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7 .4HYDRAULIC FUNCTIONS OF SOILS FROM PHYSICAL

EXPERIMENTS AND THEIR APPLICATIONS .

by

Charles Su and R . H . Brooks

ABSTRACT

Based upon the Pearson Type VIII distribution function, a

general retention function which relates the saturation to th e

capillary pressure in disturbed soils has been discovered . This

simple and yet complete function has been shown to describe pre -

cisely the imbibition as well as the drainage branch of the r e-

tention curve . It is defined by four readily assessed parameters

. that either have physical significance themselves or may be use d

to determine some hydraulic properties of the soil .

With the assumption that the Burdine integrals are adequate ,

a relative permeability function has been derived through the

substitution of the retention function for the integrands in th e

Burdine integrals . The permeability function is expressed in

terms of the incomplete Beta function ratio whose value may b e

conveniently found in some mathematical tables .

Further, a general pore-size distribution function of soil s

has been obtained from the retention function . The derivation of

the pore-size distribution function enables more rigorous examin -

ation and further exploration of the theories concerning wate r

movement in partially saturated soils . In this respect, an ex-

planation of the phenomenon of air entrapment during imbibition



has been offered through an energy concept based upon the pore-siz e

distribution function along with the retention function .

Two criteria of affinity have been established for porou s

media . Media are said to be affine if their corresponding pore-

size distribution parameters are identical . The scaling factor

for the external dimension of the model has been chosen to b e

the capillary pressure head at the inflection point of the reten-

tion curve, whose value is always finite .

The effect of the pore-size distribution parameters upon th e

retention, permeability and diffusivity curves has been analyzed .

The analysis shows the parameter governing the downward concavit y

of the retention curve is as important as that governing the up -

ward concavity when it comes to computing the permeability value s

from the retention data .

A new and simple apparatus and procedure for obtaining th e

retention data of soil water in the laboratory have been developed .

The technique can expedite the acquisition of the data for eithe r

the drainage or the imbibition branch of the retention curve .
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HYDRAULIC FUNCTIONS OF SOILS FROM PHYSICAL

EXPERIMENTS AND THEIR APPLICATION S

by Charles Su l and R . H . Brooks 2

CHAPTER I

INTRODUCTION

Engineers dealing with watershed hydrology, land drain -

age, and irrigation are often confronted with difficulty o f

accurately describing the complex soil-water system . No t

only is the soil-water system in nature complicated by the

variability of soil properties in space, but the chemical

and biological interactions on these properties as functions

of time defy description . In spite of the difficulty, much

can be gained by considering the soil-water system as one

in isothermal, stable and homogeneous conditions . But even

for this ideal soil-water system, it is still not a facil e

task to describe water movement in soils, owing to th e

strong nonlinearity among the variables that control th e

storage and movement of water in the porous space .

With today's high-speed, large-capacity computers and

with the modeling technique presently available, it is no t

impossible to investigate thoroughly the subsurface wate r

movement for a particular set of boundary conditions pro-

vided the properties of the soil-water system can be define d

in functional or tabular forms . But it will be difficul t

to construct a generalized model and predict its performanc e

I . Research Associate, Agricultural Engineering Department, Oregon Stat e

University

2 Associate Professor, Agricultural Engr . Dept ., Oregon State University



for a wide range of soil properties when little is known

about the range that may be encountered in the field .

The functional forms of general relationships amon g

the variables governing water movement and storage in soil s

are highly desirable, particularly if the functions involve

meaningful and measurable hydraulic properties of the soil .

One advantage of the functional relationships is that com-

putation time and computer storage space for the solution s

of flow problems are greatly reduced, and the input data

to the computer need only to consist of a few hydrauli c

parameters of the soil . Furthermore, if the range of th e

values of soil hydraulic parameters is known, one may deduce

a family of solutions that would approach what is obtainabl e

from analytical solutions .

In particular, the functional forms are needed in th e

solutions of problems that employ Darcy's law for eithe r

steady or unsteady flow . After Darcy (1856) first propose d

his empirical law governing the flow of water in saturated

sands, Buckingham (1907) suggested that Darcy's law woul d

be valid for partially saturated media as well . His sup -

position was later verified experimentally by Childs and

Collis-George (1950) . Therefore, in partially saturate d

media, the constant hydraulic conductivity needs to b e

redefined as a function of soil-water content . The com-

bination of Darcy's law with the variable hydraulic con-

2



ductivity and the equation of continuity brings about a

general - partial differential equation for water movement-i n .

_partially saturated soils . The flow equation may be solve d

analytically or numerically depending upon the complexity o f

the system . For complex systems, analytical solutions ar e

not obtainable owing to the strong nonlinearity of th e

equation .

Inasmuch as the relationship between hydraulic con-

ductivity and soil-water content is difficult to obtai n

experimentally, many researchers have resorted to predictive

methods of evaluating this relation from the measured wate r

retention curve . Some of the methods have been experimentally '

verified and seem to give reasonably good approximations . '

Thus, if a general relationship is available for the wate r

retention curve, it follows that a general expression ma y

be obtained for the relation between hydraulic conductivit y

and soil-water content, which includes the properties o r

constants of the water retention curve .

Functions for both hydraulic conductivity and retentio n

of water have been proposed independently . In a few cases ,

researchers have proposed dependent relationships only to

become .either oversimplified approximations or highly com-

plex , , exact expressions that lose their practicality . In th e

latter case, too many constants make the relationship s

difficult to assess by indirect methods, and it become s

3



prohibitive to relate the constants to easily visualize d

or measurable properties of the soil .

It is the first objective of this thesis to present

simple and yet complete functional relationships amon g

soil-water content, hydraulic conductivity and capillar y

pressure . The relationships include meaningful properties o r

parameters of the soil, which will be useful in characterizin g

the soil hydraulically . The second objective is to develop a

new apparatus and procedure which will expedite the acquisi-

tion of the retention data in the laboratory .

4



CHAPTER I I

REVIEW OF LITERATURE

A . Water Retention Functions

Brooks and Corey (1964) appeared to be the first t o

develop a convenient function that relates capillary pressur e

to saturation for media with relatively wide ranges o f

pore-size distribution . In their equation ,

Di
~'

Se =
PJ

	

for P > Pb

and S e = 1 .0

	

for P < Pb

where S e is the effective saturation defined as (S - S r) /

(1 - S r ), S r is the residual saturation, Pb is the bubblin g

pressure related to the largest pore size forming a con -

tinuous network of flow channels within the medium, P is th e

capillary pressure, and A is an index to the pore-siz e

distribution . The derivation of this function emanated fro m

a large number of experimental data of the drainage branch o f

the retention curve . The two parameters of the function ,

namely, P b and A, have physical significance and have bee n

used as criteria of similitude . Since Equation (2-1) is a

step type function, it fails to describe the downwar d

concavity of the retention curve in the region of high

saturation . In general, the function can describe reasonabl y

5



well the experimental data in the portion of the curv e

showing upward concavity . For the media with ill-define d

bubbling pressure, i .e ., with a Pb being practically zero ,

the use of Pb as a characteristic length for scaling present s

difficulty .

King (1965) developed a complicated equation fo r

describing both the drainage and imbibition branch of the re-

tention curve . To enable the "plateau" of the retentio n

curve for small values of capillary pressure to be equall y

well described, he managed to produce the hyperboli c

function,

F

	

~ + Ej -

S =

	

cosh_(pT	 :	 ,	 	 (2-2 )

cosh ( -P o

	

+ c +

where S, 6, E, y and Po are parameters whose values depen d

upon the properties of the water and the soil, and th e

hysteresis . Each of these parameters is subject to a

certain constraint such that Po > 0, S < 0, cosh E

	

y > 0 ,

1 >

	

> 0, and s > O . Furthermore, as P approaches zero ,

S approaches 6, and as P approaches infinity, S approache s

6(coshE -y )
cosh c + y

lim s = 6. (coshE -y )
P

	

cosh E + y
or

6



King pointed out that the lower limit of S should correspon d

closely to the residual saturation defined by Brooks an d

Corey (1964) . Also, the function may be transformed so that

the capillary pressure becomes the dependent variable . Th e

transformation yields

P = Po

	

n [y ( .66	 -	 S
2

	

a

	

8 - s

	

- 1

	

- E

	

. (2-3 )2 6	 +	 s
1

To determine the parameters of Equation (2-2) or (2-3) is b y

no means a simple task as King admitted . With its stron g

nonlinearity and dealing with experimental data, even a

system of five simultaneous equations in terms of the five

unknown constants would be difficult to solve because of th e

uncertainty of the five initial guesses and the possibl e

experimental errors in the data . A nonlinear regression

analysis would be even more difficult . The application o f

Equations (2-2) and (2-3) is undoubtedly limited .

Upon examining several distribution laws available from

general probability theory such as the incomplete gamma dis-

tribution, the lognormal distribution, and the first asymp-

totic distribution for the largest values, Brutsaert (1966 )

concluded that although the use of a given probability la w

might be justified on a theoretical basis, the preference o f

one law to another in most cases rested upon purely heu-

ristic grounds . According to Brutsaert, from a practica l

7



viewpoint, the selection of the probability law shoul d

depend upon not only the porous medium but also the natur e

of the problem . The mathematical manipulations of thes e

probability density functions, by and large, cannot b e

easily performed . The problem in assessing the parameter s

of those functions appears prohibitive . Thus, Brutsaer t

proposed a simple empirical distribution function of hi s

own . He presented the relation :

S
e =

a

a + (c/r)
(2-4 )

where S e is the effective saturation, r is the pore radius ,

and a, b, and c are constants . This function is somewha t

similar to that of Brooks and Corey (1964) if the variabl e

of pore radius is replaced by that of capillary pressure .

He claimed without giving substantial evidence that a muc h

better fit with experimental data could be obtained with

Equation (2-4) than those proposed by Brooks and Corey

(1964) . It should be noted that no physical significanc e

was attached to the constants of the equation .

Laliberte (1969) presented a pore-volume probability

density function, s e (r), which would yield some mathematica l

expressions for the relation between capillary pressure

and saturation . He postulated that E(r), a transformatio n

of s e (r), was normally distributed such tha t

8



rf s e (r)dr =

	

exp(- C 2 )d C
VT - °0

where

	

(r) _ Crb /r) + y

or

	

C(P -) = P . a+ y - f3

and a, 6, and y are constants depending upon the porou s

material, r is the radius of pores, rb is the radius o f

pores corresponding to the bubbling pressure, and P . is th e

scaled capillary pressure with the bubbling pressure a s

scaling factor . When the pore-size distribution function ,

dS e
~- = s e (r) ,

is combined with Equation (2-5), the n

0

Se(r) =,7
f_co

exp(-C2)dC +,,1 J exp(-C 2 )dC . (2-7 )

The first term on the right-hand side is equal to 0 . 5

whereas the second term is one half the nonelementary

probability integral whose solution is the error function .

Since the error function is an even function, it is necessar y

to rewrite Equation (2-7) as follows :

S e = 0 .5(1 - erf C)

	

S e < 0 .5

(2-5 )

(2-6 )

9



and S e = 0 .5(1 + erf )

	

Se > 0 .5 .

	

(2-8 )

To find the corresponding values of capillary pressure and

saturation, Equation (2-8) together with Equation (2-6) i s

used . With respect to the evaluation of the constants, a ,

8, and y, Laliberte presumed a correlation between thos e

constants and A, the pore-size distribution index given b y

Brooks and Corey (1964) . Also, he assumed the retention

curves defined by his functions and by Brooks and Corey' s

function would become merged for large values of capillar y

pressure . It is not surprising that a better fit has bee n

found with Laliberte's function for sands since the value s

of a, 8, and y are based upon a well defined value of A ,

the pore-size distribution index . However, for soils with

wide ranges of pore-size distribution, either the correlatio n

between the parameters and A breaks down, or A itself is no t

sufficiently descriptive . At any rate, it seems that th e

proposed probability density function should employ othe r

independent methods for evaluating its parameters in orde r

to determine its generality . Apparently, the evaluation

of the parameters is not a simple operation to perform .

To offer physical justification for the relatio n

between capillary pressure and saturation, White (1970 )

introduced several physical models . He partitioned th e

drainage branch of the retention curve into four parts an d

named them : (1) the boundary effect zone, (2) primar y

10



transition zone, (3) secondary transition zone, and (4 )

residual desaturation zone . For each of those four "zones "

a theory was set forth to interpret the desaturation mecha-

nism within it . He then formulated those theories in such a

way that the resultant equations represented the relatio n

between saturation and capillary pressure . A total o f

thirteen parameters are required to define the entir e

drainage branch of the retention curve . It is obvious tha t

his functions are of little practical value owing to th e

large number of parameters to be determined . However, the

theoretical relations fitted experimental data quite well a s

White pointed out . One may conclude the high contac t

portions of the curve on either side of the inflection poin t

are inherent properties of the retention curve .

B . Computational Schemes for Determinin g

Partial Hydraulic Conductivity

To evade the difficulty of directly measuring hydrauli c

conductivity as a function of saturation in the laboratory ,

numerous attempts have been made to formulate some sort o f

computational scheme so that the partial hydraulic con-

ductivity may be acquired through the knowledge of othe r

properties of a porous medium which are easier to measure .

Such properties should be representative of the geometry

of pores and their distribution in space . Since the micro -

11



scopic structure of a porous medium is too complicated t o

deal with in exact mathematical terms, simplifying assump-

tions on the disorder existing in the medium are necessary .

1 . Statistical approac h

Childs and Collis-George (1950) adopted an approach fo r

finding the relation between hydraulic conductivity and th e

pore-size distribution of a porous medium by assuming tha t

pores of various sizes were randomly distributed in th e

medium . Their approach was based upon the concept of a por e

sequence that was obtained by cutting the medium into two

sections and then rejoining the two sections at random .

They then proceeded to evaluate the contribution to th e

hydraulic conductivity made by the pore sequence . Childs

and Collis-George considered the group of pores on on e

section having an average size p and range of size Sr, an d

the group of pores on the other section having a mean siz e

a . Then the area of the pores with average size p was give n

by

Ap = F(p) S r

while the area of the pores on the other surface b y

A6 = F(a)S r

where F(r) is a pore-size distribution function . Since th e

two sections come together randomly, the area of the junctio n

12



occupied by the pore sequence is simply the product of A p

and A6 , o r

Ap,o

	

F(p ) Sr • F(a)S r

It was further assumed that the resistance to flow increased

rapidly as the pore size decreased, the resistance of th e

larger pore in the sequence could be neglected, and only the

contribution of the direct pore sequence to the hydrauli c

conductivity should be considered . If one takes a to b e

smaller than p in the sequence, the number of pore sequence s

occupying the area Ap}a is proportional to Ap}a /v 2 . Accord -

ing to Poisueille's equation, the rate of flow throug h

each pore sequence with a as its controlling pore size i s

proportional to a' when the hydraulic gradient is taken as

unity . Consequently, the contribution of this controllin g

pore size to the hydraulic conductivity i s

SK = Mo 2 F(p) Sr • F(a)S r

where M is a constant of proportionality to be determine d

experimentally . Summing up the contribution of all possibl e

pore sequences whose controlling sizes cover the entire

spectrum of the pore-size distribution, one may obtain th e

hydraulic conductivity function ,

13



R R

K = M

	

E a2 F(p) Sr • F(a)6r

	

(2-9 )

p=0 cs= 0

where R is the largest pore size which remains full o f

water in a partially saturated medium . The pore-size dis-

tribution function is determined from the retention curve

which is divided into a number of divisions of capillary

pressure values . The greater the number of divisions, th e

more accurate the computed values of the conductivity shoul d

be . In this case, the pore-size distribution was treated a s

a discrete model although it could have been treated as a

continuous function . It should be noted that M in Equatio n

(2-9) is a matching factor obtained by matching the experi-

mental and theoretical curves at a given point .

Marshall (1958) also presented an equation for th e

relation between permeability and the pore-size distributio n

of a porous medium . He assumed that the necks connectin g

the pores in the medium controlled the flow rate . Sinc e

the alignments of pores were often imperfect, allowanc e

was made for a reduction in the cross-sectional area of th e

necks . On a fractured section of the medium where A and B

are the two exposed surfaces, the area of A or B is regarde d

as consisting of n sub-units of area 1/n . Each sub-unit o f

surface B is further subdivided into n sub-units of are a

1/n 2 . Each of these sub-units has the same volumetri c

water content, 0, and contains pores of the same radius .

14



The magnitudes of the pore radii are arranged in descendin g

order, i .e ., r 1 > r 2 > r 3 . . . . > rn . The sub-unit o f

surface A which has pores of radius r l comes into contact

with one of the larger sub-units of surface B . On th e

average, the cross-sectional area of the neck of the connect-

ing pores would be 0 times the area of the smaller pore .

Hence, the area of the neck for each of the smaller sub -

units of surface B in contact with the first sub-unit o f

surface A would be, 071- 1 2 , 6irr 2 2 , 6 ff r 3 2 ,

	

O rrrn 2 .

Similarly, the second sub-unit of A containing pores o f

radius r 2 would give neck areas of 6ffr 2 2 , 071. 2 2 , O rrr 3 2 ,

OTrr 4 2 , 	 enrn 2 . The series continues in this way unti l

the nth sub-unit of surface A is counted . This last sub -

unit would provide a neck area of 6n1rr n 2 . The average

cross-sectional area of the necks for all the smalle r

sub-units of surface B with area 1/n 2 i s

eTr[(r1 2 + r2 2 + r3 2 + . . . . + rn 2 )

+

	

(r 2 2

	

+ r 2 2

	

+ r 3 2

	

+ r4 2

	

+ . . . .

	

+ r

	

2 )n

+

	

(r 3 2

	

+ r 3 2

	

+ r 3 2

	

+ r 4 2

	

+ r5 2

	

+ + rn 2 )

+

	

( r 4 2

	

+ r 4 2

	

+ r 4 2

	

+ r4 2

	

+ r5 2

	

+ r6 2

	

+ . . . .

	

+

	

r 2 )
n

+ . . . . + nrn 21/n 2 ,

or

	

earn-2 [r12 + 3r2 2 + 5r3 2 +

	

+ (2n - 1) rn 2 , .

1 5



Equating the above series to Tr r t 2 and substituting fo r

rt e in Poiseuille's equation, i .e . ,

	

6r t 2

	

dal)
U = - -

one obtains

2

	

= - 828n

	

dip [
r 1 2 + 3 r2 2 + S r 3 2 + . . . .+ (2n - 1) rn 2, .

(2-10 )

According to Darcy's law,

(2-11 )

Equating Equation (2-10) to Equation (2-11) yields

e2
[r 1 2

	

3r 2 2

	

5r 3 2

	

+ (2n - 1 rn 2, (2-12 )

where k is the permeability at a certain volumetric wate r

content, 8 .

To develop further the model of pore sequence originate d

by Childs and Collis-George, Millington and Quirk (1961 )

arrived at a basic equation which could be used to describ e

permeability as a function of porosity, water content, an d

pore-size distribution . They envisaged a porous medium a s

consisting of solid spheres which interpenetrated each othe r

and were separated by spherical pores which also inter -

penetrated . The solid and pore systems were therefor e

symmetrical . Based upon this model, it was possible t o

16



derive a generalized relation between the porosity and the

cross-sectional area which controlled the flow rate of wate r

in the medium . They assumed that the area of pores on a

fractured section might be represented by porosity of an

isotropic porous medium, 0, and if an interaction mode l

was adopted to include the probability of continuity o f

pores in space, the pore area resulting from interactio n

would be between 0 and 02 . They then proceeded to find the

interacting pore area . If the area from interaction i s

0 2x , then 0 > 0 2x > 0 2 . Since 0 < 1, 1 > x > 0 .5 . Further-

more, Ox might be regarded as a maximum pore area in spac e

whereas 02x a minimum . If 02X was obtained on a singl e

plane, it would be associated with a maximum solid . are a

which would be given by (1 - 0) X . Hence the minimum pore

area in the absence of interaction was given by 1 - (1 - 0) X .

Both the minimum pore area obtained in the above way and th e

minimum pore area obtained through interaction should b e

identical . Therefore, 1 - (1 - 0) x = 02X . For values o f

0 between 0 .1 and 0 .6, the values of x lie between 0 .6 and

0 .7, and for the sake of simplicity x may be taken as 2/3 .

Assuming there were m classes of pores in the porous mediu m

and each class occupied the same proportion of the tota l

porosity, the interacting areas of these classes on a plan e

were denoted by a l , a 2 , a 3 , 	 am and the radii of thes e

pore classes were r l > r 2 > r 3 > . . . . > rm. For Poiseuille' s
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flow, both pore area and radius interactions would contri-

bute to the flow . The resistance to flow in a pore sequenc e

was determined by the square of the smaller pore radius .

Thus the permeability was given b y

a l a l r 1 2

	

a l a 2 r 2 2

	

a l a 3 a 3 2

	

a l amrm 2
a2a1r2 2

	

a2a2r2 2

	

a2a3a3 2

	

a2am rm 2

k l =

	

a 3 a 1 r 3 2

	

a 3 a 2 r 3 2

	

a3a3a3 2

	

. . .* a3amrm 2

aa l rm 2

	

ama2 rm 2

	

ama 3 am 2m

	

amamrm 2

Since a l = a 2 = a 3 = . . . . = am = 0 213 /m, the n

k 1 = i 0 143 m-2

LL

r r 1 2 + 3r 2 2 + 5r 2 2 + . . . .+ (2n - 1) rm2
J

.

(2-13)

For the partial permeability, the value of 0 was replaced by

that of the volumetric water content, and the r 2 serie s

began with the largest pore radius occupied by water .

Attempts by a number of investigators to evaluate th e

success of the proposed computational schemes have been

made . Nielsen, et al . (1960) compared the values of partia l

hydraulic conductivity calculated with Childs and Collis -

George's, and Marshall's procedures with measured values fo r

four field soils . They concluded that Childs and Collis -

George's method appeared superior to the others over a
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narrow range of capillary pressure . In contrast to that ,

Jackson, et al . (1965) tested three individual methods an d

found that the methods of Childs and Collis-George, an d

Marshall did not predict the shapes of the hydraulic on -

ductivity curves, and that if a matching factor was used ,

Millington and Quirk's method gave good results over a wid e

range of saturation .

Kunze, et al . (1968) reported that Millington an d

Quirk's method with a matching factor did not produce the .

best fit with their experimental data . They claime d

better fit could be obtained if the volumetric wate r

in Equation (2-13) was not raised to 4/3 power but t o

power . This change brought about a slightly higher hydrauli c

conductivity at lower degree of saturation and required a

smaller matching factor . They stated, however, that th e

change was only a step in the right direction, but was stil l

not sufficient to correct the discrepancy between measure d

and calculated values of hydraulic conductivity at low

saturations .

In an evaluation of some predictive methods, Green

and Corey (1971) tested both Marshall's, and Millington and

Quirk's methods with matching factors which were the ratio s

of measured total hydraulic conductivity to calculated tota l

hydraulic conductivity . They proposed a modified version o f

Marshall's method, in which the values of 0 and n in Equatio n
1

(2-12) were held constant regardless of the degree o f
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saturation . They discovered all three methods including th e

one of their own gave reliable predictions of measure d

hydraulic conductivity, and suggested they be used routinel y

for field applications . They pointed out that to characteriz e

the variation in the water retention curves from many site s

in a field might be more important than to accuratel y

measure the K(6) values on a very limited number of cores o r

field sites . They also investigated the hydraulic con-

ductivity computed from absorption branch of the retention

curve, and reported that the computed values of hydrauli c

conductivity were always smaller than the measured values .

They thought this discrepancy was due to the inadequacy o f

the absorptive branch for characterizing the pore-size

distribution of the porous medium . They felt the desorptiv e

branch was preferable in this respect .

Jackson (1972) reviewed the predictive methods o f

Marshall, and Millington and Quirk with matching factors .

He demonstrated that the procedures of calculation for thos e

two methods were similar except for the exponent of the pore

interaction term . He reasoned that since both Marshall's ,

and Millington and Quirk's derivations were based upon an

idealized model of the porous medium, the values of the ex-

ponent appeared arbitrary . He then tried to determine th e

optimum value of the exponent with which the methods woul d

best predict experimental hydraulic conductivity . Th e
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would-be optimum value of the exponent obtained by method o f

least squares for several media varied around unity . There -

fore, he suggested that a value of unity would be adequate .

2 . Hydraulic radius theory

Based upon a simplified hypothesis, Purcell (1949 )

derived an equation which related the retention curve and

the porosity to the permeability of a saturated porou s

medium . He first considered the medium as a system compose d

of a large number of parallel cylindrical capillaries o f

equal length but random radii . The total rate of flow

through this system is equivalent to the sum of the con-

tributions made by each of the individual capillaries . He

then equated Darcy's law to Poiseuille's equation an d

substituted the capillary pressure for the radius by use o f

the Laplace's surface tension equation to produce an equatio n

for permeability, i .e .,

AS -i
p . 2

1
i= 1

k = (a cos a) 2 (2-14 )

where a is the coefficient of surface tension, a is th e

contact angle, 0 the porosity of the medium, S i the portion

of saturation in the capillary of radius r i and P i th e

capillary pressure . Purcell realized that Equation (2-14 )
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was too idealistic because its derivation was based upon a

system consisting of non-interconnected capillaries o f

circular cross-section and equal length . Certainly the

occurrence of such a system in porous medium is rarely

approached . Accordingly, he introduced a so-called litholog y

factor, F, to account for difference between the flow in the

idealistic porous medium and that in naturally occurrin g

materials . Thus Equation (2-14) becam e

k = F(a cos a)' (2-15 )

The summation of AS i /P i 2 in Equation (2-15) might best b e

evaluated through the retention curve . If integral form i s

adopted, Equation (2-15) become s

~ ~
k = F(6 cos a) 2 0

a

dS

Gates and Lietz (1950) suggested that Purcell's equatio n

be extended to the partially saturated media . It was note d

that at complete saturation the limits of integration i n

Equation (2-16) were from zero to unity . They reasoned tha t

for any saturation other than unity the upper limit of inte-

gration in Equation (2-16) would be the saturation itself .

Although they recognized Purcell's lithology factor woul d

(2-16 )
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not be the same at an intermediate saturation as at a

saturation of unity, they had no independent method o f

estimating those factors .

Wyllie and Spangler (1952) combined Kozeny's funda-

mental postulates with the retention curve to obtain anothe r

expression for the relative permeability of a partially

saturated porous medium . They proposed on the basis of a

dichotomy originally suggested by Carman that the Kozeny

constant for any porous medium with a random distribution o f

pores was obtainable if the tortuosity of the porous medium

could be measured . That is to say, there exists a relatio n

between the Kozeny constant and tortuosity . Wyllie and

Spangler pointed out that Carman was responsible for writing

the following expression :

c = co (Le /L) 2

	

(2-17 )

where c is the Kozeny constant, co is the shape factor o f

pores which generally falls within the range between 2 . 0

and 3 .0, Le the actual length of sinuous path taken by a

fluid flowing through the porous medium, L the linear

external dimension, and ( Le /L ) 2 is the tortuosity Te of th e

porous medium at a certain saturation . They went on to

derive an equation for the relative permeability given by
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(2-18 )

where T is the tortuosity at saturation equal to unity .

They further proposed to determine the ratios of tortuosity ,

T e /T, from electrical resistivity measurements . -

Recognizing the unsuccess in measuring the ratios o f

tortuosity by electrical resistivity index analogy, Burdine

(1953) analyzed experimental data of permeability and foun d

that to a first approximation, (T/ Te ) 'I2 might be assumed as

a linear function of saturation . He wrot e

S - S r

V
T

T
.w

l- S
e

	

r

where S r is the residual saturation . Substituting Equatio n

(2-19) into Equation (2-18) yields

S
dS

	

k = S - Sr	 	 °	
V7

r

	

jr:
I

	

r

	

T2-

which is known as Burdine's equation . A detailed description

of the theory leading to the Burdine equation has been given

by Brooks and Corey (1964) . It is interesting that Wylli e

and Gardner (1958) developed a statistical model of porou s

(2-19 )

(2-20 )
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media similar to that of Childs and Collis-George (1950) ,

and arrived at the same equation given by Burdine .

By substituting Equation (2-1), a simple retention

function of their own, into Equation (2-20) and changing th e

lower limit of integration from zero to Sr , Brooks and Core y

(1964) were able to produce a simple expression for relativ e

permeability ,

kr = ( Se)

2+3 A
X

(2-21 )

P
k r

= Pb

	

for P

	

Pb (2-22 )

o r

where n = 2 + 3X . They expected this equation was vali d

only for isotropic media and possibly only for drainage

cycle . However, they claimed it held true for any pore-siz e

distribution according to experimental evidences .

Brust, et al . (1968) compared Brooks and Corey's metho d

with that of Millington and Quirk, and concluded that th e

former gave better results than the latter when compare d

with hydraulic conductivity measured in the field . Nielsen ,

et al . (1970) pointed out that in general, the computationa l

methods for obtaining the partial hydraulic conductivity o r

permeability appeared most successful for soils with narrow
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ranges of pore-size distribution . In a highly aggregated

soil, a considerable portion of the total water content i s

retained as relatively immobile water . Under such cir-

cumstances better results were obtained if the concept o f

effective saturation as used in Equation (2-21) was adopted .

Bouwer and Jackson (1974) stated that although the computa-

tional procedure of Brooks and Corey's method was relativel y

simple, care ought to be exercised to obtain the best valu e

of residual saturation . They concluded the calculate d

hydraulic conductivity compared favorably with other methods

and with measured data .

C . Methods of Obtaining Retention Dat a

in the Laboratory

There are many techniques for obtaining retention dat a

in the laboratory . Almost all techniques have been develope d

to obtain the drainage branch of the retention curve .

According to Bear (1972), there are two general methods fo r

obtaining retention data : (1) displacement, and (2) dynami c

methods . Of these two groups, the displacement method i s

the one most commonly used by agronomists and soil scientists .

It is suitable for fragile disturbed or undistrubed samples .

Basically, all the techniques pertaining to the displacemen t

group establish successive states of static equilibrium an d

data are taken of the equilibrium water content and capil -
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lary pressure . The most common techniques of the displace-

ment group are : (1) increasing the pressure of the non -

wetting phase and holding the pressure of wetting phas e

constant, and (2) decreasing the pressure of the wettin g

phase and holding the pressure of the non-wetting phas e

constant . Both techniques require the use of a saturate d

capillary barrier that is permeable only to the wetting

phase . The capillary barrier must have a uniform pore-siz e

distribution and pores that will not allow the non-wetting

phase to penetrate the barrier . The capillary barrier i s

initially saturated with the same fluid to be displaced i n

the medium .

To obtain data by the first technique indicated above ,

a pressure plate or pressure membrane equipment is used .

The sample is subjected to non-wetting phase pressure within

a pressure cooker or pressure cell that contains the capil-

lary barrier . An outflow tube is connected to one side o f

the capillary barrier for measuring volume displaced an d

detecting equilibrium condition at a particular pressure o f

the non-wetting phase . Usually one soil sample is require d

for each equilibrium pressure measurement . For example, i f

one desires to obtain five data points, five samples ar e

required, and each of them is subject to a different non -

wetting phase pressure . When retention data are needed fo r

a large number of samples, the technique is valuable .
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However, the time required for equilibrium may be consider -

able, e .g ., 10-40 days, depending upon the range of capil-

lary pressure desired .

The technique which lowers the pressure of the wetting

phase is limited to the low range of capillary pressure ,

i .e ., less than 1 bar . When one desires a retention curv e

on only one or two soils over the range of 1 bar, thi s

technique appears superior to the pressure plate technique .

Nevertheless, it is time-consuming and tedious also . Th e

technique involves reducing the pressure of the wettin g

phase in increments and measuring the displaced volume o f

wetting fluid in equilibrium .

Other displacement methods include mercury injection

and centrifuge methods . The former is used by the petroleum

industry where consolidated samples are dealt with . Mercury

is used as the non-wetting phase and forced into pores o f

the medium in an evacuated chamber . The centrifuge metho d

causes the wetting fluid to leave the sample by subjectin g

it to normal accelerations in a centrifuge . This is equi-

valent to subjecting the sample to increased gravitationa l

force . Data may be obtained in a relatively short time ,

but it is not particularly suitable for the low range o f

capillary pressure .

Imbibition retention data may be acquired by method s

similar to the displacement type methods, in which fluid i s
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allowed to imbibe through the capillary barrier as opposed

to drainage from the sample . However, no satisfactory

techniques have been established .
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CHAPTER II I

THEORY

A . Retention Functio n

After reviewing the mathematical expressions in th e

literature for soil-water retention curves, it was found tha t

the one originated by Brooks and Corey (1964) had the sim-

plest form and yet could approximate experimental dat a

reasonably well under certain circumstances . However, thei r

function fails to describe an inflection in the curve .

Precisely, it completely ignores the downward concavity o f

the retention curve and assumes that retention data can b e

approximated by a curve that is entirely concave upward . I n

some cases, this over-simplification results in an unreal-

istic approximation especially for soils with ill-define d

bubbling pressures .

It was further discovered that when Brooks and Corey' s

function underwent a simple mathematical manipulation, i t

took the form of the Pearson Type VIII distribution functio n

(Pearson, 1916) . It will be assumed herein that the capil-

lary pressure of the soil-water system is related to th e

geometry of the interfaces between water and air within th e

porous matrix by Laplace's surface tension equatio n

(Encyclopaedia Britannica, 1969) ,
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or

	

P = r6 , if r' = r

	

(3-2 )

where P is the capillary pressure, o the surface tension

coefficient and r and r' are the radii of curvature of any

two normal sections of the interface at right angles to

each other . Therefore, one may consider the soil-wate r

retention curve as an indication of the pore-size distri-

bution of the porous medium . In other words, one can obtai n

the probability density function of pores by taking th e

derivative of saturation, which connotes percentage volume ,

with respect to capillary pressure, or with respect to por e

size . In this connection, the Pearson Type VIII distri-

bution function suggests that there be no pores in th e

medium, which have sizes larger than the one correspondin g

to the bubbling pressure . Observations of experimental dat a

indicate this is not always the case and a more general

expression should be developed .

Upon close examination of numerous experimental data o f

capillary pressure versus saturation, it became clear that

the plotting of the data generally exhibited three commo n

features . The data approach a vertical asymptote at bot h

residual saturation and saturation equal to unity, an d
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between these two extremes of saturation there exists a n

inflection point . If the pore-size distribution is assume d

to be of the same type on either side of the inflectio n

point, then by reversing the concavity of the curve at the

inflection point, perhaps a more suitable expression o f

capillary pressure versus saturation may be obtained . With

this in mind, the Pearson Type VIII distribution functio n

was written for these two portions of the curve and the n

matched at a fictitious inflection point . The resulting

expression is given by

-m but
S - Sr

	

1 - S aP P f

	

a

	

^T!"

where P is the capillary pressure, P f is the capillary

pressure at the fictitious inflection point, S is the

saturation, S r the residual saturation, m the shape facto r

of the retention curve and therefore a pore-size distri-

bution parameter of the medium, and a and b are the domain s

of saturation separated by the fictitious inflection point .

Figure 1(A) shows a typical soil-water retention curve and

gives the definitions of the symbols in Equation (3-3 )

graphically . It can be seen from Figure 1(A) that the sum

of a, b and Sr must equal unity, i .e . . ,

a + b + Sr = 1 .0 .

	

(3-4 )

(3-3)
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Therefore, the only constants needed to define the soil -

water retention curve are a, b, m and P f. Since the sum

of a and b is the domain of saturation that is of greates t

concern to engineers in the fields of irrigation, drainag e

and hydrology, the theory will be confined to this domain .

It is worthwhile recalling the definition of effectiv e

saturation, S e , given by Corey (1954), i .e . ,

S - S r
- S r

(3-5 )

When S r is replaced by a and b by use of Equation (3-4) ,

one may transform Equation (3-5) into

S - (I - a - b )S e =	 a+ b

and thus exclude the immobile water content from considera-

tion . This is expedient because the water content belo w

residual saturation is believed hydraulically insignificant .

By making use of Equation (3-4) and Equation (3-6), Equation

(3-3) becomes

bm

	

s

	

-m

	

1 - se ) a	 e
P - Pf

	

a

	

b
a + a+b

By using new notation defined a s

P

	

S -
S PS = p--

	

S . = Se

	

r a . _

	

aa-~ and b . = ba +

	

,

(3-8 )

(3-6 )

(3-7 )
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Equation (3-7) becomes

b . m

P = S. -m 1 - S. a .

s a .

	

_b.-

with a . + b . = 1 .0 .

Equation (3-9) may be transformed into an expression in

terms of the ratio of b . to a .

Hence

(3-9 )

P s = S . (1 + a
b .)]

,

	

-m
(1 - S .) ( 1 + a .)

b . m
a .

(3-10 )

So far, the constants in Equation (3-3) or (3-10) do no t

convey any physical significance . It should be emphasize d

here that the fictitious inflection point which is used to

define a and b should not be mistaken for the true inflectio n

point of the retention curve . In Figure 1(B) the tru e

inflection point is defined along with the domains o f

saturation associated with the inflection point . The "A"

domain of saturation corresponds to the upward concavit y

while the "B" domain corresponds to the downward concavity

of the retention curve . To find the real inflection point ,

Equation (3-10) must be differentiated twice and equated to

zero . The operation brings about a quadratic equation ,

f(S .) = 0 or
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(1 - a) ( 1 + m - am) S . 2 - 2(1 + m - am) S . + (1 + m) = 0

(3-11 )

The solutions of Equation (3-11) are given by the quadrati c

formula, i .e .,

bm

	

bm(1 +
m	 a	

)

	

1 + m -	 a )

	

(3-12 )S . _	
( 1 - a) ( 1 + m - am)

In light of the physical constraints, the roots cannot b e

imaginary . This requires the discriminant of the quadrati c

equation be positive or zero . Based upon experimental data ,

the inflection point nearly always lies within the bound s

of saturation, 0 < S . < 1 . The possibility that the dis-

criminant may be equal to zero can be eliminated . The mos t

important solution of Equation (3-11) is the one where th e

roots are real and unequal . The following will further sho w

that there is only one appropriate solution to Equatio n

C3-11) .

According to the definitions of a and b, it is obvious

that a > O . Since the discriminant of Equation (3-12 )

should be greater than zero, it follows that (1 + m - am)>0 .

Then ,

V a (1 +

	

- a n) > 0 > - a (1 + m - am) .
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By adding (1 + in - am) to the members of the above in -

equality, one ha s

(1 + in - am) + v a (1 + m - am) > (1 - a) ( 1 + m - am)

Now, if (1 - a) > 0, then

( 1 - a) ( 1 + m - ate')

(3-13 )
(1 + in - ate) + v 1 + m am )

> 1 .

Next, if (1 - < 0, the nb
a)

(1 + m - a-'n) +V	 a	 (1 + m - am)

< O .
(1 - a) ( 1 + m - am)

The left-hand members of inequalities (3-13) and (3-14) ar e

one of the two roots of Equation (3-11), but their value s

transgress the physical bounds of S . . Therefore, the only

valid solution having physical significance i s

Cl +m am)

	

1 +m am)

S

	

C 1 -a) (1+m-am)

where S

	

is the effective saturation at the true inflectio n
i

point of the retention curve . To find the unscaled satura -

(3-14 )

(3-15 )
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tion at the inflection point, Equation (3-6) is used . Thus ,

(1 + m - bm) • b

	

b (1 + m - bm)
S . _ (a + b)	 a	 a -	 a	 a	 + 11

	

(1 - a) C l + m - am)
(3-16 )

is the expression for the unscaled saturation at the in-

flection point . For the value of the capillary pressur e

P i corresponding to S i , Equation (3-3) is recalled and

S i is substituted for the independent variable S . Thus ,

bm

P . = P f C1 + a) (1 - H) -m [(1 + b H]

where

Va

(1+m- am) -	 a(l+m - am)
H - ( 1 - a) (1 + m - am) (3-17 )

It is postulated from statistical standpoint that S i may b e

the critical saturation beyond which the air phase become s

discontinuous on the imbibition branch because the frequenc y

of pores is maximum at the inflection point of the retentio n

curve . In other words, it is quite possible that the ai r

phase may become blocked and isolated as the liquid phas e

invades and fills those pores related to P i , which posses s

the most significant amount of pore volume in the porou s
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medium . On the other hand, as the liquid phase leaves thos e

pores having greatest frequency, the air phase may firs t

become continuous and potentially mobile . This phenomenon

was in effect observed and pointed out by White (1968) . The

verification of the above postulate of P i and S i should b e

of paramount importance to drainage engineers inasmuch as

aeration of soils may be defined in terms of soil proper -

ties .

Regarding the above presentation, it is noteworth y

that the constants in Equation (3-9) are hydraulic pro-

perties of the media and each of them is physically signi-

ficant . This complete retention function makes possible th e

study of the retention of fluids in porous media for bot h

the imbibition and drainage branches of the retention curve .

B . Permeability Function

Based upon the review of functional forms suitable

for computing the permeability of porous media given i n

Chapter II, the equation of Burdine [Equation (2-20)] wa s

found to have several advantages over the others . Thes e

advantages include : (1) its demonstrated accuracy is at

least equal or better than other computational schemes ,

and (2) relative permeability may be expressed by a simpl e

mathematical form . The latter advantage makes it possibl e

to arrive at an analytical expression for relative perme -
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ability, which is as accurate as the Burdine integrals ,

provided an accurate retention function is available an d

it can be integrated . Of course, if the retention functio n

does not represent the true retention relationship, th e

permeability function will be in error accordingly . Th e

work of Brooks and Corey is an example of what has been

done in this regard . It will be assumed in this thesi s

that the Burdine integrals are adequate and that if the re-

tention function accurately represents the retention o f

water in soils during drainage, the permeability obtaine d

from the retention function will be as accurate as th e

Burdine integrals themselves . The result of inserting th e

retention function proposed herein, i .e ., Equation (3-9) ,

into the Burdine integrals, Equation (2-20), to obtain th e

ratio of partial hydraulic conductivity to the tota l

hydraulic conductivity (or relative permeability) is give n

below .

Recalling Equation (2-20) and the definition of re-

sidual saturation, the Burdine integrals are transforme d

into

1 S e
k = ( se ) 2 	 o	 l/(Ps )2 ds er

	

Se )	 	 1/ (Ps)2 dS e

Jo

(3-18 )
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The transformation to the definition of effective saturatio n

implies that the water in the soil at saturation less tha n

S r is immobile or that the permeability at S = S r is zero .

Substituting Equation (3-9) for Ps in the integrand s

of Equation (3-18) gives

- 2 bm

Jr:e	
1/(P) 2

	

Jf6e (Se)
2m

(1 - Se)
a

	

dS es
	 o	 	 (3-19 )1 1

	

1/ (Ps) 2
dye

	

. 0

	 - . 2 .bm	

0

	

(Se) 2m (1 - Se) a

	

dSe

The denominator on the right-hand side of the equal sig n

is a definite integral whose value is readily expressed i n

terms of the Beta function, i .e . ,

I
1

	

- 2 bm
(S e ) 2m (1 - Se ) a dSe = /3(2m + 1, ' t am + 1) .

(3-20 )

The numerator can also be expressed in terms of the in-

complete Beta function, i .e . ,

fSe

	

-2bm
-2b m

(S e ) 2m (1 - S e ) a dS e = 3 S (2 m + ,

	

a + 1 )
o

	

~" e

(3-21 )
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The relative permeability as a function of effective

saturation is obtained by combining Equations (3-18) an d

(3-19) with Equations (3-20) and (3-21), i .e . ,

1 -2b m
+

	

+ 1(2m

	

,

	

)

kr = (Se)2

	

S e
18 (2m + 1,

-2bm + 1 )
a

(3-22 )

Since

P(2M + 1
= IS (2m + 1

e

-2bm + 1)

	

(3-23 )-2bm
+ 1 )

a
a

2m + 1 + 1 )a
-2b m

where IS is the incomplete Beta function ratio with it s
e

arguments given in the parentheses (Abramowitz and Stegun ,

1970), Equation (3-22) become s

kr = (Se ) 2 IS (2m + 1 ,
- 2bm +

1)

	

(3-24 )
e

Of course, if absolute rather than relative values o f

permeability are desired, one may use the equation ,

k = k l (Se ) 2 Is (2m + 1

e

-2bm + 1)

	

(3-25 )
a
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where k l and k are respectively the total permeability an d

partial permeability for any given saturation in the interval ,

1 > S > S r. Similarly, for partial hydraulic conductivity ,

one may substitute the partial hydraulic conductivity, K ,

for partial permeability and the total hydraulic conduc-

tivity, K 1 , for the total permeability and Equation (3-25 )

become s

K = K 1 (S e ) 2 IS (2m + 1 - 2

a

m
e

+ 1) .

	

(3-26 )

C . Diffusivity Function

In a soil water-air system, it is generally acceptabl e

to regard the pressure of air everywhere in the porous

medium as a constant being equal to the atmospheric pressure .

It is also possible to ignore the flow of air because o f

its relatively low resistance due to its low viscosity .

With these in mind, Darcy's law may be written in terms o f

the pressure of water to describe the flow in partiall y

saturated media, i .e . ,

P

	

1
q = - K V (

	

+ (3-27 )
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where q is the volume flux-, K is the partial hydrauli c

conductivity, V is the vector differential operator, Pw

the pressure of the soil-water, y the specific weight o f

water and z is the elevation above an arbitrary datum .

Combining Equation (3-27) with the equation of continuity ,

(3-28 )V

yield s

V

	

-K q ỳ ~+

	

= -o t

	

(3-29 )

where 0 is the porosity of the soil, S is the saturatio n

and t is the time . Equation (3-29) is called the Richards '

equation named after its originator (Richards, 1931) . I f

Pw is a single-valued function of S, the n

Pw

	

Pw

	

,

and Equation (3-29) may be written a s

Ka(
Pw

a S
	 Y	 q S

J

aK

	

a s_
z -p atV (3-30 )
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or

	

V • (DVS) - 8z = - 0 T

	

(3-31 )

in which

a
P
w

D = -K

	

aS

	

(3-32 )

is known as the soil-water diffusivity (Klute, 1965) o r

here to be designated as the diffusivity function, and

Equation (3-31) is called the diffusion equation for flo w

in partially saturated media .

If the specific weight of water is removed from th e

differential operator, the diffusivity function, Equatio n

(3-32), become s

y aS , where P = -Pw

Differentiating Equation (3-3) with respect to S and sub-

stituting into the above produce s

bm

P f m S	
Sr -m 1- S -67-

D	 	 a	 b	 	 (3-33 )
= K Y a

	

a

	

S- Sr

	

1-

S which when combined with Equation (3-26) becomes

b m
Pi

m S-S
) - m	 r	 a	 bD = K 1 (Se)z IS (2m+1, - a2bm+1)

Y a a

	

( -1- S-r
S-S + 1- Se

	

r

(3-34 )
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CHAPTER I V

CRITERIA OF AFFINITY FOR POROUS MEDI A

There are two recognized approaches to establishin g

similitude criteria for flow fields . One approach, calle d

dimensional analysis, transforms the original variables int o

a set of similarity numbers which are dimensionless . Thes e

numbers are subsequently used to determine the size of th e

model . The second approach which is called inspectiona l

analysis requires that the differential equation describing

the flow field be known . By transforming the differential

equation into one that is dimensionless or scaled, a se t

of standard units of scaling is obtained . If the trans -

formation procedure is properly followed, the differentia l

equation will yield identical particular solutions for tw o

flow fields provided the initial and boundary conditions i n

terms of scaled variables and the relationships among th e

scaled variables are identical . Actually, any set o f

standard units may be chosen ; however, a set that is physi-

cally meaningful and measurable is highly desirable .

In the porous medium flow field, the second approach i s

to be applied for establishing proper criteria . Two porous

media are said to be affine if the relationships amon g

scaled hydraulic variables, e .g ., capillary pressure ,

hydraulic conductivity, diffusivity and saturation ar e

identical . Furthermore, two flow fields are said to b e
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similar if there is affinity between the porous media ,

their initial and boundary conditions in terms of scale d

variables are identical, and there is similarity between th e

size and orientation of the flow field .

The term affine is preferable to similar for describing

porous media since for affine media a transformation may

be used to produce identical scaled relationships amon g

the hydraulic variables even though the media may not, i n

a physical sense, appear geometrically similar .

The requirements of affinity for porous media ar e

deduced in this section by scaling the relationships amon g

the hydraulic variables .

A . Scaled Hydraulic Function s

1 . Scaled retention function

Since the water content related to saturation les s

than the residual is assumed to be immobile, the saturatio n

may be normalized so that the immobile water is exclude d

from consideration . This may be accomplished by using th e

concept of effective saturation and residual saturatio n

introduced by Corey (1954), i .e . ,

S - S rS . =

	

r1 - S r
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where S r is the residual saturation and S . is the effective

saturation .

The two domains of saturation associated with th e

fictitious inflection point have been denoted as a an d

b where a = S f - S r , b = 1 - S f , and S f is the saturation

at P f . These two domains may be normalized to obtain thei r

scaled forms by way of the same normalization factor a s

used for saturation, i .e . ,

a .
-

	

S r a (4-2 )
a-

	

S r

b .

	

=
1 S f

=
b

4 -l

	

3 )a + b1 S r

where a . and b . are the scaled domains of saturation as-

sociated with the fictitious inflection point .

Substituting Equations (4-1), (4-2), and (4-3) int o

Equation (3-3), one obtains

b .-ten
_

	

S -m 1 - S, a .
P P f a.

	

h .

- m
P = P f (1 + a .) S .

or

b .ma .
( 1 + a ') (1 - S .)

	

(4-4 )
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The P i at the actual inflection point of the retentio n

function appears more suitable as a standard scaling unit o f

pressure than the pressure Pf particularly when the function

is viewed in terms of a pore-size distribution function .

Therefore, the scaled retention function becomes

P

	

-m

	

b .

P . =

	

=

	

(1 +

	

S .

	

1 + -) (l - S .)
J

(4-5 )

Since

Pi

	

(1 + a. ) (1 - H) in (1 + gt) H
i~

	

l ~

where H is given by Equation (3-17), the scaled retention

function may be further simplified . Thus ,

bm

P . =

	

S . )-m(	 1 -s . ) a

11

	

H

Equation (4-7) is completely defined in terms of m and

b/a. It is clear that any two porous media will be affin e

provided they have the same values of m and the same ratios

of b . to a ., or b to a . It is obvious from Equations (4-2 )

and (4-3) that the scaled ratio of b ./a . is identical to th e

unscaled ratio of b/a .

(4-6 )

(4-7 )
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Apparently, only one additional affinity criterion i s

required when the retention function is represented by a

continuous function beginning with P = 0, compared with tha t

specified by Brooks and Corey (1964) from their step typ e

function .

2 . Relative permeability function

Inasmuch as the relative permeability function ha s

already been derived in Chapter III, it needs only to b e

rewritten here in the dot notation . If k . is the ratio o f

partial permeability to total permeability, then Equatio n

(3-25) can be rewritten a s

k . = (s .)2 IS . (2m + 1 -2bm
a )+ i (4-8 )

It can be seen from Equation (4-8) that any two soils wit h

the same values of m and the ratio b/a possess the sam e

relative permeability function . That is to say, any tw o

soils which fulfill the criteria of affinity set fort h

previously from the retention function will behave similarl y

also with respect to permeability or other dynamic rela-

tions .

3 . Scaled diffusivity function

The definition of the diffusivity function is th e

product of hydraulic conductivity and the slope of th e

soil-water retention curve . The scaled form of the dif -
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fusivity function may be defined in the same manner as th e

unscaled form except the definientia are now scaled variables .

Hence,

D . = -K . aP .
3S.

(4-9 )

where K . and P . are single-valued functions of S . By

differentiating Equation (4-7) with respect to S . and com-

bining the derivative with Equation (4-8), one obtains th e

scaled diffusivity function

bm
-m

	

a
-2bm

	

S .

	

1 - S .
a + 1)

	

HD . = (S .)2 IS . (2m + 1

m +

	

b m
S .

	

a(l - S .)
(4-10 )

where H is given by Equation (3-17) ..

The scaling factor for the diffusivity may be deduce d

from the scaled definientia in the scaled diffusivit y

function . From Equation (4-9) and the definitions of K . ,

P ., and S ., one has

Pd

	

d( P)

	

Y ( 1 - S r)K	 x	 Y
KI

	

. (4-11)

	

D . _ -
K1 (S_S_=_K d5

	

Pi
d	 1 - S r
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Let the scaling factor for D be designated as Do . The n

-K
df ,

	

D . = D

	

=

	

d S

	

Do

	

P i K 1

y (l - S r )

(4-12 )

P i K 1

y (1 - S r )
Do =

an d

or

P i K 1
y (a + b )

(4-13 )Do

B . Pore-Size Distribution Functio n

A generalized pore-size distribution function of the

porous medium can be derived from Equation (4-7) . Th e

development begins with taking the first derivative of P .

with respect to S . . The result i s

dP . m

	

a .

	

b .-;-5 - -P . a . (s. + 1 - s . )

If it is assumed that a pore radius may be related t o

capillary pressure by the relation

(4-14 )
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P = 20 cos a
r

where a is the coefficient of surface tension of the fluid ,

a is the angle of contact between the fluid and soli d

boundary and r is the radius of the pore, the n

P. = P = 2a cos a/r = r i
Pi 2a cos a/r i r

where ri is the radius of pores characterized by Pi .

Since

b . m
r .

	

P
P . - rl - Pf a.)

-m ~-_I a.

i

	

)

and

r =
r-i

b .m
(4-15 )

Pf (a

.-m
(
1	 .~ . 5 1 a .

i

when Equation (4-6) is substituted into Equation (4-15) ,

one has

b .
m

	 ) -m (	
a .	 H	

= ri(1S .
	 H

	

l l - S .)
(4-16 )
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Equation (4-16) may be scaled by dividing through by r i .

This produces

b . m

(1 -H) -m (	 H

	

a .
r .

	

S .

	

1 - S, )

where r . = r/r i .

Differentiating Equation C4-17) with respect to S .

yields

b .-m
dr . _ m

	

1 -H) -m (	 H	 	 a . +	 b .	 	 (4-18)dS .

	

a. C S .

	

1 - S .)
a .

( S .

	

1 - S .

where H is given by Equation (3-17) . The inverse of Equatio n

(4-18) in conjunction with Equation (4-17), is the gen-

eralized probability density function for pores . In other

words, the frequency of pores with a certain scaled radius

r . is represented by dS ./dr . . It should be noted that th e

probability density function of pores is completely define d

by a ., b . and in . It is also evident that any two affin e

media fulfilling the criteria set forth in the previous

section possess identical pore-size distribution functions .

(4-17 )
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CHAPTER V

EXPERIMENTAL PROCEDURE

In general, it is time-consuming and tedious to obtai n

retention curves by using techniques in which a pressur e

difference is arbitrarily set across the capillary barrie r

and the sample is allowed to equilibrate . This technique

is primarily used to obtain the drainage branch of the re-

tention curve . Furthermore, there are no well-establishe d

techniques for acquiring the imbibition branch of the re-

tention curve . It is the second objective of this thesi s

to develop a rapid technique for measuring both the drainage

and imbibition branch of the retention curve on disturbe d

soil samples . Such measurement techniques will not onl y

permit the theories already presented to be tested but the y

will be valuable to researchers interested in obtainin g

the hydraulic properties of soils quickly .

The equipment pertaining to the procedure consists o f

four parts : 1) the retention cell that includes a capillar y

barrier, 2) a capillary tube-burette apparatus for deter -

mining equilibrium and the volume of liquid drained, 3) a

vacuum-pressure regulator, and 4) manometers for pressure

readings . A photograph of the equipment and its schemati c

arrangement are shown in Exhibit 1 and Figure 2 .
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5 6

Exhibit 1 . Apparatus for obtaining retention data .



VACUUM

	

PRESSUR E
r

V- P
REGULATO R

CAPILLAR Y
TUBE	

MICROMETE R
PIPETTE

MANOMETE R

BURETT E

Figure 2 . Schematic of the apparatus for obtainin g
the retention data .
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To avoid the so-called boundary effect, the retention

cell consists of the end of a ceramic candle that is in -

stalled in a recessed block of acrylic plastic . The

ceramic was completely sealed into position by epoxy . A

pressure tap was installed in the plastic block in orde r

to connect the wetting fluid to the capillary tube-burett e

apparatus . After soil was packed uniformly into the cerami c

candle, the entire cell was vacuum-saturated to exclude ai r

from the soil pores as well as from the capillary barrier .

In some cases, the samples were brought to maximum satura-

tion by submerging the cell with soil sample into the wettin g

fluid for several hours .

After saturating the soil and the capillary barrie r

by either of the two procedures described above, the re-

tention cell was connected to the capillary tube-burett e

apparatus through a semi-rigid tube that had been fille d

with liquid while the vacuum-pressure regulator was set a t

zero pressure (gage) . By setting the top of the cell at th e

same elevation as the zero volume mark on the burette, a

liquid-air interface was established in the burette an d

capillary tube at that mark .

The elevation of the interface in the capillary tub e

could be measured by the attached meter stick shown i n

Exhibit 1 . The capillarity of the tube was 1 .0 cm . The

specific volume of the capillary tube was 0 .0174 cm 3 pe r
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cm of length . Both the burette and the capillary tube wer e

connected jointly to the vacuum-pressure regulator . Liquid

could be drained from the soil by increasing the pressur e

difference across the interfaces in the burette and th e

capillary tube . The volume drained at any particula r

capillary pressure in equilibrium was equal to the volum e

in the burette plus the product of the height of the inter -

face in the capillary tube above the zero datum and the

specific volume of the capillary tube .

The procedure that was followed to obtain the drainag e

branch of the retention curve was to create a pressure dif-

ference across the interface in the burette by the vacuum -

pressure regulator . After a specified volume had draine d

into the burette from the soil, the burette valve was close d

and the interface in the capillary tube was noted . Th e

pressure difference across the interface was then reduce d

so that the interface remained stationary in the capillar y

tube . If the pressure difference across the interfaces in

the soil pores were not in equilibrium with the pressur e

difference across the interface in the capillary tube, flo w

would occur either into or from the sample . Since the

specific volume of the capillary tube was small, equilibrium

conditions could be easily detected . Care was taken durin g

the experiment on the drainage branch to insure that th e

wetting fluid always drained away from the soil into th e
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burette or the capillary tube . Because the capillar y

tube-burette apparatus was mounted in a vertical plane, th e

pressure difference across the interface for non-equilibrium

condition which would cause liquid to move in the capillar y

tube was automatically adjusted (decreased) by the risin g

interface in the capillary tube . This combination of manua l

and automatic adjustment of the pressure difference acros s

the interface of the small capillary tube greatly decrease d

the time required to obtain the retention data .

After true equilibrium was reached, the elevation o f

the interface in the capillary tube and the liquid volum e

in the burette were noted . The capillary tube valve wa s

then closed and the pressure was decreased (or the pressur e

difference increased) through the vacuum-pressure regulato r

by an arbitrary amount . The burette valve was then opene d

and followed by the opening of the capillary tube valve .

The procedure for equilibrium was repeated for each drainag e

volume . Of course, the time required to determine tru e

equilibrium increases progressively after each increment o f

drainage . Care must be exercised in allowing sufficien t

time for determining the movement of the interface in th e

capillary tube to be certain of equilibrium .

When the saturation of the soil sample had been reduce d

to that corresponding to the steep portion of the drainag e

curve, the imbibition branch of the retention curve wa s
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started . The burette was not used any longer . A give n

volume of liquid was added to the soil surface by use of a

micrometer pipette . After the liquid was added to the soi l

surface, the air pressure in the capillary tube was in -

creased to prevent drainage from occurring, but not suf-

ficient enough to cause a large volume of liquid in the

capillary tube to retreat toward the soil . Pressure reading s

in equilibrium were obtained in a manner similar to that fo r

the drainage branch . Flow under non-equilibrium condition s

always moved into the sample . Equilibrium conditions fo r

imbibition were always reached much more rapidly than fo r

drainage .

After the equilibrium at zero capillary pressure ,

another drainage branch was started . Once one or more

branches of the retention curve have been obtained, th e

sample was removed from the retention cell . To prevent any

flow from occuring during the removal of the sample, th e

main valve for the capillary tube-burette apparatus was

closed. The soil was weighed, dried in the oven, an d

weighed again in order to determine the total pore volume or

the apparent pore volume .
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CHAPTER V I

RESULTS AND DISCUSSION

In this section the retention function will be fitte d

to the experimental data obtained by the procedure pre-

viously discussed as well as fitted to published data found

in the literature . These data include both the drainage an d

imbibition branch of the retention curve .

The hydraulic properties of porous media for affinit y

from the retention curve will be discussed and also thei r

effect upon permeability, diffusivity and pore-size dis-

tribution . The retention function will be used as a bas e

for the discussion on the mechanism pertaining to air en-

trapment during imbibition .

A . Determination of the Parameters of th e

Retention Function from Retention Dat a

Regardless of how well a function may fit experimenta l

data, if the parameters in the function are difficult t o

obtain, the function may well be only of academic interes t

and probably will not be very useful . However, if the para-

meters are easy to assess and have physical meaning, th e

function will have great utility .

In order to obtain the parameters for the retentio n

function developed in this thesis, a method was derived t o
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force the function to go through four experimental dat a

points since four parameters are needed to define the

function, i .e ., a, b, m, and P f. Theoretically, the para -

meters may be found by solving a system of four simultaneou s

equations formed by four pairs of P and S values . The

solutions of these equations depend upon not only th e

accuracy of the experimental data but also upon the cri-

terion established for convergence in solving the system o f

equations . Strictly speaking, the four-point forcing metho d

is not the best one to use because of the constraint s

imposed . Of course, methods of nonlinear regression analysi s

are superior to the forcing method since they can take mor e

data into account and obtain a best-fit through experimental

data . Unfortunately, no efficient method of nonlinea r

regression analysis has been found . It is interesting t o

note, however, that little or no difficulty has been ex-

perienced in finding the parameters by the forcing metho d

for all the retention data that have been analyzed . This i s

regarded as a strong evidence of the exactness of th e

retention function . The selection of the four pairs of P

and S values should be made in such a way that they cover a

wide range of saturation, and unreliable data are exclude d

from consideration .

The derivation of the equation used to determine th e

parameters by the forcing method is given in Appendix B .
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A Fortran program was written to solve the nonlinea r

equation through the teletype time-sharing conmmunicatio n

system with a CDC 3300 computer . The computer program an d

an example of the teletype print-out are shown in Appendi x

C . The criterion for convergence was set as 10 -10 in the

program .

The most efficient way of determining the four bes t

data points to be used in the program is to plot the dat a

and draw a best-fit-by-eye smooth curve through the dat a

points . Those points that fall precisely on the curve ar e

first choice . If the system fails to converge, one or mor e

other data pairs are substituted for those initially used .

In addition to selecting four pairs of data for use i n

the forcing program, an initial guess of residual saturatio n

must be made . Convergence of the numerical scheme is re-

latively insensitive to the initial guess . If the raw dat a

are plotted and extend over the steep portion of a curv e

passing through the data, the first guess of residua l

saturation will be close to its final value .

B . Comparison of the Retention Function

with Experimental Dat a

In all cases, the fitness of the theoretical retentio n

curve to the experimental retention data was excellent n o

matter whether the data were from experiments on the im -
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bibition or drainage branch . The function also fits ex-

perimental data of either vacuum-saturated or apparentl y

saturated samples . The apparent saturation is defined a s

volume of liquid in the pores divided by the total por e

volume less volume of air entrapped in the pores at zer o

capillary pressure . In other words, the entrapped air i s

treated as part of the solid matrix of the porous medium .

Thus ,

Apparent saturation = 	 Volume of liquid	

(Total pore - Volume of entrapped ai r
volume

	

at zero capillary
pressur e

The definition of apparent saturation is probably a mor e

realistic one for field situations since the soil profile i n

a field is not likely to be exclusively filled with liquid .

If the total pore volume of the medium is used as a base ,

Equation (3-3) needs to be modified in order to describe th e

imbibition branch which ends at a saturation less tha n

unity . The retention function should be written a s

bm

P = P

with Sr + a + b = S m, where Sm is the maximum saturation a t

which the capillary pressure is zero on the imbibition

branch . It should be noted that Equation (5-1) is essentiall y
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the same as Equation (3-3) except the domain of saturatio n

is changed from unity to a smaller value . Illustration s

comparing the theoretical or computed retention curve wit h

experimental data for the imbibition branch are given i n

Figure 3, where the dots represent the experimental dat a

while the lines represent theoretical curves . Figures 3(A )

and 3(C) are for two sands, where capillary pressure head i s

plotted against saturation . Figures 3(B) and 3(D) are fo r

the same sands but plotted as functions of apparent satura-

tion . It is noteworthy that the values of m, P f and th e

ratio of b/a are identical for both definitions of satura-

tion .

In Figure 4 the theoretical curves are compared wit h

experimental data obtained from samples that were initiall y

vacuum-saturated before drainage was started. After th e

last data point was obtained for drainage, the imbibitio n

branch began . The wetting fluid used to obtain the data i n

Figure 4(A) was water while that in Figure 4(B) was oil .

The theoretical curves are in excellent agreement with th e

experimental data . The data for these figures and other s

shown herein are tabulated in Appendix D along with th e

parameters of the retention function . Figure 5 shows th e

theoretical curves and experimental data for the imbibitio n

and drainage branch where maximum saturation is less tha n

unity . The agreement between theoretical curves and th e

experimental data is also excellent .
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Figure 3 . Comparison of the theoretical (or computed )
. retention curves with retention data of tw o
media, where the dots represent measured values .
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C . Comparison of the Permeability

Function with Experimental Dat a

According to the derivation in Chapter III, perme-

ability may be calculated from the pore-size distributio n

parameters obtained from the retention function . No attemp t

has been made to measure permeability for the purpose o f

verifying the Burdine integrals . However, the theoretica l

relative permeability computed from Equation (3-24) has bee n

compared with published experimental data in which capillary

pressure retention curves are available .

A comparison of theoretical and measured relative

permeabilities is shown in Figures 6 and 7 where relativ e

permeability is plotted as a function of saturation . Th e

measured data are presented as points while the compute d

values are represented by a solid curve . The retention

curves are shown adjacent to the permeability curves . Th e

samples were obtained from consolidated petroleum reservoi r

rocks . The retention data were acquired by the mercur y

injection method commonly employed by petroleum reservoi r

engineers . The agreement between measured and compute d

permeability values is reasonably good . In the case o f

core G-1, the permeability is underestimated while fo r

core G-4, the permeability is over-estimated, even thoug h

the retention function fits the retention data almos t

exactly .
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b . Physical Significance of the Parameter s

of the Retention Curve

1 . The inflection poin t

The fictitious matching point with the coordinate s

(P f , S f) should not be mistaken for the real inflectio n

point of the retention curve . The location of the inflection

point depends upon the values of a, b, and m . More pre-

cisely, the abscissa of the inflection point can be cal-

culated through Equation (3-16), and the ordinate through

Equation (3-17) .

The capillary pressure, P i , and the saturation at th e

inflection point, S i , are regarded as very significan t

properties of the porous medium . Although the physica l

significance of the saturation at the inflection point ha s

not been studied in this thesis, it may be the critica l

saturation at which the non-wetting phase becomes continuou s

or discontinuous . Based upon the work done by White (1968 )

dealing with media having narrow pore-size distributions ,

this postulate appears to be valid . The rationale for thi s

postulate may be developed through the consideration of th e

pore size associated with P i by the relation r i = 2a/P i ,

in which r i is the radius of the pores, and o is the surfac e

tension of the wetting fluid . The frequency of r i is th e
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greatest of the entire spectrum of the pore-size distri-

bution . That is to say, the number of pores with the radiu s

r i is maximum . In view of the interconnectivity of pores ,

one may infer that this group of pores possesses the greates t

potentiality of blocking the non-wetting phase on the im-

bibition barnch, because pores of this size are scattered t o

the greatest extent throughout the medium . When the wettin g

phase occupies these pores, the non-wetting phase become s

discontinuous . On the other hand, when the wetting phas e

drains from these pores, their interconnectivity provide s

the first possible continuous path for the non-wettin g

phase .

Figure 8 shows the scaled retention curves and th e

scaled pore-size distribution curves for the drainage branc h

of two different media . The inflection points of th e

retention curves are located at P . = 1 where P . is the

capillary pressure scaled by the respective P i . It is clear

from Figure 8(B) that the pore associated with P . = 1 is th e

mode of the pore-size distribution .

Since P i /y is the characteristic scaling length fo r

modeling, it is important to recognize that P i /y is alway s

finite .

74



1 .4 -

Figure 8 . Scaled saturation and scaled frequency o f
pore sizes as functions of scaled capillary
pressure for two media with widely differen t
pore-size distributions .
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2 . The boundary effect of the retention cel l

For soils that have a very narrow range of pore sizes ,

e .g ., sands, as the capillary pressure is increased and th e

capillarity of the boundary is broken, the fluid at th e

boundary floods some of the interior pores that have already

drained and causes imbibition to occur . The phenomenon has

been explained in the recent work of Corey and Brook s

(1975) . The boundary effect upon the "B" domain of satura-

tion or the downward concavity of the retention curve is t o

make it steeper than it would be if the liquid at th e

boundary drained in the same manner as the interior portions

of the soil . In other words, if the boundary effect was no t

present, the slope of the retention curve would be les s

steep and the downward concavity would be more pronounced .

Of course, the degree of the drainage retardation at th e

boundary is proportional to the area of the non-porou s

surface of the retention cell and inversely proportional t o

the drainable porosity .

The effect of the boundary upon the parameters of th e

retention function may be eliminated by simply ignorin g

those data in the "B" domain of saturation . The parameters

of the retention function can be easily obtained by usin g

data solely from the "A" domain of saturation . The curve s

computed for the data shown in Figure 9 were obtaine d
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in that manner . Under conditions in which apparent initia l

saturation is involved, there is no boundary effect upon th e

"B" domain of saturation .

In particular, the "B" domain of saturation is affecte d

by the type of retention cell used to obtain the data . A

cell in which the capillary barrier is located only at th e

bottom of the sample may influence the "B" domain of satura-

tion if the soil sample is initially vacuum-saturated . Th e

effect is particularly pronounced on fine textured media ,

and is due to the small space between the non-porous surfac e

of the cell and the soil . At the early stages of drainage ,

liquid progressively drains from the soil surface as ai r

begins to intrude farther and farther into the interior o f

the soil . During this period of drainage, the boundary

remains saturated as observed through the clear acryli c

plastic . This phenomonon leads one to believe that if th e

liquid at the boundary is free from retardation at the earl y

stage, there should be more liquid drained away from th e

sample .

E . Effect of the Pore-Size Distribution Parameter s

Upon the Retention Function and the Probabilit y

Density Function of Pore s

The parameters m and b/a are designated as pore-siz e

distribution parameters . It is only when b/a = 0 that m ma y
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be referred to as a pore-size distribution index . When

b/a = 0, the retention function reduces to the step typ e

function proposed by Brooks and Corey (1964) and m is th e

reciprocal of their index . However, when b/a is not zero ,

the relationship between the Brooks-Corey pore-size dis-

tribution index and m is lost and the pore-size distributio n

becomes a function of b/a and in . In other words, pore-siz e

distribution cannot be expressed in terms of a singl e

parameter since both b/a and m affect the distributio n

frequency of pores .

The effect of these two pore-size distribution para-

meters upon the retention function and the probabilit y

density function of pores is shown in Figures 10 and 11 .

In Figure 10(A) scaled saturation is plotted as a functio n

of scaled capillary pressure while in Figure 10(B) the

derivatives of the curves in Figure 10(A), i .e ., dS ./dP . ,

are plotted as functions of scaled capillary pressure . Th e

derivative of S . with respect to P . is not precisely th e

probability density function of pores defined in Chapter IV ,

but is related to dS ./dr . by the relation dS ./dr .

P . 2 IdS ./dP .I . The magnitudes of either derivative is no t

particularly meaningful except they are indications to the

frequency of pore sizes and the area under the curve s

of dS ./dr . vs r ., and dS ./dP . vs P . are equal to unity . Th e

derivative dS ./dP . is more useful when plotted on the sam e
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P.

Figure 11 . Theoretical curves of scaled saturation an d
scaled frequency of pore sizes as function s
of scaled capillary pressure for hypothetica l
media having various values of b/a and m = 0 .5 .
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abscissa as that for the scaled retention curve shown i n

Figures 10 and 11 . The utility of this type of probability

density function will become apparent in subsequent dis-

cussions . Figure 12 shows the relative position of th e

curves of dS ./dr . vs r ., and dS ./dP . vs P . with the same

values of m and b/a .

In Figure 10CA), b/a = 0 .25 is held constant while m

varies from 0 .5 to 2 .0 . Obviously the value of m greatl y

affects the shape of the retention curve . In Figure 10(B) ,

for m = 0 .5, the maximum frequency of pore sizes (dS ./dP . =

max .) at P . = 1 .0 is far greater than that for m = 2 .0 .

Since the areas under the pore size frequency curves must b e

equal to each other and to unity, it follows that the curve

for m = 2 .0 must extend over a far greater range of value s

of P . than that for m = 0 .5 . Hence, the curve for m = 2 . 0

covers a wider range of pore sizes than that for m = 0 .5 .

It is clear that when b/a is constant, m is a measure of th e

distribution of pore sizes . When m is large, the distri-

bution of pores covers a wide range, while for small value s

of m the distribution of pores covers a narrow range . The

greatest frequency of pore always occurs at P . = 1 .0 .

Figure 11 shows the effect of the other pore-size dis-

tribution parameter, b/a, upon the retention curve and upo n

the frequency of pores . In Figure 11(A) where scaled satura-

tion is plotted as a function of scaled capillary pressure ,
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m = 0 .5 is held constant and b/a varies from 0 to 0 .75 .

Since m is the same for all curves, the shapes of th e

retention curves are nearly alike . The downward concavit y

of the curves increases as b/a increased while the upwar d

concavity decreases as b/a increases .

In Figure 11(B), the maximum frequency of pores i s

greatly reduced as b/a increases from 0 to 0 .75 . The family

of curves in Figure 11(B) is similar to the family of curve s

in Figure 10(B) . Apparently this pore-size distributio n

parameter, b/a exerts a similar effect upon the maximum

frequency of pore sizes as does m . Yet, it does not seem

to be very apparent from the cursory observation of th e

retention curves . If one compares the retention curve wit h

b/a = 0 and b/a = 0 .25 in Figure 11(A), these curves see m

to become nearly coincident at scaled saturation of 0 .55 .

If one assumes that the curve with b/a = 0 (step typ e

function of Brooks and Corey (1964)) approximates the curv e

with b/a = 0 .25, the permeability of the media would b e

greatly overestimated by the approximate function accordin g

to the maximum frequencies of pore sizes shown in Figur e

11(B) .

F . Effect of the Pore-Size Distributio n

Parameters Upon Permeability and Diffusivit y

The effect of m and b/a upon permeability and diffusivit y
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is shown in Figures 13-16 . In Figure 13 relative perme-

ability is plotted as a function of scaled saturation fo r

b/a = 0 .25 and m varies from 0 to 1 .5 . The envelope curv e

in this figure is the one with m = 0 which reduces th e

permeability function to k . = (S .) 3 . As m increases in

value, there is a precipitous change in the relative perme-

ability .

A similar change in permeability occurs when the othe r

pore-size distribution parameter, b/a, increases as shown in

Figure 14 . Here, the envelope curve is the one with b/a = 0

which reduces the permeability function to the Brooks-Core y

permeability function given by k . = (S .) 2m+3 . As b/a in-

creases from zero to 0 .75, the permeability is greatly re-

duced at high saturation .

In Figures 15 and 16, scaled diffusivity is plotte d

as a function of scaled saturation . In Figure 15, b/a = 0 .2 5

is held constant as m varies from 0 .5 to 2 .0, while in

Figure 16, m = 0 .5 is held constant as b/a varies from zer o

to 0 .75 .

Figure 15 shows the smaller the value of m, the mor e

steep the slope of the diffusivity curve becomes for al l

values of S . The diffusivity is finite for all values of S .

when b/a = 0 ; however, when b/a = 0 .05, the scaled dif-

fusivity becomes infinite as S . approaches unity as shown i n

Figure 16 .

85



k

0 .2

	

OA

	

0.6

	

0.8

	

1 . 0
S.

Figure 13 . Theoretical relative permeability curves fo r
hypothetical media having various values o f
m and b/a = 0 .25 .
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k .

Figure 14 . Theoretical relative permeability curves fo r
hypothetical media having various values o f
b/a and m = 0 .5 .
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S .

Figure 15 . Theoretical scaled diffusivity as a function o f
scaled saturation for various values of m an d
for b/a _ 0 .25 .
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Due to the fact that the retention function takes into

account the downward concavity of the retention data, th e

derivative of P . with respect to S . becomes infinite as S .

approaches unity . When b/a and m are small, the value o f

diffusivity may be very large near unit saturation . Thi s

has been an insurmountable difficulty in the solution o f

boundary value problems by numerical schemes that have been

written in terms of diffusivity and the theoretical function s

proposed herein .

G . Hysteresis and Air Entrapmen t

The hysteresis envelopes for two soils are shown i n

Figures 17 and 18 where scaled saturation is plotted as a

function of scaled capillary pressure . The drainage branche s

were obtained from soils at apparent initial saturation ,

i .e ., the air entrapped at zero capillary pressure i s

regarded as part of the solid matrix of the porous media .

The capillary pressures for both branches of the retentio n

curve were scaled by the P i of the drainage branch of the

respective soil .

Directly below the retention curves, based on the sam e

capillary pressure scale for the abscissa, the frequency o f

pore sizes is plotted for both branches of the retentio n

curves . Since the total areas under each of the pore-siz e

frequency curves must be identical, the area CDE must b e
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equal to the area ABC in Figures 17(B) and 18(B) . The are a

CDE represents the total volume of air entrapped as the

medium undergoes imbibition down to the particular capillar y

pressure related to the point C . In other words, th e

maximum air entrapment occurs at the capillary pressur e

related to the intersection of the two pore-size frequenc y

curves . At that capillary pressure indicated by point C ,

the entrapped air begins to move out of the medium . Con-

sequently, the amount of the remaining entrapped air in the

medium is reduced until the value of P . equal to zero i s

reached . The value of P . at the intersection C is alway s

less than the P i of the drainage branch and greater than the

P . of the imbibition branch .

H . The Concept of Energy

The area under the retention curve may be used to re -

present the energy stored in the liquid phase at a certai n

degree of saturation . Assuming the pressure of the ai r

phase is zero, one can regard the capillary pressure as th e

pressure of the liquid phase . The dimension of pressure i s

(Force)/(Length) 2 and the definition of saturation i s

(Volume of liquid)/(Total pore volume) . Therefore, the

product of pressure and saturation has dimensions o f

(Energy)/(Total pore volume) . Thus, energy stored in th e

liquid phase at a certain saturation i s
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E = Vt J

	

P . (S .) dS . ,

where Vt is the total pore volume . Similarly, if the de -

pendent and the independent variables are interchanged, the

area under the new S .-P . curve still represents energy pe r

total pore volume . Hence, energy stored in the liqui d

occupying pores smaller than a given size i s

(P .
E = Vt J

	

S . (P .) dP .

It is postulated from an energy viewpoint that a s

liquid leaves the pores from an initial saturation of unity ,

the energy of the liquid decreases . The energy of th e

liquid is near its minimum value as residual saturation i s

approached . If some liquid is added to the pores, th e

energy of the liquid in the pores is increased .

In Figure 18(A), as liquid is added to the pores t o

increase the pressure to a point denoted by G, (point o f

maximum air entrapment), the volume of liquid in the pore s

is less than it was for the same pressure on the drainag e

branch . The difference in saturation is given by FG an d

must be due to the presence of entrapped air. The entrapped

air will be at a pressure greater than zero and possesse s

energy . Therefore, the air obtained its energy from im-

bibition . Consequently, when energy is added to the medium
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by adding liquid, part of the energy is utilized to tra p

air and part goes into the liquid itself . The difference i n

area under the drainage and imbibition branches of th e

retention curve, i .e ., area EFG in Figure 18(A), represent s

the energy required to entrap the maximum volume of air .

As additional liquid is imbibed into the media, the volum e

of air entrapped decreases . This implies that air is being

expelled . As air is expelled into the atmosphere, energ y

is returned to the liquid . The liquid increases its energy

until it reaches the same energy level as it possesse s

on the drainage branch at P . = O . Therefore, the area AF G

must be equal to the area EFG as the energy released fro m

expulsion of air is exactly equal to that required for ai r

entrapment based on law of conservation of energy .

The area EDC in Figure 18(B) represents the volume o f

air entrapped as the capillary pressure is decreased whil e

area ABC represents the volume of air expelled from th e

medium after the maximum air entrapment occurs at C .

The retention function and the probability densit y

function of pore sizes have made it possible to explai n

the phenomenon of air entrapment during imbibition . I t

now appears possible to explain the field method o f

measuring "Air Entry Value" proposed by Bouwer (1966) ,

in which imbibition is allowed to occur under a completel y

sealed circular infiltrometer . The pressure is measure d
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when the first air bubbles enter the sealed chamber abov e

the soil surface . This pressure may indeed be the pressur e

at maximum air entrapment, which is less than the capillary

pressure at the inflection point of the drainage branch o f

the retention curve .
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CHAPTER VI I

CONCLUSION S

A . Summary

Based upon the Pearson Type VIII distribution function ,

a retention function which describes the retention of fluid s

in porous media has been developed . The function wa s

verified experimentally and could accurately relate capillar y

pressure to saturation on the drainage branch for porou s

media either initially vacuum-saturated or apparentl y

saturated . In the latter case, the pores of the media ar e

filled with entrapped air as well as liquid as they ar e

found under normal field conditions at zero capillar y

pressure . The function was also proved to precisely defin e

the imbibition curves for media with an initial saturatio n

near residual saturation or field capacity . However, n o

attempt has been made to interrelate the two branches o f

the retention curve, i .e ., drainage and imbibition, excep t

the same descriptive terms are used for both .

The Burdine integrals are assumed valid for computin g

the permeability of the porous medium from retention dat a

obtained in the laboratory . Since the retention function

developed herein precisely fits experimental data, th e

permeability calculated from the permeability function base d
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upon the Burdine integrals should fit the experimental dat a

precisely also . From the differentiable retention functio n

and the permeability function, a pore-size distribution an d

a diffusivity function were further obtained .

An experimental apparatus and procedure have been

developed for expediting the acquisition of the retentio n

data on both drainage and imbibition branches in the

laboratory . The equipment is simple, and the procedur e

is easy to follow and consumes less time than the con-

ventional methods .

The retention function possesses parameters which have

physical significance, and may be easily assessed from re-

tention data by the numerical method devised in this thesis .

The domain of saturation, A, from the saturation at the in-

flection point to the residual saturation is the one wher e

the retention curve is concave upward . In the domain, B ,

from the saturation at the inflection point to the uni t

saturation, the retention curve is concave downward . Th e

ratio of b/a and the value of m were demonstrated to b e

pore-size distribution parameters . The quantity m is th e

dominant factor governing the shape of the retention curve .

It is postulated that the saturation at the inflectio n

point, S i , is the critical point at which the non-wettin g

phase becomes continuous on the drainage branch and dis-

continuous on the imbibition branch . From a statistica l
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viewpoint, the critical saturation should correspond t o

the mode of the pore-size distribution of the soil . Equa-

tions in terms of the hydraulic properties, a, b, in, and

P f of the soil were derived to determine the values of th e

critical saturation and its corresponding capillary pressure .

The criteria set forth for affinity between porous

media are similar to those previously established by Brook s

and Corey (1964) except the new criteria includes on e

additional parameter . Two media are said to be affine i f

the b/a ratios and the values of m are identical . The

standard scaling length for the external dimension of the

model was chosen to be the capillary pressure head at th e

inflection point of the retention curve, i .e ., P i /y .

The effect of the downward concavity of the retentio n

curve upon the values of permeability and diffusivity wa s

demonstrated in this thesis . It appears that if the pore -

size distribution parameter b/a is ignored, the solutions

of boundary value problems involving imbibition may b e

erroneous, particularly if the soil has a wide range o f

pore sizes .

The use of the scaled retention and pore-size distri-

bution functions enables one to more rigorously examine and

further explore theories and hypotheses regarding wate r

movement in partially saturated media . For example, thi s

thesis presents a discussion on the phenomenon of ai r
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entrapment in porous media during imbibition through an

energy concept based upon the scaled retention and pore-siz e

distribution curves .

To the hydrologist, the major application of the

theories presented herein is the use of the hydrauli c

functions of retentivity, permeability and diffusivity i n

the general flow equation governing the movement and dis-

tribution of water in the subsurface of the watershed . With

these functions at hand, theoretical understanding of th e

soil-water system in the watershed may be enlarged . However ,

a paradox exists in which problems formulated in terms o f

diffusivity cannot be solved by numerical schemes presentl y

available . Obviously, the difficulty arises from the fac t

that the diffusivity becomes infinite as the saturatio n

approaches unity . Some problems of infiltration may b e

solved by resorting to the step type function proposed b y

Brooks and Corey (1964), which completely ignores th e

downward concavity of the retention data and always has a

finite value of diffusivity . It should be noted, though ,

that the solution therefrom may be greatly in error if th e

downward concavity of the retention data is pronounced .

Secondly, the pore-size distribution parameters, m and b/a ,

defined herein may be employed by hydrologists to charac-

terize hydrologically the soil types in the watershed .
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Thus, the parameters will become very helpful when it come s

to exploring the possibility of transferring an existin g

lumped-parameter hydrological model from one watershed to

another .

B, Significant Findings

1. A simple and yet complete retention function ha s

been discovered . This function is completely adaptable t o

any kind of disturbed porous materials, and its parameter s

are easy to assess .

2. Based upon the exact retention function and th e

Burdine integrals, a permeability function in terms of th e

incomplete Beta function ratio is derived . If tables of th e

incomplete Beta function ratios are made available, th e

computation of exact permeability values from measure d

retention data becomes a very simple operation .

3. From the retention function, a general probabilit y

density function of pores for porous media is obtained .

Since the most important hydraulic variables of porou s

media, e .g ., permeability, are closely related to th e

pore-size distribution, the realization of this genera l

probability density function will enable meaningful an d

constructive examinations of existing theories regardin g

those variables in the event of their inadequacy .
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4. The established criteria of affinity between porou s

media will refine the procedure of physical modeling ,

especially the selection of proper material for use i n

models .

5. Although the effect of the value of b/a upon th e

shape of the retention curve does not appear as influentia l

as that of the value of m, its effect upon the permeabilit y

is as pronounced as that of m . This leads one to believ e

that the downward concavity is an important property of th e

retention curve, which cannot be arbitrarily neglected whe n

it comes to computing the permeability from retention data .

The value of b/a is the dominant factor governing the down -

ward concavity .

6. The importance of the boundary effect of th e

retention cell on the downward concavity of the retentio n

curve is proportional to the non-porous surface of th e

retention cell and inversely to the drainable porosity o f

the soil . Care should be exercised when obtaining retentio n

data of soils having high residual water content in th e

laboratory .

7. The acquisition of the retention data on th e

imbibition branch is less time-consuming than that on th e

drainage branch . Equilibrium of the pressure differenc e

across the air-liquid interface in the porous medium i s

readily reached during imbibition .
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C . Needs of Future Researc h

Hopefully the exact expressions developed herein wil l

stimulate the mathematician and the others engaging in the

modeling of flow systems in porous media to develop th e

capability of handling these expressions in the solutions

of flow problems . In addition, the findings have opened u p

the possibility of dealing with the hysteresis in porou s

media in mathematical terms . For example, it now seem s

likely to relate the drainage branch to the imbibitio n

branch of the hysteresis envelope . With this, the scanning

loops may also be explained physically and mathematically .

Since both of the pore-size distribution parameters ,

b/a and m, relate to the shape of the retention curve, a

single pore-size distribution index may be derived throug h

the finding of a relationship between b/a and m .

Finally, the postulate that the critical saturatio n

at the inflection point of the retention curve is th e

saturation at which the non-wetting phase becomes continuou s

or discontinuous needs to be experimentally verified . Such

a finding would be important to agricultural engineer s

dealing with drainage problems . According to observation s

made by White (1968) on media with narrow ranges of por e

sizes, the postulate is valid . Therefore, a wide range o f

different types of media needs to be studied, i .e ., media

that have widely varying dissimilar properties .

103



BIBLIOGRAPHY

Abramowitz, M . and I . A . Stegun (editors) . 1970 . Handboo k
of mathematical functions with formulas, graphs, an d
mathematical tables . National Bureau of Standards . U .S .
Government Printing Office . p . 258, p . 263, and pp . 944 -
945 .

Bauer, L . D . 1938 . Soil permeability in relation to non -
capillary porosity . Soil Science Society of Americ a
Proceedings . 3 :52-56 .

Bear, Jacob . 1972 . Dynamics of fluid in porous media .
American Elsevier Publishing Company, Inc . New York ,
New York . 764 pp .

Bouwer, H . 1966 . Rapid field measurement of air entry valu e
and hydraulic conductivity of soil as significant para-
meters in flow system analysis . Water Resources Research .
2(4) :729-738 .

Bouwer, H . and R . D . Jackson . 1974 . Determining soi l
properties . In : Drainage for agriculture (edited b y
J. Van Schilfgaarde) . American Society of Agronomy .
Monograph No . 17 . pp . 611-672 .

Brooks, R . H . and A . T . Corey . 1964 . Hydraulic propertie s
of porous media . Hydrology Paper No . 3 . Colorado
State University, Fort Collins, Colorado . 27 pp .

Brooks, R . H . 1965 . Hydraulic properties of porous media .
A Ph .D . dissertation, Colorado State University, For t
Collins, Colorado . 88 pp .

Brooks, R . H . and A . T . Corey . 1966 . Properties of porous
media affecting fluid flow . Journal of the Irrigatio n
and Drainage Division, American Society of Civi l
Engineers . 92(2) :61-88 .

Brooks, R . H ., P . J . Leclercq, R . R . Tebbs and W . Rawls .
1974 . Axisymmetric infiltration . A final report sub-
mitted to the Water Resources Research Institute ,
Oregon State University, Corvallis, Oregon . 61 pp .

Bruce, R . R. 1972 . Hydraulic conductivity evaluation o f
the soil profile from soil water retention relations .
Soil Science Society of America Proceedings . 36(4) :
555-561 .

104



Brust, K . J ., C . H . M . Van Bavel and G . B . Stirk . 1968 .
Hydraulic properties of a clay loam soil and the fiel d
measurement of water uptake by roots : III . Comparison
of field and laboratory data on retention and of
measured and calculated conductivities . Soil Science
Society of America Proceedings . 32(3) :322-326 .

Brutsaert, W. 1966 . Probability laws for pore-size dis-
tributions . Soil Science . 101(2) :85-92 .

Brutsaert, W . 1967 . Some methods of calculating unsaturate d
permeability . Transactions of American Society o f
Agricultural Engineers . 10(3) :400-404 .

Brutsaert, W . 1968 . The permeability of a porous medium
determined from certain probability laws for pore -
size distribution . Water Resources Research . 4(2) :
425-434 .

Buckingham, E . 1907 . Studies on the movement of soi l
moisture . U .S . Dept . Agr . Bureau of Soils . Bulleti n
No . 38 . 61 pp .

Burdine, N . T . 1953 . Relative permeability calculation s
from pore-size distribution data . American Institut e
of Mining and Metallurgical Engineers . Petroleum
Transactions . 198 :71-77 .

Campbell, G . S . 1974 . A simple method for determinin g
unsaturated conductivity from moisture retention data .
Soil Science . 117(6) :311-314 .

Cary, J . W . 1967 . Experimental measurements of soil -
moisture hysteresis and entrapped air . Soil Science .
104(3) :174-180 .

Cassel, D . K ., A . W . Warrick, D . R . Nielsen and J . W . Biggar .
1968 . Soil-water diffusivity values based upon tim e
dependent soil-water content distributions . Soi l
Science Society of America Proceedings . 32(6) :774-777 .

Childs, E . C . and N . Collis-George . 1950 . The permeability
of porous materials . Proc . Roy . Soc . London . A201 :
392-405 .

Corey, A . T . 1954 . The interrelation between gas and oi l
relative permeabilities . Producers Monthly . XIX(1) :
38-41 .

105



Corey, A . T. 1959 . Evaluation of capillary-pressure fiel d
data . Petroleum Research Corporation . Research Repor t
A-4 . Denver, Colorado . 68 pp .

Corey, A . T . and R . H . Brooks . 1975 . Drainage characteris-
tics of soils . Soil Science Society of America Pro-
ceedings .

	

39(2) :251-255 .

Corey, G . L ., A . T . Corey and R . H . Brooks . 1965 . Simili-
tude for non-steady drainage of partially saturate d
soils . Hydrology Paper No . 9 . Colorado State University ,
Fort Collins, Colorado . 38 pp .

Darcy, H . 1856 . Les fontaines publiques de la ville d e
Dijon . Dalmont, Paris .

Elderton, W . P . and N . L . Johnson. 1969 . Systems of fre-
quency curves . Cambridge University Press . London .
216 pp .

Encyclopaedia Britannica, Inc . 1969 . Surface tension .
Encyclopaedia Britannica . 21 :442-450 .

Gardner, W . R. 1956 . Calculation of capillary conductivit y
from pressure plate outflow data . Soil Science Society
of America Proceedings . 20(3) :317-320 .

Gardner, W . R . and F . J . Miklich. 1962 . Unsaturated con-
ductivity and diffusivity measurements by a constan t
flux method . Soil Science . 93(4) :271-274 .

Gates, J . I . and W . T . Lietz . 1950 . A .P .I . Drilling an d
Production Practice .

Green, R . E . and J . C . Corey . 1971 . Calculation of hydrauli c
conductivity : a further evaluation of some predictiv e
methods . Soil Science Society of America Proceedings .
35(1) :3-8 .

Haring, R . E . and R . A . Greenkorn . 1970 . Statistical mode l
of a porous medium with nonuniform pores . Amer. Inst .
Chem . Eng . J .

	

16(3) :477-483 .

Jackson, R . D ., C . H . M . Van Bavel and R . J . Reginato .
1963 . Examination of pressure-plate outflow metho d
for measuring capillary conductivity . Soil Science .
96(4) :249-256 .

106



Jackson, R . D ., R . J . Reginato and C . H . M . Van Bavel .
1965 . Comparison of measured and calculated hydrauli c
conductivities of unsaturated soils . Water Resource s
Research . 1(3) :375-380 .

Jackson, R . D. 1972 . On the calculation of hydrauli c
conductivity . Soil Science Society of America Pro-
ceedings . 36(2) :380-382 .

King, L . G . 1965 . Description of soil characteristics fo r
partially saturated flow . Soil Science Society of
America Proceedings . 29(4) :359-362 .

Klute, A . 1965 . Laboratory measurement of hydraulic con-
ductivity of unsaturated soil . In : Methods of soi l
analysis, Part 1 (edited by C . A . Black) . American
Society of Agronomy . pp . 253-261 .

Klute, A . 1973 . Soil water flow theory and its applicatio n
in field situations . In : Field soil water regime
(edited by R . R. Bruce, et al .) . Soil Science Society
of America Special Publication Series No . 5 . pp . 9-35 .

Kunze, R . J ., G . Uehara and K . Graham. 1968 . Factor s
important in the calculation of hydraulic conductivity .
Soil Science Society of America Proceedings . 32(6) :
760-765 .

Laliberte, G . E ., R . H . Brooks and A . T . Corey . 1968 .
Permeability calculated from desaturation data . Journa l
of the Irrigation and Drainage Division, America n
Society of Civil Engineers . 94(1) :57-71 .

Laliberte, G . E . 1969 . A mathematical function for de -
scribing capillary pressure-desaturation data . Bulletin
of the International Association of Scientific Hydrology .
XIV(2) :131-149 .

Marshall, T . J . 1958 . A relation between permeability and
size distribution of pores . Journal of Soil Science .
9(1) :1-8 .

Millington, R . J . and J . P . Quirk . 1961 . Permeability o f
porous solids . Trans . Faraday Society . 57(7) :1200-1207 .

Moore, R . E . 1939 . Water conduction from shallow wate r
tables . Hilgardia . 12 :383-426 .

107



Nielsen, D . R., D . Kirkham and E . R . Perrier . 1960 . Soi l
capillary conductivity : comparison of measured an d
calculated values . Soil Science Society of Americ a
Proceedings . 24(3) :157-160 .

Nielsen, D . R ., R . D . Jackson, J . W . Cary and D . D . Evans
(editors) . 1970 . Soil Water . Western Regional Re -
search Technical Committee W-68 . pp . 85-102 .

Pearson, K . 1916 . Mathematical contributions to the theor y
of evolution-XIX . Second supplement to a memoir o n
skew variation. Roy . Soc . of London, Phil . Trans .
A216 :429-557 .

Pearson, K . (editor) . 1934 . Tables of the incomplet e
Beta-function . Cambridge University Press . London .
494 pp .

Purcell, W . R . 1949 . Capillary pressures, their measuremen t
using mercury and calculations of permeability therefrom .
Journal of Petroleum Technology . 1(2) :39-46 .

Richards, L . A. 1931 . Capillary conduction of liquid s
through porous mediums . American Physical Society .
Physics .

	

1 :318-333 .

Ritter, H . L . and L . C . Drake . 1945 . Pore-size distribution
in porous materials . Industrial and Engineerin g
Chemistry . Analytical Edition . 17(12) :782-786 .

Ross, W . L . and J . F . Lutz . 1940 . Determination of pore -
size distribution in soils . Soil Science . 49 :347-360 .

Scott, V . H . and A . T . Corey. 1961 . Pressure distributio n
during steady flow in unsaturated sands . Soil Science
Society of America Proceedings . 25(4) :270-274 .

White, N . F . 1968 . The desaturation of porous materials .
A Ph .D . dissertation, Colorado State University, For t
Collins, Colorado .

White, N . F ., H . R . Duke, D . K . Sunada and A . T . Corey .
1970 . Physics of desaturation in porous materials .
Journal of the Irrigation and Drainage Division ,
American Society of Civil Engineers . 96(2) :165-191 .

108



Wyllie, M . R. J . and M . B . Spangler . 1952 . Applicatio n
of electrical resistivity measurements to problems o f
fluid flow in porous media . American Association o f
Petroleum Geologists . Bulletin . 36(2) :359-403 .

Wyllie, M . R . J . and G . H . F . Gardner. 1958 . The generalize d
Kozeny-. Carman equation . World Oil . March and April .

109



APPENDIX A
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Nomenclature

Symbol

	

Description

	

Dimension

a

	

a parameter of the retention

	

none
curve

a. scaled domain of saturation

	

none
defined by Equation (4-2 )

b

	

a parameter of the retention

	

non e
curve

b. scaled domain of saturation

	

non e
defined by Equation (4-3 )

(p,q)

	

Beta function with Cp,q) as its

	

non e
argument s

P xcP,q)

	

incomplete Beta function

	

non e

D

	

diffusivity

	

L 2 T - 1

D .

	

scaled diffusivity

	

none

Do

	

scaling factor for D defined

	

L 2 T - 1
by Equation (4-13 )

H

	

a quantity defined by

	

none
Equation (3-17 )

IX (p,q)

	

incomplete Beta function ratio

	

none

K

	

partial hydraulic conductivity

	

L T - 1

K .

	

scaled hydraulic conductivity,

	

none
K/K 1

K 1

	

total hydraulic conductivity

	

L T- 1

K r

	

relative hydraulic conductivity,

	

none

k

	

partial permeability

	

L 2

k .

	

scaled permeability, k/k 1

	

non e

K.

111



Symbol

	

Description

	

Dimensio n

k l

	

total permeability

	

L 2

k r

	

relative permeability, k/k l

	

non e

a pore-size distribution

	

none
parameter, also a paramete r
of the retention curve

capillary pressure

	

FL - 2

scaled capillary pressure,

	

non e
P/P i

P f

	

capillary pressure associated

	

FL - 2
with the fictitious inflectio n
point of the retention curve ,
also a parameter of the curv e

P i

	

capillary pressure at the real

	

FL - 2
inflection point of the re-
tention curve

scaled capillary pressure,

	

non e
P/P f

Pw

	

pressure of soil-water

	

FL - 2

volume flux

	

LT- 1

r

	

radius of pore

	

L

r .

	

scaled radius of pore, r/ri

	

none

r i

	

radius of pore related to P i

	

L

saturation

	

none

scaled saturation, (S-Sr)/(1-Sr)

	

non e

effective saturation, S .

	

non e

S f

	

saturation at the fictitious

	

non e
inflection point of th e
retention curve

m

P

P .

sP

S

S .

S e
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a

0

Symbol

	

Description

	

Dimension

S r

	

residual saturation, 1-a-b

	

none

a

	

contact angle between the

	

radian
fluid and solid boundary

Y

	

specific weight of the fluid

	

FL - 3

V

	

vector differential operator

	

L
- 1

coefficient of surface tension

	

FL - 1

porosity of the porous medium

	

none
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APPENDIX B

STEP S

TO REDUCE THE SYSTEM OF FOUR EQUATION S

TO A SINGLE NONLINEAR EQUATION WITH S r AS THE UNKNOWN
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Let P 1 and S 1 , P 2 and S 2 , P 3 and S3, and P 4 and S 4 be four

pairs of experimental data . Substituting those values int o

the equation

bm

S - Sr -m

	

Sm - Sr a
p

	

Pf~ a

	

b

where Sm is the maximum saturation with Sm <_ 1 .0, and taking

the logarithms of the equations, one has a system of fou r

simultaneous equations

(S I - Sr

	

bm

	

Sm

	

S 1
	 a	 + a In bIn P 1 = in P f - m In (1 )

S 2 - S

	

S - S 2

	

in P 2 = In P f - m In	 a	 r + am
In	 m	 b

	

(2 )

S 3 - S

	

S - S 3

	

In P 3 = In P f - m In	 a	 + am In	 m	 b

	

(3 )

S 4 - Sr

	

bm

	

(S,,

	

S 4

	

In P 4 = In P f - in In	 a	 + a In - m	 b	

Subtracting Equation (2) from Equation (1) yield s

P1

	

(S 2 - Sr

	

bm

	

Sm

	

S 1
ln( P2)= m In S1-	 Sr + a In Sm-	 S 2

Similarly ,

P3

	

S 4 - Sr

	

bm

	

Sm

	

S a
ln( P2,= m 1n~ S3	 - S + a In S - S 4

	

(6 )

	

r

	

m

(4 )

(5 )
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From Equation (5), one may obtai n

ln
fP21	m =	

( s 2 	
-	

Sr

	

b

	

Sm-	
S 1

	

In
S 1

	

	 -	 Sr + a In S m	 -	 S 2

Similarly from Equation (6),

(7 )

(Sy - S

	

km

- S 3	 r b

	

mIn S 3	 -	 Sr + a In	 -	 S 4

m = (8 )

Equating Equations (7) and (8), one has

++ P 1ln
IP2)	 =.	 1n(1P

P
41

S 2 - Sr

	

b

	

Sm - S 1

	

S 4 - Sr

	

b

	

Sm - S 3
In f S1	 - S + a In S

	

S 2r

	

m

	

111 ( S
n

S 3
	 _	 Sr + a lnl Sm

	

S 4

or expressed in terms of b/a one ha s

P3

	

S 2 - Sr

	

P1

	

(S 3 S

4 - S r
1n(-) 4In(S I	 -	 S

	

1n(- P2 ) 1n- Sb

	

r

	

r

P1

	

Sm - S3

	

P3

	

Sm .. S 1
1nfP2)ln S m	 -	 S4 -

ln(P4)ln S m	 -	 S 2
a ( 9 )
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Similarly, from the system of Equations (2), (3), (4) and (1) ,

P4

	

S 3 - S r

	

P2

	

Si - S r
b

	

In [P, In S
2	 Sr

- In
1P3~

In S 4	 _	 S r

a

	

S - S 4

	

S

m

- S 2
P 2

	

m	 	 P 4	 	 m	

	

1n~ P3 ) In Sm	
-
	 S1 - lnf P, In S - S 3

Combining Equations (9) and (10), one has

(10 )

lnf P 3

P 4 , ln[ P1 ll
P 2 1

S 4

	

- S r
- In

S3

	

- S r

IP 1 P 3
ln

lP21 lnP 4 1

- In
- S 1(Sm

5m _ S 2

S 2 - S r
In f S1

- S r

- S 3

S 4

or,

ln(P) In()

S 3

	

- S r ( S i

	

-

	

S r
- In S4

	

_ S rIn
S2 - S r

P 2 l P 4In
l P 31

In (
p l )

Sm - S 4 S m -

	

S 2
In

	

( - In S m - S 3Sm - S 1

11 7



in

In

P 3
ln l

(s2 - S

r f

r
Si - S

f PTlIn
in

In

P1,

P 1
1

r

That may be simplified by letting

A = In

P 2lllln~J
3

(sm - S 2

S m - S 3

B = In

Sm - S 3

S m - S 4

Sm - S 1

S - 5 2
m

ism - s1 ,

S m Si

ln{ PH in
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Al = A • In f --1 ,

	

A2 = A • In ( -) ,

B1 = B • ln(Pi\ , and B2 = B

	

ln(P3
)

Then,

Al

	

B 1
S 2 - S r

	

(S 3 - S r

S I - r

	

Sz

	

S r i

This is a nonlinear equation with S r as the only unknown .

A2

	

B 2
Si - S

Sa - S r

r
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APPENDIX C

COMPUTER PROGRAM

FOR DETERMINING THE PARAMETERS OF THE RETENTION FUNCTIO N
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000011 C
90002 : C
00003 : C
00004 : C
00005 : C
00006 : C
00007s C
00008 : C
00009: C
00010 : C
00011 : 0
00012: C
00013s C
00014 : C
00015:

- 00016 1
00017 s

':

	

0001.8 s
00019 :99
00020 1
00021II I
00022 s
00023 :97
00024 1
00025'98
00026 *
000271 . .
00028 :40
00029 1
00030'
00031 :
00032 :

▪ 00033:33
00034:
00035s _

,00036 s
00037 $
00038:
00039 s
00040 :
00041 :
00042 :
000431
00044 :
00045 :
00046 1
00047 :
00048 $
00049 s
00050' '
00051 :
00052 s
00053:77
00054 1
00055 :1 9
00056 :
00057 :
00058 1
00059 :
00060 :
00061 *
00062 s
00063:
00064 :
00065 $
00066 1
00067 :
00068 s
00069r
00070 $
00071 :
00072 s
00073 : _
00074 s
00075 :
00076 s
00077:48
00078 :
00079 1
00080 $
00051 3
0005 2 :

-NOTE : THE FIRST iSET OF INPUT DATA IS TH E
INITIAL GUESS OS-THE RESIDUAL SATURATION .
SRC=XCI)) . .ANZ THE MAXIMUM SATURATION .
SM .` WHICH ARE TO BE TAKEN IN BY THE INPUT
UN I,T SPECIFIED IN THE STATEMENTS :

READ( 1 .99)XCII .SM
99 -

	

FpRMATC2C IX, FS . 3) )
THE SECOND SET OF INPUT DATA IS THE CO R-

RESPON DING VALUES 0 F CAPILLARY -PRESSURE. P.
AND SATURATION . S, WHICH ARE TO BE TAKEN IN
BY THE INPUT UNIT SPECIFIED IN THE STATEMENTS :

READ( 2, 111:P1 .P2a P3, P4. 51, 32 . S3 . 54
I1

	

FORMATC401X .F6.21,4CIX.FS.3) )

PROGRAM FP
DIMENSION XC 1 )
COMMON A1,A2,Ell . B2,SI .S2aS3.54..QI,Q 3
REA DC 1 . 99 ) X (1 ). SM-
FORMAT(2(1XaF5 .3))

	

-
READ( 2. 11 ) PI, P2 . P3 . P4. SI, S2. 53 . S 4
FORMATC•4,(LX . F6. 2).4( IX. F5 . 3) )
WRITE(61 .97)

	

•
FORMAT( IX. 'INPUT DATA FOR THE RtN FOLLOVI 4 // )
WRITE( 61 .98 )XC I) . SM

-JO RMATC•IX,'INITIAL APPIDXIMATION OF SR =`.F5.3.5X,.
-1 'MAXIMUM •SATURATION =. •',F5.3// )

WRITE( 61 .13).
FO RMAT C 3X, ' P t , SX, 0 S ' S
(WRITE( 61, 33)Pl . S I

, WRITE( 61,337P2 .S 2
WRITE(-61,•33 )P3, S 3
WRITE(61 .33)P4a S4
FO RMAT C I X, F6. 2 . IX. F5 .- 3 ) '
A=ALOG(CCSM-S4)/CSM-SI))3*(ALO8CP2/ P3) )' )

1-ALOCCSM-52)/CSM-53))**CALOOCP4/ Pt )J) -
B=ALOG000SM-S3)/CSM-S6))* CALOG(PI/P2))) •

1-ALOGCCCSM-S1)/( SM-S2))9*CAIOG(P3/R4)))- .•

	

'
Bi=B*ALOG(PA/P4 )
B2=BsALOGCP2/P3 )
Al-A*ALOGCP3/P4 )
A2=A*ALOGCPI/_P2 )
CI}LL NONL IN C108. 50 . 1 .X.. 1 . E-10) -
SR=XC1 )
C .((ALOG(P3/P4))*ALOGCQI)-CALO G(Pl/P2))*ALOGCQ3) )

1/(CALOG(P1/P2))*ALOGCCSM-S3) 3 CSM-S4))-(ALOGCP3/
2P4))*ALOG(CSM-S1)/CSM-52))) .
XM=(ALOG(P1/P2))/(ALOGCQI)+C*ALOGCCSM-SI)ICSM-S2)) )
A=CSM-SR)/C I .+ CI )
B-SM-SR-A
D-ALOG<PI)+700*ALOGCCS -SR)YA)-9*XM/A*ALOG((S* SI)/B )
PF-EXPCD)
VRITEC61 .77)

	

•

	

•
FOP14ATC////IX.'PARAMETEAS OF THE RETENTION CURVE FOLLOW :'' )
VRLTEC61, 19)SR.A .-B.XM .PP'
FORMAT(//1X,'SR-' .F5.3,4X."A= ' . F5. 3*4X','EI=',F5.3.4X . _

1 'M=', F5. 3, 4X . ' PF'- F7.3)
EN D
SUBROUTINE AUXFCNCX,Y,K )
DIMENSION X(1 )
COMMON A1 .A2aB1 ..B2,SI,52 .S3.S4,Qt,Q3
T-XC1)

	

• - .
Q1=(S2-T)/(S 1

▪
-TT

	

-

	

-
Q2=CSI-T)/(S4-T)

	

-
Q3=(S4-T)/CS3-T )
Q4-(S3-T)/ C S2-T)

	

'

	

-
Y .(Q1**Al)*(92**B2)4Q3**A2)*CQ4**BI )
RETURN

	

•
END

	

-
SUBROUTINE NONLINCN .NUMSIG.• MAXITsIPRIM TJX.EPS )

_REAL XC30),PART C30) .TEMP.(30-) . CO EC 30 .31),RU.CON . F. ,
(FACTO R. HOLD.H.FPLUS,DERMAX .TES T
. DIMENSION ISUBC•30',LOOKUP(30 .301

	

.
DEL TA . I . 7E.. 7 '

	

-
R!L CON. 10 .E+0**(-NUMSIG)

	

^
JTEST-1

	

.
I FC IPAIN T .,EQ . I )PRINT 4 8
FOP.MATCIHI )
m •700 M=I,MAXI T
18111 T.

0 FMAX-0.
M1=M-I

	

-
IF( SPRINT .NE. I) GO TO
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00083,

	

PRINT 49,MI .CXCI) .I=1 .N )
80084,49

	

FORMAT( I5 .3E18.8/CE23.8. 2E18.8) )
00085s9

	

DO 10 J=l, N
00086,10

	

LOOKUP CI .J)■J
000871

	

DO 500 X. 1 .N
000881

	

IFCK-1)134,134 .13 1
00089$131

	

KM IN=K- 1
00090,

	

CALL• BACK (KMIN,N .X.ISUB. CO E. LOOKUP )
00091 :134

	

CALL. AUXFCFJCX .F,K )
00092s

	

FMAX=AMAX ICFMAX.ASSCF) )
00093 ;

	

IF CABSCF) .GE . EPS) GO TO 134 5
00094,

	

IQUIT=IQUIT+1

	

-
00095s

	

I FC IQUIT .N E. N ) GO TO 134 5
00096s

	

GO TO 72 5
00097 :1345 FAC70R- .00IE+80
000981135

	

ITALL Y. 0
000991

	

CO 200 I .K,N
00100 :

	

ITEMP=LOOKUP CX.I )
001011

	

HOLD.XC I TEMP )
00102s

	

PRECa<5 . E-6 -
00103s

	

ETA•FACTO R+ABSCHOLD >
00104 :

	

H .AMIN1 CFMAX,ETA )
801051

	

IFCH .LT.i PREC) H+PREC
001061 -

	

XCITE4tP) .HOLD.H
00107,

	

IF<K-1) 161 .161.151
001081151

	

CALL. BACK CKMIN,N .X,ISUB,COE,LOOKUP )
00109, 161

	

CALL AUXFCIQN (X.FPLUS .1C )
001 .101

	

PART CITEMP)=CFPLUS-F)/ H
00111

	

XCITEMP)eHOL D
001121

	

INABS( PART<1TENP)) .LToDFLTA) GO TO 19 0
00113,

	

IFCABSCF/PARTCITEMP)) .LE.I.E+15) GO TO 20 0
001, .4 :190

	

ITALLY. ITALLY+1

	

=
00115:200

	

CONTINUE
00116s

	

-IFCITALLY .LE.N-K)•GO TO 202 '
001. 1.7 t

	

FACTO R. FACTOR* 10 ..0E+00` -

	

.
NI 18s

	

I F C FACTO R, . G T. 11 . 1 GO' 'TO 773
00119s

	

GO TO 135

	

-
00120:202

	

LFCK .LT.N) GO TO 203
00!;21 :

	

IFCAB (PART(ITFMP))•LT .DELTA) GO TO 775
00122,

	

CO 2(1( .01+13 .0. 8E+00

	

-
00123t

	

KMAX=I TEMP,

	

-
00124s

	

GO TO 500
00-125s203' KMAX=LOOKUPCK .K)
001,26 :

	

DERMAX=A ES(PART CKMAX) )
00127 :

	

KPLUS,.K+ I
00128*

	

DO 210 I .KPLUS,N
00129s

	

JSUB.LOOKUP<K,I )
00130 :

	

TES7=ABSCPARTCJSUB))•

	

'
00131s

	

IF(TEST.LT.DERMAX) GO .TO. 209
00132,

	

,DERMAX=TEST
00133s

	

LOOKUPCKPLUS.I)=KMAX .
00134s

	

KMAX=J SU B
00.1351

	

' GO TO 21. 0
00136:209

	

LOOKUP(KPLU$ 4 1)-JSUB
00137s 210

	

CONTINUE .
00 .L38s

	

INABS( PART CKMAX33 .EQ .
ISUBCK)=KMAX

	

•
COECK.N+4)= 8.0E+00
D3, 220 J=KPI,US .N
JSUD.LOOKUPCKPLUS,J)

	

-
CO ECK,JSUH) .+PARTCJSUB)/PARTCKMAX)
CO E(K.N+1)I COECK,N+!)+PARTCJSUB)•X(JSUB )
CONTINU E
COE(K .N+1). (CO ECK,N+1)-F)/ PARTCKMAX),+XCKMAX )
X(KMAX)=CO ECN .N+1)

	

_
IFCH . EQ. 1) GO TO 610

	

■
- CALL- BACK (N=1,N . X. I SUB. CO E, LOOKUP )

1FCM-1Y650,650,62 5
CO 630 1=1,N

	

-
IFCABSCTEMP<I)-XCI)> .,GT .ABSCX(I) )*RELCON) GO TO.
CON TIN U E
JTEST=JTEST+ 1
I FCJTEST-3)• 650, 725 . 72 5
JTEST. I
D3 660 I. I, N
TEMPI)=XCI )
CONTINUE
PRINT 175 3
FORMATG/ . N O

1 USED.' )
1FCIPRINT .N E. 1) GO TO 800
PRINT 176 3

00139 s
00140 s
0014! ,
00142 s
00143 ,
00144 :

	

}
00145 : 220
00146:500
00147 :
001•4 8

. 00,149 :
00150s61 0
00151s62 5

.00152

	

.
001530 63 0
08154 s
00155 1
001- 56,649
00157 :650
00158660
001,598 .70 0
00160s .
00161'175 3
00162 0
00163 :
001,64 : •

64 9

CONVERGENCE . MAXIMUM NUMBER OF ITERATIONS '
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00165 :1763 FORMAT(' FUNCTION VALUE AT THE LAST APPROXIMATION FOLLO '
00166 :

	

1'WS :'/ )
00167s

	

IFLAG. 1
00168 :

	

GO TO 777 7
00169 :725

	

IFCIPRIN T .NE. 1) GO TO 800 .
0017037777 DO 750 K-1, N
00171 :

	

CALL AUX F(N (X, PART (K ),K )
00172 :750

	

CONTINUE
00173s

	

IF(IFLAG .NE. 1) GO TO 877 7
00174$

	

PRINT 7788,(PART(X),I1-I,N )
00175 :7788 FORMAT( 3E20.8

) 00176:

	

GO TO 80 0
0017718777 PRINT 751

	

.
00 1 781 751

	

FORMAT(//' CONVERGENCE HAS BEEN ACHIEVED . THE FUNCTION
00179 :

	

1' VALUE' )
00180 :

	

PRINT 7515,(PART(K),K01,N )
00181x7515 FORMAT(' AT THE FINAL APPROXIMATION FOLLOWS : '//(3E20.8) )
001821

	

GO TO 800 .
00183 :775

	

PRINT 75 2
00184s752

	

FORMATMODIFIED JACOBIAN IS SINGULAR . ;TRY A- DI FF£REN '
00L85$

	

1'T')

	

•
00186 :

	

PRINT 7525

	

'
00187 :7525 FORMAT(' SET O F DATA OR DITFERENT INITIAL APPROXIMATION .' )
00188 :800

	

MAXIT.M1+1 .
00189 :

	

RETURN
00190 :'

	

END

	

-
00191 :

	

SUBROUTINE BACK (KMIN,N,X,ISUB.COI, LOOKUP )
00192s

	

DIMENSION X(30), CO EC 30 .31)
00193 :

	

DIM EN SION ISUB(30),LOOKUP(30.30 )
00194 :

	

DO 200 KK-I,KMLV
00195 :.

	

KM-KMIN-KK+ 2
00196 :

	

KMAX=ISUB( KM-1 )
00197 :

	

X(KMAX)-0 .0E+0 0
00198 :

	

DO 100 J .KM, N
001991

	

JSUB-LOOKUPCKM.J) •
002001

	

XCKMAX)-X(KMAX)+COECKM-1►JSUB)*X(JSUB )
002011100

	

CONTINUE
00202 :

	

X((MAX)-XCXMAX)+COEtKM-1,41+1 E
00203 :200

	

CONTINUE
00204 :

	

RETURN
00205t

	

EN D

Example of Computer Erint--But _

INPUT DATA FOR THE RUN FOLLOW 4

INITIAL APPROXIMATION OF SR - ' :120

	

MAXIMUM SATURATION = .890

	

P

	

S
27 .30 .262
22 .10 .38 5
18 .30 .507
10 .80 .75 3

	

0

	

1. .20000000E-0 1

	

1

	

1 . 23441 716E•0 1

	

2

	

1 .23339566E-0 1

	

3

	

1 .23339476E-0 1

CONVERGENCE HAS BEEN ACHIEVED. THE FUNCTION VALU E
AT THE FINAL APPROXIMATION FOLLOWS :

2 .91038305E-1 1

PARAMETERS OF THE. RETENTION CURVE FOLLOW ,

SR- .123

	

A= .236

	

B . .531

	

M- .188

	

PF= 23 .0I 4

123



APPENDIX D

EXPERIMENTAL DATA

PERTAINING TO THE FIGURE S
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-4

Silty Clayey Sand (Figure 4(A) )

Drainage Imbibition

m =

	

.797

	

S r =

	

.673

	

S c =

	

.935 m =

	

1 .42

	

S r =

	

.637

	

S c=

	

.87 3

P f=

	

53 .7

	

a =

	

.249

	

P i =

	

49 .2 P f =

	

63 .1

	

a =

	

.164

	

P i =

	

10 . 6

b

	

=

	

.078 b

	

=

	

.08 9

P (cm H2 0) S P (cm H 2 0) S

8 .8 .998 326 .2 .71 2
18 .6 .992 177 .4 .74 1
28 .4 .987 99 .4 .77 1
38 .1 .981 57 .4 .80 1
60 .3 .903 34 .5 .83 3
72 .5 .869 6 .5 .88 0
84 .9 .845 0 .0 .89 0

100 .9 .82 1
118 .8 .79 7
145 .0 .77 3
179 .7 .75 7
326,2 .712

J - 24

	

(Figure 4(B) )

Drainage Imbibitio n

m = .567 S r=

	

.354 S c= .841 m =

	

.318 S r=

	

.430 S c=

	

.80 6

P f= 22 .4 a =

	

.384 P i = 16 .1 P f=

	

26 .3 a =

	

.178 Pi =

	

12 . 3

b

	

=

	

.262 b

	

=

	

.35 2

P (cm oil) S P

	

(cm oil) S

1 .6 .995 39 .6 .51 0
7 .6 .958 29 .7 .57 5

10 .2 .937 23 .5 .64 0
13 .9 .870 18 .7 .70 5
18 .2 .806 14 .3 .77 0
23 .3 .737 10 .1 .83 5
28 .5 .676 6 .5 .89 9
34 .2 .603 0 .2 .96 0
42 .2 .53 9
49 .3 .50 7
54 .8 .46 9
67 .3 .44 6



J - 17

	

(Figure 5(A) )

Drainage Imbibitio n

m = .169 S r =

	

.128 Sc = .549 in =

	

.188 S r=

	

.123 S c=

	

.56 2

Pr 27 .4 a =

	

.260 P i = 22 .3 Pr 23 .0 a =

	

.236 P i =

	

16 . 7

b

	

=

	

.502 b

	

=

	

.53 1

P (cm oil) S P (cm oil) S

13 .0 .809 33 .1 .20 3
15 .1 .762 27 .3 .26 2
16 .9 .699 22 .1 .38 5
23 .3 .515 18 .3 .50 7
29 .6 .331 15 .2 .63 0
37 .3 .202 10 .8 .75 3
53 .7 .139 0 .0 .885

J - 50

	

(Figure 5(B) )

Drainage Imbibitio n

m = .098 S r =

	

.096 S c = .523 m = .156 S r=

	

.112 S c =

	

.53 7

Pr 21 .5 a =

	

.388 P i = 21 .1 Pr 16 .8 a =

	

.324 Pi =

	

15 . 2

b

	

=

	

.392 b

	

=

	

.44 0

P (cm oil) S P (cm oil) S

14 .6 .853 23 .3 .18 7
17 .1 .809 19 .5 .29 7
19 .4 .717 17 .3 .40 6
20 .5 .668 15 .5 .51 5
20 .8 .555 13 .9 .62 4
21 .9 .429 0 .2 .87 6
22 .5 .31 6
29 .7 .12 4
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r
	

G 1

Drainage (Figure

	

6 (A)) Rel . Permeability (Figure

	

6 (B) )

in =

	

.391

	

S r=

	

.161

	

S c =

	

.762 Total Permeability

P f =

	

2 .17

	

a =

	

.594

	

P i =

	

2 .15 = 2 .482 x 10

	

8

	

cm 2

b =

	

.24 5

P (cm Hg ) S Kr S

0 .804 .980 1 .000 1 .00 0
1 .41 .915 .340 .90 0
1 .71 .855 .167 .80 0
2 .01 .800 .078 .70 0
2 .21 .740 .035 .60 0
2 .41 .680 .014 .50 0
2 .71 .580 .0045 .40 0
3 .02 .51 5
3 .22 .46 0
3 .62 .39 5
4 .72 .29 0
6 .53 .21 0
8 .04 .195

	

_

G - 4

Drainage (Figure

	

7 (A)) Rel . Permeability (Figure

	

7 (B) )

in =

	

.298

	

Sr =

	

.357

	

S c=

	

.947 Total Permeability

P f=

	

3 .19

	

a =

	

.636

	

P i=

	

3 .28 = 0 .207 x 10

	

8

	

cm2

b

	

=

	

.00 7

P (cm H g) S Kr S

3 .03 .999 1 .000 1 .00 0
3 .23 .970 .550 .90 0
3 .33 .925 .271 .80 0
3 .43 .870 .110 .70 0
3 .59 .799 .033 .60 0
3 .79 .734 .006 .50 0
3 .99 .66 3
4 .19 .61 8
4 .60 .53 8
5 .20 .48 7
6 .01 .44 2
6 .92 .40 7
8 .23 .37 7
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G-5 (Figure 9(A))

	

Crab Creek Sand (Figure 9(B) )

Drainage Drainage

m =

	

.279

	

S r=

	

.238

	

S c=

	

.830 m =

	

.354

	

S r=

	

.173

	

S c=

	

.81 8

Pe 3 .76

	

a = .673

	

Pi = 4 .00 Pf= 16 .9

	

a =

	

.723

	

Pi= 18 . 1

b

	

=

	

.089 b =

	

.10 4

P (cm Hg ) S P (cm oil) S

3 .22 .995 12 .0 .99 0
3 .52 .950 13 .5 .98 6
3 .72 .915 14 .5 .98 0
3 .92 .854 15 .5 .97 4
4 .12 .789 16 .0 .94 8
4 .32 .724 17 .0 .89 5
4 .52 .653 17 .2 .87 5
4 .77 .583 21 .0 .63 8
5 .08 .523 24 .8 .47 9
5 .38 .462 36 .9 .27 7
5 .83 .407 67 .7 .18 8
6 .48 .362 136 .6 .15 8
7 .14 .32 7
8 .04 .291

130


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138

