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CONCENTRATION DISTRIBUTIONS OF NON-BUOYANT,

WEAKLY BUOYANT AND BUOYANT EFFLUENTS

FROM A CONTIt3OUS POINT SOURCE WITHIN

A CONVECTIVELY MIXED LAYER

1. INTRODUCTION

Effluent concentration values are typically measured in

the atmosphere at receptors placed at various distances

downwind from a stack emitting a plume. Measurements are

taken at 5 10 mm intervals, for example CAMP (Continuous

Air Monitoring Program) data used by Knox and Pollack (1974),

for a typical averaging time period of 30 60 mm. When

these concentration values are plotted on a diagram of time

versus concentration, it is generally found that significant

concentrations may occur for only a fraction of the time, and

that they show extreme fluctuations above the mean value.

Due to the probabilistic nature of pollutant concentration,

the observed distribution of concentration is described by a

sample probability density function which gives the relative

frequencies of concentration values over finite intervals of

the sample space. If the true probability distribution or

density function of the concentration can be determined, then

by using this function the probability of occurrence of a

particular concentration or the probability of occurrences of
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some concentration values which are less or greater than some

specific value may be determined. Then the degree of

emission control required to meet air quality standards may

be estimated. For example, after air pollution controls are

introduced, it will be desirable to determine their

effectiveness. In order to make a decision on this, one can

use standard statistical procedures if the frequency

distribution of concentrations is known. Thus, estimating a

particular concentration which is expected to occur for a

particular time in a certain time period, for example 0.03

ppm concentration for 8-hr duration samples once a year, can

guide environmental control officials to take the necessary

measures to decrease the hazardous effect of pollutants. In

addition, sampling for pollution monitoring can be most

effectively designed if the statistical properties of the

temporal distribution of air
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2. PREVIOUS STUDIES ON THE CONCENTRATION

DISTRIBUTION OF POLLUTANTS

Ott and Mage (1976) treated the diffusion equation as a

stochastic differential equation by assuming that the

concentration of pollutant C entering from a source with

the volume is much greater than the concentration of

pollutant C. Then the diffusion equation is written for a

pollutant carrier medium

where

- + vc = U
at

(8.1)

r ac ac 2V-K+--Iu+v+w--DVC
1 c L ax ay az

]

(8.2)

U K1C + K2C - K3 (8.3)

Here K1 is the homogeneous chemical reaction rate

coefficient, K2 dilution coefficient, K3 zeroth order

heterogeneous chemical rate coefficient, D isotropic

diffusion coefficient, Cs initial concentration of pollutant

emitted by source within the volume, C' concentration of

pollutant if in chemical equilibrium with all other species

present. K1, K2, K3, C5, C', D, u, v, w are all treated as

random variables independent of C. Then by assuming U and V

as independent random variables arising from unknown

distributions with finite variance, Ott and Mage approximated
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the diffusion equation as a discrete time series and focused

on the case where U and V are linearly related as U=KV

with r(p,,/=+1, the correlation coefficient between U and V.

By simplifying the diffusion equation in this way and taking

its logarithm, they obtained

log(C1 - K) = log(C1 K) + log(1 V, t) (8.4)

and by making use of the central limit theorem the

3-parameter log-normal distribution is given in the form

2

1 1 lIln(C-K)
exp

[ [ ] ]
C>K (8.5)f(C) =

where K is the third parameter whose magnitude is determined

by a graphical trial-and-error process in plotting the data

values on a logarithmic-paper. They applied the 3-parameter

log-normal to 10 air quality data sets of SO2, 03, CO,

particulate, hydrocarbons and NO2 from the U.S.A., France,

West Germany and Denmark and to 9 water quality data sets of

BOD (Biochemical Oxygen Demand), coliform, chloride and

sulfate from the Ohio River. In application of curve fitting

to the observed data, the zero concentration values are seen

as the area under the density curve which corresponds to the

intermittent nature of the concentration. This portion of

the curve, to the left of the origin, is separated and

represented by a discrete probability value. In their model,

the successive instantaneous concentrations are serially
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correlated. Thus the time averages of the instantaneous

concentrations are constrained to keep their log-normal

characteristics if the averaging times are short, for example

1 hr to 8 hr.

Ott and Mage showed that the 3-parameter log-normal was

a better fit than the 2-parameter log-normal. Since the plot

of the data values on logarithmic-paper in a cumulative sense

for the log-normal distribution is seen as a straight line,

the third parameter K was adjusted to satisfy this condition.

The 2-parameter log-normal distribution, while being the same

as the 3-parameter log-normal distribution but without K,

showed a downward curvature on the logarithmic paper. The

error for the 3-parameter log-normal distribution was also

found to be significantly lower than for the 2-parameter

log-normal for the 19 air and water quality data sets they

examined.

Larsen (1969) applied his mathematical model to air

pollutant concentration data of CO, hydrocarbons, nitric

oxide, nitrogen oxides (NO, NO2), oxidant and sulphur dioxide

in 6 U.S. states for 3 years from December-1961 to

December-1964. He concludes from the observations that the

air pollutant concentration follows a log-normal distribution

for all pollutants in urban areas for a sample duration time

of an hour and for all averaging times over which all samples

were collected from 5 minutes to a year. The maximum

concentration is found to be inversely proportional to the



averaging time raised to an exponent which is a function of

the standard geometric deviation.

Cats and Hoitsiag (1979) sought the dependence of air

pollution frequency distribution on wind direction in the

Netherlands by using sulphur dioxide data sets from 1971 to

1974 at three stations. They divided the data sets consisting

of hourly observations into a total of 18 subsets according

to wind direction within a 2O0sector. They pointed out that

the concentration was mainly determined by wind direction and

assumed that the other factors such as wind speed and

emission statistics would lead to similar concentration

frequency distributions within each wind direction subset.

The frequency distribution followed the log-normal at urban

areas. The log-normal fitted the overall 98 percentiles of

the observed data by deviating at most 15 % from the observed

98 percentiles. They emphasized that the data sets used in

this study involved background pollution since it was

collected in urban areas.

Lynn (1974) used the suspended particulate data

collected in Philadelphia at three stations from 1960 to

1968. He tested the 2-parameter and 3-parameter log-normal,

gamma and Pearson curves to represent the observed data by

using the method of moments and its four parameters: mean,

standard deviation, skewness and kurtosis. As a comparison

criterion between the observed and the expected frequencies,

the sum of the absolute differences was used. He showed,
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based on the data he tested and on the fitting procedure,

that the 2-parameter log-normal does slightly better than all

the others do, even though in some instances all four of them

almost equally represent the data and some even do better

than the log-normal. As a reason for the 2-parameter

log-normal to fit the data better than the others, he gave

the insensitivity of the 2-parameter log-normal to especially

extreme values of concentration.

Shoji and Tsukatani (1973) showed that a log-normal

distribution usually approximates the random variation of air

pollutant concentration based on the record of SO2

concentration in the atmosphere and of the tracer

(fluorescent pigments) concentration for 30 mm to 1 h

release time in diffusion experiments. They tried to

establish some air quality standards for SO2 in Japan and

showed the reason for the mechanism of the occurrence of the

log-normal distribution by giving the hypotheses which were

introduced by Chow in 1955 and Kolmogorov in 1941. Chow

showed that when the variate is composed of the

multiplication of many factors which are independent, the

variate has a log-normal distribution. Kolmogorov also

proved that the log-normal distribution applies in the case

of particles which undergo splitting. Shoji and Tsukatani

used the geometric mean in the log-normal probability density



function of s-hour averaged time series of X(t),

-2
1 (xx)

3(x) = exp
2

(9.1)
2a (s)

where

S

(s,t) = I
x(t+u) du

sJ
0

(9.2)

is the geometric standard deviation. X(t) is the logarithmic

value of C(t); C(t) is the air pollutant concentration at

time t.

Knox and Lange (1974) presented their work on the

surface air pollutant concentration frequency distribution

for area sources and continuous point sources. They

particularly limited their attention to the most inert

pollutant CO and gave the relationship between the

concentration of pollutants emitted into a steady-state

unidirectional flow and wind speed for a continuous urban

area source by

ln(C/Q)=lnK1-lnU (10.1)

and for a continuous point source by

ln(C/Q)=lnK2-ln( aae U) (10.2)

where

C:average concentration 1<1,1<2 :proportionality constants

Q:source strength alater standard deviation

U:mean wind speed e:vertical



They showed that in either case a log-normal

distribution provided a reasonable fit over most of the

frequency range with an implication of a bigger geometric

standard deviation (1.9 ppm) in the urban area case than that

(5.0 ppm) in the continuous point source case. The

log-normal distribution, in this case, is associated with the

reciprocal of the wind speed.

Bencala and Seinfeld (1976) tried to understand the

observation that the frequency distributions tend to be

log-normal regardless of averaging time changing from 10 mm

to a year for the reading of concentrations at every 5 mm

interval. They used the data of CAMP (Continuous Air

Monitoring Program) for the years 1962-1968 and restricted

their attention to carbon monoxide. An unweighted least

squares criterion was selected for determining the parameters

in the distributions which best fit the data. The

2-parameter and 3-parameter log-normal, Weibull and gamma

distributions were tested. The 3-parameter log-normal was

found to be superior to the 2-parameter log-normal by least

squares approximation to the observed data. However, the

2-parameter was emphasized as a useful distribution both for

describing data and for establishing an understanding of air

pollutant statistics. They gave two major factors, wind

speed and mixing heights, as influencing factors for air

pollutant frequency distributions. With the easy use of the
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2-parameter log-normal distribution it was shown that the

mean and variance could easily be determined from a log

probability plot of the data even though the Weibull and

gamma distributions represented the data better than the

log-normal. They presented an important relation between the

standard geometric deviations and two averaging times, Ta and

Tb, over a total period of time, T, over which data are

available (usually a year) by

1/2

Ti
[ln(__)

I

V
a = a ; v=I (11)
b a TI[ln

I

aJ

This relationship was explained as a consequence of the near

log-normality for short averaging times.

Berger, Melice and Demuth (1982) used the data of 24 hr

averaged SO2 concentrations recorded between January 1977 and

March 1979 at 12 stations in Belgium. They were specifically

interested in finding the distribution function which fits

the extreme values and pointed out that the log-normal

distribution did not represent the extreme values. The

log-normal distribution overestimated the extreme

observations while the 2-parameter exponential distribution

fitted very well. The probability distribution of extreme

values being of initially exponential type, the series of

exceedances which are distinguished as large values selected

over the 95th percentile by assuming the set of independent



values are well fitted by the 2-parameter (p,$) exponential

distribution which is of the form

where

F (x) =1-exp [- (x-J.L) Is]

- oo<x<oo p.=ø-s.ln(k)

: location parameter

s: scale parameter

k: average number of exceedences

Since the gamma distribution is a generalization of the

(12)

11

2-parameter exponential law, they used it to represent the

whole sample of concentration data in the form

(x

1 -1 L3
f(x) = x e (13.1)

F(a)

and

F(a)
S

= x e dx (13.2)

0

which is the gamma function of a.

a shape parameter

J3 : scale parameter

The gamma distribution provided a good fit for all stations

and was accepted by a test based on the median and the

largest value at the 0.2 significance level at 6 stations, at

0.05 significance level at 2 stations, at 0.01 significance

level at 2 other stations while the fit was rejected at 2

stations.
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Wilson and Sirnrns (1985) tried to represent a reliable

and easy-to-use prediction method for estimating ground level

mean and peak concentrations. They tested the exponential,

the log-normal and the gamma distribution functions to

represent the actual distribution of concentration based on

the data, sets of the atmosphere and in a wind tunnel. They

found that the gamma distribution function for the fraction

of time of exceedence was a better choice than the log-normal

or exponential distributions since they saw that both the

log-normal and the exponential distributions were less

accurate at low concentrations than the gamma distribution.

According to their results, an initially gaussian

distribution function is rapidly skewed with increasing time

until meandering produces an exponential frequency of

occurrence. The exponential distribution function is another

form of the gamma distribution function when a=J. in equation

(13.1) and (13.2) . Here, the word "conditional" is used to

explain the data set which includes only non-zero

concentration values.

Fackrell and Robins (1982a) made a series of

experiments on concentration measurements in an open circuit

wind tunnel by using the flame ionization detector system.

They emphasized the distinction between a ground-level and an

elevated source in terms of scale arguments of plume and

turbulence. For a ground level source and rather far

downstream on the center line near to the ground, the
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distribution was found to be approximately gaussian. With

increasing height the distribution took the approximate form

of an exponential distribution

P(c)=A exp(-Bc) (14.1)

At small downstream distances with increasing height the

exponential form was seen, but a power law

P(c)=a c(-13) (14.2)

was a better fit to the observed distribution. For ground

level sources near the source the distribution was

approximately gaussian at low heights and exponential at

higher elevations. Farther downstream a gaussian form was

most likely near the ground.
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The Deardorf f-Willis boundary-layer tank (figure 1) has

been extensively used in diffusion experiments to produce

concentration data and in attempts to explain the nature of

the planetary boundary layer in terms of its variables such

as mixed layer height. There have been many studies on

diffusion performed by J.W.Deardorff and G.E.Willis since

1974, see Deardorff and Willis (1987) and references therein.

The convective planetary boundary-layer tank is 124 cm

in width and 124 cm in length. A stack 3.1 cm in height was

held 1.05 cm above the bottom centerline of the tank on a

horizontal axis. The stack was connected to a pump by a

narrow pipe (the axis) through which effluent could pass.

Although a water-ethanol mixture, colored by a blue or yellow

dye can be used as effluent, in our experiments a fluorescent

dye was used. It is transparent unless illuminated by a

blue-green (laser) light, in which case the dye fluoresces

with a green-yellow color within the plane of the light.

The effluent is steadily pumped out from the stack

while traversing the stack across the bottom of the tank in

the x direction (see figure 1) along the centerline, at a

constant speed U, in order to simulate a uniform mean wind in

the boundary layer. It should be noted that this mean wind
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field is rather like a real one which occurs in a sunny

daytime boundary layer since the wind shear then occurs only

in a very shallow layer adjacent to the ground. In both

cases, the turbulence is mainly generated by buoyant

convection and the condition of h >> - L is met, L is the

Monin-Obukhov length and h is the boundary layer height.

This condition requires the dominance of the buoyant

convection over wind shear, (Deardorff and Willis, 1985)

The tank is filled up to 40 cm with filtered, degassed

water, initially at 20°C in the lower 20 cm and increasing to

32.5°C above. This is done to create a nearly constant

stratification of 0.63°C/cm above 19 cm. This layer is

analogous to an inversion layer in the atmosphere. Then the

convection is started by applying a large heat source to the

bottom of the tank. After a few minutes to allow for the

convection to fully fill the lower layer of the tank, the

effluent is released. A high intensity planar-spread beam of

laser light with a width of 0.01 h is directed downwards from

above the tank. In this way, a thin-sliced cross section of

the plume can be illuminated by the laser beam. While the

stack is being traversed, the front view photographs of the

illuminated y-z plane at the center of the tank are taken at

5 seconds intervals by a camera centered at a height of 19

cm. The travel time or effluent release time in the model

tank, t, is converted to a downstream space coordinate



by using Taylor's hypothesis, that is

t=x/U (1)
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where x is the downstream coordinate and U the mean wind

speed (in the model tank U is the stack-towing speed). The

time t is made dimensionless (Deardorff and Willis, 1987) by

the eddy-diffusion time scale. Thus equation (1) becomes

[i r
1 ri

= I_I t = I-Lj
[hj [uJ

(2)

where w is the convection velocity scale, h the mixed layer

height and X the dimensionless downstream coordinate.

The front view photographs (transparencies) of the tank

are analyzed by projecting the plume image on a screen which

is equipped with a traversing densitometer. The distance

between each step of densitometer in y and z coordinates is

about 0.04 h. A circular aperture with a radius of 0.007 h

on the densitometer collects the light-rays passing through

the transparency negative in different intensities

corresponding to different amount of concentrations. Thus

the sampling volume has a cylindrical shape with a radius of

0.007 h and a length of 0.01 h. An equivalent sampling

volume in the atmosphere would be a volume with 7 m radius

and 10 m length for a typical mixed layer height of 1000 m.

From another point of view, the instrument collects air

samples in a volume having dimensions as stated above, which

is fairly large for sampling concentrations of the

atmosphere. While the photographs are taken, the stack is
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translated along x, giving the concentration measurements at

different distances away from the stack. The concentration,

c, is made dimensionless by using the mixed layer height, h,

and the mean wind, U, by

2

cUh

S

(3)

where S is the effluent source strength (mass emitted per

unit time)

The stack buoyancy parameter F* is defined as

2

wr
F

g(p0-p)
(4)

* 2

pwUh

Here w5 is the plume exit velocity, r5 the radius of the

stack, g the acceleration due to gravity, p0 ambient air

density, p5 plume density. For values of F which exceed

about 0.02, the plume buoyancy effect becomes noticeable.

The stack radius was 1 mitt for the F=O.O3 case and 2 mm for

the other three buoyancy cases. The values of F used in

this study are 0.0 (non-buoyant), 0.03 (weakly buoyant), 0.11

(buoyant) and 0.26 (highly buoyant) . Each incremental

analysis volume will be named by index I along both sides

of the y-direction from the plume centerline at the bottom of

the tank and by index J in the z-direction of the boundary

layer.



The index I is defined by making use of the lateral

standard deviation

y

I.
2

j
C y dy

c dy

/2

(5)

where c is the effluent concentration. By doing so, we take

the concentration values into ±3y limits with 6 equal

segments in the y-direction on either side of the plume

centerline, figure 1. For example, Il includes the area

O<y<+l/2 to the right of the centerline and the area

-1/2<y<O to the left of the centerline viewing the boundary

layer tank from the front. Similarly, the height of the

boundary layer is divided into six equal segments of 0.2 h

starting from the bottom of the boundary layer, which is the

layer J=l, to 1.2 h . The last section of the boundary layer

in the z-direction is considered to cover any particulates

which undergo overshooting above the mixed layer height.

Since the data which were obtained in the volumes 1=1 and 2

and J=1 and 2 did not show a systematic difference, these

data sets were averaged and used in the graphics. The data

were transformed by applying the expression

C (Transformed) = N + ln(C-N+1) ( C>N ) (6)

to the higher concentration values, where C is the

dimensionless concentration; N was set to be between 10 and
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20. The average intensity plus two standard deviations of

noisy small concentrations, measured in regions where no

effluent existed, was also removed from the whole

concentration field. The data were recalibrated by

multiplying the resulting C values by a constant for each y-z

cross section in order to, ensure an approximate conservation

of plume mass, as explicitly explained in Deardorff and

Willis (1987) . The resulting concentration values are

plotted on histograms relative to their frequency of

occurrences by satisfying

17

p1(C) = 1 ; C = inC (7)

1=1

Here, the threshold level is C=0.01 and C stands for

the concentration values above this threshold concentration

level. In order to be consistent with the expressions of

Deardorff and Willis (1987) and Wilson (1982), C will be

used instead of C to distinguish the non-zero and zero

concentrations. Then distribution functions such as the

gamma distribution were applied to the histograms to fit the

experimental data.
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By using the mean (C)

C $ c p(C) dC (15)

the variance ( C
p

2 -
2 2 2 12

C =C (C) C = I
C p(C) dC (16)

pp p p p p p

0

and the fact that the area under the probability density

curve equals 1

$p(C)dC=1 (17)

the gamma probability density function becomes

1
(rn+1)-1

Id I-

(m+1)
I i L pi- e (18)

Cmf(m) L'
p

where

(C

m = 1 (19)

C
p

and

F(m) = f e dC (20)
., p p

0
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which is the gamma function of m.

This procedure, the presentation of concentration

distribution with the gamma distribution, was earlier

utilized by Wilson and Simms (1985) . The curves are sketched

on a logarithmic scale by making a conversion from versus

scales to "lnC versus P(lnC)" scales by

rc1
p

p(lnC ) = C p(C ) ; = 0.4605 (21)

Jp C p p c

Figures 2(a-g), 3(a-f), 4(a-e) and 5(a-f) show the gamma

probability density curves for cases with nondimensional

buoyancy parameter, F, of 0.0, 0.03, 0.116 and 0.26 at

different X distances for 1=1,2 and J=1,2 locations within a

mixed-layer plume.

The gamma probability distribution shows a very good

fit to the experimental data for the non-buoyant effluent

case, figures 2 (a-g) . This fit will be confirmed later by

chi-square and mean-square-error evaluations for the

non-buoyant case. However, for the other buoyancy cases

examined here, F*0.03, 0.116 and 0.26, the chi-square

goodness of fit test and the mean-square-error give different

values as explicitly explained in section 9. The reason for

the good fit of the gamma distribution in the non-buoyant

case might be explained by the fact that such histograms do

not show sharp peaks as the plume is rapidly diluted and

entrained into the clear air by small eddies near the ground

shortly after it is released from the stack. At small X
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(X<l) the plume maximum, however, is lifted to a height of

Z<O.7 by the effect of the largest eddies and in our case by

the initial vertical momentum of the effluent. Convection

carries the upper portion of the plume up to the mixed layer

height and a little overshooting takes place depending on the

stability of the inversion layer. Since the plume is not

buoyant, the environmental convection is dominant throughout

the entire boundary layer except at small X, where the

effects of the effluent's strong initial momentum were

evident. The histograms, for this reason, don't have sharp

peaks although the effluent, bounded in vertical mixing,

evolves towards a uniform (though decreasing) value of

concentration near y=O as X increases.

As the concentration uniformly decreases through

dilution with increasing X, both tails of the distribution

shorten. The gamma distribution underestimates the peak

values, but not much, while it almost perfectly fits the low

and high concentration values. Another apparent feature of

the gamma distribution is that it produces the peak value at

a reasonable value of concentration. For example, the peak

value is around the concentration value of 1 (lnC=O) in the

0.0 and 0.03 buoyancy cases, figures 2(a-g) and 3(a-f) . The

peak values of the experimental data, on the other hand, show

a shift back and forth from the suggested peak of the gamma

distribution without showing a very systematic variation with

distance, figures 4 (a-e) and 5 (a-f) . For the weakly buoyant
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case, F=O.O3, the peaks get more distinguishable and sharper

with increasing X. At the same time the tails get shorter by

having small frequency values at the lower and higher

concentration values. In this case, the gamma distribution

shows a great amount of underestimation for the peak values.

On the other hand, it fits the lower and higher

concentrations rather well, especially the lower ones.

In all cases made up of a large numbers of samples, the

gamma distribution using the combinations of I's and J's

showed a smooth increase before and after the peak although

it consistently underestimated the peaks. Wilson, by using

the wind tunnel data of Fackrell-Robins (1982), tested the

gamma distribution and showed that it did not fit the peak

values. He suggested this to be a scaling error. However,

there is also an unexplained shift in the peak. Since his

gamma distribution in concentration doesn't well represent

the peak and the peak value can be as high as the mean, or

even higher, it is not a good estimate for much of the

concentration values even though it is a surprisingly good

fit to the low concentrations. Section 9 discusses the fit of

the gamma distribution by using some statistical significance

tests such as the chi-square goodness of fit test. In that

section, the distribution functions examined in this study

are compared with the experimental data on the basis of the

results of the test statistics.
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When concentration values are plotted on a C versus

diagram rather than lnC versus P(lnC) ",

histograms suggest an exponential distribution. It is

another form of the gamma distribution, equation (18), when

2-2
(C ) = C and hence m=O

p p

C
= - exp(- -)

C C
p p

(22)

The exponential distribution is expected to deal with

intermittent cases more adequately and is also shown to be

most likely in cases where the plume more or less randomly

passes over a monitor, for example due to meandering (Hanna,

1985) . These conditions occur especially at small X where

there is less time for the eddies due to convection to dilute

the plume rapidly into the mixed layer. Thus the plume can

show meandering, and small intermittency may be most likely

compared to larger distances where the convective turbulence

overcomes the plume buoyancy effect. Figures 6(a-d) show the

exponential distribution at small X and figures 7(a-d) show

it at large X for all four buoyancy cases. Inside windows in

each figure are drawn to allow a better comparison between

expected probability and experimental probability using the

measured C at low frequencies. The probability values are

plotted on the graphs by using the conversion formula
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p(C ) = ; n=l,2,. . .,17 (23)PV C (n+l) -c (n)
p p

As is seen, the exponential distribution function

estimates the high concentration values well but not the low

ones. In fact the exponential distribution lies well below

the experimental data at low concentrations. This feature

states that the intensity of the plume

C
p (24)

P -2
(Cr)

is projected to be lower according to equation (22) while the

experimental data suggest the opposite at low concentrations.

In some situations, we may want to know the probability of

being exposed to some gases or toxic materials without

crossing some low concentration threshold level. The

exponential distribution function is weak in answering this

problem.



The log-normal is the first distribution which was used

to fit the observed data. It is in the form of

21
(inC - inC ) I

1 p p
p (lnC)

c a1

ex[_
2 I

(25)
2

where lnC is the mean of the log-concentrations and lnCp

is the log-standard deviation.

In the earlier studies already reviewed, the log-normal

was found to be the most accurate among some other functions

such as gamma or beta in wind tunnel experiments. The

observation that concentration distributions for all

averaging times are approximately log-normal can be explained

if the short averaging time data are themselves assumed to be

log-normally distributed, Bencala and Seinfeld (1976) . If

the log-normal distribution applies to the concentration

distribution of pollutants in the atmosphere, in general, we

might expect to see a probability density curve having equal

(or at least tending to have equal) areas under its two tails

with X for all effluent buoyancy cases on the measured

frequencies of pollutants obtained by using the model tank.

However, the probability density curves are skewed for all

four different buoyancy cases at every X examined here,

figures 8 (a-d) . Therefore, a simple log-normal distribution

will not be considered a suitable function for the
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concentration distribution of pollutants in the " unstable"

planetary boundary layer and for short sampling times (5 - 10

mm).



In the light of the studies which have been discussed

on the air pollution concentration distribution, it is

clearly seen that none of the distribution functions fit

sufficiently well to the experimental or observed data,

except for the gamma distribution for F=O. The log-normal

distribution is not the one which can be used to represent

the concentration distribution since the distribution doesn't

appear to follow log-normal distribution as examined in the

previous section. The gamma cannot determine the average and

peak concentrations accurately. Lynn (1974) also tested the

Pearson curves which are different combinations of skewness

and kurtosis. That is, for different values of the skewness

and the kurtosis, the probability density curves take

different shapes. Lynn couldn't find a distribution function

among the functions he tested to fit the overall data.

Deardorff suggested using the log-normal in a modified

form and giving it a slightly different name: " double-

log-normal ". This function applies the normal density or

Gaussian curve separately to each side of the distribution

curve and taking the peak value as origin, hence ensuring

that the most probable concentration or mode will be well

estimated.
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Again, the area under the probability density curve must

be 1:

p(lnC) = 1 (26)

By multiplying both sides of equation (26) with we

obtain

11 Ic
p (lnC ) -PC C

i=1 P P

(27)

When equation (27) is written in continuous form, then

or

S p(lnC )d(lnC ) = (lnC ) = (28)
P P P

1 t

J
p(C)dC = 1 (29)

Co

LC
where i is in our case 0.4605, which is the interval width

C
P

of the two subsequent log-concentrations. Here the function

p(C) is the double-log-normal probability density function.



The double-log-normal probability density function is

defined as
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(30)

where C*=lnC, is the log-concentration, C*m is the value of

the log-concentration at which the mode occurs. P(C*m) is the

frequency of the mode and CLeft and aRight are the standard

deviations for the left and right side of the curve,

respectively.

The standard deviations are found by evaluating the

normal distribution function for each left and right area

from the mode under the density curve. The normal

distribution function is

(t-w)2

f 2 1 x-m
I e dt = 1 erf( )

(31)
2

with mean m and variance .
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To perform the integration let the variables in equation

(31) be as below:

x = m = (inC ) = C
p m *

Left
( and

Right
in case of 5 ) (32)

t = inC = C
p *

By making necessary notational changes with the equalities

(32) in equation (31) for the left side of the curve, we find

that

where

2

(C - C

In

in

1

-C*
in

4
e

2a

dC = 1 + erf(

L'

(33)

z

2 r 2

erf(z) = T J e dt (34)

which is the error function of z:

z
X - m

(35)

The multiplication of both sides of equation (33) with

P(C

*

gives

(36)
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(C - C.

m

P(C)
5 e dC =

00

P (Ce)

2C *

(37)
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However, the left hand side of equation (37) is CSLeft since

the error function is zero in our case due to x=m=C*m By

evaluating the indefinite integral, we obtain the standard

deviation for the left side of the density curve as

CSL

= 0.3674
P(C*m)

(38)

Similarly, we find the standard deviation for the right side

of the density curve:

CSR

= 0.3674 P(C) (39)

where, CSLeft and CSRight are the areas under the

probability density curve for the left and right side of the

density curve from the peak, respectively. Figures 2, 3, 4

and 5 show the plots of the double-log-normal probability

density curves for F=0, 0.03, 0.11 and 0.26, respectively.

The mean can be calculated as

(Ct), P(C) (40)

or by using the mean which involves the parameters CSLeft

and CSRight
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or

where

C = Cs ( C C ) + C
Rp L L R

C = Cs ( CR CL ) + CL

C.

=ic* p(C)dC.

(41)

arid (42)

C p(C.)dC

are the means for the left and right side of the curve,

respectively.

To obtain the probability values of pollutant

concentration by using the double-log-normal probability

density function, one needs to know the frequency of

occurrence of the peak value (mode) and the area under the

density curve corresponding to the sum of the frequencies

less and greater than the peak for that particular x,

buoyancy and the intermittency situation. Then the expected

probability value of a particular concentration can be

calculated by equation (30) or the expected probability value

which is less than or equal to a particular concentration,

say x, can be calculated by

F( C x ) =[ p(C)dC (43)



34

The last information needed to obtain a complete form of the

double-log-normal probability distribution function is the

intermittency value which is examined in the next section.
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The data of experiments conducted in the boundary layer

tank do not include concentration values which are smaller

than C=O.O1. The probability density functions examined

here must be also true for intermittent plume cases. There

is the fact that a receptor receives not only non-zero values

of pollutant concentration, it also receives zero values or

undetectably small values which are assigned as zero values

because the measurement system cannot tell the difference.

In order to determine the true probabilistic nature of the

concentration distribution, the intermittency factor must be

included in the probability density functions.

Wilson (1982) gave a nice discussion of the

intermittency factor and included it in the probability

density functions he described. He distinguished the

conditional mean (C ) and variance (C ) as the values which are
p p

calculated by using only non-zero values of concentration.

By knowing the fact that the fluctuation part C' including

zero values is calculated with

C=C- (44)

and C' excluding zero values is calculated with

/

C = C C (45)
p p p

where C represents the actual concentration field including

zero values and C, excluding zero values.



When the plume is carried to a receptor for a fraction

of the time, 7, the mean is

= 7C + (1-y).0

and the variance

2
1 2 2

C = 7 (C C) + (1-7) (-C)

From these

2 I 2

C 111-7-2
C = C = I (C) Cp7 p IL?

where C and C are the conditional mean and variance
p p

(46)

(47)

(48)

calculated by using only non-zero concentration values. C

and C must be replaced by their equivalent values in the

gamma probability .density function, equation (18), to fully

represent the distributive nature of pollutants. In equation

(30) we used Y2 and
2

rather than C' , so that these
Left Right p

two variances must be replaced with their equivalences or the

computation of the frequencies falling into each

concentration category must be recalculated by considering

both zero and non-zero concentrations.

The plume is preseiit over a receptor with non-zero

concentration for a fraction of the time, y, and the

concentration is zero for 1-7 time. For the time at which

zero concentration occurs, the probability density fuction is

a Dirac delta function (Wilson, 1982) . For the time at which
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non-zero concentrations are observed, the probability density

function is in our case a double-log-normal density function.

By combining these two probabilities

= (1-?) 6(C) + y p(C) (49)

where the delta function has the property

(C) dC = 1 (50)

Equation (43) also needs to be replaced with the one that

includes the intermittency. By redefining the cumulative

distribution function, equation (43) is rewritten as

F(CT x) = (l-) + p(C) dC (51)
Rev

Then we can calculate the probability of observing a

concentration less than a particular concentration by

accounting for the intermittency factor. We also need to

know the calculation of the intermittency, but our goal is

not to predict this factor here (see Wilson, 1982)
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In this section, the fit of the distribution functions

reviewed here are examined by some statistical tests such as

the classical chi-square goodness of fit test. Some general

characteristics of the parameters of the distribution such as

its mean and standard deviation versus the distance from the

stack for each of the four buoyancy cases are also given. At

the same time, the distribution of the parameters of the

double-log-normal distribution such as its two standard

deviations versus the downwind distance are shown in figures

8-10, to help the understanding of the behavior of this

distribution along with the observed distribution before

presenting a general discussion of the fit for each

distribution function examined here.

In non-buoyant and weakly buoyant cases the mode shows

a tendency towards lower concentration as downwind distance X

increases, figures 8(a-d) . However, this tendency is not

very rapid. If the distribution were log-normal, the

skewness,

Skewness = -- (52)

where JJ.3 is the third moment about the mean and is the

cube of the standard deviation, would tend to zero. In fact,

it moves away from zero and the distribution tends to be more
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negatively skewed even though this departure from zero is not

big. The magnitude of the skewness changes between 0 and -1

for F=0 and 0.116 while this change is seen between -0.5 and

-2 for F=0.03 and between 0.5 and -0.1 for F=0.26 buoyancy

cases. As X increases, kurtosis which is in the form of

Kurtosis = 3 (53)

where J.L4 is the fourth moment and cY is the square of the

variance, increases as well. This shows that the the plume

is getting more dilute with time as is expected for a plume

in the mixed layer due to the convective turbulence. From

the double-log-normal probability density curves of the

concentration, figures 2-5, we observe a piling up of

relative frequencies around the mode while the tails of the

distribution get shorter. Thus the distribution acquires a

taller peak at the mode by decreasing its amount of flatness

and causes an increasing kurtosis. The increase in the

kurtosis is observed especially for the weakly buoyant case,

F=O.O3, as larger (from -0.5 to 4.5) than those in the other

buoyancy cases (from -1 to 1 for F=0, from -1 to -0.1 for

F=0.1l6 and from -1 to -0.2 for F=0.26 buoyancy cases) . As

a result, the distribution gets more negatively skewed while

its kurtosis gains more positiveness with X.

When we look at the mode of the distribution arid its

frequency values, figures 9(a-d), for non-buoyant and weakly

buoyant cases, the distribution seems to be tending to a



gaussian distribution by pulling its mode towards lower

concentrations. However, the skewness preserves its

negativeness for all buoyancy cases. The increases in the

peak relative to X for the F=O and F=0.O3 buoyancy cases

are bigger than those in buoyant cases since the plumes with

F=0 and 0.03 entrain faster, so that they get homogenized

faster. The buoyant plumes can carry themselves intact to

greater distances from the stack due to their higher

buoyancies without getting significantly entrained into the

clear air by large eddies. Therefore, the peak values are

probably not built up faster in buoyant plumes than those in

the less buoyant and non-buoyant plumes. The peak values are

almost constant for the 0.116 and 0.26 buoyancy cases. The

mode increases with X for two buoyant cases while it

decreases for weakly buoyant and non-buoyant cases. In

general, the plume is diluted towards a particular, well

mixed concentration value. If there were a particular

concentration value, the probability density curve would have

a sharp peak around that concentration without left and right

tails.

The left and right standard deviations of the

double-log normal, figures 10(a-d), show their expected

features of decrement with increasing downwind distance X.

The left standard deviation decreases with X more rapidly

than the right standard deviation does for all buoyancy cases

except for the most buoyant case, F=0.26. This situation
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refers to the fact that in approaching a particular mixing

concentration that value dominates over the concentrations

which are present in an air parcel with smaller frequencies

compared to the other concentrations with higher frequency of

occurrences. This approach eventually causes the

concentrations to have smaller frequency of occurrences than

their initial frequencies before the convection starts.

This is probably the cause of a faster decrease in the

magnitude of the left standard deviation with X. The

measured standard deviation shows a decrease with X for F=0,

0.03 and 0.116 buoyancy cases while it is almost constant

with X for F=O.26, figures 11(a-d) . This is a result of

reaching a well-mixed concentration value and an appearance

of a tall-peak following shorter tails in the probability

density curve with X, figures 2-5. The measured mean of the

concentration distribution does not change much with X for

all buoyancies even though it shows a slight increase between

C=-3 and -2 for F=0.26. The mean has an average value

of C=-0.75 for the F=0 and F=0.03 cases and an average

value of C=-1.5 for the F=0.116 case.

In order to see how well the functions examined here

fit the measured probability distribution of concentration,

we used the chi-square goodness-of-fit test which is

2

17

[ Nf.(C) N.P.(C)]

i= 1

N .p (Ct)
(54)
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where p1(C) is the calculated or expected frequency, f(C*)

is the measured or observed frequency and N is the total

number of points in the sample. The non-parametric

Kolmogorov-Smirnov test was also applied to the measured

frequencies of concentration, which is in the form of

D = max F1(C)-P1(C) I
for all (i)s (55)

where D is the maximum of the differences between the

calculated frequencies, P(C), and the measured or observed

frequencies, F(C*), in a cumulative sense. The D test

statistics gives very big values for the double-log-normal

and the gamma distribution since it considers the frequencies

in a cumulative sense rather than considering the cell

frequencies individually. This causes a piling up of

departures while the functions may be seen as good fits to

the observed data individually at small or high

concentrations. Therefore, this test will not be considered

here as a good test criteria for the fit.

The valid chi-square goodness of fit test requires the

sample size for each class interval be at least 5. If this

requirement is not met in each interval, the chi-square test

may give unrealistic values since this test is sensitive to

the denominator in equation (54) . In order to meet this

condition, the interval which has a sample size of less than

5 is combined with the adjacent interval or intervals until

this condition is satisfied. By following this procedure,

the chi-square values for each of the buoyancy cases (F=O,
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0.03, 0.116 and 0.26, tables 5 thru 8 respectively) at all X

distances were calculated.

From the results of the chi-square test, the gamma

distribution is a good fit to the experimental data at a 1

percent significance level in F=0, 0.26 at all downwind

distances and in the F=0.1l6 buoyancy case at all X except

at X=2.87. The degrees of freedom for the gamma distribution

are 14 since we lose two degrees of freedom in estimating the

mean and the variance of the distribution. The

double-log-normal distribution, on the other hand, is a good

fit to the observed distribution at the 1 percent

significance level at X=1.02, 1.46 and 2.413 for F=0, at

only X=1.14 for F=0.116 and at X=1.19, 1.62 and 2.26 in the

F=0.26 highly buoyant case. The degrees of freedom for the

double-log-normal are 13 since we lose three degrees of

freedom in estimating the two variances and in finding the

concentration where the mode occurs. The chi-square values

at the 1 percent significance level are 27.69 with 13 degrees

of freedom and 29.14 with 14 degrees of freedom. The

chi-square values in the F=0.03 case for the gamma and the

double-log-normal distributions were unrealistically big.

This is probably caused by a sampling error in the weakly

buoyant case.

An important point in calculating the chi-square values

is that towards the end of the distribution some intervals

are not taken into account since there will be no more
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intervals to add in completing the requirement that the

sample size in each interval be 5 or more. Therefore, the

chi-square values are incomplete in giving the exact values

to test the null hypothesis that the fit of the distribution

function tested does not significantly differ from the

observed distribution function. However, the remainder of

the chi-square value will not be big since the cell

frequencies get smaller towards the end of the distribution

at higher concentrations and so does their square.

Therefore, the contribution of the remainder to the

chi-square value will not be big, so the resulting value of

the chi-square test will be assumed within acceptable limits

at the 1 percent significance level.

Another very important point is that the summation of

the adjacent class intervals causes a big chi-square value

due to the squaring and the division process in equation

(54) . When we examine the fit of the gamma and the

double-log--normal distributions, for example in figure 5(f),

the gamma density function suggests a highly skewed

distribution from the observed distribution of experimental

data. Even though the gamma distribution is a very good fit

to the small and high concentrations, overall it is not a

good fit compared to the double-log-normal distribution

because the gamma density function estimates the mean at a

different concentration value at the F=O.116 and 0.26 cases

(see figures 4 and 5) . On the other hand, the chi-square
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value shows a big difference in favor of the gamma

distribution when it is compared for both the gamma and the

double-log-normal distributions, as in the example of the

F=O.26 highly buoyant case at X=4.96. The reason for the

big chi-square values is that the double-log--normal

distribution underestimates the frequencies at small

concentrations. Thus, when the class intervals at small

concentrations are added to meet the criteria for the

expected frequency, Np1(C) term, the observed frequency,

Nf1(C) term, gets bigger and so does the square of the

numerator as a result of division by the numerator of the

equation (54) . This numerical result gets large as the

computing continues but with smaller incremental amounts.

Similar computing results are seen in all buoyancy

cases examined in this study. We cannot designate the

double-log-normal distribution function as a bad estimator

for the observed concentration distribution by looking at

only the chi-square test statistics since these results are

heavily dependent on the poor fit at small concentrations.

On the other hand, we cannot name the gamma distribution as a

good estimator to the observed distribution when it does not

give good estimates of the cell frequencies around the peak

concentration.

The sum of absolute differences and the mean square of

error were also calculated to see the goodness of fit of the

gamma and the double-log-normal distributions. There are no
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tables similar to the one for the chi-square test to compare

the fit of the functions to the observed distribution for the

sum of absolute differences and the mean square of error.

Therefore, the sum of squares of error or the sum of absolute

differences can give only an idea about the discrepancies

between the expected distribution of concentration according

to the density function tested and the observed distribution

of concentration. However, the mean square of error and the

sum of absolute differences are still among the acceptable

test statistics in comparing the distribution suggested by a

function such as the gamma density function with the observed

distribution, Lynn (1974)

The sum of the absolute differences, tables 1-4, is in

the form of

D I
f(C) p(C) I

(56)

where p(C) is the frequency value calculated by using the

gamma and the double-log-normal distributions, and f1(C) is

the measured frequency. The negative and. positive

differences were also posted in the tables in order to see if

there was a significant discrepancy in estimation of the

measured frequencies through the gamma and double-log-normal

distributions in terms of underestimation or overestimation

of the probability density curves. The total sum of squares

of error whose form is
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Error sum of squares Pj(C)] (57)

was also added to the tables.

The total absolute differences show the gamma

distribution as a better fit than the double-log-normal for

the non-buoyant case at all X distances (table 1), for the

weakly buoyant case at all X except at X=4.28 (table 2), and

for the buoyant case at X=3.57 and 4.15 (table 3). The

double-log-normal distribution is seen as a better fit than

the gamma distribution for the weakly buoyant case at only

X=428 (table 2), for buoyant case at X=l.14, 2.05 and 2.87

(table 3), and for highly buoyant case at all X except

X=2.26. In the buoyant case at X=3.03 both the distributions

give the same total absolute difference value but the

double-log-normal distribution should be observed as a better

fit than the gamma distribution since the latter is highly

skewed from the observed distribution of concentration. In

F*=0.03, the weakly buoyant case, we suspect a sampling error

by interpreting the patterns of mean concentration which

showed relatively minor differences between the contours of

the mean concentration for F=0 and 0.03 buoyancy cases,

Deardorff and Willis (1987)

When the positive and negative differences are examined

in tables 1-4, the double-log-normal deviates positively from

the experimental probability density by the same magnitude of

the sum of the frequencies as it does negatively for all



buoyancy cases at all X. However, the negative differences

are seen to be of less magnitude than the positive

differences for the gamma distribution, especially for

F=0.116 and 0.26 buoyancy cases. According to equation (56)

negative differences mean an overestimation of the function

tested over the observed distribution, while positive

differences mean an underestimation of the observed

distribution before the absolute operator is applied to that

equation. Thus, the gamma density function mostly

underestimates the observed distribution for F=O.116 and

0.26 at all downwind distances.

When we review the sum of squares of error, the

double-log-normal distribution is seen to be a better fit

than the gamma distribution for the two high buoyancies

F=0.116 and 0.26 at all X except X=4.15 for F=0.116 and at

X=2.26 for F==0.26 (tables 3 and 4) . In the F=0 and F=0.03

cases the gamma distribution does fit the observed

distribution of concentration better than the

double-log-normal distribution except for F=0 at X=l.02. In

the weakly buoyant case at X=4.28, the sum of absolute

differences shows the double-log-normal distribution as a

better fit than the gamma distribution, while the sum of

square of error shows the latter as a better fit. This is a

result of the squaring procedure in equation (57) . In the

highly buoyant case at X=2.26 equation (56) gives equal

magnitude of absolute differences for both distributions
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examined while equation (57) supports the fit of the gamma

distribution.
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By looking at all these results, we can say that the

gamma distribution is a better fit for the observed

concentration distribution than the double-log-normal

distribution for the F=O (non-buoyant) and F=0.03 (weakly

buoyant) cases. On the other hand, the double-log-normal

distribution is a much better fit than the gamma distribution

for F=0.116 (buoyant) and F=0.26 (highly buoyant) cases.

One point should be emphasized here: The gamma density

function gives very good estimates of the frequencies of

small concentrations for all buoyancy cases at almost all X

distances from the stack. The double-log-normal, however, is

seen as a better estimator function to the observed

distribution of concentrations for high buoyancy cases which

are likely the cases for environmental pollution due to the

buoyant gases released from stacks. Another proviso here is

that this study done with the Deardorff and Willis boundary

layer model tank was conducted for a continuous point source

at a small elevation above the surface in a convectively

mixed layer.
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In this study the concentration data of the laboratory

model tank of Deardorff and Willis (1974) were used to

determine whether the distribution of concentration of

pollutants in the boundary layer could be represented by a

distribution or density function. Then by using this function

we can attempt to make predictions about the possible

behavior of the pollutants in the atmosphere in terms of its

occurrence for a time period such as a year. The gamma

probability density function was shown to be a good estimator

function for the distribution of concentration for

non-buoyant and weakly buoyant cases. It was also shown that

it was estimating the occurrences of low concentrations very

well. The double-log-normal probability density function

was shown to be a better fit to the distribution of

concentrations than the gamma density function at buoyant and

highly buoyant cases. These two functions should be compared

by using the observed pollutant concentration data obtained

in a convective atmospheric boundary layer in order to see if

either of these two shows a better estimate of the

occurrences of pollutants than the other. Then by looking at

those results we may be able to make strong statements about

how to best estimate the occurrences of concentrations in the

actual atmosphere.
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Double-1rg-norita1 trihiirinn C,"" D4rib,tt-inn
Error Error

Distance Neg. Pos. Total Square Neg. Pos. Total Square N

1.02 -.108 .130 .238 .00500 -. 129 .167 .295 .00797 148

1.46 -.097 .118 .215 .00402 -.082 .131 .213 .00389 226

1.90 -.101 .103 .204 .00388 -.032 .089 .121 .00198 263

2.41 -.089 .091 .180 .00556 -.051 .073 .124 .00231 285

2.92 -.097 .097 .195 .00410 -.051 .057 .108 .00114 301

3.34 -.099 .099 .199 .00466 -.035 .038 .073 .00079 241

3.79 -.123 .122 .245 .00870 -.067 .073 .140 .00338 286

Table 1 Negative and positive differences between the expected and

measured frequencies of concentrations, their sum of absolute

values and total sum of square of error for the double-log-

normal and the gamma distributions at F0 (non-buoyant) case.

N is the sample size.

Double-log-normal Distribution G.inma Distribution

Error Error

Distance Neg. Pos. Total Square Neg. Pos. Total Square N

1.15 -.238 .239 .477 .01831 -.175 .187 .363 .01110 240

1.96 -.216 .215 .431 .02551 -.158 .163 .321 .01655 340

2.6 -.242 .241 .484 .03518 -.179 .181 .360 .02001 639

3.56 -.218 .217 .435 .02713 -.179 .179 .358 .02151 631

4.28 -.230 .230 .460 .05464 -.259 .259 .518 .04974 448

4.96 -.211 .211 .422 .02559 -.161 .161 .323 .02092 472

Table 2 : Negative and positive differences between the expected and

measured frequencies of concentrations, their sum of absolute

values and total sum of square of error for the double-log-

normal and the gamma distributions at F0.03 (weakly buoyant)

case. N is the sample size.
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Double-log-normal Distribution Gamma Distribution
Error Error

Distance Neg. Pos. Total Square Neg. Pos. Total Square N

1.14 -.093 .134 .227 .00457 -.087 .176 .263 .00632 171

2.05 -.121 .122 .243 .00502 -.060 .220 .280 .01017 333

2.87 -.119 .122 .241 .00633 -.091 .213 .304 .01092 833

3.57 -.125 .128 .252 .00709 -.096 .110 .206 .00457 806

4.15 -.102 .105 .207 .00632 -.076 .116 .192 .00470 980

Table 3 : Negative and positive differences between the expected and

measured frequencies of concentrations, their sum of absolute

values and total sum of square of error for the double-log-

normal and the gamma distributions at F0.116 (buoyant) case.

N is the sample size.

Double-log-normal Distribution Gamma Distribution

Error Error
Distance Neg. Pos. Total Square Neg. Pos. Total Square N

1.19 -.092 .093 .185 .00667 -.066 .353 .419 .02287 69

1.62 -.133 .139 .273 .01112 -.046 .373 .419 .02547 154

2.26 -.089 .117 .206 .00504 -.015 .142 .157 .00353 209

3.03 -.101 .104 .205 .00510 -.027 .179 .206 .00782 387

3.91 -.081 .088 .169 .00336 -.033 .157 .190 .00695 519

4.96 -.091 .092 .183 .00420 -.073 .140 .214 .00738 577

Table 4 Negative and positive differences between the expected and

measured frequencies of concentrations, their sum of absolute

values and total sum of square of error for the double-log-

normal and the gamma distributions at F0.26 (highly buoyant)

case. N is the sample size.



Chi-square values

Distance D. L. N. Gamma

1.02 11.4 12.0

1.46 15.1 11.9

1.90 36.6 4.53

2.413 18.4 3.82

2.92 57.8 8.35

3.34 25.7 2.42

3.79 65.0 7.7

Table 5

Chi-square values

Distance D. L. N. Gamma

1.14 8.5 11.4

2.05 86.3 28.1

2.87 237.0 56.8

3.57 178.0 28.3

4.15 190.0 18.1

Table 7
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Chi-scuare values

Distance D. L. N. Gamma

1.15 401.0 52.6

1.96 255.0 44.7

2.6 1160.0 129.0

3.56 1310.0 146.0

4.28 405.0 218.0

4.96 756.0 173.0

Table 6

Chi-sguare values

Distance D. L. N. Gamma

1.19 3.21 14.7

1.62 18.0 26.6

2.26 16.1 7.4

3.03 69.5 22.7

3.91 44.0 20.8

4.96 52.8 17.6

Table 8

Tables 5-8 : The chi-square values for the double-log-normal and the

gamma distributions for different buoyancies. Table 5 is

for F=0 (non-buoyant), table 6 for F0.03 (weakly buoyant),

table 7 for F=0.116 (buoyant) and table 8 for P0.26

(highly buoyant) plume cases.
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