A paper
presented at the
presented at the
presented at the
scotland
scotland
Conference,
11th - 15th,
2016

Influence of Agricultural Credit Guarantee Scheme Fund (ACGSF) on Fishery Development in Nigeria

By

Oparinde, L.O.,

Amos, T.T. and Adeseluka, M.

INTRODUCTION :: MATERIALS & METHODS:: RESULTS AND DISCUSSION::

CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

***Background Information**

- Fish has become the important source of protein to people in order to substitute for other animal proteins
- Many people derive their livelihood from fishing
- Credit is a crucial tool in increasing fish production
- > Problem Statement
- Inspite of ACGSF, fish demand is still more than supply
- > Huge amount is spent on fish importation

INTRODUCTION :: MATERIALS & METHODS:: RESULTS AND DISCUSSION::

CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

Objectives: Specific objectives are to;

examine the sub-sectoral ACGSF loan allocation in agricultural sector

examine growth rate of fishery contribution to GDP in Nigeria

• analyse the effect of ACGSF loan to fishery sub-sector on the GDP contribution from fishery sub-sector.

INTRODUCTION:: MATERIALS & METHODS:: RESULTS AND

DISCUSSION:: CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

OData Sources and Collection:

OSecondary data on relevant variables between 1981 and 2012.

OData collected from various issues of Central Bank of Nigeria Annual Reports and other relevant publications.

INTRODUCTION :: MATERIALS & METHODS :: RESULTS AND

DISCUSSION:: CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

- Analytical Tools
- Descriptive Statistics (such as frequency, %, table)
- Growth Function Analysis
- Linear Regression Analysis
 - Model Specification
 - O Growth Function Analysis:
- $o Y = b_0 e^{bt}$ (1)
- After linearizing in logarithm, equation 1 turns to:
- o LogY = $b_0 + b_1 t$ (2)
- Where:
- Y = GDP from fishery sub-sector
- 0 t = Time trend variable
- o b_0 , b_1 , = Regression parameters to be estimated
- The growth rate (r) is given by
- o r = (e^b 1) x 100(3)
- where e is Euler's exponential constant (2.7183).

INTRODUCTION :: MATERIALS & METHODS :: RESULTS AND

DISCUSSION:: CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

• To investigate the existence of acceleration, deceleration or stagnation in growth rate of GDP from fishery subsector, quadratic equation in time variables was fitted to the data for the period (1981-2012) following Akpaeti *et al.* (2014) as follows:

$$o$$
 LogY = $b_0 + b_1 t + b_2 t^2$ (4)

Significant positive b_2 = acceleration in growth, significant negative b_2 =deceleration in growth while non-significant b_2 = stagnation or absence of either acceleration or deceleration in the growth process.

INTRODUCTION:: MATERIALS & METHODS:: RESULTS AND

DISCUSSION:: CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

Multiple Linear Regression:

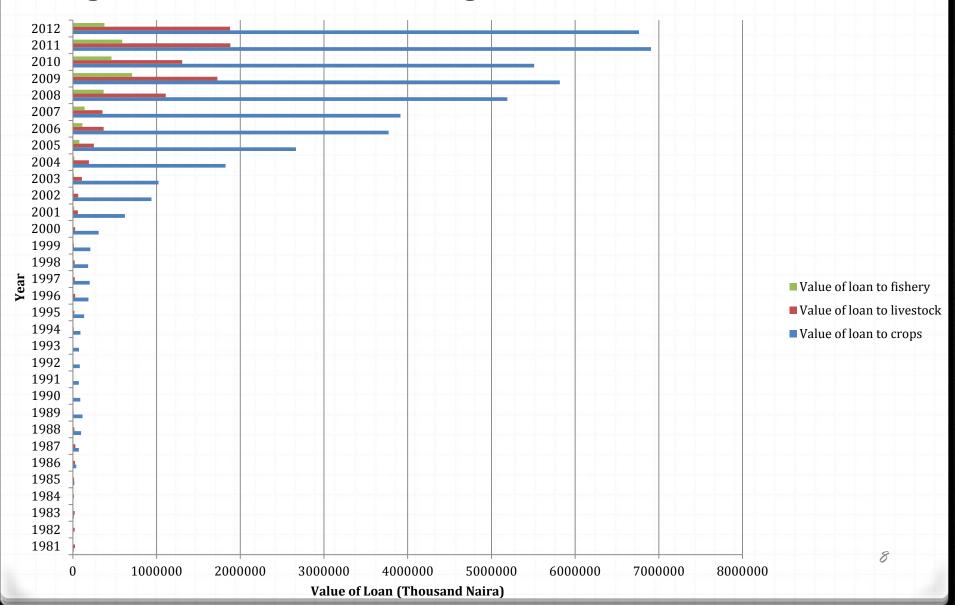
$$O$$
 GDP_{Fishery} = a + bValloan_{Fishery} + cNumbloan_{Fishery} + dValloan_{Agric} + eNumbloan_{Agric} + u_i(5)

Where;

- GDP_{Fishery} = Gross Domestic Product from fishery sub-sector
- Volloan_{Fishery}
- = Volume of ACGSF loan to fishery sub-sector
- Numbloan_{Fishery}
- = Number of ACGSF loan to fishery sub-sector

Volloan_{Agric}

- = Volume of ACGSF loan to Agriculture
- Numbloan_{Agric}
- = Number of ACGSF loan to Agriculture


o u_i

= Error term

INTRODUCTION: MATERIALS & METHODS: RESULTS & DISCUSSION:

CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

Figure 1: ACGSF Loan Allocation in Agricultural Sector Between 1981-2012

INTRODUCTION :: MATERIALS & METHODS :: RESULTS &

DISCUSSION:: CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

Table 1: Estimated Equation for Fishery Contribution to GDP and Growth Rates

Variable/Period	Coefficient	T-value	\mathbb{R}^2	Growth
				Rate (%)
2000-2012				
GDP from Fisherv	0.164***	27.998	98.6	17.8
Proportion of GDP from Fishery to Agriculture	0.001	0.206	0.4	0.1
1981-1999				
CDD from Pick corr	0.250***	15 100 15:100	93.1	29.6
Propuritor of CDP from Fishery to Agriculture	-0.018	-1 479	11.4	-1.8
1981-2012				
GDP from Fishery	0.101***	32.443	97.2	10.63
				- 9-
Proportion of GUP from Fishery to Agriculture *** Statistically different from zero at	1% level of signit	ficance.	۷.۷	0.005

INTRODUCTION :: MATERIALS & METHODS :: RESULTS &

DISCUSSION:: CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

Table 2: Estimated Quadratic Equations for Fishery Contribution to GDP

Variables/Period	$\mathbf{b_1}$	$\mathbf{b_2}$	\mathbb{R}^2
2000-2012			
GDP from Fishery	0.239***	-0.005***	99.8
	(22.359)	(-7.217)	
Proportion of GDP from Fishery to Agriculture	0.019**	-0.001**	39.0
	(2.389)	(-2.514)	
1981-1999			
GDP from Fishery	0.056	0.010***	96.5
	(1.048)	(3.938)	
Proportion of GDP from Fishery to Agriculture	-0.114**	0.005**	29.6
	(-2.354)	(2.030)	

^{**} Statistically different from zero at 5% level of significance, *** Statistically different from zero at 1% level of significance.

INTRODUCTION :: MATERIALS & METHODS :: RESULTS &

DISCUSSION:: CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

Table 3: Regression Results of Relationship between ACGSF Loan and GDP Contribution from Fishery Sub-sector.

Variable	Coefficient	T-value	
Constant	6832.019	1.375	
Number of loan for fishery	17.000	0.974	
Value of loan to fishery	-0.352***	-3.256	
Number of loan to agriculture	0.040	0.387	
Value of loan to agriculture	0.056***	13.450	
${ m I\!R}^2$	98.2		
F- value	359.7***		

^{**} Statistically different from zero at 5% level of significance, *** Statistically different from zero at 1% level of significance.

INTRODUCTION:: MATERIALS & METHODS:: RESULTS & DISCUSSION::

CONCLUSION: RECOMMENDATIONS:: APPRECIATION

- Fishery sub-sector was the least financed in the Agricultural sector by Agricultural Credit Guarantee Scheme Fund (ACGSF)
- Also, the growth rate for GDP contribution from fishery in 1981-1999 was more than that of 2000-2012 when ACGSF was operating with larger funds.
- Value of ACGSF loan to fishery did not positively influence the GDP contribution from fishery subsector

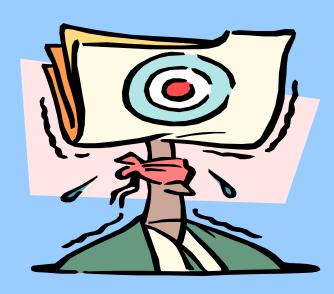
INTRODUCTION:: MATERIALS & METHODS:: RESULTS & DISCUSSION::

CONCLUSION:: RECOMMENDATIONS:: APPRECIATION

OVolume of ACGSF loan devoted to fishery subsector should be significantly increased

Also, loan given to the sub-sector should be monitored in order to prevent diversion and poor management. INTRODUCTION:: MATERIALS & METHODS:: RESULTS & DISCUSSION::

CONCLUSION:: RECOMMENDATIONS:: APPRECIATION


European Association of Fisheries Economists (EAFE)

OAnn Shriver

OHazel Curtis

Thanks for your attention

comments ??

