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ABSTRACT

Based upon the Pearson Type VIII distribution functiom, a
general retention function which relates the saturation to the
capillary pressure in disturbed soils has been discovered. This
simple and yet complete function has been shown to describe pre=
cisely the imbibition as well as the drainage branch of the re-
tention curve., It is defined by four readily assessed parameters
that either have physical significance themselves or may be used
to determine some hydraulic properties of the soil.

With the assumption that the Burdine integrals are adequate,
a relative permeability function has been derived through the
substitution of the retention function for the integrands in the
Burdine integrals. The permeability function is expressed in
terms of the incomplete Beta function ratio whose value may be
conveniently found in some mathematical tables.

Further, a general pore-size distribution function of soils
has been obtained from the retention function. The derivation of
the pore-size distribution function enables more rigorous examin-
ation and further exploration of the theories concerning water

movement in partially saturated soils. In this respect, an ex-

planation of the phenomenon of air entrapment during imbibition




has been offered through an energy concept based upon the pore-size

distribution function along with the retention function.

Two criteria of affinity have been established for porous
media. Media are said to be affine if their corresponding pore-
size distribution parameters are identical. The scaling factor
for the external dimension of the model has been chosen to be
the capillary pressure head at the inflection point of the reten-
tion curve, whose value is always finite.

The effect of the pore-size distribution parameters upon the
retention, permeability and diffusivity curves has been analyzed.
The analysis shows the parameter governing the downward concavity
of the retention curve is as important as that governing the up-
ward concavity when it comes to computing the permeability values
from the retention data,

A new and simple apparatus and procedure for obtaining the
retention data of soil water in the laboratory have been developed.
The technique can expedite the acquisition of the data for either

the drainage or the imbibition branch of the retention curve.
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HYDRAULIC FUNCTIONS OF SOILS FROM PHYSICAL

EXPERIMENTS AND THEIR APPLICATIONS
by Charles Su' and R. H. Brooks?

CHAPTER I
INTRODUCTION

Engineers dealing with watershed hydrology, land drain-
age, and irrigation are often confronted with difficulty of
accurately describing the complex soil-water system. Not
only is the soil-water system in nature complicated by the
variability of soil properties in space, but the chemical
and biological interactions on these properties as functions
of time defy description. In spite of the difficulty, much
can be gained by considering the soil-water system as one
in isothermal, stable and homogeneous conditions., But even
for this ideal soil-water system, it is still not a facile
task to describe water movement in soils, owing to the
strong nonlinearity among the variables that control the
storage and movement of water in the porous space.

With today's high-speed, large-capacity computers and
with the modeling technique presently available, it is not
impossible to investigate thorﬁughly the subsurface water
movement for a particular set of boundary conditions pro-
vided the properties of the soil-water system can be defined
in functional or tabular forms. But it will be difficult

to construct a generalized model and predict its performance

1 Research Associate, Agricultural Engineering Department, Oregon State
University
2 Associate Professor, Agricultural Engr. Dept., Oregon State University




for a wide range of soil properties when little is known
about the range that may be encountered in the field.

The functional forms of general relationships among
the variables governing water movement and storage in soils
are highly desirable, particularly if the functions involve
meaningful and measurable hydraulic properties of the soil.
One advantage of the functional relationships is that com-
putation time and computer storage space for the solutions
of flow problems are greatly reduced, and the input data
to the computer need only to consist of a few hydraulic
parameters of the soil. Furthermore, if the range of the
values of soil hydraulic parameters is known, one may deduce
a family of solutions that would approach what is obtainable
from analytical solutions.

In particular, the functional forms are needed in the
solutions of problems that employ Darcy's law for either
steady or unsteady flow. After Darcy (1856) first proposed
his empirical law governing the flow of water in saturated
sands, Buckingham (1907) suggested that Darcy's law would
be valid for partially saturated media as well. His sup-
position was later verified experimentally by Childs and
Collis-George (1950). Therefore, in partially saturated
media, the constant hydraulic conductivity needs to be
redefined as a function of soil-water content. The com-

bination of Darcy's law with the variable hydraulic con-




ductivity and the equation of continuity brings about a
general partial differential equation for water movement in
partially saturated soils. The flow equation may be solved
analytically or numerically depending upon the complexity of
the system. For complex systems, analytical solutions are
not obtainable owing to the strong nonlinearity of the
equation.

Inasmuch as the relationship between hydraulic con-
ductivity and soil-water content is difficult to obtain
experimentally, many researchers have resorted to predictive
methods of evaluating this relation from the measured water
retention curve. Some of the methods have been experimentally
verified and seem to give reasonably good approximations.
Thus, if a general relationship is available for the water
retention curve, it follows that a general expression may
be obtained for the relation between hydraulic conductivity
and soil-water content, which includes the properties or
constants of the water retention curve.

Functions for both hydraulic conductivity and retention
of water have been proposed independently. In a few cases,
researchers have proposed dependent relationships only to
become either oversimplified approximations or highly com-
plex, exact expressions that lose their practicality. In the

latter case, too many constants make the relationships

difficult to assess by indirect methods, and it becomes




prohibitive to relate the constants to easily visualized
or measurable properties of the soil.

It is the first objective of this thesis to present
simple and yet complete functional relationships among
soil-water content, hydraulic conductivity and capillary
pressure. The relationships include meaningful properties or
parameters of the soil, which will be useful in characterizing
the soil hydraulically. The second objective is to develop a

new apparatus and procedure which will expedite the acquisi-

tion of the retention data in the laboratory.




CHAPTER II
REVIEW OF LITERATURE

A. Water Retention Functions

Brooks and Corey (1964) appeared to be the first to
develop a convenient function that relates capillary pressure
to saturation for media with relatively wide ranges of

pore-size distribution. In their equation,

P

v

P A
b
S, = (P_) for P b

1.0 for P 24

]

and Se (2-1)

1A

b
where Se is the effective saturation defined as (S - Sr)/
(1 - Sr)’ Sr is the residual saturation, Pb is the bubbling

pressure related to the largest pore size forming a con-
tinuous network of flow channels within the medium, P is the
capillary pressure, and A is an index to the pore-size
distribution. The derivation of this function emanated from
a large number of experimental data of the drainage branch of
the retention curve. The two parameters of the function,

namely, Pb and A, have physical significance and have been

used as criteria of similitude. Since Equation (2-1) is a
step type function, it fails to describe the downward

concavity of the retention curve in the region of high

saturation. In general, the function can describe reasonably




well the experimental data in the portion of the curve
showing upward concavity. For the media with ill-defined

bubbling pressure, i.e., with a Pb being practically zero,
the use of Pb as a characteristic length for scaling presents

difficulty.

King (1965) developed a complicated equation for
describing both the drainage and imbibition branch of the re-
tention curve. To enable the '"plateau" of the retention
curve for small values of capillary pressure to be equally
well described, he managed to produce the hyperbolic

function,

’ b

cosh|| P, A B |
p B
cCOSs W) = e T Y

where 8, 8, €, vy and P, are parameters whose values depend

T

(2-2)

upon the properties of the water and the soil, and the
hysteresis. Each of these parameters is subject to a
certain constraint such that P, > 0, B < 0, cosh e 2 y > 0,
1>8 >0, and € > 0. Furthermore, as P approaches zero,

S approaches &, and as P approaches infinity, S approaches

§(cosh £ - vy)
cosh € + vy

§(cosh € - v)

or lim § = Cosh & ¥ ¥

p-—rco




King pointed out that the lower 1limit of S should correspond
closely to the residual saturation defined by Brooks and
Corey (1964). Also, the function may be transformed so that
the capillary pressure becomes the dependent variable. The

transformation yields

P =P, ln[y %_;_g) + WJ[Yz(g—;“g)z < B }- € . (2-3)

To determine the parameters of Equation (2-2) or (2-3) is by
no means a simple task as King admitted. With its strong
nonlinearity and dealing with experimental data, even a
system of five simultaneous equations in terms of the five
unknown constants would be difficult to solve because of the
uncertainty of the five initial guesses and the possible
experimental errors in the data. A nonlinear regression
analysis would be even more difficult, The application of
Equations (2-2) and (2-3) is undoubtedly limited.

Upon examining several distribution laws available from
general probability theory such as the incomplete gamma dis-
tribution, the lognormal distribution, and the first asymp-
totic distribution for the largest values, Brutsaert (1966)
concluded that although the use of a given probability law
might be justified on a theoretical basis, the preference of
one law to another in most cases rested upon purely heu-

ristic grounds. According to Brutsaert, from a practical




viewpoint, the selection of the probability law should
depend upon not only the porous medium but also the nature
of the problem. The mathematical manipulations of these
probability density functions, by and large, cannot be
easily performed. The problem in assessing the parameters
of those functions appears prohibitive. Thus, Brutsaert
proposed a simple empirical distribution function of his

own. He presented the relation:

Se i a +a(c/r)b ol

where Se is the effective saturation, r is the pore radius,

and a, b, and ¢ are constants. This function is somewhat
similar to that of Brooks and Corey (1964) if the variable
of pore radius is replaced by that of capillary pressure.
He claimed without giving substantial evidence that a much
better fit with experimental data could be obtained with
Equation (2-4) than those proposed by Brooks and Corey
(1964). It should be noted that no physical significance
was attached to the constants of the equation.

Laliberte (1969) presented a pore-volume probability

density function, se(r), which would yield some mathematical

expressions for the relation between capillary pressure

and saturation. He postulated that £(r), a transformation

of se(r], was normally distributed such that
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[ somar - exp(-£2)dE (2-5)
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(2-6)

or E(P.) = r:—Y - B

and a, B, and y are constants depending upon the porous

material, r is the radius of pores, Ty is the radius of

pores corresponding to the bubbling pressure, and P. is the
scaled capillary pressure with the bubbling pressure as

scaling factor. When the pore-size distribution function,

dSs
e
T = Se(T)

is combined with Equation (2-5), then

Y e 3 IR e i
5, (1) Vﬂ_lexpca)ds-»\[ﬂ_ofexp(s)da.(z 7)

The first term on the right-hand side is equal to 0.5

whereas the second term is one half the nonelementary
probability integral whose solution is the error function.
Since the error function is an even function, it is necessary

to rewrite Equation (2-7) as follows:

Se = 0.5(1 - erf &) Se < 0.5




and Se = 0.5(1 + exf E) Se > 0.9 & (2-8)

To find the corresponding values of capillary pressure and
saturation, Equation (2-8) together with Equation (2-6) is
used. With respect to the evaluation of the constants, a,
B, and y, Laliberte presumed a correlation between those
constants and A, the pore-size distribution index given by
Brooks and Corey (1964). Also, he assumed the retention
curves defined by his functions and by Brooks and Corey's
function would become merged for large values of capillary
pressure. It is not surprising that a better fit has been
found with Laliberte's function for sands since the values
of o, B, and y are based upon a well defined value of A,

the pore-size distribution index. However, for soils with
wide ranges of pore-size distribution, either the correlation
between the parameters and A breaks down, or A itself is not
sufficiently descriptive. At any rate, it seems that the
proposed probability density function should employ other
independent methods for evaluating its parameters in order
to determine its generality. Apparently, the evaluation

of the parameters is not a simple operation to perform.

To offer physical justification for the relation
between capillary pressure and saturation, White (1970)
introduced several physical models. He partitioned the
drainage branch of the retention curve into four parts and

named them: (1) the boundary effect zone, (2) primary

10




transition zone, (3) secondary transition zone, and (4)
residual desaturation zone. For each of those four ''zones"
a theory was set forth to interpret the desaturation mecha-
nism within it. He then formulated those theories in such a
way that the resultant equations represented the relation
between saturation and capillary pressure. A total of
thirteen parameters are required to define the entire
drainage branch of the retention curve. It is obvious that
his functions are of little practical value owing to the
large number of parameters to be determined. However, the
theoretical relations fitted experimental data quite well as
White pointed out. One may conclude the high contact
portions of the curve on either side of the inflection point

are inherent properties of the retention curve.

B. Computational Schemes for Determining

Partial Hydraulic Conductivity

To evade the difficulty of directly measuring hydraulic
conductivity as a function of saturation in the laboratory,
numerous attempts have been made to formulate some sort of
computational scheme so that the partial hydraulic con-
ductivity may be acquired through the knowledge of other
properties of a porous medium which are easier to measure.
Such properties should be representative of the geometry

of pores and their distribution in space. Since the micro-

11




scopic structure of a porous medium is too complicated to
deal with in exact mathematical terms, simplifying assump-

tions on the disorder existing in the medium are necessary.

1. Statistical approach

Childs and Collis-George (1950) adopted an approach for
finding the relation between hydraulic conductivity and the
pore-size distribution of a porous medium by assuming that
pores of various sizes were randomly distributed in the
medium. Their approach was based upon the concept of a pore
sequence that was obtained by cutting the medium into two
sections and then rejoining the two sections at random.

They then proceeded to evaluate the contribution to the
hydraulic conductivity made by the pore sequence. Childs
and Collis-George considered the group of pores on one
section having an average size p and range of size §r, and
the group of pores on the other section having a mean size

o. Then the area of the pores with average size p was given
by

AD = F(p)ér

while the area of the pores on the other surface by

AO = F(o)6r

where F(r) is a pore-size distribution function. Since the

two sections come together randomly, the area of the junction




Tl R L

occupied by the pore sequence is simply the product of Ap

and AU, or

Ap+c = F(p)8r « F(ao)8r .

It was further assumed that the resistance to flow increased
rapidly as the pore size decreased, the resistance of the
larger pore in the sequence could be neglected, and only the
contribution of the direct pore sequence to the hydraulic
conductivity should be considered. If one takes o to be
smaller than p in the sequence, the number of pore sequences

occupying the area A, is proportional to A__ _/o*. Accord-

p*o
ing to Poisueille's equation, the rate of flow through
each pore sequence with o as its controlling pore size is
proportional to ¢“ when the hydraulic gradient is taken as
unity. Consequently, the contribution of this controlling

pore size to the hydraulic conductivity is

8K = Mo?F(p)Sr - F(o)ér

where M is a constant of proportionality to be determined
experimentally. Summing up the contribution of all possible
pore sequences whose controlling sizes cover the entire
spectrum of the pore-size distribution, one may obtain the

hydraulic conductivity function,

13
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8 i aia,

R R
K =M Z Z g2 F(p)Sr + F(o)dr (2-9)
p=0 o=0 d

where R is the largest pore size which remains full of
water in a partially saturated medium. The pore-size dis-
tribution function is determined from the retention curve
which is divided into a number of divisions of capillary
pressure values. The greater the number of divisions, the
more accurate the computed values of the conductivity should
be. In this case, the pore-size distribution was treated as
a discrete model although it could have been treated as a
continuous function. It should be noted that M in Equation

(2-9) is a matching factor obtained by matching the experi-

mental and theoretical curves at a given point.

Marshall (1958) also presented an equation for the
relation between permeability and the pore-size distribution
of a porous medium. He assumed that the necks connecting
the pores in the medium controlled the flow rate. Since
the alignments of pores were often imperfect, allowance
was made for a reduction in the cross-sectional area of the
necks. On a fractured section of the medium where A and B
are the two exposed surfaces, the area of A or B is regarded
as consisting of n sub-units of area 1/n. Each sub-unit of
surface B is further subdivided into n sub-units of area
1/n®*. Each of these sub-units has the same volumetric

water content, 6, and contains pores of the same radius.

14




The magnitudes of the pore radii are arranged in descending

order; 1.8y T 2 Pg P LS5 wene & 90 The sub-unit of

surface A which has pores of radius r; comes into contact
with one of the larger sub-units of surface B. On the
average, the cross-sectional area of the neck of the connect-
ing pores would be 6 times the area of the smaller pore.
Hence, the area of the neck for each of the smaller sub-
units of surface B in contact with the first sub-unit of

surface A would be, 68mr;2, 6mr2?, 6mrs%, ...., onr_%.

Similarly, the second sub-unit of A containing pores of

radius r, would give neck areas of 6mr,?, 6mr,?, 6mrs?,

By« eweny Bﬁrnz. The series continues in this way until

the nth sub-unit of surface A is counted. This last sub-

unit would provide a neck area of Onmr The average

2
n -
cross-sectional area of the necks for all the smaller

sub-units of surface B with area 1/n? is

ew[(r12 + T2 + 132 4+ ... # rnz)

# (rp® & ro% % 2™ r i B Laee B rnz]

2

+ (1rg? + r3?2 + 1?2 + 1% + 152 + ... + T %)

2

+ (T2 + To? + Tu? + T4? + T52 + T2 + ..0. + T %)

oh i s ® AT 2}/112 "
n

or gwn=? [r;z + 31,2 + 5132 + .... *+ (2n - l]rnz} .

+
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2

¢ and substituting for

Equating the above series to 7r

T 2

£ in Poiseuille's equation, i.e.,

one obtains

y = . 82072 dy [ N T ¢ (2n - 1) 2]
_ﬁ—_ﬁ T To Tsa o % e n I‘n .
(2-10)
According to Darcy's law,
U = n—k g% ) (2-11)

Equating Equatioﬂ-(Z-lﬂ) to Equation (2-11) yields

2
k= %ﬁr [T12 + 313% # 5ry® # e @ (20 - l)rnﬂ (2-12)

where k is the permeability at a certain volumetric water
content, 6.

To develop further the model of pore sequence originated
by Childs and Collis-George, Millington and Quirk (1961)
arrived at a basic equation which could be used to describe
permeability as a function of porosity, water content, and
pore-size distribution. They envisaged a porous medium as
consisting of solid spheres which interpenetrated each other
and were separated by spherical pores which also inter-

penetrated., The solid and pore systems were therefore

symmetrical. Based upon this model, it was possible to




derive a generalized relation between the porosity and the
cross-sectional area which controlled the flow rate of water
in the medium. They assumed that the area of pores on a
fractured section might be represented by porosity of an
isotropic porous medium, @, and if an interaction model

was adopted to include the probability of continuity of
pores in space, the pore area resulting from interaction
would be between @ and @*>. They then proceeded to find the
interacting pore area. If the area from interaction is

@>X, then @ > ¢2X > g2, Since p <1, 1 > x > 0.5. Further-
more, @* might be regarded as a maximum pore area in space
whereas $2X a minimum. If @?%X was obtained on a single
plane, it would be associated with a maximum solid area
which would be given by (1 - @#)*. Hence the minimum pore
area in the absence of interaction was given by 1 - (1 - @)X,
Both the minimum pore area obtained in the above way and the
minimum pore area obtained through interaction should be
identical. Therefore, 1 - (1 - @)X = @2X,  For values of

@ between 0.1 and 0.6, the values of x lie between 0.6 and
0.7, and for the sake of simplicity x may be taken as 2/3.
Assuming there were m classes of pores in the porous medium
and each class occupied the same proportion of the total
porosity, the interacting areas of these classes on a plane

were denoted by a;, az, @3z, ..., a. and the radii of these

pore classes were r; > Ty > T3 > ..es > ro For Poiseuille's

17




flow, both pore area and radius interactions would contri-
bute to the flow. The resistance to flow in a pore sequence

was determined by the square of the smaller pore radius.

Thus the permeability was given by

r s

31311'12 alazrzz 3133332 dija T 2
m m
a,ajras? aasrs? asasas? azamrm2
1 2 2 2 2
- asaT asasr asasa saaw Bad E

ki 3 3@1T3 3d2T3 3dszds 3d,Th
2 2 2 2

a T a
m?1 T and2Ty andsdny m?mim

Since a; = a2 = a3 = ,... = a_ = @?®/m, then

ky = % p/e m_z[r12+ 3ra%+ 5122+ ...+ (2n - l)rmz]'

(2-13)

For the partial permeability, the value of @ was replaced by
that of the volumetric water content, and the r? series
began with the largest pore radius occupied by water.
Attempts by a number of investigators to evaluate the
success of the proposed computational schemes have been
made, Nielsen, et al. (1960) compared the values of partial
hydraulic conductivity calculated with Childs and Collis-
George's, and Marshall's procedures with measured values for

four field soils. They concluded that Childs and Collis-

George's method appeared superior to the others over a




narrow range of capillary pressure. In contrast to that,
Jackson, et al. (1965) tested three individual methods and
found that the methods of Childs and Collis-George, and
Marshall did not predict the shapes of the hydraulic con-
ductivity curves, and that if a matching factor was used,
Millington and Quirk's method gave good results over a wide
range of saturation.

Kunze, et al. (1968) reported that Millington and
Quirk's method with a matching factor did not produce the
best fit with their experimental data. They claimed a
better fit could be obtained if the volumetric water content
in Equation (2-13) was not raised to 4/3 power but to 1.0
power., This change brought about a slightly higher hydraulic
conductivity at lower degree of saturation and required a
smaller matching factor. They stated, however, that the
change was only a step in the right direction, but was still
not sufficient to correct the discrepancy between measured
and calculated values of hydraulic conductivity at low
saturations,

In an evaluation of some predictive methods, Green
and Corey (1971) tested both Marshall's, and Millington and
Quirk's methods with matching factors which were the ratios
of measured total hydraulic conductivity to calculated total
hydraulic conductivity. They proposed a modified version of
Marshall's method, in which the values of 6 and n in Equation

(2-12) were held constant regardless of the degree of

19




saturation. They discovered all three methods including the
one of their own gave reliable predictions of measured
hydraulic conductivity, and suggested they be used routinely
for field applications. They pointed out that to characterize
the variation in the water retention curves from many sites

in a field might be more important than to accurately

measure the K(8) values on a very limited number of cores or

field sites. They also investigated the hydraulic con-

ductivity computed from absorption branch of the retention
curve, and reported that the computed values of hydraulic
conductivity were always smaller than the measured values.
They thought this discrepancy was due to the inadequacy of

the absorptive branch for characterizing the pore-size

distribution of the porous medium. They felt the desorptive
branch was preferable in this respect.

Jackson (1972) reviewed the predictive methods of
Marshall, and Millington and Quirk with matching factors.
He demonstrated that the procedures of calculation for those
two methods were similar except for the exponent of the pore
interaction term. He reasoned that since both Marshall's,
and Millington and Quirk's derivations were based upon an
idealized model of the porous medium, the values of the ex-
ponent appeared arbitrary. He then tried to determine the
optimum value of the exponent with which the methods would

best predict experimental hydraulic conductivity. The
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would-be optimum value of the exponent obtained by method of
least squares for several media varied around unity. There-

fore, he suggested that a value of unity would be adequate.

2. Hydraulic radius theory

Based upon a simplified hypothesis, Purcell (1949)
derived an equation which related the retention curve and
the porosity to the permeability of a saturated porous
medium. He first considered the medium as a system composed
of a large number of parallel cylindrical capillaries of
equal length but random radii. The total rate of flow
through this system is equivalent to the sum of the con-
tributions made by each of the individual capillaries. He
then equated Darcy's law to Poiseuille's equation and
substituted the capillary pressure for the radius by use of
the Laplace's surface tension equation to produce an equation

for permeability, i.e.,

e i AS -
k = (0' cos 0‘.) P2 -14
i=1 .

where o is the coefficient of surface tension, o 1is the

contact angle, @ the porosity of the medium, Si the portion
of saturation in the capillary of radius r, and P, the

capillary pressure. Purcell realized that Equation (2-14)
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was too idealistic because its derivation was based upon a
system consisting of non-interconnected capillaries of
circular cross-section and equal length. Certainly the
occurrence of such a system in porous medium is rarely
approached. Accordingly, he introduced a so-called lithology

factor, F, to account for difference between the flow in the

idealistic porous medium and that in naturally occurring

materials. Thus Equation (2-14) became

D 48,
k = F(o cos a)? @ E: ﬁfé . (2-15)
1

i=1

The summation of ASi/Pi2 in Equation (2-15) might best be

evaluated through the retention curve. If integral form is

adopted, Equation (2-15) becomes

1
k = F(c cos a)? @ Jf %% . (2-16)
1]

Gates and Lietz (1950) suggested that Purcell's equation
be extended to the partially saturated media. It was noted
that at complete saturation the 1limits of integration in
Equation (2-16) were from zero to unity. They reasoned that
for any saturation other than unity the upper limit of inte-
gration in Equation (2-16) would be the saturation itself.

Although they recognized Purcell's lithology factor would
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not be the same at an intermediate saturation as at a
saturation of unity, they had no independent method of
estimating those factors.

Wyllie and Spangler (1952) combined Kozeny's funda-
mental postulates with the retention curve to obtain another
expression for the relative permeability of a partially
saturated porous medium. They proposed on the basis of a
dichotomy originally suggested by Carman that the Kozeny
constant for any porous medium with a random distribution of
pores was obtainable if the tortuosity of the porous medium
could be measured. That is to say, there exists a relation
between the Kozeny constant and tortuosity. Wyllie and
Spangler pointed out that Carman was responsible for writing

the following expression:

c = ¢y (Le/L)2 (2-17)

where ¢ is the Kozeny constant, co, is the shape factor of
pores which generally falls within the range between 2.0

and 3.0, Lo the actual length of sinuous path taken by a

fluid flowing through the porous medium, L the linear

external dimension, and (Le/L)2 is the tortuosity Te of the

porous medium at a certain saturation. They went on to

derive an equation for the relative permeability given by
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"ﬂﬂa

S
Jf (2-18)
R E
T 4
where T is the tortuosity at saturation equal to unity.
They further proposed to determine the ratios of tortuosity,
Te/T, from electrical resistivity measurements.
Recognizing the unsuccess in measuring the ratios of
tortuosity by electrical resistivity index analogy, Burdine

(1953) analyzed experimental data of permeability and found

that to a first approximation, (’1’/"1‘{_3]3"2 might be assumed as

a linear function of saturation. He wrote
S - 8
T _ g ¥
VT. T-758 S
e T

where Sr is the residual saturation. Substituting Equation

(2-19) into Equation (2-18) yields

2 ? ds

k_ = > Sy . ﬂ ] (2-20)
T T - S 1 S
T m‘

which is known as Burdine's equation., A detailed description
of the theory leading to the Burdine equation has been given
by Brooks and Corey (1964). It is interesting that Wyllie

and Gardner (1958) developed a statistical model of porous
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media similar to that of Childs and Collis-George (1950),
and arrived at the same equation given by Burdine.

By substituting Equation (2-1), a simple retention
function of their own, into Equation (2-20) and changing the

lower limit of integration from zero to Sr’ Brooks and Corey

(1964) were able to produce a simple expression for relative

permeability,

2+3A
A
K, =(Se) (2-21)
or
P.1"
k. :(?—) for P 2 Py (2-22)
where n = 2 + 3X. They expected this equation was valid

only for isotropic media and possibly only for drainage
cycle. However, they claimed it held true for any pore-size
distribution according to experimental evidences.

Brust, et al. (1968) compared Brooks and Corey's method
with that of Millington and Quirk, and concluded that the
former gave better results than the latter when compared
with hydraulic conductivity measured in the field. Nielsen,
et al. (1970) pointed out that in general, the computational
me thods for obtaining the partial hydraulic conductivity or

permeability appeared most successful for soils with narrow
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ranges of pore-size distribution. In a highly aggregated
soil, a considerable portion of the total water content 1is
retained as relatively immobile water. Under such cir-

cums tances better results were obtained if the concept of
effective saturation as used in Equation (2-21) was adopted.
Bouwer and Jackson (1974) stated that although the computa-
tional procedure of Brooks and Corey's method was relatively
simple, care ought to be exercised to obtain the best value
of residual saturation. They concluded the calculated
hydraulic conductivity compared favorably with other methods

and with measured data.

C. Methods of Obtaining Retention Data

in the Laboratory

There are many techniques for obtaining retention data
in the laboratory. Almost all techniques have been developed
to obtain the drainage branch of the retention curve.
According to Bear (1972), there are two general methods for
obtaining retention data: (1) displacement, and (2) dynamic
methods. Of these two groups, the displacement method is
the one most commonly used by agronomists and soil scientists.
It is suitable for fragile disturbed or undistrubed samples.
Basically, all the techniques pertaining to the displacement

group establish successive states of static equilibrium and

data are taken of the equilibrium water content and capil-




lary pressure. The most common techniques of the displace-
ment group are: (1) increasing the pressure of the non-
wetting phase and holding the pressure of wetting phase
constant, and (2) decreasing the pressure of the wetting
phase and holding the pressure of the non-wetting phase
constant. Both techniques require the use of a saturated
capillary barrier that is permeable only to the wetting
phase. The capillary barrier must have a uniform pore-size
distribution and pores that will not allow the non-wetting

phase to penetrate the barrier. The capillary barrier is

initially saturated with the same fluid to be displaced in
the medium,

To obtain data by the first technique indicated above,
a pressure plate or pressure membrane equipment is used.
The sample is subjected to non-wetting phase pressure within
a pressure cooker or pressure cell that contains the capil-
lary barrier. An outflow tube is connected to one side of
the capillary barrier for measuring volume displaced and
detecting equilibrium condition at a particular pressure of
the non-wetting phase. Usually one soil sample is required
for each equilibrium pressure measurement. For example, if
one desires to obtain five data points, five samples are
required, and each of them is subject to a different non-

wetting phase pressure. When retention data are needed for

a large number of samples, the technique is valuable.




However, the time required for equilibrium may be consider-
able, e,g., 10-40 days, depending upon the range of capil-
lary pressure desired.

The technique which lowers the pressure of the wetting
phase is limited to the low range of capillary pressure,
i.e., less than 1 bar. When one desires a retention curve
on only one or two soils over the range of 1 bar, this
technique appears superior to the pressure plate technique.
Nevertheless, it is time-consuming and tedious also. The
technique involves reducing the pressure of the wetting
phase in increments and measuring the displaced volume of
wetting fluid in equilibrium.

Other displacement methods include mercury injection
and centrifuge methods. The former is used by the petroleum
industry where consolidated samples are dealt with. Mercury
is used as the non-wetting phase and forced into pores of
the medium in an evacuated chamber. The centrifuge method
causes the wetting fluid to leave the sample by subjecting
it to normal accelerations in a centrifuge. This is equi-
valent to subjecting the sample to increased gravitational
force. Data may be obtained in a relatively short time,
but it is not particularly suitable for the low range of
capillary pressure.

Imbibition retention data may be acquired by methods

similar to the displacement type methods, in which fluid is
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allowed to imbibe through the capillary barrier as opposed
to drainage from the sample. However, no satisfactory

techniques have been established.
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CHAPTER III
THEORY

A. Retention Function

After reviewing the mathematical expressions in the
literature for soil-water retention curves, it was found that
the one originated by Brooks and Corey (1964) had the sim-
plest form and yet could approximate experimental data
reasonably well under certain circumstances. However, their
function fails to describe an inflection in the curve.
Precisely, it completely ignores the downward concavity of
the retention curve and assumes that retention data can be
approximated by a curve that is entirely concave upward. In
some cases, this over-simplification results in an unreal-
istic approximation especially for soils with ill-defined
bubbling pressures.

It was further discovered that when Brooks and Corey's
function underwent a simple mathematical manipulation, it
took the form of the Pearson Type VIII distribution function
(Pearson, 1916). It will be assumed herein that the capil-
lary pressure of the soil-water system is related to the
geometry of the interfaces between water and air within the
porous matrix by Laplace's surface tension equation

(Encyclopaedia Britannica, 1969),
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- —'r) (3-1)
or

p=-f,£,ifr'=r (32

where P is the capillary pressure, o the surface tension
coefficient and r and r' are the radii of curvature of any
two normal sections of the interface at right angles to

each other. Therefore, one may consider the soil-water
retention curve as an indication of the pore-size distri-
bution of the porous medium. In other words, one can obtain
the probability density function of pores by taking the
derivative of saturation, which connotes percentage volume,
with respect to capillary pressure, or with respect to pore
size. In this connection, the Pearson Type VIII distri-
bution function suggests that there be no pores in the
medium, which have sizes larger than the one corresponding
to the bubbling pressure. Observations of experimental data
indicate this is not always the case and a more general
expression should be developed.

Upon close examination of numerous experimental data of
capillary pressure versus saturation, it became clear that
the plotting of the data generally exhibited three common
features. The data approach a vertical asymptote at both

residual saturation and saturation equal to unity, and
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between these two extremes of saturation there exists an
inflection point, If the pore-size distribution is assumed
to be of the same type on either side of the inflection
point, then by reversing the concavity of the curve at the
inflection point, perhaps a more suitable expression of
capillary pressure versus saturation may be obtained. With
this in mind, the Pearson Type VIII distribution function
was written for these two portions of the curve and then
matched at a fictitious inflection point. The resulting

expression is given by

g -8 1™ a
P =P, (_é__z) (1_.;_§) 2 (3-3)

where P is the capillary pressure, Pf is the capillary
pressure at the fictitious inflection point, S is the
saturation, Sr the residual saturation, m the shape factor
of the retention curve and therefore a pore-size distri-
bution parameter of the medium, and a and b are the domains
of saturation separated by the fictitious inflection point.
Figure 1(A) shows a typical soil-water retention curve and
gives the definitions of the symbols in Equation (3-3)
graphically. It can be seen from Figure 1(A) that the sum

of a, b and Sr must equal unity, i.e.,

a + b + S, = 1.0 . (3-4)
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Therefore, the only constants needed to define the soil-
water retention curve are a, b, m and Pf. Since the sum
of a and b is the domain of saturation that is of greatest
concern to engineers in the fields of irrigation, drainage
and hydrology, the theory will be confined to this domain.
It is worthwhile recalling the definition of effective

saturation, Se’ given by Corey (1954), i.e.,

S -8
Se = T—5 - (3-5)
i 44

When S, is replaced by a and b by use of Equation (3-4),
one may transform Equation (3-5) into

_ S - (1 -a -0>b)

Se - a + b

(3-6)

and thus exclude the immobile water content from considera-
tion. This is expedient because the water content below
residual saturation is believed hydraulically insignificant.
By making use of Equation (3-4) and Equation (3-6), Equation

(3-3) becomes

bm
-m a
S 1 = 8
P= P, ae 5 e . (3-7)
a+5 a+5

By using new notation defined as

5 = 9
_ P _ - T e W R
P " Sim STt v BT gy W FgTg
(3-8)
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Equation (3-7) becomes

b.m
a

-m
s Sc 1 s So 2 =
{5 [ -
with a. + b. = 1.0,

Equation (3-9) may be transformed into an expression in
terms of the ratio of b. to a.

Hence

b.m
ad.
(1 ~ §.) (1 + ‘j‘r) . (3-10)

So far, the constants in Equation (3-3) or (3-10) do not
convey any physical significance. It should be emphasized
here that the fictitious inflection point which is used to
define a and b should not be mistaken for the true inflection
point of the retention curve. In Figure 1(B) the true
inflection point is defined along with the domains of
saturation associated with the inflection point. The "A"
domain of saturation corresponds to the upward concavity
while the "B" domain corresponds to the downward concavity
of the retention curve. To find the real inflection point,
Equation (3-10) must be differentiated twice and equated to
zero. The operation brings about a quadratic equation,

£f(S.) = 0 or
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(1-%)(1+m-’-;-’3‘-)3.2-2(1+m-§9-)s.+(1+m)=0.

(3-11)

The solutions of Equation (3-11) are given by the quadratic

formula, i.e.,

bm b bm
('1"”’““5'*\/5(1”“*5_3 . (3+12)

In 1light of the physical constraints, the roots cannot be
imaginary. This requires the discriminant of the quadratic
equation be positive or zero. Based upon experimental data,
the inflection point nearly always lies within the bounds
of saturation, 0 < S, < 1. The possibility that the dis-
criminant may be equal to zero can be eliminated. The most
important solution of Equation (3-11) is the one where the
roots are real and unequal. The following will further show
that there is only one appropriate solution to Equation
(3-11).

According to the definitions of a and b, it is obvious

that 2 > 0, Since the discriminant of Equation (3-12)

should be greater than zero, it follows that (1 + m - %ﬂ)>0.

Then,
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By adding (1 + m - %ﬂ) to the members of the above in-

equality, one has

(1 +m - %EJ +'\/%;(1 +m - %E » (1. = g)tl +m - %E g
. b
Now, if (1 - E) > 0, then
(1 +m - PE@ +'\/P-(1 & o
. 2 & > 1 (3-13)
b bm ‘
@ == il »m= ==
Next, if (1 - 2) < 0, then
(1+m-2 \/2 @ +n-bu
£ 2 % < 9. (3-14)

. Q- a+n-

The left-hand members of inequalities (3-13) and (3-14) are
one of the two roots of Equation (3-11), but their values
transgress the physical bounds of S.. Therefore, the only

valid solution having physical significance is

bm b bm
i ms g '\/EC“’“'a—

Sy = bm

(3-15)
- 1-2 A+mn-2

where S i is the effective saturation at the true inflection

point of the retention curve. To find the unscaled satura-
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tion at the inflection point, Equation (3-6) is used. Thus,

bm, b /D bm

S, s@imo tal s Valrnta)
i 2 bm
th =gl (Lmmsigs

(3-16)

is the expression for the unscaled saturation at the in-
flection point. For the value of the capillary pressure

Pi corresponding to S;» Equation (3-3) is recalled and

S; 1s substituted for the independent variable S. Thus,

il bm
P; = P, [:(1+§) (I-H)] [(1+§-) H] a
where
b bm b bm
21 #m=2B « Z(lamp-o2
H=\/a g 8 8 __ . (3-17)

1-2 @+n-2

It is postulated from statistical standpoint that Si may be

the critical saturation beyond which the air phase becomes
discontinuous on the imbibition branch because the frequency
of pores is maximum at the inflection point of the retention
curve. In other words, it is quite possible that the air
phase may become blocked and isolated as the liquid phase

invades and fills those pores related to Pi’ which possess

the most significant amount of pore volume in the porous
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medium. On the other hand, as the liquid phase leaves those
pores having greatest frequency, the air phase may first
become continuous and potentially mobile. This phenomenon
was in effect observed and pointed out by White (1968). The

verification of the above postulate of P, and S; should be

of paramount importance to drainage engineers inasmuch as
aeration of soils may be defined in terms of soil proper-
ties,

Regarding the above presentation, it is noteworthy
that the constants in Equation (3-9) are hydraulic pro-
perties of the media and each of them is physically signi-
ficant. This complete retention function makes possible the
study of the retention of fluids in porous media for both

the imbibition and drainage branches of the retention curve.

B. Permeability Function

Based upon the review of functional forms suitable
for computing the permeability of porous media given in
Chapter II, the equation of Burdine [Equation (2-20)] was
found to have several advantages over the others. These
advantages include: (1) its demonstrated accuracy is at
least equal or better than other computational schemes,
and (2) relative permeability may be expressed by a simple
mathematical form. The latter advantage makes it possible

to arrive at an analytical expression for relative perme-
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ability, which is as accurate as the Burdine integrals,
provided an accurate retention function is available and
it can be integrated. Of course, if the retention function
does not represent the true retention relationship, the
permeability function will be in error accordingly. The
work of Brooks and Corey is an example of what has been
done in this regard. It will be assumed in this thesis
that the Burdine integrals are adequate and that if the re-
tention function accurately represents the retention of
water in soils during drainage, the permeability obtained
from the retention function will be as accurate as the
Burdine integrals themselves. The result of inserting the
retention function proposed herein, i.e., Equation (3-9),
into the Burdine integrals, Equation (2-20), to obtain the
ratio of partial hydraulic conductivity to the total
hydraulic conductivity (or relative permeability) is given
below.

Recalling Equation (2-20) and the definition of re-
sidual saturation, the Burdine integrals are transformed

into

g _
e
k (S.)2 ﬁ 1/[Ps)2 8,
r ‘e 7P )" a8, *
A

(3-18)
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The transformation to the definition of effective saturation
implies that the water in the soil at saturation less than

S, is immobile or that the permeability at S = S_ is zero.

Substituting Equation (3-9) for Ps in the integrands

of Equation (3-18) gives

. -2bm
e 2m a
f 1/(p)? ds, /05 (s.)*™ @ - 8 ds, _

b1/ (p)? ds ! g
fu /7 efn (5" @ -s) * s

e

e

The denominator on the right-hand side of the equal sign
is a definite integral whose value is readily expressed in

terms of the Beta function, i.e.,

2bm

1 -
l (Se)zm a - Se) a dSe = ﬁ(_z;n + 1, “z?%m + 1) ,

(3-20)

The numerator can also be expressed in terms of the in-

complete Beta function, i.e.,

Se -2bm .
2m a " -2pbm
f (8)°" (1 - s,) ds, ﬁseczm 1, T== 1)

0

(3-21)
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The relative permeability as a function of effective
saturation is obtained by combining Equations (3-18) and

(3-19) with Equations (3-20) and (3-21), i.e.,

(zm + 1, 5 + 1)
k. = (8.)? e —t ; (3-22)
Pm+ 1, "ER 1)
Since
Bs tem+ 1, "HR 4 ) b
-2
IB(e + 1 -2bm + 1) ) IS (2111 il am * 1) (3-23)
2m e
2 a

where _Ig is the incomplete Beta function ratio with its
e

arguments given in the parentheses (Abramowitz and Stegun,

1970), Equation (3-22) becomes

@ 2 -2bm B
k. = (S,) [Se(zm v, 20 e ) (3-24)

Of course, if absolute rather than relative values of

permeability are desired, one may use the equation,

k=da (57 Jg (om+ 2, "R 4 1) (3-25)
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where k; and k are respectively the total permeability and
partial permeability for any given saturation in the interval,

1 >8> Sr' Similarly, for partial hydraulic conductivity,

one may substitute the partial hydraulic conductivity, K,
for partial permeability and the total hydraulic conduc-
tivity, K, for the total permeability and Equation (3-25)

becomes

K= Ky (S,)? [[S Cm o+ 1, 2B 1)) (3-26)
(S

C. Diffusivity Function

In a soil water-air system, it is generally acceptable
to regard the pressure of air everywhere in the porous
medium as a constant being equal to the atmospheric pressure.
It is also possible to ignore the flow of air because of
its relatively low resistance due to its low viscosity.

With these in mind, Darcy's law may be written in terms of
the pressure of water to describe the flow in partially

saturated media, i.e.,

p
qd = -K V(Y—“’ + z) (3-27)




where q is the volume flux, K is the partial hydraulic

conductivity, V is the vector differential operator, P

the pressure of the soil-water, y the specific weight of
water and z is the elevation above an arbitrary datum.

Combining Equation (3-27) with the equation of continuity,

Veg=-p e, (3-28)

yields

P
38
73 + 4} =p 2, (3-29)

where @ is the porosity of the soil, S is the saturation

and t is the time. Equation (3-29) is called the Richards'

equation named after its originator (Richards, 1931). 1If

P is a single-valued function of S, then

PW
p ;] L
Pl = L W8
v |~ 35 VS

p
-K@ ?E 3K 38
v . w—— VS| = == = -@ =% (3-30)




or

oK _ _4 39S L}
in which
B(Pw)
- - Y _
D= -K —I=- (3-32)

is known as the soil-water diffusivity (Klute, 1965) or
here to be designated as the diffusivity function, and
Equation (3-31) is called the diffusion equation for flow
in partially saturated media.

If the specific weight of water is removed from the
differential operator, the diffusivity function, Equation

(3-32), becomes

D=5%§- , where P = -P

Y W

Differentiating Equation (3-3) with respect to S and sub-
stituting into the above produces

bm
1-5)

P 5 - Sr

_ f m a b
D-K?-E(—a s-sr+1-s] (3-33)

which when combined with Equation (3-26) becomes

o

m

-\-m —
S'Sr) 1-S

a

P
-2b f
D = Kl(se)z[«lée(2m+l’ 2am+1ﬂ B g

(3-34)
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CHAPTER IV

CRITERIA OF AFFINITY FOR POROUS MEDIA

There are two recognized approaches to establishing
similitude criteria for flow fields. One approach, called
dimensional analysis, transforms the original variables into
a set of similarity numbers which are dimensionless. These
numbers are subsequently used to determine the size of the
model. The second approach which is called inspectional
analysis requires that the differential equation describing
the flow field be known., By transforming the differential
equation into one that is dimensionless or scaled, a set
of standard units of scaling is obtained. If the trans-
formation procedure is properly followed, the differential
equation will yield identical particular solutions for two
flow fields provided the initial and boundary conditions in
terms of scaled variables and the relationships among the
scaled variables are identical. Actually, any set of
standard units may be chosen; however, a set that is physi-
cally meaningful and measurable is highly desirable.

In the porous medium flow field, the second approach is
to be applied for establishing proper criteria. Two porous
media are said to be affine if the relationships among
scaled hydraulic variables, e.g., capillary pressure,
hydraulic conductivity, diffusivity and saturation are

identical. Furthermore, two flow fields are said to be
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similar if there is affinity between the porous media,
their initial and boundary conditions in terms of scaled
variables are identical, and there is similarity between the
size and orientation of the flow field.

The term affine is preferable to similar for describing
porous media since for affine media a transformation may
be used to produce identical scaled relationships among
the hydraulic variables even though the media may not, in
a physical sense, appear geometrically similar.

The requirements of affinity for porous media are
deduced in this section by scaling the relationships among

the hydraulic variables.

A. Scaled Hydraulic Functions

1. Scaled retention function

Since the water content related to saturation less
than the residual is assumed to be immobile, the saturation
may be normalized so that the immobile water is excluded
from consideration. This may be accomplished by using the
concept of effective saturation and residual saturation

introduced by Corey (1954), i.e.,

S -
S. = r—=%- (4-1)
r
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where Sr is the residual saturation and S. is the effective

saturation.

The two domains of saturation associated with the
fictitious inflection point have been denoted as a and

b where a = Sf - S b=1- Sf , and Sf is the saturation

T b
at Pf. These two domains may be normalized to obtain their

scaled forms by way of the same normalization factor as

used for saturation, i.e.,

_ r _ a -
= T-s. "T+b -2
1 -8
- £ - b ‘4.
PrTT-5_ Ta+b (4-3)

where a, and b, are the scaled domains of saturation as-
sociated with the fictitious inflection point.
Substituting Equations (4-1), (4-2), and (4-3) into

Equation (3-3), one obtains

b - -

or

b,
a‘

P {(1 i E-_) s]-m [(1 #0282y 1 -~ 8 )} (4-4)
£ a. s b. . :

v
i
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The Pi at the actual inflection point of the retention

function appears more suitable as a standard scaling unit of

pressure than the pressure Pf particularly when the function

is viewed in terms of a pore-size distribution function.

Therefore, the scaled retention function becomes

-m b..

P
P, = % = % [(1 + g:q)s.] [(1 * g—:)(l - S-)} e 5
(4-5)
Since
Pe b n L
P - [(1 +bya . H)] [(1 : lf)H} ' (4-6)

where H is given by Equation (3-17), the scaled retention

function may be further simplified. Thus,

et

Equation (4-7) is completely defined in terms of m and

bm
a

1 s.} _ (4-7)

H

b/a. It is clear that any two porous media will be affine
provided they have the same values of m and the same ratios
of b. to a., or b to a. It is obvious from Equations (4-2)
and (4-3) that the scaled ratio of b./a. is identical to the

unscaled ratio of b/a.
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Apparently, only one additional affinity criterion is
required when the retention function is represented by a
continuous function beginning with P = 0, compared with that
specified by Brooks and Corey (1964) from their step type

function.

2. Relative permeability function

Inasmuch as the relative permeability function has
already been derived in Chapter III, it needs only to be
rewritten here in the dot notation. If k. is the ratio of
partial permeability to total permeability, then Equation

(3-25) can be rewritten as

ke = (592 [ (emv 1, "22R 40y (4-8)

It can be seen from Equation (4-8) that any two soils with
the same values of m and the ratio b/a possess the same
relative permeability function. That is to say, any two
soils which fulfill the criteria of affinity set forth
previously from the retention function will behave similarly
also with respect to permeability or other dynamic rela-

tions.

3. Scaled diffusivity function

The definition of the diffusivity function is the
product of hydraulic conductivity and the slope of the

soil-water retention curve. The scaled form of the dif-
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fusivity function may be defined in the same manner as the
unscaled form except the definientia are now scaled variables.

Hence,

_ . 9P, )
D. = -K. 55= (4-9)

where K. and P. are single-valued functions of S. By
differentiating Equation (4-7) with respect to S. and com-
bining the derivative with Equation (4-8), one obtains the

scaled diffusivity function

o bn
a
o e Ty 2] [ (5
[E 4 —0m } (4-10)
Si a(l - S.)

where H is given by Equation (3-17).

The scaling factor for the diffusivity may be deduced
from the scaled definientia in the scaled diffusivity
function. From Equation (4-9) and the definitions of K.,

P., and S., one has

d[%—a d(P] 1 S
_ K 1 _ Y vy (1 - r)
Dy & = - 8 " =K ds { PiKI ]- WD
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Let the scaling factor for D be designated as Do. Then

+ 48]

= 1) — d _
p. = B T (4-12)
-
¢! Erj
and
P. K;
iy ® ST
Y b

oT

Dy = o 5 (4-13)

B. Pore-Size Distribution Function

A generalized pore-size distribution function of the
porous medium can be derived from Equation (4-7). The
development begins with taking the first derivative of P,

with respect to S.. The result is

dP. _ _
ass = o

s

(Eerty) - w1

If it is assumed that a pore radius may be related to

capillary pressure by the relation
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P = 20 cos o
T
where o is the coefficient of surface tension of the fluid,
o is the angle of contact between the fluid and solid

boundary and r is the radius of the pore, then

]

1
T

p. = P__ 20 cos a/T
’ P. = Zo cos a/T;

where r. is the radius of pores characterized by P,.

Since
) b.m
T m a.
Po= gt (3] 7 (A5
and
r= A b.m (4-150

ENc

i

when Equation (4-6) is substituted into Equation (4-15),

one has
b.
—n
_ 1 - H m [ H d.
TEENT] TR - (=)
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Equation (4-16) may be scaled by dividing through by T..

This produces

_ ( 1 & B =M H a.
B = T, J [1—‘5—) el
where r, = r/ri.

Differentiating Equation (4-17) with respect to S.

yields

dr. _ m (1 - Hg\™ H B2 [ & b.
Gl ET(S. J (1——? } (ST*TT- m R L

where H is given by Equation (3-17). The inverse of Equation
(4-18) in conjunction with Equation (4-17), is the gen-
eralized probability density function for pores. In other
words, the frequency of pores with a certain scaled radius

r. is represented by dS./dr.. It should be noted that the
probability density function of pores is completely defined
by a., b. and m. It is also evident that any two affine
media fulfilling the criteria set forth in the previous

section possess identical pore-size distribution functions.
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CHAPTER V
EXPERIMENTAL PROCEDURE

In general, it is time-consuming and tedious to obtain
retention curves by using tcchniques in which a pressure
difference is arbitrarily set across the capillary barrier
and the sample is allowed to equilibrate. This technique
is primarily used to obtain the drainage branch of the re-
tention curve. Furthermore, there are no well-established
techniques for acquiring the imbibition branch of the re-
tention curve. It is the second objective of this thesis
to develop a rapid technique for measuring both the drainage
and imbibition branch of the retention curve on disturbed
soil samples. Such measurement techniques will not only
permit the theories already presented to be tested but they
will be valuable to researchers interested in obtaining
the hydraulic properties of soils quickly.

The equipment pertaining to the procedure consists of
four parts: 1) the retention cell that includes a capillary
barrier, 2) a capillary tube-burette apparatus for deter-
mining equilibrium and the volume of liquid drained, 3) a
vacuum-pressure regulator, and 4) manometers for pressure
readings. A photograph of the equipment and its schematic

arrangement are shown in Exhibit 1 and Figure 2,
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Figure 2. Schematic of the apparatus for obtaining
the retention data.
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To avoid the so-called boundary effect, the retention
cell consists of the end of a ceramic candle that is in-
stalled in a recessed block of acrylic plastic. The
ceramic was completely sealed into position by epoxy. A
pressure tap was installed in the plastic block in order
to connect the wetting fluid to the capillary tube-burette
apparatus. After soil was packed uniformly into the ceramic
candle, the entire cell was vacuum-saturated to exclude air
from the soil pores as well as from the capillary barrier.
In some cases, the samples were brought to maximum satura-
tion by submerging the cell with soil sample into the wetting
fluid for several hours.

After saturating the soil and the capillary barrier
by either of the two procedures described above, the re-
tention cell was connected to the capillary tube-burette
apparatus through a semi-rigid tube that had been filled
with liquid while the vacuum-pressure regulator was set at
zero pressure (gage). By setting the top of the cell at the
same elevation as the zero volume mark on the burette, a
liquid-air interface was established in the burette and
capillary tube at that mark.

The elevation of the interface in the capillary tube
could be measured by the attached meter stick shown in
Exhibit 1. The capillarity of the tube was 1.0 cm. The

specific volume of the capillary tube was 0.0174 cm® per




cm of length. Both the burette and the capillary tube were
connected jointly to the vacuum-pressure regulator. Liquid
could be drained from the soil by increasing the pressure
difference across the interfaces in the burette and the
capillary tube. The volume drained at any particular
capillary pressure in equilibrium was equal to the volume
in the burette plus the product of the height of the inter-
face in the capillary tube above the zero datum and the
specific volume of the capillary tube.

The procedure that was followed to obtain the drainage
branch of the retention curve was to create a pressure dif-
ference across the interface in the burette by the vacuum-
pressure regulator. After a specified volume had drained
into the burette from the soil, the burette valve was closed
and the interface in the capillary tube was noted. The
pressure difference across the interface was then reduced
so that the interface remained stationary in the capillary
tube. If the pressure difference across the interfaces in
the soil pores were not in equilibrium with the pressure
difference across the interface in the capillary tube, flow
would occur either into or from the sample. Since the
specific volume of the capillary tube was small, equilibrium
conditions could be easily detected. Care was taken during
the experiment on the drainage branch to insure that the

wetting fluid always drained away from the soil into the
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burette or the capillary tube. Because the capillary
tube-burette apparatus was mounted in a vertical plane, the
pressure difference across the interface for non-equilibrium
condition which would cause liquid to move in the capillary
tube was automatically adjusted (decreased) by the rising
interface in the capillary tube. This combination of manual
and automatic adjustment of the pressure difference across
the interface of the small capillary tube greatly decreased
the time required to obtain the retention data.

After true equilibrium was reached, the elevation of
the interface in the capillary tube and the liquid volume
in the burette were noted. The capillary tube valve was
then closed and the pressure was decreased (or the pressure
difference increased) through the vacuum-pressure regulator
by an arbitrary amount. The burette valve was then opened
and followed by the opening of the capillary tube valve.
The procedure for equilibrium was repeated for each drainage
volume. Of course, the time required to determine true
equilibrium increases progressively after each increment of
drainage. Care must be exercised in allowing sufficient
time for determining the movement of the interface in the
capillary tube to be certain of equilibrium.

When the saturation of the soil sample had been reduced
to that corresponding to the steep portion of the drainage

curve, the imbibition branch of the retention curve was
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started. The burette was not used any longer. A given
volume of liquid was added to the soil surface by use of a
micrometer pipette. After the liquid was added to the soil
surface, the air pressure in the capillary tube was in-
creased to prevent drainage from occurring, but not suf-
ficient enough to cause a large volume of liquid in the
capillary tube to retreat toward the soil. Pressure readings
in equilibrium were obtained in a manner similar to that for
the drainage branch. Flow under non-equilibrium conditions
always moved into the sample. Equilibrium conditions for
imbibition were always reached much more rapidly than for
drainage.

After the equilibrium at zero capillary pressure,
another drainage branch was started. Once one or more
branches of the retention curve have been obtained, the
sample was removed from the retention cell. To prevent any
flow from occuring during the removal of the sample, the
main valve for the capillary tube-burette apparatus was
closed. The soil was weighed, dried in the oven, and
weighed again in order to determine the total pore volume or

the apparent pore volume.
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CHAPTER VI
RESULTS AND DISCUSSION

In this section the retention function will be fitted
to the experimental data obtained by the procedure pre- |
viously discussed as well as fitted to published data found
in the literature. These data include both the drainage and
imbibition branch of the retention curve.
The hydraulic properties of porous media for affinity
from the retention curve will be discussed and also their
effect upon permeability, diffusivity and pore-size dis-
tribution. The retention function will be used as a base
for the discussion on the mechanism pertaining to air en-

trapment during imbibition.

A. Determination of the Parameters of the

Retention Function from Retention Data

Regardless of how well a function may fit experimental
data, if the parameters in the function are difficult to
obtain, the function may well be only of academic interest
and probably will not be very useful. However, if the para-
meters are easy to assess and have physical meaning, the
function will have great utility.

In order to obtain the parameters for the retention

function developed in this thesis, a method was derived to
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force the function to go through four experimental data
points since four parameters are needed to define the

function, i.e., a, b, m, and Pf. Theoretically, the para-

meters may be found by solving a system of four simultaneous
equations formed by four pairs of P and S values. The
solutions of these equations depend upon not only the
accuracy of the experimental data but also upon the cri-
terion established for convergence in solving the system of
equations. Strictly speaking, the four-point forcing method
is not the best one to use because of the constraints
imposed. Of course, methods of nonlinear regression analysis
are superior to the forcing method since they can take more
data into account and obtain a best-fit through experimental
data. Unfortunately, no efficient method of nonlinear
regression analysis has been found. It is interesting to
note, however, that little or no difficulty has been ex-
perienced in finding the parameters by the forcing method
for all the retention data that have been analyzed. This is
regarded as a strong evidence of the exactness of the
retention function. The selection of the four pairs of P
and S values should be made in such a way that they cover a
wide range of saturation, and unreliable data are excluded
from consideration.

The derivation of the equation used to determine the

parameters by the forcing method is given in Appendix B.
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A Fortran program was written to solve the nonlinear

equation through the teletype time-sharing conmmunication
system with a CDC 3300 computer. The computer program and
an example of the teletype print-out are shown in Appendix

1% in the

C. The criterion for convergence was set as 10
program.

The most efficient way of determining the four best
data points to be used in the program is to plot the data
and draw a best-fit-by-eye smooth curve through the data
points. Those points that fall precisely on the curve are
first choice. If the system fails to converge, one Or more
other data pairs are substituted for those initially used.

In addition to selecting four pairs of data for use in
the forcing program, an initial guess of residual saturation
must be made. Convergence of the numerical scheme 1is re-
latively insensitive to the initial guess. If the raw data
are plotted and extend over the steep portion of a curve

passing through the data, the first guess of residual

saturation will be close to its final value.

B. Comparison of the Retention Function

with Experimental Data

In all cases, the fitness of the theoretical retention
curve to the experimental retention data was excellent no

matter whether the data were from experiments on the im-
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bibition or drainage branch. The function also fits ex-
perimental data of either vacuum-saturated or apparently
saturated samples. The apparent saturation is defined as
volume of liquid in the pores divided by the total pore
volume less volume of air entrapped in the pores at zero
capillary pressure. In other words, the entrapped air is
treated as part of the solid matrix of the porous medium.

Thus,

Volume of liquid

Apparent saturation =
- [Volume of entrapped air
at zero capillary

pressure

Total pore
volume

The definition of apparent saturation is probably a more
realistic one for field situations since the soil profile in
a field is not likely to be exclusively filled with liquid.
If the total pore volume of the medium is used as a base,
Equation (3-3) needs to be modified in order to describe the
imbibition branch which ends at a saturation less than

unity. The retention function should be written as

-m a
p-p, (i_fz) {fal__s) (5-1)

with Sr +a+b= Sm’ where Sh is the maximum saturation at

which the capillary pressure is zero on the imbibition

branch., It should be noted that Equation (5-1) is essentially
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the same as Equation (3-3) except the domain of saturation
is changed from unity to a smaller value. Illustrations
comparing the theoretical or computed retention curve with
experimental data for the imbibition branch are given in
Figure 3, where the dots represent the experimental data
while the lines represent theoretical curves. Figures 3(A)
and 3(C) are for two sands, where capillary pressure head is
plotted against saturation. Figures 3(B) and 3(D) are for
the same sands but plotted as functions of apparent satura-

tion. It is noteworthy that the values of m, Pg and the

ratio of b/a are identical for both definitions of satura-
tion,

In Figure 4 the theoretical curves are compared with
experimental data obtained from samples that were initially
vacuum-saturated before drainage was started. After the
last data point was obtained for drainage, the imbibition
branch began. The wetting fluid used to obtain the data in
Figure 4(A) was water while that in Figure 4(B) was oil.
The theoretical curves are in excellent agreement with the
experimental data. The data for these figures and others
shown herein are tabulated in Appendix D along with the
parameters of the retention function. Figure 5 shows the
theoretical curves and experimental data for the imbibition
and drainage branch where maximum saturation is less than
unity. The agreement between theoretical curves and the

experimental data is also excellent.
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Figure 3. Comparison of the theorctical (or computed)
retention curves with retention data of two
media, where the dots represent measured values,
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C. Comparison of the Permeability

Function with Experimental Data

According to the derivation in Chapter III, perme-
ability may be calculated from the pore-size distribution
parameters obtained from the retention function. No attempt
has been made to measure permeability for the purpose of
verifying the Burdine integrals. However, the theoretical
relative permeability computed from Equation (3-24) has been
compared with published experimental data in which capillary
pressure retention curves are available.

A comparison of theoretical and measured relative
permeabilities is shown in Figures 6 and 7 where relative
permeability is plotted as a function of saturation. The
measured data are presented as points while the computed
values are represented by a solid curve. The retention
curves are shown adjacent to the permeability curves. The
samples were obtained from consolidated petroleum reservoir
rocks. The retention data were acquired by the mercury
injection method commonly employed by petroleum reservoir
engineers. The agreement between measured and computed
permeability values is reasonably good. In the case of
core G-1, the permeability is underestimated while for
core G-4, the permeability is over-estimated, even though
the retention function fits the retention data almost

exactly.
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D. Physical Significance of the Parameters

of the Retention Curve

1. The inflection point

The fictitious matching point with the coordinates

[Pf, Sf) should not be mistaken for the real inflection

point of the retention curve. The location of the inflection
point depends upon the values of a, b, and m. More pre-
cisely, the abscissa of the inflection point can be cal-
culated through Equation (3-16), and the ordinate through
Equation (3-17).

The capillary pressure, Pi’ and the saturation at the
inflection point, Si’ are regarded as very significant

properties of the porous medium. Although the physical
significance of the saturation at the inflection point has
not been studied in this thesis, it may be the critical
saturation at which the non-wetting phase becomes continuous
or discontinuous, Based upon the work done by White (1968)
dealing with media having narrow pore-size distributions,
this postulate appears to be valid. The rationale for this
postulate may be developed through the consideration of the

pore size associated with Pi by the relation By = Zo/Pi,
in which r, is the radius of the pores, and o is the surface

tension of the wetting fluid. The frequency of L is the

13




greatest of the entire spectrum of the pore-size distri-
bution. That is to say, the number of pores with the radius

T, is maximum. In view of the interconnectivity of pores,

one may infer that this group of pores possesses the greatest
potentiality of blocking the non-wetting phase on the im-
bibition barnch, because pores of this size are scattered to
the greatest extent throughout the medium. When the wetting
phase occupies these pores, the non-wetting phase becomes
discontinuous. On the other hand, when the wetting phase
drains from these pores, their interconnectivity provides

the first possible continuous path for the non-wetting

phase.

Figure 8 shows the scaled retention curves and the
scaled pore-size distribution curves for the drainage branch
of two different media. The inflection points of the
retention curves are located at P, = 1 where P. is the

capillary pressure scaled by the respective Pi' It 1 clear

from Figure 8(B) that the pore associated with P, = 1 is the
mode of the pore-size distribution.

Since Pi/Y is the characteristic scaling length for
modeling, it is important to recognize that Pi/y is always

finite.
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2. The boundary effect of the retention cell

For soils that have a very narrow range of pore sizes,

e.g., sands, as the capillary pressure is increased and the
capillarity of the boundary is broken, the fluid at the
boundary floods some of the interior pores that have already
drained and causes imbibition to occur. The phenomenon has
been explained in the recent work of Corey and Brooks
(1975). The boundary effect upon the "B" domain of satura-
tion or the downward concavity of the retention curve is to
make it steeper than it would be if the liquid at the
boundary drained in the same manner as the interior portions
of the soil. 1In other words, if the boundary effect was not
present, the slope of the retention curve would be less
steep and the downward concavity would be more pronounced.
Of course, the degree of the drainage retardation at the
boundary is proportional to the area of the non-porous
surface of the retention cell and inversely proportional to
the drainable porosity.

The effect of the boundary upon the parameters of the
retention function may be eliminated by simply ignoring
those data in the "B'" domain of saturation. The parameters
of the retention function can be easily obtained by using

data solely from the "A" domain of saturation. The curves

computed for the data shown in Figure 9 were obtained
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in that manner. Under conditions in which apparent initial
saturation is involved, there is no boundary effect upon the
"B" domain of saturation.

In particular, the "B" domain of saturation is affected
by the type of retention cell used to obtain the data. A
cell in which the capillary barrier is located only at the
bottom of the sample may influence the "B" domain of satura-
tion if the soil sample is initially vacuum-saturated. The
effect is particularly pronounced on fine textured media,
and is due to the small space between the non-porous surface
of the cell and the soil. At the early stages of drainage,
liquid progressively drains from the soil surface as air
begins to intrude farther and farther into the interior of
the soil. During this period of drainage, the boundary
remains saturated as observed through the clear acrylic
plastic. This phenomonon leads one to believe that if the
liquid at the boundary is free from retardation at the early
stage, there should be more liquid drained away from the

sample.

E. Effect of the Pore-Size Distribution Parameters

Upon the Retention Function and the Probability

Density Function of Pores

The parameters m and b/a are designated as pore-size

distribution parameters. It is only when b/a = 0 that m may




be referred to as a pore-size distribution index. When

b/a = 0, the retention function reduces to the step type
function proposed by Brooks and Corey (1964) and m is the
reciprocal of their index. However, when b/a is not zero,
the relationship between the Brooks-Corey pore-size dis-
tribution index and m is lost and the pore-size distribution
becomes a function of b/a and m. In other words, pore-size
distribution cannot be expressed in terms of a single
parameter since both b/a and m affect the distribution
frequency of pores.

The effect of these two pore-size distribution para-
meters upon the retention function and the probability
density function of pores is shown in Figures 10 and 11.

In Figure 10(A) scaled saturation is plotted as a function
of scaled capillary pressure while in Figure 10(B) the
derivatives of the curves in Figure 10(A), i.e., dS./dP.,
are plotted as functions of scaled capillary pressure. The
derivative of S. with respect to P. is not precisely the
probability density function of pores defined in Chapter IV,
but is related to dS./dr. by the relation dS./dr. =

P.? |dS./dP.|. The magnitudes of either derivative is not
particularly meaningful except they are indications to the
frequency of pore sizes and the area under the curves

of dS./dr. vs r., and dS./dP. vs P. are equal to unity. The

derivative dS./dP. is more useful when plotted on the same
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Figure 11.

Theoretical curves of scaled saturation and
scaled frequency of pore sizes as functions
of scaled capillary pressure for hypothetical

= 0.5n

media having various values of b/a and m
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abscissa as that for the scaled retention curve shown in
Figures 10 and 11, The utility of this type of probability
density function will become apparent in subsequent dis-
cussions. Figure 12 shows the relative position of the
curves of dS./dr. vs r., and dS./dP. vs P. with the same
values of m and b/a.

In Figure 10(A), b/a = 0.25 is held constant while m
varies from 0.5 to 2.0. Obviously the value of m greatly
affects the shape of the retention curve. In Figure 10(B),

for m = 0.5, the maximum frequency of pore sizes (dS./dP. =

max.) at P. = 1,0 is far greater than that for m 2.0,
Since the areas under the pore size frequency curves must be
equal to each other and to unity, it follows that the curve
for m = 2.0 must extend over a far greater range of values
of P, than that for m = 0.5. Hence, the curve for m = 2.0
covers a wider range of pore sizes than that for m = 0.5.
It is clear that when b/a is constant, m is a measure of the
distribution of pore sizes. When m is large, the distri-
bution of pores covers a wide range, while for small values
of m the distribution of pores covers a narrow range. The
greatest frequency of pore always occurs at P. = 1.0.

Figure 11 shows the effect of the other pore-size dis-
tribution parameter, b/a, upon the retention curve and upon
the frequency of pores. In Figure 11(A) where scaled satura-

tion is plotted as a function of scaled capillary pressure,
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m 0.5 is held constant and b/a varies from 0 to 0.75.
Since m is the same for all curves, the shapes of the
retention curves are nearly alike. The downward concavity
of the curves increases as b/a increased while the upward
concavity decreases as b/a increases.

In Figure 11(B), the maximum frequency of pores 1is
greatly reduced as b/a increases from 0 to 0.75. The family
of curves in Figure 11(B) is similar to the family of curves
in Figure 10(B). Apparently this pore-size distribution
parameter, b/a exerts a similar effect upon the maximum
frequency of pore sizes as does m. Yet, it does not seem
to be very apparent from the cursory observation of the
retention curves. If one compares the retention curve with
b/a = 0 and b/a = 0.25 in Figure 11(A), these curves seem
to become nearly coincident at scaled saturation of 0.55.

If one assumes that the curve with b/a = 0 (step type
function of Brooks and Corey (1964)) approximates the curve
with b/a = 0.25, the permeability of the media would be
greatly overestimated by the approximate function according
to the maximum frequencies of pore sizes shown in Figure

11(B).

F. Effect of the Pore-Size Distribution

Parameters Upon Permeability and Diffusivity

The effect of m and b/a upon permeability and diffusivity
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is shown in Figures 13-16. In Figure 13 relative perme-
ability is plotted as a function of scaled saturation for
b/a = 0.25 and m varies from 0 to 1.5. The envelope curve
in this figure is the one with m = 0 which reduces the
permeability function to k. = (S.)?. As m increases in
value, there is a precipitous change in the relative perme-
ability.

A similar change in permeability occurs when the other
pore-size distribution parameter, b/a, increases as shown in
Figure 14, Here, the envelope curve is the one with b/a = 0
which reduces the permeability function to the Brooks-Corey
permeability function given by k. = (8.)*™?3, As b/a in-
creases from zero to 0.75, the permeability is greatly re-
duced at high saturation.

In Figures 15 and 16, scaled diffusivity is plotted
as a function of scaled saturation. In Figure 15, b/a = 0.25
is held constant as m varies from 0.5 to 2.0, while in
Figure 16, m = 0.5 is held constant as b/a varies from zero
£ 075,

Figure 15 shows the smaller the value of m, the more
steep the slope of the diffusivity curve becomes for all
values of S. The diffusivity is finite for all values of S.
when b/a = 0; however, when b/a = 0.05, the scaled dif-
fusivity becomes infinite as S. approaches unity as shown in

Figure 16.
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Figure 13. Theoretical relative permeability curves for
hypothetical media having various values of
m and b/a = 0.25.
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Figure 14. Theoretical relative permeability curves for
hypothetical media having various values of
b/a and m = 0.5.
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Figure 15. Theoretical scaled diffusivity as a function of
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Figure 16. Theoretical scaled diffusivity as a function
of scaled saturation for various values of
b/a und for m = 0.50.
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Due to the fact that the retention function takes into
account the downward concavity of the retention data, the
derivative of P. with respect to S. becomes infinite as S.
approaches unity. When b/a and m are small, the value of
diffusivity may be very large near unit saturation. This
has been an insurmountable difficulty in the solution of
boundary value problems by numerical schemes that have been
written in terms of diffusivity and the theoretical functions

proposed herein.

G. Hysteresis and Air Entrapment

The hysteresis envelopes for two soils are shown in
Figures 17 and 18 where scaled saturation is plotted as a
function of scaled capillary pressure. The drainage branches
were obtained from soils at apparent initial saturation,
i.e., the air entrapped at zero capillary pressure is
regarded as part of the solid matrix of the porous media.

The capillary pressures for both branches of the retention

curve were scaled by the P. of the drainage branch of the

respective soil.

Directly below the retention curves, based on the same
capillary pressure scale for the abscissa, the frequency of
pore sizes is plotted for both branches of the retention
curves, Since the total areas under each of the pore-size

frequency curves must be identical, the area CDE must be
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Figure 17. (A) Theoretical scaled retention curves

forming the hysteresis envelope and

(B) the scaled frequency of pore sizes
as a function of scaled capillary
pressure for the hysteresis enve-
lope shown in (A).
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equal to the area ABC in Figures 17(B) and 18(B). The area
CDE represents the total volume of air entrapped as the
medium undergoes imbibition down to the particular capillary
pressure related to the point C. In other words, the
maximum air entrapment occurs at the capillary pressure
related to the intersection of the two pore-size frequency
curves. At that capillary pressure indicated by point C,
the entrapped air begins to move out of the medium. Con-
sequently, the amount of the remaining entrapped air in the
medium is reduced until the value of P. equal to zero is
reached. The value of P. at the intersection C is always

less than the Pi of the drainage branch and greater than the

Pi of the imbibition branch.

H. The Concept of Energy

The area under the retention curve may be used to re-
present the energy stored in the liquid phase at a certain
degree of saturation. Assuming the pressure of the air
phase is zero, one can regard the capillary pressure as the
pressure of the liquid phase. The dimension of pressure is
(Force)/(Length)? and the definition of saturation is
(Volume of 1liquid)/(Total pore volume). Therefore, the
product of pressure and saturation has dimensions of
(Energy)/(Total pore volume). Thus, energy stored in the

liquid phase at a certain saturation is
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E = ths P.(S.)ds.,
0

where Ve is the total pore volume. Similarly, if the de-

pendent and the independent variables are interchanged, the
area under the new S.-P. curve still represents energy per
total pore volume. Hence, energy stored in the liquid

occupying pores smaller than a given size is

P.
E = Vt-[ﬁ 5s(Ps AP,

It is postulated from an energy viewpoint that as
liquid leaves the pores from an initial saturation of unity,
the energy of the liquid decreases. The energy of the
liquid is near its minimum value as residual saturation is
approached. If some liquid is added to the pores, the
energy of the liquid in the pores is increased.

In Figure 18(A), as liquid is added to the pores to
increase the pressure to a point denoted by G, (point of
maximum air entrapment), the volume of liquid in the pores
is less than it was for the same pressure on the drainage
branch. The difference in saturation is given by FG and
must be due to the presence of entrapped air. The entrapped
air will be at a pressure greater than zero and possesses
energy. Therefore, the air obtained its energy from im-

bibition. Consequently, when energy is added to the medium
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by adding liquid, part of the energy is utilized to trap
air and part goes into the liquid itself. The difference in
area under the drainage and imbibition branches of the
retention curve, i.e., area EFG in Figure 18(A), represents
the energy required to entrap the maximum volume of air.

As additional liquid is imbibed into the media, the volume
of air entrapped decreases. This implies that air is being
expelled. As air is expelled into the atmosphere, energy
is returned to the liquid. The liquid increases its energy
until it reaches the same energy level as it possesses

on the drainage branch at P. = 0. Therefore, the area AFG
must be equal to the area EFG as the energy released from
expulsion of air is exactly equal to that required for air
entrapment based on law of conservation of energy.

The area EDC in Figure 18(B) represents the volume of
air entrapped as the capillary pressure is decreased while
area ABC represents the volume of air expelled from the
medium after the maximum air entrapment occurs at C.

The retention function and the probability density
function of pore sizes have made it possible to explain
the phenomenon of air entrapment during imbibition. It
now appears possible to explain the field method of
measuring "Air Entry Value'" proposed by Bouwer (1966),
in which imbibition is allowed to occur under a completely

sealed circular infiltrometer. The pressure is measured
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when the first air bubbles enter the sealed chamber above

the soil surface. This pressure may indeed be the pressure
at maximum air entrapment, which is less than the capillary
pressure at the inflection point of the drainage branch of

the retention curve.
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CHAPTER VII

CONCLUSIONS
A. Summary

Based upon the Pearson Type VIII distribution function,
a retention function which describes the retention of fluids
in porous media has been developed. The function was
verified experimentally and could accurately relate capillary
pressure to saturation on the drainage branch for porous
media either initially vacuum-saturated or apparently
saturated. In the latter case, the pores of the media are
filled with entrapped air as well as liquid as they are
found under normal field conditions at zero capillary
pressure. The function was also proved to precisely define
the imbibition curves for media with an initial saturation
near residual saturation or field capacity. However, no
attempt has been made to interrelate the two branches of
the retention curve, i.e., drainage and imbibition, except
the same descriptive terms are used for both.

The Burdine integrals are assumed valid for computing
the permeability of the porous medium from retention data
obtained in the laboratory. Since the retention function
developed herein precisely fits experimental data, the

permeability calculated from the permeability function based
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upon the Burdine integrals should fit the experimental data
precisely also. From the differentiable retention function
and the permeability function, a pore-size distribution and
a diffusivity function were further obtained.

An experimental apparatus and procedure have been
developed for expediting the acquisition of the retention
data on both drainage and imbibition branches in the
laboratory. The equipment is simple, and the procedure
is easy to follow and consumes less time than the con-
ventional methods.

The retention function possesses parameters which have
physical significance, and may be easily assessed from re-
tention data by the numerical method devised in this thesis.
The domain of saturation, A, from the saturation at the in-
flection point to the residual saturation is the one where
the retention curve is concave upward. In the domain, B,
from the saturation at the inflection point to the unit
saturation, the retention curve is concave downward. The
ratio of b/a and the value of m were demonstrated to be
pore-size distribution parameters. The quantity m is the
dominant factor governing the shape of the retention curve.

It is postulated that the saturation at the inflection

point, Si’ is the critical point at which the non-wetting

phase becomes continuous on the drainage branch and dis-

continuous on the imbibition branch. From a statistical




viewpoint, the critical saturation should correspond to
the mode of the pore-size distribution of the soil. Equa-
tions in terms of the hydraulic properties, a, b, m, and

Pf of the soil were derived to determine the values of the

critical saturation and its corresponding capillary pressure.
The criteria set forth for affinity between porous
media are similar to those previously established by Brooks
and Corey (1964) except the new criteria includes one
additional parameter. Two media are said to be affine if
the b/a ratios and the values of m are identical. The
standard scaling length for the external dimension of the
model was chosen to be the capillary pressure head at the

inflection point of the retention curve, i.e., Pi/Y.

The effect of the downward concavity of the retention
curve upon the values of permeability and diffusivity was
demonstrated in this thesis. It appears that if the pore-
size distribution parameter b/a is ignored, the solutions
of boundary value problems involving imbibition may be
erroneous, particularly if the soil has a wide range of
pore sizes.

The use of the scaled retention and pore-size distri-
bution functions enables one to more rigorously examine and
further explore theories and hypotheses regarding water
movement in partially saturated media. For example, this

thesis presents a discussion on the phenomenon of air
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entrapment in porous media during imbibition through an
energy concept based upon the scaled retention and pore-size
distribution curves,.

To the hydrologist, the major application of the
theories presented herein is the use of the hydraulic
functions of retentivity, permeability and diffusivity in
the general flow equation governing the movement and dis-
tribution of water in the subsurface of the watershed. With
these functions at hand, theoretical understanding of the
soil-water system in the watershed may be enlarged. However,
a paradox exists in which problems formulated in terms of
diffusivity cannot be solved by numerical schemes presently
available. Obviously, the difficulty arises from the fact
that the diffusivity becomes infinite as the saturation
approaches unity. Some problems of infiltration may be
solved by resorting to the step type function proposed by
Brooks and Corey (1964), which completely ignores the
downward concavity of the retention data and always has a
finite value of diffusivity. It should be noted, though,
that the solution therefrom may be greatly in error if the
downward concavity of the retention data is pronounced.
Secondly, the pore-size distribution parameters, m and b/a,
defined herein may be employed by hydrologists to charac-

terize hydrologically the soil types in the watershed.
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Thus, the parameters will become very helpful when it comes
to exploring the possibility of transferring an existing
lumped-parameter hydrological model from one watershed to

another.

B, Significant Findings

1. A simple and yet complete retention function has
been discovered. This function is completely adaptable to
any kind of disturbed porous materials, and its parameters
are easy to assess.

2. Based upon the exact retention function and the
Burdine integrals, a permeability function in terms of the
incomplete Beta function ratio is derived. If tables of the
incomplete Beta function ratios are made available, the
computation of exact permeability values from measured
retention data becomes a very simple operation.

3. From the retention function, a general probability
density function of pores for porous media is obtained.
Since the most important hydraulic variables of porous
media, e.g., permeability, are closely related to the
pore-size distribution, the realization of this general
probability density function will enable meaningful and
constructive examinations of existing theories regarding

those variables in the event of their inadequacy.
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4, The established criteria of affinity between porous
media will refine the procedure of physical modeling,
especially the selection of proper material for use in
models.

5. Although the effect of the value of b/a upon the
shape of the retention curve does not appear as influential
as that of the value of m, its effect upon the permeability
is as pronounced as that of m. This leads one to believe
that the downward concavity is an important property of the
retention curve, which cannot be arbitrarily neglected when
it comes to computing the permeability from retention data.
The value of b/a is the dominant factor governing the down-
ward concavity.

6. The importance of the boundary effect of the
retention cell on the downward concavity of the retention
curve is proportional to the non-porous surface of the
retention cell and inversely to the drainable porosity of
the soil. Care should be exercised when obtaining retention
data of soils having high residual water content in the
laboratory.

7. The acquisition of the retention data on the
imbibition branch is less time-consuming than that on the
drainage branch. Equilibrium of the pressure difference
across the air-liquid interface in the porous medium is

readily reached during imbibition.
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C. Needs of Future Research

Hopefully the exact expressions developed herein will
stimulate the mathematician and the others engaging in the
modeling of flow systems in porous media to develop the
capability of handling these expressions in the solutions
of flow problems. In addition, the findings have opened up
the possibility of dealing with the hysteresis in porous
media in mathematical terms. For example, it now seems
likely to relate the drainage branch to the imbibition
branch of the hysteresis envelope. With this, the scanning
loops may also be explained physically and mathematically.

Since both of the pore-size distribution parameters,
b/a and m, relate to the shape of the retention curve, a
single pore-size distribution index may be derived through
the finding of a relationship between b/a and m.

Finally, the postulate that the critical saturation
at the inflection point of the retention curve is the
saturation at which the non-wetting phase becomes continuous
or discontinuous needs to be experimentally verified. Such
a finding would be important to agricultural engineers
dealing with drainage problems. According to observations
made by White (1968) on media with narrow ranges of pore
sizes, the postulate is valid. Therefore, a wide range of
different types of media needs to be studied, i.e., media

that have widely varying dissimilar properties.
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Sxmbol

b.

ZB(P’QJ

}()’xtp,q)
D

D.
Do

H

]x(p,q)

Nomenclature

Description

a parameter of the retention
curve

scaled domain of saturation
defined by Equation (4-2)

a parameter of the retention
curve

scaled domain of saturation
defined by Equation (4-3)

Beta function with (p,q) as its
arguments

incomplete Beta function

diffusivity
scaled diffusivity

scaling factor for D defined
by Equation (4-13)

a quantity defined by
Equation (3-17)

incomplete Beta function ratio

partial hydraulic conductivity

scaled hydraulic conductivity,
K/K,

total hydraulic conductivity

relative hydraulic conductivity,
K.

partial permeability

scaled permeability, k/k,

111

Dimension

none
none
none
none
none

none
L2T
nomne

L2r"?!

none

none

ET

none

LT

none

LZ

none



Description

total permeability

relative permeability, k/k;

a pore-size distribution
parameter, also a parameter
of the retention curve
capillary pressure

scaled capillary pressure,
P/Pi

capillary pressure associated
with the fictitious inflection
point of the retention curve,
also a parameter of the curve
capillary pressure at the real
inflection point of the re-
tention curve

scaled capillary pressure,
P/Pf

pressure of soil-water

volume flux
radius of pore
scaled radius of pore, r/ri

radius of pore related to P,

saturation
scaled saturation, (S—Sr)/(l-sr]

effective saturation, S.

saturation at the fictitious
inflection point of the
retention curve

12

Dimension

Lz
none

none

FL~

none

none

none

none
none

none

none




Symbol Description

Sr residual saturation, 1l-a-b

o contact angle between the
fluid and solid boundary

Y specific weight of the fluid

v vector differential operator

o coefficient of surface tension

@ porosity of the porous medium

113

Dimension

none

radian

none



APPENDIX B

STEPS
TO REDUCE THE SYSTEM OF FOUR EQUATIONS
TO A SINGLE NONLINEAR EQUATION WITH Sr AS THE UNKNOWN
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Let P, and S;, P, and S,, P3; and S;, and P, and S, be four
pairs of experimental data. Substituting those values into

the equation

where Sm is the maximum saturation with Sm < 1.0, and taking

the logarithms of the equations, one has a system of four

simultaneous equations

S; - S S = 5,
- - r, bm m
In P, = 1n Pf m 1n —————a——-)-'- o In ——b——) (1)
S, - 8 S - S
- _ T bm m
In P, = 1n Pf m 1n —-——?—)'*' a 1n ———r) (2)
S - 8 S = S3
- " T bm m
In P; = 1n Pf m In = )+ = 1n ———Tr——J (3)
Sy, - 8 S_ - S84
= _ T bm m
In Py = 1n Pf m ln(—q—a———)+ = In ———B———) (4)
Subtracting Equation (2) from Equation (1) yields
S, - S S = §:
Pl T|, bm m
ln(-p—z— m 1n —ST—_—'S';)"‘ '——a ln(w) . (5)
Similarly,
Sy = S8 S. =8
Pa) _ X r|, bm m :
ln(f:]- m ln(gg—t*§;)+ = In g;—:—gr) (6)
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From Equation (5), one may obtain

P
i} 1n[ 5}
m : (7)
Sz = SI‘ b Sl'll = 51
ln[gl - gr)+ a 1 Sm - Sz)

Similarly from Equation (6),

P
- 122 H
®s = Sl p S " Ss '

Equating Equations (7) and (8), one has

p;[ p!

In[p2) i In| )
y Sz - S b Sm - 5, y Sy - Sr . b i Sm - S;
B 35, S E In Sm - S, n S: - gr a Em - S,

or expressed in terms of b/a one has

Sz = 8§ Sy - S

e e Rk et
T RN AL Ps), [om = 51 ' .

In{p}]1n W) n(p ]1“(3_“7‘3?)

116




Similarly, from the system of Equations (2), (3), (4) and (1),

Py Ss - 5, P, S1 - 5,
b 1n ?—l—) In g—z——_-—g; - lﬂ(P—a— 1n S:—T_‘S—; (10)
a 5 - S, 5 - S .
P, m - P, m
o(p) s elE (s

Combining Equations (9) and (10), one has

tn(pk tn( 53]

Sy - Sr S, = Sr

il o G
1n %’-;-} 1n{§f~]

Srn - 83 Sm - 83

tn 2o “ (s—ﬁ‘)
1a(p}) tn{p]

S3 - S Si - Sr

) 1n (S——-—-—S—z_ ) - ln?ﬁ_ r)
' tn(52) (53]

or,
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In |5y
S2 - Sr
S1 - S
1n L B 1n
1n (p;
Sy - SI‘
% & 5.
|_ T = =
P —
[ in{p]
Sm - S3
m Sn
In In

That may be simplified by letting

| 1n(3)]
=
= o3
A= 1n|\ 0 . , B
(5
5. - Sz}
(Sm Y
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Bl =B - 1“(%%) , and B2 = B * 1n(§%)
Then,
Al Bl
S, - 8 S; - S
S - gr Sz - Sr
.V B2
Su - ST Si - Sr
Ss - Sr Sy - S

This is a nonlinear equation with S, as the only unknown.
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APPENDIX C

COMPUTER PROGRAM
FOR DETERMINING THE PARAMETERS OF THE RETENTION FUNCTION
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ePoAIz C NOTE: THE FIRST SET OF INPUT DATA 1S THE

pEes2: C , INITIAL GUESS .DF THE RESIDUAL SATURATION.,

0003: C S5R(=X(1)), ANIT THE MAXIMUM SATURATION.

Be@a4t C SM, WHICH ARE TO BE TAKEN IN BY THE INPUT

2080853 C ‘ WNIT SPECIFIED IN THE STATEMENTS:

200061 C READ(1,99)XC1),SM

2800873 C 99 FORMATC2¢ 1Xs F5e 2))

200881 C THE SECOND SET OF INPUT DATA IS THE COR=-
 3e009sC RESPONDING VALUES OF CAPILLARY -PRESSURE. P»

PeB1OLC AND SATURATION, S». WHICH ARE TO BE TAKEN IN
a0811:C BY THE INPUT UNIT SPECIFIED IN THE STATEMENTS:
p8012:C READC2, [1)P1,P2,P3,P4, 51,52,53, 54 b
seei1ac - - o1l FORMATCACIX, F6e 22, 401X F5. 1)) e
@8elasC ) : 3 T '

oR0 151 PROGRAM FP :

2od1 61 DIMENSION X(1)

e0n1 71 COMMON AlsA2sB1,B2, 51,52, 53, 544Q1,23

200183 READC1,99)XC1 ), 5™ ! - :

00019199 FORMAT(2¢1X, F5. 33 ) ¥

po@eA: | _Rs.nntzplI)PhPe.Pa.PhSI.SbSS;s& . ¥ &
22821111 - FORMAT(A{1X, F6e 23, 401X, F5.3)) .
200221 VRITE(61,9T) . i
28823297 FORMAT(1X, *INPUT DATA FOR THE RN FOLLOVs 1) k
pe@ 24t _ WRITEC61,983X(1), 54

200825198 FORMATC1X, "INITIAL APPRIXIMATION OF SB a‘-o FSa 3.3:(.
208261 I "MAXIMUM SATURATION =*, FSe3//) o
20627 . WRITEC(6L,13) : E e Y : ‘ I
00828113 FORMAT( 3X, *P*, 5%, °s's I SERE NP : 2 2
286291 WRITEC 612 333P1, 51 "o B R

-LEET-T WRITEC61,33)P2,52 . - .

o631 - WRITEC61,333P3,53 ¥ NG g,

L1k F-1 WRITE(61,33)P4s 54 S E s
2083333 FORMATL1X, F6e 24 1Xs F543) E !
P04z A=ALOGCCCSH=54)/ (SH~ sn)nmt,oatn/van;

790351 1=ALOGCC(SM=52)/ ( SM=53) )sw(ALOGCP&/ P1))) ¥
#8036 BwALOGC CC5M=53)/¢SM=54))®w (ALOG(F1/P2)))

20037 -m.ouu(sn-snusn-ssng-tmmvaun L e

oe6383 Bl=EBxALOG(PAs/P1) ) ety

28339t B2=BeALOGC(P2/P3) ; .
28040: Al=A®ALOGC(PI/PA) : ) P ' :
gaeal: A2=A®ALOG(PI/P2) : e o
PeBA42s CALL Nam..mu,a.se.hxn.z-:n ) . ; % 5
80043 SR=X(1)

L.-ELTH C=( (ALOG(P3/P4) )™ALOGCQT )= (metpvvantmuman
PeB451t 1/ CCALOGC(P1/P2))4ALOGC CSM=53)/ (SM=54) )~ (ALOG(P3/

pesabs 2Pa) I#ALOG((SM=-SI )/ (SM=58)))

@eoarts - xm(m.astmnsz:a/{mncmnc-u.oetcsr|-5| Y CSM=52)3)
@esas: a-tsu-smzu.m: :

L LR B=SM=SR=A

LEEEET D=ALOG(P1)+XM*ALOGITS1=SRI7A)~ mmzn-maum-snra:
8005kt PF=EXP(D) %

@52 -  WRITECG6L,77)

80853177 FOPMAT(///7/1Xs "PARAMETERS OF THE RETENTION CURVE FOLLOWe'*)
200541 WAITE(61,19)SRsAs B, XM, PF [
20055: 19 FORMATC(/ /1%, "SR= ", K5, 3, 4%, YA FS- 2. ﬂra '5‘ 'n !'5- 3s 84X,
988561 1'M=", F5s 3, 4X; "PF=*sFTe 3)

300571 END : 2 .

2008581 SUBROUTINE AUXFON (X, YsK) = i

BA8591 DIMEN SION XC1)

00063+ coMmMoN Mane.al.sa.suse.ss.sa.n:.ns

LLETTR: TaX(1)

908623 Q1=(52=T¥/(51=-T) - e

209 63s Q2s(S51=T)/(S4=T) : o =

208641 ' Q3=(S4=T)/(S3=-T) ! "

[LLELT Q4=¢S3=-TI/(S2=T) s

800661 Y=(Ql®aal)=(Q2enB2)~ manae:-mm-an

Be86T: RETURN 2 :
Pe0651T IND = ' "\ ’
280691 SUBROUTINE NONLIN(N.NUMSIG-MAXIT, IPRINT,X, EPS)

20870 REAL X(3@),PART(38), TEMPY{ 38, COE(30, 31), RELCON, F .
o7 L FACTO R, HOLDsH, FPLUS, DERMAX, TEST i
288721 . DIMEN SION lsua:ac;.moxumu.au

20873: DELTA=1s TE=T

200741 RELCON= {3, E+Pwa{=NUMS1G)

PA075¢ JTEST=1 ;

808761 IFCIPRINT. EQs 1)PRINT 48 !

280771 48 FORMATCIRI)

PRBTE D0 709 Mml,MAXIT )
#8079 19UIT=@ S g

L FMAX=Ba

289811 Ml=M~-1 3

Deas 21 IFCIPRINT «NE- 1) GO TO 9
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eo883: PRINT 49:MI, (XC1)ad=1,N) s SRR
PEEBA1 A9 FORMATC15: 3E1B. 8/(E23.8, 2E18.8))

BO@B5s 9 I0 12 J=1i,N

BOBBEs 10 LOOKUP (l,J)myJ

29087 [0 588 X=1,N

200881 IF(K=13134,134,131 : - -

800891 131 KNIN=K=1

8209a: CALL- BACK txxm.u.x.:sua.ms..l.ooxum

200911134  CALL AUXFON(X,FaK) 3

28892 FMAX=AMAX | ( FMAX,ABSC(F))

206931 IF (ABS(F) -GE. EPS) G0 TO 1345

e0094s IQUIT=IQUIT+] °

880951 IFCIQUIT «NEe N) GO TO :345

288961 Ge TO 725

2989711345 FACTOR=. ulr.«n o

208981135 I1TALLY=8 ) Cos < :
feg99s D0 288 I=K.N g <75

e810a: ITEMP=LOOKUP (K,1}

ga1dl HOLDwXCITEMP) .

eole2: PREC=S.E~-6 - ' &
P10 ETA=FACTORSABS(HOL D)

LEIET HeaMIN1 (FMAX,ETA) ; ok =

801051 IF{H LT+ PREC) H=PREC i
G186t XCITEMP)=HOLD#H . | i “ e =
es1e7: 1FCK=1) 161,161,150 :

@91@83151  CALL BACK (iﬂllﬂaﬂoﬂ;lSU&CﬂbLﬂﬂkU’) i
201291161  CALL AUXFON (X, FPLUS/K) %

goLlas PART (ITEMP)=(FPLUS=-F)/H

L JURE X¢1TEMP)=HOLD 3 EN
eaLlR:e IF(ABSCPART(ITEMP)).LT. BELTA) 69 T0 L9@ g
296113 IF(ABSCF/PART(ITEMP) )eLEs la E+15) GO TO 268
901143198  ITALLY=ITALLY#( . ;

881151200 CONTINUE i

2011861 IFCITALLY.LEsN=K). GO TO 202" .

281171 FACTOR=FACTOR® 1@, 8E+00 - :

201181 1FC(FACTOR, +GTe 1le) GO TO 778 i e
e8119r GO TO 135S g Iy T .
20120:202 IF(K-LT.N) GO TO 203 o

ear21: IFCABSC(PARTCITEMP)).LT. DELTA) GO TO 775

eai22r COECK.N+1)=@,BE+80 . b
281231 KMAX=ITEMP, ~ Vi g = REae
281241 GO TO 509 B 5 o i $
PEL25:1283 KMAX=LOOKUP(K.K) O . :
- 881263 DERMAX=ABS(PART(KMAX)) ; Foacah g
99127 KPLUS=K+1 & !

ea1L281 D0 210 I=KPLUS.N

BE1291 J SUB=LOOKUPC(K, 1)

ealapr TEST=ABS({PART(JSUB))

801311 IF¢TEST.LT. DERMAX) GO TO 209 R

@ol3a: DERMAX=TEST : ]
82133 LOOKUP(KPLUS, I )=KMAX

. @134t KMAX=J SUB e J

@3135: GO ™ 218 .

221361289 LOOKUP(KPLUS, 1)=J5SUH
ea137: 218 CONTINUE S ) '
08138: 1?(985(PRRT(K!&X))-!§. B-jﬁi GO TO 775 i

821393 ISUB(K )=KMAX gy, ; :

ea140: COE(H,N+1)= 2.2E+08 i
ealals DO 228 J=KPLUS.N !
2aLa2: JSUB=LOOKUPL{KPLUS,J)

2a143t COE(K.J SUB)--PAHT(JSU‘B)IPI\HT(KH&)() i

@o1aas COECK.N+1)=COECK,N+1)+PART(JSUB)#X (J SUB)

201452228  CONTINUE .
001461588  COECK,N+1)=(COECK,N+1)=F)/ PART (KMAX)+X (KMAX)

Ba147: XC(KMAX)=CQO E(N,N+1) _
gat14aB: IF(N-EQ.1) GO TO 618
2231491 CALL BﬁCK(N-!:H.X:lSUE-GJLLODKU’P)

ge15@a:61@ IFtM~1Y6508, 650, 625 '
881511625 D0 639 I=Q,N

PB152: lrmssnmm::-xc:n.a‘r.aasmcnnnnmm 0 10 649
@2153:1638  CONTINUE . 1

pB154: JTEST=JTEST+1 i ;
291551 IFCJTEST=3) 658,725, 725

@0156:649 JTEST=1

#8157:65¢ [0 668 Ial.N

021581668  TEMP(1)=XCI)

861593788  CONTINUE

2a1 603, PRINT 1753

816111753 FORMATC/* NO CONVERGENCE. MAXIMUM NUMBER OF :'rznmx:)us'
Pa1 623 1* USEDs*)

291631 IFCIPRINT .NE. 1) GO TO 829

88164 PRINT 1763
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2816511763
@a1661

nY1 671
2916812

28] 691725
P@17017TTT
BA1T1e
281721750
PBLT3:
Bo17as

#8175:7788

AL T 6
2217718777
#3178% 751
o8] 79:
pal18a:
2181:7515%
ga182s
RO1B3:2775
Pe1B41 752
PALES
231863
@@187:7528
eD188:1800
201891
eai19ar-
29191
po1923
29193
20194
P95
aA196t
ea197:
20198:
AB19%91
222001
2p2a111a9
pR2e 21
PR2031 200
AB 234
Pa2aSt

FORMAT(® FUNCTION VALUE AT THE LAST APPROXIMATION FOLLO®
1'WS:'/)

IFLAG=] ~

G0 TO 7777 * gt
IFCIPRINT «NEe 1) GO TO Beo.

D0 750 K=l.,N

CALL AUXFON (X, PARTC(K),X)

CON TINUE

IF(IFLAG «NE. 1) GO TO 8777 =

PHINT 7788, (PART(K) K= 1,M) . : s
FORMAT(3E20.B) ° : ’

GO TO des - p:

PRINT 751
FORMATC//*
1* VALUE®)
PRINT 75|5.tpapr(x:.x-l.n:

FORMAT(® AT THE FINAL aﬂpmxxunnnn FOLLDUS: *//C3E20:8))
GO TO B@O . :

PRINT 752 ;

FORMAT(//* MO blnsn Jnl:ns!m 15 smaut.np. ;'r_R'f. A Dl FFEREN *
12T 3 “ a ) Lt

PRINT 7525

FOPMAT(® SET OF DATA OR q:'rrznm'r mrrmi. nPme:mnou.
MAXITaM14+1 : .

RETURN _ N o
END =it o i v
SUBROUTINE BACK (mm.u.x‘lsus.mt;moxum
DIMENSION X(32),COE(38,31)

DIMEN SION 1SUB(38).,LOOKUPC30. 38)

D0 28@ KK=1,KMIN
KM=KMIN -KK+ 2 )
KMAX=1SUB(KM~1} /A

N(KMAX)=@, GE+00 o . .
00 1806 J=KM,N ° ; o e
J SUB=LOOKUP(KMsJ ) Eat
xcxnax:-xcmnx)ocaztm-l...usun)-x(.rsum g
CONTINUE . : e
xcxmx:-x:xmxnmz:txu-I.nu} = - -
CONTINUE .
RETURN _ s
END .

GONVEBGENCE H.AS BEEN AGIIEUED- THE !"I.NCTIDH'

. o “

Ezample of Computer Print-Out

INPUT DATA' FOR THE RN FOLLOWY

INITIAL APPROXIMATION OF SR =", |29 MAXTHMUM SATURATION = .B%@

%

-] 5
727.38 .262
22.19 385 A
18.34 «5287 . . ¥
1888 753 : _ it . .
. 1= 22080@EQE~-21
1 1. 23241 71 6E-81
2 1. 23339566E=-01
3 12333947 6E-01

CONVERGENCE HAS BEEN ACHIEVEDs THE FINCTION VALUE
AT THE FINAL APPROXIMATION FOLLOWS1

2.91238305E=11 =

PARAMETERS OF THE RETENTION CURVE FOLLOWt

SR= . 123 A= 236 B= .531 M= . 188 PFe 23.0214

123




APPENDIX D

EXPERIMENTAL DATA
PERTAINING TO THE FIGURES
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Silty Clayey Sand (Figure 4(A))

Drainage Imbibition
m= .797 Sr= .673 Sc= + 935 m= 1,42 Sr= 657 SC= .873
Pf= 53.7 a = .249 Pi= 49.2 Pc= 63.1 a = .164 Pi= 10.6
b = .078 b = .089
P [cm HzO) S p [cm HzO) S
8.8 .998 326.2 « 712
18.6 .992 177.4 i 74l
28.4 .987 99.4 771
38.1 .981 57.4 .801
60.3 .903 34.5 +833
el .869 6.5 .880
84.9 . 845 0.0 . 890
100.9 821
118.8 .787
145.0 IS
179.7 w0
326.2 112
J - 24 (Figure 4(B))
Drainage Imbibition
m= .567 S_= .354 SC— .841 m= .318 S _= .430 Sc= .806
P.= 22.4 a = .384 P.= 16.1 P.= 26.3 a= ,178 P.= 12.3
£ i f i
b = ,262 b = .352
P (cm o0il) S P (cm o0il) S
1.6 +995 39.6 .510
7.6 .958 2917 s 575
10.2 937 2545 .640
13.9 870 18.7 .705
182 .806 14.3 .770
233 ¢ AT 10..3 « 335
28.5 .676 6.5 .899
34,2 .603 0.2 .960
4242 539
49.3 .507
54.8 .469
67.3 .446




J - 17 (Figure 5(A))
Drainage Imbibition
= ,169 Sr= .128 Sc= . 549 m= ,188 Sr L2 SC= .562
= 27.4 a = ,260 Pi= 22.3 sz 23.0 a 235 Pi= 16.7
b = .502 b I
(cm o0il) S P (cm o0il) S
15.0 .809 33.1 .203
15 .1 .762 273 262
16.9 .699 22,1 .385
23.3 + 515 1843 .507
29.6 +331 152 .630
573 + 802 10.8 « 755
53.7 .139 0.0 .885
J - 50 (Figure 5(B))
Drainage Imbibition
m= .098 S_= ,096 S _= .523 m= ,156 Sr= w12 SC= D7
P.= 21.5 a = .,388 P.= 21.1 P.= 16.8 a = .324 P.= 15.2
f 3 £ i
b = .392 b = .440
P (cm oil) S P (cm o0il) S
14.6 .853 23.3 w187
171 .809 19.5 .297
19.4 : LT 1753 .406
20.5 .668 15.5 « 515
20.8 « 355 13.9 .624
21.9 .429 0.2 .876
225 « 316
2947 .124

128




G -1
Drainage (Figure 6 (A)) Rel. Permeability (Figure 6 (B))
m = ,391 Sr= .161 Scm .762 Total Permeability
Pe= 2.17 a = .594 P.= 2.15 = 2.482 x 10”° cm?
b = .245
P (cm Hg) S K. S
0.804 .980 1.000 1.000
1.41 1S .340 .900
1.7k . 855 .167 .800
201 .800 .078 . 700
F i | .740 .035 .600
2.41 .680 .014 .500
7 .580 .0045 .400
f 3.02 «515
| 3.22 .460
' 5.02 . 395
4.72 .290
6.53 .210
8.04 .195
G - 4
Drainage (Figure 7 (A)) Rel. Permeability (Figure 7 (B))
m= ,208 Sr= . S SC= .947 Total Permeability
Pe= 3.19 a = .636 P.= 3.28 = 0.207 x 10°° cm?
b= .007
P (cm Hg) S Kr S
303 .999 1.000 1.000
323 .970 . 550 .900
S 53 .925 27l .800
3.453 .870 110 .700
3.59 .799 .033 .600
3.79 . 734 .006 .500
3.99 663
4,19 .618
4,60 .538
5420 .487
6.01 .442
6.92 .407
8,23 G g
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G-5 (Figure 9(A)) Crab Creek Sand (Figure 9(B))
Drainage Drainage
m= ,279 Sr= .238 SC= .830 ||lm = .354 Sr” « 173 Sc= .818
Pe=3.76 a = .673 P;= 4.00| Pe=16.9 a = .723 P;= 18.1
b = .089 b = .104
P (cm Hg) S P (cm oil) S
B:i22 .995 12,0 .990
3.52 .950 13.5 .986
3. 72 .915 14.5 .980
3.92 .854 15.5 .974
4.12 .789 16.0 .948
4,32 . 724 17.0 . 895
4,52 .653 1762 .875
4.77 .583 21.0 .638
5.08 «D23 24.8 .479
5.38 .462 36.9 o217
5.83 .407 677 .188
6.48 .362 136.6 «158
7.14 «327
8.04 .291
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