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Gut microbiota plays an essential role in health and diseases, a fact already established. With 

the explosive increase in obesity and its main complication, Type 2 Diabetes Mellitus (T2D), 

there is an immediate need for novel methods of diagnosis, prevention and treatment of these 

conditions. In the last one and half decades, the gut microbiota has been a focal point of study 

in obesity and T2D. Several studies have proposed using gut microbiota to predict, diagnose, 

prevent, and treat obesity and T2D. However, there is no consistency between studies except 

for few microbes. The U.S Food and Drug Administration (FDA) has not approved any 

microbe or microbial products for the treatment of T2D, though many are in the stages of 

clinical trials. Diet rich in processed fat and sugar, also known as the western diet (WD), is the 

main culprit of T2D. WD changes the metabolic phenotypes leading to obesity, insulin 

resistance, glucose intolerance and T2D. WD also changes gut microbiota composition, as 

evidenced by the difference between obese and lean individuals. So, there seems obvious 

crosstalk between diet, microbiota and metabolic complications. In this dissertation, using WD 

induced T2D mouse model, we established the interactions between WD, microbiota and host. 

We identified and validated gut microbes that mediate beneficial effects in systemic glucose 

homeostasis. We also determined the effects of the western diet that are dependent on 

microbiota and identified a gut microbe associated with WD, promoting insulin resistance via 

induction of a metallopeptidase in adipose tissue. 

In the second chapter, we did a comprehensive review of current literature involving human 

subjects to identify the potential role of different bacterial taxa affecting glucose intolerance, 

insulin resistance and T2D. This systemic review showed a negative association of T2D with 



genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia and 

positive association with the genera of Ruminococcus, Fusobacterium and Blautia. We also 

discussed several molecular mechanisms of microbiota effects in the onset and progression of 

T2D. 

In the third chapter, we used animal models, systems biology, & invitro systems to infer, 

validate and identify the potential probiotic microbiota. We also showed that these microbes 

improved glucose metabolism by promoting healthy hepatic mitochondria, hepatic beta-

oxidation, and lipid composition. We used the western diet-induced mouse model of T2D as 

the in-vivo animal model. Using the data-driven approach called Transkingdom Network 

analysis, developed in Shulzhenko and Morgun labs, we modeled the host-microbiome 

interactions under WD. This network analysis inferred us about the microbes that can 

potentially contribute to the altered host metabolism due to WD. We identified two species of 

Lactobacillus as the beneficial microbes that improve glucose metabolism in mice. Similarly, 

one species of Rombutsia was identified and tested as a microbe that worsens the western diet's 

effect in mice. Data from humans also showed the concordant association between these 

microbes and obesity. Supplementation of Lactobacilli in WD-fed mice improved the fatty 

acid composition in the liver and systemic glucose metabolism, which led us to explore the 

effect of Lactobacilli in the liver. Gene expression and electron microscopy of the liver showed 

that Lactobacilli can act on hepatic mitochondria and improves hepatic beta-oxidation, lipid 

composition, and systemic glucose metabolism. We then performed a metabolomics study of 

serum collected from mono-colonized mice with Lactobacillus or germ-free mice. This 

analysis revealed glutathione as a major metabolome that mediates the beneficial effect of 

Lactobacillus. We also established an in-vitro system and validated that glutathione, indeed, 

upregulates the well-established genes associated with mitochondrial functions and 

homeostasis such as mt-Atp6, Ndufv1, Mfn1, Foxo3, Gabpa, Usp50, Ifitm3 & Rai12. Their 

expression was also upregulated in the liver of mice supplemented with Lactobacilli. Hence, 

this study identified probiotic strains that can prevent T2D and established a mechanistic 

insight into the mode of action. Overall, our studies on host-microbiota interactions in diet 

induced diabetic mouse model identified microbiota-mitochondria crosstalk as one of the 

mechanisms by which the commensal bacteria promote beneficial effects on the host. Our work 



also identified a pathobiont, Rombutsia ilealis, that promotes glucose intolerance potentially 

via different mechanism than Lactobacilli. These findings from our studies echoed the idea 

that targeted microbial therapies rather than attempting to restore overall composition of 

microbiota could be an effective way to develop microbiota based therapeutics. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Type 2 Diabetes 

Type 2 Diabetes mellitus (T2D) is a chronic, multi-organ, multifactorial metabolic disease. It 

is characterized by the body’s inability to uptake glucose (hyperglycemia) as a result of defects 

in insulin secretion, insulin action (insulin resistance) or combination of both. T2D individuals 

have insulin resistance or relative insulin deficiency. Environmental and genetic 

predispositions are the major cause of T2D. Sedentary lifestyle, overnutrition of unhealthy diet 

leading to obesity are the main environmental reasons of T2D and with the increasing 

prevalence of obesity, the cases of T2D are also rising exponentially. Pathogenesis of T2D is 

multifactorial due to alternations in various gene products1, which progressively impairs 

insulin secretion by pancreatic β-cells. 

Hyperglycemia in T2D is preceded by a condition known as prediabetes. This condition is 

characterized by impaired fasting glucose, impaired glucose tolerance or increased glycated 

hemoglobin A1c2. The levels of these parameters in prediabetes are more than the normal 

individual but not enough to reach the diagnostic levels of T2D. If untreated, 7% of prediabetic 

people will progress to diabetes every year3. However, early diagnosis of prediabetes and 

taking preventive measures like regular exercise, healthy eating to improve basal mass index 

(BMI) and taking anti-T2D drugs like metformin can minimize the chances of transition from 

prediabetes to T2D. 

As per International Diabetes Federation, about 463 million adults (20-79 years) had diabetes 

in 2019, which is estimated to reach 700 million in 2045. Diabetes alone caused US 760 billion 

dollars in healthcare expenses, making it one of the costliest diseases. About 90% of diabetes 

cases are Type 2 diabetes. Among diabetic adults, 79% were living in low- and middle-income 

countries. Though obesity (BMI > 30 kg/m2) is considered the single most common risk factor 

of T2D, certain regions of South Asia and Africa have diabetic population with lower BMI or 

even normal BMI4 leading to more complexities in T2D. More recently, more sub-types of 

T2D were described, some predominantly insulin-resistant while others primarily insulin-

deficient adult-onset diabetes5.  
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Along with obesity, another triggering factor of T2D is hereditary with a positive family history 

of T2D increasing the disease risk by 2.4 fold1,6, with the highest relative risk of T2D in 

individuals with at least two siblings affected by T2D7. The odd ratio of T2D or impaired 

glucose tolerance for offspring of diabetic father was 3.5 and 2.7, respectively as compared to 

3.4 and 1.7 of diabetic mother8. Whereas among those with both parents with T2D, the odd 

ratio of T2D or impaired glucose tolerance was 6.1 and 5.2, respectively8. 

 

1.2 Glucose Homeostasis  

The human body maintains its blood glucose levels via very tight and complex networks of 

hormones, receptors, proteins and various tissues. Glucose homeostasis can be defined as the 

continuous process in which blood glucose levels are maintained in a narrow range of 70-

170mg/dl for normal functions during the postprandial state (0-6 hours after taking meal), 

intermediate fasting (12-14 hours) or during prolonged fasting periods (>24 hours). 

Postprandial glucose homeostasis involves the processes to reduce the elevated level of glucose 

after taking the meal. In the 4-5 hours of the postprandial  period, about 75% of the plasma 

glucose is from the meal9. This increase in plasma glucose promotes insulin secretion from the 

pancreatic β-cell which increases the glucose transport in the skeletal muscle permitting 

glucose entry and glycogen synthesis. Insulin activates insulin receptor tyrosine kinase and 

phosphorylation of insulin receptor substrate 1 (IRS1) and IRS2 and activates Akt2. The 

increase in insulin promotes glycogen synthesis in the liver and de novo lipogenesis and 

inhibits gluconeogenesis, decreasing endogenous glucose production. In the white adipose 

tissue, insulin suppresses lipolysis and promotes lipogenesis. A certain amount of glucose 

(around 20%) is also consumed by the brain as the production of endogenous glucose, which 

it generally uses, is reduced during this period9.  The hepatic glucose absorption into the 

hepatocytes involves glucose transporters, SLC2A2/GLUT-2 being the predominant one10. 

The glucose absorbed by hepatocytes is phosphorylated to glucose-6-phosphate (G-6-P) via 

glucokinase which undergoes several metabolic pathways depending on the enzymes involved. 

Most of the G-6-P gets converted into glycogen via glucose-1-phosphate and UDP-glucose10. 

G-6-P also undergoes another pathway producing fructose-6-phosphate (F-6-P), which 

produces Acetyl-coA and Fatty acids via glycolysis. The final pathway that G-6-P undergoes 
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is the pentose phosphate pathway by which Ribose 5-phosphate or Xylulose 5-phosphate is 

formed10. In summary, hepatic glucose metabolism is responsible for part of postprandial 

glucose homeostasis by increasing glycogenesis and reducing gluconeogenesis.  

During intermediate fasting state (e.g., 14-16 hours of overnight fasting), the blood glucose 

level is approximately in a steady state, with the level going down during the last hours of 

fasting. This step involves both glucose utilization and glucose production with decreased 

production of insulin. The major organs that utilize glucose during this period in the order of 

consumption are brain, skeletal muscle, kidney, blood cells, splanchnic organs, and adipose 

tissue11. While brain is the main organ for glucose utilization, liver is the primary organ for 

glucose production via glycogenolysis & gluconeogenesis. While glycogenolysis is the 

predominant source of glucose during initial fasting, as the glycogen source starts depleting, 

gluconeogenesis starts to be more dominant source. Liver is responsible for the producing 

approximately 50% of total glucose after overnight fasting and almost all of the total glucose 

after 42 hours of fasting12. Kidneys also perform gluconeogenesis from glutamine. The major 

substrates for gluconeogenesis in liver are lactate, pyruvate, propionate, glycerol and amino 

acids and stimulated by glucagon, growth hormone, cortisol and epinephrine. Lactate, which 

is the primary substrate, gets converted to pyruvate in the cytoplasm, which then gets 

transported into the mitochondria. In the mitochondria, the pyruvate gets carboxylated to 

oxaloacetate (OAA) by the enzyme pyruvate carboxylase (PC). The OAA can either directly 

converted to phosphoenolpyruvate (PEP) by mitochondrial PEP carboxykinase13,14 or gets 

reduced to malate, released into the cytosol and then decarboxylated and phosphorylated into 

PEP by cytosolic PEP carboxykinase15,16. The PEP enters gluconeogenic cycle where fructose-

6-phosphate is formed first (via fructose 1,6-biphosphate catalyzed by fructose 1,6-

biphosphatase) and then converted into glucose-6-phosphate (by phosphoglucoisomerase). 

Glucose-6-phosphate is dephosphorylated to glucose by glucose-6-phosphatase. Glucagon, 

epinephrine or cyclic adenosine monophosphate can increase the rate of glucose synthesis via 

gluconeogenesis from lactate17, whereas insulin suppresses it. Other hormones from the 

gastrointestinal tract (GIT) also control glucose metabolism which will be discussed in the 

following section. 

 



4 

1.3 Insulin Resistance (IR)  

The hallmark of Type 2 diabetes is insulin resistance in which even with normal or above 

normal insulin level, there is the presence of fasting hyperglycemia owing to reduced effects 

of insulin in metabolic organs. Defects in insulin action, insulin secretion and the feedback 

loop of hyperglycemia to address hepatic glucose production are present in T2D18. 

Dysregulation of free fatty acids (FFAs) metabolism is the single most important factor of IR 

along with genetic predisposition. IR can occur years before fasting hyperglycemia and T2D19. 

All metabolic organs (liver, skeletal muscle, adipose tissue), kidneys, and brain can have IR2. 

 

1.3.1 Insulin Signaling 
 
Insulin is a peptide hormone released by β cells of Islet of Langerhans in the Pancreas. Insulin 

singling takes place via insulin receptors located on the cell membrane. Insulin binds to the 

extracellular α-subunits of the receptor, bringing the two α-subunits closer together and leading 

to the binding of ATP to the β-subunit20. This binding promotes auto-phosphorylation and the 

activation of receptor tyrosine kinase which then phosphorylates insulin receptors substrates 

(IRS). Among the four types of IRS, IRS-1 and IRS-2 have shown to be the main components 

of insulin signaling as their depletions promote insulin resistance and pancreatic 

dysfuntion21,22,22,23,24 with IRS-1 functions being predominant in skeletal muscle and IRS-2 in 

the liver20. Phosphorylated IRS proteins bind and activate phosphatidylinositol three dependent 

kinases (PI-3-kinases), PDK1 and PDK2, and phosphatidylinositol 3,4,5-triphosphate (PIP3) 

is formed. PIP3 binds to protein kinase B/Akt protein and translocate to the cell membrane and 

gets phosphorylated and causes translocation of GLUT4-containing storage vesicles (GSVs) 

to the cell membrane25 via phosphorylation of AS160 (160kDA Akt substrate) and inhibition 

of Rab-GAP (Rab-GTPase-activating protein) activity. This translocation leads to glucose 

uptake by skeletal muscle and adipocytes. 

 

1.3.2 Mechanism of Insulin Resistance 
 
Transient insulin resistance takes place in certain stages of life (pregnancy, puberty, during 

aging)26. The main culprit of induced insulin resistance is obesity. Obesity can be defined as 
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the ectopic lipid accumulation like in skeletal muscle and liver with the increased amount of 

plasma free fatty acids.  Reduction in the number of surface insulin receptors and insulin 

receptor substrates, defects in insulin binding to the receptors and defects in singling pathways 

following the binding are the major reasons for insulin resistance9, with the latter contributing 

to the majority. 

In the skeletal muscle, triacylglycerol (TAG) is converted into diacylglycerol (DAG) by 

adipose triglyceride lipase. DAGs activate the protein kinase C family (PKCθ), which reduces 

the activity of IRS27. Along with TAG and DAGs, ceramides and long-chain FA coenzyme A 

(FA-CoA) are also accumulated inside myocytes during obesity which can dysregulate insulin 

singling cascade in muscle leading to impaired insulin-stimulated glucose uptake28. In the liver, 

DAGs activate protein kinase C ε (PKCε) and inhibit IRS and downstream insulin singling. 

Both in muscle and liver and also in adipose tissue, FA-CoA can produce ceramides that 

increase Phosphoprotein Phosphatase PP2A which, impairs insulin action via 

dephosphorylation of Akt229,30. Impairment of Akt2 in muscle limits GSVs translocation, 

whereas in the liver, gluconeogenic enzymes are activated and glycogen synthesis decreases. 

In addition, obesity increases the number of pro-inflammatory macrophages in the adipose 

tissue which produce inflammatory factors responsible for reduced insulin sensitivity and 

resistance. These macrophages are the primary source of tumor necrosis factor (TNF)-α, which 

inhibits insulin-stimulated glucose uptake in adipocytes via decreasing phosphorylation of 

insulin receptors and IRS131,32. TNF-α also impairs insulin singling pathways in skeletal 

muscle and glucose uptake via reduction of tyrosine phosphorylation of IRS1 and impaired 

phosphorylation of AS160 needed for translocation of GLUT433. Interlukin-6 (IL-6), one of 

the main proinflammatory cytokines elevated during obesity which reduces tyrosine 

phosphorylation association of IRS-1 with PI3 kinase and inhibits glycogen synthesis in 

hepatocytes which ultimately contribute to insulin resistance34. 

 

1.4 Mitochondrial dysregulation in T2DM 

Mitochondria is a multifunctional organelle with its roles in several pathophysiological events 

like oxidative phosphorylation (OXPHOS), DNA repair, tricarboxylic acid cycle (TCA), urea 

cycle  etc 35. Mitochondrial dysregulation in organs like liver, skeletal muscle and adipose 
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tissue can impair fatty acid metabolism, and intracellular accumulation of fatty acids like 

diacylglycerol, triacylglycerol, and ceramides which in turns worsen insulin resistance.  

It was reported that an imbalance between glycolytic enzymes and oxidative enzymes in 

muscle contributes to T2DM36. Insulin-resistant individuals also have a lesser number of 

mitochondria as compared to healthy individuals. Similarly, citrate synthase & oxidoreductase 

activities are reduced in T2D and obese individuals when compared to lean individuals37. 

Likewise, the skeletal muscle of T2D patients also possesses mitochondria of smaller size and 

presence of large vacuoles and disarrangement of internal membrane structure and cristae37 

suggesting mitochondrial impairment. These structural and functional alternations in the 

mitochondria of skeletal muscle contribute to insulin resistance and T2D. The enzymes 

responsible for TCA cycle are also reduced in the skeletal muscle of T2D patients38,  along 

with increased deletions of mitochondrial DNA in the skeletal muscle of people with impaired 

glucose tolerance39. Diet induced diabetic animal model also shows increased reactive oxygen 

species (ROS), dysregulation of mitochondrial biogenesis, & impairment of mitochondrial 

structure40. 

Another vital metabolic organ, liver, plays a major role in glucose homeostasis via hepatic 

gluconeogenesis, fatty acid oxidation & glycogen synthesis. Accumulation of lipids and 

decreased insulin sensitivity are hallmarks of the diabetic liver. The high fat diet causes 

oxidative stress in the liver with an increased level of malondialdehyde and a reduced 

glutathione level along with inhibition of mitochondrial respiratory complexes I and III41. In 

the insulin-resistant liver, maximal respiration & ATP production are reduced42. Pancreatic 

mitochondrial functions are also affected in diabetes. In diabetic pancreatic islets, there is 

downregulation of genes and proteins related to oxidative phosphorylation, reduced 

mitochondrial metabolism, reduced ATP synthesis, increased expression of uncoupling protein 

2, & mutations in mitochondrial DNA.43,44,45,46. Similarly, mitochondrial dysregulation also 

occurs in white adipose tissue of diabetic subjects. In mitochondria of such tissue, increased 

production of ROS, accumulation of malondialdehyde, reduction of antioxidant agents like 

glutathione peroxidase, reduction of the amount of mitochondrial DNA, decreased level of 

mitochondrial proteins like ATP synthase & OXPHOS, impairment in mitochondrial 

morphology, & downregulation of electron transport chains genes are reported47,48,49.  
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1.5 Gastrointestinal tract (GIT) and glucose homeostasis 

The gastrointestinal tract plays an important role in glucose homeostasis due to its function in 

nutrients digestion, absorption and release of intestinal hormones (incretions) in response to 

nutrients. These hormones are released from enteroendocrine cells and play an essential role 

in insulin action and glucose homeostasis. The Gastric inhibitory polypeptide (GIP)/glucose-

dependent insulinotropic peptide and glucagon-like peptide-1 (GLP-1) are two major 

incretions released by K and L cells of the enteroendocrine system of the intestine. GIP is a 

potent insulinotropic hormone that  responds to glucose produced during absorption of 

nutrients, and enhances insulin secretion50,51,52. The expression of gip gene that codes for GIP 

protein increases due to the presence of nutrients in the gut53. GIP receptors (GIPR), in which 

GIP binds to elicit its effects, are distributed in α & β cells of the pancreas, GI tract, adipose 

tissue  and several other organs54,55,56,. In the pancreas, GIP once binds to its receptor on β cells 

in response to increased glucose concentration after a meal, promotes insulin secretion via 

several signaling pathways, and direct exocytosis52,57.  The signaling cascades activated by this 

binding are MAPK, PI3K, protein kinase B/Akt, phospholipase A2, phosphor kinase A, and 

increased intracellular Ca2+58. GIP also promotes proliferation and survival of β cells58,59. The 

anti-apoptotic action of GIP on β cells has been found to be due to increased activity of 

PI3K/PKB/Foxo1 signaling cascade and decreased expression bax gene, a pro-apoptotic target 

of Foxo1 and downregulation of Bcl-2 gene, an antiapoptotic gene59.  

Another predominant incretin, GLP-1, is produced from the processing of proglucagon and 

alike GIP, released in the gut in response to nutrients intake. The L cells from which GLPs are 

released are located in the distal ileum and colon60. GLP-1 receptors (GLP-1R), 463 amino 

acid G protein-coupled receptors, are located in various target organs including, the GI tract, 

islets of the pancreas (mainly β cells), kidneys, heart, and tissues of the nervous system. GLP-

1 has both insulinotropic and glucagonostatic actions and depends on the plasma glucose 

level51. In pancreatic β cells, the action of GLP-1 is either protein kinase A (PKA) dependent 

or independent. In PKA-dependent action, binding of GLP-1 to its receptors increases cAMP, 

causing PKA activation, whereas in independent action, cAMP-regulated guanine nucleotide 

exchange factors (Epac) expressed in β cells are regulated by GLP-161,62. Activation of PKA 
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and Epac cause an increase in intracellular concentration of Ca2+. The elevated concentration 

of Ca2+ promotes the fusion of insulin-containing granules with β cells plasma membrane, 

causing the release of insulin62. GLP-1 also upregulates proinsulin gene expression via β cells 

transcription factor, Pdx-163,58. Besides the glucose-mediated release of insulin, GLP-1 also 

inhibits glucagon secretion from pancreatic alpha-cells leading to the lowering of glucose. 

GLP-1 also promotes β-cell proliferation, increases its and islet mass by enhancing cellular 

differentiation, inhibition of apoptosis and β-cell neogenesis64,60,65. Actions of GLP-1 go 

beyond the pancreas with ultimate effects in glucose maintenance. It inhibits gastric emptying 

and regulates gastric acid secretion66,67,68 via the involvement of vagal afferent nerves69,70. 

Brain GLP-1 is also known to control the whole body glucose without the involvement of 

muscle insulin receptors71. 

 

1.6 Genes of T2D 

T2D is a polygenic disease. Use of Genome Wide Association Study (GWAS), transcriptomic 

analysis, gene deletion methods and network analysis have helped identify numerous genetic 

factors involved in the pathophysiology of T2D. GWAS studies performed in subjects from 

Iceland, Europe and Hong Kong  72, UK73,  Finland and Sweden74, various European sources75, 

Finland76 , France77 in the initial studies of GWAS identified variants in or near the genes 

CDKAL1, TCF7L2, IGF2BP2, CDKN2A, CDKN2B, SLC30A8, HHEX, PPARG, KCNJ11, 

FTO, KCNQ1, MMP26, KCTD12, NGN3, CXCR4, LOC38776, CAMTA1, LDLR, EXT2, 

LOC646279 and HNF1A. Similarly, a study done in Italian subjects replicated some of the 

previously mentioned genes along with new genes (CAT, FTO, UCP1, ADIPOQ) associated 

with T2D and related micro and macrovascular complications78. 

 

1.7 Animal model of T2D 

Several animal models are available to study different aspects of T2D. Obese and non-obese, 

genetically manipulated, or diet-induced models are available. The earliest mono-genetically 

manipulated obese rodent models include Lepob/ob , Leprdb/db , Zucker diabetic fatty (ZDF) rat, 

where either Leptin or leptin receptors are mutated, resulting in hyperphagia, obesity, and 
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ultimately diabetes. Another monogenic obese model is heterogeneous KK-Ay in which mice 

are obese due to hyperphagia leading to dysregulation of β-cells79,80,81. Polygenic obese models 

include male TALLYHO/JngJ mice, male NONcNZO10 mice, KK mice, OLETF rats, and 

NZO mice. Nongenetic animal models of T2D are achieved by feeding animals with high fat 

(mostly 60%) or high-fat high carbohydrate diets for several weeks. The effects of diet depend 

on many factors, including background, sex, and microbiota of the animal model being used. 

Several non-obese diabetic (NOD) models are also available or proposed. HND, Me1/Grb10 

mice, GK rats, hIAPP mice are some of the examples of such models82,83,80. 

 

1.8 Microbiota and health  

The last two decades have seen tremendous growth in microbiome research with many 

potential implications in human, animal, and plant health. The first phase of the Human 

Microbiome Project started in 2007, which pioneered the large-scale analysis of the human 

microbiome residing in five different body parts84. Microbial cells contribute to about half the 

cell population in a human body, whereas the number of microbial genes exceeds almost 100 

times the host genes. With the advancement and decreasing cost of sequencing and increasing 

availability of robust computational tools, the importance of microbiota is being explored for 

numerous diseases leading to many ongoing clinical trials. Almost all diseases cause an 

imbalance in the composition of microbiota, termed as ‘dysbiosis’. Gut microbiota has been 

implicated in conditions like Inflammatory Bowel Disease (IBD), several cancer types, 

Crohn’s disease, obesity, diabetes, autism, aging, cardiovascular diseases (CVD), fatty liver 

disease, immune-deficiency conditions and so on. Ruminococcus gnavus (in IBD)85, 

Akkermansia muciniphila, Lactobacillus species, R. gnavus, Bifidobacterium longum, 

Bacteroides fragilis (in obesity, type 2 diabetes)86,87,88,89,90,91, Acinetobacter baumanii (in 

common variable immune-deficiency)92, Faecalibacterium prausnitzii, Bacteroides fragilis, 

Fusobacterium nucleatum, Prevotella bivia (in cancer)93,94,95,96,97, Bifidobacteria, Prevotella, 

Eisenbergiela tayi  (in autism)98,99, Akkermansia muciniphila, Lactobacillus plantarum (in 

CVD)100,101 are among several microbes whose importance have been shown in various 

diseases. There are several ongoing clinical trials using either specific microbes or microbial 

products for the treatment of different diseases like colorectal cancer, epilepsy, NASH, 
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ulcerative colitis, C. difficile infection, obesity, cirrhosis, and so on. So, implications of 

microbiota in human health have a tremendous scope but come with several challenges. 
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Abstract 
A substantial body of literature has provided evidence for the role of gut microbiota in 

metabolic diseases including type 2 diabetes. However, reports vary regarding the 

association of particular taxonomic groups with disease. In this systematic review, we 

focused on the potential role of different bacterial taxa affecting diabetes. We have 

summarized evidence from 42 human studies reporting microbial associations with disease 

and have identified supporting preclinical studies or clinical trials using treatments with 

probiotics. Among the commonly reported findings, the genera of Bifidobacterium, 

Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated 

with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively 

associated with T2D. We also discussed potential molecular mechanisms of microbiota 

effects in the onset and progression of T2D. 

Keywords: Type 2 diabetes, Microbiota, 16S rRNA, Metagenomics, Insulin resistance 

1. Introduction 
The microbiome has been associated with pathophysiology of most chronic diseases. Type 

2 diabetes (T2D) is no exception to this rule. Indeed, there is evidence for the effects of 

microbiota on glucose metabolism in both preclinical animal models of T2D and in healthy 

animals. Therefore, there is considerable interest in potential use of microbiota in clinical 

applications for understanding and treating T2D. At first glance, however, the microbiome 

literature on T2D appears chaotic and concerns have been raised about variability of the 

results. Different taxa are reported to be associated with T2D in different studies. 

Furthermore, a recent large study observed that different microbes were found associated 

with the same metabolic outcomes in different geographical areas [[1]]. While this might 

appear somewhat discouraging it is important to remember that discrepancies between 

results and disagreements about interpretations are common features of any emerging field 

in science. As a research community, we should not shy away from these problems, rather 

understand which aspects of the current literature are robust and which ones are not. A key 

issue moving forward is to identify properties of the microbiome and T2D that contribute 

to this apparent lack of reproducibility. In this review, we researched recent literature 

regarding microbiome in type 2 diabetes patients and summarize the most reliable findings. 
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2. Bacteria involved in T2D 
Out of 42 human observational studies that investigated T2D and the bacterial microbiome, 

the majority of studies reported associations between specific taxa and disease or its 

phenotypes (see Supporting Table 1 and “Search strategy and selection criteria” below). 

However, only a handful reported similar results. Among the commonly and consistently 

reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, 

Akkermansia and Roseburia were negatively associated with T2D, while the genera of 

Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D (Fig. 

1). Lactobacillus genus, while frequently detected and reported, shows the most discrepant 

results among studies. Interestingly, different macro-metrics of microbial communities, 

such as several indexes of diversity and the Bacteroidetes/Firmicutes ratio that have been 

previously suggested as markers of metabolic disease did not show consistent associations 

with T2D (Table 1). 

Bacteroides and bifidobacterium represent beneficial genera most frequently reported in 

studies of T2D. 

Bifidobacterium appears to be the most consistently supported by the literature genus 

containing microbes potentially protective against T2D. Indeed, nearly all papers report a 

negative association between this genus and T2D [2, 3, 4, 5, 6, 7, 8, 9]; while only one 

paper reported opposite results [[10]]. Furthermore, some studies also found a negative 

association between specific species such as B. adolescentis, B. bifidum, B. 

pseudocatenulatum, B. longum, B. dentium and disease in patients treated with metformin 

or after undergoing gastric bypass surgery [[6],[11]]. According to our literature 

search, Bifidobacterium has not been used alone as probiotics for T2D. However, almost 

all animal studies that tested several species from this genus (B. bifidum, B. longum, B. 

infantis, B. animalis, B. pseudocatenulatum, B. breve) showed improvement of glucose 

tolerance [12, 13, 14, 15, 16]. Thus, animal studies strengthen the idea 

that Bifidobacterium naturally habituating the human gut or introduced as probiotics play 

protective role in T2D. 

The second most commonly reported genus was Bacteroides. Eight studies have reported 

associations between the abundance of this genus and T2D. Among these, five cross-

sectional studies [[3],17, 18, 19, 20] show negative associations with disease while three 

other studies [[6],[11],[21]] that involved some type of treatment reported positive 

https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#tbl0001
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#fig0001
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#fig0001
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#tbl0001
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0010
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0006
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0011
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0003
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0006
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0011
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0021


20 

associations. This apparent inconsistency can be explained by previously reported 

antibiotic effect of metformin [[22]] and/or potential feedback mechanisms on gut icrobiota 

resulting from improved human physiology. Interestingly, in He et al. [[1],[23]] 21 out of 

23 OTUs of Bacteroides detected in their study were negatively associated with T2D. 

Accordingly, in investigations that analyzed this genus on the species level, Bacteroides 

intestinalis, Bacteroides 20–3 and Bacteroides vulgatus were decreased in T2D patients 

and Bacteroides stercoris were enriched after sleeve gastrectomy (SG) surgery in T2D 

patients with diabetes remission [[5],[11],[17],[24]]. We also found only two experimental 

animal studies testing the ability of Bacteroides to treat diet induced metabolic disease. In 

these studies, administration of Bacteroides acidifaciens [[25]] and Bacteroides 

uniformis [[26]] improved glucose intolerance and insulin resistance in diabetic mice. 

Together, these studies indicate that Bacteroides plays a beneficial role on glucose 

metabolism in humans and experimental animals. 

While Roseburia, Faecalibacterium, and Akkermansia were not reported as frequently as 

the two genera above mentioned (Bifidobacterium, Bacteroides) in the 42 studies we 

reviewed, but those genera were also found to be consistently negatively associated with 

T2D in human studies. 

In five case-control studies Roseburia was found in lower frequencies in T2D group than 

in healthy controls [[3],[17],27, 28, 29]. Accordingly, investigations that were able to 

assign Roseburia to a species level also reported a negative association with disease 

for Roseburia inulinivorans, Roseburia_272, and one unclassified OTU from this genus 

[[11],[17],[24]]. Only one paper reported an opposite result for Roseburia 

intestinalis [[17]]. 
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Table 1 Number of reports examining association between T2D and diversity of microbiota or Bacteroides/Firmicutes ratio. 
 

Index # 
Reports 

No 
association 

References 
(PMID) Positive References 

(PMID) Negative References 
(PMID) 

Alpha 
diversity 

Shannon 13 9 

24013136, 
29998997, 
29280312, 
29922272, 
29596446, 
27151248, 
26756039 

2 30397356, 
26941724 2 27974055, 

27151248 

Chao1 8 6 

24013136, 
29998997, 
29280312, 
29922272, 
26756039, 
27151248 

2 26941724, 
29789365 0  

Simpson 3 1 29998997 1 26941724 1 29789365 

Beta diversity 8 7 

24988476, 
28530702, 
24997786, 
29280312, 
29922272, 

0  1 27974055 
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Index # 
Reports 

No 
association 

References 
(PMID) Positive References 

(PMID) Negative References 
(PMID) 

29596446, 
27151248 

acteroides/Firmicutes 
ratio 14 6 

24013136, 
26756039, 
29789365, 
29434314, 
29657308, 
29998997 

3 
20140211, 
29434314, 
23032991 

4 

23657005, 
27974055, 
26919743, 
22293842 
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Two case-control studies reported lower frequencies in the disease group 

for Faecalibacterium [[2],[28]]. Nevertheless, this genus was also found to be decreased 

after different types of antidiabetic treatments ranging from metformin and herbal medicine 

[[30]] to bariatric surgery [[11]]; only one study reported an opposite effect [[31]]. 

Moreover, studies that were able to analyze this genus at species level usually detected F. 

prausnitzii. This species was found to be negatively associated with T2D in four out five 

human case control studies [[17],[24],32, 33, 34]. While it is a popular probiotic for colitis 

[[35]], there were few attempts to use F. prausnitzii as a probiotic for metabolic disease. 

Interestingly, in one study the administration of F. prausnitzii resulted in improvement of 

hepatic function and decreased liver fat inflammation in mice with diet-induced metabolic 

disease without affecting blood glucose [[36]]. Finally, it was also shown that another 

species of this genus, Faecalibacterium cf, was associated with remission of diabetes after 

bariatric surgery [[11]]. 

Akkermansia muciniphila is a relatively recently discovered member of commensal 

microbiota [[37]]. Its beneficial effect on host glucose metabolism was first reported in 

animal models [[38],[39]]. In agreement with animal studies, the negative association 

between the abundance of this bacterium and T2D has been reported in human studies 

[[17],[38]]. 

In summary, a decrease in at least one of these five phylogenetically distant genera 

(Bacteroides, Bifidobacterium, Roseburia, Faecalibacterium, and Akkermansia) in patients 

was found in approximately half of T2D microbiome studies suggesting their potential role 

beyond serving as a biomarker. Supporting this notion, the majority of these bacteria have 

been tested as probiotics for metabolic disease in mice, but more rarely in humans 

[12, 13, 14, 15, 16,[25],[26],36, 37, 38, 39, 40, 41, 42]. The potential mechanisms of 

interaction between these microbes and mammalian organisms are discussed later in this 

paper. 

Lactobacillus genus presents a complex case of apparently discordant results when 

considering all association studies, i.e. including those that analyzed changes after 

treatments (Fig. 1). However, cross-sectional studies of patients versus controls reported 

positive association between abundances of this genus and T2D in five out of six papers 

https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0002
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0028
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0030
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0011
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0031
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0017
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0024
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0035
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0036
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0011
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0037
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0038
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0039
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0017
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0038
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0025
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0026
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#fig0001


24 

[3, 4, 5,[29],[43]]. Furthermore, several associations of this genus tend to be species-

specific. For example, while L. acidophilus [[34]], L. gasseri [[24]], L. salivarius [[24]] 

were increased, L. amylovorus [[29]] was decreased in T2D patients suggesting a high 

diversity in functional impact on host metabolism by bacteria from this genus. Moreover, 

several species from this genus have been also tested as probiotics. Experimental studies in 

mice show mostly beneficial effects in the models of T2D such as L. 

plantarum [44, 45, 46, 47], L. reuteri [[48]], L. casei [[49]], L. curvatus [[50]], L. 

gasseri [[51]], L. paracasei [[52]], L. rhamnosus [[53]], L. sakei [[54]]. More importantly, 

twenty-five human clinical trials 

[55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

 79] employed twelve different species of Lactobacillus with ten of those studies 

[55, 56, 57, 58, 59, 60, 61, 62,[64],[79]] adding other probiotics. Out of eleven studies 

[58, 59, 60, 61, 62, 63, 64,[72],[76],[77],[79]] that showed some protective effect, the 

majority combined other genera, most 

frequently Bifidobacterium [58, 59, 60, 61, 62,[64],[79]], suggesting 

that Lactobacillus and Bifidobacterium may work in a synergistic manner. Species L. 

sporogenes [[76],[77]], L. casei Shirota [[63]], L. reuteri [[72]] used as mono-probiotics 

have been reported to improve T2D related symptoms in humans. 

L. plantarum, bacteria found in fermented food products, is intensively studied in animal 

systems, with many studies showing that L. plantarum improves glucose metabolism in 

diet-induced and genetic models of T2D [44, 45, 46, 47] mice; only one reported with no 

significant effect of this treatment [[80]]. However, this species had no significant effect 

on glucose metabolism in four clinical trials [68, 69, 70, 71]. Thus, it seems 

that Lactobacilli anti-diabetic effect is seen more frequently when they are a part of 

probiotic cocktail rather than administered individually [[58],[61],[62],[64]]. 

Overall, Lactobacillusgenus is highly diverse and contains the highest number of OTUs in 

the human gut among potentially probiotic bacteria. Its effects on T2D seems to be species-

specific or even strain-specific, which might explain why genus level analysis lacks 

consistency amongst studies using this bacteria (Fig. 1). 

Fewer studies (11 out of 42) reported positive associations (increase in disease) of 

microbiota with T2D and/or hyperglycemia. Specifically, Ruminococcus, 
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Fusobacterium, and Blautia have been reported in a positive association with T2D. On 

one hand, consistent findings have been reported in 5 studies on Ruminococcus genus 

[[3],[17],[28],[31],[81]] and 3 studies on Fusobacterium [[2],[4],[6]]. On the other hand, 

the studies reporting species levels of these bacteria reported conflicting results 

[[6],[11],[34]]. For example, while one study demonstrated that Ruminococcus sp. SR1/5 

enriched by metformin treatment [[6]], another found Ruminococcus bromii enriched 

and Ruminococcus torques decreased after bariatric surgery and diabetes remission [[11]]. 

It is possible that different types of treatments might be a major reason for the 

inconsistences between results of these studies. 

Blautia genus has been found increased in disease groups in three out of four cross-

sectional studies for T2D [[17],[18],[82],[83]] and reduced after bariatric surgery [[31]]. 

Disagreeing with these reports, Blautia spp. were reported to increase after treatment with 

metformin in another study [[30]]. Importantly, results by He et al. 2018 [[1]], are 

concordant with the genus level analyses demonstrating positive associations between T2D 

and several OTUs of all three of these genera. The question still remains whether these 

bacteria play a causal role in T2D since there are no studies investigating these potentially 

harmful bacteria in animal models of T2D. 

In summary, our review of literature regarding overall diversity and other macro-metrics 

of microbial communities failed to show a relation to diabetes (Table 1). However, some 

taxa have been systematically implicated in T2D. Surprisingly, some taxa are consistently 

associated with protection from T2D at genus level (e.g. Bacteroides, Bifidobacterium, 

etc.) or even phylogenetically at higher levels (e.g. Actinobacteria [[7],[17]]) whereas 

others (e.g. Lactobacilli) show only species- or strain-specific effects. This phenomenon 

might be to be associated with a diversity of a given genus habituating the human gut (i.e. 

the larger a number of strains of a given genus found in human gut, the more strain-specific 

effects are observed). Importantly, several of these microbes are currently tested as 

probiotics in mouse and human studies. 

3. Potential mechanisms of microbiota effects on metabolism in the T2D patient 
Multiple molecular mechanisms of gut microbiota contribution to metabolic disease and 

T2D have been recently reviewed elsewhere [[84]]. Microbiota modulates inflammation, 

interacts with dietary constituents, affects gut permeability, glucose and lipid metabolism, 
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insulin sensitivity and overall energy homeostasis in the mammalian host (Fig. 2). Herein, 

we summarize the mechanisms whereby specific taxa highlighted earlier in this review can 

affect T2D. 

3.1 Modulation of inflammation 
Overall, T2D is associated with elevated levels of pro-inflammatory cytokines, chemokines 

and inflammatory proteins. While some gut microbes and microbial products especially 

lipopolysaccharides (LPS) promote metabolic endotoxemia and low-grade inflammation, 

others stimulate anti-inflammatory cytokines and chemokines. For example, induction of 

IL-10 by species of Roseburia intestinalis, Bacteroides fragilis, Akkermansia muciniphila, 

Lactobacillus plantarum, L. casei [[37],85, 86, 87, 88] may contribute to improvement of 

glucose metabolism since overexpression of this cytokine in the muscle protects from 

ageing-related insulin resistance [[89]]. R. intestinalis can also increase IL-22 production, 

an anti-inflammatory cytokine [[90],[91]] known to restore insulin sensitivity and alleviate 

diabetes [[92]]. It can also promote T regulatory cell differentiation, induce TGF-β and 

suppress intestinal inflammation [[85],[90],[91]]. Likewise, Bacteroides 

thetaiotaomicron induces expression of T regulatory cell gene expression [[90]]. 

Inhibition of pro-inflammatory cytokines and chemokines is another route used by 

beneficial microbes to prevent inflammation. Various species of Lactobacillus (L. 

plantarum, L. paracasei, L. casei) can decrease IL-1β, Monocyte Chemoattractant Protein-

1, Intercellular adhesion molecule-1, IL-8, CD36 and C-reactive protein [[93],[94]]. L. 

paracasei and B. fragilis inhibit expression of IL-6 [[86],[95]]. Similarly, Lactobacillus, 

Bacteroides and Akkermansia have been found to suppress TNF-α 

[[96],86, 87, 88,[95],[97],[98]]. L. paracasei and microbial anti-inflammatory molecule 

from F. prausnitzii inhibit the activity of NF-kB [[95],[99]]. Similarly, Roseburia and 

Faecalibacterium are butyrate producing bacteria and butyrate is also known to inhibit the 

activity of NF-kB [[100],[101]]. Lactobacillus casei and Roseburia intestinalis decrease 

another pro-inflammatory cytokine IFN-γ [[90],[91],[102]] whereas Roseburia 

intestinalis can inhibit IL-17 production [[90],[91]]. Bacteroides thetaiotaomicron reduces 

Th1, Th2 and Th17 cytokines in mono-associated mice [[90]]. 

Potentially detrimental microbes in T2D (pathobionts), like Fusobacterium 

nucleatum and Ruminococcus gnavus can increase several inflammatory cytokines, albeit 

in other inflammatory diseases [[103],[104]]. 

https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#fig0002
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0037
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0089
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0090
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0091
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0092
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0085
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0090
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0091
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0090
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0093
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0094
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0086
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0095
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0096
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0095
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0097
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0098
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0095
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0099
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0100
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0101
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0090
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0091
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0102
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0090
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0091
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0090
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0103
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0104


27 

 

 
Fig. 1 Microbial genera most frequently found to be associated with T2D.  

Number of studies reporting one of the indicated genera in association with T2D (without treatment), and including anti-diabetic therapy (All) in 
addition to the largest human study by He et al., 2018 [[1]]. 
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Fig. 2. Literature-based network analysis of potential effects on metabolism of bacterial taxa consistently found in association with 
human T2D (shown in Fig. 1). References corresponding to each edge can be found in the text.



29 

 

3.2 Gut permeability 
Increased intestinal permeability is a characteristic of human T2D. It results in translocation 

of gut microbial products into the blood and causes metabolic endotoxemia [[105]]. Two 

species (Bacteroides vulgatus and B. dorei) from the potentially beneficial for T2D genera 

have been found to upregulate the expression of tight junction genes in the colon leading 

to reduction in gut permeability, reduction of LPS production and amelioration of 

endotoxemia in a mouse model [[106]]. Another probiotic bacterium, Akkermansia 

muciniphila, decreased gut permeability using extracellular vesicles which improve 

intestinal tight junctions via AMPK activation in epithelium [[42]]. The outer membrane 

protein (Amuc_1100) of this bacterium enhances the expression of occludin and tight 

junction protein-1 (Tjp-1) and improves gut integrity [[37]]. Amuc_1100 also inhibits 

cannabinoid receptor type 1 (CB1) in the gut, which in turn, reduces gut permeability and 

systemic LPS levels [[37]]. While a specific bacterial component was not determined 

for Faecalibacterium prausnitzii, it was shown that the supernatant from the cultured 

bacterium enhances the expression of tight junction proteins improving intestinal barrier 

functions in colitis model [[107]]. Finally, butyrate, produced by Faecalibacterium, 

Roseburia, also have potential to reduce gut permeability through serotonin transporters 

and PPAR-γ pathways [[101]]. 

3.3 Glucose metabolism 
Gut microbiota may also affect T2D by influencing glucose homeostasis and insulin 

resistance in major metabolic organs such as liver, muscle and fat, as well as by affecting 

digestion of sugars and production of gut hormones that control this process. For example, 

one of the potential probiotics discussed above (Bifidobacterium lactis) can increase 

glycogen synthesis and decrease expression of hepatic gluconeogenesis-related genes 

[[108]]. In the same report, B. lactis improved the translocation of glucose transporter-4 

(GLUT4) and insulin-stimulated glucose uptake. 

Lactobacillus gasseri BNR17 also increases GLUT-4 expression in the muscle with 

potential anti-diabetes effect [[109]]. Akkermansia muciniphila and Lactobacillus 

plantarum reduce the expression of hepatic flavin monooxygenase 3 (Fmo3) [[37],[93]], a 

key enzyme of xenobiotic metabolism, whose knockdown has been found to prevent 

development of hyperglycemia and hyperlipidemia in insulin resistant mice 
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[[110]]. Lactobacillus casei can ameliorate insulin resistance by increasing the mRNA 

level of phosphatidylinositol-3-kinase (PI3K), insulin receptor substrate 2 (IRS2), AMPK, 

Akt2 and glycogen synthesis in the liver [[97],[111]]. The effect of this particular microbe 

is not limited to the effects on liver. Indeed, L. casei also reduces hyperglycemia via a bile 

acid-chloride exchange mechanism involving the up regulation of multiple genes, i.e., 

ClC1-7, GlyRα1, SLC26A3, SLC26A6, GABAAα1, Bestrophin-3 and CFTR [[112]]. It 

also decreases the insulin-degrading enzyme (IDE) in the caco-2 cells and insulin-like 

growth factor binding proteins-3 (IGFBP-3) in the white adipose tissue 

[[97],[111],[113]]. L. rhamnosus, another lactobacillus species, increases adiponectin level 

in the epididymal fat, thus, improving insulin sensitization [[98]]. 

Some species of Lactobacillii and Akkermansia muciniphila possess potent alpha-

glucosidase inhibitory activity that prevents the breakdown of complex carbohydrates and 

reduces postprandial hyperglycemia [[52]]. Microbiota and their products can modulate gut 

hormones and enzymes and improve insulin resistance and glucose tolerance. Butyrate can 

act as ligand for G-protein coupled receptors (GPCR41 and GPCR43) in the gut and 

promotes the release of gut hormones GLP-1, PYY and GLP-2 from entero-endocrine l-

cells (reviewed in [[114],[115]]). Bifidobacterium and Lactobacillus produce bile salt 

hydrolases, which convert primary conjugated bile salts into deconjugated bile acids (BA) 

that are subsequently converted into secondary BA. Secondary BAs activate the membrane 

bile acid receptor (TGR5) to induce the production of GLP-1 (reviewed in [[114]]). 

3.4 Fatty acid oxidation, synthesis and energy expenditure 
Increasing fatty acid oxidation and energy expenditure and reducing synthesis of fatty acids 

ameliorates obesity and consequently T2D [[116]]. Akkermansia muciniphila, Bacteroides 

acidifaciens, Lactobacillus gasseri and short chain fatty acids have been reported to 

increase fatty acid oxidation in the adipose tissue. 

For example, Akkermansia muciniphila has been found to increase the levels of 2-oleoyl 

glycerol (2-OG), 2-palmitoylglycerol (2-PG), 2-acylglycerol (2-AG) in the adipose tissue 

which increase the fatty acid oxidation and adipocyte differentiation [[39]]. 

Furthermore, Bacteroides acidifaciens also improves fatty acid oxidation in the adipose 

tissue via TGR5-PPAR-α pathway [[25]]. Likewise, butyrate can promote fatty acid 

oxidation and thermogenesis by inhibiting the histone deacetylation process in the muscle 

which increases energy expenditure partially by promoting mitochondrial functions in the 
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muscle [[117]]. In liver and adipose tissue, butyrate and other two SCFAs, propionate and 

acetate, decrease the expression of PPAR-γ [[118]] which in turns increases fatty acid 

oxidation. Lactobacillus gasseri has been shown to reduce obesity by increasing the fatty 

acid oxidation genes and reducing fatty acid synthesis related genes [[109]]. Serum level 

of malonidialdehyde, a marker of oxidative damage of lipids, has been found to be reduced 

by Akkermansia muciniphila and Lactobacillus caseiin diabetic rodents [[87],[96]]. Hence, 

members of microbiota with beneficial effect on T2D modulate fatty acid metabolism and 

associated energy expenditure in the host that results in alleviation of obesity and 

accompanying T2D. 

3.5 Combined effects of bacteria 
Besides the above-mentioned mechanisms, some microbes can also affect the host 

physiology by increasing other potential beneficial microbiota or by cross-feeding. Several 

species of Bifodobacterium were shown to have cross feeding interaction with other 

microbiota like Faecalibacterium and Roseburia [[119],[120]]. Lactobacillus 

rhamnosus can increase Bifidobacterium abundance in the cecum of rats [[98]]. L. 

casei has been found to increase the butyrate producing bacteria [[97],[111]]. 

4. Contribution of microbiota to the success of drug therapy for T2D 
The interplay of drugs and gut microbiota is receiving much-deserved interest (reviewed in 

[[121]]). It is well known that antibiotics [[122],[123]], non-antibiotic drugs [[124]] and 

anti-diabetic drugs (Table 2) can modulate microbiota and improve diabetes. Similarly, the 

baseline microbiota can positively and negatively affect the pharmacokinetics and 

pharmacodynamics of drugs and numerous chemicals via a variety of mechanisms 

(reviewed in [[125]]). Fewer studies, however, have examined how altering gut microbiota 

(via pre- and/or probiotics) changes the effects of anti-diabetic drugs.One recent study 

examined effects of a probiotic Bifidobacterium animalis ssp. lactis 420, prebiotic 

polydextrose and their combination with sitagliptin in diabetic mice [[126]]. The 

combination of sitagliptin with pre- and probiotics was effective in reducing several T2D 

parameters. A similar study in Zucker diabetic rats observed that combining prebiotic 

polysaccharide with the antidiabetic drugs metformin and sitagliptin reduced 

hyperglycemia and adiposity compared to using only the drugs [[127]]. 
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In another study, streptozotocin-induced diabetic mice were treated with a combination of 

a prebiotic and metformin. Improvements in fasting blood glucose, glucose tolerance and 

insulin resistance were observed with the combined therapy, as compared to metformin or 

MOS alone [[128]]. Thus, a new direction in the microbiome research has emerged focused 

on the interaction between anti-diabetic drugs and microbiota. These studies should answer 

important questions such as (1) how different anti-diabetic drugs affect microbiota; (2) 

which characteristics of gut microbiota are underlying different responses to anti-diabetic 

drugs; and (3) which co- pre- and probiotics are needed to improve response to medication. 

5. Outstanding questions 
T2D is a multi-organ, heterogeneous, multi-factorial disease making the dissection of 

causative microbes from the gut microbiome challenging. In human studies, confounding 

factors like geographic location, race, culture, health status and drug-use lead to 

inconsistency in identifying microbiota associated with T2D [[1]]. Moreover, due to 

challenges in sampling from the intestine of humans, most studies use stool samples for 

microbiota analysis. However, the stool microbiota profile does not fully reflect the gut 

microbiome. Furthermore, most studies focused on genomics, rarely studying the 

transcriptome, proteome or metabolome. Even at the genomic level, deep shotgun 

sequencing is expensive, making marker-based amplicon sequencing such as 16S rRNA 

gene prevailing. Further, the existing sequencing and analysis technologies rarely identify 

(annotate) microbes at species or strain levels. Considering that the functional capacity 

varies between strains from the same species, identification of microbes and microbial 

genes associated with disease is challenging. 

A significant problem in the field is that the majority of human association studies do not 

attempt to infer microbes that may have contributing and/or causal role in T2D. Although 

inference of causality is a complex statistical problem, it is possible for host-microbiome 

interactions. Indeed, new approaches, such as Transkingdom Network Analysis [[122]] and 

novel application of Mendelian Randomization methods [[129]], have been recently 

developed and validated to answer which microbes and microbial genes/pathways are in 

control of host physiological processes. 

https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0128
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0001
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0122
https://www.thelancet.com/journals/ebiom/article/PIIS235239641930800-X/fulltext#bib0129
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Table 2 Contribution of microbiota to the success of therapy of T2D. 
 

Anti-diabetic 
Drug Effects on Microbiota References 

(PMID) 
 References 

(PMID) 

 Promotes  Reduces  

Biguanides 
(Metformin) 

Akkermansia muciniphila, Escherichia,Bifidobacterium 
adolescentis, Lactobacillus,Butyrivibrio, 
Bifidobacterium bifidum, Megasphaera, Prevetolla, 
Escherichi-Shigella, Erysipelotrichaceae incertate sedis, 
Fusobacterium, Flavonifractor, Lachnospiraceae, 
Lachnospiracea incertae sedis, and Clostridium XVIII 
and IV 

23804561, 
28530702, 
25038099, 
27999002, 
29056513, 
30261008, 
30815546, 
29789365 

Intestinibacter, 
Romboutsia, 
Peptostreptococcaceae_
unclassified, 
Clostridiaceae_1_unclas
sified, Asaccharospora, 
Alistipes, Oscillibacter, 
Bacteroides, 
Parabacteroides, un-
Ruminococcaceae 

28530702, 
30261008, 
29789365 

Alpha-
glucosidase 
Inhibitors (eg. 
Acarbose, 
voglibose, 
miglitol) 

Lactobacillus, 
Faecalibacterium,Dialister,Subdoligranulum,Allisonella
, Megasphaera, Bifidobacterium, Enterococcus, faecalis 

28130771, 
29176714, 
25327485 

Butyricicoccus, 
Phascolarctobacterium,
Ruminococcus, 
Eggerthella, 
Bacteroides, 
Oribacterium, 
Erysipelotrichaceae, 
Coriobacteriaceae, 
Bacteroides 

28130771, 
28349245, 
29176714, 
25327485 



34 

Anti-diabetic 
Drug Effects on Microbiota References 

(PMID) 
 References 

(PMID) 

 Promotes  Reduces  

GLP-1 Receptor 
agonist(eg. 
Liraglutide) 

Akkermansia muciniphila, Bacteroides acidifaciens, 
Lachnoclostridium, Flavonifractor, 
Ruminococcus_gnavus,Allobaculum, Turicibacter, 
Anaerostipes, Lactobacillus, Butyricimonas, 
Desulfovibrio 

30815546, 
30292107, 
29171288, 
27633081 

Helicobacter, Prevotella, 
Ruminococcaceae, 
Christensenellaceae, 
Roseburia, Candidatus 
Arthromitus, 
Marvinbryantia,Incertae 
Sedis 

30292,107,29
171288, 
27633081 

Thiazolidinedion
es (Pioglitazone) 

  Proteobacteria 27751827 

DPP-4 Inhibitors 
(Vildagliptin,sita
gliptin,saxaglipti
n) 

Lactobacillus, Streptococcus, Bacteroides acidifaciens, 
Streptococcus hyointestinalis, Erysipelotrichaceae, 
Allobaculu, Turicibacter,Roseburia 

29797022, 
29036231, 
27633081, 
27631013 

Oscillibacter, 
Ruminiclostridium_6, A
naerotruncus, 
Kurthia,Christensenellac
eae, Prevotellaceae, 
Bacteroides,Prevotella,B
lautia, 

29797022, 
29036231, 
27633081, 
27631013 

SGLT2 
Inhibitors 
(eg.Dapagliflozi
n) 

Akkermansia, Enterococcus 29703207 Oscillospira 29703207 
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Finally, challenges related to animal studies testing effects of microbiota on diabetes 

hamper progress. First, discrepancies between results caused by differences between 

microbiomes of otherwise genetically identical animals is one problem. Second, current 

advanced technologies in gnotobiotics such as studies of germfree and mono/oligo-

colonized animals are currently incompatible with functional metabolic studies employing 

metabolic cages and hyperinsulinemic-euglycemic clamp techniques. Our research 

community should overcome these technical challenges and develop robust experimental 

systems to validate predictions coming from human studies and investigate mechanisms of 

host-microbiota interactions in metabolic diseases. 

Future research is needed to develop new diagnostic, preventive and therapeutic microbiota 

tools for personalized/precision medicine of T2D. First, design of microbiome studies will 

need to account for clinical, molecular, and genetic as well as drug response diversity of 

T2D patients stratifying patient populations for analyses. Second, non-invasive approaches 

to collect microbiota samples from different sites of intestinal tract are needed as fecal 

material is limited in representation of gut microbiota. Third, while it is easier to focus on 

individual causal microbes, identifying combination of microbes is required to truly capture 

the community-level dynamics of the gut microbiota. In addition to taxon-based analysis, 

grouping microbes by function regardless of taxonomic similarity and function-based 

analysis should be pursued. Accordingly, we anticipate development of a new generation 

of analytical methods that will model cause-effect relationships and infer targets of 

therapeutic interventions. Finally, in order to test new drugs and probiotics as well as drug-

microbiota interactions, well-defined gnotobiotic models, specifically humanized 

microbiota, will become a main tool in animal studies. 

6. Conclusion 
Despite multiple studies supporting the importance of gut microbiota in pathophysiology 

of T2D, the field is in early stage. Currently, we have reached a point in our understanding 

that some microbial taxa and related molecular mechanisms may be involved in glucose 

metabolism related to T2D. However, the heterogeneity of T2D and redundancy of gut 

microbiota do not promise simple interpretations (e.g. low diversity) and easy solutions 

(such as fecal transplant from non-diabetic/non-obese donor). In contrast, we should work 
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towards precision/personalized medicine selecting anti-diabetics and probiotics for a given 

patient based on the combination of her/his mammalian and microbial genomes. 

7. Search strategy and selection criteria 
PubMed and Google Scholar literature searches were performed. To identify gut 

microbiome composition of T2D patients, articles between 2006 and 2018 were included 

with combinations of the terms “T2D”, “Glucose”, “gut” “Microbiome” “16S rRNA”, 

“metagenomics”, and “sequencing”. Additional papers relevant to our research were 

manually sought through bibliography search. Inclusion criteria in our review were (1) 

Human case-controlled studies; (2) articles focused on T2D (3) gut microbiota quantified 

from stool samples; (4) Glucose testing performed during the study (5) Either 16S rRNA 

gene sequencing or metagenomic sequencing performed in stool samples. 

Google scholar and PubMed found 42 papers relevant to our focus. Articles were rejected 

if it was determined from the title and the abstract that the study failed to meet the inclusion 

criteria. Any ambiguities regarding the application of the selection criteria were resolved 

through discussions between at least 3 researchers involved. Each publication was an 

academic and peer-reviewed study. 

Majority (79%) of studies utilized 16S rRNA gene sequencing with V3 and V4 regions 

most frequently (33% and 42%, respectively) targeted for sequencing (Supporting Table 

1). Human subjects across all studies had mean age of 53 years (standard deviation 10 

years) and were equivalently distributed between sexes. On average, patients had body 

mass index 28.3 ± 3 whereas controls 25.8 ± 4. 

We searched for mouse colonization studies for the top 8 microbes found in the human-

case studies. Articles between 1997 and 2018 were included with combinations of the terms 

“Mouse”, “Glucose”, “[selected microbe]”. Selected microbes included: Bacteroides, 

Bifidobacterium, Lactobacillus, Blautia, Faecalibacterium, Ruminococcus, Roseburia, and 

Fusobacterium. Inclusion criteria were (1) Mouse colonization studies; (2) Articles focused 

on T2D; (3) Glucose testing performed during the study. We also analyzed the literature 

on Akkermansia muciniphila, though it is in the species level, because of its recent 

emergence as an important potential probiotic microbe. 

Similar to the mouse colonization study literature search, we searched for results from 

clinical trials with microbes/probiotic supplementation. Inclusion criteria were: (1) Human 
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Clinical study w/ microbes/probiotic supplementation; (2) Glucose testing performed 

during the study; and (3) Microbes or Probiotics from genera identified in our papers as 

frequently found in human association studies. 
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3.1 Abstract 
Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes 

(T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, 

we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome 

interactions under WD to infer which members of microbiota contribute to the altered host 

metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful 

effects on host’s metabolism. We then validate the functional role of the predicted bacteria in 

regulating metabolism and show that they act via different host pathways. Our gene expression 

and electron microscopy studies show that two species from Lactobacillus genus act upon 

mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics 

analyses revealed that reduced glutathione may mediate these effects. Our study identifies 

potential probiotic strains for T2D and provides important insights into mechanisms of their 

action.  

3.2 Introduction 
Increasing evidence underscores the importance of the microbiome in human metabolic health 

and disease1. One of the most prevalent metabolic diseases, type 2 diabetes (T2D), is now a 

global pandemic and the number of patients that will be diagnosed with this disease is expected 

to further increase over the next decade2. The so called “western diet” (WD, a diet high in 

saturated fats and refined sugars) has been recognized as one of the major culprits of T2D with 

gut microbiota playing an important role in modulating effects of diet3,4. Thus, there is an 

urgent need to elucidate the contributions of gut microbiota to metabolic damages caused by 

WD and to identify preventive approaches for T2D.  

On the one hand, it is believed that complex changes in the structure of gut microbial 

communities resulting from interactions of hundreds of different microbes, also called 

dysbiosis, underlies metabolic harm to the host5. On the other hand, some reports claim that 

individual members of the microbial community changed by the diet might have a significant 

impact on the host6. Although these two points of view are not necessary mutually exclusive, 

it is still unclear which hypothesis is more credible7.  

Herein, we used a data-driven systems biology approach (Transkingdom Network analysis) to 

model host-microbe interactions under WD and to investigate whether individual members of 

microbiota and/or their interactions contribute to altered host metabolism induced by the WD. 
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The interrogation of the Transkingdom Network pointed to individual microbes with potential 

causal effects on host’s lipid and glucose metabolism. Furthermore, the analysis also enabled 

inference of whether microbes might elicit beneficial or harmful effects on the host. 

Additionally, we detected associations between the frequencies of these microbes and obesity 

in humans. We then validated the functional role of the predicted bacteria in regulating 

metabolism by supplementing mice with these microbes. Next, gene expression, electron 

microscopy and multi-omics network pointed to a novel finding that these two Lactobacilli 

may act by boosting mitochondrial health in the liver leading to the improvement in hepatic 

lipid and systemic glucose metabolism. Finally, the metabolomics analysis revealed few 

metabolites (e.g. reduced glutathione) that may mediate beneficial effects of probiotics.  

3.3 Results 

3.3.1 Transkingdom Network predicts beneficial and harmful microbes 
We started by inducing T2D-like metabolic disease in C57BL/6 mice by feeding them a 

western diet, which prior work has found to yield murine phenotypes that mimic human 

T2D8,9,10. As expected, when compared to mice receiving a control (normal) diet, the mice fed 

the WD exhibited glucose intolerance and insulin resistance (Figure 1a, Fig. S1). The observed 

phenotypic changes were consistent at 4 and 8 weeks, as well as between replicate experiments. 

These results align with previous studies showing metabolic changes in male C57BL/6J mice 

fed WD9,10. Concurrently, the gut (ileum and stool) microbial communities were altered 

because of diet (Figure 1b). While gut location explained the majority of the variation in the 

microbial communities as expected11,12 we observed robust changes in microbiota associated 

with feeding WD 8,13. Interestingly, the overall composition of the gut microbiota was similar 

at 4 and 8 weeks of WD (Supplementary Data 1a).  

Previous studies showed associations between ecological properties of microbial community 

(e.g. Shannon diversity) and host metabolism14,15. Therefore, we analyzed the association 

between several community parameters (Supplementary Data 1b) and host phenotypes altered 

by WD. However, analysis of data from two separate times points (4 and 8 weeks of WD) and 

microbiome results from intestinal and fecal samples did not find any correlations that showed 

significant associations in both independent experiments (Supplementary Data 1c). Thus, it 

does not seem that general dysbiosis explains metabolic alterations in this experimental system. 
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Next, we sought to identify specific microbes regulating metabolic parameters using a 

Transkingdom (TK) network approach; this approach has been successfully used to identify 

key microbiota associated with various disease states, including human disease16,17. Towards 

this end, we created a TK network by integrating microbial abundances with systemic 

measurements of host metabolic parameters changed by the WD (Figure 1c, Supplementary 

Data 2).  The TK-network contained 1009 edges between 226 nodes (6 metabolic parameters 

and 220 microbial OTUs). 

The node degree distribution of the TK-network followed the power law function (Figure 1c), 

supporting that the TK-network captures a cross-regulatory nature of the gut microbiota and 

host phenotypic ecosystem  as power law  had been shown as a  critical property of  biological 

networks18,19. Thus, the TK-network provided an opportunity to infer microbes responsible for 

controlling the overall composition of the microbial community (i.e. keystone species) as well 

as those that may control host phenotypes.   

To identify microbes that likely contribute to T2D related systemic changes in metabolism, we 

calculated a network property, called bi-partite betweenness centrality (BiBC) that measures 

the frequency with which a node connects other microbe and host nodes in the graph20. We 

then integrated BiBC scores of each OTU with the WD-induced changes in abundance of ileal 

microbiota. A microbe was considered to be potentially beneficial (T2D improver) if it had a 

high-BiBC score and a lower abundance in the ileum of WD-fed mice (Supplementary Data 

3). Conversely, a microbe was considered to be potentially harmful (i.e., a T2D worsener) if it 

had a high-BiBC score and a higher abundance in the ileum of mice fed WD (Supplementary 

Data 4).  
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Fig. 1 Inference of gut microbes affecting glucose metabolism in the host.  

a. The red and blue colors indicate higher and lower levels of metabolic parameters measured in mice fed 
normal diet (ND) or western diet (WD) at 4 and 8 weeks. Source data are provided as a Source Data 
file. b. Principal Component Analysis of stool (triangle) and ileal (circle) microbial communities of mice on 
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ND (blue) or WD (red). Source data are available 
at https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA558801. c. The microbe and host parameter nodes are 
represented by circles and squares, respectively, in the transkingdom (TK) network. Red and blue colors of 
nodes indicate increased and decreased (WD/ND) fold change, respectively, whereas the size of circle 
represents frequency of microbe in stool of WD mice. The black and green node borders indicate the 
microbes were significantly increased or decreased, respectively, in ileum of WD mice compared with ND 
(Fisher’s p value across experiments <0.05). The orange and black edges indicate positive and negative 
correlations, respectively. The degree distribution of the TK-network follows a power law. The blue line 
indicates the fitted line. Source data are available at https://tinyurl.com/TK-NW-Fig-1C. d. The left two 
figures allow inference of microbial candidates that are potentially improvers (left figure) or worseners 
(middle figure) using high values of TK-network property (bipartite betweenness centrality (BiBC) on 
the x axis) and significance of change in ileal (WD vs ND) abundance of microbes (log transformed 
Fisher’s p value across experiments on y axis). The horizontal green line indicates a log transformed value 
for Fisher’s p value of 0.05. The right figure shows the keystoneness score (x axis) of the microbial nodes 
(y axis). Source data are provided as a Source Data file. e Ileal abundance of potential candidate and 
keystone microbes in ND and WD-fed mice at 8 weeks. Asterisk indicate the change in abundance passed 
statistical significance threshold (two-tail Mann–Whitney p value <0.2 in each experiment, Fisher’s p value 
across experiments <0.05, and FDR < 10%. Each dot represents a mouse, bars present median of the group. 
Source data same as for b. 

 

As a result of these analyses, we identified four OTUs predicted to regulate glucose 

metabolism, which corresponded with high similarity to four bacterial species Lactobacillus 

johnsonii, Lactobacillus gasseri, Romboutsia ilealis and Ruminococcus gnavus (Figure 1d, 1e; 

Supplementary Data 16). The first two microbes were considered potentially beneficial (i.e., 

T2D phenotype improvers). The other two (Romboutsia ilealis and Ruminococcus gnavus) 

were predicted to be worseners. Notably, Ruminococcus gnavus has been previously shown to 

be associated with obesity21,22. Overall, these results indicate that individual microbes and/or 

their interactions and not community level dysbiosis (Figure 1, Supplementary Data 1) could 

be key players in T2D.   

It was proposed that keystone species have significant influence on the rest of gut 

microbiota, also characterized by a high number of connections within a network23,24. 

Therefore, we asked whether microbes with characteristics of keystone species in our network 

are among microbes that are predicted to influence host metabolic parameters.  Using an 

approach developed by Berry and Widder24, we investigated the microbial network and found 

one microbe with the closest match to Bacteroides pectinophilus, with a prominent 

keystoneness score, followed by few other microbes that also might qualify as keystone species 

(Figure 1d, 1e, Supplementary Data 5, Supplementary Data 16). Notably, the candidate 

microbes predicted to affect the host had a low keystoneness score suggesting that microbes 
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with potentially high effect on the host do not necessarily play a central role in regulating the 

microbial community (Figure 1d, Supplementary Data 5).   

3.4.2 Inferences from mice are validated by associations in humans 
To check the relevance of the candidate microbes in humans we identified a human study of a 

clinical population that consumes a WD-like diet and used the data to computationally evaluate 

our predictions25. In agreement with inferences from mouse data, we found correlations 

between body mass index (BMI) and the abundance of these microbial candidates (Figure 2) 

in obese humans25. Specifically, the abundance of improvers was negatively correlated with 

BMI, whereas the abundance of the worsener was positively correlated. Furthermore, we found 

R. ilealis to be present in over 80% of obese patients, suggesting that this microbe could be a 

prevalent pathobiont in obese humans. While the result for R. ilealis seemed to be more robust 

we observed only trend of positive association for R. gnavus that concurs with much smaller 

BiBC score for this bacterium (Figure 1, S2). Altogether, these observations provide further 

support for the predictions resulting from our analyses in the WD-fed mouse model. 

 

Fig. 2 Computational verification of predicted microbes in human data from the 
literature26 
Each scatter plot shows the abundance of the microbes (X axis) in stool versus the BMI of obese humans (Y 
axis). The dotted line indicates the fitted line. The Spearman rho correlation co-efficient and one-tail p-value 
is shown. Data retrieved from www.ebi.ac.uk/metagenomics/studies/ERP015317  
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3.4.3 Lactobacilli improve and Romboutsia worsen glucose metabolism 
Encouraged by the support of our inferences in human data, we proceeded to test the 

role of L. gasseri, L. johnsonii and R. ilealis in in vivo experiments designed according to 

predicted functional effects on the host. We anticipated that potential metabolic improvers (L. 

gasseri, L. johnsonii) would ameliorate metabolism damaged by western diet whereas the 

potential pathobiont (R. ilealis) would worsen metabolism in mice fed with normal diet. As 

predicted, WD-fed mice administered L. gasseri or L. johnsonii showed improved glucose 

tolerance (AUC and 120 min glucose levels) compared to mice on WD (Figure 3a, Figure S3). 

In addition, supplementation with L. gasseri ameliorated the established glucose intolerance in 

mice (Figure S4). Conversely, mice supplemented with R. ilealis showed impaired glucose 

tolerance (15 mins. glucose levels in GTT) and reduced fasting insulin compared to mice fed 

with normal diet (Figure 3a, S3). Accordingly, HOMA-B, the index that reflects pancreatic 

beta-cell function, was also reduced by supplementation with R. ilealis (Fig S3). These results 

suggest that the worsener/pathobiont and improver/probiotic microbes modulate the host 

systemic phenotypes likely via different mechanisms. Indeed, while higher levels of glucose 

early after glucose injection are most probably explained by decreased production of insulin in 

R. ilealis supplemented mice, L. gasseri and L. johnsonii improve glucose tolerance without 

altering insulin levels. Furthermore, while adiposity was not altered by R. ilealis, it was 

reduced in mice supplemented with improvers (L. gasseri or L. johnsonii) (Figure 3a).  

Although many human studies did not detect significant changes in fecal microbiota 

after probiotic administration26-28, there were recent reports concerning the possible damaging 

effects of probiotics on the upper intestinal microbiota29,30. Therefore, we sequenced 16S 

rRNA gene in ileum and fecal samples from mice supplemented with three candidate bacteria. 

Very few changes were observed in the ileal and stool microbiota composition due to 

supplementation by these microbes (Figure 3b, Fig. S5a, Supplementary Data 6). In hindsight, 

these results agree with the low keystoneness score of all three tested microbes that have 

indicated their little influence on the rest of bacterial community (Figure 1d). Furthermore, we  
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Fig. 3 Experimental validation of microbial candidates 

a) Metabolic parameters in mice given control diets and supplemented with or without the indicated microbe. 

Glucose tolerance test (GTT) curves show the mean and SD of blood glucose over time. Open and closed 

circles indicate two independent experiments; * indicates statistically significant differences in levels of the 

parameter between control group (WD for Lactobacilli, ND for R. ilealis) versus those supplemented with 

bacteria (one-tail t-test p-value <0.05 with FDR <15%). Blue, ND; red, WD; light green WD with L. gasseri 

(WD+LG); dark green, WD with L. johnsonii (WD+LJ); orange, R. ilealis (ND+RI), respectively. Source 
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data are provided as a Source Data file. b) Principal Component Analysis of stool (triangle) and ileal (circle) 

microbial communities and Venn diagram of microbes changed in mice on ND, WD, WD+LG or WD+LJ 

and with >0.1% median abundance in at least one group across experiments (Fisher’s p-value <0.05 

calculated using two-tail Mann-Whitney per experiment). For Lactobacilli supplementation experiments, n 

= 11 mice for ND, WD and WD + Lg groups, n = 10 mice for WD + Lj group. For R. ilealis (ND and 

ND+RI), n = 5 mice per group. 

did not find differences for individual taxa in stool samples in mice supplemented with 

bacteria. In the ileum, only one bacterium, Anaerotruncus colihominis (Supplementary Data 

16), was reduced due to western diet and increased by both L. gasseri and L. johnsonii (Fig. 

S5b). In agreement with our result, a study of gut microbiota from the Old Order Amish sect 

found this microbe to be negatively correlated with BMI and serum triglycerides31. Altogether, 

however, minimal alterations in microbiota induced by L. gasseri and L. johnsonii 

supplementation did not explain restoration of glucose metabolism promoted by these bacteria. 

3.4.4 Lactobacilli improve hepatic mitochondria and lipid metabolism 
Besides identifying effective probiotics for obesity/diabetes, it is critical to establish 

the host pathways through which these microbes exert their effect. Therefore, we next 

investigated two major target organs (intestine and liver) upon which both Lactobacilli might 

be acting to improve systemic metabolism. For a comprehensive evaluation of these organs we 

first analyzed global gene expression altered by L. gasseri and L. johnsonii supplementation. 

To identify common mechanisms by which L. gasseri and L. johnsonii improve metabolism, 

we focused on the genes that responded similarly to both microbes by identifying genes 

differentially expressed between both L. gasseri and L. johnsonii comparing to WD. The 

transcriptome of the ileum and liver showed distinct changes in response to supplementation 

by these bacteria (Figure 4a). In striking contrast to the number of genes differentially 

expressed in the ileum (152, FDR < 10%), there were much higher numbers of genes 

differentially expressed in the liver (654, FDR < 10%) (Supplementary Data 7-8). Furthermore, 

the great majority (638/654) of these genes were upregulated by Lactobacilli supplementation.  

Functional enrichment analysis showed that genes that were changed in the ileum were 

enriched for only a few categories with the circadian rhythm function as the main one 

(Supplementary Data 9). Notably, one of the genes was Nfil3, which was downregulated in the 

ileum of L. gasseri or L. johnsonii supplemented mice as compared to the WD mice 

(Supplementary Data 7). In agreement with our results, the knockout of this gene in the 
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intestinal epithelium had been shown to prevent mice from obesity, insulin resistance and 

glucose intolerance32. 

Pathway enrichment analysis in liver, however, showed that multiple categories, and 

processes related to mitochondrial functions were over-represented among genes upregulated 

by L. gasseri and L. johnsonii (Figure 4b, S6, Supplementary Data 10). In addition, further 

analysis demonstrated that genes belonging to all five mitochondrial complexes of the 

oxidative phosphorylation pathway (Figure 4c) were upregulated in the liver of L. gasseri and 

L. johnsonii supplemented mice (Supplementary Data 8). There was also a group of genes 

coding for large and small subunits of mitochondrial ribosomal proteins with increased levels 

of expression in the L. gasseri and L. johnsonii group. Furthermore, genes involved in 

mitochondrial fusion were upregulated by the Lactobacilli including mitofusin 1 and 2 (Mfn1, 

Mfn2), mitoguardin 2 (Miga2), and optic atrophy 1 (Opa1) (Supplementary Data 8). 

Hepatic mitochondrial functions are well known to be dysregulated in T2D33-35. 

Overall, our results suggest that in addition to mitochondrial functions, these probiotic bacteria 

induced structural/morphological changes in liver mitochondria. Thus, we performed electron 

microscopy of the livers from mice fed with WD and supplemented or not with each 

Lactobacilli (i.e. WD, WD+LG, WD+LJ) (Figure 4d). While there was no difference in the 

number of mitochondria, overall area occupied by mitochondria was larger in WD group mice 

than in L. gasseri or L. johnsonii (Figure 4e) suggesting increased size of mitochondria in livers 

of WD as compared to mice supplemented by Lactobacilli.  This result indicates that 

mitochondrial swelling caused by WD, a phenomenon that can perturb proper functioning of 

mitochondria36-38, was ameliorated by probiotic supplementation. 
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Fig. 4 Transcriptome analysis, liver mitochondria and lipids after supplementation with 
L. gasseri or L. johnsonii. 
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a) Number of differently expressed genes (#DEGs, two-sided t-test p-value <5% in each Lactobacilli, 
Fisher’s p-value < 5% calculated over both Lactobacilli, and FDR <10%) regulated by L. gasseri and L. 
johnsonii in the same direction comparing to western diet. b) Over-represented processes in the genes of the 
network in a) of mice supplemented with Lactobacilli. c) A heatmap showing the median expression of 
genes from the respiratory chain process in the livers of mice. d) Representative electron microscope images 
of liver cells. The blue and red arrows indicate healthy and damaged mitochondria, respectively. e), f) 
various metrics of mitochondria in the liver of mice; *statistically significant differences between control 
and groups supplemented with bacteria (one-sided t-test p-value < 5%). Data are presented as mean ± s.d. 
(n = 40 images for WD, n = 35 images for WD + LG and n = 37 images for WD + LJ groups; n = 60 
mitochondria for healthy and n = 61 for damaged mitochondria). Source data are provided as a Source Data 
file. g) Levels of long chain fatty acids, h) expression of cholesterol metabolism genes in livers of mice fed 
WD and supplemented with or without Lactobacilli. Each symbol represents one mouse, bars are median 
values. Source data are provided as a Source Data file; n=3-5 mice per group (except serum cholesterol 
where n=10-11 mice per group); * indicates statistically significant differences in WD vs WD+ LG or LJ 
(one-sided t-test p-value <5%); # indicates p=0.065. 
 

Next, we undertook quantitative evaluation of mitochondrial ultrastructural changes. 

Current agreement in the field is that healthy and damaged mitochondria correspond to dark, 

electron-dense and lucent, fragmented cristae images, respectively37,39. According to those 

criteria, we first identified a set of healthy and damaged mitochondria within individual images 

(Figure 4f). Next, we estimated, in an unbiased manner (i.e. comparing healthy and good 

mitochondria within a given sample), which image parameters discriminated between the two 

types of mitochondria. We found lower values of standard deviation, integrated density, and 

the density mode in healthy compared to damaged mitochondria (note, in grayscale, white is 

255 and black is 0) (Supplementary Data 11). Comparison between the three groups of mice 

showed significantly lower levels of these parameters in L. gasseri and L. johnsonii groups 

than in WD (Figure 4f), pointing to healthier mitochondria in the former two groups of mice.  

Overall, these results support the prediction derived from gene expression data and indicate 

that L. gasseri and L. johnsonii supplementation prevented hepatic mitochondrial damage 

induced by western diet.  

One of the important consequences of improved mitochondrial health is a restoration 

of fatty acid beta-oxidation. This process decreases build-up of detrimental fatty acids in the 

liver leading to improved systemic glucose metabolism40,41.  In our data, among 19 regulated 

genes from the beta-oxidation gene subset, 18 genes were upregulated by supplementation of 

probiotic strains (Supplementary Data 12). Among upregulated genes were those involved in 

fatty acid transport (Slc25a17, Slc27a2), oxidation (Acads, Acadl) and hydration (Echs1) of 
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fatty acyl representing major steps of beta-oxidation. These results pointed to possible increase 

in catabolism of fatty acids by Lactobacilli supplementation. Indeed, we found overall 

reduction of total hepatic lipids including several most abundant fatty acids known to have 

damaging effects on metabolism associated with T2D 42 such as monounsaturated fatty acids, 

oleic and palmitic acids (Figure 4g, S5c, Supplementary Data 13). Overall, these results are in 

accordance with the idea that changes in the liver fat are central to development as well as 

reversion of T2D43. 

Besides fatty acids metabolism, two genes with well-established functions in 

cholesterol metabolism were also upregulated by both Lactobacilli: Abcg8, (hepatic 

cholesterol efflux44) and Cyp7a1, (conversion of cholesterol into bile acids45) (Fig. 4h). 

Therefore, we measured cholesterol in liver and serum samples. Although there was no change 

in serum cholesterol, there were reduced levels of liver total cholesterol in mice supplemented 

with L. gasseri or L. johnsonii (Figure 4h).  These results agree with an idea that alterations in 

the liver might precede lipid alterations detectable in serum43.  

3.4.5 Multi-omic network infers key liver genes for effects of Lactobacilli  
To identify potential mechanisms by which Lactobacilli alter lipid and glucose metabolism, 

we created a multi-omic network by integrating the gene expression changed by Lactobacilli 

and lipid profile from the liver with systemic measurements of metabolic parameters changed 

by the WD (Figure 5a).  The multi-omic network contained 1776 edges connecting 380 nodes. 

The node degree distribution of this network followed the power law function (Figure S7), a 

critical property of biological networks18,19. Furthermore, while over half of differentially 

expressed genes made into the multi-omic network, the enrichment analysis showed similar 

results with mitochondrial translation, fusion, organization and autophagy formations being 

top enriched functions in this network (Figure 5b). Next, we interrogated this network to infer 

genes regulated by Lactobacilli and potentially responsible for changing the systemic 

phenotypes. Specifically, we used the degree (local network property counting the immediate 

neighbors) and BiBC20, which is a global network property that measures the overall frequency 

with which a node connects to the nodes of other omics-type in the graph. Noteworthy, we 

found that gene expression nodes were predominantly connected to GTT, fasting glucose and 

120 min glucose, two of which were significantly decreased by Lactobacilli supplementation 

(Figure 5a, 5c). Furthermore, Ifitm3, Usp50, Rai12 (Elp5) and Snap47, which are known to be 
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involved in the maintenance of functional mitochondria46-48, were found as key genes 

connecting expression alterations with systemic glucose metabolism (Figure 5c). Interestingly, 

epididymal fat (also decreased in mice by Lactobacilli) was highly connected to liver fatty 

acids and to only one gene (Mfsd3), which codes for a solute carrier previously found in 

association with palmitic acid levels in a genome-wide association study49. 

Thus, the network analysis further suggested that expression of genes responsible for 

mitochondrial organization and maintenance in the liver is the primary driver of improved 

systemic glucose metabolism. 

3.4.6 L. gasseri and L. johnsonii increase serum glutathione and bilirubin 
Next, we applied a metabolomics approach to identify potential mechanisms responsible for 

improved hepatic mitochondrial health evoked by Lactobacilli.  First, we established which 

metabolites were specifically increased by these bacteria in the serum of mice that did not 

contain other microbes. For this, germfree mice fed WD were monocolonized or not with L. 

gasseri for 2 weeks and mouse serum was subject to metabolite profiling. Out of 133 

metabolites that were identified (Supplementary Data 14a), 12 were increased after 

monocolonization, ranging from two-fold for 8-iso-15-keto-PGF2a to 48 for bilirubin (Figure 

5d, Supplementary Data 14b). After this pre-selection in mono-colonized mice, we compared 

abundance of the 12 metabolites between pools of sera of SPF mice supplemented with L. 

gasseri or L. johnsonii in three independent experiments (see details in Methods). We found 

that reduced (but not oxidized) glutathione (GSH) increased about 4 times, and bilirubin 

showed a trend to increased levels (FDR=0.12), while two tauro-conjugated bile acids and 3- 

hydroxytetradecanedioic fatty acid showed various levels of decrease in Lactobacilli 

supplemented SPF mice (Figure 5e, Supplementary Data 14c).  
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Fig. 5 Multi-omic network analysis, metabolomics in mice supplemented with Lactobacilli 
and validation of glutathione in vitro 
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a) Multi-omic network integrating gene expression of genes significantly regulated in liver by Lactobacilli 
(circles), liver lipid profile (diamonds), and systemic metabolic parameters (squares) with red symbols 
indicating up-regulated and blue are down in Lactobacilli  supplemented mice. Green outline of nodes 
indicates significantly decreased lipid or phenotype; size of circle corresponds to the combined score of 
degree and bi-partite betweenness centrality (BiBC) in the network. The orange and black edges indicate 
positive and negative correlations, respectively. Genes with top degree and BiBC are indicated. Source data 
are available at https://tinyurl.com/multi-omic-NW-Fig-5A b) Gene ontology biological functions over-
represented in the genes of multi-omic network. c) Scatterplot showing the degree and BiBC of all nodes in 
the multi-omic network with genes (grey), lipids (blue), phenotypes (green). d) Fold-changes of 133 serum 
metabolites in germfree (GF) mice fed western diet (WD) and colonized with L. gasseri for 2 weeks in 
comparison to GF mice on WD (n=2 per group). TG, Triacylglycerol 
(16:0/18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)); MG, Monoacylglycerol; 8-iso-15-keto PGF2α, 8-iso-15-keto 
Prostaglandin F2α. Source data are provided in Supplementary Supplementary Data S14. e) Changes in 12 
metabolites identified in Fig. 5d in specific-pathogen mice (SPF) fed WD (data of serum pools of 4-6 mice 
in each pool per group), in 5 experiments of Lactobacilli supplemented mice, mean fold change across 5 
experiments and FDR (false discovery rate) is plotted. Source data are provided in Supplementary 
Supplementary Data S14c. f) Left heat map shows the geometric mean of normalized gene expression in 
AML12 cells treated with either low sugar medium (glucose 17 mM), high sugar medium (glucose and 
fructose at 50 mM each) or high sugar medium supplemented with 4 mM, 6 mM or 9 mM of reduced 
glutathione (GSH) ethyl ester (5-6 independent experiments). The right heat map shows geometric mean of 
normalized gene expression from RNA-Seq in liver of western diet (WD) fed mice or WD fed mice 
supplemented with either L. gasseri or L. johnsonii (red, high; blue, low relative gene expression). Source 
data are provided as a Source Data file. 
 

Although the mechanisms of GSH surge by Lactobacilli is not clear yet, this metabolite seemed 

to be a plausible candidate to cause hepatic mitochondrial improvement in mice as its 

antioxidant functions are well-established50. To test this hypothesis, we used AML-12 cell 

culture mimicking diabetic alterations in liver by adding high concentrations of fructose and 

glucose. Treatment of cells with different concentrations of GSH (in high sugar) enhanced 

expression of several genes with well-known mitochondrial functions such as mt-Atp6, 

Ndufv1, Mfn1, Opa1, Foxo3, Gabpa whose expression was also upregulated by Lactobacilli 

in the livers of mice (Figure 5f, Supplementary Data 15a). We further tested three genes 

(Usp50, Ifitm3, Rai12) predicted by the network analysis (Figure 5c) to play a key role in the 

control of mitochondrial health in liver and systemic glucose metabolism and have been 

previously shown to support mitochondrial homeostasis47,48. While we could not detect Usp50 

in cell culture, the two other genes (Ifitm3, Rai12) showed increased expression in 6 and 9 mM 

GSH similar to other mitochondrial genes (Figure 5f). Thus, altogether these results indicate 

that an increase in GSH in the serum of mice is likely to be one of the important mechanisms 

used by Lactobacilli for boosting liver mitochondrial and anti-oxidant function, consequently 

improving systemic glucose metabolism. 



64 

3.5 Discussion 
Our work provides further support for the hypothesis that variations in abundance of a 

few key (but not keystone) microbes rather than overall changes of the microbial community 

might explain microbiota-related damage caused by western diet in T2D. Indeed, 

administration of two bacteria (L. gasseri and L. johnsonii), decreased by western diet, 

improved systemic glucose metabolism. The fact that this improvement could be achieved by 

supplementation of single bacteria, however, does not eliminate a possibility of microbe-

microbe interaction playing a role in this process. Furthermore, both Lactobacilli had very low 

keystoneness, and accordingly we did not detect strong alterations in the gut microbiota (fecal 

or ileal) of mice supplemented by these two microbes. This is in agreement with several human 

studies that used other strains of probiotic bacteria and largely did not observe changes in 

taxonomic composition of fecal microbiota26-28. In contrast, two recent reports showed 

alterations in human mucosal microbiota communities by probiotics and potential adverse side 

effects of probiotics, especially when used after antibiotics29,30.  

The two species of Lactobacilli we predicted and tested in mice fed WD, enhanced 

systemic glucose tolerance, decreased adiposity, reduced several “bad lipids” in the liver, 

which could be all a consequence of improved hepatic mitochondrial health. This thought is 

supported, on the one hand, by clinical studies that have shown that reduction in hepatic fat in 

animals and humans results in recovery from T2D37,51,52. On the other hand, impairment of 

liver mitochondrial function has been long known as an important contributor to metabolic 

disease33-35,53.  Furthermore, it has been shown that both palmitic and oleic acids (decreased by 

Lactobacilli) can damage liver mitochondria54,55,56. Conversely, enhancement of mitochondrial 

functioning stimulates beta-oxidation resulting in the reduction of damaging fatty acids57,58.  

The multi-omic network analysis in our study further supported the central role of 

hepatic mitochondrial health. Specifically, it pointed to several genes (Figure 5a-c) involved 

in proper mitochondrial organization and mitochondrial autophagy (mitophagy) as the key 

players in relation to systemic glucose metabolism.  

Investigations performed over the last decade have reported several mechanisms 

whereby microbiota can affect T2D including modulation of inflammation and immune 

mediators, gut hormones, mucosal permeability, insulin production among others59. Our 

present findings bring to the picture of host-microbiota interactions an intriguing link between 
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mitochondria (regarded as mammalian endosymbionts) and the symbiotic microorganisms in 

the gut. Interactions between mitochondria and microbiota is an emerging direction in 

microbiome research and have been implicated in Parkinson’s disease60, intestinal cell death 

by antibiotic-resistant microbiota61 and longevity of C. elegans62. Metabolic health is 

synonymous with mitochondrial health where the ancestral mitochondrion-microbiome axis 

may play an important role63.  

Our investigation of serum metabolome pointed to several changes caused by 

Lactobacilli. While the fact that Lactobacilli supplementation can alter certain bile acids levels 

might not be surprising, a biological role of these alterations is uncertain. Furthermore, we 

were not able to follow up the detected changes by targeted metabolomics in this work, which 

can be a subject of future studies. However, two metabolites, glutathione and bilirubin, are 

known to play complementary antioxidant roles, which would improve mitochondrial 

respiration and other metabolic functions64,65. More recent reports demonstrated that deletion 

of biliverdin reductase A, which transforms biliverdin into bilirubin induced oxidative stress 

and lipid accumulation66 and that bilirubin itself protects mitochondria via scavenging O2- 

67.  Glutathione, however, uses somewhat different mechanisms of beneficial effects on 

mitochondria. For example, it was shown to improve mitochondrial fusion68. Indeed, we found 

that both Lactobacilli in vivo and GSH in vitro increased expression of three main GTPases 

(Mfn1, Mfn2, Opa1) required for this process.  

Unlike bilirubin, which is produced by hepatocytes, glutathione origin is not limited to 

mammalian cells but it can also be produced by many bacteria. For example, some species of 

Lactobacilli are known to produce glutathione, which they utilize to protect themselves from 

bile salts, reactive oxygen species and other types of cellular damages69,70. Therefore, it is 

plausible that our observation of increased levels of glutathione is a result of simultaneous 

induction of its production by host cells71 and by Lactobacilli itself. Although, further studies 

are warranted to identify the main source of glutathione, it is highly plausible that this 

metabolite is one of the main mediators of Lactobacilli effect on liver mitochondria.  

In agreement with our result, it was reported that another strain of L. johnsonii may 

improve hepatic mitochondria72. Interestingly, these mitochondrial effects may not be limited 

to the liver, since another species of Lactobacilli L. paracasei attenuated cardiac mitochondrial 
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dysfunction in obese rats73, and a different strain of L. gasseri increased resistance to 

mitochondrial dysfunction in aging Caenorhabditis elegans74. Notable, the two strains (L. 

gasseri and L. johnsonii) identified and tested in our study are also promising candidates for 

future testing in clinical settings of T2D as they would have minimal adverse effects on gut 

microbiota while improving glucose metabolism. Other strains of these two species of 

Lactobacilli have been tested in clinical trials for other diseases and in mouse models of 

diabetes59,75 and thus might share critical mechanisms of effects on the mammalian host. 

In conclusion, our study demonstrates that damaging effects of western diet on 

metabolism can be at least partially explained by decrease of beneficial microbes (e.g. 

Lactobacilli) and increase of pathobionts (e.g. Romboutsia ilealis) in gut microbiota, each of 

them acting via different host pathways. Furthermore, it revealed potential probiotic strains for 

treatment of T2D as well as critical insights into mechanisms of their action, offering an 

opportunity to develop targeted therapies of diabetes rather than attempting to restore “healthy” 

microbiota as a whole.  
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3.6 METHODS 
Mice and diets 
Seven weeks old, C57BL/6 male mice were purchased from Jackson Laboratories (Bar Harbor, 

Maine) and housed at Laboratory Animal Research Center (LARC) at the Oregon State 

University. After 1 week of acclimatization, mice were either switched to western diet (WD) 

D12451 containing 45% lard and 20% sucrose or to a matched normal diet D12450K (ND) 

produced by Research Diets (New Brunswick, NJ). Mice were on these diets for 8 weeks. Two 

independent experiments were performed with 5 mice per group in each experiment. Ethical 

approval for this work was obtained from the Oregon State University Institutional Animal 

Care and Use Committee. The study complied with all relevant ethical regulations regarding 

the use research animals.  

Bacteria 
Lactobacillus gasseri ATCC 33323 were purchased from American Type Culture Collection 

(ATCC, Manassas, VA). Lactobacillus johnsonii NCC 533 were donated by Nestlé Culture 

Collection (Nestec Ltd., Nestlé Research Center Lausanne, P.O. Box 44, CH-1000 Lausanne 

26). Both bacteria were grown anaerobically in MRS broth for 24 h at 37oC, CFU was 

determined by serial dilutions, aliquoted in 15% glycerol stocks in cryovials and stored at -

80oC. Before the gavage, the bacterial glycerol stocks were thawed, spun down and 

resuspended in sterile PBS. For Romboutsia experiment, active culture of Romboutsia ilealis 

DSM 25109 were purchased from the German Collection of Microorganisms DMSZ. 

Bacterial Supplementation Experiments 
For the microbial supplementation experiments, 8 weeks old C57BL/6 mice were given either 

ND or WD or WD + L. gasseri (gavaged 1X10^9 CFU/mouse every other day) or WD + L. 

johnsonii (gavaged 1X10^9 CFU/mouse every other day) for 8 weeks. For the control, both 

ND and WD groups were gavaged with equal volume of PBS (0.2 ml per mouse). Two 

independent experiments were performed with 5-6 mice per group per experiment. For the 

treatment experiment, mice were fed ND or WD for 8 weeks when one group of WD mice was 

supplemented with L. gasseri (gavaged 1x10^9 CFU/mouse every other day). Glucose 
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tolerance test was performed at 8 weeks on WD and 4, 9 and 12 weeks on WD + L. gasseri (n 

= 5 per group). For Romboutsia ilealis supplementation experiment, after 1 week of 

acclimatization, all mice were switched to ND and were either given PBS or 1x10^9  CFU of 

R. ilealis every other day for 4 weeks (n=5). Metabolic measurements were done as described 

below except for R. ilealis experiment 1 mg/kg glucose was injected for IPGTT. 

For gnotobiotic mouse experiment, germ-free mice on western diet were colonized with 

1x10^9  CFU L. gasseri on Day 0, Day 2, Day 4 and Day 12 and sacrificed on D14 (n=2).   

Intraperitoneal Glucose Tolerance Test (IPGTT) 
Mice were fasted for 6 h during the light phase with free access to water. A concentration of 

2 mg/kg glucose (Sigma-Aldrich) was injected intraperitoneally. Blood glucose was 

measured at 0 min (immediately before glucose injection), 15, 30, 60 and 120 mins with a 

Freestyle Lite glucometer (Abbot Diabetes Care). 

Fasting insulin & fasting glucose  
Mice were fasted for 6 hours with free access to water. Fasting blood was collected either via 

submandibular bleed or from the tail vein. Insulin and glucose levels in fasting plasma or serum 

was measured with Mouse Insulin ELISA Kit (Crystal Chem) and Glucose Colorometric Assay 

Kit (Cayman Chemical), respectively, according to manufacturer’s protocol. HOMA-IR and 

HOMA-B were calculated according to equations (1) and (2), respectively:  

HOMA − IR = Glucose (mg/dL )×Insulin(µU/mL)
405

  (1) 

HOMA − B =
360×Insulin�µ U

mL�

Glucose �mg
dL�−63

%  (2) 

The heatmap of results of systemic measurements was created using Morpheus 

(https://software.broadinstitute.org/morpheus/). 

Hepatic fatty acids and cholesterol 
Hepatic fatty acids were quantified using established protocols76. Briefly, total lipid was 

extracted from liver in chloroform-methanol (2:1) containing 1 mM butylated hydroxytoluene. 

7-Nonadecenoic acid (C19:1) was added as a recovery standard. Total protein was measured 

after the initial homogenization step by BCA assay (Bio-Rad, Hercules, CA). Fatty acids in 

the extracts were saponified in 80% methanol containing 0.4 M KOH. Afterward, saponified 

fatty acids were converted to fatty acid methyl esters (FAME) in methanol containing 1% of 

24 M H2SO4 and then quantified by gas chromatography.  
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Hepatic total cholesterol in liver lipid extracts and in serum was measured using Amplex™ 

Red Cholesterol Assay Kit (Thermo Fisher Scientific) according to manufacturer’s protocol. 

RNA preparation and gene expression analysis 
RNA was extracted using an OMNI Bead Ruptor and 2.8 mm ceramic beads (OMNI 

International) in RLT buffer followed by Qiashredder and RNeasy kit using Qiacube (Qiagen) 

automated extraction according to manufacturer’s specifications. Total RNA was quantified 

using Quant-iT RNA Assay Kit (Thermo Fisher Scientific). Complementary DNA was 

prepared using qScript reverse transcription kit (Quantabio) and qPCR was performed using 

Perfecta SYBR mix (Quantabio) and StepOne Plus Real Time PCR system and software 

(Applied Biosystems). RNA libraries were prepared with QuantSeq 3’mRNA-Seq Library 

Prep Kit (Lexogen) and sequenced using Illumina NextSeq. Sequences were processed to 

remove adapter, polyA and low-quality bases by BBTools (https://jgi.doe.gov/data-and-

tools/bbtools/) using bbduk parameters of k=13, ktrim=r, forcetrimleft=12, 

useshortkmers=t, mink=5, qtrim=r, trimq=15, minlength=20. 

Reads were aligned to mouse genome and transcriptome (ENSEMBL NCBIM37) using 

Tophat (v2.1.1) 77with default parameters. Number of reads per million for mouse genes 

were counted using HTSeq (v 0.6.0) 78 and quantile normalized. BRB-ArrayTools was used 

to identify genes differentially expressed in the liver and ileum when supplemented with or 

without the Lactobacillus candidates. Pathway enrichment was performed using 

Metascape79. 

 

DNA extraction and 16S rRNA gene libraries preparation 
For microbial measurements, stool pellets were collected at T1 (4 weeks of diet) and stool 

pellets and terminal ileum contents were collected at T2 (8 weeks). To get microbial DNA, 

frozen fecal pellets and ileum with content were resuspended in 1.4 ml ASL buffer (Qiagen) 

and homogenized with 2.8 mm ceramic beads followed by 0.5mm glass beads using an 

OMNI Bead Ruptor (OMNI International). DNA was extracted from the entire resulting 

suspension using QiaAmp mini stool kit (Qiagen) according to manufacturer’s protocol. 

DNA was quantified using Qubit broad range DNA assay (Life Technologies). The V4 

region of 16s rRNA gene was amplified using universal primers (515f and 806r) as in16. 

Individual samples were barcoded, pooled to construct the sequencing library, and then 
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sequenced using an Illumina Miseq (Illumina, San Diego, CA) to generate pair-ended 

250 bp reads.  

16S rRNA gene sequencing data analysis 
The samples were demultiplexed and forward-end fastq files were analyzed using QIIME v. 

1.9.180. The default quality filter parameters from QIIME’s split_libraries_fastq.py were 

applied to retain high quality reads (Phred quality score > = 20 and minimum read length = 

75% of 250 nucleotides). A closed reference OTU picking with 97% sequence similarity was 

performed using UCLUST81 and Greengenes reference database v13.8 82,83 to cluster 16S 

rRNA gene sequence reads into OTUs and assign taxonomy. The reference sequence of 

candidate OTUs from the Greengenes database was used to obtain species level taxonomic 

assignment using Megablast 84 (top hit using default parameters). A threshold of 99% 

cumulative abundance across all samples in an experiment was used to retain abundant 

microbes, thus removing OTUs with approximately <0.01% abundance across all samples in 

that experiment. The read counts were normalized using cumulative sum scaling85, accounted 

for DNA quantity, followed by quantile normalization. The principal component analysis for 

the 16S sequencing data was created using Clustvis86, GraphPad Prism software (version 7), R 

packages seqtime version 0.1.1, igraph version 1.2.5. 

 

Network analyses  

Transkingdom Network reconstruction and prediction of causal microbes 
Spearman rank correlations were calculated between all pairs of microbes (OTUs) and 

metabolic parameters (phenotypes) in each group of both experiments. A combined Fisher’s p-

value was calculated for each pair from the correlation p-values from each experiment. A FDR 

was calculated on the combined p-values separately for the following correlations: (i) within 

metabolic parameters, (ii) within OTUs, and (iii) between OTUs and metabolic parameters. 

We retained edges that satisfied the following criteria: the sign of correlation coefficients in 

the two experiments consistent in stool of WD-fed mice at 4 weeks (n=35 per expt.), 

individual p-value of correlation within each experiment is <30%, combined Fisher’s p-value 

of all experiments <5% and FDR cutoff of 10% for within edges (i and ii). Finally, the 

transkingdom network was generated 20,61,87-89 by adding microbe-phenotype edges where the 

microbe showed significant change in (WD vs ND) abundance in ileum at 8 weeks, edges 

showed consistent sign of per-group Spearman correlation coefficient between the two 



71 

experiments of three WD-fed groups (WD-stool 4 weeks, WD-stool 8 weeks, and WD-ileum 

8 weeks), and satisfied principles of causality90 (i.e., had concordance between fold change in 

WD vs. ND comparison and correlation sign between the two partners) in all three WD-fed 

groups. The network was visualized in Cytoscape and is available at https://tinyurl.com/TK-

NW-Fig-1C. 

Identification of keystone microbes 
Generation of training data was accomplished as follows: 100 instances of 542 generalized 

Lotka-Volterra models were run to steady state and steady state species abundances were 

considered individual samples. Those individual samples consisted of 10 to 100 species drawn 

from a model-specific species pool. The size of the species pool was determined by defining 

similarity in species composition between samples (between 0.4 and 0.95). The individual 

models further varied in the following parameters: Connectivity of the species interaction 

matrix (between 0.005 and 0.7), negative edge percentage of the species interaction matrix (0% 

- 100%), species-specific growth rates (between 0 and 1) and carrying capacities (between 0 

and 100), as well as the topography of the species interaction matrix (interactions sampled 

from a uniform distribution or assigned according to the Klemm-Eguíluz model91.  The R-

package seqtime was used to generate the species interaction matrices92. 

Subsequently, each species included in a model was in turn removed from the community and 

a Canberra distance between original and sub-sampled community was calculated. 1000 

iterations of this procedure were performed per species and the average Canberra distance 

induced by a species’ absence was considered its keystoneness score. 

For Model training, the data was split into training set and test set. The training set was used 

to train a linear model to predict keystoneness based on mean relative abundance and the 

following node parameters computed from a spearman correlation network: sum of absolute 

correlation strength, node degree, relative closeness centrality, betweenness centrality and 

eccentricity. With the exception of absolute correlation strength, the network parameters were 

calculated within the R-package igraph (http://igraph.org). This model was then used to predict 

keystoneness on the test set. A linear model between real and predicted keystoneness in the 

test set gave an adjusted R² of 0.4219, with a p-value < 2.2e-16. 

The trained linear model was subsequently applied to the OTU abundance data and the 

previously computed correlation network to predict keystoneness scores for each OTU. Lastly, 
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keystoneness scores were scaled between 0 and 1 to remove negative values occurring as an 

artifact of the linear model. 

Multi-omic Network analysis 
Spearman rank correlations were calculated between all pairs of genes, lipids, and phenotypes. 

The phenotypic subnetwork was obtained from the transkingdom network. For gene 

subnetwork, correlation was calculated by pooling samples supplemented with the same 

Lactobacilli from both experiments. Edges were retained if they satisfy the following criteria: 

the sign of correlation coefficients in the two Lactobacilli groups should be consistent, 

individual p-value of correlation is <30%, combined Fisher’s p-value over two Lactobacilli 

groups <5%, FDR cutoff of 5%, and satisfying principles of causality (i.e., satisfied fold change 

relationship between the two partners in the Lactobacilli vs. WD comparison). For the lipid 

subnetwork, correlations were calculated per experiment in the WD-groups of the three 

datasets (two WD vs ND experiments, and a Lactobacilli supplementation experiment). Edges 

were retained if the sign of correlation coefficients was consistent, Fisher’s p-value <5%, FDR 

cutoff of 10%, and satisfied principles of causality. 

 For between-omics edges, correlations were calculated per experiment in the WD-groups of 

three datasets and a voting strategy was used for meta-analysis. Pairs were shortlisted if they 

had the same sign of correlation and p-values <10% in at least two datasets. If the p-value in 

the third dataset was over the threshold, the pair was retained but the third dataset was removed 

during calculation of Fisher p-value. The pair was kept if the p-value in the third dataset was 

under the threshold and the sign of correlation was same in all 3 datasets, else the pair was 

entirely removed. Edges with FDR <10% and satisfying principles of causality were added to 

the network. 

Computational analysis using human datasets 
Sequence read files of 1046 humans25 were downloaded from European Bioinformatics 

Institute (https://www.ebi.ac.uk/), quality filtered and trimmed with ea-utils using default 

settings except the base removal quality threshold was set at < 20. Cleaned sequence reads 

were binned into Greengenes (v13_8) 97% identity operational taxonomic units (OTUs) using 

the QIIME 1.9 closed reference OTU picking workflow (pick_closed_reference_otus.py). 

Spearman correlations between BMI and microbial abundance of exact candidate OTU (or the 

sum of OTUs assigned to the bacterial species) were calculated in obese humans. To avoid 
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bias from outlier samples, a sample was considered only if had > 10 reads per million for 

Lactobacillus OTUs and > 100 reads per million for Romboutsia OTUs. 

Transmission Electron Microscopy (TEM) 
Frozen liver samples were prepared and fixed in 1.5% paraformaldehyde and incubated at 4oC 

overnight93, after which fixed tissues were processed usinf a protocol based on94. Specifically, 

the vibratome sectioned fixed tissues (~ 1mm3) were postfixed in solution containing 2% 

osmium tetroxide and 1.5% potassium ferrocyanide for 30 min at room temperature in dark. It 

was followed by staining with 0.2% tannic acid in water for 10 minutes, fixing in 1% osmium 

tetroxide for 30 minutes and staining in 1% thiocarbohydrazide (TCH) in water for 20 minutes 

at room temperature. The samples were then incubated with 1% osmium tetroxide for 30 

minutes at room temperature. Then the samples were incubated with 0.5% uranylacetate in 

25% methanol overnight at 4oC, which was followed by incubation in Walton’s lead aspartate 

for 30 minutes at 60C. Then samples were dehydrated with graded series of ethanol, infiltrated 

with ethanol/epon mixture (1:1) for 1 hour at room temperature and 1:2 for 1 hour at room 

temperature. Ultramicrotome was done using a RMC PowerTome PC. Microscopy was done 

with a Helios 650 NanoLab (ThermoFisher). Scanning Transmission Electron Microscopy 

(STEM) mode was used for imaging. 10 – 12 images were taken per sample. The images were 

imported into FIJI (i.e. ImageJ) software (version 2.0.0-rc-69/1.52i). Each mitochondrion in 

the images was outlined and different attributes were measured using default “measure” option 

in the software. 

In order to identify image parameters that discriminate between healthy and damaged 

mitochondria we used images representative of all analyzed groups. In each image, a pair of 

damaged (bright, lucent) and healthy mitochondria (dark, dense) were identified according to 

images in EM atlas (http://www.drjastrow.de/WAI/EM/EMAtlas.html ). Next, we extracted 

quantitative data for 17 different image parameters (See Supplementary Data 11) and analyzed 

which of those differed between the two types of mitochondria. The selection has been 

performed “blindly” (i.e. the image analyst was unaware of treatment identity of samples. 

Among parameters that significantly differed between two types of mitochondria we chose less 

interdependent ones to compare different treatment groups.  To establish whether the structure 

of mitochondria differs between groups supplemented or not with probiotic bacteria we 

http://www.drjastrow.de/WAI/EM/EMAtlas.html
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analyzed the above selected image parameters in 119 TEM images from liver samples of 9 

mice totalizing 4709 mitochondria. 

Un-targeted metabolomics 
Serum samples used for metabolomics included the following: germfree mice fed WD for 2 

weeks (n=2), mono-colonized for 2 weeks with L. gasseri fed WD (n=2); SPF mice 

supplemented or not with either L. gasseri or L. johnsonii (n=4-6 per group) and fed WD for 

8 weeks in two experiments shown in Fig. 3; SPF mice first fed WD for 8 weeks, then 

supplemented (or not) with L. gasseri for additional 12 weeks along with WD (n=5 per group). 

For technical reasons, metabolomics was performed in pooled sera of each group of mice, 

which were run in a randomized manner as one batch.  

An aliquot of 30 µl of pooled serum was processed following a protocol adapted from a 

published study95. Briefly, metabolites were extracted with 4 volumes of cold 

methanol/acetonitrile (1:1, v/v). To precipitate proteins, the samples were incubated for 1h at 

-20°C. After the samples were centrifuged at 4°C for 15 min at 15,871xg (13,000 rpm), the 

supernatant was collected and evaporated to dryness in a vacuum concentrator. The dry 

extracts were then reconstituted in 90 µL of acetonitrile/H2O (1:1, v/v) containing 10 ng/mL 

CUDA (12-(((cyclohexylamino)carbonyl) amino)-dodecanoic acid). This standard was used 

as a control to monitor platform stability along the fully randomized batch analysis, and to 

account for possible injection variabilities. A quality control (QC) pooled sample was prepared 

by combining, in a single vial, 10 µL of each sample. Pooled QC sample provided a ‘mean’ 

profile representing all analytes encountered during the analysis. To the QC sample a methanol 

solution containing verapamil and verapamil-D3 (Cayman Chemical, Ann Arbor, MI) was 

added at a final concentration of 0.1 ppm each. The ratio of their monoisotopic peaks was used 

to monitor quantification stability along the fully randomized batch analysis. The supernatant 

was then analyzed via LC-MS/MS (liquid chromatography with tandem mass spectrometry).  

High-resolution mass spectrometry was performed using an Agilent 6545 Q-ToF downstream 

of an Agilent 1260 Infinity HPLC (high-performance liquid chromatography) system 

consisting of a degasser, quaternary pump, autosampler (maintained at 4°C) and column heater 

(maintained at 30°C). The Q-ToF machine was operated using MassHunter software and an 

analysis in positive and negative ionization mode was performed for each sample. Separation 

was achieved using an InfinityLab Poroshell EC-C18 column (100 x 3.0 mm, 2.7 µm, Agilent) 
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at a flow rate of 0.4 mL/min. Line A was water with 0.1% (v/v) formic acid and line B was 

methanol with 0.1% (v/v) formic acid, adapted from a previously described protocol96. The 

column was pre-equilibrated with 1% B. After injection (3 µL of the sample) this composition 

was held for 1 min and then changed to 30% B over the next 10 min using a linear gradient. 

The composition was then changed to 100% B over the next 14 min and then held at 100% B 

for 5 minutes. The mobile phase was then adjusted back to 1% B over two minutes and the 

column was re-equilibrated for 6 minutes prior to the next injection. The Agilent Q-ToF mass 

spectrometer was equipped with an Agilent JetSpray source operated with the following 

parameters: Auto MS/MS mode, Gas Temp, 325 °C; Drying gas, 10 L/min; Nebulizer, 20 psi; 

Sheath gas temp, 375 °C; Sheath gas flow, 12 L/min; Capillary Voltage (VCap), 4000 V; 

Nozzle voltage (Expt), 600 V; Fragmentor, 175 V; Skimmer, 65 V; Oct 1 RF Vpp, 750 V; 

Mass range, 100-3000 m/z; Acquisition rate, 10 spectra/s; Time, 100 ms/spectrum. The 

MS/MS spectra (Mass range, 50-3000 m/z; Acquisition rate, 10 spectra/s; Time, 100 

ms/spectrum) were obtained by isolating the precursor ion with a medium isolation width (~4 

m/z) summing spectra generated with collision energies of 15, 30, and 40 V. Blanks and QC 

samples were run before and after every four serum samples to ensure system equilibration. 

Based on the reproducibility of our QC and on the intensity of the CUDA, we can assume that 

the instrument was stable during the full randomized batch, and that intensity differences are 

due to biological differences and not to technical variation. 

LC-MS/MS Data Processing 
Raw data was imported into Progenesis QI software (Version 2.3, Nonlinear Dynamics, 

Waters) in order to perform data normalization, feature detection, peak alignment, and peak 

integration97-99. Metabolites were confirmed by MS, MS/MS fragmentation, and isotopic 

distribution using Metlin (Version 1.0.6499.51447, https://metlin.scripps.edu) and the Human 

Metabolome (HMBD, Version March 2020, https://hmdb.ca) databases as the reference100. The 

data acquired in both, electrospray ionization (ESI) negative and positive modes, which 

resulted in ESI + in 7,100 features with just MS information, 2,461 features with both MS and 

MS/MS information; serum ESI- gave 2,141 features with just MS information and 1,204 

features with both MS and MS/MS information. Thus, a total of 3,665 features with both MS 

and MS/MS information was obtained. Next, a metabolite was sieved out when a match with 

a difference between observed and theoretical mass was less than 10 ppm and the molecular 

https://metlin.scripps.edu/
https://hmdb.ca/
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formula of matched metabolites further identified by the isotopic distribution measurement. 

By doing so, the number of annotated compounds with a known identification was reduced to 

133 metabolites, which had match score >35 (range 36.1-57.8), and isotope similarity between 

67.8 and 99.1%). We chose to increase the confidence of our annotations, rather than increase 

the number of annotated compounds with a lower level of confidence. Zero values were 

assigned minimal values calculated as 3 STDEV of technical variation subtracted from the 

minimal measured level of a given metabolite in this study. Technical variation was defined 

by using CUDA and corresponded to STDEV of 0.135 and mean of 1.02. The level of 

metabolite identification was 2 for all compounds based on Sumner et al. (2007)101: level two 

refers to putatively annotated compounds (e.g. without chemical reference standards, based 

upon physicochemical properties and/or spectral similarity with public/commercial spectral 

libraries). 

Cell Culture  
AML12(ATCC CRL-2254) cells were grown in complete growth medium( DMEM:12 

Medium(ATCC 30-2006) supplemented with 10% Fetal Bovine Serum (FBS), 10 µg/ml 

insulin, 5.5 µg/ml transferrin, 5 ng/ml selenium, 40 ng/ml dexamethasone and 1% 

Penicillin/Streptomycin) at 37°C in 5%CO2. After obtaining 80-85% confluency, 20,000 cells 

per well were seeded in complete growth medium in 96 well plate for 24 hours. After  24 hours 

of incubation, the medium was replaced either with low glucose medium (5.5 mM Glucose, 

10% FBS, low sugar group) or mixture of 100mM Glucose and Fructose (1:1 ratio, with 10% 

FBS, high sugar group)  alone or mixed with 4, 6 or 9 mM reduced glutathione ethyl ester 

(GSH, Sigma-Aldrich). After 6 hours of treatment, culture medium was removed, cells were 

lysed in RLT buffer (Qiagen) and RNA was extracted using RNeasy Mini kit (Qiagen). Total 

RNA was quantified using Quant-iT RNA Assay Kit (Thermo Fisher Scientific). 

Complementary DNA was prepared using qScript reverse transcription kit (Quantabio) and 

qPCR was performed using Perfecta SYBR mix (Quantabio) and StepOne Plus Real Time PCR 

system and software (Applied Biosystems). Polymerase (Polr2c) gene was used as the control 

gene. Primers used for qPCR are listed in the supplementary Supplementary Data 15b. Total 

six experiments were performed. The gene expression was normalized using the control group 

per experiment and per gene across the experiments, followed by log2 transformation. Control 

and treatment groups were compared using paired, one-sided parametric t-test. 
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Statistics and Reproducibility 
Overall, the data was log transformed, checked for normality and an appropriate test was 

performed accordingly (i.e. parametric tests as default and non-parametric tests when 

distribution did not fulfil normality criteria), followed by Benjamini Hochberg false discovery 

rate correction. A two-sided test was used when there was no prior hypothesis of the expected 

direction of change; otherwise, one-sided test was used. For initial experiments, to capture the 

strongest and consistent signals across independent experiments (e.g. WD vs ND), non-

parametric tests were used, and the meta-analysis was performed over experiments using 

Fisher’s meta-analysis test. To achieve statistical power in the Lactobacilli supplementation 

experiments, the samples were normalized within each experiment to the mean of control 

group and analyzed together using parametric tests for host-derived variables. Meta-analysis 

was performed over the microbiome data. Gene enrichment analysis using Metascape 

software79 that implements hypergeometric test. For metabolomics analysis, results of five 

lactobacilli supplementation from three experiments were normalized over corresponding 

controls with no probiotic supplementation. Log2 transformed ratios (lacto/control) for each 

metabolite were compared for deviation from 0 using parametric test. In experiments with 

interrelated data from two groups (e.g., AML-12 in-vitro experiment) we used paired test. 

Outliers (1%) were identified using ROUT method of GraphPad Prism 8.4.1 and removed 

(used only once in the whole study, one value was removed for one concentration of GSH 

treatment). Actual tests, cutoffs applied are mentioned in each figure caption, exact p values 

are available in supplementary data and source data files. 

Data Availability 

Data were submitted to NCBI SRA under submission PRJNA558801 

(https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA558801) for 16S rRNA, to GEO under 

GSE136033 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136033), and to 

Metabolomics Workbench under ST001436 

(https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID

=ST001436)  

Transkingdom network access: https://tinyurl.com/TK-NW-Fig-1C  

Multi-omic network access: https://tinyurl.com/multi-omic-NW-Fig-5A  

Source data are provided with this paper.  
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Code Availability 

Custom codes available at https://github.com/richrr/TransNetDemo and 

https://github.com/fbauchinger/keystone_species_model 
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CHAPTER 3 
APPENDIX FIGURES 

SUPPLEMENTARY FIGURES 
 

 

Fig. S1. Changes in metabolic parameters due to diet. 

The blue and red colors indicate levels of metabolic parameters measured in mice fed normal 
diet (ND, blue) or western diet (WD, red) for 8 weeks. All these parameters are statistically 
significant (two-tail Mann-Whitney p-value < 20% in each experiment, Fisher’s p-value over 
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experiments <  5%, and FDR < 10%). Each symbol represent mouse, lines are median values. 
Source data are provided as a Source D ata file. 

 

Fig. S2. Spearman correlation of Ruminococcus gnavus abundance in stool with BMI of 
obese human. The spearman rho correlation co-efficient and one-tail p-value is provided. 
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Fig. S3. Changes in metabolic parameters due to supplementation of candidate microbes. 
 

The blue, red, light green, dark green, and orange colors indicate ND, WD, WD with L. gasseri(WD+LG), 
wd with L. johnsonii (WD+LJ), ND with R. ilealis (ND+RI), respectively. The metabolic parameters in mice 
supplemented with or without candidate microbe. Open and closed circles indicate 2 independent 
experiments. * indicates statistically significant differences in levels of the parameter between control group 
(WD for Lactobacilli, ND for R. ilealis) versus those supplemented with bacteria (one-tail t-test p-value < 
5% with FDR <15%. Each symbol represents mouse, lines are median values, all replicates are shown. 
Source data are provided as a Source Data file.  
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Fig. S4. Glucose tolerance test and fasting glucose in mice supplemented with L. gasseri 
(LG) after 8 weeks on WD.  

The right figure shows the change in glucose tolerance test (AUC) after 12 weeks of WD (which was 4 wks 
of LG), calculated by subtracting the 12 week AUC of each mouse from 8 week AUC (when mice were on 
WD only) and normalizing by median of AUC change of ND group. * indicates significant change between 
control group (WD and WD + LG, one-sided p-value < 5%, Mann-Whitney test, median). # indicates p-
value of 0.07. Each symbol represent mouse, lines are median values, all replicates are shown. Source data 
are provided as a Source Data file.  
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Fig. S5. Effect of microbial supplementation on microbial communities and fatty acids. 
 

a) Principal Component Analysis of stool (triangle) and ileal (circle) microbial communities of mice on ND, 
WD, WD+LG, WD+LJ, or RI. b) The ileal abundance of Anaerotruncus colihominis in ND, WD, WD+LG, 
and WD+LJ fed mice. c) The levels of long chain fatty acids in liver of mice supplemented with or without 
Lactobacillus candidates. Asterisk indicates statistically significant differences between WD and groups 
supplemented with bacteria (one-sided t-test p-value < 5%, except for # p<8%). Each dot represents a mouse, 
all replicates are shown. Source data are provided as a Source Data file.  
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Fig. S6. Functional enrichment for the liver genes upregulated by the Lactobacillus 
gasseri/johnsonii. Pathways identified by metascape (http://metascape.org). 

 

Fig. S7. Power law distribution of nodes in multi-omics network 
 

 

 

http://metascape.org/


90 

Supplementary data  1A: Multivariate test to identify significant difference in the beta 
diversity of microbial community of different groups.  
 

ANOSIM WITH BRAY-

CURTIS INDEX FOR BETA 

DIVERSITY 

EXPT 1 EXPT 2 
 

R PVAL R PVAL 

TISSUE 0.7  < 0.001 0.82  < 0.001 

TIME 0.05  < 0.206 0.1  < 0.073 

DIET 0.4  < 0.001 0.3  < 0.002 

GROUP 0.72  < 0.001 0.69  < 0.001 
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CHAPTER 4: CONCLUSIONS 
Considering the exponential growth in the diabetic population and the increased cost of 

management of T2D, a novel approach to developing therapeutics is an urgent need. With the 

current focus on dysbiosis due to predisposing causes of chronic metabolic diseases like diets 

and other environmental factors, a better understanding of the role of the gut microbiome in 

T2D can facilitate microbiome-based therapeutics. One of the modifiable causes of T2D is 

obesity, characterized by ectopic accumulation of adipose tissue, and diets rich in sugar and 

processed fats (western diet) are the main culprits of the obesity epidemic. The western diet 

also causes an imbalance in the composition of gut microbiota. So, we hypothesized that the 

western diet reduces beneficial microbes or promotes pathobiont that exacerbates the effects 

of the western diet and targeting such microbes could alleviate T2D.  

In chapter 2, we performed a comprehensive review of 42 human literature related to gut 

microbiome and obesity, insulin resistance, glucose metabolism, and T2D. From this review, 

we identified few microbiome genera which had consistent relation with T2D and related 

phenotypes. Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia, and Roseburia  

were the microbes negatively correlated with T2D, whereas Ruminococcus, Fusobacterium, 

and Blautia were positively correlated with T2D. Inhibition of pro-inflammatory modulations, 

upregulation of anti-inflammatory cytokines, reduction in gut permeability, improved butyrate 

production, decrease in LPS, increase in glycogen synthesis, reduction in hepatic 

gluconeogenesis, increased insulin sensitivity, reduced endotoxemia, increased fatty acid 

oxidation and energy expenditure were the most studied mechanisms by which beneficial 

microbiota affects metabolism in T2D.   

In chapter 3, using system biology and causal inference analysis, we identified two species 

of Lactobacillus that can improve glucose homeostasis. We then used a mouse model of type 

2 diabetes, ex-vivo and in-vitro assays; we validated that Lactobacillus 

gasseri and Lactobacillus johnsonii improve glucose metabolism via upregulation of 

glutathione production and improving hepatic mitochondrial health and reduction of hepatic 

fatty acid deposition. Supplementation of Lactobacilli in the western diet-fed mice did not 

change the overall composition of gut microbes along with minimal keystoneness of these 

microbes. 
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Our approach of using data-driven system biology to interrogate host-microbes interactions 

identified two commensals (L. gasseri and L. johnsonii) and a pathobiont (R. ilealis) in diet-

induced metabolic disease. These findings suggest that the western diet induces the reduction 

of beneficial microbes or promotes pathobiont eliciting harmful health effects. Our studies also 

identified the gut microbiota- mitochondrial interactions as an essential pathway that affect 

metabolic health. In conclusion, our studies promote the idea of targeted therapies for particular 

microbes instead of restoration of the overall gut community as an approach to develop 

microbiota-based therapeutics. With the increasing research interests in the gut microbiota-

host interaction in T2D, a robust system to identify beneficial/pathobiont can promote better 

reproducibility of the findings. Our approach of data-driven network analysis along with 

validation experiments using animal studies, in-vitro and ex-vivo systems could be a valuable 

tool in such direction. 
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