
AN ABSTRACT OF THE THESIS OF

Frit Reinert for the degree of Doctor of Philosophy

in Mathematics presented on June 11. 1985

Title: The Diveraent kPlane Transform

Abstract approved: i

Kennan T. Smith

The divergent kplane transform of a function f on an ndimen-

sional real vector space V is the function Df(a,a) =
Daf(a)

which

assigns to each point a e V and each a e Gk(V) the integral of f over

the translate of n(a) passing through a. Here x(a)is the nonoriented

kdimensional subspace of V associated with a and Gk(V) the Grassmann

manifold of unit kvectors on V. It is generally assumed that f e
2

Lo(0), where 0 is a bounded open subset of V, and that a is outside

the closure of O.

It is shown that under these conditions D f e L2 (Gk(V)), and the
a

adjoint is calculated. If Daf is known for infinitely many sources a,

this determines f uniquely, while for finitely many sources f is

essentially arbitrary. Exact and approximate inversion formulas are

derived.

Some formulas for integration on the Grassmannian may have

independent interest.

Redacted for Privacy



The Divergent kPlane Transform

by

Fritz Keinert

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Completed June 11, 1985

Commencement June 1986



APPROVED:

Professor of Mathematics in charge of major

Chaian of Department of athematics

Dean of Gra

A;2r''

te School('

Date thesis is presented June 11, 1985

Typed by the author Fritz Keinert

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



ACKNOWLEDGEMENTS

I would like to thank all the wonderful people in the Mathema-

tics Department for seven enjoyable years as a student.

Special thanks go to my major professor Kennan T. Smith, whose

support and advice made this thesis possible, to David Finch for many

valuable hints, and to Philip Anselone, who supervised my Master's

paper.

Finally, I would also like to thank my lovely fiancee and wife

to be, Victoria Stevens, and all my other friends for providing the

necessary distraction.



TABLE OF CONTENTS

Pane
I. INTRODUCTION 1

II. BASIC FORMULAS 5

kVectors

The Grassmann Manifold 7

Measure and Integration . . 9

Riesz Potentials 17

Spherical Harmonics 22

III. THE TRANSFORMS P, D AND S 26

Definitions 26

Domains 27

Adjoints 33

IV. UNIQUENESS AND NONUNIQUENESS THEOREMS 45

Uniqueness and NonUniqueness for D 45

Uniqueness and NonUniqueness for P 48

V. INVERSION FORMULAS 51

Exact Inversion Formulas 51

Approximate Inversion Formulas 55

Bibliography ............. .. . . 59



THE DIVERGENT K PLANE TRANSFORM

I. INTRODUCTION

The problem of recovering a function on Rn, n > 2, from its

integrals over kdimensional planes has been treated by many authors,

beginning with Radon in 1917 [91. Intuitively, the parallel kplane

transform of a measurable function on Rn is the function Pf which

assigns to each kdimensional subspace n of Rn and each point x" in

the subspace 70- perpendicular to n the integral of f over the trans-

late of n through x". If k = a 1, Pf is commonly called the Radon

transform of f.

In this thesis, the following definition is used. Let V be an n

dimensional real vector space with an inner product, let Gk(V) be the

Grassmann manifold of unit kvectors on V, and for each a e Gk(V) let

n(a) be the nonoriented kdimensional subspace of V associated with

a. Then

Pf(a,x") P f(x") = f(x' + x") dx',
a

n(a)

where de is the kdimensional Hausdorff measure on n(a), a e
Gk(V)

and x" e n(a)L.

Interest in this transform increased dramatically in the 1970's

due to the introduction of Computed Tomography (CT) and, more re-
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cently, of Nuclear Magnetic Resonance Tomography (NMR). The object of

CT and NMR is to reconstruct a two or threedimensional density

function from the values of its integrals over lines or planes (see

Herman LC for a summary).

In CT, it soon turned out to be advantageous to measure the

integrals not over parallel lines, but rather over lines passing

through a common source point a. This lead to the investigation of

another operator D. If f is a function on Rn, then intuitively Daf

is the function on the unit sphere Sn-1 whose value at a point 0 C

Sn-1 is the integral of f over the line passing through a with

direction 0.

In a more general setting, the divergent Xplane transform of a

function f is defined by

Df(a,a) =
Daf(a)

= f(a + x) dx,

n(a)

where a V and a
Gk(V).

Another transform related to D is the spherical kDiane trans

form S defined by

Sf(a) = f(0) de,

snlew n(a)

where f is a function on and a
Gk(V).



Some useful treatments of the parallel kplane transform can be

found in Helgason [5] and Solmon [14]. The spherical kplane trans-

form appears, e.g., in Helgason [5]. The divergent line transform (k

= 1) is described, e.g., in Bamaker/Smith/Solmonnagner [4].

The main purpose of this thesis is the investigation of the

divergent kplane transform for arbitrary k. Because of the many

connections between D, P and S. a number of results on the parallel

and spherical kplane transforms are included. Sometimes these are

needed in later proofs, in other cases they are mentioned only for

comparison with similar results for D.

Chapter II. contains the background necessary for the later

chapters. Most of it is fairly standard, but the geometrical descrip-

tion of the metric on G (V) and some of the integration formulas on

the Grassmannian are not readily available in the literature.

Chapter III. describes some possible domains and associated

range spaces. The emphasis lies with squareintegrable functions

rather than with possible generalizations to differentiable functions

or distributions. For squareintegrable functions with compact sup-

port, the adjoint is calculated.

For the remaining chapters it is assumed that f e L2(0), where 0
0

is a bounded open subset of V with closed convex hull Q.

Chapter IV contains uniqueness and nonuniqueness theorems. It

is proved that f is uniquely determined, if Daf is known for any
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infinite set of sources bounded away from D. If Daf is known for

finitely many sources only and f is infinitely differentiable, then

essentially nothing can be said about the behaviour of f inside 0.

Finally, chapter V. contains exact and approximate inversion

formulas to recover f from Pf or Df.



II. BASIC FORMULAS

1. kVectors

This section contains a brief review of certain aspects of k

vectors needed in the following. Details and proofs can be found in

many books, e.g. Greub [3].

Let V be a real vector space of dimension n with an inner

product. If vi,..,vk is a collection of elements of V, [vi,..,v ] is

the subspace spanned by these vectors.

The (contravariant) skewsymmetric tensors of rank k over V form

a real vector space Alk(V), where e(V) is identified with V, and

0A (v) R by definition. The inner product on V induces an inner

product (and thus also a norm) on Ak(V).

If a e Alc(v). D e el(V), their exterior product an

A (V). If a C R = Ao(V), anft = DA« aP.k+m

5

is in

Nonzero products
v1

A..
AVk' vj

V, are called kvectors. If a

=
v1A..dkvk

is a kvector, then hail is the volume of the parallel

epiped spanned by v OO.PVke

Lemma (1.1) If a 1A..AVk and = VI11%..AWm, then I Ian Pl

S Hall 1101. If the
subspacesv1,..,vk

and [w1'' w I are ortho
m

gonal, then II Apl 1 = hull Ilpll.

If n is a kdimensional subspace of V. an orientation is an
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equivalence class of bases of n. Two bases (111,..,v0 and (wi,..,wk)

determinethesameorientationifthemapT:n>nwhichmapsv.into

w. has a positive determinant. An oriented subspace of V is a sub-

space together with an orientation.

If a =
v1

A.. A
Vk

and 0 =
w1

A. AWk are kvectors, then a is a

positive multiple of 0 if and only if = [wi,..,wk) and the

two bases determine the same orientation. Thus, there is a onetoone

correspondence between kvectors of unit length and oriented k

dimensional subspaces of V.

For each kvector a, let n(a) be the nonoriented subspace

associated with a. Then n(a) = n(-a).

If p is a unit nvector (there are two of them), there is a

unique (nk)vector aL of unit length with

a A aL

The relationship between the associated subspaces is

n(a4) = n(a)L.



2. The Grassmann Manifold

The unit kvectors in A (V) form a set Gk(V) called the Grass-

mann manifold of oriented kdimensional subspaces of V. In particu-

lar, 60(V) = (1, 1) and G1(V) = Sn-1 (the unit sphere in V).

The norm on A (V) makes G(V) into a metric space. It is shown

in Whitney [17] that Gk(V) with the topology defined by this metric

admits the structure of an k(nk)dimensional analytic manifold.

Let
a0

be a fixed unit mvector, m k. The Grassmann manifold

G (n(a )4) is an (km)(nk)dimensional submanifold of G (V). Bykm 0 km
(1.1), the map a' > a'Aao, a' e Gk_m(n(a0)4), is an isometry, so

its range 11(a0) = (a Gk(V): a = a'A ao, a' e 0k_mor(a0)4)) is an

(km)(nk)dimensional submanifold of Gk(V). a e rk(a0) if and only

if n(a) contains n(a0) as a subspace.

The remainder of this section is devoted to a geometric inter-

pretation of the metric on G (V). In the following theorems, E will

always be the orthogonal projection of V onto n(a2), restricted to

n
(41).

Lemma (2.1) Let a1, a2
Gk(V).

Then

1 a1,a2>1 = Y(E),

where Y(E) is the Yacobian of E.

Proof: See Whitney [17], section 1.15.1

7



Remark: If T is a linear transformation from one k-dimensional

vector space n into another and (v.) is a basis of n, the Jacobian

J(T) is defined as the ratio of the volumes of the parallelepipeds

spaimed.byrrvAand (v.1.

Lemma (2.2) Let a1, a2 e Gk(V) with lia -a 11 < 21/2, and let I

= J(E). Then

Theorem (2.4) Let a1,

[2(1 - 1)]1/2.

Gk(V) with I1a1-a2II < 21/2. Then

11Ex-x11 11x11 1101- 11, x e n(a
1

Proof: For any x e n(a1), choose x2,..xk e n(a1), I1xII= 1,

such that x,x2, . xk are mutually orthogonal. Then if J = J(R),

iExAEx2 A .. AExkii 1

i Ex A..
Exki

I iX AX2 A AXkl 1 lix11

1

< ilExii liRxkli by (1.1).

lixl,

8

EXP-9.1.1 lia1-a2112 =
<a1-a ,a -a2>

= <aval> - 2<a1 ,a2 > +
<a2' a2 > = 2(1 - a1 ,a2 >).

From the condition I1a1 -a2 < 21/2 it follows that <a1 ,a2 > > 0,

so <a1 ,a2> = J by (2.1).1

Corollary (2.3) E is non-singular if I1a1-a211
21/2.



and

Since 11Ex.II < 1,
j

IlEx11 > III !WI.

Ex and xEx are orthogonal, thus

I1x112 = IlEx112 + IlxEx112,

IlxEx112 = 11 112 1lEx112 < 11x112(1-1J12)

11x112 2(1-3) = 11x112 a2112.1

3. Measure and Integration

The metric defined in the preceding section induces a finite

Hausdorff area measure da on
Gk(V).

This measure is invariant under

orthogonal transformations of V (since the metric is) and is usually

normalized so that the measure of the entire Grassmannian becomes

ISn-111Sn .. ISnkl
IGk(V)I =

Is Ils I .. Is I

k> 2.

100
(V)1 = 2,

iG1 (V)i =

9



where S denotes the kdimensional unit sphere in V, and ISkI its

dimensional measure. As an isometry, the map a' > a'A ao is

measurepreserving between
Gk_121(ff(a

)4) and
r(a0).0

Lemma (3.1) If h is continuous on Gk(V), then

11(0) = h(a) da

rk"))

is continuous on
5n-1

.

Proof: Pick any 01, 02 Sn-1. Let U be the rotation on V that

carries 0 into 02
and acts as the identity on 10 ,0 14. U extends to

1 1 2

an isometry from 11(02) onto rk(02).

If a e C1(61),) then

SO

Now

le(9 )-e(e )1 =

a =
1

1Ja = a' A 02'

II 1%11 = 11
1

up 0 II

= leA (el - 02)11 = Ile - 0211 by (1.1).

G WO AO )-1-)
k-1 1 2

Jh(a) da -

rk (o1 ) r )k 2

h(a) da 1

10



JIh(a) - h(lJa)1 da.

rk (

By the uniform continuity of h it is possible to find a 8 for

any s > 0 so that 111(a) - h(lia)1 s whenever Ila-Uall = Ile -0211 (

6.R

Theorem (3.2) If h is non-negative, measurable and defined al-

most everywhere on Gic(V), then

For almost every e e Sn-1 the restriction of h to r(0) is

measurable and defined almost everywhere on rk(e).

-
The function B(8) = h(a) do is measurable on Sn1 , and

rko»

f h(a) da
1

f h(a) da de (3.3)

Gk(V)
IS---1 n-1

ric(e)

Remark: In subsequent integration formulas the analogs of (a)

and (b) in theorem (3.2) are considered as implicit parts of the

formulas and are not stated explicitly. The proof of the present

theorem, typical of the others, is given in full detail. Subsequent

proofs that are basically repetitions are omitted.

Proof: By lemma (3.1), the right-hand side of (3.3) defines

11

continuous linear form on the space of all continuous functions on



12

Gk(V), hence a finite regular Sorel measure on Gk(V). This measure is

obviously rotation invariant, so it is da up to a constant factor.

The constant is determined by setting h = 1. This gives (3.3) when h

is continuous.

If h is the characteristic function of an open set in Gic(V), h

the limit everywhere of an increasing sequence of continuous

functions (h.l. Therefore the restriction of h to r (0) is measurable

forevery0.ThefunctionsH.defined by

II (0) = fh.(a) da

rk(9)

form an increasing sequence of continuous functions on

bounded above by the constant 111(0)1, and converging pointwise to

the function H, which is therefore measurable. By the dominated

-
convergence theorem, H is integrable over Sn1 , and

fH(0) dO = lim H.(0) dOSn-1n-1
= lim h.(a) da dO = ISk-11 ""m h (a) da

Sn-1 r (e)
Gk(V)

I5k-11 h(a) da.

Gk(V)
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This proves the theorem when h is the characteristic function of

an open set.

Let h be the characteristic function of a Gs. Then h is the

limit everywhere of a decreasing sequence Cy of characteristic

functions of open sets. The above argument proves the theorem when h

is the characteristic function of a G.

Let h be the characteristic function of a set N of measure zero.

N is contained in a G8 set A of measure zero with characteristic

function hA. From above, HA is integrable over Sn-1 and has integral

zero, so HA is zero almost everywhere. This shows that the integral

of hA over r (9) is zero almost everywhere, hence that the restric-

tion of hA to r(0) is zero almost everywhere on rk(o), for almost

every 0. Since N is a subset of A, this is also true for the function

h. Thus, for almost every 0, h = 0 almost everywhere on 11(0).

By the regularity of da, any measurable set E is a difference E

= A N, where A is a and NA has measure zero. Bence
hE = hA

so the theorem is proved for characteristic functions of measur-

able sets, hence for simple functions.

An arbitrary nonnegative measurable function is the pointwise

limit almost everywhere of an increasing sequence Ch.) of simple

functions. The same arguments used above for the characteristic

function of an open set now yield the statement of the theorem.1



Corollary (3.4) If h is integrable on Gk(V), then h is integ-

-1
rable over r (0) for almost every 0 e s' .

Lemma (3.5) If f is continuous with compact support on V, then

F(a) = f(x) dx

n(a)

is continuous on G (v).

Proof: Pick al, a2 Gk(V) with Hal- 211 < 21/2, and let E be

the orthogonal projection of V onto n(a2), restricted to
n(a1

). E is

non-singular by (2.3), so

IF(a ) - (a2)1 f(a+x) dx - f(a+y) d I

n(a2)Itta)

= I I f(a+x) dx I f(a+Ex) 3(E) dx I

nta ) n(a )
1 1

S I Waft) - f(a+Ex)I dx Wit-I-WI (1-3(E)) dx

nta ) It(Ct )

By (2.4) and the uniform continuity of f the first integral can

be made arbitrarily small by taking al,
a2

sufficiently close toga-

/

ther. (2.2) yields the same for the second integral.,

14



Corollary (3.6) If f is continuous on Sn-1, then

F(a) f(0) dO

n-1
S in(a)

is continuous on Gk(V).

Proof: Define g(x) p(Ixl) ixilk f(x/Ix1), where p(1):1) = 0

if Ixi is outside the interval [1,2], and fp(IxI)dx = 1. g is clearly

continuous, and

F(a) f(9) dO

Sn-1 n(a)

2

nJp(t)
f(0) de dt

n-1
1 S nn(a)

= P(IxI) 1x11k f(x/IxI) dx = G(a).

w(a)

which is continuous by (3.5).11

Lemma (3.7) If g is nonnegative, measurable and defined almost

everywhere on 5n-1, then

Isn-11

g(0) de = g(0) de do

n-1
ISkilIGk(V)I G (V)

5n1
mn(a)

15



everywhere on V, then,

ISnil
g(x) dx = -------------

V ISkiliGk(V)1 (V) n(a)

ISnklliGk(V)i

I SI

G (V) n(04

Proof: Using polar coordinates in V and in n(a) and theorem

(3.7),

CO

g(x) dx = ftn g(tO) dt de

n
V

1
0

S

16

g(0) de da

,nk-111G (v)1

Gk(V)
SnInn(a)L

Proof: By the preceding corollary, the first double integral on

the right defines a continuous linear form on the space C(Sn-1),

hence a finite regular Borel measure on Sn-1. This measure is ob-

viously rotation invariant, and there is only one up to a constant

factor. The constant is determined by setting g = 1. The theorem is

then extended to nonnegative measurable functions as in (3.2).

The proof of the second equality is identical.1

Lemma (3.8) If g is nonnegative, measurable and defined almost

g(x') dx' da

'

k
g(x') da



ISn-11

ISk-111Gk(V)I

f
n-1

Gk
(V) S 'in (a) 0

ISn-1I
=

c(n,k)

f
ISk-111Gk(V)1

Gk(V)
n(a)

The proof of the second part is identical.'

4. Riesz Potentials

The Riesz kernel Rk is defined by

Rk(x) = c(n,k) 1x1kn, 0 < k < n,

where

r((nk)/2)

2k7n/2tlk/2)

tnk tk-1 g(tO) dt dO da

,,1nk
g(30) dxs da.

This function comes up in various places in computed tomography.

In this thesis, it appears, e.g., in lemma (III.2.1), which states

that

17

CD

ISn-11
n-1

g(tO) dt dO da

ISk-111Gk(V)I
k(V)

Sn-14nn(a)

CO



18

Daf(a) da c 8k*f(a).

Gk(V)

The following two lemmas are adapted from [11].

Lemma (4.1) If p is integrable and (1+1x1)ap is bounded, then

illk*p(x)1 < c (1+1x1)kn (11p111 + 11(1+12E1)11pH ).

Proof: Assume p > 0, and let M = 11(1+1x1)ap11

It will be shown first that

Rk*p(x) 1 0 11p11 / + 101),

then that

Rk*p(x) 1 0 11ka (11p11 + M).

Together the two prove the lemma.

For the first estimate,

1

c(n,k)

Rk*p(x) = p(y) dy

V

lxy1 p(y) dy +j 1xylka p(y) dy



f ,,kn dz + iipll c (11p11 + M).

1z1(1

Because of the first estimate, the second estimate only needs to

be proved for ixi > 1.

1

Rk*p(x) =

c(n,k)

s (Ix1/2)k-n 1101 / I

2nmi 1kn

Ix-yIk-n p(y)

lyklx1/2

ik-

1w 113

19

the following lemma, T is the space of Bessel potentials

[1]. It is similar to the Sobolev space cl4 , but the functions are

lzylkn p(y) dy +
Ix_yikn p(y) dy

ly12,21xl lx1/2<lyl<21x1

ixikn 10zIkn p(Ixlz) IzIn dz,

1/2(1z1(2

where 0 = x/Izl, z = yilxi.

Since p(Ixiz)izIn = p(Ixiz)(Ixiz)nxn 2nM, the last integral

is bounded by



JRk(xy) f(y) dy 13(x) dx I

20

defined more precisely than almost everywhere. Functions in r are

defined except on sets of 2kcapacity zero. (For any e > 0, a set of

2kcapacity 0 has (n-2k+e)dimensional measure zero).

Lemma (4.2)

If (1+
ixi)knf .1

e L , then Rk*f is defined almost everywhere

and is locally integrable. Moreover, if p e L1 and

(1+IxI)"p is bounded,

latkibf,p>1 = I f Rksf(x) p(x) dx

V

S. cli(1+61)knfli 1(1101 + 11(1+1xl)npli ).
L L

If in addition f e L2 then Rk*f is defined except on a
loc'

-e2k
set of 2kcapacity zero and is in F

loc
if k > n/2, Rk*f

is continuous, as points have positive capacity.

If (1+Ixi)1nf f Li and f > 0, then
Rk*f

is undefined

everywhere.

Proof:, (a) I j Rk*f(x) "p"(x) dx

V



if(y)I I Rk(xy) ;(x) dx Idy

= f if(y)i INk*p(y)i dy

V

c (11p11 + 11(1+1 1)1101 .) If(y)1 (1+1x1)kndx
Li

V

The rest of (a) now follows by choosing p to be the characteris-

tic function of a bounded measurable set.

This is proved in Ill.

lyxl / 1y1 + Ix! / 1 + Ixl, if ly1 j1,

/ ly1(1+1x1), if lyl > 1,

so lyxl < max(1,1y1) (1+1x1), and

Rk*f(y) =

which is infinite for all y.N

V

> min(l.iy lkn) j (1+ixi)k-11 f(x) dx,

V

21



S. Spherical Harmonics

Most of this section consists of a brief review of some needed

facts about spherical harmonics. A more detailed treatment can be

found e.g. in Seeley [10].

Let
Pm

be the space of homogeneous polynomials of degree in on V,

n-1
and let H consist of the restrictions to S

geneous polynomials of degree m. Hm is a real vector space of dimen-

sion (2m+n-2)(m+n-3)1/(m!(n-2)!). The functions in H are called
in

svherical harmonics gf degree m.

In spherical coordinates the Laplace operator on V is given by

2
a n-1 8 1

A ---

8r2 r ar r2

where A' is the Laplace operator on
5n-1

Hm
is the space of eigen

functions of A with eigenvalue m(m+n-2), and L2(Sn-1) is the ortho-

gonal direct sum of the H. Thus, if (hj I, 1 < j dim(H ), form a
m,

2 n-1
basis of H, then every f e L (S ) can be uniquely written as

f(0) = a h .(0).
m,j m,j

m j

n-1
For fixed in and each e e S

Hm
such that

22

harmonic homo-

there is a unique function eel e



a2
=

ar

3

+ (n-1) cot r sin2r A",
8r

where A" is the Laplace operator on the (n-2)sphere perpendicular

to e.

Since Zm depends only on r in these coordinates, Zm satisfies

the differential equation

h" + (n-1) cot r ' = m(m+n-2)12.

Zm is even about r = n/2, so (Zm)1(n/2) = 0. Since e is not the

23

h(0) Z:(0) de = h(e) (5.1)

sn-1

for any h e II. Z:(0) depends only on the angle between e and 0 and

is called the zonal harmonic al order in with pole 1. Z: is even or

odd about the hyperplane depending on whether in is even or odd.

Lemma (5.2) If in is even and a 6 G (eA), then

ZI:(0) de 0.

sn-1

Proof: For fixed e e Sn-1, an arbitrary point 0 e Sn-1 can be

described by coordinates (r,o), where r is the (geodesic) distance

from 0 to e and a is the intersection of the great circle through 0

and e with the (n-2)sphere perpendicular to e. In these coordinates,
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zero solution, Zm(n/2) 0 0. The lemma follows directly from this,

since Zm is constant on 5n-1 n(a).111

Theorem (5.3) If H is a subspace of Hm invariant under orthogo-

nal transformations, then either H = (0) or H = H.

Proof: Choose a non-zero h 6 H and a point e with h(e) O.

Define i as the function whose value at (r,a) is the average of h

over all points with distance r from e. As an average of orthogonal

transformations of h, the new function remains in H. and it is not

zero because the value at e is unchanged. Since R depends only on r,

it must be a non-zero multiple of Z:. By (5.1), g(e) = 0 for any g e

HJ. (orthogonal complement in II). Since H4 is also invariant under

orthogonal transformations, it follows that g must be identically

zero, so H4 =

The following theorem is standard for bounded operators.

Theorem (5.4) Let T be a closed linear operator with dense

domain on the space L2(Sn-1) of complex square-integrable functions

n-1
on S If T commutes with orthogonal transformations, then each

Hm

is in the domain of T, and on H, T is a multiple of the identity.

Proof: To say that T commutes with orthogonal transformations

means that whenever U is a unitary operator arising from an orthogo-

nal transformation of the sphere, so

UT CTU. (5.5)
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This implies that the intersection of the domain of T with Hm is

invariant, hence is either 0 or
Hm.

Suppose the latter, and let Tml be the restriction of T to Ems

followed by the projection on H. The null space and range are inva-

riant, so either
ml

is identically zero or it is one-to-one and

onto, in which case m and I must be equal, as different Em have

different dimensions. It follows that TO! )m, since the Hm span

2
L Because of the invariance of eigenspaces of T, T must be a

multiple of the identity on H. This proves the theorem when the

domain of T has a non-zero intersection with H .

By (5.5), TU has dense domain, from which it follows that

* * * * * * *
(TU) 2 U T . Because U is bounded, (UT) = T U Therefore, T U =

* * * * *
(UT) 2 (ru) 2 U T . Replacement of U by U gives UT c.T U, hence

UTTcTTU.

This implies that each projection E in the resolution of the

identity for the self-adjoint operator T T commutes with U. By what

has been proved for bounded operators, E must be a multiple of the

identity on each H , therefore either 0 or 1 on each
Hm,

which

implies that H is in the domain of T T, hence in the domain of TI
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III. The Transforms P. D and S

1. Definitions

Let f be a measurable function on V. If a is a kvector. the

parallel kplane transform of f is defined by

Pf(a,x") = Paf(x")
= f f(xl+x") n" e n(a)

n(a)

whenever the Lebesgue integral exists. The kvector a is called the

xray direction.

For a fixed point x Q V, the divergent tDiane transform of f is

defined by

Df(a,x) = Dxf(a) = f f(x+x') dz.

n(a)

whenever the Lebesgue integral exists. The point x is called the g-

nu source.

The transforms Pa and Dx are related by

Dxf(a) = Paf(Em4x), (1.1)

where Ex is the orthogonal projection of x onto n(a) = n(a)4.

n-1
If f is a measurable function on S , the spherical kplane

transform of f is defined by



Sf(a) = f(0) de

n-1
S n(a)

whenever the Lebesgue integral exists.

2. Domains

Let 0 be a bounded open set in V with closure 0. C(Q) and L2(n)
0

are, respectively, the spaces of continuous and square integrable

functions defined on V and zero outside Q. The fiber bundle T =

T(Gk(V)) is defined by

= ((dor"): a e ek(V). e nta) ).

T has a natural measure g so that

f dg
5 f(a.x") dx" da.

Gk(V)
n(a)-1.

In the following theorems and proofs, most constants will be

denoted by c. The value of a need not be the same from one line to

the next.

Lemma (2.1) If f is nonnegative, measurable and defined almost

everywhere on V, then Daf is measurable, and

27



Daf(a) da =

Gk(V)

15k-11 1Gk(V)1
Rk*f(a)

c(n,k) -18n-11

15k-11 1G (V)1
lxi

IID fit

LP(Gkon)

f(a+z) dx

28

< c

11f11Lg(n).

where Rk = c(n,k) 11kn is the Riesz kernel defined in section 11.4.

Proof: By (11.3.5), Daf is continuous if f is continuous and has

compact support. The proof that Daf is measurable proceeds like the

proof of theorem (11.3.2).

Now

Daf(a) da = f f(a+z9 dz' da

Gk(V) Gk(V)
n(a)

J ix,in-k ix'
k-

f(a+x') dx' da

Gk(V)
n(a)

Isn-ll V

by corollary (11.3.8).1

Theorem (2.2)

(a) If f e LP(B), 1 < g < =, then D f e
LP(Gk(V))

for all
0 a

sources a outside 5, and for such a,



(b) If (1+Izl)k-1tf e Li and f e L2i then for all sources a
loc

outside a set of 2kcapacity zero, Daf(a) is defined for

almost every a, and Daf is integrable on Gk(V). If k > n/2,

this is true for any a.

Proof: (a) For p ( co, IDaf(a)IP = I f f(a+x) dx IP

n(a)

.1 ( Xn(a+x) (ix) Pici If(a+z)IP dx

n(a) n(a)

c If(a+x)IP dz = cDIIP(a),

n(a)

where X is the characteristic function of 0 and 1/p + = 1. Thus

IID fir
a LP(Gk(V))

S

Gk(V)

IDaf(a)
I

29

c j DalfIP(a) da elfIP(a).

G (V)

= c Iaxlka IfIP(x) dx

V

c [dist(a,0)]ka IlflIP .

LP(o)



where dist(a,0) is the distance from a to 0.

The case p = is easy to check.

(b) follows from (2.1) and (11.4.2).1

Theorem (2.3)

If f e LP(o). 1 p < c*, then P f e LP(n(a) ) for all a e
0 ,

a 0

Gk(V), Pf e L(T), and

IIP fll.1 c 11f11
a LP(n(a)4) Lg(0)

I IPf I I < c
11f11gm)LP(T)

0

If (1+Ix1)kaf e Li, then Pf is defined almost everywhere

on T and is locally integrable, thus for almost every a e

Gk(V), Pf is defined for almost everywhere on n(a)4. and

is locally integrable.

Proof: (a) For p < co, 1Pcif(e)IP = I f(x"ft ) di' IP

n(a)

c j If(x"+e)IP de

n(a)

as in the proof of (2.2)(a). Thus
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I
n(a)4 w(a)

if(x"+x9IP dx' dx" = c lifilP
Lg(n)

To get the result for P, integrate over Gk(V). Again, the case p

= is easy.

(b) is proved in Solmon [15]..

Theorem (2.4) If f e LP(sn-1). 1 1 I) then Sf e LPtek(v)),

and

HUH c lifil .

LP(Gk(V))
Lp(sn-1)

Proof: For p ISf(a)IP =

iPaf(x")1P dx"

x(a)4

f(e) de IP

n-1
S n(a)

If(0)1 elf+,

w(a)

where c = i5k-11P/q, 1/p + 1/q = 1, so

IlsfII" ISf(a)iP da
LP(Gk(V))

G (V)

31



If f e CV))
k

j If(0)1P dO

n-1

Gk(V)
S n w(a)

= C lifliP
1,P(Sn-1)

by theorem (II.3.7).11

Theorem (2.5) Let S be defined by

S*f(0) = f(a) da.

rk(e)

P =, then S*f e LP(S/1-/), and

Hefn c lifil
Lp(sn-1

Lp(G (V))

Proof: Almost identical to (2.4), with obvious adaptations.1

The various possible domains can be summarized as follows:

Pa:
1,13(0) -> LP(n(a)-L)

P: 1.10)(0) LP(T)
0

Da:
L(Q) LP(Gk(V)), a outside 5,

LP(Sn-1 -> LINGk(V))S:

32
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are bounded operators for all 1 p =. Pa and P can also be

regarded as unbounded operators on L2(V) with domain

;6k
= (f e L2(V): (1-1-1x1)k-nf e L1(V)).

3. Adioints

Lemma (3.1) Let n be a fixed k-dimensional subspace of V, n4 its

orthogonal complement. If g is non-negative and measurable on n4 and

has support in Ban n4, then

-2I g(E7 = ISk1I0.0) dO f g(x) (1 - ixi2
(k-2)/2

dx.

sn-1

Proof: Let Bn(r) be the ball of radius r around the origin,

Bn(1) = Bn. Fix an arbitrary (k-1)-dimensional subspace n of n. By

first writing the integral over Sn-1 as one over n' + n4 and then

applying Fubini's theorem,

g(E7140) de = g(Ex) (1 - Idx

sn-1 (n'+1/4) A Bn

g(x1) ty2 -
Ix"!)-1/2 a" de,

n Bn B(y)



where y2 = 1 1x'12. Setting x" = te, the inner integral in polar

coordinates becomes

1Sk-2 tk-2 (y2 t2)-1/2 dt.

0

With the substitutions $ = t/y = cos v this equals

(/ x,12)(k-2)/2 1 k 21 sk-2 (1 2)_1I2 ds

0

n/2

(1
lx'

)2)(k_2)12 i5k-2, k-2
1 j cos v v

0

rl (k."1. ) /2) r. (1/2)
1Sk-2 (1 X,=

2 r(k/2)

1Sk-1 1

= (1 1e12)(k-2)/2.11
2

Lemma (3.2) Let p be nonnegative and measurable on [0,1], n a

fixed kdimensional subspace of V. Then

1

p(1%40 ) de = 1Sk-11 15nk p(t)

n1
0

Proof: Using (3.1) and polar cordinates on n4.

34

nk-1 2 (k-2)/2(1t dt



p(lEa40 ) da

G (V)

1

p(1%401) dO

n-1

= ISk-11 p(lx1) (1 1
12)(k-2)/2 dx

Bn A n-t-

= 1Sk-11 ISnk-1 t'' (k-2)/2
p(t) (1 t2 dt.1

0

Lemma (3.3) Let p be nonnegative and measurable on [OM,

fixed point on Sn-1. Then

p(lEco.01) da

Gk(V)

IGk(V)I 1Sk-11 i 11 (kf p(t) (1t)2)/2 dt.

1Sn-11
0

Proof: The first integral is clearly independent of 0, so

isn-11

Gk(V)

f01%1.0 ) da de

k(V)

p(lEco.01) dO da

35



f 1E Oik-11+1 da
J az.

Gk (V)

2

IG (V)I

Ip(lEcri.01) d0,

ISnlI sn-1

since the inner integral is independent of a."

Corollary (3.4)

iEa4Olk
d = 'Ski IG (0.)1

2

Gk
(V)

Proof: By (3.3),

0 (I)I isk-11 Isn-k-11

Isn-11

k(V)
I I

Isn-11

, n/2
iSn-E-41

0

0

cos os s ds

lGk(V)I iSk-li is k-11 r(ia2) r(1n)

le-11 2 n(k+1)/2)

ISki 1G (04)1 after simplification.'
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For fixed x e V, let T be defined by T a = xA a/ I Ix A al , when-

ever x An # 0. If F: I Y and g is a function on Y, then Pig = goF.

(1- 2 (k 2)/2
dt



h(a) da

rk(6)

Proof: Let

L(h) =

!ric(e)!
h(T0

a) p(IEa40i) da.

G (V)
k-1

h(T0
a) p(iE4 8 ) da.

a

G (V)
k-1

37

Lemma (3.5) If h is continuous on rk
'

(0) p nonnegative and

measurable on [0,1], and

1

p(lEa40i) da p(t) (1t2)(k-3)12 dt = C < m,

Gk-1(V)

then

Ta is undefined for a
rk-1(9),

but this is a submanifold of

Gkl(V)
of smaller dimension and therefore has measure zero. L is

clearly a continuous linear form on C(1*(0)).

Let U be any rotation in V with U0 = 0, and let the induced map

from Gk-1(V) into itself also be called U. Then T011 = UT01 thus U T9

* *
= T0 U , so

L(U h) = T h(Ua) p(iEa401) da
0

Gk-1
(V)



h(a) da

rk(e)

Theorem (3.7)

(a) Let f e L2(0), h e L2 (Gk(V)), and let a be a point outside
0

Then

Daf(a)
h(a) da = H*f(a), (3.8)

Gk(V)

where

H(x) = ixikn h(a) da

T h(Ua) P (lEue.01) da = L(h).

Gk 1(V)

This shows that L is rotationinvariant and thus equal to the

integral on the left, up to a constant. This constant is determined

by setting h = 1.1

Corollary (3.6) If h is continuous on r (0), then

2
=

sk-1

h(Tea) 1E0Ikn da.

G (V)
k-1

38



(b) If
Da

is considered as an operator on L2(0) and a is a
0

point outside 5, the adjoint operator Da
is given by

Dah(x)
= lxalkn f h(a) da

rk(1-11E!T)

for h e L2(Gk(V)) and x e n.

Proof: (a) By (3.6), the formula given for H is equivalent to

2
H(x)

Iskli
h(Txa

Gk-1(V)

This latter form will be used in the proof.

Assume first that both f and h are continuous and proceed by

induction.

For k = 1, ri(x/IxI) = (x/Ixl, x/IxI), thus

H(x) = (h(x/Ix1) + h(x/IxI)) I I n,

a formula in Hamaker/Smith/Solmon/Wagner [4].

Assume now that the result is true for Gk(V).

Daf(a) h(a) da h(a) f(a+e) dx' da

Ck+1(V)
010.1(V) n(a)

1k
da.Eazx

39



mle,001.00,10

1

1

'ski sn-1

1

J
h(a'AO) D P f(a') du' dO

E0 a 04
ISkI n-1

Gk(84)

by induction, where

k+1

h(a'AO) j
P0 f(EOA

a+x") dx" da' de

Gk(84)
n(a9

P f(Es-e) dx' dO

2

H (e)
0

h(Tx,a"A8) iEa,IAe
k-11 'ski

k-1(OA)

Thus the last integral in the sequence above is equal to

CO

H(e) f(E0 a-x'-t0) dt de4

CO

8(x') f(s-x'-t0) dt dx' de

.041:0

40

k -n+1 da".

h(a) f(a+e) da de

(0) n(a)

f f(a+x"+t0) dt dx" da' dO

n(e) -40

1

h(a'n 8)

'ski
sn-1 Gk(04)



where

11(x) =

1

n-1
S V

H0 (E0
x) f(ax) dx dO = f*H(a),

4

H dO
0 94

41

2=xa"A (9) 1E , E xikn+1 da" dO
a 9 L 04

ISk I 'Ski 11"4
S

Gk-1(04.)

2

----------
h(T a) 1Eal,xikn+1 da dO

isk-11 Isk1
ç(e)

2

h(Txa)
i

Gk(V)

IE xfkn+1

!Sk

Now if (fj) is a sequence of functions in C20(0) converging in L2

to a function f e L2(n) . then Daf, D f.2(G (V)) and D f. > Df
a a a

in L2 by theorem (2.2)(a).

Now T a" 0 = T (a" AO), since both sides are positive
E x

multiples of Eej.x Au" AO = x Aa"A 0 and have length 1. Further-

more, E E = E(a, , ow so the integral equals

2

n_i
S

Gk-1(04)

da" dO,
t 0)kn+1h(Tx(a" 0)) 1E.a 4x1

isk-11



Likewise, if
(11i

) is a sequence of continuous functions conver-

ging in L2 to a function h e L2(Gk(V)), then by theorem (2.5), S*h e

L2(Sn-1) and S*h. -> S*h in L2.

Choose r so that 0 is contained inside the open ball B of radius

r around a, and let H' be the restriction of H to B. Then

2 '
Lo(B)

0

and likewise for the H

This shows that H' e L20(B) and that H -> H' in L2. Since H*f(a)

= H"f(a)andH.*f(02211.'*f(a), the integrals on both sides of

(3.4) converge, and by Cauchy-Schwartz,

'Jaya) hi(a) da -> f Daf(a) h(a) da,

Gk(V) Gk(V)

H'*f.(a) -> H'*f(a).

(b) is now an easy consequence of (0.11

Theorem (3.9)

(a) If f e L2(Sn-1), h e L2(Ok(V))D then

Sf(a) h(a) da f(0) h(a) da.

Gk(V) n-1rk(0)

2(k-n)) IIS*012 dt

L2(Sn-1)

42

lisahll
L (Sn-1)



so g e L2 (V). Since

Dog(a) = j g(z) dx =

n(a)

en-1 t2(1k) Ilf11
dt

22 tsn-1L )

1

lifil2
L2(Sn-1).

2

= Sf(a),

it follows that

Sf(a) h(a) da = Dog(a) h(a) da

Gk(V) Gk(V)

2

= H(z) g(x) dz = tn-1 tkn t1k H(-0) f(0) dO

V
n-1

tk-1 t1k f(0) de dt

n(a)

43

(b) If S is considered as an operator on L2(S its adjoint

S is given by

S h(0) = h(a) da.

ric(0)

Proof: (a) Define g(x) = izilk f(x/Izi) for 1 < lxi< 2 and

zero otherwise. Then

II 112

L(V)



f(0) h(a) da de,

sn-1 rk(e)

since 11(0) = 11(-0).

(b) follows directly from (a) and the known mapping properties

of S and S

The following theorem and corollary are proved in Solmon [15].

Theorem (3.10) If P is considered as an operator on q)(V), its

formal adjoint Pit is given by

P#g( ) = j g(a,Eaz) da,

Gk(V)

where g e L2(T) and Eal. is the orthogonal projection onto n(a)L.

For every g e L2 (T), P0g is defined almost everywhere and is

locally square integrable. Moreover, g is in the domain of the ad-

* 0
joint P of P if and only if P g is globally square integrable, in

which case F g = P*g.

Corollary (3.11) If f is nonnegative, measurable and defined

almost everywhere in V, then

isn-11
Rk*

c(n.k) 1s'1 1G (V)i

where Rk is the Riesz kernel defined in section (II.4).
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IV. UNIQUENESS AND NON-UNIQUENESS THEOREMS

1. Unioueness and Non-Unioueness for D

Let 0 be a bounded open set in V with closure 5 and closed

convex hull O.
C0

(0) and L2(0) are the spaces of continuous and
0

square integrable functions defined on V and zero outside 0, respec-

tively.

For k 0, the operator DI: is defined by

CO

El f(0) = f(a+t0) ItIk dt,
a

whenever the integral exists.

The proof of the following theorem is analogous to the proof of

Theorem (1.1) If f e LPG), then Dkf e Lp(Sn-1) for all a out-
a

side 5, and for such a,

IIDkfIl c lIfIl
a LP(Sa-1)

2
Theorem (1.2) If f e Lo (0), a is a point outside a and a e

G (V), then

q(0)



1
-

Daf(a)
= S Dk

a

1
f(a).

2

Proof: By using polar coordinates in n(a),

Daf(a) = f f(a+x) dx

n(a)

CO
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Proof: By (11.5.4), S acts as a multiple of the identity on each

H. To show that S is one-to-one on the set of even L2-functions, it

remains to show that this multiple is not zero for the
Hm

with m

even. For this, it suffices to exhibit one function in each such if

that does not get mapped into zero by S. By (11.5.2), the functions

in have this property, where e is arbitrary.1

Remark: Clearly, S maps all odd functions into zero.

n ff(a) 0

k-1
f(a+t0) t dt dO

1
= f(a+t0) lk-1 dt de

2

Sn-1 71(a)

1

S Dk-1f(a).111
a

2

Theorem (1.3) S is one-to-one on even functions in L2(Sn-1).
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Lemma (1.4) If f 6 L(0), if a is a point outside E and D f(a)
a

= 0 for almost every a e Gk(V), then Dtif(0) = 0 for almost every 0

n-1S.

Proof: Immediate from (1.2) and (1.3).N

2
Theorem (1.5) If f e

Lo
(0) and A is an infinite set of points

bounded away from 0, then f is determined uniquely by Daf(a) for a e

Gk(V) and a A.

Proof: By lemma (1.4), it suffices to show that f is determined

uniquely by
Dk1a

f(0) for 9 e Sn-1 and a 6 A. The proof of this is

almost identical to the proof of theorem (5.1) in Hamaker/Smith/

Solmon/Wagner [4], with theorem (3.19) in that paper in place of

(3.2).N

Theorem (1.6) Let f0 e L1(0), let A be a finite set of sources

outside 0, let K be a compact set in the interior of the support of

f0, and let g be any integrable function on K.

Then there is a function f e L1(0) with the same shape as
0

with Daf = D f for all a e A, and f = g on K.
a 0

Proof: Theorem (6.15) in Leahy/Smith/Solmon [7] shows that there

is an f so that Daf(0) = Daf0(0) for all 0 e Sn-1 and for all k > 0.

The theorem then follows immediately from (1.2).N



2. Unioneness and NonUnicueness for P

A
The Fourier transform f of a function f is defined by

A n/2
f(x) ei(x> dx.f(C) = (2n)

V

The Fourier transform of P is given by

k/2
(P f)A( " = (20 f(4"), 4" e n(a)4.

a

48

(2.1)

The following theorems are easy generalizations of (5.1) in

Smith/Solmon/Wagner [13].

1Theorem(2.2)Letfe(V) and let ( a ..I be a collectionLo
1' 2'

of unit kvectors. If the subspaces n(aj)4 of V are not contained in

a proper algebraic variety, then f is uniquely determined by Pa f.
i

Proof: Since f has compact support, its Fourier transform f

extends to an entire function on Cn with a Taylor expansion

'(4) =

m=.0

where pm(4) is a homogeneous polynomial of degree m.

A
If P f = 0, then by (3.1), f vanishes on n(a.)-1. For any

a.

I e



CO

f(tt') = tm p (4') = 0 for all t,

m=0

from which it follows that pm = 0 on n(aj)-L. Since no nonzero pm can

vanish on all the n(a p = 0, so f = 0 and finally f = 0.1
m

Theorem (2.3) Let fo Q C(V), ( 1, a2, a collection of unit

kvectors. If all of the subspaces 3T(a3) J- of V are contained in a

proper algebraic variety on V, if IC is any compact set in the inte-

rior of the support of fo, and if fl is any function in C(V), there

is a function f C(V) so that

f1
on 1,

Pajf
=

Pa f0
for all j,

supp f C. supp fo.

Proof.LetQbeapolynomialthatvanishesonallff(a.)-L. The

theorem of EhrenpreisMalgrange on the existence of solutions

constant coefficient partial differential equations guarantees the

existence of functions
u0

and
u1

in Cm(V) so that

Q(D)uk = k = 0,1.

Choose p e C(V) so that p = 1 in a neighborhood of IC and p

vanishes outside the support of fo. Now let

vk
= Q(D)(puk), k = 0.1.

49



thus

50

The last two formulas show that
vk

= fk in a neighborhood of K,

and vk = 0 outside the support of fo.

By (2.1),

(Pa.v =k)4(41) (2w)ki2Ct(i41)(puk)4(49

0 for 4' e n(a

Pa.vk = 0 for k = 0,1 and all j.

Finally, definef=f +v1. Thenf=f1 inaneighborhood
0 0

of K, supp fd:supp fo and P_ f = P f- for all j.
j aj uai

Remark: The theorem automatically applies if (al,..,aN) is a

finite set (take Q(t) = <t,41><t,t2>..(t,t/i> whealse nta.), t. At.j
J J

0).



V. INVERSION FORMULAS

1. Exact Inversion Formulas

Throughout this chapter, let C be the constant

iSk-11i0k
(2u) k

(V)i ISn-k-11 10k(V)1
= _____...._L__ = .

c(n,k) in-li
in-li

The
-,

e Riesz kernel Rk = c(n,k) 11knx 0 < k < n, was defined in

section (II.4). The constant c(n,k) is chosen so that

ARk(c) (2)-n/2 141-k

A
where Rk is the Fourier transform of Rk, defined in section (IV.2).

The operator Ais defined by

(AO^ (t) = It iD*(4),

so that formally

Ak(Rk*f) = Rk*Akf = f.

From (IV.2.1) it follows that formally

PA f = #Pf,

This, together with (III.3.11), shows that

* k
= C Alc

*(PPf) = C P PA f = C*AkFf.
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Here and in general the Fourier transform and the operator Aact

on each x()4, if f is a function defined on T.

Theorem (1.1)

(a) If f e L2(V) and 141 f e L2 (V), then for almost every x
0

v,

f(x) = C Dxf(a) du

Gk(V)

= C Paf(Ee.x) dx,

Gk(V)

2 ki2A
(b) If f e L (V) and igi f e L2 (V), then for almost every x e

v,

f(x) = C j gc.Paf(Ecti.x) dx.

G (V)

Remark: If k < n/2, the condition 141k? e L2(V) in (a) is

automatically satisfied.

Proof: (a) Both formulas are equivalent to

f = /i (Rk*f).

By (11.4.2), Rk*f is defined almost everywhere. The second

condition guarantees that Rk*f is in L2(V), and



ok Rk"A(t 14 ik t 1'4) = 7(t),

so f = A (Itk*f) in L2(V) and therefore almost everywhere.

(b) By (11.3.8),

II IgIknif II 2 = 11k 612(g) dg

L (V)
V

c f 1412k
I (4) dg da

Gk(V)
n(a)

so II f
e

L2(n(a)-L) for almost every a Gk(V), which means that

fih)af is welldefined for almost every a, and Ahlf e L2(T).

If g e L2(V), then
0

(11,RLPf> 2
L (T) L (T)

= <(P0A,(RcTI)A>

Gk(V)
n(a).4.

(20k f 1(g) T(g) dg da g(g) T(t) at

G (V) n(n)1' V

A A
= C , f >2 = C < ,f> .

2
L (V) L (V)

This shows that A Pf is in the domain of P and that

(Pag)A(g) (AkPDA(g) dg da

= c P AkPf
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almost everywhere.11

inversion formula for D is not quite satisfactory in this

form. In any practical application, the point x is located inside the

support of f, whereas Daf is measured for points a outside the sup-

port of f. It is desirable to rewrite the formula as an integration

over a set of points surrounding the object.

Lemma (1.2) Let A be a sphere of radius r around 0, x a point

not on A, and let g be non-negative and measurable on Sn-1. Then

Proof: See Leahy/Smith/Solmon (71.1

Theorem (1.3) If f L2(0) and A is a sphere of radius r sur-

rounding 0, then for almost every x e n,

f(x)
IGk(V)I

r c(n,k) ISn-11

12=211 By (11.3.3),

1

Daf(a) da Dxf(a) da de

I5k-11 11_1

Gk(V) rk(e)

A
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*DaDaf(x)
1(a,a-x>I da.

jg(e) de = f g(T!=!T) in-xl-n
(a,a-x>1

Sn-1 A



r ISk-11 A e , ax

1

r ISk-11

1

f(x) = --------
r c(n,l)

Daf(a) da laxln 1<a,ax>I da

ax

I.

Daf(TiFiT

A

2. Approximate Inversion Formulas

A

In practice, none of the formulas presented in the preceding

section is suitable for numerical inversion of D or P, because of the

presence of A. The usual way to resolve this problem is to seek a

reconstruction of e*f instead of f, where e is an approximate 8

function.

55

Df(a) da laxln <a,ax>I da

axln 1<a,ax>I da.

1

-------- I D D f(x) 1<a,ax>I da.111

r 1Sk-11
A

a a

Special Case: For k = 1, Danaf(x) = 1/2 laxln CDaf(ax/laxl)

+ Daf((ax)/lax1)1 = laxln Daf(ax/lax1). (1.3) reduces to for

mula (3.11) in Leahy/Smith/Solmon [71:



n(a)4 n(a) n(a)

e(y"4-74)

56

Also. unless the integral of f is zero, 1401 is not square-

integrable at 4 = 0 for k 1 n/2, so it is not obvious how to inter-

pret formula (1.1)(a) in this case.

Lemma (2.1) If e, f e L2(V), 141ke L2(V), then
0

A(e*f) = /1!te*f.

Proof: EAk(e*f)] (4) = 141k (e*f)A(4)

(20n/2 itik 1Nt) i(t)

= (20n/2 (Ae)A(4) if(4) = (#e*6^(4).1

Lemma (2.2) If e, f e L2(V), then
0

P(0f) P e*P f.
a Q

Proof:
Pa(esf)(x")

= e*f(x"+e) de

n(a)

=5 S
e(y) f(x"+e-y) dy dx'

n(a) V

=J e(y"+y9 f(x"+x'- "-y') dy' dy" de

n(a) n(a)4 n(a)

') de dy' dy"



Je(y"479 j f(x"+e-y") dx' dy' dy"

n(a)-1 n(a) n(a)

If e(Y".179 Paf(x"-y") dy' dy"

n(a)4 n(a)

Pae(y") Paf(x"-y") dy" P e*P f(x").111
a a

n(a)4

1 1k/2A
Theorem (2.3) If e, f e L2(V), i4i e e L2 (V). then for almost

0

every x e V.

e*f(x) = k*Paf(Ea4x) dr,

Gk(V)

where

= Cae.

Proof; By (1.1)(b), (2.1) and (2.2),

e*f = C P*/6'(e*f) ille(Pe*Pf)

C P* (AkPe*Pf) P*(k*P0.111

Lemma (2.4) If f, g are non-negative and measurable with support

in the ball of radius r around 0, and A is the sphere of radius r

around 0, then for almost every a e Gk(V),
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1

nk+1 isk-11
r

A

Paf(a") g(a") da"

x(a)L

Proof: Immediate from (III.1.1) and (III.3.1).1

For g(a) = k(EaLx a) this yields

2 k
Theorem (2.5) If e, f eo(0), 141/2Ae e L2 (V), then for almost

every x e a

e*f(x)

1
=

nk+1 isk-11

where k is the same function as in (2.3).
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D f(a) g(EaLa) (1
1E4a12)(2k)/2

da.
a a

Daf(a) k(Eat,(x a)) (1-1Ea4aj2)(2h)/2 da da.

Gk(V)
A
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