of voltage 

and current has been expressed. inailarly, man has 

created the duals of mímtter and energy, electric field 
and magnetic field, magnetic flux linkages and current, 

and many others. They may be thought of as dual mani- 

festations of nature created by sian to define some con- 



stant or comparison factor. 

33. Thevenin's Theorem. 

This theorem must be understood by the student 

before he can accept the accuracy of the dual concet 

of voltage and current. Thevenin has stated that any 

network as viewed from the terina1s can be replaced 

by an impedance in series with a voltage where the 

impedance is the impedance of the network as measured 

from the terminals (with all internal voltage generators 

short-circuited), and the voltage is the voltage appear- 

ing across the terminals when open-circuited. For 

X 

ç 

Figure 21. Figure 22. 

'ç 

example, consider the complicated circuit of Fig. 21 

with the two leads xx being brought out. The small 

circles here represent generators in series with 

Impedances. Figure 22 shows the equivalent network 



which will replace that of Fig. 21 by Thevenin's theorem. 

By replacing each terra of Thevenin's theorem 

with its electrical dual, the restatement is: any net- 

work as viewed from the terminals can be replaced by 

an admittance in parallel with a current where the ad- 

'ç 

Figure 23. Figure 24. 

mittance is the adiittance of the network as measured 

from the terminals (with all internal current generators 

open-circuited), and the current is the current estab- 

lished across the terminals when short-circuited. s 

an examle, the circuit of Fig. 2 may be replaced by 

the simule one of Fig. 24. 

34. Reason for the Junction Pair Concept. 

In Chapter 4, rtic1e 17, the transformation 

matrix, C, was written fro the coefficients of Kirchhoff's 

current equations. This connection tensor provided the 



step by which the oriina1 coil currents could be writ- 

ten in terms of the desired mesh currents when the cur- 

rents and impedances of the network were k.iown. How- 

ever, the question concernin the possibilities of 

having voltages and adriiittances given naturally 1rises. 

With the method used thus far, the student must find 

the Z' for the network and then take the inverse in 

order to et the currents; this involves two sets of 

calculations. To simDlify the solution of such a pro- 

bleni, the junction-pair ccncet is introduced. 

As will be noted in later studies, certain tyes 

of circuits lend themselves more readily to the junction- 

pair Idea. This will be discussed niore fully in Article 

37. 

To write the transformation matrix, C, In Chap- 

ter 4, Kirchhoff's current equations were used. Now it 

will be possible to use his voltage equations to write 

the transformation matrix, A, which is associated with 

the junction-pair concept. This tensor changes old 

voltages or coil voltages into new voltages or those 

across arbitrarily chosen junction pairs. The duel of 

the word mesh is junction pair just as the dual of cur- 

rent is voltage. Also, just as currents were shown 

previously to have a direction, voltages may also be 

represented by arrows, indicating whether the voltage 



is being consumed or supplied by the network element. 

A junction pair, as its name suggests, exists 

in a circuit wherever there are two junctions or connec- 

ting oints describing a finite imoedance lying between 

theu In the circuit. 

B 

For examle, in Fig. 25, AB and 

AC are junction 

Figure 25. 

B C I) 

Figure 26. 

pairs in the or- 

dinary -fi1ter 

circuit. Another 

illustration is 

in Fig. 26, the 

T-transmission 

line, where AB, 

AC and AD are the 

junctiofl pairs of 

the network. It 

may be of value 

for the student to note that the network or Fig. 25 has 

three meshes whereas that of Fig. 26 has but two. Con- 

versely, the -networ1c has two junction pairs while the 

T-network has three. This iay give the student a clue 

in regard to the selection of the type of approach to 

a given network solution. Obviously, the circuit of 

Fig. 25 would be more adaptable to the junction-pair 

approach while that of 'ig. 26 lends itself to the mesh 



approach; in both cases the number of unhnowns with 

which the student must deal has been reduced to a mini- 

mum. 

To suniniarize: the mesh approach to a problem 

in tensor analysis eiiìbodies that which has been studied 

thus far--the assigning of convenient currents to a 

given circuit and solvjn for a s:esh impedance tensor. 

ieSh voltages may then be solved for but solution of 

mesh currents requires an extra step. The junction-nair 
approach involves the assigning of convenient voltages 

across the available junction pairs of the given network 

and then solving for the currents flowing in and out 

of the bordering junctions. Here an extra step would 

be necessary in order to solve for the unknown voltages. 

The junction pair solution will now be taken up. 

35. The iriraitive Y. 

Just as the primitive Z was illustrated in Chap- 

ter 2, Article 4, it is ossib1e to illustrate the 

primitive admittance tensor, Y. Consider the ordinary 

filter shown in Fis. 27. Here the power source is 

represented by a current generator and may be the out- 

put from some vacuum-tube circuit. 
The electromagnetic generator may be thought of 



figure 27. 
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a a voltae generator whose reu1ation is reresented 

13T an impedance in series. i vacuum tube, on the other 

hand is in reality a current generator with an adittance 

in narallel limiting its outut. For perfect regulation 

in the former case, Z must be zero; for such a condition 

in the latter case, the imedance must be infinite, 

making the athittance equal to zero. 

Referring again to the network of Fig. 27, the 

student will note that each coil has been defined by 

the admittance symbol, Y, where 

in each case. 

The orimiti 

arrows in opposing 

generator produces 

voltage. In the G 

out at (a) if that 

Y = Z1 (169) 

ve network, drawn in Fig. 28, shows the 

directions to indicate that the 

voltage while the admittance receives 

circuit of Fig. 28, current can flow 

same current is returned at (a'). 



b 6' 

C C' q' -lE3 Q" 

r,nL 
Figure 28. 

rl 
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The sanie is true for each of the other elemental net- 

works; for exairi1e, current can be tapped at (b) to 

return to (b'), (e) to (e'), etc. 

The priL itive network of Figure 28 is mathematical- 

ly represented thus: 

i 2 3 L 

1g i 2 L 

g 

i 

2 

3 

T 

M 

(170) 

(171) 



e = 
g 1 2 3 L 

Eg E1 h2 

The matrix equation involved is 

. 
(172) 
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i = Y.e. (173) 

To get the adittance ratrix for the connected network 

of Figure 27, an equation paralleling that of the trans- 

formation tensor, C, in Chapter 4 is used: 

Y' = At.Ye.. (174) 

Here A is the connection matrix associated with the 

junction-pair concept. 

36. The Connection atrix, . 

After the primitive network has been established 

(see Fig. 28 and equations 170, 171 and 172), it is 

A 

Figure 29. 

necessary to ssunie junction-pair voltages in location 
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and sense or direction. Just as mesh currents had to 

be assumed in dealing with the circuits orvious1y 

studied, soe 1nitil assumptions must now be made be- 

fore the mechanical rocess of connecting the circuit 

can be accomplished. In Eig. 29, the filter circuit 

of :Fig. 28 is redrawn with arrows on each coil and cur- 

rent generator showing the assumed directions of the 

voltages in relation to each other in the circuit. l- 

so the junction pairs AB and C are assumed in the 

directions shown by the diagonal arrows. Let L repre- 

sent AB and Eb, AC. 

Writing Kirchoffs voltage equations around all 

possible closed paths (including the two ficticus paths 

introduced to connect the circuit), the following equa- 

tians result: 

Egf Ea = o, (175) 

Ei+Ea = o, (176) 

E2+EaLb = 0, (177) 

E31Eb = 0, (178) 

= 0. (179) 

In order to prevent difficulties arising in the use of 

arrows and signs, two rules are suggested: (1) voltages 

are added against the direction of the arrow when that 
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voltae is taken across a current generator but added 

with the arrow when the voltage is taken across a power- 

receiving element and represents a voltage drop; (2) 

the SUhl of te voltages around any closed loop is equal 

to zero. s an example of the first rule, in going 

across 'g' the positive direction is downward against 

the arrow in Fig. 29 while the positive direction across 

Y1 is downward with the arrow. Equations (l'75) to (179) 

illustrate the second rule. 

To write the connection matrix, A, it is neces- 

sary to equate cid voltages in terns of the new. The 

equation, 

e = (180) 

allows the following A matrix to be constructed from 

the resulting coefficients: 

g 

i 

3 

L 

a b 

Applying equation (174) to (181) and (171): 

(181) 
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g123L 
a-1-l-1 

Y,- - b 1-1-1 1 

a 

b 

2 

3 

T. 

i 2 3 L 

.L. ) Li 

I Ì I 

g Yl 2 

O C 23L 

a 

b 

a 

g 

1 

2 

3 

L 

ab 
-1 

-1 

-1 1 

-1 _ -1 
Yg+ Yi+1i -Y2 

Y2 + Y3 + YL 
iithos. (182) 

Now to obtain the currents flowing into each junction 

pair, equation (173) is applied thus: 

1aIbI 
= 

a 

a 

Yg+Y1+Y2 -Y2 

Y2+Y3+YL 

a 

b Eb 

( 183) 

Equation (183) is algebraically expressed as: 

'a Ea(Yg+ y1+y2) - EòY2, (184) 

'b EaY2 + Eb(Y2 + Y3 + ( 185) 



If the voltages E and are known, it is easy to 

solve for the currents, I and I . Since 
a b 

e = (186) 

from (180), the coil voltages can be calculated. Then 

i = Ye, (187) 

so the currents flowing in each coil can be obtained. 

lso, the voltage drop across each element can be 

gotten from 

E = Y.i. (188) 

By taking the Y' received in (182), 

the Z' for the network could be obt-ined. This should 

not he confused with the Z' of Chapter 4 which was 

representative of mesh axes. 

37. belection of Attack. 

There are two general rules which nay help the 

student select the method of attack for a given network 

problem: (1) study the circuit to see whether it has 

fewer meshes or junction jairs and select the attack 

that offers the minimum number of necessary assumptions; 

(2) if the currents are known, select the mesh approach 

and if the voltages are known, select the junction-pair 
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aporoach. It sorne voitaes and other currents are 

given, it is esirab1e to aroach the problem by a 

third ethod not within the scope of this text called 

the orthogonal network. 
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