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Chapter 1: Introduction

Casting manipulation in robotics is the act of launching a tethered projectile and

using the tether to retrieve the projectile or manipulate it mid-air. Robots that

perform activities like extraplanar exploration would benefit from having a cast-

ing manipulator as it allows them to launch sensors or sample-gathering tools to

locations nearby that would normally be too costly or even impossible to reach by

driving or using a standard rigid arm.

Previous work in casting manipulation has examined techniques for precisely

placing the tethered projectile, often with some type of grasping end-effector. We

propose that the set of actions of a casting manipulator can be expanded by in-

corporating interactions between the tether and a target object. In particular, we

examine wrapping a distal target with the tether so as to make a firm connection

between the casting manipulator and the object.

In the simplest form, the trajectory of a wrap is a combination of a parabolic

trajectory that transitions into a spiraling-in trajectory originating at the target.

There is a possibility that in between the parabolic and the spiraling-in trajectory

projectile enters onto a circular trajectory, centered on the anchor tether point.

Wrapping with a casting manipulator is difficult because like most casting ma-

nipulator tasks, the initial conditions that set up the ballistic trajectory of the

projectile are sensitive to small variations. These variations make a difference, as
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once the projectile is air-born, the amount of control that can be exerted on the

projectile is limited to a single pulling force applied through the tether. Further

complicating the process, some ballistic trajectories require the pay out and re-

traction of the tether for the trajectory to be fully realized. We demonstrated

this in our previous work where we found trajectories that smoothly transitioned

(zero-jerk) from a parabolic ballistic trajectory to the spiraling-in trajectory of a

wrap.

While no solutions have been developed for the specific problem of wrapping

a target with a tethered projectile without feedback, there are ensemble control

techniques from particle physics and computational optimization techniques that

have solved similar problems. These techniques have been applied to solving high

variance systems with kinematic constraints and solving dynamic systems with

no variation. By combining these two techniques together we have developed a

method that allows for the formulation of this problem as one that can be solved

with standard optimization tools.

Using our tool and leveraging the geometry of the trajectories and the dynamics

that govern their transitions, we propose that a wrap of a tethered projectile

can be achieved using an imprecise throwing machine by selecting the correct

combination of initial conditions: release angle, release velocity, and tether length.

The particular dynamic we leverage is the moment when the tether goes taut,

causing the projectile to change direction in a bounded manner. We select this

moment by looking for points in the trajectory that are fairly robust to variation

in the aforementioned initial conditions. For the rest of this thesis, we will refer to



3

this moment when the tether goes taut as the rebound.

Tethers, compared to similarly sized rigid manipulators, are lighter and more

compact while maintaining a useful level of functionality. Arisumi et al. have

leveraged these advantages to perform tasks ranging from precise placements of

end effectors[5] to controlling projectile orientation during launch and flight[2, 4],

and mitigating impact on the payload upon landing through multiple-projectile

casting [3]. Similarly, Hatakeyama and Mochiyama have investigated the phenom-

ena surrounding high-speed projectiles and altering their trajectories with passive

dynamic components [11, 10].

The sections of this work are as follows. In chapter 2 we give the context of our

paper through related works. Following in chapter 3 we present our materials and

methods for wrapping with a tethered projectile. Chapter 4 presents the results of

validation of our methods and chapter 5 analyzes the results. We end our paper

with our conclusions in chapter 6.
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Chapter 2: Literature Review

We seek to understand the fundamentals of whole-tether casting manipulation.

Like whole-body manipulation[22], whole-tether casting manipulation seeks to use

the tether, in addition to the projectile, to generate the desired interaction. Prior

research in the area of casting manipulation has been focused on positioning the

cast object to land at a particular location around the robot.[2, 5, 7].

The study of casting manipulators pioneered by Arisumi et al, has been focused

on casting manipulator end placement. [2, 5, 4] To this end, they have developed

techniques for orienting and positioning objects mid-flight through impulses ap-

plied to the tether. In particular, their work with projectile position and attitude

control through the method of multiple braking [5, 4] has relevance to our present

work.

To be able to adjust the attitude and position of a launched projectile, Arisumi

developed the method of multiple braking control. Multiple braking is the act of

applying a momentary braking force to the tether multiple times as the projectile

is on its ballistic trajectory. The impulses applied through the tether are trans-

mitted to the projectile. Appropriately timed impulses allow for the system to

perform manoeuvres such as dropping the projectile in a desired location, or im-

paling a hollowed out ball on a rod as Arisumi et al. performed in their kendama

experiments [4, 3].
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In the spirit of whole-body manipulation[6, 22, 1], we seek to understand the

dynamics of using the whole tether to interact with the environment, rather than

just the end-effector as in [5, 2, 7]. Suzuki et al. have done some preliminary

exploration into these tether dynamics, wrapping targets near the robot [23, 24, 25].

The goal of our effort is to the tethered projectile to wrap a distant object, with

the goal of creating a secure connection to that object. In particular we examine

the use of an end-weighted line to wrap a cylindrical target above and forward of

the projectile launch location.

Positioning the end-mass portion of a tethered projectile only utilizes the pro-

jectile for its interactions and thus explores only a portion of the possible applica-

tions of a casting manipulator. Wrapping involves using the projectile’s tether to

wrap a distant object with the objective of creating a secure connection to that ob-

ject. Wrapping the tether around a object, unlike end positioning, is more heavily

influenced by the trajectory and velocity the projectile has through it’s flight.

Throwing the projectile starts by accelerating the projectile to the desired re-

lease velocity in one of two ways. If the projectile can be pulled up tight against

the end of the arm, then the arm simply pivots backward to a ready position,

pauses and then accelerates forward to get the projectile to speed. If the projectile

cannot be pulled up tight against the arm, then the arm goes through a swing up

motion, as proposed by Izumi et al. [14]. This indirectly accelerates the projectile

to the desired velocity in a controlled fashion. During this stage the tether is held

at constant length so as to maximize the controllability of the action. Optimizing

the rate of energy transferred to the projectile requires that the length of the tether
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be dynamically changed during the swing-up process.[19]

2.1 Rebound Wrapping

In our previous work, we examined the conditions for generating an ideal wrap, in

which the tethered projectile transitions with zero jerk from it’s ballisitic trajectory

to the inward spiraling wrapping trajectory. In this paper, we extend the tools we

have already developed [12] and identify a second strategy for wrapping a target

less sensitive to inputs. We call it rebound wrapping; as it uses the dynamics

of the tether going taut to redirect the projectile onto a more desirable path, as

illustrated in figure 3.4.

Rebound of a tethered projectile has much in common with the impact dynam-

ics of a tethered, gravity-free, frictionless disc described by Faraji et al [9] and the

hybrid dynamics of walking as described by Ramezani et al. [20]. In both works a

semi-rigid collision is treated as an instantaneous event that changes the momen-

tum of the system based on the spatial configuration and velocity of the system

at the time of the event. However, neither work looks at tethered projectiles in a

gravity field.

Impact dynamics have been used in casting manipulators before by Hatakeyama

and Mochiyama to increase the time a launched tethered projectile spends at

the extreme extent of its range [10]. Their inspiration came from the biological

mechanism behind the chameleon’s tongue. Their extremely simple mechanism,

essentially a magnet tethered to a spring, was able to snag small ferrous objects
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out of the air by allowing the magnet to fire, dwell near the area of the object, and

then use the energy stored in the spring to return the magnet and object to the

robot. Slightly less related to the field of impact dynamics, but still in the same

area of leveraging simple dynamics for high-speed projectile tasks, Hatakeyama

and Mochiyama showed that a tethered projectile could be precisely placed by

winding the tether around a rotating drum and using the inertia of the drum to

control the momentum of the projectile so that it dropped at the desired point

[11]. We look to their work as inspiration for taking advantage complex dynamics

using simple mechanisms.

Simply accounting for the rebound is not enough to help us make wraps more

consistently. Being able to select points in the parameter space would enable

the use of a less precision machine to perform the same task. Pekarovskiy et

al examined the robust and consistent throwing of a simple projectile in a 2-

dimensional low gravity environment using a shotput like motion with a simple

arm [15, 17, 16]. By heavily parameterizing the trajectory of an arm using splines,

they were able to relate the variations in a single parameter, the deceleration point

of their arm, to variations in the final x-position of the projectile. We extend their

work in this paper by creating method that allows for the analysis of sensitivity

of a system by relating an arbitrarily sized set of input parameters to a single

function that encompasses all desired aspects of the final state, not just a single

position.
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2.2 Visual Servoing & Other Feedback Methods

Very recent work by Ito et al [13] has looked at wrapping a distal target with a

bullwhip mounted to a robotic arm. While similar to our work, their approach in-

volved extreme instrumentation, placing dozens of visual markers along the length

of the whip and using motion capture to estimate the configuration of the whip

as the arm moves it through space. The use of motion capture has been a trend

in casting manipulation from early on. Fagiolini and Arisumi’s research groups

have often used visual servoing (tracking the projectile) throughout much of their

casting manipulation work to enable complex end-effector placement tasks [3, 8].

In particular, Arisumi’s work in mid-air redirection via impulse application used

a vision system to track the position of the projectile. Both in Arisumi’s and

Ito’s setupsthe visual feedback came from outside the robot and even outside the

workspace of the task. Pekarovskiy did work on ideal trajectories that could be

deformed online using feedback to meet the requirements of a throw [18]. Our set-

up is not capable of such sensing needs and so requires a different approach that

takes advantage of the dynamics of the robot and the geometry of the target we

wish to interact with. We demonstrate the validity and robustness of our approach

on an experimental robot.
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Chapter 3: Materials and Methods

3.1 A Model of Wrapping

Our approach to produce a wrap with a tethered projectile is based on the model

shown in figure 3.1, in which a casting manipulator with a mass at the tip, and

negligible tether mass wraps around a circular target with radius r, while gravity,

g, acts on the end-mass. A tension force F is applied via the anchored end of the

tether, we refer to this as the proximal end as it is the portion of the tether that

is closer to the robot throwing the projectile. This wrapping model admits slip

between the tether and the target and makes the simplifying assumption that the

tension T in the portion of the tether distal to the anchor remains positive for all

time. Therefore this distal portion remains taut, forming a straight line between

the perimeter of the target and the mass.

We take the two generalized coordinates for the system as θ, the counterclock-

Figure 3.1: Model for the casting manipulator wrapping around its target.
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wise angle from the top of the target to the departure-point of the distal portion

of the tether, and s, the length of the distal portion of the tether when θ = 0. Al-

ternate choices of coordinates include the length of the distal portion of the tether,

d = s− rθ and the θ angle, but several factors favor our chosen coordinates. Most

importantly, s is differentially independent from θ, with the effect that ṡ directly

corresponds to the slip velocity of the tether around the target and that solutions

with ṡ = 0 correspond to wrapping without slipping; in contrast, changes in d are

produced by both wrapping and slipping. Similarly, measuring the wrapping angle

from a fixed point on the target rather than the proximal contact point decouples

the configuration of the system from this contact point; a given (s, θ) pair always

describes the same physical configuration, independent of the (counterclockwise)

proximal contact angle φ.

Applying standard Lagrangian techniques to the system in figure 3.1 produces

its dynamic equations of motion,

s̈ = (s− Tθ)θ̇2 − T/m− g sin θ (3.1)

θ̈ = (T θ̇2 − 2ṡθ̇ − g cos θ)/(s− Tθ). (3.2)

The components of s̈ correspond respectively to the mass’s centripetal accel-

eration (with respect to the instantaneous distal contact point, rather than the

target’s center), the tension restraining the mass against this acceleration, and

the action of gravity parallel to the tether. The angular acceleration, θ̈, terms
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reflect the increases in rotational speed that accompany the shortening of the dis-

tal length l during wrapping or negative slipping, together with the gravitational

moment around the distal contact point.

In constructing 3.1 and 3.2, we use the internal distal tension T as the general-

ized force on the system, rather than the applied proximal tension F . This choice

is driven by the potentially complex friction effects between the tether and the tar-

get (i.e. capstan effects); by defining our dynamic system’s boundary at the distal

contact point, we make it easy to insert friction models of various complexity.

3.1.1 Wrapping Without Slipping

For our purposes, we consider that once a wrap starts, we assume no slippage

between the tether and the target. This is a reasonable assumption for 2 main

reasons: 1) the tether is taut when the wrap starts due to the fix length of tether

and fixed anchor point, s, cannot change. 2) Once one encirclement of the target

happens, the magnification of frictional forces due to the capstan effect is large

and no slippage occurs. This later reasoning lends itself to the idea that if you can

produce one wrap, the projectile will continue to wrap until it has no tether left.

This is due the decreasing radius of the spiral that causes the projectile to increase

speed, while lowering the energy requirement of the projectile to reach the apex of

subsequent spirals as the apex gets closer and closer to the target.

The simplest behavior corresponding to 3.1 and 3.2 is wrapping without slip-
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ping, in which ṡ = s̈ = 0 and 3.2 simplifies to

θ̈ = (T θ̇2 − g cos θ)/(s− Tθ). (3.3)

This behavior occurs either when the proximal end of the tether is fixed or for

certain combinations of applied F and frictional effects between the tether and

the target, mentioned earlier. In both cases, the net effect is that F becomes a

holonomic constraint force.

In wrapping without slipping there are no controllable inputs after the tether

has made contact with the target and the tether goes taut, so the success of a wrap

is determined entirely by the state of the manipulator when it strikes the target.

To identify the initial states corresponding to a wrap, we solve 3.2 for the distal

tension T with s̈ = 0 to find its value as a constraint force,

T0 = m(v2/d− g sin θ), (3.4)

where v = dθ̇ is the linear velocity of the mass, directed orthogonally to the tether.

If the initial conditions are such that T0 remains positive for all time, then the

manipulator wraps the target.

Stated another way, maintaining tension on the distal portion of the tether

throughout the wrap causes the end of the manipulator to spiral into the target.

If tension on the tether is lost at any point during the wrap, the tether becomes

slack and the projectile follows a ballistic trajectory. This ballistic trajectory can

result in a wrapping failure. To guarantee that the tether stays taut through the
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entire spiraling trajectory, the projectile must possess an initial velocity greater

than an energy-derived quantity driven by s,

v̄2(θ = 0) > (3s̄+ (2− 3π/2)), (3.5)

where the initial velocity is nondimensionalized by gravity and the radius of the

target, v̄2 = v2/(gr), and the initial tether length is nondimensionalized by just

the radius of the target s̄ = s/r.

3.2 A Model of Throwing

We use a model of throwing, not launching, because we chose to use a simple arm

for accelerating the projectile up to the appropriate speed at the appropriate release

point. Our design intent was to have a simple, repeatable, single mechanism for

both projectile acceleration and anchor positioning. The arm we built does this by

feeding tether out the end of the arm that holds the projectile when it is thrown,

thus we only need a single motor for control. This is opposed to a mechanism that

launches the projectile through some linear acceleration and then uses another

actuator to control the anchor point. Other issues we encountered with launchers

is the need for a rapid deceleration for a projectile to launch, something that

requires powerful actuators that are up to the task and can take the abuse of

repeated hard accelerations. We prototyped a hand-actuated launcher capable

of producing a wrap as seen in figure 3.2, that deteriorated as the accelerating
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mechanism destroyed its hard-stop.

Figure 3.2: An early prototype launching device producing a wrap.

Similar to our model of wrapping, our throwing model assumes negligible air

resistance and tether mass. Also carried over from the wrapping model is the

coordinate system. For throwing, all 2D Cartesian coordinates are defined from

the center of the target, and angles obey the right-hand rule, increasing in the

counter-clockwise direction. The parameters that we use to define the ballistic

trajectory are the xy coordinates of the center of the arm (xarm), the release angle

(φ), and release velocity of the projectile (φ̇). We use these parameters because

they are directly related to what variables we have control over. The parameters
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are then used to created a set of initial conditions,

q0 =



d cosφ

d sinφ

−dφ̇ sinφ

dφ̇ cosφ


+

xarm
0

 (3.6)

where d is the distance from the center of rotation of the arm to the center of mass

of the projectile when held to the end of the arm. The trajectory for the given

parameter set is then given by,

q̇ =



q3

q4

0

−g


(3.7)

where g is the acceleration due to gravity and q3 and q4 are the respective x and

y velocities of the projectile.

We define the limits of the ballistic trajectory of the projectile through the

tether length, L, as the tether places a boundary condition on the projectile.

One way to conceptualize this is that the fully extended tether describes a circle.

When the projectile reaches this circle and the tether goes taut, the projectile acts

as if it has hit a wall. As will be shown in Zero-Jerk wrapping §3.3, we look for

throwing trajectories that avoid this event, and in Rebound wrapping, §3.5 we look

for specific positions on the circle that produce the most controlled redirection of

energy.
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3.3 Zero-Jerk Wrapping: Smooth Transitions

As mentioned in section §2.2, we see a need for the wrapping action to be per-

formable without heavy sensing and rapid, online calculations for feedback control.

To this end, of easily performing a wrap, our first idea that we developed we called

Zero-Jerk wrapping. Zero-Jerk wrapping occurs when the intersection point be-

tween the ballistic trajectory of the thrown projectile and the tether boundary

limit, (the circle and spiral that describe the full extension of the tether), meet

at a point where the spatial 3rd derivative is zero and the 2nd derivative vectors

are equivalent. Meeting these two conditions is equivalent to showing that the

derivative of the curvature of the parabolic trajectory and the boundary limit are

the same. At this point of transition the projectile experiences a smooth change in

momentum, and all the energy it had in its ballistic trajectory is wholly transferred

into the spiraling trajectory that wraps around the target. In other words,

d

dα

∥∥∥∥dTp

dα

∥∥∥∥ =
d

dα

∥∥∥∥dTb

dα

∥∥∥∥ (3.8)

where dα2 = dx2 + dy2 and Tp and Tb are the unit tangents to the curves that

describe the ballistic parabolic trajectory and the boundary limit, respectively.

Once a zero-jerk transition point is established, it is a simple task to determine if

a wrap will succeed or not. If the projectile has enough energy when it transitions,

satisfying 3.5, then it will wrap. We walked through this process backwards to get

the necessary throwing parameters to achieve a zero-jerk wrap. More on this can

be found in our previous work [12].
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3.4 Shortcomings of Zero-Jerk Wrapping

What we did not realize when we developed Zero-Jerk wrapping however is that the

set of parabolas that describe all possible ballistic trajectories that have 3rd-order

smooth transitions to circles fall into one of two categories. The first category is

the trajectories that obey the condition and stay inside the boundary just barely

touch the circle, and then because no additional force acts on them, continue

on the parabolic trajectory they had before, as seen in figure 3.3a. The second

category that the rest of the parabolic trajectories fall into is the category of exiting

the boundary limit which has larger practical implications. It indicates that for

this throw to work, the tether of the projectile must be payed out so that the

projectile can achieve it’s ballistic trajectory, and then it must be retracted to the

exact length at the exact moment when the transition from ballistic parabola to

wrapping spiral is to occur. Figure 3.3b demonstrates this.

a Single Intersection b Double Intersection

Figure 3.3: Types of tangencies between parabolic trajectories and circular or spiral boundary
limits.
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3.5 Rebound Wrapping

Faced with the mechanical complexities of Zero-Jerk wrapping, we asked ourselves

whether or not we should have avoided sudden changes in momentum. Our con-

clusion was that we should embrace the jerk and Rebound wrapping was born.

The underpinnings of Rebound wrapping were that while the exact change in mo-

mentum the projectile undergoes when the tether goes taut is incredibly hard to

predict, the range of changes in momentum is bounded. The two extremes are

defined by perfectly inelastic and perfectly elastic collisions. The former results in

a projectile with less velocity that it started with but all of its remaining velocity

is tangential to the tether. In the latter, case the perfectly elastic collision allows

the projectile to keep all of it’s momentum, but a portion of it is reflected back in

the direction of the tether as seen in figure 3.4. All other possibilities fall in this

range.

Utilizing the rebound of the projectile is also in line with our goal of “easily”

producing a wrap by avoiding the usage of high fidelity sensors with high bandwidth

actuators. By taking advantage of the predictable nature of the rebound, we can

be less precise with the exact trajectory we throw on. Enabling us to continue

using our simple throwing robot. To improve the change of a wrap with Rebound

wrapping we also perform a sensitivity analysis to try to find combinations of

parameters that have a lower sensitivity to variation section §3.6. The inclusion of

the sensitivity analysis we decided upon after finding that our machine’s mechanism

for releasing the projectile was even less precise than anticipated when working on
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Figure 3.4: Cartoon of the range of changes in momentum a projectile can achieve at the moment
of a rebound, e = 0 is a perfectly inelastic rebound and e = 1 is perfectly elastic.

Zero-Jerk wrapping.

3.5.1 Split Model: Rebounds in Throwing and Spiral Limits

Modeling rebound wrapping required an extension of the wrapping and throwing

models described in sections §3.1 and §3.2. We use a dual parameterization of

the position of the projectile relative to the target using both Cartesian and polar

coordinates. Cartesian coordinates we used for ease of describing the change in

trajectory of the projectile during a rebound, as well as ease of forward simulation

of the ballistic trajectory of the projectile, both during the throw and wrapping

phase. Polar coordinates we use to define the boundaries on the projectile created

by the tether going taut.
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In Zero-Jerk wrapping all calculations about the projectile could be done by

considering the geometry of the parabolic throw and the boundary limits and so

their models could be easily combined into one. With the modeling of the dynamics

of the rebound and the incorporation of polar coordinates came the necessity of

keeping the models separate. Fundamentally, this is because of the maps from the

Cartesian space of the projectile to the polar coordinates is different for wrapping

and throwing. In wrapping we consider that the angular portion of the polar

coordinates of the projectile to have a winding number, indicating the number of

times the projectile has gone around the target and thus what layer of the spiral

it is in. In the throwing model, the polar position of a projectile needs to be able

to specify whether the projectile is in the area where it will encounter the circular

boundary limit of the tether or the spiral boundary limit of the tether. The polar

coordinates in the throw are mapped about a line that extends from the anchor

point to the upper edge of the target and has it’s angle defined by,

θ0 = arctan 2(−yanchor,−xanchor) + arcsin(
r√

x2
anchor + y2

anchor

) (3.9)

Above the line we assume we are in the circular boundary limit, below the line,

we assume inside the spiral, as seen in figure 3.5. What makes this a natural

division line is that the projectile starts on the line and if it ever dips below it

on its trajectory before its x coordinate becomes greater than zero, the wrap fails

because the projectile never makes it over the target.

In either model, rebounds are treated the same way. We assume no external
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Figure 3.5: Mapping zones from Cartesian to poloar. Points in the red (top) zone map to the
circular boundary limit. Points in the gray (bottom) zone map to the spiral boundary limit.

forces on the system, so the projectile’s velocity immediately after rebound is the

same velocity it will possess on its subsequent trajectory. Using the notation in

figure 3.4, where ~v0 is the projectile velocity vector prior to rebound, and ~ve=1 is

the rebound velocity vector immediately after a perfectly elastic rebound, we can

calculate ~ve=1 using ~v0 by reflecting it over the tangent of the tether, nT ,

~ve=1 =

ẋ
ẏ

 = −~v0 + 2(nT · ~v0)nT . (3.10)

A perfectly inelastic rebound has the more simple calculation of,

~ve=0 = (nT · ~v0)nT . (3.11)



22

Calculating a rebound that is partially elastic is slightly more involved, as we

must account for the dynamic parameters of the system, and cannot rely solely on

geometry. We start by finding the projectile’s velocity vector immediately after

rebound, first finding the x, y coordinates of the point of rebound. We plug them

in to the rebound velocity vector equation

~ve = −enN(~v0 · nN) + nT (~v0 · nT ) (3.12)

where e is the coefficient of restitution and ~v0 is the velocity of the projectile at the

moment of rebound. Both nN and nT are normalized vectors that are respectively

normal

nN =
1√

x2 + y2

x
y

 (3.13)

and tangential

nT =
1√

x2 + y2

 y

−x

 (3.14)

to the tether at the point it goes taut.

Transition from the throwing model to the wrapping model relies on the de-

tection of when the projectile has rebounded inside the set of polar coordinates

associated with the spiral. Upon detection, the throwing simulation is halted, the

condition of the projectile after rebound extracted and then used as the initial

conditions of the simulation of the wrapping model. The end condition for the

wrapping model and detection of whether it was a success or failure look at the
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energy the projectile possess after is rebounds with an angle shallow enough to be

considered in orbit around the target. If the projectile never achieves this angle or

doesn’t have enough energy, the wrap was not successful. The angle we’ve chosen

in our work is roughly 2 degrees.

Our specific implementation of throwing model further differs in that it also

has maximum number of rebounds it is allowed to execute before exiting with an

error if it doesn’t have a rebound inside the spiral portion first. The spiral model

simulation is allowed to rebound indefinitely until it encounters a failure, described

below.

3.5.2 Failure Modes for Wrapping

Inside our simulations we have two main condition checks to see if either the throw

or wrap simulation will fail. The first condition is direction of the projectiles

velocity in polar coordinates. If the projectile’s angle coordinate velocity is ever

positive ν > 0 the projectile cannot produce a wrap as the projectile is either

unwinding in the wrapping case or in the throwing case it is on a trajectory that

will fail to pass over the target to be wrapped. This can also look like the projectile

bouncing back and forth inside the spiral. This is usually more of a function of

energy however, as has been alluded to many times and defined by 3.5.
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3.6 Sensitivity & Goodness: The Most Likely Parameters for a

Wrap

Our primary innovation that allows us to consistently wrap using an inconsistent

robot is the sensitivity analysis we do on a goodness function that has been mapped

to the parameters that set up a throw. Sensitivity analysis to find robust param-

eters for our system is a difficult task on the surface as our measure of success is

binary. Either the wrap succeeds or not. To make the analysis more tractable we

need a measure of the goodness of a trajectory that has continuous variation, and

ideally has diminishing returns the further a parameter set gets from the minimum

goodness. For our purposes we also want a function that is positive at all points,

has a bounded minimum and maximum, and when the bare minimum conditions

for a wrap are met, returns 1.

Due to the simulated nature of our analysis, our goodness function does not

directly operate on the parameters of the throw, Ω = [xarm, φ, φ̇, e, L] (respectively,

arm center in x and y, arm release angle, arm angular velocity, coefficient of resti-

tution, tether length), but on features of the trajectory that results from them.

Specifically the velocity of the projectile on its final rebound, which we refer to

from now on as γ(Ω). Thus our function of goodness is f(γ(Ω)).

The velocity features is actually a minimum energy condition that we have

alluded to multiple times throughout this paper and is defined by 3.5. In the

following we more rigourously define it and put it in terms of our specific model.

Given the length of the tether extending from the contact point on the target to
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the projectile,

s(θ) = s0 + (θ − θ0)r (3.15)

where θ is the angle of the tether and r is the radius of the target, we can calculate

the height of the projectile,

y = r cos(θ) + s(θ) sin(θ) (3.16)

Differentiating by θ and we find that the max height is at −3π/2, note that

s(−3π/2) = hmax. To then find the energy necessary for wrapping, we look at

the height and velocity it has apex. First, the velocity necessary to negate gravity:

T = Fcentrifugal = Fgravity

mv2min

hmax
= mg

v2
min = s(−3π

2
)g

(3.17)

where vmin is the minimum velocity of the projectile, assuming all velocity is tan-

gential to the spiral. If 3.17 holds true, then the energy contained at this point,

relative to the 0,0 coordinate is:

Emin =
1

2
mv2

min +mghmax (3.18)

The current energy in the projectile then has to be equal to or greater than this

amount:

Emin ≤ Ecurrent (3.19)
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1

2
v2
min + ghmax ≤ 1/2v2

curr + gy (3.20)

Which becomes

s(−3π/2)g + 2g(hmax − y) ≤ v2
curr (3.21)

or

g(3hmax − 2y) ≤ v2
curr. (3.22)

To meet our criteria for the goodness function, we then bound to the values to

[0, 2] to get our goodness function:

f =
2

π
arctan

(
q̇ · q̇− g(3hmax − 2y)

)
+ 1. (3.23)

3.7 The Flatness of Goodness

To find the least sensitive, and thus optimal parameter point Ω∗ on the manifold

of f(γ(Ω)) that is as far away from f = 1 as possible, we take a point in the

goodness manifold, parameterized by initial conditions and assume it has second

order characteristics (hyper-parabolas). We then look for what parameter sets this

linearization crosses goodness = 1. The smallest distance between the point we

start at and these set of crossing points

Our second-order linearization is done with the Jacobian and Hessian of the

goodness function (taken with respect to the parameters). We then find its roots

and then find the root closest to the linearization point. Our first step to finding

this point is creating a second-order linearization around of f , via the Taylor series
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expansion,

f̂(Ω) = f(γ(Ω0)) + JΩ0(Ω− Ω0) + (Ω− Ω0)THΩ0(Ω− Ω0), (3.24)

where the Jacobian is ∂f/∂Ω which in turn has a Hessian given by ∂2f/∂Ωi∂Ωj,

all of these are defined a on point-by-point basis.

If all of the eigenvalues of the Hessian of the linearization given by 3.24 are

positive ∂2f̂/∂Ωi∂Ωj = 2HΩ0 , the goodness is greater than 1, and the Jacobian,

∂f̂/∂Ω = JΩ0 + 2(Ω−Ω0)HΩ0 , is a zero-vector, then this point is awesome because

locally the goodness can only go up from here! Parameter points that do not fit

these criteria require further analysis and computation.

To calculate how “far” away we are from nearest f(γ(Ω)) = 1 crossing we apply

a constrained optimization technique on the linearization f̂ . With the optimization

we want Ω∗ to be as close to the point of linearization Ω0 as possible, while still

respects f̂ = 1. We seed this optimization with the non-optimal crossings given

by 1-dimensional projections of the linearization. The axes of projection are given

by the eigenvectors of the Hessian 2HΩ0 .

Generation of the projection involves taking an eigenvector of 2HΩ0 , v and

using it as a projection vector to project Ω and ∂f̂/∂Ω into a one-dimensional

space we call z. We use z to define a new, 1-dimensional goodness function f̄(z)

that we make a couple big assumptions about, the first is that it’s curvature is

given by ∂2f/∂z2 = λ, the eigenvalue corresponding to our eigenvector. From that

we derive the following equation for behavior of the manifold around a parameter
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point Ω0 · v = z0 along an axis given by eigenvector:

f̄(z) =
λ

2
z2 + bz + c (3.25)

The value of b is given by the evolution,

∂f̄

∂z

∣∣∣∣
z0

= λz0 + b. (3.26)

Substituting in the projection of the Jacobian along the eigen vector for the partial

derivative of f̄ we get,

b =
∂f̂

∂Ω

∣∣∣∣∣
Ω0

· v− λz0 (3.27)

Calculating c is as follows:

f̄(z0) =
λ

2
z2

0 + bz0 + c (3.28)

Which is then reformulated as,

c = f̄(z0)− λ

2
z2

0 −
( ∂f̂

∂Ω

∣∣∣∣∣
Ω0

· v− λz0

)
z0. (3.29)

Running this through a quadratic equation to find the z values that correspond

with a crossing of the line f̂ = 1,

zcross =
−b±

√
b2 − 2λ(c− 1)

λ
(3.30)
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Once we have zcross in hand, we project it back into the parameter space to get

Ωcross = zcrossv which we use for the following optimization problem:

Ω∗ = min
Ω

(Ω− Ω0) · (Ω− Ω0) (3.31)

subject to,

1 = f̂(Ω). (3.32)

From this we generate what we refer to as the score,

k =
(

Ω∗ − Ω0

)
·
(

Ω∗ − Ω0

)
(3.33)

This means that a score can be used to indicate the maximum guaranteed deviation

a set of parameters can have and still be guaranteed to wrap. It is possible for

deviations that result fall outside of the “ball” with a radius
√
k to still produce

successful wraps, but it is not guaranteed.

3.8 Practical Implementation

Finding the optimal parameter set with the largest possible score, k, we use the op-

timization technique of simulated annealing [21]. Simulated annealing was chosen

over traditional techniques like gradient descent or the built-in optimizer found

in MATLAB because of the nature of the gradient of f and how we calculated

it. Because we can only calculate γ(Ω) via simulation calculation, our gradient
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calculation of ∂f/∂Ω is also simulation dependent. In addition f is not a smooth

function with a single global maximum, much less the score k. Simulated annealing

works by perturbing the parameter set randomly to see if can move to a better set,

occasionally moving to a worse set to ensure that it doesn’t get stuck in a local

optima. Thus it does not need a function to be smooth around a set so long as it

can product a gradient estimate.

3.8.1 The Casting Manipulator Testbed

Figure 3.6: Pictured here are the front-view caricatures of the BAM Mk.I and the BAM Mk.II
system.

Our casting manipulator robot — the Ballistic Arm Manipulator (BAM) — is

composed of a throwing arm and tethered projectile. BAM Mk.I controlled the

tether length and release through an active spool, designed to be able to reel in the

tether during the projectile’s flight, and to achieve the zero-jerk wrapping approach

discussed earlier and presented in [12].

Our second generation, BAM Mk.II, abandoned the active spool in favor of a
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more responsive passive spool and brake system. The Mk.I spool had an average

“release” time of 50ms, while the Mk.II braking system is approximately 10ms.

In addition the new BAM has a centralized design in that all components, but

the motor rotating the arm, are integrated into the arm. We did this to eliminate

routing the tether through multiple bends, reducing the friction in the system. The

other major design change was a “fork” at the end of arm. enabling the projectile

to be held rigidly to the end of the arm when accelerated. This modification

eliminated the need to perform a swing-up action to get the projectile to the

desired pre-throw state. Figure 3.6 illustrates the difference in design between the

two generations of BAM.

Dynamic measurements from both Mk.I and Mk.II indicate that the tether,

a braided fishing line, and bean-bag projectile are both dynamically dead, with a

coefficient of restitution close to zero. However, the anchoring components and the

arm itself add non-negligible amounts of damping and elasticity, which dominate

the tethered projectile’s impact response. This semi-elastic impact response when

the tether goes taut plays an important role in our new, rebound-based method of

wrapping a target.
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Chapter 4: Results

Results are broken down into two sections. Our first section, Simulation Results

§4.1, reports on the findings of our optimization to find a parameter set that

maximizes robustness. Experimental Results §4.2 applies our technique to data

from prior experiments to validate our methods.

4.1 Simulation Results

Performing our optimization on a set of parameters seeded close to our actual

system’s throwing parameters, and letting it run for 1000 iterations resulted in the

parameters given in table 4.1, with a score of 0.447. A massive improvement over

the initial parameter’s score of 1.36 × 10−3. Figure 4.1 shows what this optimal

throw looks like. It should be noted that while there are 6 parameters over which

the optimization scores a particular point, only the release angle, release velocity

and tether length were permitted to be changed. This restriction is because of the

nature of the robot. The center position of the robot’s arm is difficult to move and

the coefficient of restitution the system is not changeable.
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Figure 4.1: The throw with the greatest degree of robustness to variations in parameters for our
given physical configuration of the casting manipulator.
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Table 4.1: The optimal parameters for a throw constrained by our physical robot

Arm center x -2.1 m
Arm center y -0.01 m
Release angle φ -0.468 rad

Release velocity φ̇ 14.85 rad/sec
Coefficient of Restitution e 0.32
Tether Length L 2.35 m

4.2 Experimental Results

In prior work, through trial and error, we found a set of throwing parameters that

allowed us to demonstrate a wrap was still possible with variations in the length

of tether, if we could leverage the rebound appropriately. Taking this data, we

backwards processed it to derive the actual trajectory we threw the projectile on.

Experimental determination of the coefficient of restitution for a rebound placed

the value around e = 0.32. These parameters and other are given in table 4.2 and

the success rates for the varying tether lengths given in table 4.3. An ANOVA

Single Factor test performed on the percentage of successful wraps is inconclusive

about the difference in success between the trials. To get more conclusive results

(p− value < 0.05) would require roughly 50 throwing attempts per trial.

Figures 4.2, 4.3, and 4.4 shows the comparison of the simulated and the actual

trajectory. Of the 30 throws in total performed, there was significant variance in

the release angle and release velocity. The standard deviation on the release angle

was 0.0644rad and the velocity, 0.279rad/sec.
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Table 4.2: Table of universal parameters for our throw.

Arm center x -2.1m
Arm center y -0.01m
Release angle φ -0.6134 rad

Release velocity φ̇ 14.70 rad/sec
Coefficient of Restitution e 0.32

Table 4.3: Results from the throws, n=10 throws per tether length

Trial Tether Length Goodness Score Successful Wraps
1 2.15m 1.10 1.81× 10−6 70%
2 2.24m 1.83 1.36× 10−3 50%
3 2.30m 1.86 2.87× 10−3 70%
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a Simulation

b Experiment

Figure 4.2: Trial 1: Tether length L = 2.15 meters
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a Simulation

b Experiment

Figure 4.3: Trial 2: Tether length L = 2.24 meters
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a Simulation

b Experiment

Figure 4.4: Trial 3: Tether length L = 2.30 meters



39

Chapter 5: Discussion

We realized that the task we were seeking to perform was at the limits of our

robot’s capabilities, in power, accuracy, and sensor feedback, so we evolved our

methods from Zero-Jerk wrapping to Rebound wrapping.

5.1 Analysis of the Simulation

We observed peculiar behavior in parameter selection. When running the trajec-

tory optimization with no constraints on the parameters, (except for bounding the

coefficient of restitution to the domain [0, 1]), the optimization found highly scored

parameter sets tended to position the center of the arm above the target, throw in

horizontally flat trajectories, and select coefficients of restitution as close to zero

as possible. Casual analysis agrees seems to support this phenomena logically. By

placing the arm higher, there is more potential energy to convert into velocity for

a wrap and trajectories that start horizontally have less variance in final position.

Also, a coefficient of restitution close to zero means that the projectile only has to

rebound inside the spiral with a minimal amount of energy and it is guaranteed to

wrap.

Constrained optimization tells an alternate, albeit, interesting story. Letting

the optimization occur across single parameters at a time and using the trajectory
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parameters specified in 4.2 and tether length L = 2.24m as a basis of comparison

we found the following, (results given in table 5.1). By themselves, release angle,

release velocity, and the coefficient of restitution had the most dramatic improve-

ments in score as they increased it by several orders of magnitude over the base

score of score of 1.36 × 10−3. Intuitively, these findings make sense as the release

angle and velocity specify the major features of the throwing trajectory, and as

discussed before, the closer the coefficient of restitution is to zero, the more robust

a given trajectory is to variation. At the opposite end of the spectrum, changes in

the the x-coordinate of the arm center had no visible improvement on the score for

the base set of parameters, implying that the x-coordinate of the arm, under small

perturbations, has little effect. In the middle of the spectrum sit the y-coordinate

of the arm center and the tether length. As mentioned previously, the higher the

arm is above the target, the more energy the projectile will have, thus more likely

to wrap and a higher score. Tether length has a harder to discern effect on the

score as it primarily changes the contact point of the projectile, and longer tether

lengths result in more energy to wrap as the projectile is on a wider orbit around

the target.

5.2 Analysis of Experimental Data

Data from the experiment did show an agreement between the goodness function

and a successful wrap being possible. However, the same data was inconclusive

about the relationship between the scores of those locations and the likelihood of
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Table 5.1: Simulation across individual parameters

Parameter Value Goodness Score
Arm center x -2.103 m 1.82 1.36× 10−3

Arm center y 0.240 m 1.92 5.00× 10−3

Release angle φ -0.468 rad 1.96 0.0392

Release velocity φ̇ 13.44 rad/sec 1.91 0.0587
Coefficient of Restitution e 0.0773 1.95 0.470
Tether Length L 2.29 m 1.85 2.02× 10−3

a successful wrap. Further analysis used the scores of the three trials to create

bounding “balls” of radius
√
k for the parameters. A parameter set inside the

ball is guaranteed to wrap. Combining this with the mean and standard deviation

of the throwing trajectories reveals that only a small percentage of the throws

where in the guaranteed “ball”. Table 5.2 shows these results. The extremely low

probabilities found in table 5.2 suggest that the guarantees provided by the scores

are extremely conservative when it comes to estimating the acceptable area around

a parameter point.

Table 5.2: Probability that for the distribution of release angle E(φ) = N(−0.6134, 0.0644) and
release velocity E(φ̇) = N(14.70, 0.2791), a wrap can be guaranteed.

Trial Score Probability
1 1.81× 10−6 < 0.006%
2 1.36× 10−3 3.6%
3 2.87× 10−3 7.3%
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5.3 The Difficulties of Wrapping

To put in perspective on these results, consider that there are many more ways for

a tether to fail to wrap an object than there are ways to successfully wrap. Most

common of the reasons for failure is lack projectile energy, as has been alluded

multiple times through out this paper and defined in equations 3.5 and 3.22. It

could be thrown with insufficient energy to even reach the target, it could lose too

much energy after a series of rebounds repeatedly remove energy for the system,

or it could have one particular harsh rebound when the velocity of the projectile

is orthogonal to the boundary limit and on rebound loses most of its energy.

Other causes of failure could be that a rebound causes the projectile to move

counter-clockwise around the target. Either unwinding a wrap inside the spiral or

causing the projectile to rebound left of the target missing it all together. The

projectile could impact the target and cause a failure. Something that was not

obvious in our models or initial analysis of the problem was that the projectile

could also encounter its own tether while wrapping and that could cause a wrap

to fail.

All of these failures are can be planned for in using Zero-Jerk or Rebound

wrapping. What drove us to incorporate a sensitivity analysis were the failures

caused by the inconsistencies in the robot itself. Inconsistencies like inability to

release at same release angle, possibly the largest issue due to the high speed

nature of wrapping. A small variation in angle at the speed we throw can result

in a large change in the parabolic trajectory and thus a change in success or fail.
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Another robot inconsistency that did not have as much of an immediate effect but

should be accounted for in a higher fidelity model the angle tether makes with

the arm during a rebound. Some angles apply more torque to the arm and that

changes how the arm factors into the coefficient of restitution. Sensitivity analysis

allows us to intelligently make choices on how to best mitigate hard to control

inconsistencies and perform a successful wrap.
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Chapter 6: Conclusion

Through this paper we have presented a method for wrapping a target with tether

projectile without feedback control over the projectile, but by careful selection

of throwing parameters. Our method leveraged the tethered projectile’s ability

to rebound. Through the use of a sensitivity analysis we demonstrated how to

select throwing parameters robust to variation. Our innovation with the sensitivity

analysis was to create a goodness function as a proxy for condition on a binary

system: successful or unsuccessful. Using an annealing method, we find optimally

robust trajectories. We validated our method through simulation and data from

a physical throwing robot, the BAM. The data supported our method of rebound

wrapping and the formulation of our goodness function, but was inconclusive on

the effectiveness of our method for scoring the robustness of a throw.

Our next step in this process of further developing general methods of wrapping

with casting manipulators calls for the exploration of more diverse tether physics,

more tightly defining the physical phenomena around projectile rebound, examin-

ing the effects of compliant throwing arms and tether anchors. Of most interest to

us however is the effect of having increased tether mass to projectile mass ratio,

bringing the system dynamics closer to those seen in whips and similar tools, an

area almost completely unexplored at this time.
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