


AN ABSTRACT OF THE DISSERTATION OF

Jessica R. Curtis for the degree of Doctor of Philosophy in Radiation Health Physics
presented on August 26, 2019.

Title: Special Nuclear Material Classification and Mass Content Estimation Using
Temporal Gamma-Ray Spectroscopy and Machine Learning Methods

Abstract approved:

Steven R. Reese

Improving the methods used for the detection and estimation of fissile ma-

terial mass content is essential to nuclear security and safeguards to ensure special

nuclear material (SNM) accountability, control, safety and security. With the con-

tinued expansion of the nuclear industry and the need for safe management of spent

fuel, improving existing nondestructive assay (NDA) techniques is imperative. In the

present research, we are particularly interested in Pu-239 and U-235 content. Follow-

ing thermal neutron-induced fission, temporal gamma-ray spectroscopy and machine

learning methods were used to classify pure samples of Pu-239 and U-235. Further, re-

gions of interest identified during data pre-processing were utilized for computing the

relative mass content of the fissile materials. The temporal gamma-ray spectroscopy

method takes advantage of the time-dependent decay of fission products. Without

prior knowledge of peak locations or their associated energies, temporal patterns



characteristic of radioactive decay were identified within the complex fission product

gamma-ray spectra below 3 MeV. Following feature generation and feature selection,

Welch’s t-test was employed to tease out regions of interest used as “fingerprints” to

create profiles of Pu-239 and U-235 to be used as input into four machine learning

architectures: decision tree, random forest, neural network and Bayesian network.

Classification accuracy ranged from 98-100% for all four classifiers. Initial results for

determining relative mass content are promising as several regions of interest showed

mass estimates within two standard deviations uncertainty for at least one of the

fissile materials.



c©Copyright by Jessica R. Curtis

August 26, 2019

All Rights Reserved



Special Nuclear Material Classification and Mass Content Estimation Using

Temporal Gamma-Ray Spectroscopy and Machine Learning Methods

by

Jessica R. Curtis

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented August 26, 2019

Commencement June 2020



Doctor of Philosophy dissertation of Jessica R. Curtis presented on August 26, 2019.

APPROVED:

Major Professor, representing Radiation Health Physics

Head of the School of Nuclear Science and Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my dis-
sertation to any reader upon request.

Jessica R. Curtis, Author



ACKNOWLEDGMENTS

I want to first thank God for blessing me with this opportunity and for

giving me the strength and encouragement to see it through. I am extremely grateful

to my advisor and mentor, Dr. Steve Reese, who has taught me more than I could

ever give him credit for. I am beyond thankful for the endless hours he spent hashing

out ideas, answering questions and discussing career plans. His door was always

open. Thank you for guiding and supporting me over the past five years. I would

like to thank Dr. Ophir Frieder for his insightful suggestions as well as his guidance

in navigating the world of machine learning. I would like to express my heartfelt

gratitude to Dr. Camille Palmer for her guidance and support both personally and

professionally over the years. I am grateful to Dr. Sarah Emerson for her assistance

and support throughout the research design and data analysis processes. My sincere

thanks goes to Scott Menn for his help during data collection and Steve Smith for

sharing his knowledge of the Fast Rabbit Pneumatic Transfer System. I will forever

be thankful for the time both set aside to help me during my tenure at OSU. Finally,

I am extremely grateful to my family and friends for providing me with unfailing

support and continuous encouragement throughout my years of study and through

the process of researching and writing this dissertation. This accomplishment would

not have been possible without them.



TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goal and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5

2.1 Nuclear Safeguards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Passive Interrogation . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Active Interrogation . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Delayed Gamma-Ray Detection . . . . . . . . . . . . . . . . . 9

2.1.4 Temporal Gamma-Ray Spectrometry . . . . . . . . . . . . . . 10

2.1.5 Discovering Meaningful Patterns Below 3 MeV Using Spear-
man’s Correlation Coefficient . . . . . . . . . . . . . . . . . . 12

2.2 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 The Pearson Product-Moment Correlation Coefficient . . . . . 15

2.2.3 Spearman’s Rank-Order Correlation Coefficient . . . . . . . . 16

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Machine Learning Applied to Gamma-Ray Spectroscopy . . . 21

2.4 Waikato Environment Knowledge Analysis . . . . . . . . . . . . . . . 26

2.5 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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1 Introduction

1.1 Motivation

Improving the methods used for detection and quantification of fissile ma-

terial mass content is essential to nuclear security and safeguards as special nuclear

material (SNM) accountability, control, safety and security remain to be of great

importance. With the need for safe management of spent fuel, disarmament of nu-

clear weapons, and tracking of illicit nuclear material improving nondestructive assay

(NDA) techniques is imperative. Knowledge of Pu-239 and U-235 is of particular

interest.

U-235 and Pu-239 have similar fission yield curves with the majority of fis-

sion fragments having a mass number of 94 and 140 [52]. Figure 1 shows the fission

product yields from the thermal neutron induced fission of U-235 and Pu-239, where

plutonium is shifted toward higher masses. The similarities in their fission yield curves

present a challenge when differentiating these materials in an unknown sample.

Figure 1: Thermal fission yield curves for Pu-239 (dashed line) and U-235 (solid
line) [12, 17].
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While passive measurements of special nuclear material have proven to be

beneficial in certain situations, active interrogation methods such as thermal neutron

induced fission followed by delayed gamma-ray detection have the ability to improve

the detection and characterization of special nuclear material [35]. Traditionally,

delayed gamma-ray detection has relied on peak identification and nuclear data to

quantify fissile material. This process results in high uncertainties. Novel methods,

such as temporal gamma-ray spectrometry, have been researched and suggest a re-

duction in the uncertainty associated with these traditional methods [64]

Williford’s research in temporal gamma-ray spectrometry used the time-

dependent decay characteristics of fission fragments to measure fissile material with

improved accuracy and precision over traditional methods. Following thermal neu-

tron induced fission, Williford evaluated the time and energy data of the resultant

high energy beta-delayed gamma rays (≥ 3 MeV). Many of these well-developed peaks

were composed of gammas from more than one fission product. Each of these fission

fragment decay products had an individual half-life, yield and potential for ingrowth;

therefore, they could be evaluated temporally. Williford looked not only at key peaks

but at how those peaks changed as a function of time resulting in the identification

and quantification of fissile material based on the temporal characteristics of these

peaks.

When performing active interrogation of SNM, focus is typically placed on

identifying peaks above 3 MeV as they provide a unique signature for fissile material

and are easily discerned from background. The delayed gamma-ray spectrum below
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3 MeV is quite complex making it difficult to identify peaks for characterizing SNM.

However, lower energy delayed gamma emissions are much more abundant.

Utilizing the temporal gamma-ray spectroscopy method developed by Willi-

ford, Curtis employed data mining techniques to identify channels which displayed

differences in temporal behavior between Pu-239 and U-235 below 3 MeV. Spearman’s

correlation coefficient, a non-parametric, descriptive statistical method, was used to

compare a training set of templates displaying radioactive decay behavior to chan-

nels displaying a pattern of counts over a given time interval. Spearman’s correlation

coefficient provided a statistical summary describing the underlying mechanism of ra-

dioactive decay for each channel. Computing the difference in correlation coefficients

for each channel allowed for the discovery of differences between fissile material. The

proof-of-concept work carried out by Curtis was promising for two reasons: 1) de-

tector efficiency calibration was unnecessary as the temporal behavior was evaluated

rather than known channels corresponding to specific energies and 2) additional re-

gions of interest throughout the spectrum were identified and may be evaluated using

Williford’s method to further improve the accuracy and precision of quantifying mass

content of fissile material.

1.2 Goal and Objectives

The goal of this research was to develop a novel machine learning process

for the classification and potentially more accurate and precise quantification of fissile
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material content without the need for detector efficiency calibration or prior knowl-

edge of isotopic peak energy information. Several objectives needed to be met to

achieve this goal.

1.) Construct a fissile material feature set for input into machine learning classifiers

that does not require prior knowledge of specific peak energies.

2.) Determine which classifier and feature set, out of those investigated, identifies the

most accurate classification of fissile material.

3.) Identify regions of interest for determining the mass content of fissile material.
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2 Literature Review

2.1 Nuclear Safeguards

In 1968, the Nuclear Non-Proliferation Treaty (NNPT) was introduced and

since then, 190 countries have signed. Under the IAEA, a safeguards system was

established by the NNPT with the following goals: to prevent the spread of nuclear

weapons and weapons technology, to promote the peaceful use of nuclear energy and

to further disarmament [28]. To meet these goals, the nuclear industry has focused

on proper management and accountability of nuclear materials, ensuring that the

diversion of special nuclear material is detected in a timely manner, and deterring

proliferation activities by making it known that detection is a possibility [47]. Further,

Physical Inventory Verification (PIV) tasks have been carried out by the IAEA to ver-

ify declared nuclear material inventories [47, 49]. Nondestructive assay techniques are

commonly used for the management and accountability of nuclear materials. These

methods have been in use for decades and have become an integral part of nuclear

safeguards.

Nondestructive assay techniques are categorized as either passive or active

depending on whether they are used to measure the spontaneous or induced radiation

emitted by nuclear materials [49]. Destructive analysis techniques require sampling

and chemical analysis of the source material; whereas nondestructive assay techniques

do not require the source material to be altered, physically or chemically. Nonde-
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structive assay techniques are potentially less time consuming and more cost effective

than destructive analysis methods; however, they may be less accurate than chemical

analysis [49]. To date, much research into the improvement and understanding of

nondestructive assay techniques has been performed and the accuracy and precision

of measurements has increased.

While the development of nondestructive assay methods occurred early on;

it wasn’t until the mid-sixties that the research and use of NDA techniques began

to take off in the nuclear industry [21]. During this time the growth of the nuclear

industry was at its highest and the need for more accurate measurements of nu-

clear materials for accountability and management was evident. Research into the

use of passive and active nondestructive assay methods was performed at many of

the national laboratories. Two of the main programs for active nondestructive assay

were initiated under the Office of Safeguards and Material Management of the U.S.

Atomic Energy Commission. In 1966, Los Alamos Scientific Laboratory researched

using 14-MeV neutrons as a radiation source to perform active nondestructive assay

[21]. In 1967, research on the use of high-energy gamma rays generated by a linear

accelerator for active nondestructive assay was performed at the Linac Department

of Gulf General Atomic [21]. Common applications of nondestructive assay include:

accounting of nuclear material, searching for nuclear material as a safeguard against

theft, verification of prior measurements and the quality control of nuclear materials

[21]. Passive and active nondestructive assay techniques will be explored further in

the next sections.
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2.1.1 Passive Interrogation

Passive interrogation involves the detection of gamma rays emitted intrinsi-

cally from nuclear materials. Uranium and plutonium isotopes as well as their decay

products emit alpha and/or beta radiation along with their associated gamma rays

as a part of their natural decay process. In addition, both uranium and plutonium

isotopes can spontaneously fission producing fission fragments along with their re-

spective neutrons and gamma rays. The energies of the gamma rays emitted are

characteristic of the nuclide from which they originate and detection of these gamma

rays can be used to differentiate nuclear material from that of background [49].

Gamma rays emitted naturally from U-235 and Pu-239 are typically low in

energy, around the 500 keV range. For U-235, passive measurements include those at

or below 186 keV and for Pu-239, those at or below 413 keV [6]. In most situations

where uranium and plutonium need to be distinguished from one another, these lower

energies are difficult to detect due high background levels or to shielding. In addition,

emissions from spontaneous fission are much lower than those from induced fission.

Implementing active interrogation methods can overcome these challenges and results

in a more accurate measurement of fissile material.

Passive interrogation is typically used to measure scrap, waste and residue;

however, passive interrogation methods have their limits [21]. For instance, the emis-

sion of lower energy gamma rays from nuclear material such as uranium and pluto-

nium are easily shielded making passive interrogation nearly impossible. Or, in the
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case of measuring plutonium and uranium in an spent nuclear fuel (SNF) assembly, a

complex overlapping background exists from the gamma rays emitted by the buildup

of fission products during irradiation and those emitted by uranium and plutonium;

making measuring these materials quite challenging using passive methods [49].

2.1.2 Active Interrogation

The primary purpose for researching active NDA methods was for nuclear

safeguards; however, improved processes for quality control also resulted ([22]. Active

interrogation involves the use of penetrating radiation, typically a photon or neutron

source, to induce fission on fissile material resulting in fission fragments and their as-

sociated neutrons and gamma rays. Typically, a neutron source results in the prompt

fission production of two to three neutrons and about eight gamma rays [21]. Follow-

ing irradiation, about six or seven delayed gamma rays are emitted and about 0.01

to 0.02 delayed neutrons per fission [21].

Active interrogation techniques may be used to detect either the prompt or

delayed emissions. While neutron induced fission results in strong prompt gamma-

ray signatures, detecting the prompt emissions can be challenging due to irradiation

and detection occurring simultaneously. Doing so requires implementing one of many

methods to accurately differentiate the prompt fission emissions from the interrogat-

ing source [21]. Delayed emission detection on the other hand measures the decay of

fission products after irradiation has ended. Inducing fission on U-235 and Pu-239
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results in fission products that decay via beta decay resulting in the emission of sub-

sequent gamma rays. Delayed gamma rays are about 500 to 700 times more intense

than delayed neutrons from fission and therefore the counting of delayed gamma rays

is a more sensitive method [21].

Many authors have reported the use of active interrogation methods for

detection and quantification of shielded SNM [43, 56, 23, 40]. In addition, signifi-

cant research has been performed using active interrogation for the management and

accountability of Pu-239 and U-235 in spent fuel [59, 51, 64]. Various active inter-

rogation methods are being explored; however, one of the more common techniques

utilizes the delayed gamma method.

2.1.3 Delayed Gamma-Ray Detection

Early research showed that differentiating U-235 from Pu-239 could be per-

formed by using active interrogation and evaluating gamma-ray energy peaks greater

than 800 keV by looking at their peak intensity ratios and comparing these values

to calculated theoretical values [6]. The intensity ratios were developed from the

multiple isotopes comprising the chosen peaks and were independent of the number

of fissions induced. While the authors confirmed that their method could be used to

identify fissile material, they stated that a large number of intensity ratios needed to

be evaluated to ensure accurate identification.

Firestone et al. extended this research and looked at the prompt and delayed
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gamma-rays in the 3-4 MeV range to determine the concentration and enrichment of

U-235. They found that the high-energy gamma rays above 3 MeV emitted from

the decay of short-lived fission products provide a unique signature of fissile material

and can be used to quantify uranium. Further, by using ratios of the gamma-ray

intensities, the concentration of fission isotopes could be determined [18].

Both of these approaches relied on nuclear data which carries fairly high

uncertainty, especially for short-lived fission products. However, this research led to

the identification of specific gamma-ray line pairs which dominated the gamma-ray

spectrum from 1 minute to 14 hours following fission [39]. Marrs et al. focused on

identifying gamma-ray line pairs that were insensitive to neutron energy. They were

able to identify line pairs and groups with intensity ratios that were different for U-235

and Pu-239 [39]. From here, research of a novel temporal gamma-ray spectroscopy

method was explored empirically by Chivers [12].

2.1.4 Temporal Gamma-Ray Spectrometry

In an effort to reduce the high uncertainties associated with traditional meth-

ods, Chivers et al. suggested to solely look at the temporal response from the beta-

delayed gamma emissions of fissile materials. To do this, the peaks in the spectrum

needed to be normalized so that only temporal differences were present. This was

done by taking the counts in a 3 keV energy bin over a 2.5 second time frame and

normalizing this by the total number of counts over a 10 second time frame (the entire
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counting interval) in the same 3 keV bin [12]. Using these ratios, characterization of

fissile material could be performed. Further, material could be quantified by taking

the difference of these ratios. Chivers’ work was promising but had not been carried

out experimentally.

Building on their research, Williford exploited the time-dependent decay

characteristics of fission fragments and evaluated not only the peaks but he also looked

at how they changed as a function of time. To do this, Williford fission-normalized the

measurements by using peak responses at a reference time and creating a continuous

temporal spectrum. Several factors, such as the number of radioisotopes composing

the peak, their respective half-life as well as whether any of the radioisotopes experi-

ence ingrowth, influence the temporal response of peaks [64]. The temporal method

takes advantage of using the more pronounced, well-developed peaks composed of

multiple fission fragments thus minimizing systemic biases. Through the evaluation

of these high energy peaks (≥ 3 MeV) within the temporal spectrum, Williford showed

that he could quantify fissile material with a 2 % uncertainty; a significant improve-

ment from the existing 10 % uncertainty for SNF assemblies using traditional delayed

gamma methods [64, 11].
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2.1.5 Discovering Meaningful Patterns Below 3 MeV Using Spearman’s

Correlation Coefficient

Often focus is on higher energy delayed gamma rays that are easier to discern

from the very complex spectrum of fission product delayed gamma emissions below

3 MeV. Discovering important relationships within complex data sets is challenging.

Data needs to be reduced to key features to obtain accurate, efficient results when

implementing machine learning models. Curtis was able to show that evaluating the

spectrum below 3 MeV using temporal methods paired with data mining leads to a

data-driven process that can provide additional information for fissile material clas-

sification and quantification.

Through the measure of association between two variables, less relevant at-

tributes may be overlooked effectively filtering the data and highlighting features that

are most significant. Constructing a new feature from count frequency data reduces

dimensionality. Given the unique time-dependent decay characteristics of fission prod-

ucts, known patterns of decay and ingrowth are expected throughout the spectrum.

This a priori knowledge was used to generate a training set of data which used pat-

terns of decay and ingrowth to evaluate the fission product spectra of U-235 and

Pu-239. Specifically, gamma-ray event data was transformed from vectors of count

values per time of occurrence to radioactive decay patterns and correlated with decay

and ingrowth templates using Spearman’s correlation coefficient. Employing these

methods, Curtis discovered meaningful patterns within a large complex spectrum of
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gamma-ray emissions.

2.2 Data Mining

Data mining is performed to support discovery of meaningful patterns within

data. A combination of tools and methods from machine learning, statistics and other

data analysis technologies are utilized in the process [26]. Data preparation is an im-

portant step in data mining. Raw data needs to be pre-processed to effectively reduce

the dimensionality of a data set or transform the data prior to implementing machine

learning algorithms. For example, statistical methods may be used to transform the

data, developing new features, also referred to as attributes, that may be used as

input for machine learning algorithms. These new features, may provide a better

representation of the data, enabling the user to use fewer parameters in their anal-

ysis. Further, statistical methods such as attribute selection and visualization are

important data analysis techniques used during data preparation [65]. Attribute se-

lection is particularly important. Ideally, the user would like to reduce the number of

features used to train a given classifier without losing discriminatory power for class

identification [58].

Further, in data pre-processing the user analyzes data to extract structural

patterns that may be used for nontrivial prediction on new data [65]. Determining

whether a pattern is significant requires understanding the underlying mechanism

being described and should be carried out by experts with the required knowledge



14

[26]. Often, internal models are constructed during data preparation prior to input

into machine learning models. Data preparation and model development are iterative

in nature. Many insights learned from the developed model lead to new ways to

pre-process the data resulting in a more accurate final model.

2.2.1 Descriptive Statistics

Measures of correlation are descriptive statistical methods used to show the

extent of relationship between two variables. Correlation measures are not used for

inferential purposes; however, once a measure of correlation has been calculated,

inferential statistics may be used to evaluate a hypothesis concerning the correlation

[55]. In addition, a correlation between two variables does not imply that a change in

one variable causes a change in the other. If two variables have a strong correlation,

one can not conclude that one variable caused a change in the other variable; rather

it can be noted that there is an association present between the two variables [41].

Two of the most common measures of correlation are the Pearson product-moment

correlation coefficient (PPMCC) and the Spearman’s rank-order correlation coefficient

[41]. The Pearson product-moment correlation coefficient was developed by Karl

Pearson in 1900 and is a measure of linear correlation between two values. Spearman’s

rank-order correlation coefficient was developed in 1904 by Charles Spearman and is

a special case of the PPMCC.
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2.2.2 The Pearson Product-Moment Correlation Coefficient

The Pearson Product-Moment Correlation Coefficient (PPMCC) is a bi-

variate, parametric measure of association/correlation. This method is used with

interval/ratio data to evaluate whether a linear relationship exists between two vari-

ables.

The correlation coefficient computed by PPMCC is represented by the greek

letter rho, ρ. Rho can have a value between 1 and -1. As the absolute value of ρ ap-

proaches 1, the strength of the linear relationship between the two variables increases.

As the absolute value of ρ approaches 0, the strength of the linear relationship be-

tween the two variables decreases. The sign of ρ indicates the direction of the linear

relationship where, a positive sign indicates a direct linear relationship and a negative

sign indicates a indirect (inverse) linear relationship [55]. Rho is calculated by using

the following formula,

ρ =

∑
XY − (

∑
X)(

∑
Y )

n√[∑
X2 − (

∑
X)2

n

] [∑
Y 2 − (

∑
Y )2

n

] (1)

where, X and Y represent the values of the two data sets, and n represents the number

of measurements in the data set.

The PPMCC assumes a linear relationship best represents the data. The

value of ρ may not indicate the extent of the relationship between the two variables
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if a curvilinear relationship better describes the data [55]. Spearman’s rank-order

correlation coefficient, used for curvilinear relationships, will be discussed next.

2.2.3 Spearman’s Rank-Order Correlation Coefficient

Spearman’s rank-order correlation coefficient is a nonparametric, descriptive

statistical method used to investigate the strength of association between non-linear

sets of rank-order data. Given that the Spearman’s method assumes nothing about

the distribution and is used for non-linear associations, it is an ideal method for use

in this research. Spearman’s correlation coefficient is a special case of the Pearson

product-moment correlation coefficient therefore it is also represented by the greek

symbol rho, ρ, and is referred to as the rho score or Spearman’s rho. Spearman’s rho

will be denoted as ρs. To calculate Spearman’s correlation coefficient, the data sets

are ranked separately in either ascending or descending order as long as the ranking

is performed the same for both data sets. Table 1 shows an example of how two data

sets would be ranked.
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Table 1: Example ranking of two data sets. The first ranked data set is channel
231 from a single Pu irradiation cycle and is to be compared with the ranked data of
template 1, the second data set.

Channel 231 Pu Rank Pu Template 1 Rank Template 1

264 10 659 1

267 9 435 2

283 7 287 3

275 8 190 4

285 6 125 5

295 4 83 6

287 5 54 7

306 2 36 8

301 3 24 9

313 1 16 10

The difference in ranks is calculated and the resulting value squared. The

following formula is used to calculate Spearman’s rho score for untied ranks:

ρs = 1− 6
∑
d2i

n(n2)− 1
(2)

where, n represents the number of measurements in the data set and di represents

the difference in ranks. While Equation 2 is for untied ranks, it has been noted in

the literature that if only a few ties exist using Equation 2 is still quite reliable [8].
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In R, a tie-corrected formula is used to compute Spearman’s rho. Equations 3-6 lead

to the final formula utilized in R seen here as Equation 7:

Tx =
s∑
i=1

(t3(x) − ti(x)) (3)

Ty =
s∑
i=1

(t3(y) − ti(y)) (4)

The notations in Equations 3 and 4, indicate that for each variable, the number of

tied ranks is subtracted from the number of tied ranks cubed and then summed.

∑
x2 =

n3 − n− Tx
12

(5)

∑
y2 =

n3 − n− Ty
12

(6)

where, n in Equations 5 and 6 represent the number of observations in the data set.

ρsc =

∑
x2 +

∑
y2 −

∑
d2

2
√∑

x2
∑
y2

(7)

To verify that the same ρs score will be computed when using the tie-

corrected formula on data that are untied, let’s look at a simple example where
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the computed Spearman’s rho is a value of one. Consider the sum of the difference in

ranks to be zero and the number of observations in the data set to be ten. Substituting

these values into Equation 2 computes the following ρs score:

ρs = 1− 6(0)

10(102)− 1
= 1 (8)

Now lets take a look at the tie-corrected formula used in R. Equations 3 and

4 result in a value of zero since there are no ties present in the data set. Substituting

in ten for n and Equation 3 into Equation 5 we get,

∑
x2 =

103 − 10− 0

12
= 82.5 (9)

Substituting in ten for n and Equation 4 into Equation 6 we get,

∑
y2 =

103 − 10− 0

12
= 82.5 (10)

Finally, substituting in zero for the difference in ranks and Equations 5 and 6 into

equation 7 we get,

ρsc =
82.5 + 82.5− 0

2
√

(82.5)x(82.5)
= 1 (11)
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Equation 11 results in a Spearman’s rho value of 1, the same result seen using Equa-

tion 8.

As with PPMCC, the Spearman’s rho score produces a value between 1 and

-1 indicating either a strong positive or a strong negative association between the

paired data sets. As mentioned previously, an association between data sets does

not imply causation. The Spearman rank-order correlation coefficient method is a

descriptive statistical method, and for our purposes is used for pattern recognition,

not to predict behavior. The Spearman’s method is ideal for data sets that do not have

a normal distribution, have a potential for outliers and have non-linear relationships

[55]. Radioactive decay is a stochastic, non-linear process; making Spearman’s rank-

order correlation coefficient an appropriate method to implement into a machine

learning process for the identification of the differences in the spectra of plutonium

and uranium.

2.3 Machine Learning

Machine learning is a subfield of computer science that originally was used

for artificial intelligence. Through the use of algorithmic methods, machine learning

is able to address complex data tasks. Breiman has written extensively about the two

cultures of statistical modeling. Scientists either assume that data was created from

a particular model or they assume an unknown model and apply algorithmic methods

to the data to reach conclusions [10]. The latter ensures a data driven process and
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supports an innovative way of solving complex data problems.

King states, “...the production of humanly comprehensible rules from a ma-

chine learning system allows the rules to be checked for consistency with existing

knowledge and opens the possibility that rules may provide fresh insight.” [32] King

et al. used machine learning techniques to derive a set of rules that could be used

to predict relative activities for two drugs. Decision trees have been used to detect

breast masses [42] while neural networks (NN) have been used for general spectral

analysis in the fields of chemistry [34, 66] as well as for low resolution x-ray fluores-

cence spectra analysis [37].

Machine learning techniques typically fall into one of two categories; super-

vised or unsupervised methods. In supervised machine learning, the use of background

knowledge is important. A set of known inputs, class labeled data, is used as a train-

ing set. These inputs are compared with the desired outputs given by a “teacher”

with the goal of learning rules that map inputs to outputs. Unsupervised learning on

the other hand, uses unlabeled data for training [25]. This research utilizes supervised

learning methods to classify special nuclear material.

2.3.1 Machine Learning Applied to Gamma-Ray Spectroscopy

Machine learning techniques are used across disciplines and the area of ra-

diation detection is no exception. For example, neural networks, support vector ma-
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chines, and Bayesian classifiers have been used to analyze and interpret gamma-ray

spectrometry data [67, 16, 29, 63, 27, 61, 57, 1]. Application of machine learning tech-

niques, specifically for gamma-ray spectroscopy analysis, have been most prevalent in

the areas of Homeland security, non-proliferation, and environmental assessment and

restoration.

Olmos et al. used a neural network (NN) to identify a single isotope of

interest present in a mixture of elements [45]. Their method evaluates the entire

spectrum rather than individual peaks by comparing its shape with patterns located

in a reference spectra produced by NaI(Tl) and Ge(Li) detectors. A set of training

isotopes were used for training the NN. However, Olmos et al. state that their method

is most useful when precise and accurate activity determination is not necessary [46].

In addition to their work in isotope identification using NN, Olmos et al. analyzed

gamma-ray spectra using a linear associative memory neural network algorithm to

successfully address drift problems in nuclear instrumentation [44].

Kangas et al. used artificial neural networks for assigning quality factors to

alpha spectra used for air quality monitoring, specifically for the detection of pluto-

nium contamination in nuclear processing and storage facilities [30]. Quality factors

were assigned to spectra by experts and used for training the NN. Once trained, the

NN was used to provide real-time spectra inference providing early warning based on

spectral quality. Similar to Olmos et al., their method relied on using the shape of

the spectrum to train the NN.

Sullivan et al. used a Bayesian approach to address poor isotope identi-
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fication using handheld radio-isotope identifiers (RIIDs) for Homeland security and

nuclear safety applications [57]. Their method uses a spectral library containing

peak energies and branching ratios combined with detector efficiency. A wavelet-

based algorithm is used for peak identification followed by the implementation of a

Näıve Bayes classifier to determine the probability of a particular isotopes presence.

They accurately identified isotopes in unknown shielding scenarios despite apprecia-

ble calibration drift. However, their method relies on a priori knowledge of peak

energies, branching ratios and requires efficiency calibration. Use of branching ratios

contributes to uncertainty, an issue addressed by the use of temporal spectroscopy

methods. Bayesian approaches have also been used for the analysis of radiation portal

data [14], for application to probabilistic risk assessment of nuclear waste disposal [33]

and for monitoring the movement of weak radiation sources (ie: tracking shipments)

while discriminating “true” sources from “false” sources [13].

Data from portal monitors have also been analyzed using artificial neural

networks (ANNs) [29]. Kangas et al. employed an ANN to successfully discriminate

normally occurring radioactive materials (NORM) from special nuclear material ef-

fectively reducing the probability of false alarms. Further, Sharma et al. implemented

machine learning techniques to reduce false alarm rates when using gamma-ray spec-

trometers for the identification of persons concealing radioactive materials [54].

Vigneron et al. have used neural networks to analyze gamma spectra from

uranium-enrichment measurements for the determination of U-235 and U-238 content

[62]. Relying on passive detection, focus was placed on analyzing the KαX region
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of the spectrum using infinitely thick samples to avoid matrix effects and calibration

procedures. Further, Aitkenhead et al. evaluated the spectra of shielded plutonium

using ANNs to detect the presence or absence of plutonium, estimate Pu-239 content

as well as distinguish material age of shielded plutonium [2]. However, they were

unable to achieve accurate material age estimation. In addition, Dragovic et al. used

an ANN to model uncertainty in gamma-ray spectrometry [16]. Once trained, their

NN could predict measurement times needed to obtain a particular level of statistical

accuracy in the analysis of environmental samples.

Support vector machine algorithms have also been used for the classification

of waste drums using NaI (Tl) detectors [27] and Varley et al. have utilized principal

component analysis and neural network algorithms to estimate the activity and depth

of Ra-226 contamination using spectra from Sodium Iodide and Lanthium Bromide

detectors[61, 60]. Lastly, Keller et al. have looked into the application of ANNs for

real-time data processing for environmental restoration and waste management at the

Hanford site [31].

Much of the work to date has focused on evaluating the passive spectra from

mid and low resolution detectors. However, some research in the application of ma-

chine learning algorithms for classification of radioisotopes using HPGe detectors has

been conducted. For example, an ANN algorithm used for pattern recognition has

been employed for gamma-ray spectral analysis from Ge detectors [67]. Typically,

ANNs are rarely used for gamma-ray spectrometry analysis due to the large spectral

size [67]. To overcome this, Yoshida et al. used a peak search procedure to reduce
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gamma-ray spectra to peak energy data to be used as input into a NN [67]. They

created a subset of data consisting of peak energy information as the input data and

used patterns of emitted gamma-ray energies from individual nuclides for training.

They were able to successfully use ANN for pattern recognition and identify radioiso-

topes within the gamma-ray spectra [67]. However, they were unable to process the

raw spectral data and were limited to a data set consisting of gamma-ray peak ener-

gies. Neural networks have also been used for time-of-flight discrimination between

neutrons and gamma-rays in HPGe detectors, correctly classifying gamma-ray and

neutron events [3].

In addition, Pilato et al. successively used NNs for quantitative analysis

of gamma spectra produced by a HPGe detector [48]. Their method overcomes the

traditional obstacles associated with determining the activity of radionuclides such as

overlapping peaks which software deconvolution algorithms have difficulty with. Re-

lying on peak deconvolution results in a solution that is dependent on the complexity

of the spectra. They use “global information contained in the spectrum” rather than

separating peaks by deconvolution [48]. In addition, their method limits the need for

user intervention and expert knowledge once the NN has been trained.

Through the review of the literature, it is evident that the application of

machine learning techniques to gamma spectroscopy continues to be of great interest.

The limitations that many of these authors encountered will be overcome with the

novel research presented here. This research uses active interrogation methods rather

than passive methods used by many of these researchers. Further, this research does
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not require detector efficiency calibration, nuclear data, nor a library of specific peak

energies a priori. Lastly, while the entire spectrum will be analyzed, its shape will

not be used in the training of the machine learning algorithms. Rather, the global

spectral information will drive the learning process enabling the user to identify ar-

eas of interest for fissile mass content evaluation that to date have been difficult to

analyze.

2.4 Waikato Environment Knowledge Analysis

Waikato Environment Knowledge Analysis (WEKA) was developed at the

University of Waikato in New Zealand and is open source software written in JAVA.

The WEKA workbench provides a convenient method for implementing machine

learning algorithms. WEKA resources are abundant and the graphical user interface

(GUI) enables the user to visualize the development of several algorithms such as the

decision tree and Bayesian network architectures [24]. Further, with the many tools

available for data pre-processing, WEKA provides the user a way to efficiently tackle

any data mining problem. As such, WEKA is a widely used tool across disciplines

for data mining [24].
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2.5 Classifiers

The process of developing a model which predicts class labels for unlabeled

data is known as classification [65]. Giacometti et al. state, ”A classifier is a global

model which not only describes the whole training database achieving some level

of accuracy, but also is used to predict the class label for data objects that are

unlabeled.” [20] Classifiers are constructed through the analysis of training data,

data for which class labels are known [20]. The goal is to assign an input vector X

to one of K discrete classes, denoted Ck, where k=1,....,K. Each input is assigned to

only a single class; therefore, the classes are said to be disjoint [7].

To ensure a given classifier achieves the desired level accuracy and does not

overfit the data, two phases are employed; train and test. Data need to be partitioned

to perform the two phases. There are many strategies for partitioning the data. One

technique, the holdout method, involves assigning a certain amount of data to the

testing phase and using the rest of the data for training. Typically, one-third of the

data are assigned to the testing phase and the remaining two-thirds are assigned to

the training phase [65]. However, bias may occur when samples of the data chosen

for the testing phase are not representative of the data chosen for the training phase.

It is important to mitigate any potential bias which may occur during this process.

Cross-validation is often used for reducing bias. K-Fold cross validation

involves selecting a fixed number of folds, partitions, of the data. Each fold is used

for training and the remainder used for testing [65]. As and example, if a user were to
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perform 10-fold cross-validation, data would be randomly divided into ten partitions.

Each partition is used for testing and the remaining nine-tenths are used for training.

The error rate is calculated on the data set used for testing. This learning is performed

ten times producing ten error estimates. The average error estimate is used to evaluate

the overall error of the classifier.

Once the classifier has been trained and tested, the model is used to classify

an unknown, unlabeled data set for validation. There exist numerous algorithms for

addressing classification problems. In the following sections we outline three that

have been chosen for this project; decision tree, neural network, and Näıve Bayes

architectures. Implementation of and evaluation of all three architectures will yield a

thorough evaluation of the most accurate, precise and efficient model of those selected

to use for the classification of Pu-239 and U-235.

2.5.1 Decision Tree

Perhaps the simplest of all classifiers, decision trees are models which follow

a tree-like structure. Classification is performed through recursive and stepwise par-

titioning of a target field, which contains all instances of interest, based on unique

features associated with one or more attributes [15]. Attributes are often referred to

as input fields. Input fields are chosen based on their ability to explain the variability

between the target values. Determining the “best” input field is somewhat subjective

as the process can be both user and computationally driven. The inherent top-down
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structure of decision trees allow the user to visualize the tree and choose strong in-

puts based on known theoretical connections of model components [15]. However,

decision trees also enable a variety of computational approaches to be implemented.

For example, the C4.5 (J48) algorithm located in the WEKA, offers various pruning

algorithms for selecting attributes to split on. The default algorithm uses information

gain, gain ratio and entropy computations in its selection process [42]. Often, inputs

are selected based on combining expert knowledge with computational outputs of the

partitioning strength provided by the software.

Nodes represent tests on a given attribute/input field, the branches describe

the outcome of the tests, and the tree leaves represent the classes or class probabilities

[65]. The top most node is termed the root node and contains all of the information

regarding the target field. Instances begin at the root node and travel down the tree

based on the attribute values at each node. When a leaf is reached, a class is assigned

based on the classification of the respective leaf. Nodes may be nominal, categorical

or interval measurements. When the root node contains categorical values, the tree

is referred to as a classification tree. Decision trees are known for being powerful yet

easy to implement and interpret [15].

Let’s take a look at a simple example and walk through how the classifi-

cation process works. In the following example we are going to classify whether we

should head to the beach or not. The rows of the table display the instances for the

data set. The columns represent the various attributes we can evaluate to determine

whether or not we should visit the beach. The final column is the outcome (label)
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associated with each instance.

Table 2: Beach data.

Weather Outlook Temperature Windy Beach

Sunny 50 Yes No

Overcast 75 No Yes

Sunny 69 No Yes

Overcast 50 Yes No

Sunny 85 Yes Yes

Sunny 57 No Yes

Overcast 62 No No

Sunny 70 Yes No

Figure 2 shows a decision tree developed based on using the temperature

attribute as the root node. The subsequent nodes are based on the remaining at-

tributes, outlook and windy. Evaluation at each node leads to the classification of

beach or no beach. The tree displays a set of rules which accurately classify each of

the instances in Table 2.
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Figure 2: Decision tree.

2.5.2 Random Forest

Breiman proposed the random forest algorithm in 2001 [19]. Several ran-

domized decision trees are grown, without pruning, using randomly selected inputs

or combinations of inputs at each node [9]. Given a particular instance, each tree

provides a class prediction of equal weight. A majority vote from all of the decision

trees generated results in the final class prediction. This method has led to improved

classification accuracy. Further, due to the Strong Law of Large Numbers, random

forests always converge and therefore do not overfit [9]. Figures 3 and 4 are visual

representations of how the random forest algorithm works.
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Tree 2

Decision
Tree 1

Decision
Tree 3
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x1

x1

x1

Classification

Figure 3: Visualization of the random forest architecture showing that equal weights
are given to each trees vote. [36].

Figure 4: Three individual decision trees, each with their own vote for classification.
The majority vote results in the final classification of a given instance.
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2.5.3 Neural Network

Predicting class labels can also be performed by using an algorithm to sep-

arate different classes by a hyperplane. Data which can be separated into two groups

via a hyperplane are known to be linearly separable [65]. The perceptron learning rule

is a simple algorithm which can determine a separating hyperplane. The equation for

a hyperplane is

w0a0 + w1a1 + w2a2 + ...+ wkak = x (12)

where a1, a2, ...ak are the attribute values and w1, w2...wk are the weights which define

the hyperplane [65]. The attribute a0 is assumed to always have the value of 1 to

represent the bias. If the sum is greater than 1, the first class is predicted otherwise

the second class is predicted. The goal is to find weights which define a hyperplane

that accurately classifies the data. Determining the weights is an iterative process and

all instances are evaluated each iteration. To begin, all weights are defined to be zero.

Weights are adjusted by determining if an instance has been correctly classified. If it

has not, and the instance belongs to the first class, its attribute values are added to

the weight vector. Otherwise, they are subtracted from the weight vector. Weights

are adjusted until all the training data has been classified correctly. If the data

are linearly separable, the hyperplane will converge. The hyperplane is known as a

perceptron and is graphically represented in Figure 5.
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Figure 5: Simple perceptron.

As seen in Figure 5, the structure appears as a network of neurons. There

are nodes (neurons) located in each layer and weights (seen as lines) representing the

connection pathways between the neurons. In fact, this model was termed ‘neural

network’ for its similarity to the biological neural process we are familiar with. The

nodes in the input layer correspond to the attributes of the data set and the output

layer defines the class. If the data are not linearly separable, this method can still

be implemented. However, it is represented by a nonlinear model called a multilayer

neural network [65]. An example of a multilayer perceptron (MLP) model is seen in

Figure 6.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 6: Multilayer perceptron.
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A MLP includes one or more hidden layers. Hidden layers are responsible

for applying an activation function or combination of functions to the data and are

often not visualized by the user and as such are known as ‘hidden’. The number of

hidden layers and number of nodes within each layer determine the network structure.

Learning the structure of a neural network is often based on experimentation com-

bined with some level of expert knowledge [65] and is driven by the desired accuracy.

Determining the weights for a MLP is a bit more complex and requires a method

known as backpropagation to be implemented if there is more than one hidden layer.

The weight values connecting the input layer to the hidden layer are mod-

ified based on the strength of individual unit contributions from the hidden layer to

the output layer [65]. The gradient descent algorithm is used to modify the weights.

The gradient descent procedure is an iterative optimization algorithm based on taking

derivatives [65]. The sigmoid function and the squared-error loss function are most

commonly used. The sigmoid function converts the weighted sums from the inputs

into a range of values between 0 and 1. Figure 7 displays the sigmoid function, f(x),

for a given input value x.
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Figure 7: Sigmoid function, f(x) for a given input value x.

Equation 13 defines the sigmoid function seen in figure 7

f(x) =
1

1 + e−x
(13)

where x is the the hyperplane function defined in equation 12. Equation 14 defines

the squared-error loss function

E =
1

2
(y − f(x))2 (14)

where f(x) is the output prediction and y is the instance’s class label [65]. Specifically,

the gradient descent procedure utilizes information gained from taking the derivative

of the error function to adjust the weights and minimize the overall error on the
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training data [65]. The value of the derivative is multiplied by the learning rate, a

small constant. The result is then subtracted from the current weight value. This

process is repeated until a minimum weight value is reached.

For a single perceptron, no hidden layer present, differentiating the error

function with respect to a particular weight wi yields

dE

dwi
= (f(x)− y)

f(x)

dwi
(15)

where f (x ) is the perceptron’s output and x is the weighted sum of the inputs [65].

To compute f(x)
dwi

, we need to take the derivative of the sigmoid function, denoted as

f ′(x), which is

df(x)

dx
= f(x)(1− f(x)) (16)

However, we are interested in the derivative with respect to wi rather than x. Noting

that x is defined as

x =
∑
i

wiai (17)

we can write the derivative of f(x) with respect to wi as
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df(x)

dwi
= f

′
(x)ai (18)

Substituting equation 18 into the derivative of the error function, equation 15, yields

the expression required to calculate the change in weight, wi and is seen here

dE

dwi
= (f(x)− y)f

′
(x)ai (19)

Arriving at an expression which allows computation of the change of weights

for networks with hidden layers is more complicated. Assuming there is one hidden

layer, ai from Equation 19 is replaced with the output of the ith hidden unit. The

result is

dE

dwi
= (f(x)− y)f

′
(x)f(xi) (20)

The weights we are attempting to change are represented by wij and are those from

the jth input to the ith hidden unit. As before, the corresponding derivatives need to

be taken

dE

dwij
=
dE

dx

dx

dwij
= (f(x)− y)f

′
(x)

dx

dwij
(21)
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To compute dx
dwij

recall that

x =
∑
i

wif(xi) (22)

and

dx

dwij
= wi

df(xi)

dwij
(23)

Further,

xi =
∑
j

wijaj (24)

so

df(xi)

dwij
= f

′
(xi)

dxi
dwij

= f
′
(xi)aj (25)

The final expression used to determine the change of weights, wij is

dE

dwij
= (f(x)− y)f

′
(x)wif

′
(xi)aj (26)

Networks such as those seen in Figures 5 and 6 are known as feed-forward
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networks, the most common of neural networks. Feed-forward networks process the

data in one direction from the input layer to the output layer, known as forward

propagation. In a single perceptron network, there are no connections between input

neurons; all neurons are directly connected to the output neuron. For a MLP with one

hidden layer, forward propagation continues through additional layers and analyzes

a combination of inputs. However, if a multilayer network consists of more than one

hidden layer the above derivation for an MLP is repeated using the weights correlated

with the inputs of the previous layer and the error is propagated from the output

unit backwards through the network to the first layer. The generic gradient descent

procedure used for a single hidden layer is then termed backpropagation [65].

2.5.4 Näıve Bayes

The Näıve Bayes classifier is based off of simple probabilistic modeling.

Specifically, Bayes rule of conditional probability. Baye’s rule is:

P (A|B) =
P (B|A)P (A)

P (B)
(27)

where P (A|B) is the liklihood of event A occurring given event B is true, P (B|A)

is the liklihood of event B occurring given event A is true, and P (A) and P (B) are

the probabilities of observing events A and B independently. As a general example,

given three pieces of evidence and assuming they are independent and each have equal
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contribution to the outcome given their class, we obtain their combined probability

by multiplying their individual probabilities as seen here

P (yes|E) =
P (E1|yes) ∗ P (E2|yes) ∗ P (E3|yes) ∗ P (yes)

P (E)
(28)

Let’s take a look at a more specific example, the beach data we used for our decision

tree. Table 3 shows the counts and probabilities for the various attributes.

Table 3: Beach data with counts and probabilities.

Weather Outlook Temperature Windy Beach

Yes No Yes No Yes No Yes No

Sunny 3 2 > 60 3 2 True 1 3 5 3

Overcast 1 2 < 60 1 2 False 3 1

Sunny 3/8 2/8 > 60 3/8 2/8 True 1/8 3/8 5/8 3/8

Overcast 1/8 2/8 < 60 1/8 2/8 False 3/8 1/8

Given a new instance, one that is unlabeled, we would like to predict whether we

should head to the beach. Table 4 describes the attributes of our new instance.
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Table 4: New, unlabeled instance.

Weather Outlook Temperature Windy Beach

Overcast 75 No ?

We treat each attribute equally and independently, computing the likelihood

that the attribute ‘beach’ would be yes or no. By multiplying the corresponding

fractions the outcome of yes is

Likelihood yes =
1

8
∗ 1

8
∗ 3

8
∗ 5

8
= 0.004 (29)

and the outcome of no is

Likelihood no =
2

8
∗ 2

8
∗ 1

8
∗ 3

8
= 0.003 (30)

we see that given the new instance we are more likely to head to the beach. Normal-

izing the likelihoods to one yields the associated probabilities

Probability yes =
0.004

0.004 + 0.003
= 0.571 or 57.1% (31)

Probability no =
0.003

0.004 + 0.003
= 0.429 or 42.9% (32)



43

The combination of using Baye’s rule and that the classifier ‘naively’ as-

sumes independence, give this method the name Näıve Bayes. While this method

is unrealistic, in practice it has shown to work well and produces a strong classifier

[65]. Näıve Bayes classifiers yield probability estimates of a given class rather than a

binary class prediction. The conditional probability of class values is estimated given

the values of all other attributes [65]. Bayesian networks provide a concise way to de-

scribe probability distributions for a given classification problem. It is represented as

network of nodes each containing the probabilities for the various outcomes possible

for its respective attribute. Graphically, this looks like

Beach

Yes No

0.625 0.375

Weather	Outlook

Beach Sunny Overcast

Yes 0.750 0.250

No 0.500 0.500

Temperature

Beach >60 <60

Yes 0.750 0.250

No 0.500 0.500

Windy

Beach True False

Yes 0.250 0.750

No 0.750 0.250

Figure 8: Bayesian network using beach data.
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The top node is the parent node containing the probability distribution for the class

attribute beach. The other nodes are called daughter nodes and contain probability

distributions for their corresponding attributes. The outcome probabilities are calcu-

lated the same way as in our previous example. This multiplication process is carried

out recursively between a single attribute and the rest of the attributes via the chain

rule. The chain rule is expressed as [65]

P (A1, A2, ..., An) = P (A1)
n−1∏
i=1

P (Ai+1|Ai−1, ..., A1) (33)

Equation 33 is a decomposition of the joint probability of n attributes Ai and is the

underlying mechanism for computing the probabilities in Bayesian networks..

3 Temporal Spectroscopy Theory

Temporal spectroscopy is an active interrogation technique which produces

a gamma-ray spectrum following thermal neutron induced fission. Fission fragments

produced from the fission of SNM, will beta decay and produce gamma-ray emissions.

The buildup and decay of the radionuclides yield information regarding the temporal

behavior of the spectrum. Regions of interest are identified and their temporal re-

sponse is analyzed. Through their temporal ratios, the mass percentage of a material

may be determined.
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As mentioned previously, the initial temporal method was developed by

Chivers et al. His discrete method evaluated integrated count rate spectra, as seen in

Figure 9, over a specified time interval. To estimate the percentage of fissile material,

a static ratio between integrated counts at two different times was used. Referring

to Figure 9, Fmix is the estimated fissile content,
∫ tx
0
Nmix(t)dt and

∫ tref
0

Nmix(t)dt

are the integrals representing the integrated counts for the given time range. Rather

than using discrete gamma-ray lines, Chivers’ method uses wider regions of interest

yielding improved statistics over shorter counting periods.

Figure 9: Temporal method [64].

Williford uses Chivers’ theoretical method as the foundation for his temporal

spectroscopy model. Rather than using discrete static measurements, Williford’s
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method uses continuous temporal measurements. Fissile mass estimation may be

performed using either integrated counts or count rate spectra of a given region. Using

integrated counts increases the fidelity of the measurement while using count rates

provides an additional method for determining the fissile mass estimate. Figures 10a

and 10b display the normalized integrated count and count rate spectra, respectively.

(a)

(b)

Figure 10: Plots showing (a) integrated count rate ratio and (b) count rate ratio
for pure and an equal mix of fissile materials [64].
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The continuous temporal ratios are developed by dividing the counts at each

time interval by the counts at a reference time. The reference time used is based on

the interval with the highest number of counts. Evaluating the temporal responses in

the specified regions of interest yields the amount of SNM present in a given sample.

3.1 Collection of Temporal Spectroscopy Data

Temporal data are collected using a DSPEC pro digital multi-channel ana-

lyzer. Operating the DSPEC pro in List Mode, information such as the time of de-

tection, energy channel, as well as live and real time data are collected and streamed

to the computer. This data file can then be converted into a usable text file. For

this research, the DSPEC Pro was operated in List Mode rather using traditional

spectroscopy methods which result in a spectrum output for the user.

ListPRO is a program developed by ORTEC and is used to retrieve the List

Mode data which is stored in an internal memory cache [64] every ten milliseconds.

Following data retrieval, the cache is cleared and all data are dumped. The result

is a large data file (.dat) of each detected count, its respective time of occurrence

(in increments of 200 nanoseconds), the channel in which the count occurred (ADC),

running live and real time (in increments of ten milliseconds), header information

as well as external port readings (in increments of ten milliseconds) that must be

converted to a text file by the ORTEC ListDump program for further use [64].

The ORTEC ListDump program reads the .dat file and converts it to a tab
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delimited text file which displays a list of sequential events along with header infor-

mation. Figure 11 shows an excerpt of the List Mode text file produced.

Figure 11: List mode text file output.

U1, U2 and U3 separate the Coordinated Universal Time (UTC) time-

stamps, the spectrometer’s count-rate meter (CRM) records the time since the last

cache dump, EX1 and EX2 indicate the value of the signal into external ports 1 and

2 respectively, ADC represents the channel in which the count was detected, LT rep-

resents the live time and RT represents the real time.
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List Mode data are collected continuously during irradiation cycles whether

the sample is in front of the detector or being irradiated. The List Mode data files

need to be parsed in order to evaluate the data when the sample is in front of the

detector. A parse code developed in Python by Williford is used. As mentioned

earlier, in the List Mode text file the value of EX 1 represents where the sample is

located. EX 1 has a value of 0 during sample irradiation and then switches to a value

of 1 when the sample is at the detector. The parse code is written to look for the

the switch from 0 to 1. Parsing of the raw data results in forty individual one-minute

time stamped data files, twenty files corresponding to the twenty cycles of irradia-

tion/counting performed for each material. These files contain the time at which a

count is detected and the channel (ADC) in which it occurs.

3.2 Multidimensional Analysis for Mass Estimation

Once the List Mode data are collected, parsed, significant regions of inter-

est are identified and the spectrum is normalized by the temporal response at some

reference time, the multidimensional analysis may be performed. It is important that

reference spectra and sample spectra are collected using the same geometry and cycle

protocols to properly conduct a multidimensional analysis.

To estimate the relative content of fissile materials, the mixture of two ma-

terials can be represented as a linear combination:
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a =
2∑
i=0

ci × ωi (34)

where, a is the temporal response spectra of a combination of materials, ci is the

ith temporal response value and ωi is the ith relative weight for i materials. As an

example, given ten time bins and two materials the resultant matrix, a, is:

a =


c11ω11

c12ω12

c13ω13
...

c110ω110

 +


c21ω21

c22ω22

c23ω23
...

c210ω210

 =


a1
a2
a3
...
a10

 (35)

where, the sum of c11ω11 + c21ω21 results in a single value located as the first vector

value in a and so forth. As mentioned previously, the temporal spectra can either be

integrated counts or the count rates for a given region of interest. The multidimen-

sional analysis technique is developed from expanding the above relationship into a

system of linear equations. It is used to estimate the weight values of the materials

of interest given the temporal data of pure samples and the mixture.

Reference spectra are defined as the temporal spectra of samples with known

concentrations. In this research, samples contain highly enriched uranium (HEU) and

Pu-239. The reference spectra, ~si, are normalized and assembled into a reference ma-

trix, S. For example, the following is an S matrix for a single region of interest. We

see ~s of ten time intervals for materials of interest.
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S =


 sU1

...
sU10


 sPu2

...
sPu10

 . . .

 si1
...
si10


 (36)

The reference matrix, S, is used to generate a basis set of vectors by perform-

ing a singular value decomposition (SVD). Three matrices are formed after performing

an SVD on a matrix. Matrix U is a left singular orthogonal matrix containing the

eigen vectors, Σ is a matrix of the square root of the eigen values and V is the right

singular orthogonal matrix. Using matrix U , a basis matrix of the reference spectra

is formed. The SVD of matrix S is written as:

S = U × Σ× V T (37)

Using the left singular orthogonal matrix U , the basis matrix A of the reference

spectra is created:

A = UT × S (38)

Next, a composition matrix, W , containing the weights of the reference

spectra for each isotope ~ωi is created. Seen here is an example of matrix W for two

reference spectra with 100% pure HEU and Pu-239. The relative weights for each

isotope are located in the rows.
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W =

1 0

0 1

 (39)

Assuming all observed temporal spectra are a linear combination of the

independent isotopic spectra allows the matrix A to be written as the weight matrix

multiplied by an unknown transformation matrix, C. The transformation matrix

determines how the isotopic weights contribute to the temporal spectrum.

A = C ×W (40)

The transformation matrix is found by taking the inverse of matrix W .

However, the reference matrix W may not be square. This poses challenges when

finding the inverse matrix as it may not always be possible. Therefore, a pseudo-

inverse matrix can be found by taking the SVD of matrix W [Strang, 2006]. The

SVD of W results in:

W = u× σ × vT (41)

allowing the pseudo-inverse W+ to be constructed by

W+ = v × σ−1 × uT (42)
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and allowing C to be constructed from

C = A×W+ (43)

Similarly, an observed temporal spectrum of unknown composition ~o can be

transformed into the vector space defined by the orthogonal matrix A. The trans-

formed spectrum ~α of the unknown sample is written as:

~α = UT × ~o (44)

Writing ~α as a linear combination of the transformation matrix C and the relative

weights from each fissionable isotope, we get the following:

~α = C × ~ω (45)

Estimating fissile material content requires solving for ~ω. Similar to how W+ was

found, the pseudo-inverse of C needs to be found. The result is:

~ω = C+ × ~α (46)
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3.3 Computing Relative Mass Content

The multidimensional analysis results in a weight vector, ~ω, consisting of

normalized weight values. To estimate the actual weight values representing the

associated mass contribution of fissile materials, algebraic manipulation is required.

The normalized temporal data are defined as:

α(t) = c1(t)× ω1 + c2(t)× ω2 (47)

where α(t) is the temporal spectrum of the unknown sample, ci(t) is the temporal

spectra of the known constituents and ωi is the relative temporal weights of the

constituent spectra. Recalling that the temporal spectrum of the unknown sample

α(t) is composed by normalizing the standard spectrum by the response at a reference

time tr, we can write the normalized unknown temporal spectra as:

α(t) =
a(t)

a(tr)
(48)

where, a(t) is the standard spectrum of the unknown sample at time t and a(tr) is

the standard spectrum at a reference time tr. The standard spectra are represented

as a linear combination of the un-normalized spectra n. However, the weights are not

normalized and therefore differ resulting in the following formulas:
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a(t) = n1(t)× y1 + n2(t)× y2 (49)

a(tr) = n1(tr)× y1 + n2(tr)× y2 (50)

Note: given that the weights differ, they are represented by the variable yi rather

than by ωi. Setting the equations equal to one another in terms of a single material

allows solving for the un-normalized weights yi in terms of the normalized weights ωi

for the material of interest.

C1(t)× ω1 =
a1(t)

a1(tr)
=

n1(t)× y1
n1(tr)× y1 + n2(tr)× y2

(51)

Recognizing that y2 = 1 − y1 and that the normalized response c1(tr) is equal to 1

when the equation is analyzed at t = tr, allows equation (51) to be simplified to:

ω1 =
n1(t)× y1

n1(tr)× y1 + n2(tr)× (1− y1)
(52)

To obtain the true relative weight of the material of interest in the unknown sample,

we solve for y1:
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y1 =
ω1 × n2(tr)

ω1 × n2(tr) + ω2 × n1(tr)
(53)

4 Knowledge Gap

To achieve the desired accuracy during classification, machine learning algo-

rithms require pre-processing of data. To date, methods have included peak energy

and peak search procedures. Specifically, Sullivan et al. created a library of specific

peak energies and branching ratios while Yoshida et al. performed a peak search

procedure based on peak energies of interest [57, 67]. In this research, specific peak

energies which correlate to known isotopes of interest will not be utilized for classi-

fier training. Instead, the user implements a novel method generating new features

during data pre-processing. The user transforms the data using statistical methods

such as mean, median and Speraman’s correlation coefficient creating new features

which describe meaningful patterns present in the spectra. Rather than letting known

isotope energies drive the data mining process, the data speaks for itself.

Further, machine learning has not been applied to temporal spectroscopy

methods. To date, temporal spectroscopy methods used for mass estimation have

been performed on higher energy portions of the spectrum. Combining temporal

spectroscopy with machine learning methods allows the entire spectrum to be uti-

lized in the quantification of mass content.
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5 Advantages of Combining Machine Learning and

Temporal Spectroscopy Methods

This research adds to the body of knowledge by expanding the techniques

used for the classification and mass estimation of fissile material. Introducing novel

data pre-processing methods and combining machine learning algorithms with tem-

poral spectroscopy methods has the potential to provide improved precision and ac-

curacy of the classification and mass estimation of fissile material without the need

for efficiency calibration. Compared to previous temporal spectroscopy methods, em-

ploying machine learning methods results in additional regions of interest to be used

for mass estimation. These additional regions may provide increased accuracy of

mass content estimates. Further, we have seen in the literature that machine learning

methods have been shown to work for detectors with appreciable calibration drift [57].

Finally, machine learning limits the need for user intervention and expert knowledge

once the model has been trained [48] allowing for an automated process that is eas-

ily implemented into active interrogation methods for nonproliferation and nuclear

security.
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6 Materials and Methods

6.1 Facility Design and Experimental Setup

The Oregon State University TRIGA Reactor (OSTR), illustrated in Figure

12, is a natural convection cooled, pool-type 1 megawatt (MW) research reactor. The

reactor core contains fuel elements composed of low-enriched uranium homogeneously

combined with zirconium-hydride and is surrounded by a graphite reflector [4]. Four

beam ports penetrate the concrete shield and reactor tank.

Figure 12: Schematic of the Oregon State University TRIGA Reactor [64].
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The Prompt Gamma Neutron Activation Analysis Facility (PGNAA), illus-

trated in Figures 13 and 14, utilizes beam port 4 of the OSTR. Beam port 4 penetrates

the graphite reflector, channeling neutrons from the core providing the highest ther-

mal neutron flux [50]. The facility consists of a collimator, beam shutter, sample

chamber, beam stop and a coaxial, high purity geranium (HPGe) detector. The de-

tector is housed within borated polyethylene and lead shielding and is positioned 90

degrees from the neutron beam. Lead and boral rings located in the collimator are

used to collimate the neutron beam to a uniform diameter of 2 cm. The beam is fil-

tered by bismuth and sapphire filters which attenuate gamma rays and fast neutrons,

respectively. The shutter can be moved to prevent the neutron beam from entering

the sample chamber when the beam port is not in use. The facility components are

designed so that they can be evacuated or back-filled with helium to reduce neutron

interactions with air that would increase background radiation levels and decrease

the signal-to-noise ratio of the detector [50].

Figure 13: Schematic of beam port 4 [64].
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Figure 14: Schematic of beam port 4 [64].

A pneumatic transfer system (Fast Rabbit Pneumatic Transfer System), il-

lustrated in Figure 15, was built around the PGNAA facility at the end of beam

port 4 to maximize the counting geometry and reduce background counts for sam-

ples. The distance between the sample and the detector is 10 cm, providing better

measurement efficiency for low yield fission products from HEU and Pu-239 [64]. The

pneumatic transfer system was used to shuttle the sample between the beam and the

detector. The polyethylene encapsulated sample was propelled through the system

using pressurized helium with a transit time of 100 milliseconds. A programmable

logic controller (PLC) was setup to automate the irradiation time, count time and

rest time. Two optical sensors were used to send a signal to the PLC indicating when

the sample was being counted or irradiated. This information was sent to the digital

spectrometer where it was recorded in the List Mode data files. Figure 16 shows

photographs of the setup of the pneumatic transfer system and detector.
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Figure 15: Schematic of the Fast Rabbit Pneumatic Transfer System [64].

Figure 16: Photographs of the pneumatic transfer system and detector [64].
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6.2 Data Collection

Samples of 178.2 mg of U-235 nominally enriched to 93% and 244 mg of Pu-

239 are irradiated and counted in one-minute intervals for twenty cycles each using

beam port 4 and the fast rabbit pneumatic transfer system. Fissile material was

placed in a Teflon bag and the entire sample was placed in a high-density polyethylene

(HDPE) capsule. To increase the number of counts, the capsule was oriented so that

the bottom of the HDPE capsule was parallel to the detector face. Figures 17b and

17a show photographs of the samples of the fissile materials.

(a) Pu-239 (244 mg) sample. (b) HEU (178.2 mg) sample.

Figure 17: Photograph of the HEU and Pu-239 samples.

The detector is coupled with a ORTEC DSPEC Pro digital spectrometer which can be

operated in standard mode using GammaVision or in List Mode [64]. As mentioned

previously, when operating in List Mode information such as the time of detection,

energy channel, as well as live and real-time data are collected and streamed to the

computer continuously. This data file can be converted into a usable text file and
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parsed to evaluate data collected when the sample is in front of the detector. Parsing

the raw data results in forty individual one-minute time-stamped data files; twenty

files corresponding to the twenty cycles of counting performed for each material. Table

5 shows an excerpt of the time-stamped data files for HEU from cycle 10.

Table 5: Example of ListMode data frame.

It is noted that each run cycle ends at about 58.8 seconds rather than the

60 second time period entered on the PLC. This is likely due to experimental error

which arises from things such as the laser shifting alignment on the transfer tubing

and changes in air pressure during sample transit. It is also noted that there is buildup

present in the data. This is due to longer lived isotopes not decaying away prior to

the next irradiation/counting cycle. Incorporating a rest period would minimize such
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effects however it will never fully be eliminated. Further, it was shown in previous

work by Williford that a dead time correction was unnecessary as dead time was

accurately estimated using List Mode [64].

6.3 Template Development

Using the basic principles of the radioactive decay law, two templates were

created to form a training set of patterns to be used in the computation of Spearman’s

rank-order correlation coefficient. To perform the computation of the correlation

coefficient, Spearman’s requires that the data sets being compared have the same

number of values. The templates used for the training set were developed to have

ten, six-second intervals to accommodate this requirement. Given that Spearman’s

is based on ranked data, only one template is used for each pattern since varying the

half-life for the decay and ingrowth templates returns the same scores.

(a) Template displaying decay pattern. (b) Template displaying ingrowth pattern.

Figure 18: Templates designed for the ρs feature.
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Given that the ingrowth template is perfectly anticorrelated with the decay

template, only the decay template was used to generate the ρs score feature. Further,

postive and negative linear trend templates were not used. The results of the decay

template sensitivity analysis showed that varying the decay rate of the function did

not effect the ρs score value. Even with a long decay rate, a near negative linear

trend, the ρs score value was still 1. For completeness, positive and negative linear

templates were created and run against the decay data. As expected, ρs score values

were -1 and 1, respectively.

6.4 Data Pre-Processing

Data pre-processing is user-driven and iterative in nature. It requires reduc-

ing data, as appropriate, and identifying features which will be used by the classifier

during training. Pre-processing may include transforming the data in such a way

that a new feature is developed for training, a method utilized in this research. As

the classifier is trained, the user receives feedback regarding its accuracy. It may be

necessary to implement various methods of data pre-processing to reach the desired

level of accuracy.

To evaluate how the spectrum was changing as a function of time, the parsed

raw data needed to be converted to an interval matrix as seen in Table 6. A temporal

interval matrix was generated using the raw time-stamped count data. The time field

was divided into a sequence of ten, six-second intervals for each one-minute cycle.
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Table ?? is an example of the resulting temporal interval matrix from a single cycle.

Table 6: Excerpt of the HEU temporal interval matrix for cycle 10.

Interval

1 2 3 4 5 6 7 8 9 10

C
h

a
n
n

e
l

338 110 81 76 70 56 45 50 47 39 41

339 96 88 58 61 59 57 55 45 51 39

340 118 90 45 77 49 57 48 47 44 41

341 81 105 75 56 53 57 55 48 45 40

To accurately capture the inherent resolution of an HPGe detector as well

as the underlying physical phenomena, sliding windows were implemented. Channels

were grouped in windows of three and five prior to feature generation and training

of the classifiers. This allowed for a fair assessment of the optimal sliding window to

capture the differences in the patterns of decay for the materials under evaluation.

Further, channels above 3,000 (corresponding to an energy of 1.2 MeV) were elimi-

nated. This threshold was chosen for two main reasons. First, the primary focus of

this research was to evaluate the spectrum below 3 MeV. Second, the channels at the

higher energies did not have enough counts present to display a significant temporal

pattern.

Sliding windows consisted of performing a rolling sum for each time interval

over a given number of consecutive channels. The middle channel number of the con-
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secutively summed channels was chosen as the new channel label for a given group.

This ensured that the underlying energy association was preserved. Figure 19 shows

an example of how the sliding window for 3 channels was performed.

Figure 19: Example of the sliding window of three and the labeling of the new
channels.

Feature scaling is sometimes performed when features consist of values with

varying magnitudes. Un-normalized features have the potential to be unevenly weighted

in some machine learning algorithms. This is most commonly an issue for algorithms

that rely on Euclidean distance measures [53, 5]. Tree based methods, Näıve Bayes

and gradient descent algorithms are all known to perform well despite features with a

range of magnitudes. The main concern in gradient descent algorithms is the speed at

which convergence is achieved. Given that the machine learning architectures chosen
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for this research are not impacted by a lack of feature scaling, normalization of the

temporal data was not performed for classification. Rather, the raw counts were used.

Once the new data frames were created, features of mean, median and the

ρs score were generated. Fractional ranking, based on the number of counts present

at each interval, was performed on the temporal interval matrices as well as the tem-

plates to compute ρs. The temporal interval matrices were compared individually to

the templates to tease out decay and ingrowth patterns. A ρs score was computed

for each channel in all cycles of each material. As an example, Tables 7 and 8 show

the temporal interval matrices with computed ρs for Pu-239 and HEU.

Table 7: HEU temporal matrix.
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Table 8: Pu temporal matrix.

Further, the ρs score feature was discretized into nine categories resulting in an addi-

tional feature to be used in the training of the classifiers. The following table shows

how the categories were defined.

Table 9: Ranges of ρs values used to create discretized categories.

ρs Range ρs Category

1.0000000 Perfect Positive

0.7000000 to 0.999999 Strong Positive

0.5000000 to 0.6999999 Moderate Positive

0.3000000 to 0.4999999 Weak Positive

-0.2999999 to 0.2999999 No Relationship

-0.3000000 to -0.4999999 Weak Negative

-0.5000000 to -0.6999999 Moderate Negative

-0.7000000 to -0.9999999 Strong Negative

-1.0000000 Perfect Negative
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A two-sample t-test was used to evaluate each channel/feature combination

across the 20 cycles between the two materials. This gave us a metric to use for the

ordering and selection of significant channels. Welch’s two sample t-test for unequal

variances compares two population means. The test assumes normality of the pop-

ulation distribution, independence within and between groups but does not assume

equal population variances. Welch’s t-test gives approximately valid inference for any

sample size.

It is important to state that the assumption of independence within groups

was violated in our data due to the buildup of longer lived fission products from one

irradiation/counting cycle to the next. Violations of independence can lead to bias

and skewness in the data. In practice, it is sometimes difficult to ensure complete

independence. If it is expected that the violation will result in significant bias, one

option is to try and account for the correlations in your model. While a lack of in-

dependence may introduce bias into the results, there are certain situations where

the lack of independence does not have a large impact on the outcome. For example,

Näıve Bayes classifiers are based on the assumption of conditional independence be-

tween attributes of a given class. However, this assumption rarely holds. Despite the

violation of independence, these classifiers typically perform quite well and can yield

strong classification results. After an initial exploratory look at the data it appeared

that the effect of buildup would not significantly affect the underlying patterns used

for differentiating the fissile materials. Further, the p-value was used to give an order-

ing and not necessarily a probabilistic interpretation. Therefore, we chose to continue
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with the analysis without accounting for buildup.

The t-test was conducted at a 95% confidence level. Channels with a corre-

sponding p-value of 0.05 or lower qualify as statistically significant. Further, p-values

< 0.001 are known to be highly significant. P-values ranging from 1 e-02 to 1 e-10

were evaluated as cutoff thresholds for determining which channels showed the great-

est difference between fissile materials. Below is a summary table of the number of

channels identified at each p-value threshold for both sliding windows of three and five.

Table 10: The number of channels identified as significant at each p-value threshold.
The Welch’s t-test was used to compute the p-values.

P-value Sliding Window 3 Sliding Window 5

1e-02 405 460

1e-03 192 198

1e-04 92 98

1e-05 58 64

1e-06 39 42

1e-07 29 28

1e-08 22 22

1e-09 20 14

1e-10 15 10
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Attribute selection was performed using the information gain algorithm from

the WEKA library. The information gain attribute evaluator uses a rank search

method. Attributes are evaluated and ranked based on how much information they

contribute with respect to the class. Attributes were evaluated for each p-value thresh-

old and both sliding windows. The top seven features returned for each scenario were

utilized for training. Table 11 shows the data for channel 143 at a sliding window of

five which includes all the features generated prior to attribute selection.
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Data pre-processing results in a final data frame consisting of a subset of

distinctive channels, the top seven features selected and their associated class labels

to be used for training the classifiers. Table 12 shows the format of the training data

used for training each classifier. In practice, each channel was represented 20 times

for both materials. The top seven selected attributes are not shown in this table as it

varied across p-values. In addition, the number of channels used for training is also

dependent on the p-value threshold. It is also important to note that the classifiers

were not trained using actual channel values. This column is present in the table to

give reference to the reader. The information (features) associated with each channel

were used as input for training.

Table 12: Example input table post attribute selection used for classifier training.
The number of features and channels varied for each p-value threshold.

Channel Class Interval 1 . . . Interval 10 Mean Median ρs ρs Category

138 Pu 762 . . . 738 775 784.5 0.0182 NoRelationship

138 HEU 247 . . . 187 195.2 193 0.7660 StrongPos

875 Pu 401 . . . 406 397.3 394.5 0.3212 WeakPos

875 HEU 157 . . . 97 109 101 0.6079 ModeratePos

To date, this process has been completed for pure Pu-239 and HEU samples.

However, a library of pre-processed data sets for various mixtures of fissile material

may be generated and used for training in the future. Next, we will discuss how the

channels identified as significant and their associated features were used for training

the classifiers.
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6.5 Classifier Training and Validation

The initial evaluation consisted of looking at four classifiers: Bayesian net-

work, neural network, decision tree and random forest. Classifiers were trained in

WEKA using 10-fold cross validation based on channels identified at each p-value

threshold and the given features selected during attribute selection. In addition,

training was performed for both sliding windows. Results were compared and the clas-

sifiers with the highest training accuracy for a given combination of p-value threshold

and sliding window were chosen for validation. The default parameter settings for

each classifier in WEKA were utilized.

Data used for validation were collected four years after the data which was

used for training. The data consisted of 19 one-minute irradiation/one-minute count

files for each material that could be used as “unknown” data sets. While the user

was aware of whether the data being used for validation belonged to either HEU

or Pu-239, the trained classifiers were shown an unlabeled data set which ensured

successful evaluation of a given classifiers performance. Validation requires that the

unseen data be in the same format as the training data. This involved generating

temporal interval matrices with features that were determined as significant during

data pre-processing. In addition, based on an energy calibration, the data frames

were reduced to channels matching the energy ranges used for training. Once the

files were in the same format, they were passed through the classifiers and their per-

formance was evaluated. Table 13 is an example of the data format for validating the
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classifiers for a single “unknown” data set from a single material. We see it is in the

same format as Table 12 except that the class label associated with each channel is

absent and each channel is only represented one time. It is important to note that the

classifiers were not validated using actual channel values. This column is present in

the table to give reference to the reader. The information (features) associated with

each channel were used as input for validation. All of the 19 “unknown” datasets for

each material were formatted and shown to the trained classifiers for validation.

Table 13: Example input table used for classifier validation of a single material. Only
two channels are shown. The number of channels varied based on p-value threshold.

Channel Class Interval 1 . . . Interval 10 Mean Median ρs ρs Category

138 ? 736 . . . 653 691.8 685 0.6970 ModeratePos

875 ? 474 . . . 426 426.9 429.5 0.4182 WeakPos

6.6 Relative Mass Content Estimation

Using the channels identified as significant during data pre-processing, the

relative mass content for each material was estimated as proof of concept. This re-

search consisted of looking at pure samples and therefore the relative mass content

was estimated for two scenarios: either the sample was 100 percent HEU or 100

percent Pu-239. Mass estimation was performed using the multidimensional analy-

sis described earlier. Williford developed a script in R which takes integrated time

interval counts for the reference materials and an unknown material as inputs. The
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algorithm computes the relative mass percentages of the unknown material as well as

the associated error.

Channels evaluated were based on using a sliding window of five. The rela-

tive mass algorithm requires that the geometry and irradiation/counting cycles be the

same for the reference spectra and the unknown samples [64, 38]. The data collected

in 2018 did not consist of a separate data collection for reference spectra. Therefore,

the first five cycles of each material, HEU and Pu-239, were summed at each time

interval to create two single vectors of temporal counts. The same was done for the

next five cycles for each material to create the temporal count vectors for the un-

knowns. Summing across five cycles was performed to improve counting statistics.

Due to the limited data available, only five cycles were summed. Each of the temporal

count vectors were then transformed into integrated count vectors. The integrated

count vectors were then normalized by a reference time when the counts were the

highest. The normalized, integrated count vectors were used to perform relative mass

estimation carried out through the statistical program, R.
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7 Results

7.1 Buildup Analysis

A regression analysis between cycle and the total number of counts was

performed on both the 2014 and 2018 data sets to assess for buildup. The regression

analysis performed on the 2014 Pu-239 data showed that for each additional cycle,

it is expected that the counts will increase by a value of 7,057.6 (p-value< 0.0001).

However, for the 2014 HEU data we are unable to reject the null hypothesis that

there is no effect between cycle and total number of counts (p-value 0.0844). The

increase in counts for Pu-239 in 2014 represents, on average, 0.7% of the total counts

for a given cycle. The regression analysis performed on the 2018 data showed that for

each additional cycle it is expected that the counts will increase by a value of 10,709

for HEU (p-value 0.0248) and a value of 22,415 for Pu-239, respectively (p-value <

0.0001). The increase in counts for HEU in 2018 represents, on average, 1.3% of the

total counts for a given cycle. The increase in counts for Pu-239 in 2018 represents,

on average, 2.0% of the total counts for a given cycle. These results confirm the

presences of buildup across cycles for both fissile materials.
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(a) (b)

Figure 20: Regression plots for HEU 2014 and 2018. The gray band represents the
95% confidence interval for the fitted values.

(a) (b)

Figure 21: Regression plots for Pu-239 for 2014 and 2018. The gray band represents
the 95% confidence interval for the fitted values.

7.2 Classifier Evaluation and Selection

Prior to training the classifiers, the information gain algorithm in WEKA

was used for attribute selection. The selection process was carried out for both sliding
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windows, three and five, as well as for each p-value threshold ranging from 1e-02 to

1e-10. Of the 14 features, the top seven attributes for each combination were chosen

and used to train four classifiers. A threshold of ≥ 0.85 (on a scale of 0 to 1, with 1 in-

dicating the most information contributed to a given classification outcome) was used

to determine which attributes were chosen with the intent of adjusting the number of

attributes utilized depending on the accuracies of the classifiers. The most common

combination of attributes selected were the temporal intervals 7-10 (corresponding to

the 42 -60 second time intervals), ρs, median, and the categorical ρs variable.

Table 14 shows the features chosen during attribute selection using the infor-

mation gain algorithm and a sliding window of five at two different p-value thresholds.

We see that the same seven attributes were selected. However, the rank orders varied

depending on the amount of information each feature contributed for a given p-value

threshold. Overall, the information contributed for the attributes at a p-value thresh-

old of 1e-10 and than those at a p-value of 1 e-09 are similar.
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Table 14: Top seven attributes selected using information gain and a sliding window
of five at p-value thresholds of 1e-09 and 1e-10.

P-value 1e-09 P-value 1e-10

Attributes Selected Rank Attributes Selected Rank

Interval 10 0.964 Interval 10 0.953

Interval 7 0.929 Interval 7 0.931

Interval 9 0.925 Median 0.914

ρs 0.919 Interval 9 0.911

Interval 8 0.912 Interval 8 0.908

Median 0.902 ρs 0.893

ρs Category 0.871 ρs Category 0.878

WEKA offers the option to visualize some of the classification model archi-

tectures post classifier training. This allows the user to see an overview of the model

as well as which features are being used to achieve classification. Figures 22 and 23

show the models generated after training each of the decision tree classifiers using a

sliding window of five and the information gain algorithm at both p-value thresholds.

We can see that the same features are used in both models however the order varies

as well as the numerical thresholds used at a given node.
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Figure 22: Tree model at a p-value threshold of 1e-10 using information gain for
attribute selection.

Figure 23: Tree model at a p-value threshold of 1e-09 using information gain for
attribute selection.

Figure 24 shows a neural network model generated post training at a p-value threshold

of 1e-09. The input features are seen in the green boxes on the left hand side and the
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classification outputs on the right. The red circles indicate eight nodes of the single

hidden layer present in the model.

Figure 24: Neural network model at a p-value threshold of 1e-09 using information
gain for attribute selection.

Figure 25 shows classifier performance for each p-value threshold using the

Welch’s t-test. We can see in these plots that as the p-value decreases the accuracy

of a given classifier, regardless of the sliding window, increased. In addition, we see

that starting at a p-value of 1e-07 the sliding window of five gives consistently higher

accuracy compared to a sliding window of three. For a sliding window of three,
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the performance trend increases as the p-value decreases; however, the increased

performance appears less steady when compared to a sliding window of 5, particularly

starting at a p-value of 1e-07.

Figure 25: Plot showing p-value vs accuracy for four different classifiers and both
sliding windows. Welch’s t-test was used to compute p-values.

Further, we see fluctuations in classifier accuracy across p-value thresholds.

Looking at the data for a sliding window of five we see the fluctuations begin to even

out. However, we observe a small drop in classifier performance moving from a p-value

of 1e-09 to a p-value of 1e-10 for the random forest, neural network and decision tree

classifiers. For a sliding window of three, we see a similar phenomenon but from a

p-value of 1e-08 to a p-value of 1e-09. However, this is then followed by a fairly large

increase in accuracy at a p-value of 1e-10. Fluctuations in accuracy from one p-value

threshold to another may be due to a combination of factors. One potential factor
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is the amount of information the classifier is shown for training. For example, the

number of channels used for training at a p-value threshold of 1e-09 is greater than

the number used at a p-value threshold of 1e-10. Having too few or too many channels

(information) for a given classifier can impact the performance. Classifier performance

can be further effected by other parameters such as the attributes selected as well as

the inherent parameters for a given classifier.

Tables 15 and 16 display the accuracies of all four trained classifiers across

all p-value thresholds for both sliding windows. This allows for a more in-depth

look of the accuracy differences occurring at the smaller p-value thresholds. Looking

at Table 15, we see that the Bayesian network shows the lowest classifier accuracy

until a p-value threshold of 1e-08 at which point the lowest performing classifier is

the decision tree. However, the differences are quite small. The neural network and

random forest classifiers show similar trends in accuracy specifically at the lower p-

values. All four classifiers show a high level of accuracy starting at a p-value of 1e-08.

It appears that both sliding windows achieve similar accuracies, particularly at the

lowest p-value thresholds of 1e-09 and 1e-10 . Given that the accuracy trends for a

sliding window of five appear more consistent starting at a p-value of 1e-07, a sliding

window of five was chosen for further exploration.
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Evaluating the energy ranges for the channels of a sliding window of five we

see that the energy difference is 1.720 keV which is in agreement with the resolution of

the HPGe detector of 1.7 keV at 1332 keV as seen in Table 17. Using a sliding window

of five ensured that we covered the resolution of the detector and were not analyzing

a range of channels at a higher resolution than what the detector can achieve. In

addition, we see that the channels identified are clustered together consecutively. At

lower energies a given peak can span 7-10 channels, the consecutive channels identified

coincide with spanning a given peak at the lower energies. It is important to note

that the evaluation of channel energy was performed post data pre-processing and

model selection as a method for validating the choice of a sliding window of five and

was not necessary for identifying or selecting significant channels for classification or

mass estimation.
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Table 17: Channel and energy ranges for a sliding window of five at a p-value
threshold of 1e-09 identified by the Welch’s t-test. The energy range for each channel
spans 1.720 keV.

Channel Channel Range Energy Range (keV) Energy Difference (keV)

138 136-140 58.48 - 60.20 1.720

139 137-141 58.91-60.63 1.720

140 138-142 59.34-61.06 1.720

141 139-143 59.77-61.49 1.720

232 230-234 98.81-100.5 1.720

301 299-303 128.4-130.1 1.720

302 300-304 128.8-130.6 1.720

303 301-305 129.3-131.0 1.720

873 871-875 373.8-375.5 1.720

874 872-876 374.2-375.9 1.720

875 873-877 374.6-376.4 1.720

963 961-965 412.4-414.1 1.720

964 962-966 412.8-414.5 1.720

965 963-967 413.2-414.9 1.720

7.3 Classifier Validation

Validation requires new, unseen data be used as input to trained classifiers

to evaluate the accuracy on unlabeled data. Data collected in 2018 was used for

validation. An energy calibration was performed prior to data collection. The data

consisted of a total of 38 cycles, 19 from Pu-239 and 19 from HEU. All four trained
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classifiers were presented with unlabeled data from each of the 38 cycles. Tables 18 to

25 display the accuracies of each classifier at both p-value thresholds, 1e-09 and 1e-10.

The number of channels (instances) shown to each classifier at a p-value threshold of

1e-09 and 1e-10 were 14 and 10, respectively.
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Table 18: Random forest classifier performance using a p-value threshold of 1e-09.
On average, the Random forest classifier at a p-value threshold of 1e-09 showed 99.6%
accuracy in classifying HEU and 98.9% accuracy in classifying Pu-239.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 92.9

2 100 92.9

3 100 100

4 100 100

5 100 100

6 100 100

7 100 100

8 100 100

9 100 100

10 100 92.9

11 100 100

12 100 100

13 100 100

14 100 100

15 100 100

16 92.9 100

17 100 100

18 100 100

19 100 100
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Table 19: Neural network classifier performance using a p-value threshold of 1e-09.
On average, the neural network classifier at a p-value threshold of 1e-09 showed 98.5%
accuracy in classifying HEU and 99.6% accuracy in classifying Pu-239.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 92.9

2 100 100

3 100 100

4 92.9 100

5 92.9 100

6 100 100

7 100 100

8 92.9 100

9 100 100

10 92.9 100

11 100 100

12 100 100

13 100 100

14 100 100

15 100 100

16 100 100

17 100 100

18 100 100

19 100 100
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Table 20: Decision tree classifier performance using a p-value threshold of 1e-09.
On average, the decision tree classifier at a p-value threshold of 1e-09 showed 99.6%
accuracy in classifying both HEU and Pu-239.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 100

2 100 92.9

3 100 100

4 100 100

5 100 100

6 100 100

7 100 100

8 100 100

9 92.9 100

10 100 100

11 100 100

12 100 100

13 100 100

14 100 100

15 100 100

16 100 100

17 100 100

18 100 100

19 100 100
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Table 21: Bayesian network classifier performance using a p-value threshold of 1e-09.
On average, the Bayesian network classifier at a p-value threshold of 1e-09 showed
98.5% accuracy in classifying HEU and 100% accuracy in classifying Pu-239.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 100

2 92.9 100

3 92.9 100

4 100 100

5 100 100

6 100 100

7 100 100

8 92.9 100

9 100 100

10 100 100

11 92.9 100

12 100 100

13 100 100

14 100 100

15 100 100

16 100 100

17 100 100

18 100 100

19 100 100
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Table 22: Random forest classifier performance using a p-value threshold of 1e-10.
On average, the Random forest classifier at a p-value threshold of 1e-10 showed 98.4%
accuracy in classifying HEU and 98.9% accuracy in classifying Pu-239.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 90

2 100 90

3 100 100

4 100 100

5 100 100

6 100 100

7 100 100

8 100 100

9 100 100

10 100 100

11 100 100

12 100 100

13 100 100

14 100 100

15 100 100

16 70 100

17 100 100

18 100 100

19 100 100
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Table 23: Neural network classifier performance using a p-value threshold of 1e-10.
On average, the neural network classifier at a p-value threshold of 1e-10 showed 97.9%
accuracy in classifying HEU and 99.5% accuracy in classifying Pu-239.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 90

2 100 100

3 100 100

4 90 100

5 90 100

6 100 100

7 100 100

8 90 100

9 100 100

10 90 100

11 100 100

12 100 100

13 100 100

14 100 100

15 100 100

16 100 100

17 100 100

18 100 100

19 100 100
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Table 24: Decision tree classifier performance using a p-value threshold of 1e-10.
On average, the Decision Tree classifier at a p-value threshold of 1e-10 showed 100%
accuracy in classifying HEU and 98.9% accuracy in classifying Pu-239. We also see
some of the lowest accuracies we have seen occur for HEU. For example, data set 16
at 40%.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 80

2 100 90

3 100 100

4 100 100

5 100 100

6 70 100

7 100 100

8 100 100

9 100 100

10 100 100

11 80 100

12 100 100

13 100 100

14 100 100

15 100 100

16 40 100

17 100 100

18 100 100

19 100 100
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Table 25: Bayesian network classifier performance using a p-value threshold of 1e-10.
On average, the Bayesian network classifier at a p-value threshold of 1e-10 showed
97.4% accuracy in classifying HEU and 99.5% accuracy in classifying Pu-239.

“Unknown” Data Set HEU (%) Pu-239 (%)

1 100 100

2 90 100

3 90 100

4 100 100

5 100 100

6 90 100

7 100 90

8 90 100

9 100 100

10 100 100

11 90 100

12 100 100

13 100 100

14 100 100

15 100 100

16 100 100

17 100 100

18 100 100

19 100 100
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We see that all four classifiers classified both fissile materials with high

accuracy at both p-value thresholds. Tables 26 and 27 show a comparison of the

accuracy during training and the average validation accuracy of all four classifiers at

both p-value thresholds for both fissile materials. The average validation accuracy

for each material was computed using the accuracies for each of the 19 cycles shown

to each classifier.
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Overall, the accuracy achieved during validation was in good agreement with

the accuracy achieved during training. However, we do see some instances where

the accuracy during validation was slightly less than the classifier accuracy reported

during training. The most significant difference occurred for the decision tree accuracy

for HEU at a p-value threshold of 1e-10. The validation accuracy for HEU was 94.2%

compared to the training accuracy of 99.5%. Comparing this result to the decision

tree accuracy for HEU at a p-value of 1e-09, we see that HEU validation accuracy was

equal to the training accuracy. All other accuracies at both p-value thresholds were

within 1% of the trained classifiers accuracies. Given how similar the results were

for both p-value thresholds, the channels identified at a p-value threshold of 1e-09

were used for mass estimation. This allowed more channels to be evaluated using the

multidimensional analysis.

7.4 Relative Mass Content Estimation

Significant channels determined during data pre-processing were used to de-

termine the relative mass content of fissile material. The goal was to see if channels

identified without prior knowledge of energy below 3 MeV could be used for mass

estimation to potentially improve the accuracy and precision of estimates. For proof

of concept, we looked at pure samples of HEU and Pu-239. Tables 28 and 29 show

the results for each of the 14 channels that were identified as displaying significant

differences between fissile materials. Estimates are presented as percents and the
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percent error is presented at the 68% and 95% confidence levels.

Table 28: Relative mass content estimates for HEU and Pu-239 for the 14 channels
identified as significant during data pre-processing. Mass estimates are based on
evaluating an “unknown” sample of HEU. All estimates are presented as percents.
Error is presented at the 68% and 95% confidence levels.

Channel Estimated HEU Estimated Pu-239 Error (1σ) Error (2σ)

138 100.64 -0.64061 0.07885 0.15770

139 101.09 -1.0935 0.79018 1.5804

140 98.812 1.1880 0.76867 1.5373

141 99.731 0.26939 0.83286 1.6657

232 92.861 7.1395 0.55170 1.1034

301 97.808 2.1923 0.71986 1.4397

302 98.444 1.5560 0.72103 1.4421

303 96.466 3.5340 0.71563 1.4313

873 97.276 0.72376 1.0808 2.1615

874 97.698 2.3025 1.0138 2.0277

875 99.003 0.99749 1.0457 2.0914

963 105.68 -5.6771 1.3392 2.6784

964 104.70 -4.7009 1.2639 2.5278

965 101.96 -1.9646 1.1943 2.3885
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Table 29: Relative mass content estimates for HEU and Pu-239 for the 14 channels
identified as significant during data pre-processing. Mass estimates are based on
evaluating an “unknown” sample of Pu-239. All estimates are presented as percents.
The error is presented at the 68% and 95% confidence levels.

Channel Estimated HEU Estimated Pu-239 Error (1σ) Error (2σ)

138 -0.92453 100.92 1.4319 2.8638

139 -3.2730 103.27 0.64640 1.2928

140 3.4427 96.557 0.54374 1.0875

141 2.3324 97.668 0.50482 1.0096

232 -22.722 122.72 0.44367 0.88734

301 -10.625 110.63 0.63469 1.2694

302 -12.539 112.54 0.64552 1.2910

303 -15.118 115.12 0.64376 1.2875

873 2.3278 97.672 0.64848 1.2970

874 5.3178 94.682 0.66125 1.3225

875 1.6897 98.310 0.69310 1.3862

963 8.3016 91.698 0.67074 1.3415

964 11.054 88.946 0.70471 1.4094

965 14.157 85.843 0.67243 1.3449

Figures 26, 27, 28 and 29 show each channels estimate for both materials and

their associated errors at the 95% confidence level. At the 95 % confidence level, many

of the channels showed relative mass estimates close to the relative known masses.
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There were seven channels that showed accurate relative mass estimates for at least

one of the materials. Overall, the HEU relative mass estimates were accurate at the

95% confidence level for 43% of the channels. The Pu-239 relative mass estimates

underestimated the relative mass at the 95% confidence level for 57% of the channels.

On average, the Pu-239 relative mass estimates underestimated by 8%.

Figure 26 shows mass estimates for channels 138-141 at the 95% confidence

level. Channels 139-141 show accurate relative mass estimates for HEU. However, for

the same channels, the Pu-239 relative mass estimates were not in agreement with

the Pu-239 known relative mass. Pu-239 showed an accurate relative mass estimate

for channel 138. Channels 138 and 141 appear to show promise as the relative mass

estimate is accurate for one material and particularly close for the other.

Figure 26: Relative mass content for HEU and Pu-239 for channels 138, 139, 140
and 141 at the 95% confidence level.
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Figure 27 shows mass estimates for channels 232 and 301-303 at the 95%

confidence level. The relative mass estimates for HEU channels 301-302 were par-

ticularly close. However, the relative mass estimates for Pu-239 were overestimated

for all four channels. Overall, the relative mass content was underestimated for HEU

and overestimated for Pu-239 in these channels.

Figure 27: Relative mass content for HEU and Pu-239 for channels 232, 300, 301,
302 and 303 at the 95% confidence level.

Figure 28 shows the relative mass estimates for channels 873-875 at the 95%

confidence level. Channel 875 shows an accurate mass estimate for HEU and the

relative mass estimates for channels 873 and 874 are quite close to the relative known

HEU mass. The Pu-239 relative mass estimate for channel 875 is very close to the

Pu-239 known relative mass. However, the Pu-239 relative mass estimates tended to
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be underestimated for these channels.

Figure 28: Relative mass content for HEU and Pu-239 for channels 873, 874 and
875 at the 95% confidence level.

Figure 29 shows the relative mass estimates for channels 963-965 at the

95% confidence level. Channel 965 shows a mass estimate in agreement with the

relative known mass of HEU. However, for channels 963 and 964 the relative mass

estimates were overestimated for HEU. The relative mass estimates for Pu-239 were

underestimated in all three channels.
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Figure 29: Relative mass content for HEU and Pu-239 for channels 963, 964, 965
and 966 at the 95% confidence level.

Further exploration is required to investigate ways to improve mass esti-

mates. While these channels have shown to be successful for fissile material classi-

fication, they have shown less than desirable results for determining relative mass

content. However, many of the channels show promise given accurate mass results

for one of the fissile materials or very close estimates in other cases.

Previous work by Mannino showed that using the natural abundances of iso-

topes in the weight matrix improved relative mass estimates [38]. While the natural

abundance of U-235 in our HEU sample is easily calculated given that we know the

enrichment of the sample, we do not have the same information regarding the abun-

dance of Pu-239 and Pu-240 in our Pu-239 sample. In addition, it is possible that

the results are due to the small sample sizes of Pu-239 and HEU. Previous work by
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Williford used samples much larger in size. The samples used in this work were 244

mg and 178 mg for Pu-239 and HEU, respectively. In comparison, the samples used

in Williford’s work were 2.92 g and 2.80 g for Pu-239 and U-235, respectively. One

way to increase the number of counts (without altering sample size) is to increase the

flux which the sample is exposed to. The TRIGA reactor at Oregon State University

has an in-core rabbit system that could be utilized for this analysis, exposing the

current samples to a a higher flux and therefore increasing the total number of counts

used for analysis.

7.5 Peak Analysis

An analysis was performed post-classification and mass estimation to eval-

uate the energies associated with the channels utilized in each phase. It was found

that based on the p-value thresholds of 1e-09 and 1e-10, fission product peaks were

not used for classification nor mass estimation. Rather, the peaks used were x-ray

and gamma-ray peaks from the natural decay of Pu-239 and U-235. However, fur-

ther analysis of the other p-value thresholds showed that fission product peaks were

identified as significant during data pre-processing. These additional peaks identified

at the larger p-value thresholds provide additional channels to use for mass content

estimation and may lead to improved mass estimates in the future. At the largest

p-value threshold (1e-02), 460 channels were identified.

Many of the fission product peaks had lower counts than the peaks used for
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classification and mass estimation. While the peaks presented in this work were useful

in providing accurate classification of fissile material, they did not provide accurate

mass estimate results for both fissile materials. As mentioned previously, the small

sample sizes are one potential reason for the less than desirable relative mass content

estimates. Therefore, exploring other channels at the larger p-value thresholds would

not necessarily impact the accuracy of the mass estimates in this current work. How-

ever, it would be beneficial to look at these additional peaks after exploring additional

irradiation/counting protocols as well as methods for increasing the overall counts.

Further, a single set of channels may not be ideal to achieve the desired

accuracy for each phase. Determining two different subsets of channels, one for classi-

fication and one for relative mass content estimation, during data pre-processing may

be necessary. Perhaps performing an analysis on the p-value threshold as a method

for identifying a subset of channels specifically for relative mass content estimation

would prove to be successful in the future.
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8 Conclusions

This research describes a novel process for successful classification of Pu-

239 and HEU using machine learning and temporal spectroscopy methods. To date,

methods have included peak energy and peak search procedures. Specifically, work

by Sullivan et al. involved using a library of energies while Yoshida et al. used peak

search procedures based on peak energies of interest [57, 67]. In this research, prior

knowledge of specific peak energies which correlate to known isotopes of interest were

not utilized. Rather, through data pre-processing, data was transformed using statis-

tical methods and feature generation to describe meaningful patterns present in the

spectra. Rather than letting known isotope energies drive the data mining process,

the data spoke for itself. Following energy calibration, channels of interest found dur-

ing data pre-processing were then used to filter raw, unlabeled data for classification.

In addition, four classifiers were found to provide high accuracy in the classi-

fication of fissile material. Through the use of a sliding window of five, the information

gain algorithm for feature selection and Welch’s t-test to identify channels of interest;

the random forest, decision tree, neural network and Bayesian network classifiers were

successfully trained for future classification of Pu-239 and HEU. All four classifiers

achieved similar accuracy, 98-99 % accuracy for Pu-239 and 99-100 % for HEU. How-

ever, at a p-value threshold of 1e-09, the decision tree classifier achieved the highest

accuracy of 99.6 % for both fissile materials. The feature set utilized for the decision

tree consisted of ρs score as well as the 8thand 10th time intervals.
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Further, regions of interest below 3 MeV were identified and used for mass es-

timation of fissile material. Previous work by Williford utilized temporal spectroscopy

methods to perform relative mass content estimation on regions of interest greater

than 3 MeV [64]. In this work, machine learning methods were employed which re-

sulted in additional regions of interest to be used for mass estimation. Combining

temporal spectroscopy with machine learning methods allows the entire spectrum to

be utilized in the quantification of mass content. Machine learning limits the need

for user intervention and expert knowledge once the model has been trained [48] al-

lowing for an automated process that is easily implemented into active interrogation

methods for nonproliferation and nuclear security.

While accurate mass content estimates were not obtained for both fissile

materials, many of the channels identified showed promise. Using the natural abun-

dances of the materials of interest may improve mass estimates. Further, collecting

additional data to increase the overall number of counts being analyzed has the po-

tential to improve the accuracy of the observed estimates.
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9 Future Work

This work served as a proof of concept for both the classification and relative

mass content estimation of fissile material with the goal of evaluating channels below

3 MeV. While the results for classification were highly successful there are several

methods that could be implemented to improve the mass estimates and overcome

some of the limitations of the current work. The following are some suggestions of

areas to explore for future work.

Perhaps one of the biggest limitations and contributing factors to the mass

estimation results is the lack of counts present in the data given the small sample

sizes of fissile material available. One potential solution is to use the in-core rabbit

system at the TRIGA reactor at Oregon State University. Increasing the incident

flux on the sample would increase the overall counts and may lead to more accurate

mass estimates. In the current work, the goal was to evaluate channels below 3 MeV.

However, it is also noted that channels corresponding to an energy greater than 1.2

MeV lacked enough counts to be evaluated in this work. While this method is viable

for the evaluation of the entire spectrum, without increased counts it is not feasible.

It is also of interest to explore different time binning options. Williford

showed that mass estimate accuracy can be impacted based on the time bin used.

He noted that with too small of a time bin the count variation was too large yielding

poorer mass estimate accuracy. He also noted that mass estimate accuracy decreased

with too large of a time bin due to a dampening of the temporal behavior in a par-
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ticular region of interest. In this work, six-second time bin intervals were used for

proof of concept. Evaluating various binning options would be beneficial. However,

the true benefit, if there is one, would be discovered after increasing the number of

counts.

Further, while fission product peaks were identified during data pre-processing

at larger p-value thresholds, classification accuracy improved dramatically using smaller

p-value thresholds and incidentally eliminated the fission product peaks. Channels

identified during data pre-processing were utilized for both phases of this work, clas-

sification and relative mass content estimation. However, this is not a requirement.

A separate method could be implemented during data pre-processing for identify-

ing other channels to use for mass estimation. For example, we saw in this work

that many other channels were identified at other p-value thresholds during data pre-

processing. Finding an optimal p-value threshold for identifying channels of interest

specifically for mass content estimation could be implemented in the future. However,

as mentioned previously, without improving counting statistics it is unlikely that mass

estimates will improve with the analysis of additional channels. Therefore, it is im-

portant that the analysis be carried out in combination with methods for increasing

counts.

Due to the presence of longer-lived isotopes following fission, the current

data shows buildup across cycles. Incorporating a rest protocol would minimize the

effects of buildup, while it will never fully eliminate it. An attempt to collect new

data and incorporate a rest protocol was performed; however, significant issues were
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encountered. The sample capsules failed, leading to interruptions in irradiation/cycle

sessions making it difficult to ensure consistent rest periods between irradiation and

counting cycles. Further, the optical sensors would often become misaligned and turn

off during sample transit leading to inaccurate flagging of the sample. It is suggested

that updates to the current system be performed prior to further data collection.

Figures 30a and 30b show some of the sample capsule issues encountered during data

collection.

(a)

(b)

Figure 30: Capsule failures for the Pu-239 sample (a) partial capsule failure due to
lid unscrewing during transit and (b) complete capsule failure due to lid unscrewing
and becoming lodge in the capsule body during transit.

This work focused on looking at pure samples of HEU and Pu-239. How-

ever, in practice, this method would likely be used for evaluating many fissionable

materials. The current classification methods allow for training classifiers on many
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different isotopes as well as mixed samples. To address mixed samples for Pu-239 and

HEU specifically, several data sets would need to be pre-processed for model training.

These data sets should consist of various percentage combinations of fissile material.

Once the classifiers are trained, each needs to be validated with raw, unlabeled data.

It is possible that a library of classifiers for various isotopes of interest and various

mixtures could be trained and utilized in the field.

Further, the current multidimensional analysis allows for the evaluation of

multiple isotopes for mass estimation. An important consideration if expanding to

other fissile materials is the need to account for the difference in cross sections. In the

current work, focus was on pure samples with known sample masses. Therefore, little

inference was needed in regards to the mass estimations. However, if the multidimen-

sional anlaysis were to be used on sample mixtures, particularly mixtures containing

three or more fissile materials, a weighting function derived from the difference in

cross section would likely need to be applied for accurate mass estimation.

Given the large number of learning algorithms available for classification

problems, such as classifying special nuclear material, it would be interesting to im-

plement additional machine learning methods. For example, in the literature, support

vector machines have been used for gamma-ray spectroscopy. While used for a dif-

ferent purpose other than what is outlined in this research, they are a logical option

to consider as an additional classifier to investigate.

In addition, looking into options for further feature generation could be

beneficial. While the features generated in this research proved to provide accurate
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classification, additional features may be beneficial. Finally, comparing different at-

tribute selection algorithms would be useful. WEKA provides many algorithms to

choose from and there may be a more optimal feature set identified using alternate

selection methods.
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A Data Parsing

# import modules used here -- sys is a very standard one

import sys

from datetime import datetime , date

print (’Program starting , filename is first arg (NOTE: must not have any blank spaces

in name!)):’, sys.argv [1])

d_filename=sys.argv [1] ; #print("File to read is: "+ d_filename)

idName , rej = d_filename.split(".")

outFile , ext = d_filename.split(’.’)

print("raw file name="+outFile)

outfileData=outFile+"Data_1.csv"

outfileHeader=outFile+"Header.csv"

outfileData=open(outfileData ,’w’)

outfileHeader=open(outfileHeader ,’w’)

header =0; cycleID =0; linecounter =0; writelinecounter =0; ADCcounter =0; EX1counter =0;

mS1counter =0

detectorOn =0; detectorOff =0; mS0counter =0; writeLine=" "; foundheader =0; newline="";

milliSec=" ";

with open(d_filename) as fp:

for line in fp:

linecounter +=1;

if (header ==0): outfileHeader.write(line)

if ’Acq Start Reference ’ in line: header =1;

if (line.find(’ADC:’,0,len(line)) >-1 and detectorOn ==1 and line.find(’Real:

’,0,len(line))>-1 and line.find(’UTC Time:’,0,len(line))>-1 ):

rej ,newline=line.split(’Real:’);

newline1 ,time=newline.split(’UTC Time:’);

newline2 ,channel=newline1.split(’ADC:’);

milliSec ,rej=newline2.split(’mS’);

#print(str(cycleID)+","+ milliSec +","+ channel +","+ time);

writeLine=str(cycleID)+","+ milliSec +","+ channel +","+ time;

#print(writeLine);

outfileData.write(writeLine);

if (line.find(’EX1’,0,len(line)) >-1 and line.find("mS: 1",0,len(line)) >-1

and detectorOff ==1):

mS1counter +=1; detectorOn =1; detectorOff =0; cycleID +=1;

outfileData.close();

outfileData=outFile+"Data_"+str(cycleID)+".csv";

outfileData=open(outfileData ,’w’);

outfileData.write("runID , millisec , Bin , timestamp \n");

print("lines read so far: "+ str(linecounter)+ " ,last line of

previous cycle: " + str(writeLine)+ "\n new cycle: "+ str(cycleID)

+ " line: "+ line);

if (line.find(’EX1’,0,len(line)) >-1 and line.find("mS: 0",0,len(line)) >-1):

mS0counter +=1; detectorOn =0; detectorOff =1;

print("cycleCounter:"+str(cycleID)+" linecounter: "+ str(linecounter) + " mS1counter:

"+str(mS1counter))

# to see all millisec decimal places in R options(digits =10) and to load into R

dataframe: filename <-read.csv(" parsedFileName ")
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B Data Pre-Processing for HEU

##################################################################################

#This code produces the data analysis (used for data pre -processing) for HEU to train

the classifiers over sliding windows of 3 and 5

##################################################################################

library(tidyverse)

library(qdap)

library(dplyr)

library(zoo)

library(RcppRoll)

library(tidyverse)

library(gdata)

library(gtools)

##################################################################################

#Read in Files (depends on path you need)

##################################################################################

out <-"~/Desktop/TestCodeFiles/HEUTestCode_Train"

setwd(out)

dir(out)

mcsv_r(dir(out))

##################################################################################

#Read in functions

##################################################################################

MakeCutOneCycle <-function(df){

w<-cut(df$millisec ,breaks =10, labels=FALSE); #Creates function called

MakeCutOneCycle; cuts the millisec field into a sequence of ten intervals;

t<-data.frame(table(df$Bin ,by=w));return(t)} #Creates a frequency table for each

interval

##################################################################################

MakeMatrixOneCycle <-{function(cycle){

for(i in 1:10){s<-subset(cycle ,cycle$by==i);

s$name <-NULL;s$by<-NULL; colnames(s)<-c("Var1",as.character(i));

if(i==1){a<-s};

if(i>1){a<-merge(a,s,by="Var1",all=TRUE)}};

rownames(a)<-a$Var1;a$Var1 <-NULL;return(a)}}

##################################################################################

SpearmansScore <-function(x,y){

z<-cor.test(as.numeric(x),as.numeric(y),method="spearman",exact=FALSE);

return(z$estimate)}

##################################################################################

#Read in template file and assign vector to template name. Get rid of first column.

Only used one template since the decay and ingrowth templates were perfectly

anticorrelated.

##################################################################################

Templates <-read.csv("Templates.csv") #Includes decay and ingrowth template

t1<-Templates [1,] #Decay template

t1$X<-NULL

##################################################################################

#Make Temporal interval data frame from the raw time stamped data create a data frame

of interval cuts for one cycle. New file contains channels under ’Var1 ’, count

under ’Freq ’, and the time interval under ’by’

##################################################################################

HEUCuts1 <-MakeCutOneCycle(HEU1m1)

HEUCuts2 <-MakeCutOneCycle(HEU1m2)

HEUCuts3 <-MakeCutOneCycle(HEU1m3)

HEUCuts4 <-MakeCutOneCycle(HEU1m4)

HEUCuts5 <-MakeCutOneCycle(HEU1m5)

HEUCuts6 <-MakeCutOneCycle(HEU1m6)

HEUCuts7 <-MakeCutOneCycle(HEU1m7)

HEUCuts8 <-MakeCutOneCycle(HEU1m8)

HEUCuts9 <-MakeCutOneCycle(HEU1m9)

HEUCuts10 <-MakeCutOneCycle(HEU1m10)

HEUCuts11 <-MakeCutOneCycle(HEU1m11)

HEUCuts12 <-MakeCutOneCycle(HEU1m12)
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HEUCuts13 <-MakeCutOneCycle(HEU1m13)

HEUCuts14 <-MakeCutOneCycle(HEU1m14)

HEUCuts15 <-MakeCutOneCycle(HEU1m15)

HEUCuts16 <-MakeCutOneCycle(HEU1m16)

HEUCuts17 <-MakeCutOneCycle(HEU1m17)

HEUCuts18 <-MakeCutOneCycle(HEU1m18)

HEUCuts19 <-MakeCutOneCycle(HEU1m19)

HEUCuts20 <-MakeCutOneCycle(HEU1m20)

##################################################################################

#Make a matrix from temporal data for each cycle

##################################################################################

HeuMatrix1 <-MakeMatrixOneCycle(HEUCuts1)

HeuMatrix2 <-MakeMatrixOneCycle(HEUCuts2)

HeuMatrix3 <-MakeMatrixOneCycle(HEUCuts3)

HeuMatrix4 <-MakeMatrixOneCycle(HEUCuts4)

HeuMatrix5 <-MakeMatrixOneCycle(HEUCuts5)

HeuMatrix6 <-MakeMatrixOneCycle(HEUCuts6)

HeuMatrix7 <-MakeMatrixOneCycle(HEUCuts7)

HeuMatrix8 <-MakeMatrixOneCycle(HEUCuts8)

HeuMatrix9 <-MakeMatrixOneCycle(HEUCuts9)

HeuMatrix10 <-MakeMatrixOneCycle(HEUCuts10)

HeuMatrix11 <-MakeMatrixOneCycle(HEUCuts11)

HeuMatrix12 <-MakeMatrixOneCycle(HEUCuts12)

HeuMatrix13 <-MakeMatrixOneCycle(HEUCuts13)

HeuMatrix14 <-MakeMatrixOneCycle(HEUCuts14)

HeuMatrix15 <-MakeMatrixOneCycle(HEUCuts15)

HeuMatrix16 <-MakeMatrixOneCycle(HEUCuts16)

HeuMatrix17 <-MakeMatrixOneCycle(HEUCuts17)

HeuMatrix18 <-MakeMatrixOneCycle(HEUCuts18)

HeuMatrix19 <-MakeMatrixOneCycle(HEUCuts19)

HeuMatrix20 <-MakeMatrixOneCycle(HEUCuts20)

##################################################################################

#Rename the rownames to ’channel ’

##################################################################################

HeuMatrix1$channel <-rownames(HeuMatrix1)

HeuMatrix2$channel <-rownames(HeuMatrix2)

HeuMatrix3$channel <-rownames(HeuMatrix3)

HeuMatrix4$channel <-rownames(HeuMatrix4)

HeuMatrix5$channel <-rownames(HeuMatrix5)

HeuMatrix6$channel <-rownames(HeuMatrix6)

HeuMatrix7$channel <-rownames(HeuMatrix7)

HeuMatrix8$channel <-rownames(HeuMatrix8)

HeuMatrix9$channel <-rownames(HeuMatrix9)

HeuMatrix10$channel <-rownames(HeuMatrix10)

HeuMatrix11$channel <-rownames(HeuMatrix11)

HeuMatrix12$channel <-rownames(HeuMatrix12)

HeuMatrix13$channel <-rownames(HeuMatrix13)

HeuMatrix14$channel <-rownames(HeuMatrix14)

HeuMatrix15$channel <-rownames(HeuMatrix15)

HeuMatrix16$channel <-rownames(HeuMatrix16)

HeuMatrix17$channel <-rownames(HeuMatrix17)

HeuMatrix18$channel <-rownames(HeuMatrix18)

HeuMatrix19$channel <-rownames(HeuMatrix19)

HeuMatrix20$channel <-rownames(HeuMatrix20)

##################################################################################

#Arrange channels and fill in missing channels with NA and then to 0.

##################################################################################

HEU1FILL <- HeuMatrix1 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU1FILLNoNA <-HEU1FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU1RunID <-add_column(HEU1FILLNoNA ,runID =1) #Assign runID

write.csv(HEU1RunID ,file= "HEU1RunID.csv") #Save as .csv

HEU1RunID <-read.csv(file= "HEU1RunID.csv") #Read in .csv

HEU1RunID$X<-NULL #Remove column ’X’ due to read/write .csv
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HEU2FILL <- HeuMatrix2 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU2FILLNoNA <-HEU2FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU2RunID <-add_column(HEU2FILLNoNA ,runID =2) #Assign runID

write.csv(HEU2RunID ,file= "HEU2RunID.csv") #Save as .csv

HEU2RunID <-read.csv(file= "HEU2RunID.csv") #Read in .csv

HEU2RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU3FILL <- HeuMatrix3 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU3FILLNoNA <-HEU3FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU3RunID <-add_column(HEU3FILLNoNA ,runID =3) #Assign runID

write.csv(HEU3RunID ,file= "HEU3RunID.csv") #Save as .csv

HEU3RunID <-read.csv(file= "HEU3RunID.csv") #Read in .csv

HEU3RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU4FILL <- HeuMatrix4 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU4FILLNoNA <-HEU4FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU4RunID <-add_column(HEU4FILLNoNA ,runID =4) #Assign runID

write.csv(HEU4RunID ,file= "HEU4RunID.csv") #Save as .csv

HEU4RunID <-read.csv(file= "HEU4RunID.csv") #Read in .csv

HEU4RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU5FILL <- HeuMatrix5 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU5FILLNoNA <-HEU5FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU5RunID <-add_column(HEU5FILLNoNA ,runID =5) #Assign runID

write.csv(HEU5RunID ,file= "HEU5RunID.csv") #Save as .csv

HEU5RunID <-read.csv(file= "HEU5RunID.csv") #Read in .csv

HEU5RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU6FILL <- HeuMatrix6 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU6FILLNoNA <-HEU6FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU6RunID <-add_column(HEU6FILLNoNA ,runID =6) #Assign runID

write.csv(HEU6RunID ,file= "HEU6RunID.csv") #Save as .csv

HEU6RunID <-read.csv(file= "HEU6RunID.csv") #Read in .csv

HEU6RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU7FILL <- HeuMatrix7 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU7FILLNoNA <-HEU7FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU7RunID <-add_column(HEU7FILLNoNA ,runID =7) #Assign runID

write.csv(HEU7RunID ,file= "HEU7RunID.csv") #Save as .csv

HEU7RunID <-read.csv(file= "HEU7RunID.csv") #Read in .csv

HEU7RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU8FILL <- HeuMatrix8 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU8FILLNoNA <-HEU8FILL %>% mutate_if(is.numeric , replace_na, replace = 0)
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HEU8RunID <-add_column(HEU8FILLNoNA ,runID =8) #Assign runID

write.csv(HEU8RunID ,file= "HEU8RunID.csv") #Save as .csv

HEU8RunID <-read.csv(file= "HEU8RunID.csv") #Read in as .csv

HEU8RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU9FILL <- HeuMatrix9 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU9FILLNoNA <-HEU9FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU9RunID <-add_column(HEU9FILLNoNA ,runID =9) #Assign runID

write.csv(HEU9RunID ,file= "HEU9RunID.csv") #Save as .csv

HEU9RunID <-read.csv(file= "HEU9RunID.csv") #Read in as .csv

HEU9RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU10FILL <- HeuMatrix10 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU10FILLNoNA <-HEU10FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU10RunID <-add_column(HEU10FILLNoNA ,runID =10) #Assign runID

write.csv(HEU10RunID ,file= "HEU10RunID.csv") #Save as .csv

HEU10RunID <-read.csv(file= "HEU10RunID.csv") #Read in as .csv

HEU10RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU11FILL <- HeuMatrix11 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU11FILLNoNA <-HEU11FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU11RunID <-add_column(HEU11FILLNoNA ,runID =11) #Assign runID

write.csv(HEU11RunID ,file= "HEU11RunID.csv") #Save as .csv

HEU11RunID <-read.csv(file= "HEU11RunID.csv") #Read in as .csv

HEU11RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU12FILL <- HeuMatrix12 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU12FILLNoNA <-HEU12FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU12RunID <-add_column(HEU12FILLNoNA ,runID =12) #Assign runID

write.csv(HEU12RunID ,file= "HEU12RunID.csv") #Save as .csv

HEU12RunID <-read.csv(file= "HEU12RunID.csv") #Read in as .csv

HEU12RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU13FILL <- HeuMatrix13 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU13FILLNoNA <-HEU13FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU13RunID <-add_column(HEU13FILLNoNA ,runID =13) #Assign runID

write.csv(HEU13RunID ,file= "HEU13RunID.csv") #Save as .csv

HEU13RunID <-read.csv(file= "HEU13RunID.csv") #Read in as .csv

HEU13RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU14FILL <- HeuMatrix14 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU14FILLNoNA <-HEU14FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU14RunID <-add_column(HEU14FILLNoNA ,runID =14) #Assign runID

write.csv(HEU14RunID ,file= "HEU14RunID.csv") #Save as .csv

HEU14RunID <-read.csv(file= "HEU14RunID.csv") #Read in as .csv

HEU14RunID$X<-NULL #Remove column ’X’ due to read/write .csv

HEU15FILL <- HeuMatrix15 %>%



128

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU15FILLNoNA <-HEU15FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU15RunID <-add_column(HEU15FILLNoNA ,runID =15) #Assign runID

write.csv(HEU15RunID ,file= "HEU15RunID.csv") #Save as .csv

HEU15RunID <-read.csv(file= "HEU15RunID.csv") #Read in as .csv

HEU15RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

HEU16FILL <- HeuMatrix16 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU16FILLNoNA <-HEU16FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU16RunID <-add_column(HEU16FILLNoNA ,runID =16) #Assign runID

write.csv(HEU16RunID ,file= "HEU16RunID.csv") #Save as .csv

HEU16RunID <-read.csv(file= "HEU16RunID.csv") #Read in as .csv

HEU16RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

HEU17FILL <- HeuMatrix17 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU17FILLNoNA <-HEU17FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU17RunID <-add_column(HEU17FILLNoNA ,runID =17) #Assign runID

write.csv(HEU17RunID ,file= "HEU17RunID.csv") #Save as .csv

HEU17RunID <-read.csv(file= "HEU17RunID.csv") #Read in as .csv

HEU17RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

HEU18FILL <- HeuMatrix18 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU18FILLNoNA <-HEU18FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU18RunID <-add_column(HEU18FILLNoNA ,runID =18) #Assign runID

write.csv(HEU18RunID ,file= "HEU18RunID.csv") #Save as .csv

HEU18RunID <-read.csv(file= "HEU18RunID.csv") #Read in as .csv

HEU18RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

HEU19FILL <- HeuMatrix19 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU19FILLNoNA <-HEU19FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU19RunID <-add_column(HEU19FILLNoNA ,runID =19) #Assign runID

write.csv(HEU19RunID ,file= "HEU19RunID.csv") #Save as .csv

HEU19RunID <-read.csv(file= "HEU19RunID.csv") #Read in as .csv

HEU19RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

HEU20FILL <- HeuMatrix20 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

HEU20FILLNoNA <-HEU20FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

HEU20RunID <-add_column(HEU20FILLNoNA ,runID =20) #Assigns a runID

write.csv(HEU20RunID ,file= "HEU20RunID.csv") #Save as .csv

HEU20RunID <-read.csv(file= "HEU20RunID.csv") #Read in as .csv

HEU20RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

##################################################################################

#Make a list of the files you want to load and create an empty dataframe

##################################################################################

HEUdata2 <- c("HEU1RunID", "HEU2RunID", "HEU3RunID", "HEU4RunID", "HEU5RunID",

"HEU6RunID", "HEU7RunID", "HEU8RunID", "HEU9RunID", "HEU10RunID",

"HEU11RunID", "HEU12RunID", "HEU13RunID","HEU14RunID", "HEU15RunID",

"HEU16RunID", "HEU17RunID", "HEU18RunID", "HEU19RunID", "HEU20RunID")

datHEU2014 <- data.frame() #Create an empty data frame to fill
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# Read csv , add a column referring to the runID

# Then combine them into one data folder

for (runID in HEUdata2) {

filename = paste(runID , ".csv", sep="")

t <- read.csv(filename)

t$runID <- runID

datHEU2014 <- rbind(datHEU2014 , t)

}

#head(datHEU2014) #Overview of dataframe as a check

rownames(datHEU2014)<-NULL #Delete rownames

datHEU2014$X<-NULL #Delete column X (channel numbers)

##################################################################################

#Sliding window of 3. This sums every three rows for every cycle and creates a new

dataframe

##################################################################################

newtestdatSW3 <-datHEU2014 #Create copy of the dataframe

cyclesSW3 <-unique(newtestdatSW3$runID) #Creates a vector of all cycles

get_countsSW3 <-function(x){

HEU <- newtestdatSW3 %>%

filter(runID==x) %>% #Select cycle

arrange(channel) #Make sure in ascending order based on channel

counts1 <-roll_sum(HEU$X1,n=3) #Sliding window of three rows

counts2 <-roll_sum(HEU$X2,n=3)

counts3 <-roll_sum(HEU$X3,n=3)

counts4 <-roll_sum(HEU$X4,n=3)

counts5 <-roll_sum(HEU$X5,n=3)

counts6 <-roll_sum(HEU$X6,n=3)

counts7 <-roll_sum(HEU$X7,n=3)

counts8 <-roll_sum(HEU$X8,n=3)

counts9 <-roll_sum(HEU$X9,n=3)

counts10 <-roll_sum(HEU$X10 ,n=3)

df<-data.frame(X1=counts1 ,X2=counts2 ,X3=counts3 , X4=counts4 ,

X5=counts5 , X6=counts6 , X7=counts7 , X8=counts8 ,

X9=counts9 , X10=counts10 ,runID=x) #Creates a dataframe

}

SW3 <-map_df(cyclesSW3 ,get_countsSW3) #Apply function to all cycles

##################################################################################

#Apply function to get new channels and their labels for sliding window of 3

##################################################################################

get_channelsSW3 <-function(x){

HEU2 <- newtestdatSW3 %>%

filter(runID==x) %>% #Select cycle

arrange(channel)

test4 <-data.frame(HEU2$channel , new_channel=dplyr::lead(HEU2$channel ,1)) #Names

channels with middle number

}

NC3 <-map_df(cyclesSW3 ,get_channelsSW3) #apply sliding window of 3 function

##################################################################################

#Filter extra values. Filters NC3 so that the extra 40 values are removed and bind

with main dataframe

##################################################################################

Filter3 <-NC3 %>%

filter(!is.na(new_channel)) %>%

subset(new_channel!=16383) %>%

select(-c(HEU2.channel))

Final3 <-cbind(SW3 ,Filter3) #This binds the two dataframes

##################################################################################

#Feature generation

##################################################################################

Final3$mean <-rowMeans(Final3 [ ,1:10]) #Create feature "mean"

Final3 <-Final3 %>%

rowwise () %>%

mutate(median = median(c(X1,X2,X3 ,X4,X5,X6 ,X7,X8,X9 ,X10), na.rm = TRUE)) #Create

feature ’median ’

Final3$rho <-apply(Final3 [,1:10],1, SpearmansScore ,t1) #Create feature ’rho ’
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#Adds column of chunked rho scores as an additional feature

Final3 <- Final3 %>%

mutate(rho_cat=case_when(rho >=0.7000000 & rho <=0.9999999 ~ ’StrongPos ’,

rho >=0.5000000 & rho <=0.6999999 ~ ’ModeratePos ’,

rho >= 0.3000000 & rho <= 0.4999999 ~ ’WeakPos ’,

rho >= 0.0000000 & rho <=0.2999999 ~ ’NoRelationship ’,

rho <=0.0000000 & rho >= -0.2999999~ ’NoRelationship ’,

rho <= -0.3000000 & rho >= -0.4999999~ ’WeakNeg ’,

rho <= -0.5000000 & rho >= -0.6999999~ ’ModerateNeg ’,

rho <= -0.7000000 & rho >= -0.9999999~ ’StrongNeg ’,

rho == "1" ~’PerfectPos ’,

rho == "-1" ~ ’PerfectNeg ’))

Final3 <-Final3[c(1,2,3,4,5,6,7,8,9,10,12,11,13,14,15,16)] #Reorder the data frame #

this only works after feature generation is complete

##################################################################################

#Save to folder for merge with Pu files and perform statistical tests for finding

significant channels

Final3HEU <-Final3

write.csv(Final3HEU ,file="Final3HEU.csv")

##################################################################################

#Sliding window of 5. This sums the counts every five rows for every cycle and

creates a new dataframe.

##################################################################################

newtestdatSW5 <-datHEU2014 #Create copy of the dataframe (keeps dataframes separate)

cyclesSW5 <-unique(newtestdatSW5$runID) #This creates a vector of all cycles

get_countsSW5 <-function(x){

HEU <- newtestdatSW5 %>%

filter(runID==x) %>% #Select cycle

arrange(channel) #Make sure in ascending order based on channel

counts1 <-roll_sum(HEU$X1,n=5) #Sliding window of five rows

counts2 <-roll_sum(HEU$X2,n=5)

counts3 <-roll_sum(HEU$X3,n=5)

counts4 <-roll_sum(HEU$X4,n=5)

counts5 <-roll_sum(HEU$X5,n=5)

counts6 <-roll_sum(HEU$X6,n=5)

counts7 <-roll_sum(HEU$X7,n=5)

counts8 <-roll_sum(HEU$X8,n=5)

counts9 <-roll_sum(HEU$X9,n=5)

counts10 <-roll_sum(HEU$X10 ,n=5)

df<-data.frame(X1=counts1 ,X2=counts2 ,X3=counts3 , X4=counts4 ,

X5=counts5 , X6=counts6 , X7=counts7 , X8=counts8 ,

X9=counts9 , X10=counts10 ,runID=x) #Creates a dataframe

}

SW5 <-map_df(cyclesSW5 ,get_countsSW5) #Apply function to all cycles

##################################################################################

#Function for getting new channel labels. Get new channels for sliding window of 5

##################################################################################

get_channelsSW5 <-function(x){

HEU3 <- newtestdatSW5 %>%

filter(runID==x) %>% #Select cycle

arrange(channel)

test4 <-data.frame(HEU3$channel , new_channel=dplyr::lead(HEU3$channel ,2)) #This

would name the channels correctly

}

NC5 <-map_df(cyclesSW5 ,get_channelsSW5)

##################################################################################

#Filter extra values. Filters NC5 so that the extra 80 values are removed and bound

with main dataframe

##################################################################################

Filter5 <-NC5 %>%

filter(!is.na(new_channel)) %>%

subset(new_channel!=16383) %>%

subset(new_channel!=16382) %>%

select(-c(HEU3.channel))

Final5 <-cbind(SW5 ,Filter5) #This binds the two dataframes

##################################################################################
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#Feature generation for SW5

##################################################################################

Final5$mean <-rowMeans(Final5 [ ,1:10]) #Create feature "mean"

Final5 <-Final5 %>%

rowwise () %>%

mutate(median = median(c(X1,X2,X3 ,X4,X5,X6 ,X7,X8,X9 ,X10), na.rm = TRUE)) #Create

feature ’median ’

Final5$rho <-apply(Final5 [,1:10],1, SpearmansScore ,t1) #Create feature ’rho ’

#Adds column of chunked rho scores as an additional feature for SW5

Final5 <- Final5 %>%

mutate(rho_cat=case_when(rho >=0.7000000 & rho <=0.9999999 ~ ’StrongPos ’,

rho >=0.5000000 & rho <=0.6999999 ~ ’ModeratePos ’,

rho >= 0.3000000 & rho <= 0.4999999 ~ ’WeakPos ’,

rho >= 0.0000000 & rho <=0.2999999 ~ ’NoRelationship ’,

rho <=0.0000000 & rho >= -0.2999999~ ’NoRelationship ’,

rho <= -0.3000000 & rho >= -0.4999999~ ’WeakNeg ’,

rho <= -0.5000000 & rho >= -0.6999999~ ’ModerateNeg ’,

rho <= -0.7000000 & rho >= -0.9999999~ ’StrongNeg ’,

rho == "1" ~’PerfectPos ’,

rho == "-1" ~ ’PerfectNeg ’))

Final5 <-Final5[c(1,2,3,4,5,6,7,8,9,10,12,11,13,14,15,16)] #Reorder the data frame

after feature

#generation is complete

##################################################################################

#Save to folder for merge with Pu files and perform statistical tests for finding

significant channels

Final5HEU <-Final5

write.csv(Final5HEU ,file="Final5HEU.csv")
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C Data Pre-Processing for Pu-239

#################################################################################

#This code produces the data analysis (used for data pre -processing) for Pu to train

the classifiers over sliding windows of 3 and 5.

#################################################################################

library(tidyverse)

library(qdap)

library(dplyr)

library(zoo)

library(RcppRoll)

library(tidyverse)

library(gdata)

library(gtools)

#################################################################################

#Read in Files (depends on path you need)

#################################################################################

out <-"~/Desktop/TestCodeFiles/PuTestCode_Train"

setwd(out)

dir(out)

mcsv_r(dir(out))

#################################################################################

#Read in functions

#################################################################################

MakeCutOneCycle <-function(df){

w<-cut(df$millisec ,breaks =10, labels=FALSE); #Creates function called

MakeCutOneCycle; cuts the millisec field into a sequence of ten intervals;

t<-data.frame(table(df$Bin ,by=w));return(t)} #Creates a frequency table for each

interval

#################################################################################

MakeMatrixOneCycle <-{function(cycle){

for(i in 1:10){s<-subset(cycle ,cycle$by==i);

s$name <-NULL;s$by<-NULL; colnames(s)<-c("Var1",as.character(i));

if(i==1){a<-s};

if(i>1){a<-merge(a,s,by="Var1",all=TRUE)}};

rownames(a)<-a$Var1;a$Var1 <-NULL;return(a)}}

#################################################################################

SpearmansScore <-function(x,y){

z<-cor.test(as.numeric(x),as.numeric(y),method="spearman",exact=FALSE);

return(z$estimate)}

#################################################################################

#Read in template file and assign vector to template name. Get rid of first column.

Only used one template since the decay and ingrowth templates were perfectly

anticorrelated.

#################################################################################

Templates <-read.csv("Templates.csv") #Includes decay and ingrowth template

t1<-Templates [1,] #Decay template

t1$X<-NULL

#################################################################################

#Make Temporal interval data frame from the raw time stamped data. Create a data

frame of interval cuts for one cycle. New file contains channels under ’Var1 ’,

count under ’Freq ’, and the time interval under ’by ’.

#################################################################################

PuCuts1 <-MakeCutOneCycle(Pu1m1)

PuCuts2 <-MakeCutOneCycle(Pu1m2)

PuCuts3 <-MakeCutOneCycle(Pu1m3)

PuCuts4 <-MakeCutOneCycle(Pu1m4)

PuCuts5 <-MakeCutOneCycle(Pu1m5)

PuCuts6 <-MakeCutOneCycle(Pu1m6)

PuCuts7 <-MakeCutOneCycle(Pu1m7)

PuCuts8 <-MakeCutOneCycle(Pu1m8)

PuCuts9 <-MakeCutOneCycle(Pu1m9)

PuCuts10 <-MakeCutOneCycle(Pu1m10)

PuCuts11 <-MakeCutOneCycle(Pu1m11)

PuCuts12 <-MakeCutOneCycle(Pu1m12)
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PuCuts13 <-MakeCutOneCycle(Pu1m13)

PuCuts14 <-MakeCutOneCycle(Pu1m14)

PuCuts15 <-MakeCutOneCycle(Pu1m15)

PuCuts16 <-MakeCutOneCycle(Pu1m16)

PuCuts17 <-MakeCutOneCycle(Pu1m17)

PuCuts18 <-MakeCutOneCycle(Pu1m18)

PuCuts19 <-MakeCutOneCycle(Pu1m19)

PuCuts20 <-MakeCutOneCycle(Pu1m20)

#################################################################################

#Make a matrix from temporal data. Make interval matrix for each cycle

#################################################################################

PuMatrix1 <-MakeMatrixOneCycle(PuCuts1)

PuMatrix2 <-MakeMatrixOneCycle(PuCuts2)

PuMatrix3 <-MakeMatrixOneCycle(PuCuts3)

PuMatrix4 <-MakeMatrixOneCycle(PuCuts4)

PuMatrix5 <-MakeMatrixOneCycle(PuCuts5)

PuMatrix6 <-MakeMatrixOneCycle(PuCuts6)

PuMatrix7 <-MakeMatrixOneCycle(PuCuts7)

PuMatrix8 <-MakeMatrixOneCycle(PuCuts8)

PuMatrix9 <-MakeMatrixOneCycle(PuCuts9)

PuMatrix10 <-MakeMatrixOneCycle(PuCuts10)

PuMatrix11 <-MakeMatrixOneCycle(PuCuts11)

PuMatrix12 <-MakeMatrixOneCycle(PuCuts12)

PuMatrix13 <-MakeMatrixOneCycle(PuCuts13)

PuMatrix14 <-MakeMatrixOneCycle(PuCuts14)

PuMatrix15 <-MakeMatrixOneCycle(PuCuts15)

PuMatrix16 <-MakeMatrixOneCycle(PuCuts16)

PuMatrix17 <-MakeMatrixOneCycle(PuCuts17)

PuMatrix18 <-MakeMatrixOneCycle(PuCuts18)

PuMatrix19 <-MakeMatrixOneCycle(PuCuts19)

PuMatrix20 <-MakeMatrixOneCycle(PuCuts20)

#################################################################################

#Rename the rownames to ’channel ’

#################################################################################

PuMatrix1$channel <-rownames(PuMatrix1)

PuMatrix2$channel <-rownames(PuMatrix2)

PuMatrix3$channel <-rownames(PuMatrix3)

PuMatrix4$channel <-rownames(PuMatrix4)

PuMatrix5$channel <-rownames(PuMatrix5)

PuMatrix6$channel <-rownames(PuMatrix6)

PuMatrix7$channel <-rownames(PuMatrix7)

PuMatrix8$channel <-rownames(PuMatrix8)

PuMatrix9$channel <-rownames(PuMatrix9)

PuMatrix10$channel <-rownames(PuMatrix10)

PuMatrix11$channel <-rownames(PuMatrix11)

PuMatrix12$channel <-rownames(PuMatrix12)

PuMatrix13$channel <-rownames(PuMatrix13)

PuMatrix14$channel <-rownames(PuMatrix14)

PuMatrix15$channel <-rownames(PuMatrix15)

PuMatrix16$channel <-rownames(PuMatrix16)

PuMatrix17$channel <-rownames(PuMatrix17)

PuMatrix18$channel <-rownames(PuMatrix18)

PuMatrix19$channel <-rownames(PuMatrix19)

PuMatrix20$channel <-rownames(PuMatrix20)

#################################################################################

#Arrange channels and fill in missing channels with NA and then to 0.

#################################################################################

Pu1FILL <- PuMatrix1 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu1FILLNoNA <-Pu1FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu1RunID <-add_column(Pu1FILLNoNA ,runID =1) #Assign runID

write.csv(Pu1RunID ,file= "Pu1RunID.csv") #Save as .csv

Pu1RunID <-read.csv(file= "Pu1RunID.csv") #Read in .csv

Pu1RunID$X<-NULL #Remove column ’X’ due to read/write .csv
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Pu2FILL <- PuMatrix2 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu2FILLNoNA <-Pu2FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu2RunID <-add_column(Pu2FILLNoNA ,runID =2) #Assign runID

write.csv(Pu2RunID ,file= "Pu2RunID.csv") #Save as .csv

Pu2RunID <-read.csv(file= "Pu2RunID.csv") #Read in .csv

Pu2RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu3FILL <- PuMatrix3 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu3FILLNoNA <-Pu3FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu3RunID <-add_column(Pu3FILLNoNA ,runID =3) #Assign runID

write.csv(Pu3RunID ,file= "Pu3RunID.csv") #Save as .csv

Pu3RunID <-read.csv(file= "Pu3RunID.csv") #Read in .csv

Pu3RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu4FILL <- PuMatrix4 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu4FILLNoNA <-Pu4FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu4RunID <-add_column(Pu4FILLNoNA ,runID =4) #Assign runID

write.csv(Pu4RunID ,file= "Pu4RunID.csv") #Save as .csv

Pu4RunID <-read.csv(file= "Pu4RunID.csv") #Read in .csv

Pu4RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu5FILL <- PuMatrix5 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu5FILLNoNA <-Pu5FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu5RunID <-add_column(Pu5FILLNoNA ,runID =5) #Assign runID

write.csv(Pu5RunID ,file= "Pu5RunID.csv") #Save as .csv

Pu5RunID <-read.csv(file= "Pu5RunID.csv") #Read in .csv

Pu5RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu6FILL <- PuMatrix6 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu6FILLNoNA <-Pu6FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu6RunID <-add_column(Pu6FILLNoNA ,runID =6) #Assign runID

write.csv(Pu6RunID ,file= "Pu6RunID.csv") #Save as .csv

Pu6RunID <-read.csv(file= "Pu6RunID.csv") #Read in .csv

Pu6RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu7FILL <- PuMatrix7 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu7FILLNoNA <-Pu7FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu7RunID <-add_column(Pu7FILLNoNA ,runID =7) #Assign runID

write.csv(Pu7RunID ,file= "Pu7RunID.csv") #Save as .csv

Pu7RunID <-read.csv(file= "Pu7RunID.csv") #Read in .csv

Pu7RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu8FILL <- PuMatrix8 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu8FILLNoNA <-Pu8FILL %>% mutate_if(is.numeric , replace_na, replace = 0)
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Pu8RunID <-add_column(Pu8FILLNoNA ,runID =8) #Assign runID

write.csv(Pu8RunID ,file= "Pu8RunID.csv") #Save as .csv

Pu8RunID <-read.csv(file= "Pu8RunID.csv") #Read in as .csv

Pu8RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu9FILL <- PuMatrix9 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu9FILLNoNA <-Pu9FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu9RunID <-add_column(Pu9FILLNoNA ,runID =9) #Assign runID

write.csv(Pu9RunID ,file= "Pu9RunID.csv") #Save as .csv

Pu9RunID <-read.csv(file= "Pu9RunID.csv") #Read in as .csv

Pu9RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu10FILL <- PuMatrix10 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu10FILLNoNA <-Pu10FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu10RunID <-add_column(Pu10FILLNoNA ,runID =10) #Assign runID

write.csv(Pu10RunID ,file= "Pu10RunID.csv") #Save as .csv

Pu10RunID <-read.csv(file= "Pu10RunID.csv") #Read in as .csv

Pu10RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu11FILL <- PuMatrix11 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu11FILLNoNA <-Pu11FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu11RunID <-add_column(Pu11FILLNoNA ,runID =11) #Assign runID

write.csv(Pu11RunID ,file= "Pu11RunID.csv") #Save as .csv

Pu11RunID <-read.csv(file= "Pu11RunID.csv") #Read in as .csv

Pu11RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu12FILL <- PuMatrix12 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu12FILLNoNA <-Pu12FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu12RunID <-add_column(Pu12FILLNoNA ,runID =12) #Assign runID

write.csv(Pu12RunID ,file= "Pu12RunID.csv") #Save as .csv

Pu12RunID <-read.csv(file= "Pu12RunID.csv") #Read in as .csv

Pu12RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu13FILL <- PuMatrix13 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu13FILLNoNA <-Pu13FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu13RunID <-add_column(Pu13FILLNoNA ,runID =13) #Assign runID

write.csv(Pu13RunID ,file= "Pu13RunID.csv") #Save as .csv

Pu13RunID <-read.csv(file= "Pu13RunID.csv") #Read in as .csv

Pu13RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu14FILL <- PuMatrix14 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu14FILLNoNA <-Pu14FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu14RunID <-add_column(Pu14FILLNoNA ,runID =14) #Assign runID

write.csv(Pu14RunID ,file= "Pu14RunID.csv") #Save as .csv

Pu14RunID <-read.csv(file= "Pu14RunID.csv") #Read in as .csv

Pu14RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Pu15FILL <- PuMatrix15 %>%
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arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu15FILLNoNA <-Pu15FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu15RunID <-add_column(Pu15FILLNoNA ,runID =15) #Assign runID

write.csv(Pu15RunID ,file= "Pu15RunID.csv") #Save as .csv

Pu15RunID <-read.csv(file= "Pu15RunID.csv") #Read in as .csv

Pu15RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Pu16FILL <- PuMatrix16 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu16FILLNoNA <-Pu16FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu16RunID <-add_column(Pu16FILLNoNA ,runID =16) #Assign runID

write.csv(Pu16RunID ,file= "Pu16RunID.csv") #Save as .csv

Pu16RunID <-read.csv(file= "Pu16RunID.csv") #Read in as .csv

Pu16RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Pu17FILL <- PuMatrix17 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu17FILLNoNA <-Pu17FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu17RunID <-add_column(Pu17FILLNoNA ,runID =17) #Assign runID

write.csv(Pu17RunID ,file= "Pu17RunID.csv") #Save as .csv

Pu17RunID <-read.csv(file= "Pu17RunID.csv") #Read in as .csv

Pu17RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Pu18FILL <- PuMatrix18 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu18FILLNoNA <-Pu18FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu18RunID <-add_column(Pu18FILLNoNA ,runID =18) #Assign runID

write.csv(Pu18RunID ,file= "Pu18RunID.csv") #Save as .csv

Pu18RunID <-read.csv(file= "Pu18RunID.csv") #Read in as .csv

Pu18RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Pu19FILL <- PuMatrix19 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu19FILLNoNA <-Pu19FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu19RunID <-add_column(Pu19FILLNoNA ,runID =19) #Assign runID

write.csv(Pu19RunID ,file= "Pu19RunID.csv") #Save as .csv

Pu19RunID <-read.csv(file= "Pu19RunID.csv") #Read in as .csv

Pu19RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Pu20FILL <- PuMatrix20 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Pu20FILLNoNA <-Pu20FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Pu20RunID <-add_column(Pu20FILLNoNA ,runID =20) #Assigns a runID

write.csv(Pu20RunID ,file= "Pu20RunID.csv") #Save as .csv

Pu20RunID <-read.csv(file= "Pu20RunID.csv") #Read in as .csv

Pu20RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

#################################################################################

#Make a list of the files you want to load and create an empty dataframe

#################################################################################

Pudata2 <- c("Pu1RunID", "Pu2RunID", "Pu3RunID", "Pu4RunID", "Pu5RunID", "Pu6RunID",

"Pu7RunID", "Pu8RunID", "Pu9RunID", "Pu10RunID", "Pu11RunID",

"Pu12RunID", "Pu13RunID", "Pu14RunID", "Pu15RunID","Pu16RunID",

"Pu17RunID", "Pu18RunID", "Pu19RunID", "Pu20RunID")

datPu2014 <- data.frame () #create an empty data frame to fill
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# Read csv , add a column referring to the runID then combine them into one data

folder

for (runID in Pudata2) {

filename = paste(runID , ".csv", sep="")

t <- read.csv(filename)

t$runID <- runID

datPu2014 <- rbind(datPu2014 , t)

}

#head(datPu2014) #Overview of dataframe as a check

rownames(datPu2014)<-NULL #Delete rownames

datPu2014$X<-NULL #Delete column X (channel numbers)

#################################################################################

#Sliding window of 3. This sums every three rows for every cycle and creates a new

dataframe

#################################################################################

newtestdatSW3 <-datPu2014 #Create copy of the dataframe

cyclesSW3 <-unique(newtestdatSW3$runID) #This creates a vector of all cycles

get_countsSW3 <-function(x){

Pu<- newtestdatSW3 %>%

filter(runID==x) %>% #Select cycle

arrange(channel) #Make sure in ascending order based on channel

counts1 <-roll_sum(Pu$X1,n=3) #Sliding window of three rows

counts2 <-roll_sum(Pu$X2,n=3)

counts3 <-roll_sum(Pu$X3,n=3)

counts4 <-roll_sum(Pu$X4,n=3)

counts5 <-roll_sum(Pu$X5,n=3)

counts6 <-roll_sum(Pu$X6,n=3)

counts7 <-roll_sum(Pu$X7,n=3)

counts8 <-roll_sum(Pu$X8,n=3)

counts9 <-roll_sum(Pu$X9,n=3)

counts10 <-roll_sum(Pu$X10 ,n=3)

df<-data.frame(X1=counts1 ,X2=counts2 ,X3=counts3 , X4=counts4 ,

X5=counts5 , X6=counts6 , X7=counts7 , X8=counts8 ,

X9=counts9 , X10=counts10 ,runID=x) #creates a dataframe

}

SW3 <-map_df(cyclesSW3 ,get_countsSW3) #Apply function to all cycles

#################################################################################

#Apply function to get new channels and their labels for sliding window of 3

#################################################################################

get_channelsSW3 <-function(x){

Pu2 <- newtestdatSW3 %>%

filter(runID==x) %>% #Select cycle

arrange(channel)

test4 <-data.frame(Pu2$channel , new_channel=dplyr::lead(Pu2$channel ,1)) #Names

channels with middle number

}

NC3 <-map_df(cyclesSW3 ,get_channelsSW3) #Apply sliding window of 3 function

#################################################################################

#Filter extra values. Filters NC3 so that the extra 40 values are removed and bind

with main dataframe

#################################################################################

Filter3 <-NC3 %>%

filter(!is.na(new_channel)) %>%

subset(new_channel!=16383) %>%

select(-c(Pu2.channel))

Final3 <-cbind(SW3 ,Filter3)#This binds the two dataframes

#################################################################################

#Feature generation

#################################################################################

Final3$mean <-rowMeans(Final3 [ ,1:10]) #Create feature "mean"

Final3 <-Final3 %>%

rowwise () %>%

mutate(median = median(c(X1,X2,X3 ,X4,X5,X6 ,X7,X8,X9 ,X10), na.rm = TRUE)) #Create

feature ’median ’

Final3$rho <-apply(Final3 [,1:10],1, SpearmansScore ,t1) #Create feature ’rho ’
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#Adds column of chunked rho scores as an additional feature

Final3 <- Final3 %>%

mutate(rho_cat=case_when(rho >=0.7000000 & rho <=0.9999999 ~ ’StrongPos ’,

rho >=0.5000000 & rho <=0.6999999 ~ ’ModeratePos ’,

rho >= 0.3000000 & rho <= 0.4999999 ~ ’WeakPos ’,

rho >= 0.0000000 & rho <=0.2999999 ~ ’NoRelationship ’,

rho <=0.0000000 & rho >= -0.2999999~ ’NoRelationship ’,

rho <= -0.3000000 & rho >= -0.4999999~ ’WeakNeg ’,

rho <= -0.5000000 & rho >= -0.6999999~ ’ModerateNeg ’,

rho <= -0.7000000 & rho >= -0.9999999~ ’StrongNeg ’,

rho == "1" ~’PerfectPos ’,

rho == "-1" ~ ’PerfectNeg ’))

Final3 <-Final3[c(1,2,3,4,5,6,7,8,9,10,12,11,13,14,15,16)] #Reorder the data frame

after feature generation is complete

#################################################################################

#Save to folder for merge with Pu files and perform statistical tests for finding

significant channels

Final3Pu <-Final3

write.csv(Final3Pu ,file="Final3Pu.csv")

#################################################################################

#Sliding window of 5. This sums the counts every five rows for every cycle and

creates a new dataframe.

#################################################################################

newtestdatSW5 <-datPu2014 #Create copy of the dataframe (keeps dataframes separate)

cyclesSW5 <-unique(newtestdatSW5$runID) #This creates a vector of all cycles

get_countsSW5 <-function(x){

Pu<- newtestdatSW5 %>%

filter(runID==x) %>% #Select cycle

arrange(channel) #Make sure in ascending order based on channel

counts1 <-roll_sum(Pu$X1,n=5) #Sliding window of five rows

counts2 <-roll_sum(Pu$X2,n=5)

counts3 <-roll_sum(Pu$X3,n=5)

counts4 <-roll_sum(Pu$X4,n=5)

counts5 <-roll_sum(Pu$X5,n=5)

counts6 <-roll_sum(Pu$X6,n=5)

counts7 <-roll_sum(Pu$X7,n=5)

counts8 <-roll_sum(Pu$X8,n=5)

counts9 <-roll_sum(Pu$X9,n=5)

counts10 <-roll_sum(Pu$X10 ,n=5)

df<-data.frame(X1=counts1 ,X2=counts2 ,X3=counts3 , X4=counts4 ,

X5=counts5 , X6=counts6 , X7=counts7 , X8=counts8 ,

X9=counts9 , X10=counts10 ,runID=x) #Creates a dataframe

}

SW5 <-map_df(cyclesSW5 ,get_countsSW5) #Apply function to all cycles

#################################################################################

#Function for getting new channel labels. Get new channels for sliding window of 5

#################################################################################

get_channelsSW5 <-function(x){

Pu3 <- newtestdatSW5 %>%

filter(runID==x) %>% #Select cycle

arrange(channel)

test4 <-data.frame(Pu3$channel , new_channel=dplyr::lead(Pu3$channel ,2)) #This would

name the channels correctly

}

NC5 <-map_df(cyclesSW5 ,get_channelsSW5)

#################################################################################

#Filter extra values. Filters NC5 so that the extra 80 values are removed and bound

with main dataframe

#################################################################################

Filter5 <-NC5 %>%

filter(!is.na(new_channel)) %>%

subset(new_channel!=16383) %>%

subset(new_channel!=16382) %>%

select(-c(Pu3.channel))

Final5 <-cbind(SW5 ,Filter5)#This binds the two dataframes

#################################################################################
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#Feature generation for SW5

#################################################################################

Final5$mean <-rowMeans(Final5 [ ,1:10]) #Create feature "mean"

Final5 <-Final5 %>%

rowwise () %>%

mutate(median = median(c(X1,X2,X3 ,X4,X5,X6 ,X7,X8,X9 ,X10), na.rm = TRUE)) #Create

feature ’median ’

Final5$rho <-apply(Final5 [,1:10],1, SpearmansScore ,t1) #Create feature ’rho ’

#Adds column of chunked rho scores as an additional feature for SW5

Final5 <- Final5 %>%

mutate(rho_cat=case_when(rho >=0.7000000 & rho <=0.9999999 ~ ’StrongPos ’,

rho >=0.5000000 & rho <=0.6999999 ~ ’ModeratePos ’,

rho >= 0.3000000 & rho <= 0.4999999 ~ ’WeakPos ’,

rho >= 0.0000000 & rho <=0.2999999 ~ ’NoRelationship ’,

rho <=0.0000000 & rho >= -0.2999999~ ’NoRelationship ’,

rho <= -0.3000000 & rho >= -0.4999999~ ’WeakNeg ’,

rho <= -0.5000000 & rho >= -0.6999999~ ’ModerateNeg ’,

rho <= -0.7000000 & rho >= -0.9999999~ ’StrongNeg ’,

rho == "1" ~’PerfectPos ’,

rho == "-1" ~ ’PerfectNeg ’))

Final5 <-Final5[c(1,2,3,4,5,6,7,8,9,10,12,11,13,14,15,16)] #Reorder the data frame

after feature generation is complete

#################################################################################

#Save to folder for merge with Pu files and perform statistical tests for finding

significant channels

Final5Pu <-Final5

write.csv(Final5Pu ,file="Final5Pu.csv")
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D Determining Significant Channels

##################################################################################

#This code merges the HEU and Pu dataframes to apply statistical tests to evaluate

channels of importance based on features generated. Sliding windows of 3 and 5

included. Depending on p-value of interest , channels will need to be converted to

energy utilizing the energy calibration corresponding to when the data was

collected. The channels of interest may then be pulled out of unknown data set to

be run through the trained classifier. Channel conversion was done in excel.

##################################################################################

library(tidyverse)

library(qdap)

library(dplyr)

library(zoo)

library(RcppRoll)

library(tidyverse)

library(gdata)

library(gtools)

library(broom)

library(car)

##################################################################################

#Read in Files (depends on path you need)

##################################################################################

out <-"~/Desktop/TestCodeFiles/SigChannelTest"

setwd(out)

dir(out)

mcsv_r(dir(out))

##################################################################################

#Remove extra column

##################################################################################

Final3HEU$X<-NULL

Final3Pu$X<-NULL

Final5HEU$X<-NULL

Final5Pu$X<-NULL

##################################################################################

#Change the names of columns of interest for both data frames so they are unique to

the material

##################################################################################

colnames(Final3HEU)[colnames(Final3HEU)=="new_channel"] <- "HEU_new_channel"

colnames(Final3HEU)[colnames(Final3HEU)=="runID"] <- "HEU_runID"

colnames(Final3HEU)[colnames(Final3HEU)=="mean"] <- "HEU_mean"

colnames(Final3HEU)[colnames(Final3HEU)=="median"] <- "HEU_median"

colnames(Final3HEU)[colnames(Final3HEU)=="rho"] <- "HEU_rho"

colnames(Final3HEU)[colnames(Final3HEU)=="rho_cat"] <- "HEU_rho_cat"

colnames(Final5HEU)[colnames(Final5HEU)=="new_channel"] <- "HEU_new_channel"

colnames(Final5HEU)[colnames(Final5HEU)=="runID"] <- "HEU_runID"

colnames(Final5HEU)[colnames(Final5HEU)=="mean"] <- "HEU_mean"

colnames(Final5HEU)[colnames(Final5HEU)=="median"] <- "HEU_median"

colnames(Final5HEU)[colnames(Final5HEU)=="rho"] <- "HEU_rho"

colnames(Final5HEU)[colnames(Final5HEU)=="rho_cat"] <- "HEU_rho_cat"

colnames(Final3Pu)[colnames(Final3Pu)=="new_channel"] <- "Pu_new_channel"

colnames(Final3Pu)[colnames(Final3Pu)=="runID"] <- "Pu_runID"

colnames(Final3Pu)[colnames(Final3Pu)=="mean"] <- "Pu_mean"

colnames(Final3Pu)[colnames(Final3Pu)=="median"] <- "Pu_median"

colnames(Final3Pu)[colnames(Final3Pu)=="rho"] <- "Pu_rho"

colnames(Final3Pu)[colnames(Final3Pu)=="rho_cat"] <- "Pu_rho_cat"

colnames(Final5Pu)[colnames(Final5Pu)=="new_channel"] <- "Pu_new_channel"

colnames(Final5Pu)[colnames(Final5Pu)=="runID"] <- "Pu_runID"

colnames(Final5Pu)[colnames(Final5Pu)=="mean"] <- "Pu_mean"

colnames(Final5Pu)[colnames(Final5Pu)=="median"] <- "Pu_median"

colnames(Final5Pu)[colnames(Final5Pu)=="rho"] <- "Pu_rho"

colnames(Final5Pu)[colnames(Final5Pu)=="rho_cat"] <- "Pu_rho_cat"
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##################################################################################

#Eliminate channels above 1.2 MeV due to lack of counts/information and to keep

continuity of channels for both materials

##################################################################################

Final3HEU <-Final3HEU %>%

subset(HEU_new_channel <= 3000)

Final3Pu <-Final3Pu %>%

subset(Pu_new_channel <= 3000)

Final5HEU <-Final5HEU %>%

subset(HEU_new_channel <= 3000)

Final5Pu <-Final5Pu %>%

subset(Pu_new_channel <= 3000)

##################################################################################

#Merge HEU and Pu dataframes for statistical tests

##################################################################################

Merged3 <-cbind(Final3HEU ,Final3Pu)

Merged5 <-cbind(Final5HEU ,Final5Pu)

write.csv(Merged3 ,file="Merged3.csv")

write.csv(Merged5 ,file="Merged5.csv")

##################################################################################

#Apply t-test (Welch ’s is default in R, assumes variances are unequal) by runID for

each feature for SW3

##################################################################################

MeanTestStat3 <- Merged3 %>% #This is for the 95% confidence level

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_mean ,

.$Pu_mean ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.95)))

MedianTestStat3 <- Merged3 %>% #This is for the 95% confidence level

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_median ,

.$Pu_median ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.95)))

RhoTestStat3 <-Merged3 %>% #This is for the 95% confidence level

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_rho ,

.$Pu_rho ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.95)))

RhoTestStat993 <-Merged3 %>% #This is for the 99% confidence level , was not used

in final analysis

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_rho ,

.$Pu_rho ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.99)))

write.csv(MeanTestStat3 ,file="MeanTestStat3.csv")

write.csv(MedianTestStat3 ,file="MedianTestStat3.csv")

write.csv(RhoTestStat3 ,file="RhoTestStat3.csv")

write.csv(RhoTestStat993 ,file="RhoTestStat993.csv")

##################################################################################

#Select columns of interest to merge into one dataframe and change p-value label to
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match specific stat test

##################################################################################

RhoTest993 <-as.data.frame(RhoTestStat993) #Turn statistical output data into a

dataframe to combine dataframes

RhoTest993 <- RhoTest993 %>%

select(HEU_new_channel ,p.value) %>%

rename(Rho_p.value=p.value)

RhoTestStat953 <-RhoTestStat3 %>%

select(HEU_new_channel ,p.value)%>%

rename(Rho95_p.value=p.value)

MedianTestStat3 <-MedianTestStat3 %>%

select(HEU_new_channel ,p.value)%>%

rename(Median_p.value=p.value)

MeanTestStat3 <-MeanTestStat3 %>%

select(HEU_new_channel ,p.value)%>%

rename(Mean_p.value=p.value)

##################################################################################

#Bind dataframes by column , select p-value columns and then merge with original

dataframe

##################################################################################

TestStatPValues <-bind_cols(RhoTest993 , MedianTestStat3 , MeanTestStat3 ,RhoTestStat953)

TestStatPValues <-TestStatPValues %>%

select(Rho95_p.value ,Median_p.value ,Mean_p.value) #Did not evaluate 99% confidence

level

FindSigChannels3 <-cbind(TestStatPValues ,Merged3) #Merge stat test data output with

original dataframe

write.csv(FindSigChannels3 , file="FindSigChannels3.csv")

##################################################################################

#Determine which channels are significant based on t.test p-value ranging from 1e-02

to 1e-10

##################################################################################

SigChannels32 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.01 & Median_p.value <= 0.01 & Rho95_p.value <= 0.01)

write.csv(SigChannels32 ,file="SigChannels32.csv")

SigChannels33 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.001 & Median_p.value <= 0.001 & Rho95_p.value <= 0.001)

write.csv(SigChannels33 ,file="SigChannels33.csv")

SigChannels34 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.0001 & Median_p.value <= 0.0001 & Rho95_p.value <= 0.0001)

write.csv(SigChannels34 ,file="SigChannels34.csv")

SigChannels35 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.00001 & Median_p.value <= 0.00001 & Rho95_p.value <=

0.00001)

write.csv(SigChannels35 ,file="SigChannels35.csv")

SigChannels36 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.000001 & Median_p.value <= 0.000001 & Rho95_p.value <=

0.000001)

write.csv(SigChannels36 ,file="SigChannels36.csv")

SigChannels37 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.0000001 & Median_p.value <= 0.0000001 & Rho95_p.value <=

0.0000001)

write.csv(SigChannels37 ,file="SigChannels37.csv")

SigChannels38 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.00000001 & Median_p.value <= 0.00000001 & Rho95_p.value <=

0.00000001)

write.csv(SigChannels38 ,file="SigChannels38.csv")
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SigChannels39 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.000000001 & Median_p.value <= 0.000000001 & Rho95_p.value

<= 0.000000001)

write.csv(SigChannels39 ,file="SigChannels39.csv")

SigChannels310 <-FindSigChannels3 %>%

subset(Mean_p.value <= 0.0000000001 & Median_p.value <= 0.0000000001 & Rho95_p.

value <= 0.0000000001)

write.csv(SigChannels310 ,file="SigChannels310.csv")

##################################################################################

#Arrange dataframes based on channel

##################################################################################

SigChannels32 <-SigChannels32 %>%

arrange(HEU_new_channel)

SigChannels33 <-SigChannels33 %>%

arrange(HEU_new_channel)

SigChannels33 <-SigChannels33 %>%

arrange(HEU_new_channel)

SigChannels34 <-SigChannels34 %>%

arrange(HEU_new_channel)

SigChannels35 <-SigChannels35 %>%

arrange(HEU_new_channel)

SigChannels36 <-SigChannels36 %>%

arrange(HEU_new_channel)

SigChannels37 <-SigChannels37 %>%

arrange(HEU_new_channel)

SigChannels38 <-SigChannels38 %>%

arrange(HEU_new_channel)

SigChannels39 <-SigChannels39 %>%

arrange(HEU_new_channel)

SigChannels310 <-SigChannels310 %>%

arrange(HEU_new_channel)

##################################################################################

#Create list of significant channels for energy conversion using energy calibration

of unknown data

##################################################################################

ChannelEnergy32 <-SigChannels32 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy32 ,file="ChannelEnergy32.csv")

ChannelEnergy33 <-SigChannels33 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy33 ,file="ChannelEnergy33.csv")

ChannelEnergy34 <-SigChannels34 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy34 ,file="ChannelEnergy34.csv")

ChannelEnergy35 <-SigChannels35 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy35 ,file="ChannelEnergy35.csv")
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ChannelEnergy36 <-SigChannels36 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy36 ,file="ChannelEnergy36.csv")

ChannelEnergy37 <-SigChannels37 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy37 ,file="ChannelEnergy37.csv")

ChannelEnergy38 <-SigChannels38 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy38 ,file="ChannelEnergy38.csv")

ChannelEnergy39 <-SigChannels39 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy39 ,file="ChannelEnergy39.csv")

ChannelEnergy310 <-SigChannels310 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy310 ,file="ChannelEnergy310.csv")

##################################################################################

#Pair down dataframe for input into classifier for training

##################################################################################

Train32 <-SigChannels32 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train32)[colnames(Train32)=="HEU_new_channel"] <- "new_channel"

TrainTest32 <-Train32 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest32$HEU_runID <-"heu"

TrainTest32$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain32 <-TrainTest32 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain32)[colnames(PuTrain32)=="Pu_runID"] <- "class"

colnames(PuTrain32)[colnames(PuTrain32)=="Pu_rho"] <- "rho"

colnames(PuTrain32)[colnames(PuTrain32)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain32)[colnames(PuTrain32)=="Pu_mean"] <- "mean"

colnames(PuTrain32)[colnames(PuTrain32)=="Pu_median"] <- "median"

colnames(PuTrain32)[colnames(PuTrain32)=="X1.1"] <- "X1"

colnames(PuTrain32)[colnames(PuTrain32)=="X2.1"] <- "X2"

colnames(PuTrain32)[colnames(PuTrain32)=="X3.1"] <- "X3"

colnames(PuTrain32)[colnames(PuTrain32)=="X4.1"] <- "X4"

colnames(PuTrain32)[colnames(PuTrain32)=="X5.1"] <- "X5"

colnames(PuTrain32)[colnames(PuTrain32)=="X6.1"] <- "X6"

colnames(PuTrain32)[colnames(PuTrain32)=="X7.1"] <- "X7"

colnames(PuTrain32)[colnames(PuTrain32)=="X8.1"] <- "X8"

colnames(PuTrain32)[colnames(PuTrain32)=="X9.1"] <- "X9"

colnames(PuTrain32)[colnames(PuTrain32)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain32 <-TrainTest32 %>%

select (1:16)

#Edit column names

colnames(HEUTrain32)[colnames(HEUTrain32)=="HEU_runID"] <- "class"

colnames(HEUTrain32)[colnames(HEUTrain32)=="HEU_rho"] <- "rho"

colnames(HEUTrain32)[colnames(HEUTrain32)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain32)[colnames(HEUTrain32)=="HEU_mean"] <- "mean"
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colnames(HEUTrain32)[colnames(HEUTrain32)=="HEU_median"] <- "median"

TrainFinal32 <-rbind(HEUTrain32 ,PuTrain32) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal32 ,file="TrainFinal32.csv")

##################################################################################

Train33 <-SigChannels33 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train33)[colnames(Train33)=="HEU_new_channel"] <- "new_channel"

TrainTest33 <-Train33 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest33$HEU_runID <-"heu"

TrainTest33$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain33 <-TrainTest33 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain33)[colnames(PuTrain33)=="Pu_runID"] <- "class"

colnames(PuTrain33)[colnames(PuTrain33)=="Pu_rho"] <- "rho"

colnames(PuTrain33)[colnames(PuTrain33)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain33)[colnames(PuTrain33)=="Pu_mean"] <- "mean"

colnames(PuTrain33)[colnames(PuTrain33)=="Pu_median"] <- "median"

colnames(PuTrain33)[colnames(PuTrain33)=="X1.1"] <- "X1"

colnames(PuTrain33)[colnames(PuTrain33)=="X2.1"] <- "X2"

colnames(PuTrain33)[colnames(PuTrain33)=="X3.1"] <- "X3"

colnames(PuTrain33)[colnames(PuTrain33)=="X4.1"] <- "X4"

colnames(PuTrain33)[colnames(PuTrain33)=="X5.1"] <- "X5"

colnames(PuTrain33)[colnames(PuTrain33)=="X6.1"] <- "X6"

colnames(PuTrain33)[colnames(PuTrain33)=="X7.1"] <- "X7"

colnames(PuTrain33)[colnames(PuTrain33)=="X8.1"] <- "X8"

colnames(PuTrain33)[colnames(PuTrain33)=="X9.1"] <- "X9"

colnames(PuTrain33)[colnames(PuTrain33)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain33 <-TrainTest33 %>%

select (1:16)

#Edit column names

colnames(HEUTrain33)[colnames(HEUTrain33)=="HEU_runID"] <- "class"

colnames(HEUTrain33)[colnames(HEUTrain33)=="HEU_rho"] <- "rho"

colnames(HEUTrain33)[colnames(HEUTrain33)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain33)[colnames(HEUTrain33)=="HEU_mean"] <- "mean"

colnames(HEUTrain33)[colnames(HEUTrain33)=="HEU_median"] <- "median"

TrainFinal33 <-rbind(HEUTrain33 ,PuTrain33) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal33 ,file="TrainFinal33.csv")

##################################################################################

Train34 <-SigChannels34 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train34)[colnames(Train34)=="HEU_new_channel"] <- "new_channel"

TrainTest34 <-Train34 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label. Results in 20 instances of each material for

each channel

TrainTest34$HEU_runID <-"heu"

TrainTest34$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain34 <-TrainTest34 %>%

select(c(1 ,17:31))
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#Edit column names

colnames(PuTrain34)[colnames(PuTrain34)=="Pu_runID"] <- "class"

colnames(PuTrain34)[colnames(PuTrain34)=="Pu_rho"] <- "rho"

colnames(PuTrain34)[colnames(PuTrain34)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain34)[colnames(PuTrain34)=="Pu_mean"] <- "mean"

colnames(PuTrain34)[colnames(PuTrain34)=="Pu_median"] <- "median"

colnames(PuTrain34)[colnames(PuTrain34)=="X1.1"] <- "X1"

colnames(PuTrain34)[colnames(PuTrain34)=="X2.1"] <- "X2"

colnames(PuTrain34)[colnames(PuTrain34)=="X3.1"] <- "X3"

colnames(PuTrain34)[colnames(PuTrain34)=="X4.1"] <- "X4"

colnames(PuTrain34)[colnames(PuTrain34)=="X5.1"] <- "X5"

colnames(PuTrain34)[colnames(PuTrain34)=="X6.1"] <- "X6"

colnames(PuTrain34)[colnames(PuTrain34)=="X7.1"] <- "X7"

colnames(PuTrain34)[colnames(PuTrain34)=="X8.1"] <- "X8"

colnames(PuTrain34)[colnames(PuTrain34)=="X9.1"] <- "X9"

colnames(PuTrain34)[colnames(PuTrain34)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain34 <-TrainTest34 %>%

select (1:16)

#Edit column names

colnames(HEUTrain34)[colnames(HEUTrain34)=="HEU_runID"] <- "class"

colnames(HEUTrain34)[colnames(HEUTrain34)=="HEU_rho"] <- "rho"

colnames(HEUTrain34)[colnames(HEUTrain34)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain34)[colnames(HEUTrain34)=="HEU_mean"] <- "mean"

colnames(HEUTrain34)[colnames(HEUTrain34)=="HEU_median"] <- "median"

TrainFinal34 <-rbind(HEUTrain34 ,PuTrain34) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal34 ,file="TrainFinal34.csv")

##################################################################################

Train35 <-SigChannels35 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train35)[colnames(Train35)=="HEU_new_channel"] <- "new_channel"

TrainTest35 <-Train35 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest35$HEU_runID <-"heu"

TrainTest35$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain35 <-TrainTest35 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain35)[colnames(PuTrain35)=="Pu_runID"] <- "class"

colnames(PuTrain35)[colnames(PuTrain35)=="Pu_rho"] <- "rho"

colnames(PuTrain35)[colnames(PuTrain35)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain35)[colnames(PuTrain35)=="Pu_mean"] <- "mean"

colnames(PuTrain35)[colnames(PuTrain35)=="Pu_median"] <- "median"

colnames(PuTrain35)[colnames(PuTrain35)=="X1.1"] <- "X1"

colnames(PuTrain35)[colnames(PuTrain35)=="X2.1"] <- "X2"

colnames(PuTrain35)[colnames(PuTrain35)=="X3.1"] <- "X3"

colnames(PuTrain35)[colnames(PuTrain35)=="X4.1"] <- "X4"

colnames(PuTrain35)[colnames(PuTrain35)=="X5.1"] <- "X5"

colnames(PuTrain35)[colnames(PuTrain35)=="X6.1"] <- "X6"

colnames(PuTrain35)[colnames(PuTrain35)=="X7.1"] <- "X7"

colnames(PuTrain35)[colnames(PuTrain35)=="X8.1"] <- "X8"

colnames(PuTrain35)[colnames(PuTrain35)=="X9.1"] <- "X9"

colnames(PuTrain35)[colnames(PuTrain35)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain35 <-TrainTest35 %>%

select (1:16)

#Edit column names

colnames(HEUTrain35)[colnames(HEUTrain35)=="HEU_runID"] <- "class"
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colnames(HEUTrain35)[colnames(HEUTrain35)=="HEU_rho"] <- "rho"

colnames(HEUTrain35)[colnames(HEUTrain35)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain35)[colnames(HEUTrain35)=="HEU_mean"] <- "mean"

colnames(HEUTrain35)[colnames(HEUTrain35)=="HEU_median"] <- "median"

TrainFinal35 <-rbind(HEUTrain35 ,PuTrain35) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal35 ,file="TrainFinal35.csv")

##################################################################################

Train36 <-SigChannels36 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train36)[colnames(Train36)=="HEU_new_channel"] <- "new_channel"

TrainTest36 <-Train36 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest36$HEU_runID <-"heu"

TrainTest36$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain36 <-TrainTest36 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain36)[colnames(PuTrain36)=="Pu_runID"] <- "class"

colnames(PuTrain36)[colnames(PuTrain36)=="Pu_rho"] <- "rho"

colnames(PuTrain36)[colnames(PuTrain36)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain36)[colnames(PuTrain36)=="Pu_mean"] <- "mean"

colnames(PuTrain36)[colnames(PuTrain36)=="Pu_median"] <- "median"

colnames(PuTrain36)[colnames(PuTrain36)=="X1.1"] <- "X1"

colnames(PuTrain36)[colnames(PuTrain36)=="X2.1"] <- "X2"

colnames(PuTrain36)[colnames(PuTrain36)=="X3.1"] <- "X3"

colnames(PuTrain36)[colnames(PuTrain36)=="X4.1"] <- "X4"

colnames(PuTrain36)[colnames(PuTrain36)=="X5.1"] <- "X5"

colnames(PuTrain36)[colnames(PuTrain36)=="X6.1"] <- "X6"

colnames(PuTrain36)[colnames(PuTrain36)=="X7.1"] <- "X7"

colnames(PuTrain36)[colnames(PuTrain36)=="X8.1"] <- "X8"

colnames(PuTrain36)[colnames(PuTrain36)=="X9.1"] <- "X9"

colnames(PuTrain36)[colnames(PuTrain36)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain36 <-TrainTest36 %>%

select (1:16)

#Edit column names

colnames(HEUTrain36)[colnames(HEUTrain36)=="HEU_runID"] <- "class"

colnames(HEUTrain36)[colnames(HEUTrain36)=="HEU_rho"] <- "rho"

colnames(HEUTrain36)[colnames(HEUTrain36)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain36)[colnames(HEUTrain36)=="HEU_mean"] <- "mean"

colnames(HEUTrain36)[colnames(HEUTrain36)=="HEU_median"] <- "median"

TrainFinal36 <-rbind(HEUTrain36 ,PuTrain36) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal36 ,file="TrainFinal36.csv")

##################################################################################

Train37 <-SigChannels37 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train37)[colnames(Train37)=="HEU_new_channel"] <- "new_channel"

TrainTest37 <-Train37 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest37$HEU_runID <-"heu"

TrainTest37$Pu_runID <-"pu"
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#Pull out columns associated with Pu only

PuTrain37 <-TrainTest37 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain37)[colnames(PuTrain37)=="Pu_runID"] <- "class"

colnames(PuTrain37)[colnames(PuTrain37)=="Pu_rho"] <- "rho"

colnames(PuTrain37)[colnames(PuTrain37)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain37)[colnames(PuTrain37)=="Pu_mean"] <- "mean"

colnames(PuTrain37)[colnames(PuTrain37)=="Pu_median"] <- "median"

colnames(PuTrain37)[colnames(PuTrain37)=="X1.1"] <- "X1"

colnames(PuTrain37)[colnames(PuTrain37)=="X2.1"] <- "X2"

colnames(PuTrain37)[colnames(PuTrain37)=="X3.1"] <- "X3"

colnames(PuTrain37)[colnames(PuTrain37)=="X4.1"] <- "X4"

colnames(PuTrain37)[colnames(PuTrain37)=="X5.1"] <- "X5"

colnames(PuTrain37)[colnames(PuTrain37)=="X6.1"] <- "X6"

colnames(PuTrain37)[colnames(PuTrain37)=="X7.1"] <- "X7"

colnames(PuTrain37)[colnames(PuTrain37)=="X8.1"] <- "X8"

colnames(PuTrain37)[colnames(PuTrain37)=="X9.1"] <- "X9"

colnames(PuTrain37)[colnames(PuTrain37)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain37 <-TrainTest37 %>%

select (1:16)

#Edit column names

colnames(HEUTrain37)[colnames(HEUTrain37)=="HEU_runID"] <- "class"

colnames(HEUTrain37)[colnames(HEUTrain37)=="HEU_rho"] <- "rho"

colnames(HEUTrain37)[colnames(HEUTrain37)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain37)[colnames(HEUTrain37)=="HEU_mean"] <- "mean"

colnames(HEUTrain37)[colnames(HEUTrain37)=="HEU_median"] <- "median"

TrainFinal37 <-rbind(HEUTrain37 ,PuTrain37) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal37 ,file="TrainFinal37.csv")

##################################################################################

Train38 <-SigChannels38 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train38)[colnames(Train38)=="HEU_new_channel"] <- "new_channel"

TrainTest38 <-Train38 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest38$HEU_runID <-"heu"

TrainTest38$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain38 <-TrainTest38 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain38)[colnames(PuTrain38)=="Pu_runID"] <- "class"

colnames(PuTrain38)[colnames(PuTrain38)=="Pu_rho"] <- "rho"

colnames(PuTrain38)[colnames(PuTrain38)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain38)[colnames(PuTrain38)=="Pu_mean"] <- "mean"

colnames(PuTrain38)[colnames(PuTrain38)=="Pu_median"] <- "median"

colnames(PuTrain38)[colnames(PuTrain38)=="X1.1"] <- "X1"

colnames(PuTrain38)[colnames(PuTrain38)=="X2.1"] <- "X2"

colnames(PuTrain38)[colnames(PuTrain38)=="X3.1"] <- "X3"

colnames(PuTrain38)[colnames(PuTrain38)=="X4.1"] <- "X4"

colnames(PuTrain38)[colnames(PuTrain38)=="X5.1"] <- "X5"

colnames(PuTrain38)[colnames(PuTrain38)=="X6.1"] <- "X6"

colnames(PuTrain38)[colnames(PuTrain38)=="X7.1"] <- "X7"

colnames(PuTrain38)[colnames(PuTrain38)=="X8.1"] <- "X8"

colnames(PuTrain38)[colnames(PuTrain38)=="X9.1"] <- "X9"

colnames(PuTrain38)[colnames(PuTrain38)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain38 <-TrainTest38 %>%
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select (1:16)

#Edit column names

colnames(HEUTrain38)[colnames(HEUTrain38)=="HEU_runID"] <- "class"

colnames(HEUTrain38)[colnames(HEUTrain38)=="HEU_rho"] <- "rho"

colnames(HEUTrain38)[colnames(HEUTrain38)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain38)[colnames(HEUTrain38)=="HEU_mean"] <- "mean"

colnames(HEUTrain38)[colnames(HEUTrain38)=="HEU_median"] <- "median"

TrainFinal38 <-rbind(HEUTrain38 ,PuTrain38) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal38 ,file="TrainFinal38.csv")

##################################################################################

Train39 <-SigChannels39 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train39)[colnames(Train39)=="HEU_new_channel"] <- "new_channel"

TrainTest39 <-Train39 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest39$HEU_runID <-"heu"

TrainTest39$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain39 <-TrainTest39 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain39)[colnames(PuTrain39)=="Pu_runID"] <- "class"

colnames(PuTrain39)[colnames(PuTrain39)=="Pu_rho"] <- "rho"

colnames(PuTrain39)[colnames(PuTrain39)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain39)[colnames(PuTrain39)=="Pu_mean"] <- "mean"

colnames(PuTrain39)[colnames(PuTrain39)=="Pu_median"] <- "median"

colnames(PuTrain39)[colnames(PuTrain39)=="X1.1"] <- "X1"

colnames(PuTrain39)[colnames(PuTrain39)=="X2.1"] <- "X2"

colnames(PuTrain39)[colnames(PuTrain39)=="X3.1"] <- "X3"

colnames(PuTrain39)[colnames(PuTrain39)=="X4.1"] <- "X4"

colnames(PuTrain39)[colnames(PuTrain39)=="X5.1"] <- "X5"

colnames(PuTrain39)[colnames(PuTrain39)=="X6.1"] <- "X6"

colnames(PuTrain39)[colnames(PuTrain39)=="X7.1"] <- "X7"

colnames(PuTrain39)[colnames(PuTrain39)=="X8.1"] <- "X8"

colnames(PuTrain39)[colnames(PuTrain39)=="X9.1"] <- "X9"

colnames(PuTrain39)[colnames(PuTrain39)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain39 <-TrainTest39 %>%

select (1:16)

#Edit column names

colnames(HEUTrain39)[colnames(HEUTrain39)=="HEU_runID"] <- "class"

colnames(HEUTrain39)[colnames(HEUTrain39)=="HEU_rho"] <- "rho"

colnames(HEUTrain39)[colnames(HEUTrain39)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain39)[colnames(HEUTrain39)=="HEU_mean"] <- "mean"

colnames(HEUTrain39)[colnames(HEUTrain39)=="HEU_median"] <- "median"

TrainFinal39 <-rbind(HEUTrain39 ,PuTrain39) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal39 ,file="TrainFinal39.csv")

##################################################################################

Train310 <-SigChannels310 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train310)[colnames(Train310)=="HEU_new_channel"] <- "new_channel"

TrainTest310 <-Train310 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for
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each channel

TrainTest310$HEU_runID <-"heu"

TrainTest310$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain310 <-TrainTest310 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain310)[colnames(PuTrain310)=="Pu_runID"] <- "class"

colnames(PuTrain310)[colnames(PuTrain310)=="Pu_rho"] <- "rho"

colnames(PuTrain310)[colnames(PuTrain310)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain310)[colnames(PuTrain310)=="Pu_mean"] <- "mean"

colnames(PuTrain310)[colnames(PuTrain310)=="Pu_median"] <- "median"

colnames(PuTrain310)[colnames(PuTrain310)=="X1.1"] <- "X1"

colnames(PuTrain310)[colnames(PuTrain310)=="X2.1"] <- "X2"

colnames(PuTrain310)[colnames(PuTrain310)=="X3.1"] <- "X3"

colnames(PuTrain310)[colnames(PuTrain310)=="X4.1"] <- "X4"

colnames(PuTrain310)[colnames(PuTrain310)=="X5.1"] <- "X5"

colnames(PuTrain310)[colnames(PuTrain310)=="X6.1"] <- "X6"

colnames(PuTrain310)[colnames(PuTrain310)=="X7.1"] <- "X7"

colnames(PuTrain310)[colnames(PuTrain310)=="X8.1"] <- "X8"

colnames(PuTrain310)[colnames(PuTrain310)=="X9.1"] <- "X9"

colnames(PuTrain310)[colnames(PuTrain310)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain310 <-TrainTest310 %>%

select (1:16)

#Edit column names

colnames(HEUTrain310)[colnames(HEUTrain310)=="HEU_runID"] <- "class"

colnames(HEUTrain310)[colnames(HEUTrain310)=="HEU_rho"] <- "rho"

colnames(HEUTrain310)[colnames(HEUTrain310)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain310)[colnames(HEUTrain310)=="HEU_mean"] <- "mean"

colnames(HEUTrain310)[colnames(HEUTrain310)=="HEU_median"] <- "median"

TrainFinal310 <-rbind(HEUTrain310 ,PuTrain310) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal310 ,file="TrainFinal310.csv")

##################################################################################

#Apply t-test (Welch ’s) by runID for each feature for SW5

##################################################################################

MeanTestStat5 <- Merged5 %>% #This is for the 95% confidence level

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_mean ,

.$Pu_mean ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.95)))

write.csv(MeanTestStat5 ,file="MeanTestStat5.csv")

MedianTestStat5 <- Merged5 %>% #This is for the 95% confidence level

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_median ,

.$Pu_median ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.95)))

write.csv(MedianTestStat5 ,file="MedianTestStat5.csv")

RhoTestStat955 <-Merged5 %>% #This is for the 95% confidence level

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_rho ,

.$Pu_rho ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.95)))
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write.csv(RhoTestStat955 ,file="RhoTestStat955.csv")

RhoTestStat995 <-Merged5 %>% #This is for the 99% confidence level , was not

used in final analysis

group_by(HEU_new_channel) %>%

do(tidy(t.test(.$HEU_rho ,

.$Pu_rho ,

mu = 0,

alt = "two.sided",

paired = FALSE ,

conf.level = 0.99)))

write.csv(RhoTestStat995 ,file="RhoTestStat995.csv")

##################################################################################

#Select columns of interest to merge into one dataframe and change p-value label to

match specific stat test

##################################################################################

RhoTest995 <-as.data.frame(RhoTestStat995) #Turn statistical output data into a

dataframe to combine dataframes

RhoTest995 <- RhoTest995 %>%

select(HEU_new_channel ,p.value) %>%

rename(Rho_p.value=p.value)

RhoTestStat955 <-RhoTestStat955 %>%

select(HEU_new_channel ,p.value)%>%

rename(Rho95_p.value=p.value)

MedianTestStat5 <-MedianTestStat5 %>%

select(HEU_new_channel ,p.value)%>%

rename(Median_p.value=p.value)

MeanTestStat5 <-MeanTestStat5 %>%

select(HEU_new_channel ,p.value)%>%

rename(Mean_p.value=p.value)

TestStatPValues <-bind_cols(RhoTest995 , MedianTestStat5 , MeanTestStat5 ,RhoTestStat955)

TestStatPValues <-TestStatPValues %>%

select(Rho95_p.value ,Median_p.value ,Mean_p.value)

FindSigChannels5 <-cbind(TestStatPValues ,Merged5) #Merge stat test data output with

original dataframe

write.csv(FindSigChannels5 , file="FindSigChannels5.csv")

##################################################################################

#Determine which channels are significant based on t.test p-value ranging from 1e-02

to 1e-10

##################################################################################

SigChannels52 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.01 & Median_p.value <= 0.01 & Rho95_p.value <= 0.01)

write.csv(SigChannels52 ,file="SigChannels52")

SigChannels53 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.001 & Median_p.value <= 0.001 & Rho95_p.value <= 0.001)

write.csv(SigChannels53 ,file="SigChannels53.csv")

SigChannels54 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.0001 & Median_p.value <= 0.0001 & Rho95_p.value <= 0.0001)

write.csv(SigChannels54 ,file="SigChannels54.csv")

SigChannels55 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.00001 & Median_p.value <= 0.00001 & Rho95_p.value <=

0.00001)

write.csv(SigChannels55 ,file="SigChannels55.csv")

SigChannels56 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.000001 & Median_p.value <= 0.000001 & Rho95_p.value <=

0.000001)

write.csv(SigChannels56 ,file="SigChannels56.csv")
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SigChannels57 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.0000001 & Median_p.value <= 0.0000001 & Rho95_p.value <=

0.0000001)

write.csv(SigChannels57 ,file="SigChannels57.csv")

SigChannels58 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.00000001 & Median_p.value <= 0.00000001 & Rho95_p.value <=

0.00000001)

write.csv(SigChannels58 ,file="SigChannels58.csv")

SigChannels59 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.000000001 & Median_p.value <= 0.000000001 & Rho95_p.value

<= 0.000000001)

write.csv(SigChannels59 ,file="SigChannels59.csv")

SigChannels510 <-FindSigChannels5 %>%

subset(Mean_p.value <= 0.0000000001 & Median_p.value <= 0.0000000001 & Rho95_p.

value <= 0.0000000001)

write.csv(SigChannels510 , file="SigChannels510.csv")

##################################################################################

#Arrange dataframe by channel

##################################################################################

SigChannels52 <-SigChannels52 %>%

arrange(HEU_new_channel)

SigChannels53 <-SigChannels53 %>%

arrange(HEU_new_channel)

SigChannels53 <-SigChannels53 %>%

arrange(HEU_new_channel)

SigChannels54 <-SigChannels54 %>%

arrange(HEU_new_channel)

SigChannels55 <-SigChannels55 %>%

arrange(HEU_new_channel)

SigChannels56 <-SigChannels56 %>%

arrange(HEU_new_channel)

SigChannels57 <-SigChannels57 %>%

arrange(HEU_new_channel)

SigChannels58 <-SigChannels58 %>%

arrange(HEU_new_channel)

SigChannels59 <-SigChannels59 %>%

arrange(HEU_new_channel)

SigChannels510 <-SigChannels510 %>%

arrange(HEU_new_channel)

##################################################################################

#Create list of significant channels for energy conversion using energy calibration

of unknown data

##################################################################################

ChannelEnergy52 <-SigChannels52 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy52 ,file="ChannelEnergy52.csv")

ChannelEnergy53 <-SigChannels53 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy53 ,file="ChannelEnergy53.csv")



153

ChannelEnergy54 <-SigChannels54 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy54 ,file="ChannelEnergy54.csv")

ChannelEnergy55 <-SigChannels55 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy55 ,file="ChannelEnergy55.csv")

ChannelEnergy56 <-SigChannels56 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy56 ,file="ChannelEnergy56.csv")

ChannelEnergy57 <-SigChannels57 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy57 ,file="ChannelEnergy57.csv")

ChannelEnergy58 <-SigChannels58 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy58 ,file="ChannelEnergy58.csv")

ChannelEnergy59 <-SigChannels59 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy59 ,file="ChannelEnergy59.csv")

ChannelEnergy510 <-SigChannels510 %>%

filter(HEU_runID == "HEU1RunID") %>%

select(HEU_new_channel)

write.csv(ChannelEnergy510 ,file="ChannelEnergy510.csv")

##################################################################################

#Pair down dataframe for input into classifier for training

##################################################################################

Train52 <-SigChannels52 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean , HEU_median ,HEU_rho ,HEU_rho_cat ,X1 ,X2,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train52)[colnames(Train52)=="HEU_new_channel"] <- "new_channel"

TrainTest52 <-Train52 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest52$HEU_runID <-"heu"

TrainTest52$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain52 <-TrainTest52 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain52)[colnames(PuTrain52)=="Pu_runID"] <- "class"

colnames(PuTrain52)[colnames(PuTrain52)=="Pu_rho"] <- "rho"

colnames(PuTrain52)[colnames(PuTrain52)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain52)[colnames(PuTrain52)=="Pu_mean"] <- "mean"

colnames(PuTrain52)[colnames(PuTrain52)=="Pu_median"] <- "median"

colnames(PuTrain52)[colnames(PuTrain52)=="X1.1"] <- "X1"

colnames(PuTrain52)[colnames(PuTrain52)=="X2.1"] <- "X2"

colnames(PuTrain52)[colnames(PuTrain52)=="X3.1"] <- "X3"

colnames(PuTrain52)[colnames(PuTrain52)=="X4.1"] <- "X4"

colnames(PuTrain52)[colnames(PuTrain52)=="X5.1"] <- "X5"

colnames(PuTrain52)[colnames(PuTrain52)=="X6.1"] <- "X6"

colnames(PuTrain52)[colnames(PuTrain52)=="X7.1"] <- "X7"

colnames(PuTrain52)[colnames(PuTrain52)=="X8.1"] <- "X8"
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colnames(PuTrain52)[colnames(PuTrain52)=="X9.1"] <- "X9"

colnames(PuTrain52)[colnames(PuTrain52)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain52 <-TrainTest52 %>%

select (1:16)

#Edit column names

colnames(HEUTrain52)[colnames(HEUTrain52)=="HEU_runID"] <- "class"

colnames(HEUTrain52)[colnames(HEUTrain52)=="HEU_rho"] <- "rho"

colnames(HEUTrain52)[colnames(HEUTrain52)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain52)[colnames(HEUTrain52)=="HEU_mean"] <- "mean"

colnames(HEUTrain52)[colnames(HEUTrain52)=="HEU_median"] <- "median"

TrainFinal52 <-rbind(HEUTrain52 ,PuTrain52) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal52 ,file="TrainFinal52.csv")

##################################################################################

Train53 <-SigChannels53 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train53)[colnames(Train53)=="HEU_new_channel"] <- "new_channel"

TrainTest53 <-Train53 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest53$HEU_runID <-"heu"

TrainTest53$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain53 <-TrainTest53 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain53)[colnames(PuTrain53)=="Pu_runID"] <- "class"

colnames(PuTrain53)[colnames(PuTrain53)=="Pu_rho"] <- "rho"

colnames(PuTrain53)[colnames(PuTrain53)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain53)[colnames(PuTrain53)=="Pu_mean"] <- "mean"

colnames(PuTrain53)[colnames(PuTrain53)=="Pu_median"] <- "median"

colnames(PuTrain53)[colnames(PuTrain53)=="X1.1"] <- "X1"

colnames(PuTrain53)[colnames(PuTrain53)=="X2.1"] <- "X2"

colnames(PuTrain53)[colnames(PuTrain53)=="X3.1"] <- "X3"

colnames(PuTrain53)[colnames(PuTrain53)=="X4.1"] <- "X4"

colnames(PuTrain53)[colnames(PuTrain53)=="X5.1"] <- "X5"

colnames(PuTrain53)[colnames(PuTrain53)=="X6.1"] <- "X6"

colnames(PuTrain53)[colnames(PuTrain53)=="X7.1"] <- "X7"

colnames(PuTrain53)[colnames(PuTrain53)=="X8.1"] <- "X8"

colnames(PuTrain53)[colnames(PuTrain53)=="X9.1"] <- "X9"

colnames(PuTrain53)[colnames(PuTrain53)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain53 <-TrainTest53 %>%

select (1:16)

#Edit column names

colnames(HEUTrain53)[colnames(HEUTrain53)=="HEU_runID"] <- "class"

colnames(HEUTrain53)[colnames(HEUTrain53)=="HEU_rho"] <- "rho"

colnames(HEUTrain53)[colnames(HEUTrain53)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain53)[colnames(HEUTrain53)=="HEU_mean"] <- "mean"

colnames(HEUTrain53)[colnames(HEUTrain53)=="HEU_median"] <- "median"

TrainFinal53 <-rbind(HEUTrain53 ,PuTrain53) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal53 ,file="TrainFinal53.csv")

##################################################################################

Train54 <-SigChannels54 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)
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colnames(Train54)[colnames(Train54)=="HEU_new_channel"] <- "new_channel"

TrainTest54 <-Train54 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest54$HEU_runID <-"heu"

TrainTest54$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain54 <-TrainTest54 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain54)[colnames(PuTrain54)=="Pu_runID"] <- "class"

colnames(PuTrain54)[colnames(PuTrain54)=="Pu_rho"] <- "rho"

colnames(PuTrain54)[colnames(PuTrain54)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain54)[colnames(PuTrain54)=="Pu_mean"] <- "mean"

colnames(PuTrain54)[colnames(PuTrain54)=="Pu_median"] <- "median"

colnames(PuTrain54)[colnames(PuTrain54)=="X1.1"] <- "X1"

colnames(PuTrain54)[colnames(PuTrain54)=="X2.1"] <- "X2"

colnames(PuTrain54)[colnames(PuTrain54)=="X3.1"] <- "X3"

colnames(PuTrain54)[colnames(PuTrain54)=="X4.1"] <- "X4"

colnames(PuTrain54)[colnames(PuTrain54)=="X5.1"] <- "X5"

colnames(PuTrain54)[colnames(PuTrain54)=="X6.1"] <- "X6"

colnames(PuTrain54)[colnames(PuTrain54)=="X7.1"] <- "X7"

colnames(PuTrain54)[colnames(PuTrain54)=="X8.1"] <- "X8"

colnames(PuTrain54)[colnames(PuTrain54)=="X9.1"] <- "X9"

colnames(PuTrain54)[colnames(PuTrain54)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain54 <-TrainTest54 %>%

select (1:16)

#Edit column names

colnames(HEUTrain54)[colnames(HEUTrain54)=="HEU_runID"] <- "class"

colnames(HEUTrain54)[colnames(HEUTrain54)=="HEU_rho"] <- "rho"

colnames(HEUTrain54)[colnames(HEUTrain54)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain54)[colnames(HEUTrain54)=="HEU_mean"] <- "mean"

colnames(HEUTrain54)[colnames(HEUTrain54)=="HEU_median"] <- "median"

TrainFinal54 <-rbind(HEUTrain54 ,PuTrain54) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal54 ,file="TrainFinal54.csv")

##################################################################################

Train55 <-SigChannels55 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train55)[colnames(Train55)=="HEU_new_channel"] <-"new_channel"

TrainTest55 <-Train55 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest55$HEU_runID <-"heu"

TrainTest55$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain55 <-TrainTest55 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain55)[colnames(PuTrain55)=="Pu_runID"] <- "class"

colnames(PuTrain55)[colnames(PuTrain55)=="Pu_rho"] <- "rho"

colnames(PuTrain55)[colnames(PuTrain55)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain55)[colnames(PuTrain55)=="Pu_mean"] <- "mean"

colnames(PuTrain55)[colnames(PuTrain55)=="Pu_median"] <- "median"

colnames(PuTrain55)[colnames(PuTrain55)=="X1.1"] <- "X1"

colnames(PuTrain55)[colnames(PuTrain55)=="X2.1"] <- "X2"

colnames(PuTrain55)[colnames(PuTrain55)=="X3.1"] <- "X3"

colnames(PuTrain55)[colnames(PuTrain55)=="X4.1"] <- "X4"

colnames(PuTrain55)[colnames(PuTrain55)=="X5.1"] <- "X5"
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colnames(PuTrain55)[colnames(PuTrain55)=="X6.1"] <- "X6"

colnames(PuTrain55)[colnames(PuTrain55)=="X7.1"] <- "X7"

colnames(PuTrain55)[colnames(PuTrain55)=="X8.1"] <- "X8"

colnames(PuTrain55)[colnames(PuTrain55)=="X9.1"] <- "X9"

colnames(PuTrain55)[colnames(PuTrain55)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain55 <-TrainTest55 %>%

select (1:16)

#Edit column names

colnames(HEUTrain55)[colnames(HEUTrain55)=="HEU_runID"] <- "class"

colnames(HEUTrain55)[colnames(HEUTrain55)=="HEU_rho"] <- "rho"

colnames(HEUTrain55)[colnames(HEUTrain55)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain55)[colnames(HEUTrain55)=="HEU_mean"] <- "mean"

colnames(HEUTrain55)[colnames(HEUTrain55)=="HEU_median"] <- "median"

TrainFinal55 <-rbind(HEUTrain55 ,PuTrain55) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal55 ,file="TrainFinal55.csv")

##################################################################################

Train56 <-SigChannels56 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train56)[colnames(Train56)=="HEU_new_channel"] <- "new_channel"

TrainTest56 <-Train56 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest56$HEU_runID <-"heu"

TrainTest56$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain56 <-TrainTest56 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain56)[colnames(PuTrain56)=="Pu_runID"] <- "class"

colnames(PuTrain56)[colnames(PuTrain56)=="Pu_rho"] <- "rho"

colnames(PuTrain56)[colnames(PuTrain56)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain56)[colnames(PuTrain56)=="Pu_mean"] <- "mean"

colnames(PuTrain56)[colnames(PuTrain56)=="Pu_median"] <- "median"

colnames(PuTrain56)[colnames(PuTrain56)=="X1.1"] <- "X1"

colnames(PuTrain56)[colnames(PuTrain56)=="X2.1"] <- "X2"

colnames(PuTrain56)[colnames(PuTrain56)=="X3.1"] <- "X3"

colnames(PuTrain56)[colnames(PuTrain56)=="X4.1"] <- "X4"

colnames(PuTrain56)[colnames(PuTrain56)=="X5.1"] <- "X5"

colnames(PuTrain56)[colnames(PuTrain56)=="X6.1"] <- "X6"

colnames(PuTrain56)[colnames(PuTrain56)=="X7.1"] <- "X7"

colnames(PuTrain56)[colnames(PuTrain56)=="X8.1"] <- "X8"

colnames(PuTrain56)[colnames(PuTrain56)=="X9.1"] <- "X9"

colnames(PuTrain56)[colnames(PuTrain56)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain56 <-TrainTest56 %>%

select (1:16)

#Edit column names

colnames(HEUTrain56)[colnames(HEUTrain56)=="HEU_runID"] <- "class"

colnames(HEUTrain56)[colnames(HEUTrain56)=="HEU_rho"] <- "rho"

colnames(HEUTrain56)[colnames(HEUTrain56)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain56)[colnames(HEUTrain56)=="HEU_mean"] <- "mean"

colnames(HEUTrain56)[colnames(HEUTrain56)=="HEU_median"] <- "median"

TrainFinal56 <-rbind(HEUTrain56 ,PuTrain56) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal56 ,file="TrainFinal56.csv")

##################################################################################

Train57 <-SigChannels57 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,
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X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train57)[colnames(Train57)=="HEU_new_channel"] <- "new_channel"

TrainTest57 <-Train57 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest57$HEU_runID <-"heu"

TrainTest57$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain57 <-TrainTest57 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain57)[colnames(PuTrain57)=="Pu_runID"] <- "class"

colnames(PuTrain57)[colnames(PuTrain57)=="Pu_rho"] <- "rho"

colnames(PuTrain57)[colnames(PuTrain57)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain57)[colnames(PuTrain57)=="Pu_mean"] <- "mean"

colnames(PuTrain57)[colnames(PuTrain57)=="Pu_median"] <- "median"

colnames(PuTrain57)[colnames(PuTrain57)=="X1.1"] <- "X1"

colnames(PuTrain57)[colnames(PuTrain57)=="X2.1"] <- "X2"

colnames(PuTrain57)[colnames(PuTrain57)=="X3.1"] <- "X3"

colnames(PuTrain57)[colnames(PuTrain57)=="X4.1"] <- "X4"

colnames(PuTrain57)[colnames(PuTrain57)=="X5.1"] <- "X5"

colnames(PuTrain57)[colnames(PuTrain57)=="X6.1"] <- "X6"

colnames(PuTrain57)[colnames(PuTrain57)=="X7.1"] <- "X7"

colnames(PuTrain57)[colnames(PuTrain57)=="X8.1"] <- "X8"

colnames(PuTrain57)[colnames(PuTrain57)=="X9.1"] <- "X9"

colnames(PuTrain57)[colnames(PuTrain57)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain57 <-TrainTest57 %>%

select (1:16)

#Edit column names

colnames(HEUTrain57)[colnames(HEUTrain57)=="HEU_runID"] <- "class"

colnames(HEUTrain57)[colnames(HEUTrain57)=="HEU_rho"] <- "rho"

colnames(HEUTrain57)[colnames(HEUTrain57)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain57)[colnames(HEUTrain57)=="HEU_mean"] <- "mean"

colnames(HEUTrain57)[colnames(HEUTrain57)=="HEU_median"] <- "median"

TrainFinal57 <-rbind(HEUTrain57 ,PuTrain57) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal57 ,file="TrainFinal57.csv")

##################################################################################

Train58 <-SigChannels58 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train58)[colnames(Train58)=="HEU_new_channel"] <- "new_channel"

TrainTest58 <-Train58 %>%

arrange(new_channel ,HEU_runID

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest58$HEU_runID <-"heu"

TrainTest58$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain58 <-TrainTest58 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain58)[colnames(PuTrain58)=="Pu_runID"] <- "class"

colnames(PuTrain58)[colnames(PuTrain58)=="Pu_rho"] <- "rho"

colnames(PuTrain58)[colnames(PuTrain58)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain58)[colnames(PuTrain58)=="Pu_mean"] <- "mean"

colnames(PuTrain58)[colnames(PuTrain58)=="Pu_median"] <- "median"

colnames(PuTrain58)[colnames(PuTrain58)=="X1.1"] <- "X1"

colnames(PuTrain58)[colnames(PuTrain58)=="X2.1"] <- "X2"
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colnames(PuTrain58)[colnames(PuTrain58)=="X3.1"] <- "X3"

colnames(PuTrain58)[colnames(PuTrain58)=="X4.1"] <- "X4"

colnames(PuTrain58)[colnames(PuTrain58)=="X5.1"] <- "X5"

colnames(PuTrain58)[colnames(PuTrain58)=="X6.1"] <- "X6"

colnames(PuTrain58)[colnames(PuTrain58)=="X7.1"] <- "X7"

colnames(PuTrain58)[colnames(PuTrain58)=="X8.1"] <- "X8"

colnames(PuTrain58)[colnames(PuTrain58)=="X9.1"] <- "X9"

colnames(PuTrain58)[colnames(PuTrain58)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain58 <-TrainTest58 %>%

select (1:16)

#Edit column names

colnames(HEUTrain58)[colnames(HEUTrain58)=="HEU_runID"] <- "class"

colnames(HEUTrain58)[colnames(HEUTrain58)=="HEU_rho"] <- "rho"

colnames(HEUTrain58)[colnames(HEUTrain58)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain58)[colnames(HEUTrain58)=="HEU_mean"] <- "mean"

colnames(HEUTrain58)[colnames(HEUTrain58)=="HEU_median"] <- "median"

TrainFinal58 <-rbind(HEUTrain58 ,PuTrain58) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal58 ,file="TrainFinal58.csv")

##################################################################################

Train59 <-SigChannels59 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train59)[colnames(Train59)=="HEU_new_channel"] <- "new_channel"

TrainTest59 <-Train59 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest59$HEU_runID <-"heu"

TrainTest59$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain59 <-TrainTest59 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain59)[colnames(PuTrain59)=="Pu_runID"] <- "class"

colnames(PuTrain59)[colnames(PuTrain59)=="Pu_rho"] <- "rho"

colnames(PuTrain59)[colnames(PuTrain59)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain59)[colnames(PuTrain59)=="Pu_mean"] <- "mean"

colnames(PuTrain59)[colnames(PuTrain59)=="Pu_median"] <- "median"

colnames(PuTrain59)[colnames(PuTrain59)=="X1.1"] <- "X1"

colnames(PuTrain59)[colnames(PuTrain59)=="X2.1"] <- "X2"

colnames(PuTrain59)[colnames(PuTrain59)=="X3.1"] <- "X3"

colnames(PuTrain59)[colnames(PuTrain59)=="X4.1"] <- "X4"

colnames(PuTrain59)[colnames(PuTrain59)=="X5.1"] <- "X5"

colnames(PuTrain59)[colnames(PuTrain59)=="X6.1"] <- "X6"

colnames(PuTrain59)[colnames(PuTrain59)=="X7.1"] <- "X7"

colnames(PuTrain59)[colnames(PuTrain59)=="X8.1"] <- "X8"

colnames(PuTrain59)[colnames(PuTrain59)=="X9.1"] <- "X9"

colnames(PuTrain59)[colnames(PuTrain59)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain59 <-TrainTest59 %>%

select (1:16)

#Edit column names

colnames(HEUTrain59)[colnames(HEUTrain59)=="HEU_runID"] <- "class"

colnames(HEUTrain59)[colnames(HEUTrain59)=="HEU_rho"] <- "rho"

colnames(HEUTrain59)[colnames(HEUTrain59)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain59)[colnames(HEUTrain59)=="HEU_mean"] <- "mean"

colnames(HEUTrain59)[colnames(HEUTrain59)=="HEU_median"] <- "median"

TrainFinal59 <-rbind(HEUTrain59 ,PuTrain59) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal59 ,file="TrainFinal59.csv")
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##################################################################################

Train510 <-SigChannels510 %>%

select(HEU_new_channel ,HEU_runID ,HEU_mean ,HEU_median ,HEU_rho ,HEU_rho_cat ,X1,X2 ,X3,

X4,X5,X6 ,X7,X8,X9 ,X10 ,

Pu_runID ,Pu_mean ,Pu_median , Pu_rho ,Pu_rho_cat ,X1.1,X2.1,X3.1,X4.1,X5.1,X6.1,

X7.1,X8.1,X9.1,X10 .1)

colnames(Train510)[colnames(Train510)=="HEU_new_channel"] <- "new_channel"

TrainTest510 <-Train510 %>%

arrange(new_channel ,HEU_runID)

#Changes all run ID’s to material label.Results in 20 instances of each material for

each channel

TrainTest510$HEU_runID <-"heu"

TrainTest510$Pu_runID <-"pu"

#Pull out columns associated with Pu only

PuTrain510 <-TrainTest510 %>%

select(c(1 ,17:31))

#Edit column names

colnames(PuTrain510)[colnames(PuTrain510)=="Pu_runID"] <- "class"

colnames(PuTrain510)[colnames(PuTrain510)=="Pu_rho"] <- "rho"

colnames(PuTrain510)[colnames(PuTrain510)=="Pu_rho_cat"] <- "rho_cat"

colnames(PuTrain510)[colnames(PuTrain510)=="Pu_mean"] <- "mean"

colnames(PuTrain510)[colnames(PuTrain510)=="Pu_median"] <- "median"

colnames(PuTrain510)[colnames(PuTrain510)=="X1.1"] <- "X1"

colnames(PuTrain510)[colnames(PuTrain510)=="X2.1"] <- "X2"

colnames(PuTrain510)[colnames(PuTrain510)=="X3.1"] <- "X3"

colnames(PuTrain510)[colnames(PuTrain510)=="X4.1"] <- "X4"

colnames(PuTrain510)[colnames(PuTrain510)=="X5.1"] <- "X5"

colnames(PuTrain510)[colnames(PuTrain510)=="X6.1"] <- "X6"

colnames(PuTrain510)[colnames(PuTrain510)=="X7.1"] <- "X7"

colnames(PuTrain510)[colnames(PuTrain510)=="X8.1"] <- "X8"

colnames(PuTrain510)[colnames(PuTrain510)=="X9.1"] <- "X9"

colnames(PuTrain510)[colnames(PuTrain510)=="X10.1"] <- "X10"

#Pull out columns associated with HEU only

HEUTrain510 <-TrainTest510 %>%

select (1:16)

#Edit column names

colnames(HEUTrain510)[colnames(HEUTrain510)=="HEU_runID"] <- "class"

colnames(HEUTrain510)[colnames(HEUTrain510)=="HEU_rho"] <- "rho"

colnames(HEUTrain510)[colnames(HEUTrain510)=="HEU_rho_cat"] <- "rho_cat"

colnames(HEUTrain510)[colnames(HEUTrain510)=="HEU_mean"] <- "mean"

colnames(HEUTrain510)[colnames(HEUTrain510)=="HEU_median"] <- "median"

TrainFinal510 <-rbind(HEUTrain510 ,PuTrain510) #Creates merged dataframe of significant

channels. Used for training at that p-value threshold

write.csv(TrainFinal510 ,file="TrainFinal510.csv")
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E Unknown Sample Analysis

##################################################################################

#Creates the "unknown" data sets from the 2018 data for validation of trained

classifiers. This is for a sliding window of 5, the window selected for

validation analysis.

##################################################################################

library(tidyverse)

library(qdap)

library(dplyr)

library(zoo)

library(RcppRoll)

library(tidyverse)

library(gdata)

library(gtools)

##################################################################################

#Read in Files (depends on path you need)

##################################################################################

out <-"~/Desktop/TestCodeFiles/PuTestCode_Validate"

setwd(out)

dir(out)

mcsv_r(dir(out))

##################################################################################

#Read in functions

##################################################################################

MakeCutOneCycle <-function(df){

w<-cut(df$millisec ,breaks =10, labels=FALSE); #Creates function called

MakeCutOneCycle; cuts the millisec field into a sequence of ten intervals;

t<-data.frame(table(df$Bin ,by=w));return(t)} #Creates a frequency table for each

interval

##################################################################################

MakeMatrixOneCycle <-{function(cycle){

for(i in 1:10){s<-subset(cycle ,cycle$by==i);

s$name <-NULL;s$by<-NULL; colnames(s)<-c("Var1",as.character(i));

if(i==1){a<-s};

if(i>1){a<-merge(a,s,by="Var1",all=TRUE)}};

rownames(a)<-a$Var1;a$Var1 <-NULL;return(a)}}

##################################################################################

SpearmansScore <-function(x,y){

z<-cor.test(as.numeric(x),as.numeric(y),method="spearman",exact=FALSE);

return(z$estimate)}

##################################################################################

#Read in template file and assign vector to template name. Get rid of first column.

Only used one template since the decay and ingrowth templates were perfectly

anticorrelated.

##################################################################################

Templates <-read.csv("Templates.csv") #Includes decay and ingrowth template

t1<-Templates [1,] #Decay template

t1$X<-NULL

##################################################################################

#Make Temporal interval data frame from the raw time stamped data. Create a data

frame of interval cuts for one cycle. New file contains channels under ’Var1 ’,

count under ’Freq ’, and the time interval under ’by ’.

##################################################################################

UnknownCuts1 <-MakeCutOneCycle(Unknown1m1)

UnknownCuts2 <-MakeCutOneCycle(Unknown1m2)

UnknownCuts3 <-MakeCutOneCycle(Unknown1m3)

UnknownCuts4 <-MakeCutOneCycle(Unknown1m4)

UnknownCuts5 <-MakeCutOneCycle(Unknown1m5)

UnknownCuts6 <-MakeCutOneCycle(Unknown1m6)

UnknownCuts7 <-MakeCutOneCycle(Unknown1m7)

UnknownCuts8 <-MakeCutOneCycle(Unknown1m8)

UnknownCuts9 <-MakeCutOneCycle(Unknown1m9)

UnknownCuts10 <-MakeCutOneCycle(Unknown1m10)

UnknownCuts11 <-MakeCutOneCycle(Unknown1m11)
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UnknownCuts12 <-MakeCutOneCycle(Unknown1m12)

UnknownCuts13 <-MakeCutOneCycle(Unknown1m13)

UnknownCuts14 <-MakeCutOneCycle(Unknown1m14)

UnknownCuts15 <-MakeCutOneCycle(Unknown1m15)

UnknownCuts16 <-MakeCutOneCycle(Unknown1m16)

UnknownCuts17 <-MakeCutOneCycle(Unknown1m17)

UnknownCuts18 <-MakeCutOneCycle(Unknown1m18)

UnknownCuts19 <-MakeCutOneCycle(Unknown1m19)

##################################################################################

#Make a matrix from temporal data for each cycle

#Makes interval matrix for each cycle

##################################################################################

UnknownMatrix1 <-MakeMatrixOneCycle(UnknownCuts1)

UnknownMatrix2 <-MakeMatrixOneCycle(UnknownCuts2)

UnknownMatrix3 <-MakeMatrixOneCycle(UnknownCuts3)

UnknownMatrix4 <-MakeMatrixOneCycle(UnknownCuts4)

UnknownMatrix5 <-MakeMatrixOneCycle(UnknownCuts5)

UnknownMatrix6 <-MakeMatrixOneCycle(UnknownCuts6)

UnknownMatrix7 <-MakeMatrixOneCycle(UnknownCuts7)

UnknownMatrix8 <-MakeMatrixOneCycle(UnknownCuts8)

UnknownMatrix9 <-MakeMatrixOneCycle(UnknownCuts9)

UnknownMatrix10 <-MakeMatrixOneCycle(UnknownCuts10)

UnknownMatrix11 <-MakeMatrixOneCycle(UnknownCuts11)

UnknownMatrix12 <-MakeMatrixOneCycle(UnknownCuts12)

UnknownMatrix13 <-MakeMatrixOneCycle(UnknownCuts13)

UnknownMatrix14 <-MakeMatrixOneCycle(UnknownCuts14)

UnknownMatrix15 <-MakeMatrixOneCycle(UnknownCuts15)

UnknownMatrix16 <-MakeMatrixOneCycle(UnknownCuts16)

UnknownMatrix17 <-MakeMatrixOneCycle(UnknownCuts17)

UnknownMatrix18 <-MakeMatrixOneCycle(UnknownCuts18)

UnknownMatrix19 <-MakeMatrixOneCycle(UnknownCuts19)

##################################################################################

#Rename the rownames to ’channel ’

##################################################################################

UnknownMatrix1$channel <-rownames(UnknownMatrix1)

UnknownMatrix2$channel <-rownames(UnknownMatrix2)

UnknownMatrix3$channel <-rownames(UnknownMatrix3)

UnknownMatrix4$channel <-rownames(UnknownMatrix4)

UnknownMatrix5$channel <-rownames(UnknownMatrix5)

UnknownMatrix6$channel <-rownames(UnknownMatrix6)

UnknownMatrix7$channel <-rownames(UnknownMatrix7)

UnknownMatrix8$channel <-rownames(UnknownMatrix8)

UnknownMatrix9$channel <-rownames(UnknownMatrix9)

UnknownMatrix10$channel <-rownames(UnknownMatrix10)

UnknownMatrix11$channel <-rownames(UnknownMatrix11)

UnknownMatrix12$channel <-rownames(UnknownMatrix12)

UnknownMatrix13$channel <-rownames(UnknownMatrix13)

UnknownMatrix14$channel <-rownames(UnknownMatrix14)

UnknownMatrix15$channel <-rownames(UnknownMatrix15)

UnknownMatrix16$channel <-rownames(UnknownMatrix16)

UnknownMatrix17$channel <-rownames(UnknownMatrix17)

UnknownMatrix18$channel <-rownames(UnknownMatrix18)

UnknownMatrix19$channel <-rownames(UnknownMatrix19)

##################################################################################

#Arrange channels and fill in missing channels with NA and then to 0.

##################################################################################

Unknown1FILL <- UnknownMatrix1 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown1FILLNoNA <-Unknown1FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown1RunID <-add_column(Unknown1FILLNoNA ,runID =1) #Assign runID

write.csv(Unknown1RunID ,file= "Unknown1RunID.csv") #Save as .csv

Unknown1RunID <-read.csv(file= "Unknown1RunID.csv") #Read in .csv

Unknown1RunID$X<-NULL #Remove column ’X’ due to read/write .csv
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Unknown2FILL <- UnknownMatrix2 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown2FILLNoNA <-Unknown2FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown2RunID <-add_column(Unknown2FILLNoNA ,runID =2) #Assign runID

write.csv(Unknown2RunID ,file= "Unknown2RunID.csv") #Save as .csv

Unknown2RunID <-read.csv(file= "Unknown2RunID.csv") #Read in .csv

Unknown2RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown3FILL <- UnknownMatrix3 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown3FILLNoNA <-Unknown3FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown3RunID <-add_column(Unknown3FILLNoNA ,runID =3) #Assign runID

write.csv(Unknown3RunID ,file= "Unknown3RunID.csv") #Save as .csv

Unknown3RunID <-read.csv(file= "Unknown3RunID.csv") #Read in .csv

Unknown3RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown4FILL <- UnknownMatrix4 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown4FILLNoNA <-Unknown4FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown4RunID <-add_column(Unknown4FILLNoNA ,runID =4) #Assign runID

write.csv(Unknown4RunID ,file= "Unknown4RunID.csv") #Save as .csv

Unknown4RunID <-read.csv(file= "Unknown4RunID.csv") #Read in .csv

Unknown4RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown5FILL <- UnknownMatrix5 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown5FILLNoNA <-Unknown5FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown5RunID <-add_column(Unknown5FILLNoNA ,runID =5) #Assign runID

write.csv(Unknown5RunID ,file= "Unknown5RunID.csv") #Save as .csv

Unknown5RunID <-read.csv(file= "Unknown5RunID.csv") #Read in .csv

Unknown5RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown6FILL <- UnknownMatrix6 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown6FILLNoNA <-Unknown6FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown6RunID <-add_column(Unknown6FILLNoNA ,runID =6) #Assign runID

write.csv(Unknown6RunID ,file= "Unknown6RunID.csv") #Save as .csv

Unknown6RunID <-read.csv(file= "Unknown6RunID.csv") #Read in .csv

Unknown6RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown7FILL <- UnknownMatrix7 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown7FILLNoNA <-Unknown7FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown7RunID <-add_column(Unknown7FILLNoNA ,runID =7) #Assign runID

write.csv(Unknown7RunID ,file= "Unknown7RunID.csv") #Save as .csv

Unknown7RunID <-read.csv(file= "Unknown7RunID.csv") #Read in .csv

Unknown7RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown8FILL <- UnknownMatrix8 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown8FILLNoNA <-Unknown8FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown8RunID <-add_column(Unknown8FILLNoNA ,runID =8) #Assign runID
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write.csv(Unknown8RunID ,file= "Unknown8RunID.csv") #Save as .csv

Unknown8RunID <-read.csv(file= "Unknown8RunID.csv") #Read in as .csv

Unknown8RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown9FILL <- UnknownMatrix9 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown9FILLNoNA <-Unknown9FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown9RunID <-add_column(Unknown9FILLNoNA ,runID =9) #Assign runID

write.csv(Unknown9RunID ,file= "Unknown9RunID.csv") #Save as .csv

Unknown9RunID <-read.csv(file= "Unknown9RunID.csv") #Read in as .csv

Unknown9RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown10FILL <- UnknownMatrix10 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown10FILLNoNA <-Unknown10FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown10RunID <-add_column(Unknown10FILLNoNA ,runID =10) #Assign runID

write.csv(Unknown10RunID ,file= "Unknown10RunID.csv") #Save as .csv

Unknown10RunID <-read.csv(file= "Unknown10RunID.csv") #Read in as .csv

Unknown10RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown11FILL <- UnknownMatrix11 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown11FILLNoNA <-Unknown11FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown11RunID <-add_column(Unknown11FILLNoNA ,runID =11) #Assign runID

write.csv(Unknown11RunID ,file= "Unknown11RunID.csv") #Save as .csv

Unknown11RunID <-read.csv(file= "Unknown11RunID.csv") #Read in as .csv

Unknown11RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown12FILL <- UnknownMatrix12 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown12FILLNoNA <-Unknown12FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown12RunID <-add_column(Unknown12FILLNoNA ,runID =12) #Assign runID

write.csv(Unknown12RunID ,file= "Unknown12RunID.csv") #Save as .csv

Unknown12RunID <-read.csv(file= "Unknown12RunID.csv") #Read in as .csv

Unknown12RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown13FILL <- UnknownMatrix13 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown13FILLNoNA <-Unknown13FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown13RunID <-add_column(Unknown13FILLNoNA ,runID =13) #Assign runID

write.csv(Unknown13RunID ,file= "Unknown13RunID.csv") #Save as .csv

Unknown13RunID <-read.csv(file= "Unknown13RunID.csv") #Read in as .csv

Unknown13RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown14FILL <- UnknownMatrix14 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown14FILLNoNA <-Unknown14FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown14RunID <-add_column(Unknown14FILLNoNA ,runID =14) #Assign runID

write.csv(Unknown14RunID ,file= "Unknown14RunID.csv") #Save as .csv

Unknown14RunID <-read.csv(file= "Unknown14RunID.csv") #Read in as .csv

Unknown14RunID$X<-NULL #Remove column ’X’ due to read/write .csv

Unknown15FILL <- UnknownMatrix15 %>%

arrange(channel)%>%
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mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown15FILLNoNA <-Unknown15FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown15RunID <-add_column(Unknown15FILLNoNA ,runID =15) #Assign runID

write.csv(Unknown15RunID ,file= "Unknown15RunID.csv") #Save as .csv

Unknown15RunID <-read.csv(file= "Unknown15RunID.csv") #Read in as .csv

Unknown15RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Unknown16FILL <- UnknownMatrix16 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown16FILLNoNA <-Unknown16FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown16RunID <-add_column(Unknown16FILLNoNA ,runID =16) #Assign runID

write.csv(Unknown16RunID ,file= "Unknown16RunID.csv") #Save as .csv

Unknown16RunID <-read.csv(file= "Unknown16RunID.csv") #Read in as .csv

Unknown16RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Unknown17FILL <- UnknownMatrix17 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown17FILLNoNA <-Unknown17FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown17RunID <-add_column(Unknown17FILLNoNA ,runID =17) #Assign runID

write.csv(Unknown17RunID ,file= "Unknown17RunID.csv") #Save as .csv

Unknown17RunID <-read.csv(file= "Unknown17RunID.csv") #Read in as .csv

Unknown17RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Unknown18FILL <- UnknownMatrix18 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown18FILLNoNA <-Unknown18FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown18RunID <-add_column(Unknown18FILLNoNA ,runID =18) #Assign runID

write.csv(Unknown18RunID ,file= "Unknown18RunID.csv") #Save as .csv

Unknown18RunID <-read.csv(file= "Unknown18RunID.csv") #Read in as .csv

Unknown18RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

Unknown19FILL <- UnknownMatrix19 %>%

arrange(channel)%>%

mutate(channel = as.numeric(channel))%>%

complete(channel=seq(from=48,to=16383 ,by=1))

Unknown19FILLNoNA <-Unknown19FILL %>% mutate_if(is.numeric , replace_na, replace = 0)

Unknown19RunID <-add_column(Unknown19FILLNoNA ,runID =19) #aAssign runID

write.csv(Unknown19RunID ,file= "Unknown19RunID.csv") #Save as .csv

Unknown19RunID <-read.csv(file= "Unknown19RunID.csv") #Read in as .csv

Unknown19RunID$X<-NULL #Remove column ’X’ due to read/write as .csv

##################################################################################

#Make a list of the files you want to load and create an empty dataframe

##################################################################################

Unknowndata2 <- c("Unknown1RunID", "Unknown2RunID", "Unknown3RunID", "Unknown4RunID",

"Unknown5RunID", "Unknown6RunID", "Unknown7RunID", "Unknown8RunID",

"Unknown9RunID", "Unknown10RunID", "Unknown11RunID", "Unknown12RunID",

"Unknown13RunID","Unknown14RunID", "Unknown15RunID","Unknown16RunID",

"Unknown17RunID", "Unknown18RunID", "Unknown19RunID")

datUnknown2014 <- data.frame() #Create an empty data frame to fill

# Read csv , add a column referring to the runID

# Then combine them into one data folder

for (runID in Unknowndata2) {

filename = paste(runID , ".csv", sep="")

t <- read.csv(filename)

t$runID <- runID

datUnknown2014 <- rbind(datUnknown2014 , t)

}

#head(datUnknown2014) #Overview of dataframe as a check

rownames(datUnknown2014)<-NULL #Delete rownames
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datUnknown2014$X<-NULL #Delete column X (channel numbers)

##################################################################################

#Sliding window of 5. This sums the counts every five rows for every cycle and

creates a new dataframe. Sliding window of 5 presented as is was found to be the

best for material identification. Easily adapted to any window size.

##################################################################################

newtestdatSW5 <-datUnknown2014 #Create copy of the dataframe (keeps dataframes

separate)

cyclesSW5 <-unique(newtestdatSW5$runID) #Creates a vector of all cycles

get_countsSW5 <-function(x){

Unknown <- newtestdatSW5 %>%

filter(runID==x) %>% #Select cycle

arrange(channel) #Make sure in ascending order based on channel

counts1 <-roll_sum(Unknown$X1,n=5) #Sliding window of five rows

counts2 <-roll_sum(Unknown$X2,n=5)

counts3 <-roll_sum(Unknown$X3,n=5)

counts4 <-roll_sum(Unknown$X4,n=5)

counts5 <-roll_sum(Unknown$X5,n=5)

counts6 <-roll_sum(Unknown$X6,n=5)

counts7 <-roll_sum(Unknown$X7,n=5)

counts8 <-roll_sum(Unknown$X8,n=5)

counts9 <-roll_sum(Unknown$X9,n=5)

counts10 <-roll_sum(Unknown$X10 ,n=5)

df<-data.frame(X1=counts1 ,X2=counts2 ,X3=counts3 , X4=counts4 ,

X5=counts5 , X6=counts6 , X7=counts7 , X8=counts8 ,

X9=counts9 , X10=counts10 ,runID=x) #Creates a dataframe

}

SW5 <-map_df(cyclesSW5 ,get_countsSW5) #Apply function to all cycles

##################################################################################

#Function for getting new channel labels. Get new channels for sliding window of 5

##################################################################################

get_channelsSW5 <-function(x){

Unknown3 <- newtestdatSW5 %>%

filter(runID==x) %>% #Select cycle

arrange(channel)

test4 <-data.frame(Unknown3$channel , new_channel=dplyr::lead(Unknown3$channel ,2)) #

Names channels with middle number

}

NC5 <-map_df(cyclesSW5 ,get_channelsSW5)

##################################################################################

#Filter extra values. Filters NC5 so that the extra 80 values are removed and bound

with main dataframe. This needs to be edited if using a sliding window other than

5. More or less channels need to be filtered depending on size of window. Refer

to this section in Pu/HEU data pre -processing codes for example of a window of 3

##################################################################################

Filter5 <-NC5 %>%

filter(!is.na(new_channel)) %>%

subset(new_channel!=16383) %>%

subset(new_channel!=16382) %>%

select(-c(Unknown3.channel))

Final5 <-cbind(SW5 ,Filter5)#Binds the two dataframes

##################################################################################

#Feature generation

##################################################################################

Final5$mean <-rowMeans(Final5 [ ,1:10]) #Create feature "mean"

Final5 <-Final5 %>%

rowwise () %>%

mutate(median = median(c(X1,X2,X3 ,X4,X5,X6 ,X7,X8,X9 ,X10), na.rm = TRUE)) #Create

feature ’median ’

Final5$rho <-apply(Final5 [,1:10],1, SpearmansScore ,t1) #Create feature ’rho ’

#Adds column of chunked rho scores as an additional feature

Final5 <- Final5 %>%

mutate(rho_cat=case_when(rho >=0.7000000 & rho <=0.9999999 ~ ’StrongPos ’,

rho >=0.5000000 & rho <=0.6999999 ~ ’ModeratePos ’,

rho >= 0.3000000 & rho <= 0.4999999 ~ ’WeakPos ’,

rho >= 0.0000000 & rho <=0.2999999 ~ ’NoRelationship ’,
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rho <=0.0000000 & rho >= -0.2999999~ ’NoRelationship ’,

rho <= -0.3000000 & rho >= -0.4999999~ ’WeakNeg ’,

rho <= -0.5000000 & rho >= -0.6999999~ ’ModerateNeg ’,

rho <= -0.7000000 & rho >= -0.9999999~ ’StrongNeg ’,

rho == "1" ~’PerfectPos ’,

rho == "-1" ~ ’PerfectNeg ’))

FinalUnknown5 <-Final5[c(12 ,11 ,13:16 ,1:10)] #Reorder the data frame after feature

generation is complete

##################################################################################

#This portion changes based on what channels are deemed significant (ie: based on p-

value threshold). See code "Significant Channels" for determing channels for

input. Each cycle was filtered as a subset from larger dataframe (1-19). Labeled

’Pu’ just for validation so that user could keep track of the two unknowns. In

practice , this would truly be an unknown data set utilizing channels pre -

determined based on p-value threshold.Channel determination of unknown data set

would be based off of current energy calibration (using reference channels)

#These channels were chosen based on typical rounding protocol from energy

calibration

FinalUnknownPu <-FinalUnknown5 %>%

subset(runID=="Unknown19RunID") %>%

filter(new_channel %in% c("143","144","145","146","241","313","314",

"315","909", "910","911", "1003","1004","1005"))

colnames(FinalUnknownPu)[colnames(FinalUnknownPu)=="runID"] <- "class"

FinalUnknownPu$class <-"?" #Strip instance of class label

write.csv(FinalUnknownPu ,file="FinalUnknown5Pu19.csv")
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F Relative Mass Content Estimator

#Takes in the integrated spectra for an unknown and the pure reference materials.

Outputs the percent mass of each material and the percent error. Input values for

RawUnk , RawA and RawB are in the format: c(1,2,3,4,5,6,7,8,9,10). Could be any

number of bins/intervals

##############################################################

RawUnk <- c() #Reads in values of unknown spectrum to variable RawUnk

RawA <-c() #Reads in values of first reference spectrum to variable RawA

RawB <- c() #Reads in values of first reference spectrum to variable RawA

##############################################################

N <- cbind(RawA ,RawB) #Binds the two raw ref spectra into one nx2 matrix (n time bins

)

Tr <-10# length(RawA) #Sets the reference time to the last time bin to maximize

counting stats

TempA <- (RawA) / RawA[Tr] #Temporal spectra for ref A by dividing each entry by ref

time value

TempB <- (RawB) / RawB[Tr] #Temporal spectra for ref B by dividing each entry by ref

time value

TempU <- (RawUnk) / RawUnk[Tr] #Temporal spectra for unknown by dividing each entry

by ref time value

dA <- (TempA*sqrt((sqrt(RawA)/RawA)^2 + (sqrt(RawA[Tr])/RawA[Tr])^2)) #Propagates

error for TempA

dB <- (TempB*sqrt((sqrt(RawB)/RawB)^2 + (sqrt(RawB[Tr])/RawB[Tr])^2)) #Propagates

error for TempB

dU <- (TempU*sqrt((sqrt(RawUnk)/RawUnk)^2 + (sqrt(RawUnk[Tr])/RawUnk[Tr])^2)) #Error

for TempU

dA[is.na(dA)] <- 0 #Setting 0/0 values to 0 instead of NaN , which can kill a

calculation

dB[is.na(dB)] <- 0 #Setting 0/0 values to 0 instead of NaN , which can kill a

calculation

dU[is.na(dU)] <- 0 #Setting 0/0 values to 0 instead of NaN , which can kill a

calculation

S <- cbind(TempA ,TempB) #Binds the two temporal vectors into one nx2 matrix (n time

bins)

s <- svd(S) #Singular Value Decomposition of the source matrix S

DA <- diag(dA) #Creates a diagonal covariance matrix for the error in RawA

DSigA <- t(s$u) %*% DA %*% s$u #Converts covariance into A orthogonal space for

material A

DB <- diag(dB) #Creates a diagonal covariance matrix for the error in RawB

DSigB <- t(s$u) %*% DB %*% s$u #Converts covariance into A orthogonal space for

material B

DU <- diag(dU) #Creates a diagonal covariance matrix for the error in RawUnk

DSigU <- t(s$u) %*% DU %*% s$u #Converts covariance into A orthogonal space for

unknown material

A <- t(s$u) %*% S #Assembling A from the right orthonal matrix from SVD of S

W <- diag(c(1,1)) #Assembling the composition matrix , 100% U and 100% Pu

w <- svd(W) #Taking the SVD of W to use to get the pseudo -inverse of W, Wstar

WDstar <- diag(1/w$d) #Intermediate step creating the inverse eigenvector of W

######( these never change ?)

Wstar <- w$v %*% WDstar %*% t(w$u) #The pseudo -inverse of W

C <- A %*% Wstar #Assembing transformation matrix C

DSigCA <- DSigA %*% Wstar #Propagating the error from A to C, treating Wstar as a

constant

DSigCB <- DSigB %*% Wstar #Propagating the error from A to C, treating Wstar as a

constant

c <- svd(C) #Taking SVD of C to eventually find pseudo -inverse of C, Cstar

CDstar <- diag(1/c$d) #Intermediate step creating the inverse eigenvector of c

Cstar <- c$v %*% CDstar %*% t(c$u) #Assembling the pseudo -inverse of C, Cstar

DSigdCA <- t(c$u) %*% DSigCA %*% c$v #Propagating the error from C to the eigenvector

of C

DSigdCB <- t(c$u) %*% DSigCB %*% c$v #Propagating the error from C to the eigenvector

of C

DSigdCAstar <- -CDstar %*% DSigdCA %*% CDstar #Propagating error to inverse of

eigenvector of C

DSigdCBstar <- -CDstar %*% DSigdCB %*% CDstar #Propagating error to inverse of
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eigenvector of C

DCAstar <- c$v %*% DSigdCAstar %*% t(c$u) #Propagaing error to the pseudo -inverse of

C, Cstar

DCBstar <- c$v %*% DSigdCBstar %*% t(c$u) #Propagaing error to the pseudo -inverse of

C, Cstar

au <- t(s$u) %*% TempU #Bringing the unknown material temporal spectrum into the

orthogonal space

WUnk <- Cstar %*% au #Calculating the estimated fissile material content

DWUnk <- cbind(DCAstar %*% au,DCBstar %*% au) + Cstar %*% DSigU #Propagating error to

final estimate

dWUnk <- abs(mean(DWUnk)) #Taking expectated value of propagated covariance matrix to

find error

Material_1 <- (WUnk [1] * N[Tr ,2])/(N[Tr ,1]-WUnk [1]*N[Tr ,1]+ WUnk [1]*N[Tr ,2]) #

Unpacking estimate for M1

Material_2 <- 1 - Material_1 #Simple calculation of M2 , assuming M1 + M2 = 1

Weights <- cbind(Material_1,Material_2)*100 #Turning it into a percentage

sigmaN2 <- (WUnk [1] * N[Tr ,2])^2 * ((dWUnk/WUnk [1])^2 + N[Tr ,2]/(N[Tr ,2]) ^2) #

Nominator of error prop

sigmaD2 <- sigmaN2 + (WUnk [2] * N[Tr ,1])^2 * ((dWUnk/WUnk [2])^2 + N[Tr ,1]/(N[Tr ,1])

^2) #Denominator

Sigma <- Material_1 * sqrt(sigmaN2/(WUnk [1] *

N[Tr ,2])^2 + sigmaD2/(WUnk [1] * N[Tr ,2] + WUnk

[2] * N[Tr ,1]) ^2)

Error <- Sigma*100 #Turning the error value into a percentage as well

print (c(Weights , Error)) #Printing out the final values: Material 1 Material 2

Error
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