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THE DIVERGENT K-PLANE TRANSFORM

I, INTRODUCTIONM

The problem of recovering a function on Rn, n > 2, from Iits
integrals over k—dimensional planes has been treated by many authors,
beginning with Radon in 1917 [9]. Intuitively, the parallel k—plane
transform of a measurable function on R® is the function Pf which
assigns to each k—-dimensional subspace m of R® and each point x'’' in
the subspace nt perpendicular to n the integral of f over the trans—

late of n through x''., If k = n - 1, Pf is commonly called the Radon

transform of f.

In this thesis, the following definition is nsed. Let V be an n-
dimensional real vector space with an inner product, let Gk(V) be the
Grassmann manifold of unit k-vectors on V, and for each a € Gk(V) let
n{a) be the non-oriented k-dimensional subspace of V associated with

a. Then
Pf(e,x'') = P f(x'') = j f(x' + x'') dx',
a
n(a)

where dx' is the k-dimensional Hausdorff measure on n{(a), a € Gk(V)

and x'' € n(a)t.

Interest in this transform increased dramatically in the 1970's

due to the introduction of Computed Tomography (CT) and, more re-



cently, of Nuclear Magnetic Resonance Tomography (NMR). The object of
CT and NMR is to reconstruct a two- or three-dimensional density
function from the values of its integrals over lines or planes (see

Herman [6] for a summary).

In CT, it soon turned out to be advantageous to measure the
integrals not over parallel lines, but rather over 1lines passing
through a common source point a. This lead to the investigation of
another operator Da' If f is a function on R", then intuitively Daf
is the function on the unit sphere Sn—1 whose value at a point @ €
n-1

) is the integral of f over the line passing through a with

direction 9.

In a more general setting, the divergent k—plane transform of a

function f is defined by
Df(a,a) = Daf(a) = J f(a + x) dzx,
n(a)

where a € V and a € Gk(V)'

Another transform related to D is the spherical k-plane trans—

form S defined by

Sf(a) j £(8) de,

Sn—ln n{a)

where £ is a function on Sn—l‘and a € Gk(V)'



Some useful treatments of the parallel k-plane transform can be
found in Helgason [5] and Solmon [14]. The spherical k-plane trans-
form appears, e.g., in Helgason [5]). The divergent line transform (k

= 1) is described, e.g., in Hamaker/Smith/Solmon/Wagner [4].

The main purpose of this thesis is the investigation of the
divergent k-plane transform for arbitrary k. Because of the many
connections between D, P and 8, a number of results on the parallel
and spherical k-plane transforms are included. Sometimes these are
needed in later proofs, in other cases they are mentioned only for

comparison with similar results for D,

Chapter II. contains the background necessary for the later
chapters. Most of it is fairly standard, but the geometrical descrip-
tion of the metric on Gk(V) and some of the integration formulas on

the Grassmannian are not readily available in the literature.

Chapter III., describes some possible domains and associated
range spaces, The emphasis lies with square—integrable functions
rather than with possible generalizations to differentiable functions
or distributions. For square~integrable functions with compact sup—

port, the adjoint is calculated.

For the remaining chapters it is assumed that f € Lg(ﬂ). where Q

is a bounded open subset of V with closed convex hull Q.

Chapter IV contains uniqueness and non-uniqueness theorems. It

is proved that f is uniquely determined, if Daf is known for any



A
infinite set of sources bounded away from Q. If Daf is known for
finitely many sources only and f is infinitely differentiable, then

essentially nothing can be said about the behaviour of f inside Q.

Finally, chapter V. contains exact and approximate inversion

formulas to recover f from Pf or Df.



II, BASIC FORMULAS

1, k-Vectors

This section contains a brief review of certain aspects of k-
vectors needed in the following. Details and proofs can be found in

many books, e.g. Greub [3].

Let V be a real vector space of dimension n with an inner

product. If VireesV is a collection of elements of V, [v ....vk] is

k 1

the subspace spanned by these vectors.

The (contravariant) skew-symmetric tensors of rank k over V form
a real vector space /\k(V). where /\l(V) is identified with V, and
AO(V) = R by definition. The inner product on V induces an inner

product (and thus also & norm) on I\k(V).

If ael\k(V). BGAm(V). their exterior product d.AB is in

AW, 1fa€R = AV, anp = paa = a.

Non-zero products ViAo AV, vj € V, are called k-vectors. If a
=V A AT is a k-vector, then llall is the volume of the parallel-

epiped spanned by VyreerVyo
= * e = .0 »

Lemma (1.1) If a = v, A..AV, and B = w A AV then |lanpll

£ Ilall Hgll. If the subspaces [vl....vk] and ['1""'11:] are ortho-

gonal, then ”a/\B“ = |lall ||B||.

If n is a k-dimensional subspace of V, an orientation of & is an



equivalence class of bases of n. Two bases {vl....vk} and {wl...,wk}
determine the same orientation if the map T:n -> 7 which maps vj into
wj has a positive determinant. An orjented subspace of V is a sub-

space together with an orientation.

If ¢ = ViAo AV and B = wln..Awk are k-vectors, then a is a
positive multiple of B if and only if [vl....vk] = ['1"°'wk] and the
two bases determine the same orientation. Thus, there is a ome~to—one

correspondence between k-vectors of unit length and oriented k-

dimensional subspaces of V.,

For each k-vector a, let n(a) be the non-oriented subspace

associated with a. Then n(a) = n(-a).

If p is a unit n-vector (there are two of them), there is a

unique (n—-k)-vector a*+ of unit length with
aaat = p,
The relationship between the associated subspaces is

n(at) = n(a)+t.



2, The Gragsmann Manifold

The unit k-vectors in A}(V) form a set Gk(V) called the Grass—
mann manifold of oriented k-dimensional subspaces of V. In particu~

lar, GO(V) = {1, -1} and GI(V) = Sn—1 (the unit sphere in V),

The norm on AF(V) makes Gk(V) into a metric space. It is shown
in VWhitney [17] that Gk(V) with the topology defined by this metric

admits the structure of an k(n-k)-dimensional analytic manifold.

Let a, be a fixed unit m-vector, m £ k. The Grassmann manifold
G, (n(a.)*) is an (k-m)(n-k)-dimensional submanifold of G__ (V). By
k~m 0 k-m
. _ R . .
(1.1), the map o’ - a'A,aO. a’ € Gk_m(n(ao) ), is an isometry, so
= . = ’ i
its range f;(ao) {a €6,(M: a=a'rqy a' € 6, _,(nla)*)} is an
(k-m) (n~k)~dimensional submanifold of Gk(V)' a € ri(ag) if and only

if n(a) contains n(uo) as a subspace.

The remainder of this section is devoted to a geometric inter—
pretation of the metric on Gk(V). In the following theorems, E will
always be the orthogonal projection of V onto n(az), restricted to

n(nl).
Lemma (2.1) Let ey, a, € Gk(V)' Then
|<a1.a2>| = J(E),
where J(E) is the Jacobian of E.

Proof: See Whitmey [17], section I.15.M



Remark: If T is a linear transformation from one k~dimensional
vector space % into another and (vj} is a basis of n, the Jacobian
J(T) is defined as the ratio of the volumes of the parallelepipeds

spanned by {ij} and {vj].

/2

1
_._J._t__l » i - »
Lemma (2.2) Let e, a, € Gk(V) with ||a1 azll <2 and let J

= J(E). Then

21 - n1t/2,

la,-a, |1

{a >

2
Proof: ||a1 az'l l-az,al—az

(al.al) - 2<a1.a2) + (az.az) = 2(1 - (al.az)).

/2

From the condition ||al-u2|| < 21 it follows that (al.az) >0,

$0 <a1.a2) = J by (2.1).0

Corollary (2,3) E is non-singular if ||al—a2|| ¢ 21/2.

. 1/2
Theorem (2.4) Let a;, oy € Gk(V) with ||al—a2|| < 2 . Then

Hex-xIl < izl 'lal-azll, x € n(al).

Proof: For any x € n(al), choose Xysees

x € n(al). ||xj|l =1,

such that X,Xgsees X are mutually orthogonal. Then if J = J(E),

I|Ex ABx, A.. aEx ] 1
7l = 2 Xk = | 1Ex A-.AExk”
llxhsz..Axk” Hxll
1
< ——— |lExll .. ||Exk|| by (1.1).

Hxll



Since "Ele' £1,

HEexll > 171 lixil.

Ex and x—-Ex are orthogonal, thus

Hel1? = 11Exl1? + 1x-Exll?,

and

Hx-xl12 = =112 - Hexl1?2 ¢ 1=l 12a-151%

< Nel1? 20-0 = 12l1? Hag-ay |12,

3, Measure and Integration

The metric defined in the preceding section induces a finite
Hausdorff area measure do on Gk(V)' This measure is invariant under
orthogonal transformations of V (since the metric is) and is usually

normalized so that the measure of the entire Grassmannian becomes

1s111s272) .. 157K

le, 1 = , k2,
k Is<"111s572) .. 18t

|G0(V)| = 2,

le, (1 = Is*1y,



10

where Sk denotes the k-dimensional unit sphere in V, and ISkl its k-
dimensional measure. As an isometry, the map a' - a'A‘ao is

measure-preserving between Gk_m(u(ao)‘) and r;(ao).

Lemma (3,1) If h is continuous on Gk(V)' then

5e) = [ h(a) da
r;(O)
is continuous on Sn-l.
Proof: Pick any 91, 62 € Sn-l. Let U be the rotation on V that

carries 61 into 62 and acts as the identity on [61,62]*. U extends to

an isometry from r;(el) onto r;(Oz).

If a € rk(el), then

a' €6, _, (x(8 A8,)%)

SO

e - Uall = |la’A91‘¢'A92||
= Ilu',\(el-ez)ll = Hol-ezll by (1.1).
Now
lm(e )-He,) | = | jh(a) da - _[hm da |

rk(el) rk(oz)
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< j Ih(a) - h(Ua)| da.
r o))

By the uniform continuity of h it is possible to find a 5 for
any ¢ > 0 so that [h(a) - h(Ua)| ¢ s whenever |la-Uall = '|61—92'| 4

5.0

Theorem (3.2) If h is non-negative, measurable and defined al-

most everywhere on Gk(V)' then

(a) For almost every 6 € Sn«1 the restriction of h to r;(O) is

measurable and defined almost everywhere on r;<e).

(b) The function H(8) = I h(a) da is measurable on Sn—l, and

ri(e)
1
@  [n@ae = —— [ [ n da a0 (3.3)
G, (V) IS0 g1 ()
k k
Remark: In subsequent integration formulas the analogs of (a)

and (b) in theorem (3.2) are considered as implicit parts of the
formulas and are not stated explicitly. The proof of the present
theorem, typical of the others, is given in full detail. Subsequent

proofs that are basically repetitions are omitted.

Proof: By lemma (3.1), the right-hand side of (3.3) defines a

continuous 1linear form on the space of all continuous functions on
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Gk(V)' hence a finite regular Borel measure on Gk(V)' This measure is
obviously rotation invariant, so it is da up to a constant factor.
The constant is determined by setting h = 1, This gives (3.3) when h

is continuous.

If h is the characteristic function of an open set in Gk(V)' h
is the 1limit everywhere of an increasing sequence of continunous
functions {hj}. Therefore the restriction of h to r;(o) is measurable

for every 8. The functions Hj defined by

= . d
H, (8) I bi(a) da

r;(e)

. . . n-1
form an increasing sequence of continuous functions om S »

bounded above by the comstant Ir;(6)|. and converging pointwise to
the function H, which is therefore measurable, By the dominated

convergence theorem, H is integrable over Sn_l, and

j H(®) d@ = lim j H,(8) 8

sn—l sn—1

= 1im j j h.(a) da a0 = IS5 1im j h.(a) da
k| i

n-1
S r;(e) | 6, (V)

= ISk—ll I h{a) da.

Gk(V)
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This proves the theorem when h is the characteristic function of

an open set.

Let h be the characteristic function of » GS' Then h is the

limit everywhere of a decreasing sequence {hj} of characteristic

functions of open sets, The above argument proves the theorem when h

is the characteristic function of a G&'

Let h be the characteristic function of a set N of measure zero.
N is contained in a G8 set A of measure zero with characteristic

function h,. From above, HA is integrable over Sn'-1 and has integral

A*
zero, So HA is zero almost everywhere. This shows that the integral
of hA over F;(e) is zero almost everywhere, hence that the restric-
tion of hA to r;(e) is zero almost everywhere on rk(O). for almost
every @, Since N is a subset of A, this is also true for the function

h. Thus, for almost every 6, h = 0 almost everywhere on F;(e).

By the regularity of da, any measurable set E is a difference E
= A - N, where A is a 68 and N< A has measure zero. Hence hE = hA -
hN. so the theorem is proved for characteristic functions of measur-

able sets, hence for simple functionms.

An arbitrary non-negative measurable function is the pointwise
limit almost everywhere of an increasing sequence {hj} of simple
functions. The same arguments used above for the characteristic

function of an open set now yield the statement of the theorem.l
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Corollary (3.4) If h is integrable on Gk(V), then h is integ-

rable over r;(e) for almost every 6 € Sn_l.

Lemma (3,5) If f is continvous with compact support on V, then

F(a) = j f(x) dx
n(a)

is continuous on Gk(V)'

Proof: Pick a,, a, € Gk(V) with ||a1—a2|| < 21/2. and let E be

the orthogonal projection of V onto n(az). restricted to n(al). E is

non-singular by (2.3), so

IF(a)) - Flapl = | j f(a+x) dx - j fla+y) dy |

n(al) n(az)

= | I f(a+x) dx - j f(a+Ex) J(E) dx |

a(al) n(al)

£ j |£(a+x) - f(a+Ex)| dx + j I£(a+Ex)| (1-J(E)) dx

n(al) n(al)

By (2.4) and the uniform continuity of f the first integral can

be made arbitrarily small by taking a, o, sufficiently close toge-
] .
ther. (2.2) yields the same for the second integral.R
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Corollary (3.6) If f is continuous on Sn-l, then
Fla) = I £(0) do
Sn—%nn(a)
is continuous on Gk(V)'

Proof: Define g(x) = p(lxl) |x|1-k £(x/Ixl), where p(Ixl) =0
if lx| is outside the interval [1,2], and fp(lxl)dx = 1. g is clearly

continuous, and

Fla) = [ @ a0
Snm1 ax(a)
2
= j j p(t) £(8) do dt
n-1

1 S nn(a)

= J pClxD |x|1-k f(x/lzl) dx = 6(a),

n(a)

which is continuous by (3.5).%

Lemma (3.7) If g is non-negative, measurable and defined almost
everywhere on Sn-l, then
1s* 1)

I g(8) a8 = j j g(8) do da
a-1 1s* e, (0 |

n-1

S Gk(V) S nn‘(ﬂ.)
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Fand
= I I g(@) d0 da
1Is®% 116 (0|

k

6 (V) s%L n(a)+

Proof: By the preceding corollary, the first double integral om
the right defines a continuous linear form on the space C(Sn-l).
hence a finite regular Borel measure on Sn—l. This measure is ob-
viously rotation invariant, and there is only one up to a constant
factor. The constant is determined by setting g = 1. The theorem is

then extended to non-negative measurable functions as in (3.2).

The proof of the second equality is identical.®

Lemma (3.8) If g is non—-negative, measurable and defined almost

everywhere on V, then,

Famd

I J |x'|n“k g(x') dx' da

Gk(V) n(a)

I g(x) dx

k-1
v Is “Gk(V)l

Is?1]

J |x'|k g(x') dx' da
n-k-1
Is e, (W1 6, (M n(a:

Proof; Using polar coordinates in V and in n(a) and theorem

3.7,

j g(x) dx = 5 I tn-1 g(t0) dt de

v 1 o



17

Is*2 B
= I j j t®" g(t8) dt d8 da
k-1
Is* “lle (v G, (V) s L@ o
Eal n-k _k-1
= J j j t t g(to) dt de da
Is* 116, (M 1 -1
k G, (V) $" A n(a) 0
'Sn.ll n-k
= J / I Ix*| g(x’) dx’ da.

k-1
Is IIGk(V)I 6, (M 1(a)

The proof of the second part is identical.M

4, Riesz Potentials

The Riegsz kermel Rk is defined by

R (x) = cln,k) 121572, 0 <k <n,
where
"({(a-k)/2)
e(n,k) = .
2%:% 2 [k /2)

This function comes up in various places in computed tomography.
In this thesis, it appears, e.g., in lemma (III.2.1), which states

that
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j D.f(a) da = o R *f(a),

Gk(V)
The following two lemmas are adapted from [11].
Lemma (4.1) If p is integrable and (1+1x])®p is bounded, then

IR %) <o a+lzh®™ llpll |+ Ia+lzh%I1 ).
L L

Proof: Assume p > 0, and let M = Ha+lzh® 11 °
L

It will be shown first that
Rk‘p(x) <e (lpll 1 * M),
L
then that

R *p(x) e 157 (llpll | + W,
L

Together the two prove the lemma.
For the first estimate,

1

_:__.; chp(x) = 5 |x-y|k_n ply) dy
cin,k
\'A

= j |x-'y'kmn ply) dy + S |x--y|kmn ply) dy

|x—y|$1 Ix-Y'zl
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<M [ 12 a o+ Hpll < e dlplly + W,
L L
Izl

Because of the first estimate, the second estimate only needs to

be proved for lx| > 1.

1 I ' |k—n
—————— R #*p(x) = x-y p(y) dy
C(Ilok) Rk
Iylglxl/2
+ I |x-'y|k-n p(y) dy + 5 |x--y|k-n p(y) dy
lyl221x| 1xl/2¢1lyl €2 1x]

< Uzl 1pll |+ 1217 1ol
L L

+ |x|k“n I |0--z|k'--n p(lxlz) IzI® dz,

1/72¢1z1¢2
where 6 = x/lxl, z = y/lxl.

Since p(|x|z)|x|n = p(|x|z)(|x|z)nz-n £ 2™M, the last integral

is bounded by

20| X2 j lwlX 2w u

wl¢3

In the following lemma, 7?k is the space of Bessel 'potentials

[11. It is similar to the Sobolev space ]Lk. but the functions are
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defined more precisely than almost everywhere. Functions in TFk are
defined except on sets of 2k-capacity zero. (For any ¢ > 0, a set of

2k-capacity 0 has (n-2k+e)-dimensional measure zero).
Lemma (4.2

(a) If (1+lx|)k-nf € Ll. then Rk*f is defined almost everywhere
and is locally integrable. Moreover, if p € Ll and

(1+|x|)np is bounded,

KR 2t.00] = | [ R o0 a0 ax |
v

Cellaslxh el _llpll |+ Haslzb®I1 ).
L L L

(b) If in addition f € Lioc' then Rk*f is defined except on a

set of 2k—~capacity zero amd is in Tﬂﬁﬁc; if X > n/2, Rk*f

is continuous, as points have positive capacity,.

() If +lxD¥ e e Ll and £ 0, then R*f is undefined
everywhere.
Proof: (a) | I Rk*f(x) p(x) dx |

v

= | j j Rk(x-y) f(y) dy p(x) ax |
v V
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< j I ! | f R (x-y) p(x) dx | dy
v v

= I I£(y | |Rk‘p(y)| dy
v

<o dlpll g+ HMasdzb®11 ) | 1e@ ] @rxb®™ ax
L L
\

The rest of (a) now follows by choosing p to be the characteris-

tic function of a bounded measurable set.
(b) This is proved in [1].

(¢) ly-xl < Iyl + Izl <1 + Ixl, if lyl < 1,

< Iyla+izh, if Iyl 21,

so ly-xl < max(1,lyl) (1+ix!), and

Rk*f(y) = j Iy—xlk-n f(x) dx

v

> min(1, lyl¥®) j A+l ™ £(x) dx,

v

which is infinite for all y.B
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5. Spherical Harmonics

Most of this section consists of a brief review of some needed
facts about spherical harmonics. A more detailed treatment can be

found e.g. in Seeley [10].

Let P; be the space of homogeneous polynomials of degree m on V,
and let H‘ consist of the restrictioms to 'Sn'-1 of harmonic homo-
geneous polynomials of degree m, Hm is a real vector space of dimen-

sion (2m+n~2){(m+n-3)!/(m!{n-2)!). The functioas in Hm are called

spherical harmonics of degree m.

In spherical coordinates the Laplace operator on V is given by

a2 -1 3 1
A = —5 + - = + -3 A,
ir r Jr r

where A’ is the Laplace operator on Sn-l. Hm is the space of eigen—

functions of A’ with eigenvalue —m(m+n-2), and Lz(Sn-l) is the ortho-
gonal direct sum of the Hm. Thus, if {hm j}. 1<¢j« dim(Hm). form a

basis of Hﬁ, then every f € Lz(Sn-l) can be uniquely written as

£0) = ) ) %, Bp, ()
m

For fixed m and each e € Sn-l, there is a unique function Zz €

H such that
m
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jh(e) 7%(6) 40 = h(e) (5.1)

Sn—l

for any h € Hm' Zf(O) depends only on the angle between e¢ and © and

is called the zonal harmonic of order m with pole L. Z: is even or

odd about the hyperplane e+, depending on whether m is even or odd.
Lemma (5.,2) If m is even and a € Gk(e*), then

j' z“e‘(O) e # o0,

Sn-ln n(a)

Proof: For fixed e € Sn-l, an arbitrary point 6 € Sn—1 can be

described by coordinates (r,c), where r is the (geodesic) distance
from O to e and ¢ is the intersection of the great circle through 0

and e with the (n~2)-sphere perpendicular to e. In these coordinates,

82 0 -2
A' = -5 + (n-1) cot r == + sin "r A'’,
or ar

where A’’' is the Laplace operator on the (n-2)-sphere perpendicular

to e.

Since Z: depends only on r in these coordinates, Z: satisfies

the differential equation
h'* + (n-1) cot r h’ = ~m{m+n~-2)h.

Z: is even about r = n/2, so (Z:)'(n/Z) = 0, Since ZZ is not the
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zero solution, Z:(u/Z) # 0. The lemma follows directly from this,

since Zz is constant on Sn-1 n(a) . X

Theorem (5.3) If H is a subspace of Hm invariant under orthogo~

nal transformations, then either H = {0} or H = Hm'

Proof: Choose a non-zero h € H and a point e with h(e) # O,
Define h as the function whose value at (r,5) is the average of h
over all points with distance r from e. As an average of orthogonal
transformations of h, the new function remains in H, and it is not
zero because the value at e is unchanged. Since h depends only on r,
it must be a non-zero multiple of Zz. By (5.1), g(e) = 0 for any g €
H+ (orthogonal complement in Hm)' Since H%+ is also invariant under
orthogonal transformations, it follows that g must be identically

zero, so H: = 0 .N
The following theorem is standard for bounded operators.

Theorem (5.4) Let T be a closed linear operator with dense
domain - on the space Lz(Sn-l) of complex square—-integrable functioans
n-1

on S « If T commutes with orthogonal transformations, then each Hm

is in the domain of T, and on Km' T is a multiple of the identity.

Proof: To say that T commutes with orthogonal transformations
means that whenever U is a unitary operator arising from an orthogo-

nal transformation of the sphere, so

UT < TU. (5.5)
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This implies that the intersection of the domain of T with Hm is

invariant, hence is either 0 or Hm.

Suppose the latter, and let T; be the restriction of T to Hm,

1

followed by the projection on H The null space and range are inva-

1.

riant, so either T; is identically zero or it is one—to-one and

1
onto, in which case m and 1 must be equal, as different Hm have
different dimensions. It follows that T(Hm) c;Hm, since the Hm span
L2. Because of the invariance of eigenspaces of T, T must be a

multiple of the identity on Hm' This proves the theorem when the

domain of T has a non-zero intersection with Hm'

By (5.5), TU has dense domain, from which it follows that
L * ] LR * *
(TO) 2 UT . Because U is bounded, (UT) =T U . Therefore, TU =

* * LR L * *
(UT) > (TU) o> UT . Replacement of U by U gives UT < T U, hence
L *
UTT< T TU.

This implies that each projection E in the resolution of the
identity for the self-adjoint operator T‘T commutes with U. By what
has been proved for bounded operators, E must be a multiple of the
identity on each Hm’ therefore either 0 or 1 on each Hm. which

*
implies that Hm is in the domain of T T, hence in the domain of T.N



26

I1I e Transforms P, D and S

1. Definition

Let f be a measurable function on V, If a is a k-vector, the

pagallel k-plane transform of f is defined by

Pfla,x'') = P f(x'’) = j f(x'+x'') dx', x'' € n(a)*,

n(a)

whenever the Lebesgue integral exists. The k-vector a is called the
For a fixed point x € V, the divergent k-plane transform of f is

defined by

Df(a,x) = D fla) = f f(x+x') dx’
X
n(a)

whenever the Lebesgue integral exists. The point x is called the x—

xay source.
The transforms Pa and Dx are related by
D f(a) = P f(E ,x), (1.1)
x a T«
where E ,x is the orthogonal projection of x onto w{at) = n(a)*+.
a

If f is a measurable function on Sn—l. the spherical k-plane

transform of £ is defined by
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Sf(a) = ff(e) a6

Sn_ln n(a)

whenever the Lebesgue integral exists.

2, Domains

Let 2 be a bounded open set in V with closure Q. Co(ﬂ) and Lg(ﬂ)

are, respectively, the spaces of continuous and square integrable

functions defined on V and zero ountside 3. The fiber bundle T =

T(Gk(V)) is defined by

T = {(a,x’'): a € Gk(V)’ x'' € n(a)t},

T has a natural measure p so that

j fdaeg = j I f(a,x’'') dx’'’ deo.
T

Gk(V) n(a)+

In the following theorems and proofs. most constants will be

denoted by c. The value of ¢ need not be the same from one line to

the next.

Lemma (2,1) If f is non-negative, measurable and defined almost

everywhere on V, then Daf is measurable, and
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Is*71 e w1
j D f(a) de = Rk*f(a)
a

c¢(n,k) -|Sn-1|

Gk(V)
where Rk = ¢(n,k) lek-n is the Riesz kernel defined in section II.4.

Proof: By (II.3.5), Daf is continuous if f is continuous and has
compact support. The proof that Daf is measurable proceeds like the

proof of theorem (II.3.2).
Now

I Daf(a) da = I f .f(a+x') dx' da

Gk(V) Gk(V) n(a)

= I J |x'fn—k lx'lk-n f(a+x’) dx’ de

Gk(V) n(a)

1s*711 1w | e
= J Izl f(a+x) dx

1s%71)

v
by corollary (II.3.8).H

Theorem (2.2)

(a) If f € Lg(ﬂ). 1 {pL= thenDf€ Lp(Gk(V)) for all

sources a outside 5, and for such a,

||Daf|| < e Hlgll .
Lp(Gk(V)) Lg(a)
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1

w) 1f +lzDH¥ s el ana £ e Lioc. then for all sources a

outside a set of 2k-capacity zero, Daf(a) is defined for
almost every a, and Daf is integrable on Gk(V)’ If ¥ > n/2,

this is true for any a.

Proof: (a) For p ( =, IDaf(a)lp = | f f(a+x) dx [P

n(a)

£ (I Xﬂ(a+x) dx) p/q j- I£(a+x) 1P dx

n(a) n(a)

£ ¢ j If(a+x) I? dx = ¢ Dalflp(c).

n(a)

where Xﬂ is the characteristic function of @ and 1/p + 1/q = 1. Thus

Ilnafllp = j ID £(a)I? da
Lp(Gk(V)) 2
G_(V)

£ ¢ j Dalflp(a) de = ¢ Rk*|f|p(a).

Gk(V)
= ¢ j la=x1¥™® 1£1P(x) dx
\'

£ ¢ [dist(a,ﬂ)]k-n ell? ,
L ()
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where dist(a,2) is the distance from a to Q.
The case p = @ is easy to check.
(b) follows from (2.1) and (II.4.2).X

Theoxem (2,3)

(a) If £ € Lg(m. 1¢pL= themP fe€ Lg(n(a)*) for all a €

P
Gk(V). Pf € LO(T). agd

lp £l < ¢ gl ,
a Lg(n(am Lg(m

Heell < e gl .
Lg('r) Lg(m

(b) If (1+|x|)k-nf € Ll. then Pf is defined almost everywhere

on T and is locally integrable, thus for almost every a €
Gk(V). Paf is defined for almost everywhere on n(a)* and

is locally integrable.

Proof: (a) For p ( =, |Paf(x")|p = | I f(x''+x') dx' |P

n(a)

£ ¢ j I£(x* +x*) P ax’

n{a)

as in the proof of (2.2)(a). Thus
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e _el1P = e frI® e
LP(n(as+) @
n{a)+
£ ¢ f j Ie(x’ ' +x) I? dx* ax'* = ¢ l€lI?_ .

Lg ()
n{a)+ n(a)

To get the result for P, integrate over Gk(V)' Again, the case p

= ® jis easy.

(b) is proved in Solmon [15].H

Theorem (2.4) If £ € LP(S®™ 1), 1 (p ( » then Sf € LP (6, (V)),

and

Hsell < e el
L?(6 (V) LP(s"™)
Proof: For p { =, Ist(a)I? = | j £(8) deo |?
Sn-lnﬂ(a)

< e I i£(e) 1P ao,

n-1

$" " na)

where ¢ = |Sk¢1|p/q. i/p + 1/q =1, so

lIsel|?
Lp(Gk(V))

j Isf(a) I? da

Gk(V)
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i~
[+ ]

j j 1£¢0) IP ae

G, (V) s 1, 2(a)

= o llell®
LPs™™

by theorem (I11.3.7).W

*
Theoxem (2.5) Let S be defined by
]
s*t@) = f £(a) da.
rk(e)
] -
If £ € LP(G,(V)), 1 L p < = then S f € LP(s" 1y, ana

Hs'ell _ . < o Mgl :
L?(s™™) LP(6, (V)

Proof: Almost identical to (2.4), with obvious adaptations.M

The various possible domains can be summarized as follows:

P: Lgcs) -> Lg(n(a)*)
. P - p

P: Lg (@) > L3

D: LP(Q) -> LP(G,(V)), a outside 2,
a 0 k '

s:  LPs™hH o LP (6, (V)
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are bounded operators for all 1l {( p { =. Pa. and P can also be

regarded as unbounded operators on Lz(V) with domain

A = (rettm: a+lzh¥ s e L1 (m.

k
3, Adjoints
Lemma (3.1) Let n be a fixed k-dimensional subspace of V, nt its

orthogonal complement. If g is non—negative and measurable on nt and

has support in Bnn nt, then

j g(E ,0) d8 = Is¥71) j g(x) (1 - |x1?)®2/2 4

Sn--'l Y

Proof: Let B®(r) be the ball of radius r around the origin,
B"(1) = B®. Fix an arbitrary (k-1)-dimensional subspace n’ of n. By
first writing the integral over Sn-1 as one over n' + n+ and then

applying Fubini’s theoren,

f g(E ,0) d0 = 2 f g(E ,x) (1 - 1212)7"/2 4

Sn—l (n'+nt) o B®

= 2 j. g(x') j. (y2 - lx"lz)-ll2 dx'’' dx’,

ntn Bt LY Bn(y)
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where y2 =1 - 'x'lz. Setting x’'’ = t8, the inner integral in polar

coordinates becomes

15572 J 2 (2 - 212

With the substitutions s = t/y = cos v this equals

1
(1 - 1x|HED2 g2y [ x2 g o 22,
0
n/2
= (1 - |x'|2)(k—2)/2 |Sk_2| J cosk-zv dv
0

r((x-1)/2) ["(1/2) 2] - e D2

2 T(k/2)
Is¥71)
= -l |HER2
2
Lemma (3,2) Let p be non-negative and measurable on [0,1], =x a

fixed k-dimensional subspace of V. Then

1
[ otlE j0h a0 = Is¥71 1" [ pee) 7 (1-¢2) ®-2)/2 4
-1

s® 0

Proof: Using (3.1) and polar cordinates on n<t,
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[ otig ol 4o
Sn—1

Is¥~1) j ollxl) (1 - 1z &20/2 4

Bnn nt
1
= 1S s [ e e an- ) (&2)/2 4 m
0
Lemma (3.3) Let p be non-negative and measurable on [0,1], © a
fixed point on Sn-l. Then
[ etlE_01 aa
Gk(V)
1
~1] jn-k-1
le, (v 1 Is¥71] s
= -k I p(e) t8E1 (1-¢2) (B°D/2 4
n-1
Is™ I 0

Proof: The first integral is clearly independent of &, so

j p(IE_,0D) da = — j f p(IE_,0]) da a8
Is"" 71 n-1
6 (V) S G, (V)
1
= ——— f f pClE ,0l) do da
Is*71 :

n~-1
Gk(V) S
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le, (M1
- 5 | pUE_0D e,

] Sn-1 | sn-l

since the inner integral is independent of o.M

Coroll 3.4
1
[ 1B 01 4a = — Is"I g (o0
a 2 k
6, (V)

Prgg: : By (3.3) »

1

le_(n1 IsE71y 177Ky _
k j 1 - ¢2) k2072 4

[ 1E_01"™* da

n-1
G, (V) Is= 0
n/2
le (w1 Is¥ |s27k1)
k I k-1
= cos s ds
n-1

Is™ 1 0

le (V)| Is¥7 1) 15" %1 rs2) F/2)

=

‘sn-1| 2 T((x+1)/2)

1

= - ISkl |Gk(6‘-)| after simplification. W
. 2

For fixed x € V, let 'l‘x be defined by Txa = xaal/llxacll, when-

ever xAaa # 0, If F: X => Y and g is a function on Y, then F®g = goF,
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Lemma (3.5) If h is continuous on r;(e). p non-negative and

measurable on [0,1], and

1

j p(lE_0D) da = o [p(e) ¢F (-t E32 4 2 ¢ ¢ o,

6 _, (M 0
then
In@l
k
I h(a) da = ---E——— j h(Tea) p(’Ea‘6|) da.
rk(e) 6, _,(M
Proof: Let
L(n) = j h(Tga) p(IE_,01) da.
G _, (¥

Tba is undefined for a € r;_l(e). but this is a submanifold of
Gk—l(V) of smaller dimension and therefore has measure zero. L is

clearly a continuous linear form on C(f;(e)).

Let U be any rotation in V with U8 = 8, and let the induced map

.
from G, _,(V) into itself also be called U. Then T,U = UT,, thus U T

T‘U‘
= e s SO

Lw'h) = j T h(Ua) p(IE ,01) da
) a*
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*
j Tgh(Ua) pC(IEy ,01) da = L(b).

This shows that L is rotation-invariant and thus equal to the
integral on the left, up to a constant. This constant is determined

by setting h = 1.1

Corollary (3,6) If h is continuous on.r;XO). then
2 k-n
I h(a) da = ——- j B(Tga) IE 017" da.
1551 i
S
M (@ 6, _,(M
Theorem (3,7)

(a) Let f € Lg(ﬂ). h € Lz(Gk(V)), and let a be a point outside

Q. Then
j D f(a) h(a) da = H*f(a), (3.8)
Gk(V)
where
H(x) = |x|k—n j h(a) de

PO AL



39

(b) If Da is considered as an operator on L;(Q) and a is a

- »
point outside 2, the adjoint operator Da is given by

D.h(x) = Ix-alk—n I h(a) da
a

a-x
! k(T;:;T)
for h € L2(Gk(V)) and x € Q.

Proof: (a) By (3.6), the formula given for H is equivalent to

2
Hx) = ——— | B(Ta) IE x

Fadl

Ik-n da.

Gk-l(V)
This latter form will be used in the proof.

Assume first that both f and h are continuous and proceed by

induction.
For k = 1, r;(xllxl) = {x/|xl|, -x/1xl}, thus
H(x) = (h(x/lxD) + B(=x/1xD) 1xI*™®,
a formula in Hamaker/Smith/Solmon/Wagner [4].
Assume now that the result is true for Gk(V).

j D_f(a) hla) da = j h(a) j' £(a+x’) dx' da

Gy pq (V) GV @
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2 em— j j h(a) j f(a+x’) dx’' da d6
Is¥| s (e ()
k+1 nla
1
- I j n(a’ A 0) j j £(a+x’'+t0) dt dx'' da’ d@
|Sk| n-1
s G, (84) a(a’) =
1
- - f [ neae) [ pyeEgavx't) ax'’ o’ a0
Is™| go1 Gk(el) n(a’)
1
- j’ j h(a’ A 9) DEeLaPef(a') da’ d6
Is”1 s 1 6 (es)
k

= ’ - ! ’
[ ] gy pyr(B,a-x") ax’ a0
st g
by induction, where

2
By(x') = oo [ nar a0 IE

I1sE71) skl

,th'|k~n+1 da’’.

Thus the last integral in the sequence above is equal to

I J Hy(x") J £(Ey,a-x'~t0) dt dx’' d6
sn—l P e

- j j Hy(x") j f(a-x'-t8) dt dx' do

4sn-1 o —e
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= j j Hy(Bg,x) fla-z) dx d0 = f*H(a),

sl y
where

H(x) = I HG(EG-'-x) 1)

sn--1

2 —— j B(Tp _a''A®) Ilza,,ﬂze‘:\:lk"“+1 da’'’ de
1s*710 Is¥] ga-1

0+

G,_, (8

Now T xa"AO = Tx(a"/\e). since both sides are positive

Egs

multiples of Eo‘x Aa''"AB8 = xAa'"'AB8 and have length 1. Further-

more, Ea"*EG* = E(a"A 9)L’ SO the integral equals

2
-— j j B(T_(a’’A @) IE(a,,Ae)Lxlk 51 4a'* de,
ISSUOISS L a1
k-1
: 2 k-a+l1
B memee—————— I h(T @) IE Lxl do do
1) gkl o5 0
s st . (e)
x
2
= —— J h(T a) |E x|k—n+1 da.
l k x at
Ll |
Gk(V)

Now if {f.} is a sequence of functioms in Cg(ﬂ) converging in L2

i
to a function f € Lz(ﬂ). then D f, D f, € Lz(G (V)) and D £, -=> D f
0 a a j k aj a

in L2 by theorem (2.2)(a).
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Likewise, if [hj} is a sequence of continuous functions conver-
.
ging in L2 to a function h € L2(Gk(V)). then by theorem (2.5), S h €

- * ]
12(s® 1) ana s B, = s*h in L2,

Choose r so that Q is contained inside the open ball B of radius

r around a, and let H' be the restriction of H to B. Then

n-1 2(k-n)) * 2 * 2
t s hll2 a1, Ot c Ils h||2

e 112, _ -
L°(s™ ) L(s

LO(B)

t
1,

and likewise for the Hj’.

This shows that H' € Lg(B) and that H; -> B’ in L2. Since H*f(a)

= H'#f(a) and Hj*f(a) = Bj"f(a). the integrals on both sides of

(3.4) converge, and by Cauchy-Schwartz,
I Dafj(a) hj(a) da - I Daf(a) h(a) da,
Gk(V) Gk(V)
H"fj(a) => H'*f(a).

(b) is now an easy consequence of (a).BH

Theorem (3.9)

(a) 1f £ e1L2(s®™ Yy, n € Lz(Gk(V)). then

I Sf(a) h(a) da = j' £(0) j h(a) da.

n-1
Gk(V) S rk(O)
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(b) If S is considered as an operator on LZ(Sn-1

*
S8 is given by

s*h(e) = j n(a) da.
[ (®

ll-k

Proof: (a) Define g(x) = Ix f(x/lxl) for 1 ¢ Ixl ¢ 2

zero otherwise. Then

2
lgl1? 271 27K g2 g
12(n J 12(s*1
1
= ¢ lsll1? ,
12(sv 1
so g € LZ(V). Since
2
k-1 1-k
Ds(a) = [ gx) ax = [ & [ e a0 ar
n(a) 1 Sn_ln n(a)
= Sf(u).
it follows that
j Sf(a) h(a) da = j Dys(@) hla) da
G, (V) G, (V)
2
= j H(-x) g(x) dx = j ¢l kn 1ok j H(-8) £(8) @
n-1

v 1 S

), its adjoint

and
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j £(8) j b(a) da de,

n-1
S ri(e)
since H(0) = H(-9).

(b) follows directly from (a) and the known mapping properties

]
of S and § N
The following theorem and corollary are proved in Solmon [15].

Theorem (3.10) If P is considered as an operator on Lg(V), its

formal adjoint P# is given by

P#g(x) = J‘ g(a.Ea,_x) da,

Gk V)
where g € LZ(T) and Ea‘ is the orthogonal projection onto n(a)*.

For every g € L2(T), P#g is defined almost everywhere and is

locally square integrable. Moreover, g is in the domain of the ad-
*

joint P of P if and only if P#g is globally square integrable, in

*®
which case P#g =P g,

Corollary (3,11) If f is non-negative, measurable and definmed

almost everywhere in V, then
15271
P#Pf = Rk*f,

c(n,x) Is¥1] le, (W1

where Rk is the Riesz kernel defined in section (II.4).
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IV, UNIQUENESS AND NON-UNIQUENESS THEOREMS

1, Unigueness and Non—~Uniqueness for D

Let 2 be a bounded open set in V with closure Q@ and closed

A
convex hull Q. CO(Q) and Lg(ﬂ) are the spaces of continnous and
square integrable functions defined on V and zero outside 2, respec-

tively.

For k > 0, the operator D: is defined by

n:f(e) = I f(a+t0) lel® e,

whenever the integral exists.

The proof of the following theorem is analogous to the proof of

(I11.2.2)(a).

Theorem (1,1) If f € Lg(ﬂ). then D:f € Lp(Sn—l) for all a out-

side 5. and for such a,

< e gl .

Tl
) Lg(n)

LP(s>"!
Theorem (1,2) If f € Lg(ﬂ), a is a point outside @ and a €

Gk(V)' then
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1
D f(a) = —- 8 D5 Lf(a).
a 2 a

Proof: By using polar coordinates in n(a),

Daf(a) = J f(a+x) dx
n(a)
= J I f(a+t0) t51 at ae

$% 1 x(a) o

1
= - I J £(a+t9) lel¥ 1 ae ao
2

Sn"1 nn(a) -=

1
= — $dg(a).u
2 a

Theorem (1.3) S is one-~to—one on even functions in Lz(Sn—l).

Proof: By (II.5.4), S acts as a multiple of the identity on each
Hm. To show that S is ome—to—one on the set of even Lz-functions. it
remains to show that this multiple is not zero for the Hm with m
even. For this, it suffices to exhibit one function in each such Hm

that does not get mapped into zero by S. By (II.5.2), the functions

Zz have this property, where e is arbitrary.N

Remark: Clearly, S maps all odd functions into zero.
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Lemma (1.4) If f € Lg(ﬂ). if a is a point outside 2 and Daf(a)

= 0 for almost every a € Gk(V)’ then D:-lf(e) = 0 for almost every 6

€ Sn-1

Proof: Immediate from (1.2) and (1.3).H

Theorem (1,5) If f € Lg(ﬂ) and A is an infinite set of points
A
bounded away from Q, then f is determined uniquely by Daf(a) for a €

Gk(V) and a € A,

Proof: By lemma (1.4), it suffices to show that f is determined
uniquely by D:—lf(e) for 8 € Slr-1 and a € A, The proof of this is
almost identical to the proof of theorem (5.1) in HBamaker/Smith/
Solmon/Vagner [4], with theorem (3.19) in that paper in place of

(3.2).%

Theorem (1,6) Let fo e Lé(ﬂ), let A be a finite set of sources
outside 2, 1let K be a compact set in the interior of the support of

fo. and let g be any integrable function on K.

Then there is a function f € Lé(ﬂ) with the same shape as fo,

with Daf = Dafo for all a € A, and £ = g on K.

Proof: Theorem (6.15) in Leahy/Smith/Solmon [7] shows that there
is an f so that D-£(8) = DE£,(8) for all @ € S" ™' and for all k) 0.

The theorem then follows immediately from (1.2).%
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2, Unigueness and Non-Uniqueness for P

A
The Fourier transform f of a function f is defined by

—i<10§>

A -
£ = o ™/? jf(x) e dx.
v
The Fourier transform of Pc is given by
A
0@ = eo?Een, g e e (2.1)

The following theorems are easy generalizations of (5.1) in

Smith/Solmon/Wagner [13].

Theorem (2,2) Let f € L;(V) and let {al. az..;} be a collection

of unit k-vectors. If the subspaces n{a,)* of V are not contained in

3

a proper algebraic variety, then f is uniquely determined by Pa f.
J

Proof: Since f has compact support, its Fourier transform f

extends to an entire function on C° with a Taylor expanéion

@) = Y p (8),

m=0
where pm(ﬁ) is a homogeneous polynomial of degree m.

A
If Pa f =0, then by (3.1), f vanishes on n(aj)‘. For any &' €

J

n(a )+,
J
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®
£(te’) = 2 " p (£') = 0 for all t,
m=0
from which it follows that p, = 0 on n(a,)*. Since no non-zero p, can

b
A
vanish on all the n(aj)*. P, = 0, so f = 0 and finally f = 0.8

Theorem (2.3) Let £, € C;(V). {al. ey, ..} a collection of unit
k-vectors. If all of the subspaces n(aj)* of V are contained in a
proper algebraic variety on V, if K is any compact set in the inte-
rior of the support of fo. and if f1 is any function in CO(V). there

is a function f GC:(V) so that

P f = Pa f for all j,

supp f < supp fo.

Proof; Let Q be a polynomial that vanishes on all n(aj)‘. The
theorem of Ehrenpreis-Malgrange on the existence of solutions to
constant coefficient partial differential egumuations guarantees the

existence of functions , and u, in C (V) so that

QD) = f k = 0,1,

k'

Choose p € C:(V) so that p = 1 in a neighborhood of K and o

vanishes ountside the support of f,. Now let

oo

vy = Q(D)(puk), k =0,1,
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The last two formulas show that v, = fk in a neighborhood of K,

k
and Ve T 0 outside the support of fo.
By (2.1) ’

Ares = k/2., Argr
(Pa.vk) (&) (2n) 7 "a(ik )(puk) (€)

= 0 for t' € n(aj)‘.

thus

Pa v, = 0 for X = 0,1 and all j.

Finally, define f = fo - + vy- Then £ = f1 in a neighborhood

of K, supp f & supp f() and Pajf = Pajfo for all j.

Remark: The theorem automatically applies if {al....aN} is a
finite set (take Q(E) = (§,§1><§.§2>..<§.§N>, where Ej € n(aj). éj #

0).
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V. INVERSION FORMULAS

1, Exact Inversion Formulas

Throughout this chapter, let C be the constant

1s¥71) 16, (W | 151 16 (w1
c = k = (@2nk k.

¢(n,k) Fand

Is%71

Ik_n 0 ¢k {(n, was defined in

t4

The Riesz kernel Rk = ¢(n,k) Ix

section (II1.4). The constant c(n,k) is chosen so that
A - -
R = o™,

where ﬁ; is the Fourier transform of Rk’ defined in section (IV.,2).
The operator A is defined by
we’ @ = gl T,
so that formally
/\k(Rk‘f) = Rk‘/\kf = f.
From (IV.2.1) it follows that formally

P = Aps,

This, together with (III,3.11), shows that

] ]
£ = cA@pe) = ¢ P'PAe = ¢ P AFPs.
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Here and in general the Fourier transform and the operator Aact

on each n()+, if f is a function defined on T.

Theorem (1.1)

(a) If f € Lg(V) and |§|-k?>€ LZ(V), then for almost every x €

v,
f(x) = € NE j D_f(a) da
6, (V)
= c N | P a,
6 (V)

A
(b) If f € Lg(V) and Iélk,zf € LZ(V), then for almost every x €

v,
f(x) = C j AP £(E ,x) dx.
a at
Gk(V)

-kA 2 . .

Remark: If k < n/2, the condition [l "f € L°(V) in (a) is
auntomatically satisfied.
Proof: (a) Both formulas are equivalent to
£ = ArR*D.

By (II.4.2), Rk‘f is defined almost everywhere. The second

condition guarantees that Rk*f is in Lz(V). and
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@@ = 1gl® 1™ T - ({37
so f = AF(Rk‘f) in LZ(V) and therefore almost everywhere.

(b) By (II.3.8),

N2t n, - | ke a
L™ (V)
A
= o [ ] P ifite a e ¢ -

Gk(V) n(a)+

A
s0 |§|kf € Lz(n(a)*) for almost every a € Gk(V). which means

AFPaf is well-defined for almost every a, and AFPf € LZ(T).
2
If g € LO(V). then

<Pg.)\"Pf> 2 = ((Pg)A. (/\ka)A) 5

L™(T) L7(T)

f f (Pag)A(E,) (e (&) dE da

[}

Gk(V) n(a)+

o o - ———

that

= (2mk j j' 2 lel*F@) dt da = _[3(:) ) ar

Gk(V) n(a)+ v

AN
= C@D, = C@b, .
L™(V) L7(V)

*®
This shows that AFPf is in the domain of P and that

*®
£ = ¢ P AfPs
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almost everywhere.l

The inversion formula for D is not quite satisfactory in this
form. In any practical application, the point x is located inside the
support of f, whereas Daf is measured for points a outside the sup-
port of f. It is desirable to rewrite the formula as an integration

over a set of points surrounding the object.

Lemma (1.2) Let A be a sphere of radius r around 0, x a point

not on A, and let g be non—-negative and measurable on Sn-l. Then

1
a-x -n '
I g(8) do = -;- I g(T;:;T) la-x|™" I<a,a-x>] da.

gn1 A

Proof: See Leahy/Smith/Solmon [7].X

Theorem (1,3) If f € Lg(Q) and A is a sphere of radius r sur-

rounding @, then for almost every x € Q,

le, (0|
£(x) = k A° [ o) I<aamol aa.
r ¢(n,k) iSn—ll A
Proof: By (II.3.3),
1
j D £f(a) da = ————-o j j D £(a) da dO
X k_l X
Is | n-1

Gk(V) S t'k(e)
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= ——— j j Dxf(a) da la=x|™® I<a,a-x>| da
r |Sk-1| A [ (3%
k a-xT
1 -
2 ee——— I f Daf(a) da la-xI™ I<a,a-x>| da
r ISk-ll A [ (3%
k a—xT
1 *
= me—e——— j DD f(x) |<a,a~x>| da.K
k-1 a a
r s | A
Special Case: For k = 1, D:Daf(x) =1/2 la=x|™ {Daf(a-xlla-xl)

+ Daf(-(a—x)/Ja—xl)} = la-x|™® Daf(a—xlla-xl). (1.3) reduces to for-
mula (3.11) in Leahy/Smith/Solmon [7]:
1 k | -n
f(x) = -——————- A\ I Daf(T;:iT) la=x|™" I<a,a=x>| da.

r ¢(n,l)
A

2, Approximate Inversion Formulas

In practice, none of the formulas presented in the preceding
section is suitable for numerical inversion of D or P, because of the
presence of A. The usual way to resolve this problem is to seek a
reconstruction of e*f instead of f, where e is an approximate b5~

function.
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kA
Also, unless the integral of f is zero, le ] kf is not square-
integrable at & = 0 for k > n/2, so it is not obvious how to inter—

pret formula (1.1)(a) in this case.
Lenms (2.1) If e, £ €L2(W, 1&1¥ € L2(V), then
A}(e*f) = AFe'f.
Proof: ((een)] (&) = 121F (e*)(2)
= en™? 121k 2 f©

n/2

N
= 2o™? (Ko@) T2) = (KEe*n) (o).

Lemma (2.2) If e, £ € Lg(V). then
P (e*f) = P e*P f.
a a a

Proof: Pa(e*f)(x") = I e*f(x’''+x') dx’

n(a)

I I e(y) f(x''+x'~y) dy dx’

n(a) V

= I I I e(y’'+y') f(x'’'+x'~y'’'-y’) dy' dy'’' dx'

n(a) n(a)* n(a)

= j j e(y''+y’) I f(x''+x'~y'’'~y') dx’ dy’ dy'’

n(a)+ n(a) n(a)
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= I I e(y’’'+y’) j f(x''+x'-y'’) dx' dy’ dy’’
n(a)-' n(a) n(a)
= J‘ I e(y' 0+y0) Paf(x' r__yl 0) dy' dy"

n(a)+ =n(a)

= ’ [y e = - '
I Pae(y' ) Paf(x' y'') dy Pae Paf(x ) K

n(a)+

Theorem (2.3) If e, f € Lg(V). |§|kl23 € Lz(V). then for almost

every x € V,
e*f(x) = I k‘Paf(EaLx) dx,
Gk(V)
where
£k = c AP e.
a
Proof: By (1.1)(b), (2.1) and (2.2),

e*f = C P AP(esf) = ¢ P AE(Perps)
= ¢ P'(APespf) = P (x*Pf).N

Lemma (2,4) If f, g are non-negative and measurable with support
in the ball of radius r around 0, and A is the sphere of radius r

around 0, then for almost every a € Gk(V).
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I P f(a'’) g(a’’) da'’
a
n(a)t
1

= I D _f(a) g(E ,a) (1 - |Ea‘a
n-k+1 k-1
T Is™ |

|2)(2-k)/2 da

A
Proof: Immediate from (III.1.,1) and (III.3.1).H

For g(a) = k(Ea‘x - a) this yields

Theorem (2.5) If o, £ € Lg(m. 1£1%/22 ¢ L2(V), then for almost
every x € Q
e*f(x)
1 2, (2-k)/2
- [ [o,tt@ xE (-2 a-lE a1 da da,
LAk gkl a

Gk(V) A

where k is the same function as in (2.3).



1]

{21

[31

(4]

(51

(6]

(7]

(8]

(91

[10]

f11]

[12]

[13]

[14]

[15]

59

BIBLIOGRAPHY

N. Aronszajn, K. T. Smith, Functional Spaces and Functional
Completion, Univ. of Kansas, Dept. of Mathematics, Technical

.Report 10, 1954,

M. Christ, Estimates for the k-plane Transform, Indiana Univer-
sity Math. Journal, vol. 33, no. 6 (1984), 891-910.

W. Greub, Multilinear Algebra, 2nd ed., Springer 1978.

C. Hamaker, K. T. Smith, D. C. Solmon, S. L. Wagner, The Diver—
gent Beam X-Ray Transform, Rocky Mtn. Journal of Math. 10
(1980), 253-283,

S. Helgason, The Radon Transform, Birkhauser 1980.

G. T. Herman, Image Reconstruction from Projections, Academic
Press, 1980.

J. V. Leahy, K. T. Smith and D. C. Solmon, Uniqueness, Non-
uniqueness and Inversion in the X-Ray and Radon Problems, Inter—
nat. Symposium on Ill-posed Problems, Univ. of Delaware, Newark,
DE, 1979.

D. M. Oberlin and E. M, Stein, Mapping Properties of the Radon
Transform, Indiana University Journal, vol. 31, no. 5(1982),
641-650.

J. Radon, Uber die Bestimmung von Funktionen durch ihre Inte-
gralwerte langs gewisser Mannigfaltigkeiten, Ber. Verb. Sachs.
Akad, Wiss., Leipzig, Math.-Nat. K1. 69 (1917), 262-277.

R. T. Seeley, Spherical Harmonics, Am. Math. Monthly 73(1966) #4
part II, 115-121,

K. T. Smith and F. Keinert, Mathematical Foundations of Computed
Tomography, to appear.

K. T. Smith and D. C. Solmon, Lower-dimensional Integrability of
L°~functions, JMAA 51(1975), 539-549,

K. T. Smith, D. C. Solmon, S. L. Wagner, Practical and Mathema-
tical Aspects of the Problem of Reconstructing Objects from
Radiographs, Bull. Am. Math. Soc., vol. 83 #6 (1977), 1227-1270.
D. C. Solmon, The X-Ray Transform, JMAA 56(1976), 61-83.

D. C. Solmon, A Note on k-plane Integral Transforms, JMAA
71(1979), 351-358.



60

fi16] R, S, Strichartz, LP-Estimates for Radon Transforms in Euclidean
and Non-Enclidean Spaces, Duke Math. Journal, vol. 48 No. 4 (Dec
1981), 699-727.

{17} H, Whitney, Geometric Integration Theory, Princeton University
Press, 1957.





