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and evolving. e \ * Component vectors at each location can then be summed and combined to
« San Andreas Fault (SAF) steps eastward with vield a net slip vector that represents motion along the entire fault strand.
time and was set in present location by ~13 Ma. J J
= The Walker Lane Fault Zone (WL) is an incipient I z North Components = 1461 m z West Components = 1490m
fault zone east of the San Andreas and 2 2 1
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relative plate motion (Faulds and Henry, 2008 S 3 Ma, S _ 1 1490m .
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e WL grows northward and accommodates more N
of NA-Pacific plate motion with time. o  Geodetic vector is oriented at “N40W and has a rate magnitude of ~5mm/yr
 Northern WL shows north and northwest Z‘fg‘t‘;ee i‘agz‘c’d;gf;:'\xe‘iftzm”weﬁlatgog“ftiggs (McCaffrey et al., 2013).
trending faults in a stair-stepping pattern. Oregon Coast block, NA-North American plate, * Geological net slip vector is oriented “N46W and rate magnitudes range from
I . JDF-Juan de Fuca plate, PAC-Pacific plate, SN-
= N-striking faults are extensional. Sierra Nevada block, vibivery Long Baseline ~0.9 mm/yr to ~4.8 mm/yr.
" NW-striking faults are translational. Interferometry.  Range is probably due to poor age constraints on offset surfaces.
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How do the major tectonic provinces (SAF, WL, CAS, BR) of N. America interact: N : A N  North and northwest trending faults define the Klamath Basin in southern
 What is the northernmost extent of the WL? — " — Oregon (Figure 5).
. : . e s Klamath Basin is defined by north and northwest-trending == | s o . .
What is the future of the North America-Pacific Margin: £ ults N e SRR e R « Deformation in the Klamath Basin is attributed to both the northwest Basin and
. of the Klamath Basin. Lines are
= Will the WL become the main plate boundary after the San Andreas Fault dies? fault traces colored to annotate Range and Walker Lane Fault Zone intersecting the Cascade volcanic arc.

* Fault activity is characterized by relative ages of offset features. e (8) Active strand of NW-

Why StUd! the Klamath BaS|n? * Located 10 piercing points along inner-basin active fault strand. directed strike-slip faulting in > gl sdtlEal) ClplREsmants IS loeelssl 1o B2 Rl (el CEalls O

. . . . . e e oaled northwest-striking faults, and decreases displacement northward (Figures 6-8).
* Intersection of Cascade Arc, Basin and Range, and Walker Lane fault Zone. * NW striking acjtlve faults in the bas!n center cut gIaC|a.I deposits o denotes. arbitrany. location . Strike-slip faults cut tilted strata suggesting that basin extension is being
(<19 ka) (Locations A-D) and show right-lateral separation. used for figure 7.

* N-NW stair-stepping faults stop in Klamath Basin. overprinted by NW-directed lateral shear.

e Surfaces cut by right-lateral faults are strongly tilted (10°- 40°)

* 1993 Earthquake sequence. . _ . .
suggesting extension prior to translation.

* Direction of net displacement along the basin-interior strike-slip faults is
 New high resolution LiDAR (Light Detection and Ranging) reveals previously unseen supported with geodetic data. However, rates remain uncertain due to poor age

details of topography and allows detailed mapping of surface-rupturing faults. Measu ring OffSEt constraints of offset surfaces.
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vector and is broken into dip-slip (perpendicular to A

strike) and strike-slip (parallel to strike) components.

 |If deformation in the Klamath Basin is being influenced by the Walker Lane,

. . , , * As the WL matures and propagates northward, it will accommodate more plate
Cascade arc, and Basin and Range, then NW-striking faults will be predominantly

motion with time.

strike-slip and N-striking faults will be predominantly dip-slip. * Dip-slip displacement accommodates extension. 15 | | | |
+  Strike-slip faulting accommodates translation. * The Oregon Coast Range will continue to rotate and back-arc extension will also
Methods  Strike-Slip _ Translation propagate northwestward.
Dip—Slip Extension '  The WL will likely become the main Pacific-N. America plate boundary.
 Bare-Earth LiDAR analysis of topography reveals AN SE— _ | |
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features in previously unseen detail by - y = 3.2168x + 10.74 T g 1os \.- as interpreted by Faulds and
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* Determination of slip vectors to characterize Y2008 10706 - Locat Myr projection that WL
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* Slip vector calculation and comparison to e — denotes extension.

Figure 6: Plotted displacements across fault traces. NW-striking faults
Figure 3: Schematic of the collection of (locations A-G) are green data points. N-striking (locations H-J) faults are red
LiDAR data (USGS, 2013). data points. Note that right-lateral motion is defined to be positive and left-
lateral motion is negative.

geodetic vectors.
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