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Introduction 

The goal of radiation therapy is to kill cancer cells or shrink tumors using ionizing 

radiation. Both normal and cancer cells rely on intact and properly behaving genetic material to 

grow and proliferate. Ionizing radiation carries enough energy to remove electrons from atoms 

and molecules, posing a risk to the health of exposed cells. Cells with significantly damaged 

genetic material that is not repaired generally stop dividing and die. Normal cells are better able 

to repair their genetic material compared to most cancers and it is this distinction that radiation 

therapy exploits (Baskar et al, 2012). For maximum effectiveness, radiation dose, the amount of 

ionizing radiation received in a given (3-D) region, should be maximized for cancer cells and 

minimized for normal cells adjacent to the cancer. Exposure optimization aims to kill the cancer 

cells while preventing serious damage to healthy tissue. In worst case scenarios, healthy tissue 

can become cancerous if exposed to radiation during radiation treatments, making it vital to 

correctly identify organs and other structures in the human body during treatment planning 

(Baskar et al, 2012).  

Medical imaging, such as with CT scans or magnetic resonance imaging (MRI), allows 

clinicians to see inside the body and create a virtual patient whose treatment can be designed in 

software called a treatment planning system (TPS). These systems allow the user to visualize the 

body structures in 3D inside the body and select dosimetry settings for optimal patient outcomes, 

among other analytical and planning functions. An R statistical package “RadOnc” (CRAN) was 

published (Thompson, 2014) that facilitates dosimetric analysis and structural visualization and 

comparison of planning data imported from a TPS. The structural comparison function typically 

generates similarity scores for a set of two or more structures. This can be useful, for example, in 

comparing the accuracy of a structure drawn by a physician, student, or algorithm compared to a 
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known structure or that of another expert (Boon et al, 2018). Such structures are drawn in a 

process called contouring, in which a clinician uses medical imaging data to delineate the outline 

of the cancer and any organs at risk (OAR) which should receive minimal radiation (Boon et al, 

2018).  The visible cancer volume is known as the gross tumor volume (GTV). The clinical 

tumor volume (CTV) includes the GTV with added margins to account for the potential spread 

of the tumor between the imaging and the therapy session, while the planning target volume 

(PTV) is larger still, including an additional buffer to account for potential movement by the 

patient during treatment (Baskar et al, 2012). These structures and organs at risk can be 

compared between treatment plans or within a single plan with the RadOnc package via pairwise 

analysis with the Hausdorff distance and the Dice similarity coefficient (DSC) (Thompson, 

2014). These metrics are successful in describing a distance and similarity between structures, 

respectively. However, they do not account for the amount of radiation received by each region 

or how differences in structure may affect whether a structure receives a desirable or undesirable 

radiation quantity. The DSC, named after its developer, botanist Lee Raymond Dice, is a 

measure of similarity between two samples as defined below (Dice, 1945).  

!"#	 = 	
2|( ∩ *|
|(| 	+	 |*| 

 

|X| and |Y| are the number of elements in each sample.  In the “DSC” method within the RadOnc 

package, the space (in which the structures to be compared are located) is divided into a 3-

dimensional matrix of a specified resolution, with each matrix cell referred to as a voxel. A 

structure’s set is made up of all of the voxels that have a midpoint contained within the 

structure’s volume. |X| and |Y| are thus the number of voxel midpoints that are contained within 

each structure and |X∩Y| is the number of voxel midpoints that are contained by both structures 
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(Thompson, 2014). Maximum similarity corresponds to a DSC of 1 while completely dissimilar 

structures would return a DSC of 0. 

 

 
Figure 1. Dice Similarity Coefficient Outputs Same Value for Clinically Different Structures 

 
 

Figure 1 illustrates how this could become a problem in the context of radiation treatment 

planning. Structures a and c are created by shifting structure b up or down, respectively. Without 

an input of radiation dose, the traditional DSC between structure b and structure a and between 

structure c and structure b in comparison I would be equal. The organ at risk (OAR) is 

overlapped by structure c and would be in serious risk if the circular structure was designating 

the radiation target. If structure b represents the area that would ideally be targeted by radiation 

and structure a and structure c are two attempts to draw the target area, structure a is a better 

attempt than structure c. While both structures partially miss the ideal target area, structure a 

does not overlap an organ at risk. Data imported from a TPS often includes a dose grid, a 3-D 

matrix that contains information about the amount of planned radiation that will be received at 

regularly spaced x, y, z coordinates in the same space as the structures to be compared 
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(Thompson, 2014). The planned dose in the volume of tumors is relatively high while organs at 

risk are located in low dose areas of the dose grid. Comparison II in Figure 1 shows the same 

structures and organ at risk as compared before but overlaid on a dose grid. The organ at risk 

receives minimum to low radiation dose intensity as planned in the TPS before data import. 

Radiation dose increases as one travels away from the organ at risk towards the treatment target. 

Only considering the proposed target structures and dose grid, it is clear that using structure a as 

a target would lead to a better patient outcome than using structure c as the target because 

targeting areas that one TPS suggests requires minimal radiation dose would lead to excessive 

damage to non-target organs. A modified DSC that weights the importance of each voxel by the 

radiation dose’s behavior at that point could lead to a more meaningful metric in the context of 

radiation therapy planning. Such a weighted DSC (mDSC) might produce results as shown in 

comparison II where structure a and structure b are calculated as being more similar than 

structure b and structure c. 

A modified Dice similarity coefficient was coded in the R programming language that 

weights voxels by the behavior of the dose grid to provide a more meaningful method of set 

comparison than the traditional Dice similarity coefficient in the context of radiation therapy 

treatment planning. This tool was added to the compareStructures function in the package 

RadOnc and thus will be available for free from CRAN for use on multiple computing platforms. 

 
Methods 

 The mDSC method of structure comparison was added to the RadOnc package using R 

3.6.1 on Mac OS X (R Core Team, 2019). To be used as currently designed, the function requires 

the RadOnc package to be installed along with its dependencies (Thompson, 2014). Evaluating 

the mDSC of structures is done via the compareStructures(structures, dose, method, pixels) 
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function used to compare the DSC and Hausdorff distance by specifying the “method” function 

argument as “mDSC” and providing a dose grid under the function argument “dose”. The dose 

grid is automatically imported and formatted by RadOnc’s read.DICOM.RT and is located at 

data$dose if “data” is defined as the location for the import. This metric uses the closed polygons 

(closed.polys) to represent the volumetric structures for comparison. Each closed.polys is a list 

containing sublists of x and y coordinates for each z “slice” from the CT scan or MRI. These 

polygon-containing 2D z-slices create the 3D structure volumes they are a part of when placed 

on top of each other, allowing the polygons to be connected between each slice. 

 

 
 
Figure 2. Workflow for compare.Structures with Method = “mDSC” 
 
 The initialization of the mDSC method relies on the first half of the DSC method which 

takes the structures to be compared as input and divides the 3D space they reside in into voxels. 

A matrix is then created with N+3 columns with N being the number of input structures. The first 

three columns describe the location of the midpoint of each voxel while the remaining columns, 

one per structure, indicate whether a structure contains the voxel midpoint. A value of 1 in a 

column indicates that the structure that the column is associated with contains the voxel midpoint 

indexed by that row. This matrix is then filtered to remove any rows that describe voxel 
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midpoints that are not contained by any structure. These voxels will not affect the mDSC 

calculation, but this early removal saves computation time later in the workflow. 

         Borders between radiation targets and organs at risk are locations where a steep gradient 

in radiation dose exists. One object will receive high radiation in order to kill or shrink the cancer 

while it’s next-door neighbor will need to receive minimal to zero radiation to avoid instigating a 

secondary cancer or other organ damage. The gradient of the dose grid is one way to measure 

this steep change and must be calculated for each voxel. The function approx3D(data = 

data$dose, x, y, z) is used to extrapolate from the dose grid to output an approximated dose at 

any specified x, y, z location. The midpoint dose is approximated as well as the dose at each 

corner and face of the voxel. The difference in any corner or face dose from the midpoint dose is 

assigned as the magnitude of a vector pointing from the midpoint through that corner or face. 

This leads to each voxel midpoint possessing 14 vectors of various magnitudes. These vectors 

are summed to get an approximated net gradient vector. The magnitude of the net vector is 

assigned to that voxel. The matrix that used to contain 0s and 1s depending on whether that 

voxel’s midpoint was contained in a structure is altered to contain 0s and weights, with the 

weights being equal to the magnitude of the gradient centered on that voxel, approximated as just 

described.   

      The mDSC is then calculated by summing the columns for each structure and selecting a 

pair of structures to compare, designating one as X and the other as Y. The column sum for 

structure X is used in place of |X| and is added to the column sum of Y (instead of |Y|) to 

compute the denominator.  If a voxel is contained by both structures, the magnitude of the 

gradient at that voxel’s midpoint is added to a sum that is later doubled to form the numerator in 

place of 2|X∩Y|. The mDSC is then calculated as before and displayed in a table. 
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Results 

 Data from a sample prostate cancer treatment plan from a TPS used at OHSU was 

imported with RadOnc. The planning target volume (PTV70 CT_1) structure was used for the 

evaluation of the WDSC metric and is depicted in Figure 3. This structure was shifted in the 

positive and negative x and y directions by half of its width and height, respectively.  

 
 
Table 1. Similarity Coefficients from the Traditional DSC Using PTV70 CT_1 
 

 PTV70 CT_1 Posterior 
Shift 

Anterior Shift Superior Shift Inferior Shift 

PTV70 CT_1 1 0.581 0.584 0.479 0.507 

Posterior 
Shift 

0.580 1 0.130 0.336 0.386 

Anterior Shift 0.584 0.130 1 0.361 0.362 

Superior Shift 0.479 0.336 0.361 1 0.021 

Inferior Shift 0.507 0.387 0.362 0.021 1 
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Table 2. Similarity Coefficients from the Dose Modified DSC Using PTV70 CT_1 
 

 PTV70 CT_1 Posterior 
Shift 

Anterior Shift Superior Shift Inferior Shift 

PTV70 CT_1 1 0.622 0.628 0.493 0.549 

Posterior 
Shift 

0.622 1 0.168 0.366 0.442 

Anterior Shift 0.628 0.168 1 0.403 0.412 

Superior Shift 0.493 0.367 0.403 1 0.037 

Inferior Shift 0.549 0.442 0.412 0.037 1 
 
Table 3. Mean Dose in Each Shift of the PTV Structure 
 

Shift Mean Dose (Gy) 
Anterior  39.25458 

Posterior  37.54306 

Superior 27.98347 

Inferior 49.81673 

none 38.85445 

 
 

 
 
Figure 3. 2.5D representation of the planning target volume PTV70 CT_1 
 
 The movement in the anterior and posterior direction had similar DSC values for the 

traditional DSC at 0.584 and 0.580 for the anterior and posterior shifts respectively, and for the 

modified metric with DSCs of 0.622 and 0.628. The movement in the superior and inferior 
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directions produced slightly different DSC values for the traditional metric at 0.479 and 0.507. 

The dose modified DSC had a much larger difference between the superior and inferior shifts 

with values of 0.493 and 0.549. 

          The resolution of the space was altered by changing the number of voxels in each 

direction by changing the function argument “pixels”. The minimum pixels required to complete 

the calculation was 30 with the structure tested. This value can be increased to any amount but 

significantly increases the computation time. However, the difference in DSC results for a given 

structure pairing using pixels = 30 vs the standard pixels = 100 was negligible, at < 0.0001. 

Discussion 

The results from the traditional and modified DSC metrics are best understood in the 

context of the mean dose table. This table shows that the posterior and anterior shifted structures 

receive approximately the same radiation dose. Even with a dose modified metric, the anterior 

and posterior shifted structures’ DSC should be approximately equal, which was observed. The 

superior and inferior shifted structures receive mean doses with a larger difference. As expected, 

the difference between the superior and inferior shifted modified DSC is larger than the 

traditional metric because there must be a change in radiation in these directions as the mean 

dose changes. This magnification of dissimilarity is due to the radiation dose behavior in the 

voxels contained within the PTV70 CT_1 structure and its shifted versions. 

These results support that the dose modified DSC is able to magnify or reduce the 

calculated similarity between structures based on the interaction of a structure’s shape and 

position in the dose grid. Further testing of this metric with more applicable clinical data could 

more definitively determine the efficacy of the code. The computation time required to calculate 

the DSC is proportional to the desired resolution. If a low resolution is acceptable, the 
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computation can be completed in less than one minute. If a high resolution is required, the 

calculation can take several hours to complete, as currently coded. The rate-determining step in 

the code is the creation of a matrix for every voxel midpoint that contains data on the direction 

and magnitude of the radiation dose gradient. The approx3D function is used 15 times for every 

voxel. If the standard 100x100x100 resolution is used, approx3D is calculated 15 million times. 

To improve function speed, one could store the approx3D result from the last voxel instead of 

calculating it again. For example, the point at the top of a voxel is the same point at the bottom of 

the voxel above. If the approximation function is used once for every point rather than up to 

eight times for a corner, computation time can be minimized. 

The standard resolution is a limitation regarding structure size. While higher resolution 

leads to a more precise estimate of DSC, the computation time required to fill a large structure 

with many small voxels would likely outweigh the benefits. This limits the ability to easily 

compare large and small structures to each other due to the mismatch in ideal voxel size. If 

computation time is not limiting, voxel size should be selected based on the size of the smallest 

structure to be compared. 

This instance of the DSC uses the magnitude of the net dose gradient vector at each voxel 

midpoint as the voxel’s weight. Changing the algorithm to instead calculate the magnitude of the 

radiation dose as the weight is a potentially useful alternative modification that could be made to 

DSC for some clinical applications. The advantage of using the gradient as the weight is that 

accuracy at structure borders, characterized by steep changes in radiation dose, will be weighted 

higher than other regions. Borders need to be accurately contoured by physicians because 

inaccuracies in these regions can cause significant damage to non-target organs or render 

ineffective treatment of the targeted structure. Using the radiation dose magnitude as the weight 
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of each voxel assigns greater importance to structures receiving a high dose of radiation and less 

importance to areas with a lower dose. However, a disadvantage of dose magnitude weighting is 

that differences at structure boundaries, where radiation dosage is frequently reduced, would be 

weighted as less important, which is antithetical to the goal of high precision structure 

delineation that motivates structure comparison in the first place. There is no difference in how 

the algorithm treats high, medium, or low radiation dose regions. Different organs have varying 

levels of radiation that they can withstand, and tumor targets may have medium to high radiation 

dose prescribed. Using the dose gradient magnitude weighting facilitates comparison of many 

types of organs and targets, regardless of the dose magnitude in these regions.  

This dose modified DSC is more likely to be used in research than in a clinical setting. 

Modern treatment planning systems and other available software allow precise contouring of 

body structures and such a metric would not be useful to the average physician. It might be 

useful in the development of a contour drawing algorithm, providing a measure of similarity to 

an ideal structure that could tell the progressing algorithm when it's close to clinical expectations. 

Prior to the development of the dose modified DSC, a dose weighted Earth Mover’s 

Distance (EMD) was proposed and partially developed to solve the same problems with structure 

comparison without dose information as addressed in this paper. The Earth Mover’s Distance is a 

distance metric that has been used in image retrieval and computer vision (Rubner et al, 2000). 

The distance is based on the solution to a transportation problem in which suppliers must supply 

consumers with a given capacity. They must find the least expensive flow, or strategy of 

transport, to satisfy all demand of consumers. The cost of moving supplies can be defined as the 

ground distance between supply and location of consumer multiplied by the amount or weight of 

supplies to be moved. The metric gets its name from the idea that it describes a situation in 
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which one distribution is earth spread out in space while the other distribution is a set of holes 

spread in that same space that must be filled by the earth, in the same way that consumers must 

receive their desired supplied products. In this application, one structure would be defined as the 

supply or earth while the other structure defined as the consumer or holes (Rubner et al, 2000).  

 The definition of the EMD can be formalized as linear programming problem between 

two sets, A and B. In the context of radiation therapy, A and B would be structures to be 

compared. A = {(A1, wp1)…, {(Am, wpm)} where m is the number of points to be compared on 

structure A and w is a weight defined for that point. B = {(B1, wp1)…, {(Bn, wpn)} where n is the 

number of points on B. The weight in this application could be the radiation dose or the gradient 

of the dose at the point on the supply structure. The ground distance between ,- and ./ is 

defined as 0-,/ . The solution is to find a flow 2-,/between	,- and ./that minimizes overall cost. 

As the distance between points and weight of points are multiplied, the result of this 

multiplication is work (Rubner et al, 2000).  

3456(,, .) = 	9:;< 	
=

->?

< 	2-,/	0-,/

@

/>?

 

 

There are several constraints to the problem. First, supplies can only be moved in one direction 

(1). 

 

																								2-,/ ≥ 0								1	 ≤ :	 ≤ 9,					1	 ≤ E	 ≤ ;																																								(1) 
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The second constraint (2) is that each point on the supply structure A can only supply the amount 

of weight in a given point and that each point in consumer structure B can only receive supplies 

up to their weight.  

 

																																<2-,/ 	≤ FG-				 	<2-,/ 	≤ FH/	

=

->?

																																													(2)
@

/>?

 

 

The final constraint (3) is that the amount of supplies moved between structures is at a 

maximum. This is known as total flow. 

 

																											< 	
=

->?

<2-,/ = min(<FG-,

=

->?

@

/>?
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@

/>?

)																																								(3) 

 

Once the optimal flow is found and the transportation problem solved, the EMD is defined as 

work normalized by the optimal flow.   

 

																												MN!	(,, .) = 	
∑ 	=
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/>?
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/>?
																																											(4) 

 

The total flow (3) is the total weight of the smaller structure. This normalization prevents 

favoring smaller structures (Rubner et al, 2000). In image retrieval applications, this 

normalization is usually sufficient in allowing for partial matching. The EMD is only a true 

metric if both structures contain the same total weight and the ground distance is a true metric. 

Structures imported from TPS data have hundreds to thousands of points and will almost 
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certainly contain different total weights, whether the weight of each point is set to the gradient of 

the dose grid, the magnitude of the dose, or 1.  Comparing structures with different total weight 

would lead to many points on the larger structure failing to receive supplies and the EMD would 

be underestimated. To solve this, points would need to be sampled within the volume or between 

the vertices of the smaller structure until the total weights for both structures are equal. In some 

cases, it may be more accurate if both structures sample points within their vertices and the EMD 

is calculated until the result converges.  

A problem with the traditional calculation of the EMD in the context of interest is that the 

only information in calculating the flow or EMD between two points is the weights at each point 

and the distance between them. If two points are located in two regions of 10 Gy of radiation 

separated by 1m with a large valley or peak in radiation dose between them, the EMD only takes 

into account the 10 Gy of radiation and the 1m separation. The behavior of the dose grid in 

between the points is ignored. Comparing structures for similarity requires knowing about the 

dose behavior, especially in the area of discrepancy. To account for this, the definition of the 

EMD can be changed to calculate the line integral of the radiation dose between the points. The 

flows could be calculated by setting the weights of each point equal to 1, the gradient of the dose, 

or the dose. After points are paired, the line integral between each point is evaluated and 

averaged to calculate a modified weighted Earth Mover’s Distance. This value would no longer 

be a distance metric but would include information about the physical distance and dose in 

between points and may be more meaningful than a traditional EMD in most radiation treatment 

planning contexts.  

The primary limitation with this method in R is computation time. R is not designed for 

processing at this level. Calculating the EMD between structures with just 300 points required 
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over 24 hours of computation time. The additional sampling of points to allow the EMD to 

converge combined with the thousands of points long data sets from medical imaging would 

require weeks long computation for a single comparison. Development of this method was 

abandoned due to its unrealistic time requirements within the constraints of the project. Using a 

more memory efficient language could remove this limitation. Further research should apply the 

more traditional EMD calculation to structures that have been sampled to increase the number of 

points so that they match in total weight. Radiation dose gradient or magnitude could be used for 

weighting and results from this function and the mDSC function should be compared for 

performance benchmarking and applicability to radiation treatment planning data.  
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Appendix (Code begins on next page) 
 



compareStructures <- function(structures, method=NULL,
hausdorff.method=NULL, verbose=TRUE, plot=TRUE, pixels=100,
dose) {
  if (class(structures) != "structure.list") {
    warning("Input 'structures' must be of class
    'structure.list'")
    return()
  }
  empty <- unlist(lapply(structures, function(struct)
  {return(dim(struct)[1] <= 0)}))
  if (any(empty)) {
    warning(paste("Skipping empty structure(s): ",
    paste(names(structures[empty]), collapse=", ", sep=""),
    sep=""))
    structures <- structures[!empty]
  }
  N <- length(structures)
  if (N < 2) {
    warning("Need at least 2 structures to perform
    comparison")
    return()
  }
  method <- match.arg(method, choices=c("axial", "surface",
  "hausdorff", "grid", "DSC", "wDSC"))
  switch(method,
         DSC = {
           contours <- compareStructures.axial(structures,
           pixels=pixels)
           N <- dim(contours)[2]-3
           results <- matrix(0, nrow=N, ncol=N,
           dimnames=list(names(structures), names(structures)))
           for (i in 1:N) {
             for (j in 1:N) {
               if (i == j) {
                 results[i, j] <- 1#
                 next
               }
               results[i, j] <- 2*sum((contours[,i+3]>0) & 
                  (contours[,j+3]>0))/(sum(contours[,i+3]>0)+
                  sum(contours[,j+3]>0))
             }
           }
           return(results)
         },
         wDSC = return(compareStructures.wDSC(structures,
         dose, pixels))
  )



compareStructures.axial <- function (structures, pixels=100)
{ 
  N <- length(structures)
  z <- as.list(rep(NA, N))
  bounds <- range(structures, na.rm=TRUE)
  x.coords <- seq(from=bounds[1,1], to=bounds[2,1],
  length.out=pixels)
  y.coords <- seq(from=bounds[1,2], to=bounds[2,2],
  length.out=pixels)
  for (i in 1:N) {
    if (length(structures[[i]]$vertices) < 1) {
      next
    }
    z[[i]] <- unlist(lapply(structures[[i]]$closed.polys,
    function(closed.poly) {return(unique(closed.poly[,3]))}))
  }
  z.coords <- unique(unlist(z))
  pts <-
  matrix(nrow=length(x.coords)*length(y.coords)*length(z.coords
  ), ncol=3, dimnames=list(NULL, c("X", "Y", "Z")))
  pts <- matrix(c(rep(x.coords,
  each=length(y.coords)*length(z.coords)), rep(rep(y.coords,
  each=length(z.coords)), length(x.coords)), rep(z.coords,
  length(x.coords)*length(y.coords))),
  nrow=length(x.coords)*length(y.coords)*length(z.coords),
  ncol=3, dimnames=list(NULL, c("X", "Y", "Z"))) 
  results <- matrix(0, nrow=dim(pts)[1], ncol=N,
  dimnames=list(NULL, names(structures)))
  for (i in 1:N) {
    for (j in unique(z[[i]])) {
      pts.j <- pts[which(pts[, 3]== j), 1:2]
      results.j <- rep(0, dim(pts.j)[1])
      z.j <- which(z[[i]] == j)
      ## THIS LOOP ACCOUNTS FOR AXIAL SLICES WITH MULTIPLE
      SEPARATE CLOSED POLYGONS (e.g. 3 ROOTS FOR SINGLE TOOTH)
      ## IF CLOSED POLYGONS ARE NESTED, THEY WILL BE
      INTERPRETED AS HOLES, SUCH THAT POINTS BETWEEN TWO POLYGONS
      MAY BE INTERPRETED AS EXTERIOR TO THE POLYGONS THEMSELVES
      (NOTE THAT THIS ASSUMES THE POLYGONS DO NOT CROSS EACH OTHER
      AT ANY POINT)
      for (k in 1:length(z.j)) {
        results.j <- results.j +
        as.numeric(pointInPoly2D(pts.j[,1:2],
        structures[[i]]$closed.polys[[z.j[k]]][,1:2]))
      }
      results[which(pts[, 3]== j), i] <- results[which(pts[,



      3]== j), i]+(results.j %% 2 != 0) 
    }
  }
  return(cbind(pts, results))
}

compareStructures.wDSC <- function (structures, dose, pixels
= 100){
  print("Testing if Voxels Contain Any Structures")
  N <- length(structures) # how many structures are there
  bounds <- range(structures, na.rm=TRUE) 
  voxelDimensions <- c((bounds[2,1]-bounds[1,1])/(pixels-1),
  (bounds[2,2]-bounds[1,2])/(pixels-1),
  (bounds[2,3]-bounds[1,3])/(pixels-1))
  halfVoxels <- voxelDimensions*1/2 #defines distance from
  midpoint where dose will be approximated
  x.coords <- seq(from=bounds[1,1], to=bounds[2,1],
  length.out=pixels) 
  y.coords <- seq(from=bounds[1,2], to=bounds[2,2],
  length.out=pixels) 
  toSelectFrom <- compareStructures.axial(structures, pixels)
  columns <- length(structures) + 3 #allows function to work
  with any number of structures
  toFill <- matrix(rep(NA, times =
  columns*nrow(toSelectFrom)), ncol= columns) #this will be
  filled with rows from toSelectFrom that are in at least one
  structure, saves a lot of computation time
  print("Selecting Voxels Containing Structures")
  for (p in 1:nrow(toSelectFrom)) {
    iszero <- c(0)
    for (u in 4:columns) {
      iszero[u] <- toSelectFrom[p,u] == 0
    }
    if(sum(iszero, na.rm = TRUE) == length(structures)){
    #iszero = true when row contains coordintes not in any
    structure, so we leave this row in toFill with NAs 
      next()
    }else{
      for (s in 1:columns) {
        toFill[[p,s]] <- toSelectFrom[[p,s]] #if iszero >0,
        then the row contains a coordinate in at least one structure
        and needs to be used in calculating the wDSC
      }
    }
  }
  newMat <- toFill[apply(toFill, 1,



  function(x)!any(is.na(x))), , drop=F] #removes rows with NAs
  (that weren't in any structure)
  xStep <- halfVoxels[1]  # distance from voxel midpoint
  where dose will be aproximated 
  yStep <- halfVoxels[2]
  zStep <- halfVoxels[3]
  magnitudesMatrix <- matrix(0, ncol = 1, nrow =
  nrow(newMat)) #this will be be the magnitudes of the net
  radiation dose gradient vector 
  dhms <- function(t){  #this function will estimate time
  that the calculation will take
    paste(t %/% (60*60*24) 
          ,paste(formatC(t %/% (60*60) %% 24, width = 2,
          format = "d", flag = "0")
                 ,formatC(t %/% 60 %% 60, width = 2, format =
                 "d", flag = "0")
                 ,formatC(t %% 60, width = 2, format = "d",
                 flag = "0")
                 ,sep = ":"
          )
    )
  }
  ETAseconds <- nrow(newMat)/150
  print("Calculating Radiation Dose Gradient At All Voxels")
  print("Estimated time for full weighted DSC calculation in
  D H:M:S") 
  print(dhms(ETAseconds))
  pb <- txtProgressBar(min = 0, max = nrow(newMat), style =
  3)
  for (q in 1:nrow(newMat)) {
    setTxtProgressBar(pb, q)
    midpointX <- newMat[q,1]   #this is the x, y, z
    coordinate of the voxel center, we will move in halfVoxels
    steps in all 14 directions
    midpointY <- newMat[q,2]
    midpointZ <- newMat[q,3]
    doseAtMidpoint <- approx3D(data = dose, x = midpointX , y
    = midpointY, z = midpointZ)
    #the below vectorMatrix is a matrix that has columns i,
    j, k, deltaDose. The first three represent the direction of
    the vector and the deltaDose is the difference in radiation
    dose at the end of that vector and the midpoint of the voxel
    vectorMatrix <- matrix(data =
    c(0,0,0,0,-1,1,-1,-1,-1,-1,1,1,1,1,  #i column
       0,0,1,-1,0,0,1,-1,1,-1,1,-1,1,-1,  #j column
       1,-1,0,0,0,0,1,1,-1,-1,1,1,-1,-1,  #k column
       approx3D(data = dose, x = midpointX, y = midpointY, z



       = midpointZ + zStep) - doseAtMidpoint, #up
       approx3D(data = dose, x = midpointX, y = midpointY, z
       = midpointZ - zStep) - doseAtMidpoint, #down
       approx3D(data = dose, x = midpointX, y = midpointY +
       yStep, z = midpointZ) - doseAtMidpoint, #right
       approx3D(data = dose, x = midpointX, y = midpointY -
       yStep, z = midpointZ) - doseAtMidpoint, #left
       approx3D(data = dose, x = midpointX - xStep, y =
       midpointY, z = midpointZ) - doseAtMidpoint, #forward
       approx3D(data = dose, x = midpointX + xStep, y =
       midpointY, z = midpointZ) - doseAtMidpoint, #backward
       approx3D(data = dose, x = midpointX - xStep, y =
       midpointY + yStep, z = midpointZ + zStep) - doseAtMidpoint,
       #forward up right
       approx3D(data = dose, x = midpointX - xStep, y =
       midpointY - yStep, z = midpointZ + zStep) - doseAtMidpoint,
       #forward up left
       approx3D(data = dose, x = midpointX - xStep, y =
       midpointY + yStep, z = midpointZ - zStep) - doseAtMidpoint,
       #forward down right
       approx3D(data = dose, x = midpointX - xStep, y =
       midpointY - yStep, z = midpointZ - zStep) - doseAtMidpoint,
       #forward down left
       approx3D(data = dose, x = midpointX + xStep, y =
       midpointY + yStep, z = midpointZ + zStep) - doseAtMidpoint,
       #backward up right
       approx3D(data = dose, x = midpointX + xStep, y =
       midpointY - yStep, z = midpointZ + zStep) - doseAtMidpoint,
       #backward up left
       approx3D(data = dose, x = midpointX + xStep, y =
       midpointY + yStep, z = midpointZ - zStep) - doseAtMidpoint,
       #backward down right
       approx3D(data = dose, x = midpointX + xStep, y =
       midpointY - yStep, z = midpointZ - zStep) - doseAtMidpoint
       #backward down left
    ),
    
    ncol = 4)
    for (w in 1:14) { #in this loop, the i, j, and k columns
    are multiplied by the deltaDose 
      vectorMatrix[w, 1] <- vectorMatrix[w, 1] *
      vectorMatrix[w, 4]
      vectorMatrix[w, 2] <- vectorMatrix[w, 2] *
      vectorMatrix[w, 4]
      vectorMatrix[w, 3] <- vectorMatrix[w, 3] *
      vectorMatrix[w, 4]
    }



    netVector <- colSums(vectorMatrix[,c(1,2,3)]) #the
    columns are summed to get the net vector, the mangnitude of
    the vector is calculated on the next line
    magnitudesMatrix[q,] <- sqrt(netVector[1]^2 +
    netVector[2]^2 + netVector[3]^2)
  }
  close(pb)
  multipliedMatrix <- newMat[ , c(4:columns)] *
  c(magnitudesMatrix) #takes the matrix with 1 and 0
  representing whether or not a voxel belongs to a structure
  and multiplies the 1 by the dose gradient magnitude
  DSCtable <- matrix(0, nrow = columns - 3, ncol = columns -
  3, dimnames=list(names(structures), names(structures)))
  for (i in 1:(columns-3)) {
    for (j in 1:(columns-3)) {
      if (i == j) {
        DSCtable[i, j] <- 1      #DSC for identical
        structures is 1
        next()
      }
      alpha <- colSums(multipliedMatrix)[i] #represents |A|
      sum all gradient magnitudes for structure A
      beta <-  colSums(multipliedMatrix)[j] #represents |B|
      sum all gradient magnitudes for structure B
      gamma <- matrix(0, ncol = 1, nrow =
      nrow(multipliedMatrix))
      for (k in 1:nrow(multipliedMatrix)) {
        if(multipliedMatrix[k,i] == multipliedMatrix[k,j]){
          gamma[k] <- multipliedMatrix[k,i] #if voxel is in
          both structures, add the gradient magnitude to gamma
        }else{
          gamma[k] <- 0
        }
      }
      gamma <- sum(gamma, na.rm = TRUE) #represnts |A ∩ B|
      DSCtable[i, j] <- 2*gamma/(alpha+beta)
    }
  }
  print(DSCtable)
}

pointInPoly2D <- function (points, poly) {
  poly <- matrix(unique(poly), ncol=2)
  n <- dim(poly)[1]
  x <- diff(poly[c(1:n,1),1])
  y <- poly[,2] + poly[c(2:n,1),2]



  if (sum(x*y/2) >= 0) {
    #clockwise poly
    return(pip2d(poly[n:1,], points) >= 0)
  }
  else {
    #anti-clockwise poly
    return(pip2d(poly, points) >= 0)
  }
}


