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Abstract:
High  field  time-domain  terahertz  spectroscopy  (TDS)  is  used  to  determine  the  time  dependent
transmission  and  the  time-delay  and  optical-power  dependent  conductivity  of  a  wafer  of  gallium
arsenide (GaAs). Gallium arsenide is a direct band-gap semiconductor and has potential as a computer
processor component. Analysis of the transmission of terahertz (THz) frequencies (1012 Hz) through
GaAs yields the conductivity of the metal at high strength fields and high frequencies. THz radiation is
pulsed into the wafer and is absorbed by free carriers. The transmission of the THz radiation is related
to the conductivity of the metal via the thin film Fresnel formula.

It  is  observed  that  high  power  optical  excitation  lowers  transmission  of  the  THz  radiation,  thus
increasing optical power increases the material’s conductivity. Positive time delay (optical pulse hitting
the wafer after the THz pulse) has shown not to significantly affect the transmission of the THz pulse,
or the conductivity of GaAs. A delay of 0.0 ps (optical pulse hitting the wafer at the same time as the
THz pulse) slightly increases THz transmission and decreases conductivity from the negative delay. 1.0
ps delay follows the same trend as the 0.0 ps delay. The delay of 3.0 ps slightly decreases transmission
of THz radiation from the 2.0 ps delay, and increases conductivity of the wafer.
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Introduction

Semiconductors are widely used in computer components, and with the prevalence and necessity of
computers  in the modern age,  efficiency and speed are becoming even more important.  Currently,
silicon is the material most widely used as a semiconductor in computer components, but there are
some key problems with using silicon as a semiconductor, namely, that silicon is an indirect band gap
material  [1].  Gallium arsenide,  however  is  a  direct  band  gap  material,  making  it  preferable  as  a
semiconductor  in  high-speed  computer  components  [2].  The  high-frequency electron  dynamics  of
gallium arsenide, which is the regime in which high-speed electronics operate, is relatively unexplored,
so much testing is needed before it can become a more prominent material in the computer component
industry.

This research is designed to study the high frequency, high field electron dynamics in gallium arsenide.
The  driving  electromagnetic  wave  is  a  strong  terahertz  pulse,  electromagnetic  radiation  with  a
frequency on the order of 1012 Hz. The electron dynamics will be studied by controlling the time delay
of an optical laser pulse around a terahertz pulse, adjusting the terahertz field strength through the
sample, and observing how the time delay and field strength affects transmission. From understanding
how different strength optical and terahertz pulses with different time delays affect the transmission of
the  material,  a  more  in-depth  understanding  of  the  material's  electron  dynamics  can  be  drawn.
Specifically, using the Drude model, the transmission of THz radiation is related to the conductivity of
the material.

Theory

2.1 The Drude Model
To be able to write the conductivity of gallium arsenide through measuring transmission, a model for
the system must be chosen. The model used is the Drude model. The Drude model relies on a statistical
look at electrons bouncing off of positively charged “cores”, and describes how freely valence electrons
can move about the atom [3].

The most fundamental assumptions of the Drude model are that positive charges are attached to much
larger particles to compensate for the negative charge of electrons and keep the metal neutral.  The
model also assumes that, for metals, valence electrons are not bound to atoms, but are free to move
about the metal [3]. In Drude's theory,  the metallic ions formed by the electrons detaching are the
positively charged cores. The charge interaction between the metallic ions and the free electrons are not
considered in the Drude model.

With  these  assumptions,  kinetic  theory  is  applied  to  this  “gas”  of  electrons  which  moves  to  a
background of immobile metallic ions [3]. Though the charge interactions of the electrons and metallic
cores are neglected, the electrons still interact with externally applied electric fields. When an electric
field is applied, it causes the electrons to move, inducing a small current. Ohm's law states that the
current  flowing through a  wire is  proportional  to  the  potential  drop along the  wire,  and inversely
proportional to the resistance of the wire. The resistance of the wire depends on the shape and material
of the wire, these characteristics are inherent to the metal and included in the resistivity ρ of the metal.
The resistivity is defined as the proportionality constant between E, the electric field at a point in the
metal, and j, the current density that the field induces [3].
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E=ρ j                                                                      (2.1)

In a more kinetic sense, the current density is the total amount of charge moving at a velocity in a
particular point on the metal [3]. Thus, where n is the number of electrons moving through the point, -e
is the charge of an electron, and v is the average velocity of the electrons,

j=−ne v                                                                     (2.2)

If there is no electric field applied to the metal, the average velocity of the electrons at any point is zero
and so the current density is zero.

If an arbitrary electron has some initial velocity v at time t = 0 immediately after a collision with an ion
core, it will have an additional velocity -eEt/m from an externally applied electric field. It is assumed
that the electron has a random direction after the collision with the core, so v does not contribute to the
average velocity of  the electron [3].  The average of time  t between collisions is  defined as  τ,  the
relaxation time. So the average velocity of the electron is

vavg=
−e Eτ

m so j=(
ne2 τ

m
)E                                                    (2.3)

We can now introduce a new property, conductivity, which is simply the inverse of resistivity. If we
substitute conductivity into equation (1), and substitute that into equation (3), we get

σ=
ne2

τ
m

                                                                    (2.4)

2.2 Thin Film Fresnel Formula
With the Drude model, an optically excited metal can be dealt with via the thin film Fresnel formula for
metal  films.  This  formula  will  supply  the  relation  between  the  relative  transmission  of  an
electromagnetic  wave  through  the  optically  excited  metal  and  the  conductivity  of  the  metal.  The
formula approximates the optically excited metal as two layers. The first layer is a thin film of metal in
which the excited electrons are located. The second layer is a substrate, treated as simply the metal
without excited electrons.

Fig 2.1 Thin Film Approximation [4]
The red lines represent the reflection and

transmission of an incident electromagnetic wave.



3

Figure  2.1  depicts  an  incident  electromagnetic  wave  and  its  propagation  through  a  medium
approximated by the thin film Fresnel formula. For the approximation to hold, the thickness of the thin
film must be much smaller than the wavelength of light such that the entire transmission through the
film can be treated as non-interfering [4].  Conversely,  the substrate  must  be much larger  than the
wavelength of light such that internal reflections are separated and treated as a “pulse train” and do not
interfere [4].

To begin, the normal incidence Fresnel equations model the reflection and transmission through the
thin film.

r ij=
ni−ni+1

ni+ni+1

ϕ d=
ωd n2

c
=2π

d n2

λ
                                          (2.5)

t ij=
2n i

ni+ni+1

ϕ s=
ω l n3

c
=2π

d n3

λ
                                           (2.6)

where φ represents the phase change of the wave through the film.

Figure 2.2 represents the terms in equations (5) and (6), with the transmission referring to incident light
transmitted by the thin film and reflection referring to light that was reflected by the substrate and then
again by the thin film.

A critical feature of thin film reflection and transmission is that each electromagnetic wave passes
through the film before they can be considered to interfere (d << λ) [4]. Usually, thicknesses on the
order of  λ/10 is sufficient to ensure that thin film treatment is maintained [4].

Fig. 2.2 Thin Film Transmission and Reflection Ray Traces [4]
The top image depicts radiation incident on the thin film
and the lower image depicts radiation reflected from the 

substrate back into the film
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Figure  2.2  shows  how  rays  can  be  summed.  A total  transmission  can  be  found  by  adding  each
transmission component, tn

t=t '+t ' ' +t ' ' ' +...                                                        (2.7) 

= t12 t23 eiϕ d∑
n=0

∞

(r 23r 21 e2iϕ d)
n                                                    (2.8)

By applying a geometric series, for |x| ≤ 1,

∑
n=0

∞

xn
=

1
1−x

                                                               (2.9)

We find

t=
t12 t 23e iϕ d

1+r 23r 12e
2iϕd

                                                          (2.10)

We can now apply the approximations

d ≪λ                                                                   (2.11)

ϕ d≪1                                                                  (2.12)

e iϕd≈1+iϕ d                                                              (2.13)

and for a metal thin-film, we can make the approximations

n1 n3

n2
2 ≪1                                                                 (2.14)

n2≫(n3−n1)≫
n1n3

n2

                                                      (2.15)

Which results in

i n2ϕd =2π i
d
λ

n2
2
=−Z0 σd                                                  (2.16)

Where Z0 is  the  impedance  of  free  space.  When  
d n2

λ
is  small  enough that  the  thin  film is  a

dielectric,  the transmission becomes  maximum (t  = 1).  For  a  metal  thin  film,  the metal  thin film
approximation dominates the transmission coefficient. The small angle approximation holds for thin
enough films that the transmission coefficient becomes

t=
t13(n1+n3)

n1+n3+Z 0σ s

                                                        (2.17)
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Where σ s is the conductivity of the metal thin film. Light transmitted through the thin film is then
internally reflected by the substrate. The internal reflection is shown by the lower image in Figure 2.2.
Treating the reflection similarly to the transmission, we find

r=
r32+r21e2 iϕ d

1+r 21r 32e
2 iϕd

                                                        (2.18)

Applying approximations (2.11-15)  

r=
n3−n1−Z 0σ s

n3+n1+Z 0σ s

                                                         (2.19)

To solve the transmission through the substrate, the multiple reflections must be addressed. We will use
our assumption that the internally reflected pulses do not interfere. To model relative transmission and
intensity, we must find the transmission both with and without the thin film.

twith=t t 34+t r34 r t 34+t r 34 r r34 r t 34+...                                        (2.20)

twithout=t13 t34+t 13 r34 r31 t 34+t 13 r34 r31 r34 r31 t 34+...                                (2.21)

Note that t  and r are the transmission and reflection from the thin film respectively, and carry all the
information from the thin film. To model intensity, we must take the norm-squared of each term.

T with  = 
t2 t34

2

1−r 2 r34
2                                                          (2.22)

T without  = 
t 13

2 t 34
2

1−r31
2 r34

2                                                        (2.23)

R=
T with

T without

 = 
t2

(1−r31
2 r34

2
)

t34
2
(1−r 2 r34

2
)

                                                 (2.24)

Where R is the relative power transmission. Substituting, we can now rewrite this as conductivity (σs)
in terms of R

σ s  = 
1

2 n4 Z 0

[ n3
2 2 n1 n4+n4

2
+√ Rn3

4
+2n3

2 n4(2n1+(2−R)n4)+n4
2
(4n1

2
+4 n1 n4+R n4

2
)

R
]

(2.25)
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Methods

3.1 Terahertz Generation Through Optical Rectification
Non-linear media are capable of changing the frequency of incident radiation. This is known as optical
rectification,  and is  a  phenomena that  occurs  if  the electric  potential  energy of  an electron  in  the
medium is asymmetric. This is the phenomena used to generate our THz pulse.

The typical model for an oscillating charge is the harmonic oscillator model. This model represents the
charge as a mass on a spring, where the spring's restoring force describes the charge's acceleration and
energy. In this case, the restoring force is linear with respect to displacement from equilibrium, and the
potential energy is quadratic.

This model assumes that the restoring force of the oscillating electrons can be approximated by a linear
force. If the driving EM wave (the wave driving the electron oscillations) is strong enough and the
electric potential energy is sufficiently asymmetric, the linear approximation no longer holds [5]. This
means that the harmonic oscillator model no longer represents the acceleration.

Under the non-linear regime, approximations of electric potential energy must be made to higher order
terms. Fig 1.1(a) shows an example of an electric potential energy that is approximated to the third
order. Note that, at small values of  x, the second degree approximation (the dashed line) holds well.
However, if the displacement is large, the second order approximation no longer holds, and the third
order approximation (the dotted and dashed line) must be considered. The sum of the two components
of the approximation (the solid line) now appears asymmetric to larger values of displacement. This
corresponds to stronger electric fields interacting with this potential in a non-linear fashion.

Fig. 3.1 Optical Rectification [5]
(a) shows the potential well of the oscillating

charge
(b) shows the oscillation as a function of time
(c) shows the decomposition of the nonlinear

portion of the wave form
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If driven by a sinusiodal oscillating electric field, the motion of the electron no longer resembles the
simple harmonic motion of  the original  model.  Fig 1.1(b) shows the resulting motion of a  driven
electron in the potential energy shown before. In Fig 1.1(c), the motion is a superposition of a linear
component  (the  frequency  component  we  would  expect  to  see  if  this  were  a  second  order
approximation) and a non-linear component. In this case, the non-linear component is itself made of
components: a wave that is the second harmonic of the linear motion, and what is essentially a DC
electric field signal.

Optical rectification in non-linear media changes the frequency components of the oscillating electron
which changes the frequency of the radiation emitted by the accelerating charge. Effectively changing
the frequency of of the driving EM wave. It is important to note that the amplitude of the non-linear
component is much smaller than the amplitude of the linear component.

Our  terahertz  radiation  is  generated  via  optical  rectification  through  a  crystal  of  lithium  niobate
(LiNbO3). The nonlinear crystal's properties cause a change in frequency of the incident beam. A small
amount of beam intensity becomes THz radiation through each thin layer of the crystal. The optical
wave fronts are angled to match the previously generated THz waves, and continuous THz generation
resonating with those waves causes an increase in THz power.

The femto-second laser produces a wide-band pulse that hits the lithium niobate crystal. The crystal
effects  the  incident  beam  non-linearly,  and  the  pulse  becomes  a  superposition  of  various  optical
frequencies, and a short THz pulse. At this stage, the THz pulse is not strong enough to elicit a non-
linear response from the crystal. Each interaction the optical pulse has with the crystal causes a THz
pulse to branch off. This means that, as the optical pulse travels through the crystal, it creates THz
waves that interfere with each other.  The THz pulse and the optical pulse have different speeds in the
material;  were the  THz pulse and the optical  pulse to  overlap,  there  would be a  phase  difference
between  the  previously  and  newly  generated  THz  pulses.  This  phase  difference  would  cause  the
interference between the two waves to be destructive, and it would destroy the THz pulse. 

Fig. 3.2 Tilted Femto-second Pulses [5]
Note that angles are not drawn to scale
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This  is  overcome  by  placing  a  diffraction  grating  in  the  path  of  the  incident  optical  laser.  This
diffraction grating will cause a tilt in the optical pulse wave front, and the optical pulse will travel at an
angle relative to the THz pulse. This tilt will align the optical and THz wave fronts, and cause the
generated THz waves to interfere constructively and increase the power of the THz pulse [5]. This is
illustrated in Fig. 3.2 Tilted femto-second Pulse. Note that the wave fronts of the THz and optical
pulses align, such that the THz pulse constructively interferes with newly formed THz radiation.

3.2 Terahertz Detection
Terahertz  detection  is  done through a  special  method of  birefringence.  Birefringence  is  a  material
property in which the polarization and propagation of light through a material changes the index of
refraction of the material.

The THz pulse, which is much longer in the position and time domains than the optical pulse, changes
the index of refraction of an electro-optic (EO) crystal upon which the optical pulse is incident. With
the index of refraction changed, the optical pulse's polarization becomes slightly elliptical. The optical
pulse  then  passes  through  a  quarter  wave  plate.  Normally,  the  quarter  wave  plate  turns  linearly
polarized light into circularly polarized light. However, because the optical pulse is already slightly
elliptical, the wave plate converts it to an almost circular, but still elliptical polarization. The optical
pulse then hits  a  Wollaston prism,  splitting the pulse into orthogonal  polarization components  and
sending it into a balanced photo-detector. Each detector face measures the intensity of the respective
polarization, and the relative intensity is based on the strength of the THz field changing the index of
refraction of the EO crystal. Figure 2.3 THz Detector Setup [5] shows how the THz field changes the
polarization of the optical pulse. Notice that the THz field directly changes the relative phase of the
orthogonal  components  of  the  optical  pulse.  This  phase  difference  causes  the  magnitudes  of  the
components to differ.  This difference is directly measured by the balanced photo-detector and then
related to the strength of the transmitted THz pulse.

Fig. 3.3 THz Detector Setup [5]
Notice that the polarizations

are dependent on the phase of the optical
polarization components
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3.3 Terahertz Time Domain Spectroscopy
To measure transmission, an optical breadboard is set up as in Figure 3.4 Optical Table. A laser source
beam is initially split and runs down two paths. The beams are designated “THz” and “TDS probe”.
The TDS probe is guided onto a delay stage.  After the beam passes through the stage,  it  enters a
nitrogen purged chamber, then through the sample and into the detector.

The second beam passes through a spinning chopper wheel that cuts out every other wave pulse, to
protect the sensitive detector from overexposure. The beam is split again. The THz beam is guided
through another  delay stage and then undergoes terahertz generation. Both beams enter a nitrogen
purged chamber, and go through the sample into the detector.

THz frequency light is absorbed by water molecules, so the chamber with the sample must be purged
with nitrogen and the THz path in air must be short to prevent water molecules from absorbing energy
from the terahertz pulse. This purge pushes the air out from the chamber, and prevents the power of the
beam from decreasing, providing more stable results. The source beam is generated by a series of four
lasers. The resulting beam has a 130 fs pulse. Each pulse is 1 mJ at a repetition rate of 1 kHz and has
the output centered at 800 nm, in the infrared band.

The delay stages mentioned are constructed to increase the path length of the beam. Each stage has a
pair of mirrors, bending the beam into a “u” shape, with one arm entering the stage, and the other arm
exiting in the same direction. With the stages constructed, as above, moving the stage increases the
beam length by twice the displacement of the stage. The two stages are controlled by the computer to
alter the path length of their respective beams. Using the stages, the terahertz and optical pulses can be
centered in time such that t = 0 is defined as the time at which the peak of the terahertz pulse hits the
detector. The stage along the TDS probe path is responsible for detecting the THz pulse as explained in
section 3.2 Terahertz Detection

Before continuing, each path is aligned. Each mirror passes the beam through an iris that is used for
alignment.  The  mirrors  are  adjusted  such that  the  laser  passes  through the  small,  partially  closed
apertures of the irises. There are many pairs of mirrors and irises, so they are not shown.

Fig. 3.4 Optical Table
THz generation and THz detection

are explained in detail in sections 3.1 and 3.2
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There are also  translational stages that control the position of the sample in three dimensions. Once the
terahertz pulse is centered in time, a small blade is put in place of the sample. The transmission of the
terahertz pulse is scanned over the position of the blade in order to find and record the minimum beam
waist. With the position of the stage now fixed, the blade is removed and the terahertz pulse and TDS
probe are applied. To map the entire THz pulse, the path length of the TDS probe is adjusted by the
program so the transmission is measured over points before and after t = 0. This is done by scanning
the TDS probe over the THz pulse.

Once the test pulse is successfully mapped, the sample is placed in the stage. The program then applies
the terahertz pulse, optical beam and TDS probe. The transmission of the terahertz pulse is measured,
by scanning the TDS probe over the entire terahertz pulse. The optical beam is is fixed relative to the
terahertz pulse, such that the time delay of the optical pulse hitting the sample relative to the terahertz
pulse is preserved throughout the scan. Once the scan is finished, the time delay of the optical pulse is
changed and the terahertz transmission is scanned again. After several delays are measured, the optical
power is changed, and the terahertz transmission is scanned again over the same delays. This will result
in a terahertz transmission that  illustrates time dependence,  and can be compared against different
optical powers.

Results & Discussion

4.1 Transmitted Wave Forms

Figure 4.1 Optical Delay Dependent
Transmission

This plot shows the delay dependent
transmission

of a THz pulse through the GaAs wafer
at an optical power of 2.41 μJ
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As expected, the THz pulse on the sample that is not optically excited has much higher transmission
than those incident on an optically excited sample. Interestingly, at the peak at 0.0 ps, the THz pulse
incident on the sample optically excited at a 1.0 ps delay has a higher transmission than the pulse on the
sample with a 3.0 ps delay. I would expect that a longer delay (that is, a larger, positive delay where the
optical  pulse  hits  the  sample  after  the  THz pulse)  would  have  larger  transmission.  However,  the
difference in transmission is marginal and may be due to experimental error. We also see very little
transmission from the THz pulses with the -1.0, -2.0, and -3.0 ps delayed optical pulses. The -2.0 ps
delay is very nearly on top of the -3.0 ps delay line, and the two are indistinguishable in Figure 4.3.

Figure 4.2 depicts the relative transmission of the THz pulse at a particular THz power and delay.
Similarly to the graphs depicted in figure 3.1, the relative transmission decreases if the optical power
increases.  Though we do not see the grouping that  was shown in figure 4.1,  there is  still  a  large
difference in transmission between the THz waves with 0.33 μJ and the 1.23 μJ optical pulses, while
the  difference  in  transmission  between THz waves  with 1.23  μJ  and 2.41  μJ  pulses  is  much less
dramatic.

Fig. 4.2 Optical Power Dependent Transmission
This graph represents the relative transmission of the THz pulse at a

particular optical time delay.
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4.2 Analysis
Ultimately, the goal is to find the conductivity of GaAs as a function of optical pulse delay with a fixed
optical power, and to find the conductivity as a function of the optical power at a fixed optical pulse
delay. In order to do this, a Fourier transform is applies to the data in figures 4.1, 4.2, and 4.3. Taking
the Fourier transform will  provide the transmission spectrum of the THz pulse.  To find the power
spectrum, the transmission spectrum is squared. To normalize the power spectra, the power spectrum of
the  THz pulse  without  the  optical  pulse  is  integrated.  The power spectra  are  then  divided by the
spectrum of the THz pulse without the optical pulse.

E (x )→ E (ν )                                                               (32)

I =∣E (ν )∣2                                                                  (33)

I 0=∣E0(ν )∣
2                                                                (34)

I ' 0=∫
−∞

∞

∣E0(ν )∣
2 d ν                                                            (35)

I '=∫
−∞

∞

∣E (ν )∣
2
d ν                                                             (36)

T=
I
I 0

                                                                     (37)

T (ν )=
I '
I ' 0

                                                                 (38)

Where  E is the transmission spectrum of the THz pulse undergoing analysis,  I  is that pulse's power
spectrum,  I' is  that  pulse's  total  power,  υ is  the  frequency,  and T (ν ) is  the  normalized  power
transmission of the pulse, T is the relative transmission spectrum of the THz pulse through the wafer,
E0  is the transmission spectrum of the THz pulse through the wafer without optical excitation (the
baseline measurement), I0 is the power spectrum of the air reference,  and I'0 is the total power of that
pulse.
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Fig 4.4 Optical Power Dependent Spectrum
The power spectrum of the THz wave incident

on
the GaAs wafer with  varying optical excitation

powers.

Fig. 4.3 Optical Delay Dependent Spectrum
The spectrum for a THz pulse incident on 

a wafer of GaAs that has been excited
by optical pulses of varying 

time delays.
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Figures 4.4 and 4.5 show the squared, normalized Fourier transform of the data presented in figures 4.2
and 4.3. The Optical Power Dependent and optical time delay dependent Spectra show several smooth
bands that all peak around 1.0 THz. 

Fig. 4.5 Delay Dependent Transmission
and Conductivity

Transmission and conductivity share a
distinct inverse relation.

Low transmission means high conductivity
and vice versa.
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Fig 4.6 Optical Power Dependent
Transmission Conductivity

The inverse relation apparent in figure 4.6 
is also apparent here.
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The figure 4.6 shows that, in the negative delay regime, transmission is very low. The negative delay
means that the optical pulse hits the wafer before the THz, so the optical pulse excites electrons which
then absorb energy from the THz pulse. At 0.0 ps delay, the transmission is slightly higher than the
transmission in the negative regime, this is because the peak of the optical pulse is centered on the peak
of the THz pulse. The optical pulse is much shorter in the time domain than the THz pulse, so the
optical pulse is exciting the material after a small amount of the THz pulse has already passed.

The optical delay dependent conductivity in figure 4.6 shows that conductivity in the wafer is much
higher the more negative the delay is,  dropping off at  0.0 ps delay,  and remaining steady at  long,
positive delays. As above, the negative delay means the optical pulse is hitting the wafer before the
THz pulse. The optical pulse will excite the electrons into a conductive state, which is the effect being
measured by the THz pulse. At positive delays, the data shows a much lower conductivity, which holds
with transmission being lower. If transmission is low, THz power is not being appreciably absorbed, so
there are fewer free carriers, hence the low conductivity.

Optical power dependent power transmission, as shown in figure 4.7, displays what appears to be an
exponential  decay in  transmission  as  optical  power  increases.  It  is  expected  that  increased  optical
power would cause a decrease in transmission; as optical power increases, more electrons are excited
into the conductive state. More THz power would be absorbed by the free electrons, causing a decrease
in THz transmission. An exponential decay would likely cause an asymptote at zero transmission, as it
would make no physical sense for transmission to become negative.

The conductivity of the wafer behaves as the transmission would imply, conductivity increasing as
optical power increases. Similarly to the transmission, the conductivity begins to increase more slowly
as optical power increases. This is probably a result of the asymptotic behavior of the transmission. If
higher optical power could be achieved, and this behavior is due to the nature of the transmission, then
there would be a limit to the conductivity of GaAs.

4.3 Conclusion
The conductivity matches predictions from transmission data. Conductivity decreases to near zero with
increasing delay, where negative delay is the optical pulse hitting the wafer before the THz pulse. This
means the optical pulse hitting the wafer excited carriers that interact with the THz wave. If the delay is
higher and positive, the carriers that are excited do not interact with the THz pulse. If more data were
taken at negative delays, relaxation time could be determined by looking at how early the excitation
pulse must hit the wafer to reduce conductivity to near zero.

Conductivity as a function of optical power increases and seems to increase more slowly with very high
optical power. This almost certainly arises from the asymptotic behavior of the transmission. A higher
power optical pulse excites more carriers. However, increasing optical power will become less efficient
at exciting carriers.
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