AN ABSTRACT OF THE THESIS OF

<u>Christina H. Hagerty</u> for the degree of <u>Master of Science</u> in <u>Horticulture</u> presented on <u>March</u> 13, 2013

Title: Mapping QTL for Root Rot Resistance, Root Traits, and Morphological Trait in a Common Bean Recombinant Inbred Population

Abstract Approved:

James R. Myers

Root rot diseases of bean (*Phaseolus vulgaris* L.) are a problem wherever they are grown, and are a major constraint to dry edible and snap bean production. Root rot is a primary yield limitation of snap bean production in the US, especially within the top three snap bean producing states of Wisconsin, Oregon and New York. Bean root rot pathogens will be present by the end of the first season even when starting with clean ground. The decline in yield can be relatively slow, so growers might not notice or appreciate the hidden yield cost associated with root rot disease. Traditional methods for disease control such as fungicides, crop rotations, cover crops, seedbed preparations have been proven ineffective (either physically ineffective or economically unviable) against root rot. Therefore, genetic resistance is needed. In order to address the need for genetic resistance to root rot in snap beans, the highly root rot resistant line RR6950, a small seeded black indeterminate type IIIA accession of unknown origin, was crossed with OSU5446, a highly root rot susceptible determinate type I blue lake four-sieve breeding line to produce the RR138 recombinant inbred mapping population. In this study we evaluated the RR138 RI population in the F₆ generation for resistance to Fusarium solani root rot in Oregon and Aphanomyces euteiches root rot in Wisconsin. We also evaluated this population for morphological traits and root structural traits including pod height, pod width, pod length, pod wall thickness, strings, seed color, flower color, tap and basal root diameter, and root angle measurements. The RR138 population was also genotyped on the 10K BeanCAP Illumina Beadchip. The Single Nucleotide Polymorphism (SNP) data was used to assemble a high-density linkage

map and Quantitative Trait Loci (QTL) for phenotypic data were evaluated. The linkage map produced from this study contained 1,689 SNPs across 1,196cM. The map was populated with 1 SNP for every 1.4cM, spanning across 11 linkage groups. Three QTL associated with A. euteiches root rot resistance were consistently expressed in 2011 and 2012 trials. A. euteiches QTL were found on Pv02, Pv04, and Pv06 and accounted for 7-17% of total genetic variation. Two QTL associated with F. solani were found in 2011 trial on Pv03 and Pv07, account for 9 and 22% of total genetic variation, respectively. We also found several QTL for morphological traits and root structural traits including QTL for pod fiber and pod height on Pv04, pod length on Pv01, strings on Pv01, taproot diameter on Pv05, and shallow basal root angle on Pv05, accounting for 21, 26, 12, 20, 11, and 19% of total genetic variation, respectively. QTL discovered from Oregon data for F. solani resistance did not cluster with QTL for A. euteiches root rot resistance. "SNP0928_7", was highly associated with F. solani resistance on Pv07 and "SNP0508_2", was highly associated with A. euteiches on Pv02. QTL and markers associated with QTL from this study will be of value to snap bean breeders developing root rot resistant lines with processing traits, and provide more information about targeting the mechanism of resistance.

©Copyright by Christina H. Hagerty March 13, 2013 All Rights Reserved

Mapping QTL for Root Rot Resistance, Root Traits, and Morphological Traits in a Common Bean Recombinant Inbred Population

by

Christina H. Hagerty

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Presented March 13, 2013 Commencement June 2013

ACKNOWLEDGEMENTS

The completion of this thesis would not have been possible without tremendous support from friends, family, and collogues. First and foremost I would like to thank the PI of this project, Dr. Jim Myers, for his endless patience, ideas, and mentorship. I would like to thank Dr. Alfonso Cuesta-Marcos for his mentorship, his valuable time dedicated to this project, and for never missing a "teachable moment". I would like to thank my Lab-mate and dear friend Laurie McKenzie for all her support (and late night thesis editing!) during my graduate student career. I would like to thank Kara Young for willingness to help out, data collection, and impeccable handwriting on all my data sheets. I would like to thank Ryan Graebner for de-bugging code, and thesis writing support. I would like to thank my parents, Dr. Pat Hagerty and Stephanie Hagerty, and sister, Alexandra Hagerty for always encouraging me to achieve my goals, and helping me keep perspective.

CONTRIBUTION OF AUTHORS

Dr. James R Myers, principal investigator, experimental design, statistical analysis, statistical interpretation, and editor.

Dr. Alfonso Cuesta-Marcos, linkage map and QTL analysis extraordinaire. Laurie McKenzie, editing master, Oregon data collection, and support staff.

Kara Young, Oregon data collection, support staff.

Dr. Steve Noffsinger, Wisconsin data collection.

Joel Davis, PCR protocol and DNA extraction.

TABLE OF CONTENTS

Introduction and Literature Review	1
Cause of root rots	
Disease life cycle and symptoms- Fusarium solani	3
Disease life cycle and symptoms— Aphanomyces euteiches	4
Control methods – Fusarium solani and Aphanomyces euteiches	4
Disease Resistance	5
Root rot screening methodology	7
Quantitative Trait Loci and Marker Assisted Selection	9
Types of markers, Map development, and Mapping QTL	10
Genetic control of resistance and heritability	
Materials and Methods	18
Parental Material and RR138 Recombinant Inbred Mapping Population	18
Study Sites and Experimental Design	20
Heritability of phenotypic traits	28
Markers and Genotyping	30
Results	
Quantitative and Qualitative Traits	33
Variation in Root Rot among Trials	41
Variation in Root Traits	
Heritability of Phenotypic Traits	46
Multiple Correlation Analysis among Traits	47
RR138 Resistant Lines	53
Linkage Map Assembly	56
Quantitative Trait Loci Results	61
Discussion	72
Final thoughts	77
References	
Appendix 1	
Pathogen verification	83
Appendix 2	86

LIST OF FIGURES

Figure 1. Summer 2010, 2011 F. solani root rot on P. vulgaris evaluation scale vegetable research farm	23
Figure 2. Common bean <i>P. vulgaris</i> shovelomics, standard measuring procedures for basal root angle, basal root diameter, taproot diameter, adventitious roots	25
Figure 3. Shovelomics of a common bean RI population at the vegetable research farm summer 2012.	26
Figure 4. Foliage biomass of a RR138 common bean RI population: Scale 1-5, left - right	27
Figure 5. Example of Insertion and Deletion (INDEL) marker scoring method of Phaseolus vulgaris on 2% agarose gel	31
Figure 6. Histograms of Ismeans from a recombinant inbred common bean population n = 170) for root rot disease scores evaluated in Oregon	35
Figure 7. Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for root rot disease score in Wisconsin	36
Figure 8. Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for root (shovelomics) traits collected in Oregon in 2012	37
Figure 9. Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for additional root (shovelomics) traits collected in Oregon in 2012.	38
Figure 10. Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for pod traits collected in Oregon in 2010.	39
Figure 11. Histograms of three qualitative traits and one pod quantitative trait from a recombinant inbred common bean population ($n = 170$) collected in Oregon in 2010	40
Figure 12. Scatter plot of average root rot resistance scores of RR138 RI common bean population in OR 2011, 2012 (x axis) and WI 2011, 2012 (y axis)	55
Figure 13. RR138 <i>P. vulgaris</i> recombinant inbred mapping population linkage map 11 Linkage groups, 1,689 SNPs.	57

LIST OF FIGURES (CONT.)

т.			
H1	α	11	P
<u></u>	<u> </u>	<u> 11</u>	·

Figure 14. QTL for root rot resistance and shovelomics (root) traits in a common bean recombinant inbred population	62
Figure 15. QTL for pod morphology traits in a common bean recombinant inbred population.	64
Figure 16. Fusarium solani lesions and root discoloration visible on common bean susceptible check 91G.	85

LIST OF TABLES

	1 1	1
- 1	al	$\mathfrak{I}\epsilon$

Table 1. Processing snap bean 2007-2011 averages with estimates in absence of root rot	2
<u>Table 2.</u> Published sources of root rot resistance in <i>Phaseolus vulgaris</i> germplasm 1919-2011	6
<u>Table 3.</u> Published common bean root rot Quantitative Trait Loci (QTL) showing population, type of QTL, percent total genetic variation explained, LOD score and pathogen species.	12
<u>Table 4.</u> Root rot infection ratings of selected bean lines evaluated at the Vegetable Research Farm, Corvallis, OR from 2005 to 2008	18
<u>Table 5.</u> Summary of Oregon and Wisconsin <i>P. vulgaris</i> planting methods 2010-2012	20
<u>Table 6.</u> Analysis of variance of inbred lines repeated over environments with expected mean squares used to determine calculations for heritability	28
<u>Table 7A.</u> Means squares and degrees of freedom from ANOVA tables for <i>Fusarium solani</i> root rot scores of <i>Phaseolus vulgaris</i> in Oregon 2010 - 2012, by year for model, genotype, and replicate.	42
<u>Table 7B.</u> Mean squares and degrees of freedom from ANOVA tables for <i>Aphanomyces euteiches</i> root rot scores of <i>Phaseolus vulgaris</i> in Wisconsin in 2011 and 2012, by year for model, genotype, and replicate	42
<u>Table 8.</u> Mean squares and degrees of freedom for model, genotype and replicate from an ANOVA for various <i>Phaseolus vulgaris</i> root traits conducted in Oregon, 2012	44
<u>Table 9.</u> Mean squares and degrees of freedom for model, genotype, and replicate for snap bean pod traits evaluated in a <i>Phaseolus vulgaris</i> recombinant inbred population in Oregon, 2010	45
<u>Table 10.</u> Narrow sense heritability and standard error of heritability calculations for all phenotypic traits evaluated on a recombinant inbred population of common bean grown in Oregon in 2012.	46

LIST OF TABLES (CONT.)

<u>Table</u>

<u>Table 11.</u> Pearson correlation coefficients for root rot disease for a common bean	
recombinant inbred population for Oregon in 2010, 2011, 2012, and Wisconsin in 2011 and 2012	49
<u>Table 12.</u> Pearson multiple correlation coefficients for pod traits in a recombinant inbred common bean population grown in Corvallis, OR in 2010	50
<u>Table 13.</u> Pearson multiple correlation coefficients for root (shovelomics) traits in a recombinant inbred common bean population grown in Corvallis, OR in 2012	51
<u>Table 14.</u> Pearson correlation coefficients analysis for root rot and shovelomics, pod traits	52
<u>Table 15.</u> Pearson correlation coefficients analysis for root rot and pod traits. Root rot evaluations are broken out by year and location (2010, 2011, 2012, OR and WI)	53
<u>Table 16.</u> Shovelomics (root trait) and root rot disease resistance QTL for a recombinant inbred common bean population.	66
Table 17. Pod morphological trait QTL for a recombinant inbred common bean population	69
<u>Table 18.</u> Top five performing <i>A. euteiches</i> and <i>F. solani</i> resistant lines showing SNPs linked to <i>A. euteiches</i> or <i>F. solani</i> QTL	71

Introduction and Literature Review

Root rot diseases of bean (*Phaseolus vulgaris* L.) are a problem wherever they are grown, and are a major constraint to dry edible and snap bean production worldwide (Schneider et al., 1997). Root rot is a primary yield limitation of snap bean production in the US, especially within the top three snap bean producing states of Wisconsin, Oregon and New York (Kobriger and Hagedorn, 1983). Wisconsin is the nation's largest producer of snap beans for processing, with 69,000 acres planted in 2011. Oregon is second with 17,200 acres planted in 2011 (NASS, 2012). For bush snap bean cultivars in Oregon, yields of twelve tons per acre are possible on ground that has not been planted to beans within the previous 10 years, but perhaps half that amount on ground with frequent snap bean production (Myers, pers. comm.). There are many factors that contribute to disease pressure and severity. These factors include use of irrigation, field drainage, crop tillage, field history and planting density.

In the Midwest, Pacific Northwest, and Northeast regions of the United States, a root rot complex of varying species that may include *Rhizoctonia solani*, *Pythium ultimim*, *Aphanomyces euteiches*, and *Fusarium solani* can reduce yields by 30% due to plant stand loss and lack of crop uniformity (Table 1, Pike et al., 2003). Schneider et al. (1997) reported root rot caused by *Fusarium solani* f. sp. *phaseoli* can cause yield losses of up to 84%. Pathogen numbers build quickly, particularly in intensively managed production systems where irrigation is present, where short crop rotations are used, and where snap beans are continuously cropped (Schneider et al., 1997). Bean root rot pathogens will be present by the end of the first season even when starting with clean ground. Increased soil compaction also exacerbates bean root rot severity and prevalence (Abawi et al., 1985). The decline in yield can be relatively slow, so growers might not notice or appreciate the hidden yield cost associated with root rot disease (Myers, personal communication).

<u>Table 1.</u> Processing snap bean 2007-2011 averages with estimates in absence of root rot. Estimates based on 30% loss due to plant stand loss and lack of crop uniformity. *2007 data unavailable (Pike et al., 2003; NASS, 2012)

State	Acres harvested	Production (\$)	Production (T)	Yield (T/ac)	Potential production without root rot (\$)	Potential production without root rot	Estimated loss due to root rot (\$)
NY	19,909	18,298,500*	67,687*	3.5*	23,788,050	87,993	5,489,550
OR	17,844	23,789,200	112,216	6.2	30,925,960	145,881	7,136,760
WI	75,392	49,046,800	309,402	4.1	63,760,840	402,223	14,714,040

The estimated dollar loss due to the root rot complex amounts to over \$27 million each year. The estimated production loss in NY, OR, and WI due to the root rot complex amounts to over 146,000 T annually (Pike et al., 2003).

Reported yield losses due to bean root rot are more devastating in the developing world. Root rot is likely worse in developing countries due to higher agronomic stress levels such as low soil fertility, high humidity, high temperatures, inadequate soil moisture levels, compacted soils, acid soils or soils fertilized with ammonium fertilizers (Mukankusi and Obala, 2012). As a result of increased stress, bean root rot has been attributed to yield losses of up to 100% in Uganda and up to 70% in Rwanda (Mukankusi and Obala, 2012).

Bean root health is an essential component in managing abiotic stresses and is also critical to organic snap bean production. Root pathogens aggravate problems of drought or phosphorus acquisition by restricting root systems (Miklas et al., 2006). If the root becomes infected, the plant can no longer take in necessary water and nutrients from the soil to remain healthy. Improving the levels of root rot resistance is a key element in the successful development of drought tolerant beans (Miklas et al., 2006).

Cause of root rots

Root rot is associated with several fungal pathogens that vary from region to region throughout the US. The most common root rot causal organisms include: *Pythium (Pythium ultimum)*, *Rhizoctonia (Rhizoctonia solani)*, *Aphanomyces* root rot (*Aphanomyces euteiches* f. sp. *phaseoli*), *Fusarium* root rot (*Fusarium solani* f. sp. *phaseoli*), and *Fusarium* yellows (*Fusarium oxysporum f.sp phaseoli*) (Hoch and Hagedorn, 1974; Kobriger and Hagedorn, 1983; Navarro et al., 2009 Yang and Hagedorn, 1966). Root rots other than *Pythium* tend to be chronic, with

infection occurring at the seedling stage and continuing to affect the plant as it transitions from vegetative to reproductive growth. *Rhizoctonia* may dominate in the southern U.S. whereas *Fusarium* root rot predominates in the northern production areas. *Fusarium* yellows and *Aphanomyces* root rot are more regional in distribution. *Fusarium* yellows is a major problem in the high plains states on dry beans and *Aphanomyces* root rot is found primarily in snap bean production areas in Wisconsin and Minnesota. In this study we focus on the effects of *F. solani* root rot in Oregon and *A. euteiches* root rot in Wisconsin on common bean.

Disease life cycle and symptoms- Fusarium solani

F. solani root rot of beans is very widespread and occurs in most bean fields throughout the world (Hall et al., 2005). In Oregon snap bean production, F. solani root rot is the predominating root rot pathogen. Fusarium belongs to the Ascomycota (Ascomycete) pathogen phyla. F. solani root rot typically reproduces anamorphically (asexually). Conidia, the asexual spores of Ascomycetes, are formed on specialized hyphae called conidiophores. Canoe-shaped conidia are born on naked conidiophores (Heffer et al., 2011). The pathogen survives in the soil as thick-walled chlamydospores, resting spores that germinate readily when stimulated by nutrients (sugars, amino acids) exuded by germinating seeds and root tips (Hall et al., 2005). The resulting hyphae invade underground roots and stems directly through the epidermis, stomates and wounds (Schneider and Kelly, 2000; Hall et al., 2005). This infection affects the whole plant. Symptoms on roots include dark brown or rusty reddish colored lesions, sunken lesions in the lower hypocotyls, rotting of lateral roots, and vascular discoloration of the upper taproot and even the lower stem in severe cases (Yang and Hagedorn, 1966; Hoch and Hagedorn, 1974; Kobriger and Hagedorn, 1983; Navarro et al., 2009). In time these lesions or streaks on the stem become numerous, coalesce, and affect the entire subsoil root system (Abawi et al., 1985). In some cases all superficial and adventitious roots will completely rot away. Root rot can also kill plants completely, breaking off the crown foliage from the main lower stem. The widespread nature of F. solani as the predominant root rot pathogen in common bean emphasizes the need for effective control through the development of resistant cultivars (Boomstra et al., , 1977; Schneider et al., 1997; Navarro et al., 2009).

Disease life cycle and symptoms- Aphanomyces euteiches

In Wisconsin snap bean production, *A. euteiches* is the predominant root rot pathogen. *Aphanomyces* belongs to the Oomycota (Oomycete) phylum. Oomycetes are fungal-like organisms in the Chromista kingdom. They produce hyphae and are therefore often grouped with other primitive fungi. Cell walls of Oomycetes are composed of cellulose rather than chitin, and hyphae lack cross walls. Asexual reproduction occurs by the formation of sporangia. Sporangia germinate either by production of a germ tube or by the formation and release of zoospores. (Heffer et al., 2011)

A. euteiches root rot causes seedling dampening off and root rot disease of many legumes. Aphanomyces spp. are generally associated with other pathogenic fungi (Pythium spp.) (Hall et al., 2005). Temperature is one of the most important factors in determining whether P. ultimum or A. euteiches play a major role in the bean root rot complex – air temperature under 20°C favors P. ultimum while A. euteiches causes more damage between 16°C and 24°C (Pfender and Hagedorn, 1982). A. euteiches root rot can affect germination in severe cases, and plant vigor in almost all cases. Symptoms may be visible at germination or in later stages of plant maturity depending on whether conditions favor one or more of the pathogens (Kobriger and Hagedorn, 1983).

On the irrigated sandy soils of central Wisconsin, yield losses from root rot caused by *A. euteiches* have become increasingly important (Pfender and Hagedorn, 1982). Lesions on roots are initially yellow-brown, rapidly coalescing to involve most of the roots, which become softer as the pathogen destroys the cortex (Hall et al., 2005). The pathogen infects the cortex of primary and lateral roots and oospores are formed within the root tissues (Gaulin et al., 2007). *A. euteiches* can infect plants soon after emergence or late in the season, most of the root system may be destroyed, and plants may be severely stunted (Hall et al., 2005). Oospores can persist in a dormant state in the soil for years, and are most commonly found in irrigated sandy soils (Hall et al., 2005).

Control methods - Fusarium solani and Aphanomyces euteiches

Traditional methods for disease control are ineffective against root rots. Seed or soil treatments with selective fungicides, crop rotations, cover crops, seedbed preparations and other measures have, in some cases, improved yield in the presence of *A. euteiches* and *F. solani* root rot disease. However, none of these measures have been consistently economical

or effective against root rot (Abawi et al., 1985). Crop rotation is the most effective way to reduce F. solani root rot infection. A three to five year rotation of snap beans with cruciferous crops or sweet corn can significantly reduce root rot pathogen populations (Parke and Rand, 1989). A. euteiches is strictly a soil-borne pathogen that can survive many years in the soil and no efficient chemical control is currently available (Gaulin et al., 2007). The only way to control the disease is to avoid cultivating legumes in infected fields for up to 10 years (Gaulin et al., 2007). However, crop rotations may not be feasible or affordable to contract growers because it can be too difficult and expensive to manage multiple production crops, especially under contract pressure with large corporations to produce snap beans (Navarro et al., 2009). Decreasing soil compaction is also an effective method for reducing root rot disease pressure (Burke and Miller, 1983). Decreasing compaction leads to better drainage, and less ability for pathogens to build up in stagnant field water. Soil compaction is very difficult to avoid, especially in intensive production systems typical of snap bean fields. In organic snap bean production systems, paper-mill residuals have significantly suppressed snap bean root rot caused by A. euteiches (Leon et al., 2006). The mechanism of carbon competition can cause strong suppression immediately after amendment application (Leon et al., 2006); the effect of organic matter amendments on F. solani root rot is unknown. Although effective for reducing negative effects of A. euteiches, application of paper-mill residuals is labor intensive and not suitable for large commercial production systems. Since modification of cultural practices is not a wholly effective means of control, the development of root rot resistant cultivars is necessary. Genetic resistance, however, is not the end-all be-all for disease control. Genetic resistance will be most effective and efficient when used in conjunction with cultural controls.

Disease Resistance

Snap bean varieties adapted to the northern tier of the United States primarily need resistance to *A. euteiches* and *F. solani* rots (Beebe et al., 1981). The first partially resistant *F. solani* cultivars were dry beans released in 1974 (Boomstra and Bliss, 1977). Baggett et al. (1965), Beebe et al., (1981), Burkholder, (1919), Hagedorn and Rand, (1978), Mukankiski et al. (2011), Silbernagel (1987), and Smith & Houston (1960) have all found sources of genetic resistance in common bean (Table 2).

<u>Table 2.</u> Published sources of root rot resistance in *Phaseolus vulgaris* germplasm 1919-2011. (Pc = Phaseolus coccineus).

`	Breeding		Breeding
Germplasm	Program	Germplasm	Program
Flat Marrow (Pi)	Burkholder	Cornell 2114-12	
Scarlet Runner (Pc)	(1919)	Chimbolo	
PI 165435	Smith &	Porillo Sintetico	
N203	Houston (1960)	Cubagua	
P. coccineus X P. vulgaris transfer of disease resistance	Baggett et al. (1965)	Rio Tibahi	Beebe et al (1981)
RR6950		Lote 10	
70-169-1M		Porillo 1	
71-1759		Honduras 46	
PI 165426		15R-55	
71-169-137		FR-266	Silbernagel (1987)
PI 109859	Hagedorn &	MLB-49-89A	
PI 300665	Rand (1978)	MLB-48-89	Mukankisi et
Gloria		RWR719	al (2011)
St. Half Runner		Vuninkingi	
WIS(RRR)77			
WIS(RRR)83		_	

Out of all accessions with root rot resistance, N203 has been the *Fusarium* resistance source favored by most plant breeders in the US (Wallace and Wilkinson, 1965). N203 (PI203958) is a wild *P. vulgaris* accession collected in Mexico (Cichy et al., 2007) by Oliver Norvell (Wallace and Wilkinson, 1965) and widely used in breeding for *F. solani* root rot resistance in dry beans (Silbernagel and Hannan, 1992). FR266 was released by the USDA-ARS and the Washington State University Agricultural Experiment Station, and was the first known green podded, white-seeded bush snap line with root rot resistance (Silbernagel, 1987). FR266 has a pod suture string and is therefore commercially unacceptable for snap bean production, but it could still be a valuable source for *F. solani* resistance. When FR266 is used as a resistant parent, progeny are typically one or two backcrosses away from being commercially appropriate. Other principal sources of root rot resistance derived from *P. coccineus* and crosses with commercial *P. vulgaris* cultivars were tested at Oregon State University, but were discontinued in favor of N203 material (Baggett et al., 1965). There are no available commercial cultivars highly resistant to root rot. However, several cultivars

tolerate slight to moderate root rot, and out-yield susceptible cultivars when planted in fields prone to root rot (Kobriger and Hagedorn, 1983). The introduction of genetic resistance directly from wild types and other species into processing types introduces a host of unfavorable traits (e.g. day length sensitivity, pod fiber and strings, and indeterminate habit). Germplasm derived from initial crosses to un-adapted types may not have these deleterious traits, but resistance may be attenuated (Silbernagel, 1987).

F. solani and A. euteiches infection is more severe in Andean large-seeded varieties because of lack of genetic resistance in these market classes (Wallace and Wilkinson, 1973; Abawi and Corrales, 1990; Schneider et al., 1997). Small-seeded Mesoamerican varieties, although not completely resistant, are not as susceptible as large seeded Andean varieties (Beebe et al., 1981; Abawi and Corrales, 1990; Schneider et al., 1997). There are many examples of colored seeded varieties containing root rot resistance in the literature, compared with white seeded varieties (Beebe et al., 1981; Myers, personal communication). Generally, colored-seeded varieties are unacceptable for processing and would require backcrossing into a white-seeded background in order to introgress commercially appropriate traits. Genetic characteristics intrinsic to the Andean gene pool may enhance sensitivity to Fusarium root rot. Studies have yet to show the potential resistance in a Mesoamerican x Mesoamerican cross. Breeding for resistance to Fusarium root rot is difficult because of the large influence of environmental conditions and soil types which contribute to increased disease severity in regions where large-seeded beans are produced (Burke and Miller, 1983; De Jensen et al., 1998; Kobriger and Hagedorn, 1983; Schneider et al., 1997).

The need for genetic resistance extends beyond the U.S. snap bean production industry. Genetic resistance to *A. enteiches* and *F. solani* root rot is equally valuable for domestic dry bean producers and for small-scale farmers, who make up the greatest portion of bean growers in developing countries, and where beans often make up the greatest percentage in total calorie intake (Mukankusi et al., 2011; Mukankusi and Obala, 2012).

Root rot screening methodology

Fusarium root rot in bean involves a complex interaction between host, pathogen, and environment. Field uniformity and even disease pressure throughout the field is key to accurately discriminating among genotypes and characterizing phenotypic resistance. Baggett, (1973) reported high sample variation when screening for F. solani root rot

resistance, showing the potential for error in making single plant selections or in using small samples to compare cultivars (Baggett, 1973). Lack of progress in breeding for field resistance to the root rot complex has been largely attributed in part to large experimental errors due to field heterogeneity and large genotype x environment interactions (Boomstra and Bliss, 1977; Beebe et al., 1981; Kobriger and Hagedorn, 1983).

The inability to classify root rot scores into discrete categories suggests that root rot resistance should be treated as a quantitative trait (Schneider et al., 1997). Knowledge of the inheritance of resistance to root rot is an important step to devising strategies to breed resistant varieties (Mukankusi et al., 2011). It is very important to recognize the quantitative inheritance of root rot and use an evaluation scale to fit the range of disease level. In addition, scoring single plants can be problematic for complexly inherited quantitative traits. An average score for a particular genotype is preferred for traits strongly influenced by environmental factors (Schneider et al., 1997). Therefore, in this study, multiple plants per plot were evaluated on a scale to accommodate for disease severity.

The control of environmental variation through replicated field trials is important for analyzing resistance to root rot, however the actual scoring method using a scale is equally significant (Schneider et al., 1997). Root damage has been implicated as a better indicator of root rot than the conventional rating of hypocotyl lesions (Burke and Barker, 1966; Beebe et al., 1981). A notable confounding problem with previous genetic studies was the use of wide, inter-gene pool crosses to study inheritance of resistance (Smith and Houston, 1960; Bravo et al., 1969; Hassan et al., 1971; Beaver and Osorno, 2009). Using wide crosses to study inheritance of resistance is problematic because it introduces a gamut of variables that could be better understood with a narrower cross of isogenic, or nearly isogenic lines.

There are three types of studies conducted to evaluate root rot in snap beans: greenhouse inoculation, field testing in a pre-existing root rot contaminated field, and in rare cases, field inoculation. All three methods are recognized by plant pathologists, and each has positive and negative attributes. Beebe et al. (1981) obtained isolates from infected plants grown at CIAT in Columbia and used them to inoculate an outdoor nursery as well as in a greenhouse. Near flowering time, they used a disease index rating based on extent of hypocotyl infection was used to evaluate the severity of disease. Schneider et al. (1997) conducted a similar two-part study, growing beans in a field previously identified as contaminated with *Fusarium*, and a greenhouse study using *Fusarium* contaminated soil

containers. (Baggett et al., 1965) and (Mukankusi et al., 2011) used the greenhouse inoculation method without corresponding field evaluations.

Navarro et al. (2008) conducted a study in a field with high root rot potential that was naturally contaminated with *P. ultimim* and *A. euteiches* at the Hancock Agricultural Research Station (ARS). The field was developed for high root rot potential by doing 17 years of continuous cultivation of susceptible bean cultivars.

Quantitative Trait Loci and Marker Assisted Selection

The difficulty in breeding for root rot resistant beans lies in the quantitative nature of the trait and low to moderate heritability. Therefore the use of molecular markers associated with quantitative trait loci (QTL) and Marker Assisted Selection (MAS) can improve the efficiency of breeding programs (Navarro et al., 2009). MAS has many advantages contributing to simplified breeding of complex traits by detection of QTL with major effects in absence of the pathogen (Miklas et al., 2006). MAS aids in gene pyramiding by introducing genes via marker-assisted backcrossing, enabling simpler detection and selection of resistance genes.

A QTL is composed of one or more genes in a region on a chromosome associated with a phenotypic trait. QTL are a molecular expression of more classically defined quantitative traits – traits that are controlled by many genes with small effect and/or one or few genes strongly influenced by environment. Indirect selection for root rot resistance based on markers linked to the resistance QTL would facilitate improvement of root rot resistance. MAS can provide significant reductions in the cost of labor and field space, however there are trade-offs associated with labor and reagent costs in the laboratory. Using MAS, bean breeders could screen for disease resistance without introducing the disease agent (Beaver and Osorno, 2009). Direct field selection of root rot resistance is laborious and costly; often requiring destructive sampling to identify resistance (Miklas et al., 2006). Selection can be done on a single plant basis rather than requiring examination of plant families. Marker-based selection will also minimize confounding environmental factors that can occur in the field such as escapes, gradients, soil temperature and moisture. Once root rot resistance and QTL are associated, MAS can be used to select desirable lines.

Types of markers, Map development, and Mapping QTL

Markers are discovered by finding DNA polymorphisms among genetically related individuals. A polymorphism is a difference in sequence of nucleotides, the difference of which leads to a diversity of traits in a population (Mohan et al., 1997). There are three main types of polymorphisms used for QTL discovery: insertion-deletion length polymorphisms (INDELs), single nucleotide polymorphisms (SNPs), and simple sequence repeat polymorphisms (SSRs or Micro-satellites) (Cuesta-Marcos, 2012). Many different types of makers can be used for discovering polymorphisms, constructing linkage maps, and QTL discovery. Most markers are used with polymerase chain reaction (PCR) to initiate presence or absence of a marker in any given sample of DNA. Restriction fragment length polymorphisms (RFLP) are based on differences in restriction fragment lengths caused by a SNP or an INDEL that either creates or eliminates restriction endonuclease restriction sites. RFLP assays are based on hybridization of a labeled DNA probe to a Southern blot of DNA digested with a restriction endonuclease. Amplified Fragment Length Polymorphisms (AFLPs) are also differences in restriction fragment lengths caused by SNPs or INDELs that either create or eliminate restriction endonuclease recognition sites. AFLP assays are performed by selectively amplifying a pool of restriction fragments using PCR. Simple Sequence Repeats (SSR) are tandemly repeated mono-, di-, tri-, tetra- penta-, and hexanucleotide motifs. SSRs are assayed by PCR amplification using pairs of oligonucleotide primers that are specific to unique sequences flanking the SSR. Cleaved amplified polymorphic sequence (CAPS) polymorphisms are differences in restriction fragment length caused by SNPs or INDELs that create or take-out restriction endonuclease recognition sites in PCR amplicons produced by locus specific oligonucleotide primers. CAPS assays are performed by digesting locus-specific PCR amplicons with one or more restriction enzymes and separating the digested DNA on gels. Random Amplified Polymorphic DNA (RAPD) is produced by rearrangements at or between oligonucleotides primer binding sites within the genome. RAPDs have been very useful in MAS in common bean and have been widely used to identify root rot QTL (Table 3). RAPD assays are performed using single short oligonucleotide primers of arbitrary sequence. INDEL assays are performed by digesting locus-specific PCR amplicons with one or more restriction enzymes and separating the PCR products on agarose gels. Restriction site associated DNA (RAD) markers use isolated "RAD" tags, which are the DNA sequences that immediately flank each instance of a

particular restriction site of a restriction enzyme throughout the genome (Cuesta-Marcos, 2012).

Common bean is a diploid (2n=22) with a genome size ranging from 450 to 650 Mbp/haploid genome (Broughton et al., 2003). Common bean is self-fertile and genetic recombination in common bean breeding programs is achieved through hand pollinations (Beaver and Osorno, 2009). It has been 52 years since Lamprecht, (1961) published the first linkage map of *Phaseolus vulgaris*. Since this publication, numerous reports of additional linkages between markers genes have appeared. Bassett (1991), used classical techniques to develop a linkage map for common bean that contained 13 linkage groups with 46 (primarily morphological) marker genes. Classical linkage maps were constructed similarly to modern maps, using some of the same principals such as maximum likelihood, and Kosambi's mapping function to order genes and determine mapping distances.

<u>Table 3.</u> Published common bean root rot Quantitative Trait Loci (QTL) showing population, type of QTL, percent total genetic variation explained, LOD score and pathogen species. "-" = Data not available.

						Root Rot
<u>Population</u>	QTL reported as	Chrom.x	<u>QTL</u>	$\underline{\mathbf{R}^{2\mathrm{y}}}$	$\underline{\text{LOD}^{\text{z}}}$	<u>Species</u>
	Chowd	hury et al. 2	2002			
AC Compass x NY2114-12	Marker Interval		UBC218_1200-			
		-	UBC503_640	30	8	F. solani
		-	UBC503_640 UBC211_1000	20	5	F. solani
	Nava	rro et al. 20	008			
Eagle x Puebla 152	Association with RAPD	Pv06	AD9.950	25	2.94	P. ultimum & A. euteiches
	Roman-A	viles & Kel	lly 2005			
Red Hawk x Negro San Luis & C97407 x Negro San Luis	Marker Interval	Pv07	G6.2000–G17.900	19	4.02	F. solani
		Pv07	G17.900–AL20.350	30	8.31	F. solani
		Pv07	G6.2000–AL20.350	29	8.4	F. solani
		Pv07	AL20.700–G6.2000	33	7.81	F. solani
		Pv07	AL20.850-AJ4.3000	27	6.7	F. solani
		Pv07	AL20.850-G8.1400	53.3	15.72	F. solani

Table 3 (cont.)

<u>Population</u>	QTL reported as	<u>Chrom.</u> ^x	QTL	$\underline{\mathbf{R}^{2y}}$	<u>LOD</u> ^z	Root Rot Species
Roman-Aviles & Kelly 2005 (Cont.)						
Red Hawk x Negro San Luis & C97407 x Negro	Marker Interval	Pv01	O12.800–AL20.850	7.3	6.98	F. solani
San Luis		Pv05	S19.1000–S19.1100	10.7	2.35	F. solani
		Pv08	AN19.1300-H4.1200	39	9.95	F. solani
		Freyre e	et al. 1998			
Montcalm x FR266 & Isles x FR266	Association with RAPD	Pv01	D3_600	-		F. solani
		Schneider	r et al. 2001			
Montcalm x FR266 & Isles x FR266	Association with RAPD	Pv01	P7_1550	-		F. solani
		Pv02	P7_700	-		F. solani
		Pv02	P10_1600	-		F. solani
		Pv02	G6_1100	-		F. solani
		Pv03	I18_1800	-		F. solani
		Pv03	I18_1700	-		F. solani
		Pv04	AG2_800	-		F. solani

Table 3 (cont.)

<u>Population</u>	QTL reported as Schneider	Chrom. ^x et al. 2001		$\underline{R^{2y}}$ $\underline{LOD^z}$	Root Rot Species
Montcalm x FR266 & Isles x FR266	Association with RAPD	Pv04	G17_900	29	F. solani
		Pv05	G3_800	5	F. solani
		Pv05	G3_2000	29	F. solani
		Pv05	P9_1550	13	F. solani
		Pv06	Y11_600	-	F. solani
		Pv06	O12_800	-	F. solani
		Pv07	S8_500	-	F. solani
		Pv07	V12_1100	-	F. solani

^x Chrom. = Chromosome in *P. vulgaris* genome

 $^{{}^{}y}R^{2}$ = percent variation explained by QTL

^zLOD = Logarithm of the odds

Genetic control of resistance and heritability

Common bean improvement programs have been successful at using conventional breeding methods to accomplish a wide variety of objectives. Some of these objectives include: extending the range of adaptation, and increasing disease, pest, and drought tolerance (Beaver and Osorno, 2009). The most effective breeding method depends on the expression and inheritance of the trait to be selected and the target environment (Beaver and Osorno, 2009). Most public bean breeding programs are focused on dry bean improvement (Singh and Schwartz, 2010) and conversely snap bean breeding is conducted mainly by the private sector (Myers and Baggett, 1999). There are several successful traditional bean breeding methods including: Pedigree, Backcross, Single Seed Decent (SSD), Gamete Selection, Bulk Breeding, Recurrent Selection, and Participatory Plant Breeding (Beaver and Osorno, 2009).

Baggett et al. (1965) proposed that *Fusarium* root rot resistance was quantitatively controlled with complex and moderate heritability from *Phaseolus coccineus*. This was later confirmed by (Schneider et al., 1997) who documented observable differences in levels of susceptibility and lack of complete resistance to *Fusarium* root rot in *P. vulgaris*. Heritability is moderate due to complex inheritance and substantial influence of environmental factors (Boomstra et al., 1977). Previous studies demonstrated that *Fusarium* root rot resistance in common bean is controlled by several genes and that these genes are located at different loci (Mukankusi and Obala, 2012). Mukankusi et al. (2011) found that resistant parents contain a number of different resistance genes that can be combined with the expectation of producing strong and durable resistance.

Over 30 QTL, minor in effect, and associated with *Fusarium* root rot resistance have been reported in RIL populations derived from four resistance sources (Table 3). Sixteen QTL for *Fusarium* root rot resistance were identified in a RIL population derived from the susceptible cultivar Montcalm crossed with resistant line FR266 (Schneider et al., 1997); two QTL were identified in a RIL population derived from the susceptible cultivar AC Compass crossed to resistant line NY2114-12, ; and ten QTL were identified in two inbred backcross line populations derived from the susceptible cultivars Red Hawk and C97407 crossed to

resistant line Negro San Luis (Román-Avilés and Kelly, 2005) (Table 3). The nine QTL significantly associated with *Fusarium* root rot resistance that Román-Avilés and Kelly (2005) found explained 7.3 to 53% of total phenotypic variation. QTL were found on Pv02, Pv05, Pv07, Pv08, and Pv09. High levels of resistance were also observed in several lines of the inbred backcross populations. A second QTL on Pv05 that explained up to 30% of the variation for resistance was linked to a marker previously identified as associated to root rot resistance (Schneider et al., 1997). Most QTL located on linkage groups Pv02 and Pv03 of the integrated bean map (Freyre et al., 1998) were close to a region where defense response genes polygalacturonase-inhibiting protein, and chalcone synthase and pathogenesis-related proteins have been identified (Schneider et al., 1997). The detection of QTL in the same genomic regions as previously reported QTL for root rot resistance would suggest that different resistance sources might possess similar genes or resistance mechanisms associated with known defense response genes in *P. vulgaris*.

QTL for *A. euteiches* resistance are less studied than QTL for *F. solani* resistance. Six QTL for *Aphanomyces* were identified in a RIL population derived from susceptible snap bean cultivar Eagle crossed with resistant line Puebla 152 (Navarro et al., 2008). They combined field data with a RAD map to identify quantitative trait loci associated with *A. euteiches* root rot resistance using composite interval mapping. Navarro et al. (2008) evaluated an 'Eagle' x 'Puebla 152' recombinant inbred line and two inbred backcross populations derived from a cross to Eagle and 'Hystyle'. They found one region from linkage group Pv06 of the *P. vulgaris* core map associated with a QTL for *A. euteiches* root rot resistance.

While QTL for resistance have been identified for several pathogens, these QTL need to be verified and other sources of resistance need to be analyzed. It is unclear whether QTL for resistance to *Fusarium* are effective against *Aphanomyces* and vice versa. There are hints that these QTL may cluster in genomic regions where other pathogen defense genes are found, but further analysis is needed. QTL mapping studies with robust markers need to be conducted, because unless the RAPD markers are converted to Sequence Characterized Amplified Polymorphisms (SCARs), they cannot be integrated into the physical map of the common bean sequence.

Mechanisms of resistance to root rot are not well understood. It is likely that root traits such as vigor, architecture, and adventitious regeneration affect resistance, but there may also be specific defense pathways that are involved in resistance. The quantity of significant QTL found by previous researchers indicates that many loci are involved in *F. solani* resistance.

Results from this work will provide new knowledge about *F. solani* and *A. euteiches* resistance and new associated QTL, as well as confirming existing QTL that can be used in marker assisted selection programs. We also aim to identify lines with superior resistance and snap bean characters that can be used as germplasm in breeding efforts. Other morphological traits evaluated in this study may provide insight into the mechanism of root rot resistance, and may also provide breeders with other traits associated with disease resistance to help streamline the breeding and selection process. We also hope the linkage map resulting from this study will serve as a template for other bean breeders involved in the BeanCAP project.

Materials and Methods

Parental Material and RR138 Recombinant Inbred Mapping Population

At the OSU Vegetable Research Farm site, from 2005 - 2008, lines were identified that demonstrate both highly resistant and highly susceptible disease reactions (Table 4). Based on multi-year performance, two parents representing the extremes for root rot resistance were chosen. In 2003, the highly resistant line RR6950 (paternal line), a small seeded (type IIIA) black accession of unknown origin, was crossed with OSU5446 (maternal line), a highly susceptible determinate (type I) blue lake four-sieve breeding line to produce the RR138 recombinant inbred mapping population. Both parents are of Mesoamerican origin, although OSU5446 was derived from the cross Smilo/OR91G, which may contain a mixture of Mesoamerican and Andean derived genes.

<u>Table 4.</u> Root rot infection ratings of selected bean lines evaluated at the Vegetable Research Farm, Corvallis, OR from 2005 to 2008^z.

	Score ^y			
Line	2005	2006	2008a	2008b
$RR6950^{v}$	2.5	1.1	2.5	2.5
RR4270	5.5	3.5	4.5	4.5
OR91G	-	-	6.5	6.5
FR266	6.0	-	6.8	-
OSU5630	-	-	7.3	7.3
OSU5446	7.5	7.2	7.8	8.3
LSD 0.05	1.4	1.8	1.2	0.9

^zBased on two reps except 2008a, where three reps were evaluated. ^yTwo ratings were taken in each plot; scores based on a 1-9 scale, where 1 = very light surface infection and 9 = roots mostly dead.

 F_2 single plants of the RR138 population were advanced to the F_3 generation without selection. In the F_3 , single plant families were homozygous for *Fin* (indeterminate vine habit), segregating for *Fin*, or homozygous for *fin* (determinant bush habit). Families that were homozygous for *Fin* were discarded while a determinant

single plant from each segregating and homozygous *fin* family was retained. Viny families were discarded because varieties with indeterminate growth habit are not sufficiently concentrated in pod set to allow mechanical harvest and are therefore not used for commercial snap bean breeding. The F_4 to F_5 generations were advanced by randomly selecting a single plant from each family. In 2008 plants within each F_5 family were bulked to develop lines for replicated testing. Two populations (RR137 [RR6950/OSU5446]) with 173

families and the reciprocal (RR138) with 177 families) were available for mapping and genetic analysis but only the RR138 population was subsequently characterized because it showed no segregation distortion for flower color.

The RR138 mapping population was characterized phenotypically for resistance to *F. solani* root rot during the summers of 2010, 2011, and 2012 in Oregon and for *A. euteiches* root rot during the summers of 2011 and 2012 in Wisconsin. The RR138 population was also evaluated for morphological characters to seek traits potentially associated with root rot, and to map traits that differentiate snap beans from dry beans. Morphological characters were evaluated in summer 2010, including flower color, seed color, pod suture strings, pod fiber content, pod length, pod width, and pod wall thickness. These characteristics are not strongly influenced by the environment and therefore were only evaluated during one season.

Study Sites and Experimental Design

<u>Table 5.</u> Summary of Oregon and Wisconsin *P. vulgaris* planting methods 2010-2012. Planting date, evaluation date, reps and plot design by year.

, , , , , , , , , , , , , , , , , , ,	1 0 77	Evaluation Date(s)	Reps (no.)	Plot		
Year	Planting Date(s)	Evaluation Date(s)	rcps (no.)	Design ^z		
<u>Oregon</u>						
	6/18/10	9/1/2010-	3	RCBD		
2010		9/27/2010	3	KCDD		
2011	5/11/11	8/9/2011-	3	RCBD		
		8/18/2011	3			
	5/9/12	8/8/2012-	3	RCBD		
2012		8/15/2012		KCDD		
Wisconsin						
1 st evaluation 2011	6/20/11	7/29/11	2	CRD		
2 nd evaluation 2011		8/10/11	2	CRD		
1 st planting 2012	6/28/2012-6/29/2012	7/20/12	2	CRD		
2 nd planting 2012	7/14/2012-7/15/2012	8/24/12	1	CRD		

^zRCBD = Randomized complete block design. CRD = Complete randomized design

Vegetable Research Farm, Corvallis, Oregon

The Oregon root rot evaluation site was located at the Oregon State University (OSU) Vegetable Research Farm (VRF) on Chehalis silty clay loam soil. The VRF is located at latitude N44.571209, longitude W123.243261. The study site plot was approximately 85 meters by 18 meters (0.14 hectares) at the south end of Field 7. Beans have been grown in this plot continuously for at least 20 years and *F. solani* disease pressure in the root rot plot is high and uniform throughout the field.

Overhead irrigation was used to promote *Fusarium* root rot disease pressure. The root rot plot was over-watered early in the season, receiving more than 2.5 cm of water weekly. This water schedule was continued on a weekly basis throughout the season and until evaluations were complete. Normally, snap bean yield trials at the VRF receive 0.76 cm of water weekly. The trials were planted with a custom-made V-belt push-planter at a depth of approximately 3.75 cm. A randomized complete block design with three blocks established on an East-West axis was used during all three years of this study. There was a gradient of disease pressure as the root rot nursery was expanded to the north edge of the traditional screening area. Plots were three meters (ten feet) in length, planted in a single row of 10 seeds/30 centimeters. A single border row on the north and south sides and 1.5 m (5 ft) end plots of OSU 5446 was used to minimize edge effects. The plot was cover-cropped in winter with a mix of 60% winter grey oat blend and 40% Austrian winter pea mix.

Planting dates are show in Table 5. *F. solani* root rot was screened at a consistent physiological maturity stage of pods at 50% buckskin. Fifty percent buckskin stage occurs when half of the pods per bush appear chlorotic and feel leathery, but before pod desiccation and cracking. Untreated seed was used in 2010 and 2011, but in 2012 seed was treated with Captan (Bonide) to minimize germination and emergence problems caused by *Pythium* spp. that might cause differential stand establishment between colored and white seeded lines.

Summer 2010 Morphological Characteristics

Phenotypic traits from 10 harvest-mature pods from the first replication were evaluated for the following: pod length (cm), pod width and height (cm), pod wall thickness (mm), pod fiber content (0-3 scale) and presence or absence of pod suture strings. Seed color (white, brown, or purple), flower color (white or purple) was evaluated from one replication, as seed color and flower color have discrete categories that breed true. Harvest-mature pods were selected as fully developed pods before any moisture loss. Strings were qualitatively rated as present or absent. Fiber content was scored with a visual estimation – pods were snapped in half, transversely from the suture, and fiber strands protruding from the pod were evaluated on a 0-3 scale (0=no fibers present, 3=thick mass of fibers present).

Root Rot Evaluation Summer 2010, 2011

During summer 2010 and 2011 five plant samples from each plot were pulled from the soil at 50% buckskin stage. After excess soil was removed, the stem, hypocotyl and taproot were bisected and were visually evaluated using a 1-5 rating scale (1 = clean, 5= severe disease). Disease severity was based on discoloration of the inner pith of the taproot. Orange inner pith transitioning to necrotic black was indicative of disease (Fig. 1). Root rot score was averaged over the five plants uprooted from each plot.

<u>Figure 1.</u> Summer 2010, 2011 *F. solani* root rot on *P. vulgaris* evaluation scale vegetable research farm. Top image = 5, Middle image = 3, Bottom image = 1.

Shovelomics root trait evaluation protocol

During summer 2012, in addition to evaluating roots for disease, we used a new root evaluation protocol known as "Shovelomics" developed by Jonathan Lynch's laboratory at Pennsylvania State University. Shovelomics involves digging two plants per plot to evaluate the roots for structural and morphological features that could potentially contribute to root rot resistance (Lynch and Brown, 2013). Plants were dug with a 30 cm (one-foot) border around each plant to avoid damage to the roots. Taproot diameter, basal root diameter, number of basal root whorls, basal root angles, presence of adventitious roots, and foliage biomass were chosen as relevant traits to evaluate along with *F. solani* root rot resistance.

Taproot diameter was measured one centimeter below the hypocotyl; taproot junction was made on the largest basal root using a digital caliper (fig. 2). Basal root whorls were counted visually. Basal root angles were measured by laying a washed root specimen on a cutting board with protractor angle increments (Fig. 3A & 3B). Measurements were taken on the shallowest (closest to horizontal soil level) basal root, along with the deepest (closest to perpendicular with the taproot) basal root. Adventitious roots were measured on a visual scale of 0-3 (0=no adventitious roots, 3=thick adventitious roots) (Fig. 2). Foliage biomass was measured on a visual scale of 1-5 (1= low biomass, 5=high biomass) (Fig. 4).

Figure 2. Common bean *P. vulgaris* shovelomics, standard measuring procedures for basal root angle, basal root diameter, taproot diameter, adventitious roots.

Basal shallow- and deep-root measurements were used to calculate root angle average, root angle difference, and root angle geometric mean. Root angle average is the average of the deep and shallow root angles; this value gives an idea of how deep or shallow the root profile is from zero to 90 degrees. Root angle difference is the shallow root angle subtracted from the deep root angle; this value gives an idea of how wide the root distribution is, and can also vary from zero to 90. Geometric mean of root angle average and difference was calculated to produce a single number that integrates both root angle measurements.

In 2012 whole washed roots were evaluated for presence of disease on a visual scale of 1-5 (1=clean, 5=severe infection) (Fig. 3C). Evaluations for all plots were photodocumented (Fig. 3A & 3B). Two plants per plot were dug up from the center of the plot, tagged and transported to a washing station. Tagged samples were left to soak in a large fresh water tank for 1-4 hours. After soaking, roots were rinsed with fresh water and evaluated.

<u>Figure 3.</u> Shovelomics of a common bean RI population at the vegetable research farm summer 2012. Examples of plants from RR138 mapping population. **A.** RR138-3 (Plot 415), example of *F. solani* highly resistant line. **B.** RR138-19, (plot 501) example of highly *F. solani* susceptible line. **C.** *F. solani* disease scale 1-5, bottom (susceptible) to top (resistant).

<u>Figure 4.</u> Foliage biomass of a RR138 common bean RI population: Scale 1-5, left - right Shovelomics study at the vegetable research farm summer 2012.

Hancock Agricultural Research Station, Hancock, Wisconsin

To screen for *A. euteiches* resistance this study was performed at the University of Wisconsin Hancock Agricultural Research Station, Wisconsin. The WI site had a mixture of Plainfield sandy section and Sparta loamy sand. The WI site is located at latitude N4.121159, longitude W89.534528. The WI site has also been in continuous snap production for the last 25 years, ensuring high and even *A. euteiches* disease pressure.

WI fields were heavily irrigated with overhead irrigation to promote *A. enteiches* root rot. The WI site was planted with an Earthway push planter in a completely randomized design (CRD) design. Replication at the WI site varied from year to year. In 2011 the trial was planted on June 20th, and evaluated on July 29th and August 10th; the two evaluation dates gave results for early and late disease progression. In 2012, two replicates were planted on June 28-29, 2012 and blocked within the field to reduce the effect of soil drainage differences between blocks (Table 5). On July 14-15 one rep was planted to evaluate for *A. enteiches* at a late season planting date. In 2011 WI plant vigor and productivity was assessed in above ground visual ratings without examination of the roots. Scores were based on a 5-point scale (1=healthy normal foliage, 5=nearly dead). In summer 2012, two plants per plot were dug, excess sand was shaken off, and roots were visually rated for disease. Scores were based on a 5-point scale (1=healthy, clean roots, 5=nearly dead).

Heritability of phenotypic traits

The phenotype of a variety or line is the result of the genotype interacting with the environment, and can be expressed as Phenotype = Genotype + Environment. Heritability of a trait is a way of taking into account the relative importance of genetics and the environment in order to describe how much the characteristics of offspring are dependent upon the characteristics of the parents. Heritability is the proportion of observable differences in a trait between individuals within a population that is due to genetics, which in turn determines the response to selection. It can be further described as broad sense heritability (H), which includes all genetic effects, and narrow sense heritability (h²) which includes only additive genetic variance. Isolating genetic differences can be challenging for quantitative traits with large environmental effects (large and influential GxE interaction), therefore the following formula was used to partition genetic variation from environmental variation and GxE interaction (Table 6):

$$\hat{\mathbf{h}}^2 = \frac{\boldsymbol{\sigma}_{\mathrm{g}}^2}{\boldsymbol{\sigma}^2 / ne + \boldsymbol{\sigma}_{\mathrm{ge}}^2 / e + \boldsymbol{\sigma}_{\mathrm{g}}^2}$$

<u>Table 6.</u> Analysis of variance of inbred lines repeated over environments with expected mean squares used to determine calculations for heritability (Hallauer et al., 2010).

Source	df	MS	E(MS)
Environments			
(E)	e-1 ^a		
Replications/E	e(r-1)		
Inbred lines	<i>n</i> -1	M_4	$\sigma^2 + r\sigma^2_{ge} + re\sigma^2_{g}$
E X inbred lines	(e-1)(n-1)	M_3	$\sigma^2 + r\sigma^2_{ge}$
Pooled error	e(r-1)(n-1)	M_2	$\sigma^{ ext{2b}}$
Total	<i>ern</i> -1	$M_{\scriptscriptstyle 1}$	
Within	<i>ern(k</i> -1)		

^a e, r, n, and k refer to the number of environments, replications within environments, inbred lines, and individual plants measured within each plot, respectively

To calculate heritability, mean square error was subtracted from the GxE mean square and divided by replications to obtain the GxE variance. The environmental variance was calculated by dividing the mean square error by replications. Next, GxE mean squares was subtracted from genotype mean squares and divided by the product of the number of reps and environments. Finally, because in fully inbred lines, the additive genetic variance is $\frac{1}{2}$ the genetic variance, it was divided by two to obtain narrow sense heritability.

DNA was extracted from young trifoliate leaves using a modified CTAB protocol by Davis, (2009) for molecular marker analysis. First 0.05-0.10 g leaf tissue (three fresh leaf discs) was ground using a pestle in 200µl CTAB buffer in a 1.7 ml microfuge tube. Then 200µl more of buffer was added, vortexed briefly and incubated @ 65°C for 1 hour. Next 500µl chloroform:isoamyl alcohol (24:1) was added and extracted by vigorously shaking tubes for 1 min. Samples were centrifuged for 10 min at 5,000×g and 300µl of the upper aqueous layer was transferred to a fresh tube and precipitated at room temperature by adding 200µl (¾ volume) isopropanol. Tubes were mixed by inverting several times and centrifuged for 10 min at 10,000×g. The supernatant was poured off and residual was vacuum aspirated. 500µL 76% ethanol: 10% ammonium acetate solution was added and tubes were vortexed briefly to dislodge pellets. Tubes were centrifuged for another 10 min at 10,000×g. The supernatant was poured off and residual liquid was removed. Then 100µl 1× TE buffer was added to samples and stored overnight at 4°C.

RNase treatment:

1μl RNase A (1 mg/ml stock) was added to each tube and mixed by briefly vortexing and then tubes were incubated for 1-2 hours @ 37°C. After incubation, 100μl chloroform:isoamyl alcohol was added and DNA was extracted by vigorously shaking tubes for 1 min. Next tubes were centrifuged for 10 min 10,000×g. Then, 80μl of the upper aqueous layer was transferred to a new and precipitated by adding 8μl (1/10 volume) 3M sodium acetate (pH 5.2) and 160μl (2 volumes) 95% ethanol. Tubes were mixed by inverting several times and incubated at 20°C for 1 hour. After incubation, tubes were centrifuged for 10 min at 10,000×g. Then supernatant was poured off and residual solution was removed by vacuum aspiration. Next, 200μl 70% ethanol was added and tubes were vortexed briefly

followed by 10 min centrifugation at $10,000 \times g$. The supernatant was poured off and residual was removed by vacuum aspiration. Samples were dried overnight on the benchtop with lids open. The following morning, $50 \mu l$ 1× TE buffer was added and the pellet was allowed to dissolve overnight at 4°C. Concentration was quantified on a UV fluorometer and a small aliquot ($\sim 1 \mu g$) of each sample was run on an agarose gel to evaluate the quality of the DNA.

Markers and Genotyping

PCR-based INDELs were received from Dr. Phillip McClean's laboratory at North Dakota State University ("BeanCAP," 2013). Amplification of the INDELs were performed in GeneAmp® PCR System 9700 (Applied Biosystems, Myers lab, Oregon State University) thermo-cycler with the standard reagents at the following volumes: 12ng genomic DNA, 1.5 μl 10X reaction buffer + MgCl, 0.9μl 2.5 mM dNTP, 0.12 μl of each 10 mM primer and 0.12 μl AmpliTaq® polymerase (Applied Biosystems) in a total volume of 15 μl. PCR conditions included 5 steps: 1 min at 94°C, then 34 cycles of 30 seconds at 94°C, 1:30 minutes at 60°C, and 3 minutes at 72°C with a five minute final extension at 72°C.

INDELs were separated on a 2% agarose gels (Fisher Scientific Electrophoresis systems, FB-SBR-1316 Myers lab, Oregon State University) at 70 volts for about 1 hour and visualized with EtBr staining. Gels were then photographed in an ultraviolet light box (UVP "mini darkroom" UV Transilluminator) and each gel image was digitally recorded. Gels were scored by hand using parents to assign alleles (Figure 5).

Figure 5. Example of INDEL marker scoring method of *Phaseolus vulgaris* on 2% agarose gel. RR6950=B, OSU5446=A, and progeny scored as they matched the parent type. Image taken from UVP "mini darkroom" UV Transilluminator, Myers Lab OSU, 2012.

The goal was to have at least two markers flanking every resistance QTL to avoid separation of the QTL from linked markers due to crossing over. The RR138 population was also genotyped using the Illumina 10,000 SNP BARCBEAN6K_3 Beadchip. Access to the Illumina chip was provided through the Bean Coordinated Agriculture Project (BeanCAP) project. 50 µL of DNA with a concentration of at least 100 ng/µL was sent to Dr. Perry Cregan at the USDA-ARS BARC Laboratory, Beltsville, MD. Linkage groups were detected using a Logarithm of The Odds (LOD) threshold of four for significant pairwise marker linkages with Joinmap® 4 using Haldane's mapping function and a maximum recombination frequency of 40 cM; all other parameters were left at their default settings. INDEL data was initially combined with SNP data and any markers with ten percent or more missing data were discarded. As a result of this missing data threshold, all of the

INDELs were discarded due to an over-abundance of missing data. The linkage map and QTL analysis was constructed using only SNP data.

QTL cartographer was used to detect QTL corresponding to the traits evaluated. To detect QTL, the linkage map was thinned to remove any co-segregating markers leaving unique markers present for every one-two cM. To conduct the QTL analysis, composite interval mapping was used with seven cofactors, a window of 30cM, forward backward regression, and an arbitrary LOD of 11.5. Permutations were run to eliminate QTL false positives and set up thresholds of significance using randomly ordered phenotypic data that followed the same distribution as the original data set. If the permutation came back with an equally high LOD score, then we concluded the QTL was a false positive. If the permutation came back with a lower LOD score, but still apparent QTL, we concluded that the QTL was real.

Results

Quantitative and Qualitative Traits

Quantitative traits express across a continuum, and genes at different loci may interact epistatically. Typically, quantitative traits do not fit into discrete categories; but rather exhibit continuous variation. Quantitative traits can also be described as being "of degree rather than of kind" (Falconer, 1989). Conversely, qualitative traits are under the control of one or few genes, and fit into discrete categories (e.g. black or white). Histograms were constructed using least square means (LS means) and suggested root rot resistance, pod traits, and root or shovelomics traits are quantitative. Several traits including flower color, seed color, and pod suture strings exhibited qualitative genetic control. In many cases, progeny performed transgressively to the parental phenotypes.

In all histograms of Oregon disease scores, OSU5446 was more susceptible than RR6950, as expected (fig. 6). In all years, there were more susceptible transgressive segregates compared to the susceptible parent OSU 5446. In 2010 and 2011, but not 2012, there were a few transgressive segregates more resistant than RR6950 (figs. 6A and 6B). All years show a unimodal distribution.

Wisconsin root rot data also showed unimodal distribution, with transgressive segregates more evenly distributed to both ends of the distribution than found with the Oregon data (figs. 7A - C). The parents showed similar distribution as to that observed in Oregon. A wider range of disease scores was observed in WI August 2012.

Root traits showed approximately normal distributions. OSU5446 had more root whorls than RR6950 (fig. 8A). RR6950 had larger basal root diameter, taproot diameter, and

greater biomass than OSU5446 (figs. 8B - D). Shovelomics data showed unimodal distributions with transgressive segregation of progeny.

RR6950 had a broader root profile than OSU5446 ranging from 18 to about 52 degrees, whereas OSU5446 ranged from about 33 – 40 degrees (figs 9A and B). OSU 5446 had a smaller root angle average and root angle difference than did RR6950. The RI population distributions were narrow, but were transgressive in both directions for these traits. Root angle shovelomics data followed a unimodal distribution.

Pod data also followed a unimodal distribution for the traits shown in fig. 10.

RR6950 had smaller pods with thinner walls than OSU5446 as would be expected for a dry bean compared to a snap bean (Figs. 10A - D). Transgressive segregation was observed particularly at the upper end of the scale for all pod traits.

RR6950 has brown seed, purple flowers, pod suture strings, and high pod fiber whereas OSU5446 has white seed, white flowers, and stringless pods that lacked fiber. A 1:1 segregation ratio for pod suture strings was expected, but the trait was severely distorted with many more stringy progeny encountered ($\chi^2 = 110.83$, Prob. =6.4 x 10⁻²⁶). Flower color showed the expected 1:1 segregation ($\chi^2 = 0.90$ Prob. = 0.34). Seed color segregated for an additional color (purple) not found in the parents and was fit to a two gene model with epistatic effects. The expected segregation ratio was 2:1:1 white:purple:brown and $\chi^2 = 2.16$ with Prob. = 0.33, showing a good fit.

Figure 6. Histograms of Ismeans from a recombinant inbred common bean population n = 170) for root rot disease scores evaluated in Oregon. **A.** Data from 2010, **B.** 2011, **C.** 2012, **D.** Mean of years. O indicates the root rot susceptible parent (OSU5446) and R is the resistant parent (RR6950). Disease score 1 = resistant, 5 = highly susceptible.

Figure 7. Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for root rot disease score in Wisconsin. (**A.** Aug 2011, **B.** July 2011, **C.** July 2012, and **D.** mean of Aug & July 2011 and July 2012). O indicates the root rot susceptible parent (OSU5446) and R is the resistant parent (RR6950). Disease score 1 = resistant, 5= highly susceptible.

<u>Figure 8.</u> Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for root (shovelomics) traits collected in Oregon in 2012. **A.** Number of basal root whorls, **B.** Basal root diameter, **C.** Taproot diameter, and **D.** Biomass rating. O indicates the root rot susceptible parent (OSU5446) and R is the resistant parent (RR6950).

Figure 9. Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for additional root (shovelomics) traits collected in Oregon in 2012. **A.** Shallow root angle, **B.** Deep root angle, **C.** Average root angle, and **D.** Root angle difference. O indicates the root rot susceptible parent (OSU5446) and R is the resistant parent (RR6950).

Figure 10. Histograms of Ismeans from a recombinant inbred common bean population (n = 170) for pod traits collected in Oregon in 2010. **A.** Pod wall thickness, **B.** Pod length, **C.** Pod width, and **D.** Pod height. O indicates the root rot susceptible parent (OSU5446) and R is the resistant parent (RR6950).

Figure 11. Histograms of three qualitative traits and one pod quantitative trait from a recombinant inbred common bean population n = 170) collected in Oregon in 2010. A. Pod suture strings, B. Flower color, C. Seed color, and D. Pod fiber. O indicates the root rot susceptible parent (OSU5446) and R is the resistant parent (RR6950).

Variation in Root Rot among Trials

To characterize the variation in the RI population for root rot resistance in Oregon and Wisconsin, as well as pod and shovelomics traits, we conducted analysis of variance (ANOVA) tests and calculated coefficients of determination (R²) and coefficients of variation (CV).

In Oregon in 2010, mean squares for model, genotype, and replicate were not significant (Table 7A). The Oregon 2010 trial had an R² of about 0.33, whereas Oregon 2011 and Oregon 2012 trials had similar R² of approximately 0.47. While R² was low to moderate in these environments, 2011 and 2012 environments had a larger amount of the variability accounted for by the statistical model than 2010. The Oregon 2012 trial had the lowest CV of the trials, while the 2010 and 2011 trials had CVs of similar magnitude (35).

In Wisconsin, the July 2012 trial consisted of only one replicate, so it could not be subjected to statistical analysis. July and August ratings in 2011 were conducted on the same trial but differed as to what main effects in the ANOVA were statistically significant (Table 7B). Model and replicate mean squares were highly significant in both, whereas genotype was highly significant for July but not for August. All mean squares in the ANOVA for 2012 were highly significant. A large replicate effect in both years suggests that there were gradients for disease severity across the field. R² in Wisconsin were of similar magnitude and generally were higher than those in Oregon, indicating more variability was accounted for in the statistical models for Wisconsin. CVs in Wisconsin ranged from about 25 – 30, a similar order of magnitude to the CVs for Oregon (20-35).

<u>Table 7A.</u> Means squares and degrees of freedom from ANOVA tables for *Fusarium solani* root rot scores of *Phaseolus vulgaris* in Oregon 2010 - 2012, by year for model, genotype, and replicate.

	<u>OR</u>	<u>2010</u>	<u>Or</u>	<u> 2011</u>	<u>OR 2012</u>		
	d <i>f</i>	MS	d <i>f</i>	MS	d <i>f</i>	MS	
Model	172	1.001 ^{ns}	175	1.396***	173	0.647***	
Genotype	170	1.010 ^{ns}	173	1.403***	171	0.654***	
Rep	2	0.262^{ns}	2	0.829^{ns}	2	0.067^{ns}	
\mathbb{R}^2	0.334		0.470		0.463		
CV	35.3		34.5		20.5		

^{ns}=not significant; *** = significant at P<0.001

<u>Table 7B.</u> Mean squares and degrees of freedom from ANOVA tables for *Aphanomyces euteiches* root rot scores of *Phaseolus vulgaris* in Wisconsin in 2011 and 2012, by year for model, genotype, and replicate.

	<u>WI 2011 JULY</u>		<u>WI 2</u>	<u>011 AUG</u>	<u>WI 2012 JUNE</u>		
	$\mathrm{d}f$	MS	$\mathrm{d}f$	MS	d <i>f</i>	MS	
Model	171	1.405***	172	0.795***	174	0.865***	
Genotype	170	0.962^{ns}	171	0.673***	173	0.770***	
Rep	1	76.712***	1	21.625***	1	17.359***	
\mathbb{R}^2	0.650		0.694		0.718		
CV	30.481		24.928		25.125		

ns=not significant; *** = significant at P<0.001

Variation in Root Traits

For most physical traits, mean squares for model and genotype were significant or highly significant, whereas mean squares for replicates were not statistically significant (Table 8). Basal root whorl was an exception in that the model mean square was not significant, but there was a significant difference for the genotype mean square. The magnitude of statistical significance was lower for basal root whorl, taproot diameter, and shallow root angle compared to the other traits, which were highly significant. The RR138 population displayed large differences in root morphology among lines. The non-significant mean square for replicates for root traits suggests that field conditions were uniform or that these traits were not strongly influenced by microenvironmental variation. Shoot biomass had the highest R² of the shovelomics traits, with the model accounting for about half the variation. The remaining shovelomics traits had R² ranging from 0.20 to 0.33, suggesting that a large amount of variation present in the data was unaccounted for by the model. CVs were in general large, and ranged from about 30 (shoot biomass) to approximately 89 (adventitious roots).

All pod trait mean squares were highly significant for model and genotype (Table 9). Replicate mean squares were generally non significant with pod length being the only exception. As revealed by ANOVA, RR138 population displayed large differences in pod trait morphology from line to line. With the exception of pod fiber, all R^2 were small and ranged from 0.19 to 0.26, which indicates that a large amount of variation in pod traits was unaccounted for by the model. Pod fiber was rated on a 0-3 scale, and replicates within a genotype exhibited a uniform response such that the $R^2 = 1.0$. CVs ranged from around 33 for pod height, to about 70 for pod wall thickness.

<u>Table 8.</u> Mean squares and degrees of freedom for model, genotype and replicate from an ANOVA for various *Phaseolus vulgaris* root traits conducted in Oregon, 2012.

									<u>Adv</u>	<u>entitious</u>
	Basal root whorl		Basal root diameter		<u>Taproot diameter</u>		Shoot biomass		<u>roots</u>	
	d <i>f</i>	MS	d <i>f</i>	MS	d <i>f</i>	MS	d <i>f</i>	MS	d <i>f</i>	MS
Model	176	0.823 ^{ns}	176	0.714***	176	0.734*	176	3.663***	176	1.854***
Genotype	171	0.826*	171	0.722***	171	0.731*	171	3.765***	171	1.883***
Rep	2	0.415^{ns}	2	0.205^{ns}	2	0.049^{ns}	2	0.425^{ns}	2	0.853^{ns}
\mathbb{R}^2	0.201		0.263		0.209		0.512		0.332	
CV	51.5		45.4		47.1		30.5		89.2	

Table 8 (cont.).

	<u>Shallow root</u> <u>angle^z</u>		Deep root angle ^y			Root angle difference ^w		Mean root angle x		Root angle geometric mean ^v	
	d <i>f</i>	MS	d <i>f</i>	MS	$\mathrm{d}f$	MS	$\mathrm{d}f$	MS	d <i>f</i>	MS	
Model	176	307.547*	176	547.601***	176	517.364***	176	298.233***	176	263.636***	
Genotype	171	313.287*	171	558.381***	171	523.934***	171	304.850***	171	268.168***	
Rep	2	61.992 ^{ns}	2	341.282 ^{ns}	2	296.893 ^{ns}	2	127.414 ^{ns}	2	177.744 ^{ns}	
\mathbb{R}^2	0.203		0.257		0.232		0.235		0.249		
CV	84.7		33.2		52.6		38.7		37.4		

^{ns}=not significant; * = significant at P < 0.05; *** = significant at P<0.001

^zAngle of roots nearest the soil surface; ^yAngle of roots furthest from soil surface; ^xArithmatic mean of the shallow and deep root angles; ^wDeep root angle – shallow root angle; and ^vGeometric mean of shallow and deep root angles.

<u>Table 9.</u> Mean squares and degrees of freedom for model, genotype, and replicate for snap bean pod traits evaluated in a *Phaseolus vulgaris* recombinant inbred population in Oregon, 2010.

	<u>Po</u>	<u>d Length</u>	<u>P</u>	od Width ^z	Pod Height ^y	
	d <i>f</i>	MS	d <i>f</i>	MS	$\mathrm{d}f$	MS
Model	178	26.1478***	178	16.043***	178	19.179***
Genotype	169	26.546***	169	16.501***	169	19.515***
Rep	9	18.492*	9	7.43 ^{ns}	9	13.282 ^{ns}
\mathbb{R}^2	0.261		0.193		0.191	_
CV	33.7		37.0		33.1	

ns=not significant; * = significant at P < 0.05; *** = significant at P<0.001

Table 9 (cont.).

	Pod c	ross-section					
	<u>shape^x</u>		Pod W	Vall Thickness	Pod fiber ^w		
	d <i>f</i>	MS	$\mathrm{d}f$	MS	d <i>f</i>	MS	
Model	178	0.542***	178	3.992***	176	4.166***	
Genotype	169	0.562***	169	4.114***	167	4.391***	
Rep	9	0.180^{ns}	9	1.780^{ns}	9	0	
\mathbb{R}^2	0.247		0.195		1.000		
CV	34.5		69.6		0.000		

ns=not significant; *** = significant at P<0.001

^xPod width perpendicular to sutures; ^ydistance from abaxial to adaxial sutures; ^xratio of pod width to pod height; ^wpod fiber present in a broken pod based on a 3 point scale.

Heritability of Phenotypic Traits

In this study, above ground traits had higher heritability compared to disease resistance and root traits. Of the pod traits, fiber had highest heritability with $h^2 = 0.50$ (Table 10). Other pod traits ranged from 0.25 to 0.34 for the shovelomics data, shoot biomass had the highest heritability of 0.40 with root traits ranging from 0.09 (basal root whorl) to 0.29 for adventitious roots (Table 10). Heritability for root rot resistance in Oregon fluctuated from a very low 0.005 to about 0.21 in 2012. Heritabilities were slightly higher in Wisconsin. Heritabilities generally reflected the variability in the trial as quantified by mean squares, R^2 , and CVs.

<u>Table 10.</u> Narrow sense heritability and standard error of heritability calculations for all phenotypic traits evaluated on a recombinant inbred population of common bean grown in Oregon in 2012.

<u>Trait</u>	$\underline{\mathbf{h}}^2$	$SE ext{ of } h^2$
Root Rot Disease Res	istance	
OR 2010	0.005	0.001
OR 2011	0.198	0.001
OR 2012	0.208	0.001
WI Aug 2011	0.237	0.009
WI June 2012	0.278	0.007
Shovelomics (Root t	raits)	
Basal root whorl	0.088	0.001
Basal root diameter	0.211	0.001
Tap diameter	0.108	0.001
Adventitious roots	0.294	0.113
Shoot biomass	0.403	0.108
Root angle geometric mean	0.157	0.001
Shallow root angel	0.095	0.109
Deep root angle	0.202	0.117
Root angle ave	0.166	0.112
Snap Traits		
Pod Length	0.337	0.121
Pod Width	0.263	0.114
Pod Height	0.257	0.120
Roundness	0.328	0.111
Pod wall thickness	0.265	0.102
Fiber	0.500	0.108

Multiple Correlation Analysis among Traits

We performed Pearson's multiple correlation analysis to investigate whether any traits were positively or negatively associated. In particular, we were interested in whether: 1) performance of RI lines for root rot resistance was correlated within OR and WI environments 2) between Oregon and Wisconsin environments; 3) whether root morphological traits were correlated with disease ratings; and 4) whether pod traits were correlated with each other and with disease and root traits (Tables 11-15).

Oregon data was significantly correlated among years, with the highest correlation (r = 0.27) occurring between OR 2010 and 2011 (Table. 11). Correlations among Oregon environments were generally low and of a similar magnitude to the OR 2010-2011 comparison. WI July 2011 was correlated with WI August 2011, which was expected considering that data was taken at different times from the same plot. However, neither of the Wisconsin 2011 environments were correlated with WI July 2012 data. The only significant OR-WI correlations occurred for OR 2011 with WI July 2011 and WI Aug 2011 (r = 0.19 for each).

Pod length was significantly correlated with width and height, but width was not correlated with height (Table 12). Pod width and height were significantly correlated with pod cross section shape as would be expected since width and height are used to calculate cross section shape. Pod wall thickness was positively correlated with pod width and negatively correlated with pod cross-section shape. Neither pod length or pod height was correlated with wall thickness. Pod fiber was significantly negatively correlated with pod width and wall thickness, but positively correlated with pod cross section shape reflecting the fact that high fiber pods tend to have thinner walls and an oval cross-section shape.

Basal root and taproot diameter were highly significantly and positively correlated (Table 13). Interestingly, shoot biomass was significantly and positively correlated with basal root and taproot diameter, and weakly but positively correlated with deep basal root angle, root angle average, and geometric mean root angle. All root angle measurements were correlated with one another. All were positively correlated except shallow basal root angle was negatively correlated with root angle difference. Basal root whorl was correlated only with deep basal root angle, and adventitious roots were not correlated with any other trait.

Several associations were apparent between morphological characters and root rot resistance (Table 14). OR 2010 and OR 2012 root rot resistance was significantly and

negatively associated with basal root diameter. OR 2011 was negatively associated with shoot biomass, deep root angle, average root angle, and geometric mean root angle. OR 2012 showed the strongest association with root traits and exhibited the same pattern as OR 2011. In addition, OR 2012 was negatively associated with taproot diameter and root angle difference. There was some similarity between the WI 2011 data and the Oregon data in that both WI July 2011 and WI August 2011 showed a significant positive association with adventitious roots. In addition, WI August 2011 was significantly and negatively associated with taproot diameter and shoot biomass. WI July 2012 exhibited no significant associations with any other trait.

Wisconsin July and Aug 2011 root rot data were both negatively correlated with pod length, and pod length was correlated with deep basal root angle, root angle average, and root angle difference (Table 15). Among pod traits, pod fiber was negatively associated with basal root diameter. Pod wall thickness was positively correlated with shoot biomass. Pod cross-section shape was negatively correlated with adventitious roots, and pod length was negatively correlated with deep basal root angle, root angle average, and root angle difference. Adventitious roots were correlated with pod cross section shape and shoot biomass was correlated with pod wall thickness.

<u>Table 11.</u> Pearson correlation coefficients for root rot disease for a common bean recombinant inbred population for Oregon in 2010, 2011, 2012, and Wisconsin in 2011 and 2012.

	<u>OR 2011</u>	OR 2012	WI Aug 2011	<u>WI July 2011</u>	<u>WI July 2012</u>
OR 2010	0.27**	0.26***	-0.00^{ns}	$0.05^{\rm ns}$	-0.06^{ns}
OR 2011		0.24**	0.18*	0.19*	0.09^{ns}
OR 2012			0.04 ^{ns}	0.09^{ns}	-0.05 ^{ns}
WI Aug 2011				0.77***	0.12 ^{ns}
WI July 2011					0.02^{ns}

^{* =} significant at P < 0.05; ** = significant at P < 0.01; and *** significant at P < 0.001. ns = not significant. Probability > $|\mathbf{r}|$ under H_0 : Rho=0.

<u>Table 12.</u> Pearson multiple correlation coefficients for pod traits in a recombinant inbred common bean population grown in Corvallis, OR in 2010.

	<u>Pod</u>	<u>Pod</u>	Pod shape	Pod wall	
	width	<u>height</u>	cross section	<u>thickness</u>	Pod fiber
Pod length	0.21**	0.28***	-0.01 ^{ns}	0.06^{ns}	0.04^{ns}
Pod width		0.14^{ns}	-0.55***	0.39***	-0.33***
Pod height			0.55***	-0.00^{ns}	0.19*
Pod shape cro	ss section			0.31***	0.37***
Pod wall thick	ness				-0.35***

^{* =} significant at P < 0.05; ** = significant at P < 0.01; and *** significant at P < 0.001. ns = not significant. Probability > |r| under H₀: Rho=0.

<u>Table 13.</u> Pearson multiple correlation coefficients for root (shovelomics) traits in a recombinant inbred common bean population grown in Corvallis, OR in 2012.

	Basal root Diam.	Taproot Diam.	Root Angle total	Shoot Biomass	Adventit- ious Roots	Shallow Basal Root Angle	<u>Deep</u> <u>Basal</u> <u>Root</u> <u>Angle</u>	Root Angle Ave	Root Angle Difference	Root Angle geomean
Basal Root Whorl	$0.08^{\rm ns}$	0.06 ^{ns}	0.10^{ns}	0.07 ^{ns}	0.05 ^{ns}	0.07 ^{ns}	0.15*	0.14 ^{ns}	0.10 ^{ns}	0.14 ^{ns}
Basal Root Diameter		0.47***	0.03 ^{ns}	0.55***	-0.14 ^{ns}	$0.00^{\rm ns}$	0.04 ^{ns}	0.03 ^{ns}	0.03 ^{ns}	0.06 ^{ns}
Taproot Diameter			-0.08 ^{ns}	0.35***	-0.06 ^{ns}	0.02 ^{ns}	-0.06 ^{ns}	-0.02 ^{ns}	-0.08 ^{ns}	-0.06 ^{ns}
Root Angle Total				0.12 ^{ns}	-0.07 ^{ns}	-0.34***	0.71***	0.30***	0.99***	0.90***
Shoot Biomass					-0.08 ^{ns}	0.07 ^{ns}	0.17*	0.15*	0.12 ^{ns}	0.17*
Adventitious Roots						-0.02 ^{ns}	0.08^{ns}	-0.06 ^{ns}	0.07 ^{ns}	-0.07 ^{ns}
Shallow Basal Root										
Angle							0.41***	0.78***	-0.34***	0.07^{ns}
Deep Basal Root Angle								0.88***	0.71***	0.92***
Root Angle Average									0.30***	0.66***
Root Angle Difference		2 0 5 aluk	• • •	D 400	4 1 skelete *		D 4 0 004		· · · · · · · · · · · · · · · · · · ·	0.90***

^{* =} significant at P < 0.05; ** = significant at P < 0.01; and *** significant at P < 0.001. ns = not significant. Probability > $|\mathbf{r}|$ under H_0 : Rho=0.

<u>Table 14.</u> Pearson correlation coefficients analysis for root rot and shovelomics, pod traits. Root rot evaluations are broken out by year and location (2010, 2011, 2012, OR and WI). Only selected comparisons where statistical significance in the row or column was observed are shown.

					<u>Deep</u>			
	<u>Basal</u>				<u>basal</u>	<u>Root</u>	<u>Root</u>	Root
	<u>root</u>	<u>Taproot</u>	<u>Shoot</u>	<u>Adventitious</u>	<u>root</u>	<u>angle</u>	<u>angle</u>	<u>angle</u>
	<u>Diameter</u>	<u>Diameter</u>	Biomass	<u>roots</u>	<u>angle</u>	<u>ave</u>	<u>diff</u>	<u>geomean</u>
OR 2010	-0.22**	-0.08^{ns}	-0.12^{ns}	0.02^{ns}	-0.08^{ns}	-0.05^{ns}	-0.07^{ns}	-0.10^{ns}
OR 2011	$-0.05^{\rm ns}$	-0.09^{ns}	-0.16*	-0.03^{ns}	-0.19*	-0.17*	-0.12^{ns}	-0.17*
OR 2012	-0.47***	-0.33***	-0.44***	0.08ns	-0.21***	-0.17*	-0.18*	-0.23***
WI Aug								
2011	-0.14^{ns}	-0.22**	-0.18*	0.24**	-0.06^{ns}	-0.07^{ns}	-0.01 ^{ns}	-0.04^{ns}
WI July								
2011	-0.06^{ns}	-0.09^{ns}	-0.09^{ns}	0.25***	-0.10^{ns}	-0.13^{ns}	-0.01 ^{ns}	-0.07^{ns}

^{* =} significant at P < 0.05; ** = significant at P < 0.01; and *** significant at P < 0.001. ns = not significant. Probability > $|\mathbf{r}|$ under H_0 : Rho=0.

<u>Table 15.</u> Pearson correlation coefficients analysis for root rot and pod traits. Root rot evaluations are broken out by year and location (2010, 2011, 2012, OR and WI). Only selected comparisons where statistical significance in the row or column was observed are shown.

		<u>Pod</u>	Pod shape	Pod wall
	<u>Fiber</u>	<u>length</u>	cross section	<u>thickness</u>
OR 2010	0.17*	0.09^{ns}	$-0.07^{\rm ns}$	-0.00 ^{ns}
OR 2011	0.14 ^{ns}	0.09^{ns}	$-0.00^{\rm ns}$	$0.00^{\rm ns}$
OR 2012	0.04^{ns}	-0.01 ^{ns}	-0.12^{ns}	-0.08 ^{ns}
WI Aug 2011	0.04 ^{ns}	-0.24 ^{ns}	-0.11 ^{ns}	-0.01 ^{ns}
WI July 2011	-0.00^{ns}	-0.25**	-0.14 ^{ns}	-0.047 ^{ns}
Shoot Biomass	-0.14 ^{ns}	-0.02^{ns}	$0.08^{\rm ns}$	0.21**
Advent roots	-0.13 ^{ns}	-0.01 ^{ns}	-0.21*	0.04 ^{ns}
Deep basal root angle	-0.08^{ns}	0.22**	$0.08^{\rm ns}$	0.08 ^{ns}
Root angle ave	-0.03 ^{ns}	-0.19*	$0.07^{\rm ns}$	0.05^{ns}
Root angle diff	-0.12 ^{ns}	-0.17*	$0.06^{\rm ns}$	0.09 ^{ns}

^{* =} significant at P < 0.05; ** = significant at P < 0.01; and *** significant at P < 0.001. ns = not significant. Probability > $|\mathbf{r}|$ under H_0 : Rho=0.

RR138 Resistant Lines

One of the major objectives of this project was to identify lines within the RR138 population that have superior resistance, and ideally superior resistance combined with acceptable snap bean processing characteristics. It was also important to determine if the best performing lines were common to both Oregon and Wisconsin. In Oregon, the top five resistant RI lines included: RR138-23, RR138-31, RR138-43, RR138-104 and RR138-105. RR138-114c ranked in the top ten resistant lines (but not top five) in OR but was of specific interest due to its acceptable processing characteristics including white flowers, white seed, and partial strings. We expect that RR138-114c could be a good resistant parent. In Wisconsin the top five resistant lines included RR138-25, RR138-78, RR138-83, RR138-106, and RR138-136. The best performing lines within the RR138 population were not consistent between environments. The top performing resistant lines in data averaged within OR and WI data sets were RR138-23, RR138-25, RR138-78, RR138-104, R138-105. Figure 12 shows that RR6950 was the most resistant line in both environments. RR138-130 was moderately

resistant to *F. solani* in OR but susceptible to *A. euteiches* in WI, conversely RR138-37 was moderately resistant to *A. euteiches* in WI and susceptible to *F. solani* in OR (Fig. 12).

Figure 12. Scatter plot of average root rot resistance scores of RR138 RI common bean population in OR 2011, 2012 (x axis) and WI 2011, 2012 (y axis).

Linkage Map Assembly

The linkage map was populated with 1,689 SNPs, and was 1,196cM in length. Average marker density was one SNP for every 1.4cM, spanning across all 11 linkage groups (Fig. 13). Pv01 had two stretches of low recombination between three clustering groups of markers. Because we knew map locations for most SNPs, we were able to assign blocks to linkage groups and obtain the correct orientation. Pv11 also had one stretch with low recombination between two groups mapping to Pv11. These groups were also assigned and aligned using prior information on SNP location and position. While average marker density was one SNP per 1.4 cM, there were large gaps on almost every linkage group. These ranged from seven to almost 50 cM in length. There were numerous co-segregating SNPs mapping to the same location.

Figure 13. RR138 *P. vulgaris* recombinant inbred mapping population linkage map with 11 linkage groups, and 1,689 SNPs.

Fig 13 (cont.).

Fig 13 (cont.).

Fig 13 (cont.).

Quantitative Trait Loci Results

Chromosomes Pv01 and Pv11 had gaps without recombination for distances of roughly 50cM. Therefore we broke Pv01 into three groups and Pv11 into two groups, with unknown distance and association between groups (Fig 14, Tables 16 and 17). Sixteen QTL in total were found associated with root traits and root rot disease resistance (Table 16). Two QTL associated with F. solani root rot resistance were found from 2011 data. F. solani QTL are located on Pv03 and Pv07 explained 9 and 22% of the total genetic variation, respectively. "SNP0928_7" on Pv07 was associated with the most robust F. solani QTL and will be valuable for MAS applications (Table 16). QTL for A. euteiches resistance were found on the same three chromosomes (Pv02, Pv04, Pv06) in all three years, but explained less of the total genetic variation. A. euteiches resistance had R² averaged over three environments of 0.13, 0.07, and 0.05 for the three QTL, respectively. Wisconsin root rot scores from different environments formed clusters on Pv02, Pv04, and Pv06. F. solani QTL on Pv03 clustered closely with deep basal root angle and root angle geometric mean. F. solani QTL on chromosome 7 was not associated with any other traits (Table 17). The most robust A. euteiches resistance QTL (average R² of 0.13) was associated with "SNP0508_2" and will be valuable for MAS new applications.

Taproot diameter QTL mapped to Pv02 and Pv05 with R² of 0.10 and 0.11. Shallow basal root angle QTL mapped to Pv05 with a R² of 0.19. Deep basal root angle also mapped to Pv03 but has a R² of 0.00. Root angle geometric mean QTL mapped to Pv03 but also had a R² of 0.00. Pod length, height, and pod strings clustered together on Pv01, QTL for pod length and height also clustered together on Pv03 (Fig.15). Pv04 has QTL for fiber, pod width, pod wall thickness, and pod height. Pv06 also has QTL for pod height, width, pod length and pod wall thickness.

<u>Figure 14.</u> QTL for root rot resistance and shovelomics (root) traits in a common bean recombinant inbred population. Solid block to the right of the linkage group indicates QTL 1-LOD score, error bars represent 2-LOD score. Key to QTL designations can be found in Table 16.

Figure 14 (cont.)

<u>Figure 15.</u> QTL for pod morphology traits in a common bean recombinant inbred population. Solid block indicates QTL 1-LOD score, error bars represent 2-LOD score. Refer to Table 17 for QTL designations.

Figure 15 (cont.).

<u>Table 16.</u> Shovelomics (root trait) and root rot disease resistance QTL^x for a recombinant inbred common bean population.

		<u>QTL</u>					<u>2-LOD</u>	<u>1-LOI</u>	<u>)</u>	Position of
<u>QTL</u>		<u>peak</u>		<u>LOD</u>	<u>Additive</u>		confidence	<u>confidence</u>	<u>e</u>	<u>closest</u>
<u>number</u>	Chrom.	position	$\underline{\text{LOD}^{\text{y}}}$	<u>threshold</u>	<u>effect</u>	\mathbf{R}^{2z}	interva	<u>l</u> interva	d Closest SNP	<u>SNP</u>
				OR	2011 F. so.	lani, FF	RROR11			
1	3	22.8	6.2	4.0	0.2283 0	.09	(19-23.8)	(19.9-23.8)	SNP0240_3	22.8
2	7	47.8	11.5	4.0	0.3211 0	.22	(48.8-61.9)	(61.1-62.9)	SNP0928_7	47.9
				WI 2011 A	ug A. euteic	hes, AR	RWI11AUGA	VE		
1	2	55.5	7.6	3.9	0.3069	0.17	(50.7-58)	(51.6-57.9)	SNP0508_2	53.5
2	4	8.6	4.3	3.9	0.048	0.01	(6.9-17.3)	(7.3-14.9)	SNP1100_	7.6
3	6	12.3	7.7	3.9	-0.1936	0.05	(10.7-18)	(11.1-14.7)	SNP1454_6	14.0
				WI 2011 Ju	ıly A. euteich	bes, AR	RWI11JULYA	VE		
1	2	48.7	5.0	4.2	0.2321	0.08	(46.6-51.2)	(47.4-50)	SNP1069_2	48.7
							(108.9-	(112.8-		
2	4	113.3	5.4	4.2	0.2227	0.11	114.9)	114.9)	SNP0374_	113.3
3	6	11.3	4.2	4.2	-0.1473	0.02	(7.7-14)	(9.2-13.3)	SNP1062_	10.3
4	2	66.9	6.1	3.8	0.2438	0.16	(57.1-67.4)	(63.5-67.4)	SNP0214_	66.9
				WI 2012 Ju	ine <i>A. eutei</i>	ches, AI	RRWI12JUNA	VE		
1	2	52.6	9.3	4.0	0.2614	0.15	(50.1-59)	(52.4-56)	SNP1018_2	51.6
2	4	114.7	6.7	4.0	0.1832	0.10	(113-116.8)	(113-116)	SNP1120_4	114.9
3	6	25.1	5.6	4.0	-0.1867	0.07	(23.8-31.4)	(23.8-26.9)	SNP0814_6	25.1
				D	eep basal ro	oot ang	gle, DBRA			
1	3	37	4.8	3.5	-1.1014	0.00	(35.3-40.3)	(36-39.8	SNP0474_3	37.8
2	11b	4.5	3.5	3.5	-0.8734	0.00	(0.5-5.5)) (3.2-5.5	S) SNP0495_11	6.2
				Root	angle geon	netric r	mean, RAGM			
1	3	37	4.1	4.0	-0.6425	0.00	(35-41.8)	(36-39.9) SNP0474_3	37.8
				Sh	allow basal	root as	ngle, SBRA			
1	5	14.9	7.9	4.0	-3.2824	0.19	(12.8-16.8)	(13.9-16.3	S) SNP0402_5	14.8

Table 16 (cont.).

		$\overline{ ext{QTL}}$					<u>2-LOD</u>	<u>1-LOD</u>		Position of
<u>QTL</u>		<u>peak</u>		<u>LOD</u>	<u>Additive</u>		<u>confidence</u>	<u>confidence</u>		<u>closest</u>
<u>number</u>	Chrom.	position	LOD^{y}	<u>threshold</u>	<u>effect</u>	\mathbf{R}^{2z}	<u>interval</u>	<u>interval</u>	Closest SNP	<u>SNP</u>
		_			Taproot di	iameter	; TD			
1	2	55.5	5.9	4.1	-0.0932	0.10	(53.6-59.8)	(54.2-57.6)	SNP0508_2	53.5
 2	5	64.1	5.9	4.1	-0.1312	0.11	(62.1-73.8)	(62.1-70.2)	SNP0216_	62.1

^x Quantitative trait loci

^yLogarithm of the odds

^zPercent variation explained by the QTL

Twenty-seven total QTL associated with pod or seed traits were found (Table 17). Brown seed mapping on Pv02 explained 11% of total genetic variation. One QTL for white seed vs. colored seed was found on Pv07. Fiber QTL, mapping to Pv04 explains 21% of total genetic variation. Six QTL were discovered for pod height and six QTL for pod length. The most robust pod height QTL mapped to Pv04 and explained 26% of total genetic variation, the most significant pod length QTL maps to Pv01 and explained 12% of total genetic variation. Four QTL were discovered for pod wall thickness, the most robust of which mapped to Pv06 and explained 14% of total genetic variation. Two QTL for pod width mapped to Pv04 and Pv06 and explain 18 and 14% of total genetic variation respectively. A pod suture string QTL mapped to Pv01 and explained 60% of total genetic variation. QTL for flower color both map to Pv07 explain 70% of total genetic variation

 $\underline{\textbf{Table 17.}}$ Pod morphological trait QTL^x for a recombinant inbred common bean population.

										<u>Position</u>
		<u>QTL</u>					<u>2-LOD</u>	<u>1-LOD</u>		<u>of</u>
<u>QTL</u>		<u>peak</u>		<u>LOD</u>	<u>Additive</u>		<u>confidence</u>	<u>confidence</u>	<u>Closest</u>	<u>closest</u>
<u>number</u>	Chrom.	position	$\underline{\text{LOD}}^{\text{y}}$	<u>threshold</u>	<u>effect</u>	$\underline{\mathbf{R}^{2\mathrm{z}}}$	<u>interval</u>	<u>interval</u>	<u>SNP</u>	<u>SNP</u>
					Brown s	eed, BS				
1	2	8.2	5.2	0.2	-0.1723	0.11	(4.2-17.9)	(4.2-15)	SNP1648_	6.2
2	7	46.9	11.3	0.2	-0.2477	0.24	(43.4-48.8)	(45-47.8)	SNP1127_	46.7
					Fiber	, FB				
1	4	36.4	11.9	8.0	-0.3272	0.21	(35.4-36.9)	(35.5-36.5)	SNP0721_4	36.5
					Pod heig	ght, PH				
1	1a	22.1	5.7	4.0	-0.1218	0.01	(21.1-23.5)	(21.1-22.8)	SNP1695_	22.7
2	3	32.4	4.0	4.0	0.1152	0.01	(31.7-33)	(32.1-32.7)	SNP0321_3	33.6
3	4	36.4	14.8	4.0	-0.5449	0.26	(32.5-38.9)	(33.8-37.2)	SNP0721_4	36.5
4	5	55.5	5.4	4.0	-0.0747	0.00	(54.4-55.9)	(54.5-55.7)	SNP0489_5	56.4
5	6	14	4.4	4.0	0.2837	0.06	(10.3-20)	(11.8-17.3)	SNP1454_6	14.0
6	7	59.6	4.8	4.0	0.1246	0.01	(58.6-60.8)	(58.6-60.2)	SNP0228_	59.3
					Pod leng	gth, PL				
1	1a	16.3	7.1	3.7	-0.5358	0.12	(15.3-17.3)	(15.1-17.1)	SNP1684_1	16.3
2	3	29.6	4.2	3.7	0.3404	0.08	(24-33.6)	(25.5-32.7)	SNP0473_3	28.6
3	4	7.6	4.8	3.7	0.0695	0.00	(5.4-9.7)	(6.8-11.8)	SNP1100_	7.6
4	6	25.1	5.0	3.7	0.2179	0.02	(24.1-26.1)	(24.6-26.1)	SNP0667_6	26.7
5	9	81	10.9	3.7	0.4418	0.08	(78.9 - 82.4)	(80-82.4)	SNP1283_	81.0
6	10	43.6	4.0	3.7	0.2308	0.02	(38.6-46.6)	(41.4-45.1)	SNP1412_	43.6
				Po	od wall thic	kness, P	РWT			
1	4	35.4	8.5	4.1	0.2236	0.16	(32.8-47.6)	(32.2-36.5)	SNP0659_	35.4
2	6	38.7	8.1	4.1	0.1831	0.14	(36.3-49.4)	(37.6-46.4)	SNP0825_6	38.7

Table 17 (cont.).

											<u>Position</u>
			<u>QTL</u>					<u>2-LOD</u>	<u>1-LOD</u>		<u>of</u>
<u>Q'</u>]	Γ L		<u>peak</u>		<u>LOD</u>	<u>Additive</u>		<u>confidence</u>	<u>confidence</u>	<u>Closest</u>	<u>closest</u>
<u>numb</u>	<u>er</u>	Chrom.	position	LOD^{y}	<u>threshold</u>	<u>effect</u>	$\underline{\mathbf{R}^{2\mathrm{z}}}$	<u>interval</u>	<u>interval</u>	<u>SNP</u>	<u>SNP</u>
					Po	od wall thic	kness,	PWT			
	3	7	8	5.1	4.1	0.247	0.10	(1.3-12.2)	(3.6-11.4)	SNP1503_7	7.7
	4	8	96.1	5.5	4.1	-0.1821	0.06	(87.4-106.1)	(88.7-103.3)	SNP0375_	88.1
								,	,		
						Pod wid	th, PW				
	1	4	36.4	7.2	4.1	0.4256	0.18	(31.3-58.6)	(31.8-53.7)	SNP0721_4	36.5
	2	6	15	4.6	4.1	0.3662	0.14	(6.7-23.1)	(7-20.9)	SNP1454_6	14.0
						Purple flo	ower, Pl	F			
	1	7	51.4	50.0	0.2	-0.4381	0.77	(50.8-51.4)	(50.8-51.4)	SNP0604_	51.9
	2	7	60.6	44.1	0.2	-0.4554	0.73	(60.5-61.2)	(60.5-60.9)	SNP0635_	61.3
						Strings	s, PST	,			
	1	1a	22.1	79.5	0.2	-0.0056	0.06	(21.1-22.1)	(21.1-22.1)	SNP1695_	22.7
						White flo	wer, W	F			
	1	7	51.4	50.0	0.2	0.4381	0.77	(50.8-51.4)	(50.8-51.4)	SNP0604_	51.9
	2	7	60.6	44.1	0.2	0.4554	0.73	(60.5-61.2)	(60.5-60.9)	SNP0228_	59.3
						White se	ed, WS	,	,		
	1	7	52.8	52.0	0.2	0.4331	0.79	(52.4-53.7)	(52.4-53.7)	SNP1385_	52.9
v 🔾								•			

^x Quantitative trait loci

yLogarithm of the odds

Percent variation explained by the QTL

In table 18 we compared the top performing lines for *A. euteiches* and *F. solani* with the genotypic information for SNPs associated with disease resistance QTL. SNP0508_2 and SNP0214_2 associated with resistance QTL for *A. euteiches* were not consistent with regard to parental type found in the top five *A. euteiches* resistant lines. Both SNPs associated with *F. solani* resistance QTL expressed RR6950 parental genotype in the top five resistant lines.

<u>Table 18.</u> Top five performing A. euteiches and F. solani resistant lines showing SNPs linked to A. euteiches or F. solani QTL. A = OSU5446 genotype; B = RR6950 genotype.

<u>SNP</u>	<u>Parental</u>	<u>l genotype</u>	A. euteiches resistant RI line						
	RR6950	OSU5446	RR138-25	RR138-78	RR138-83	RR138-106	RR138-136		
SNP0508_2	BB	AA	BB	BB	AA	AA	AB		
SNP0214_2	BB	AA	BB	BB	BB	AA	BB		
<u>SNP</u>	<u>Parent</u>	al genotype		<u>F. so</u>	lani resistant	<u>RI line</u>			
SNP	Parent RR6950	osu5446	RR138_23	<u>F. so.</u> RR138-31	lani resistant RR138-43	RI line RR138-104	RR138-105		
SNP0928_7		0 71	RR138_23 AA	'		-	RR138-105 AA		

Discussion

Both OSU5446 and RR6950 parents are of Mesoamerican origin. However, there is some uncertainty about OSU5446, which was derived from the cross Smilo x OR91G, and may contain a mixture of Mesoamerican and Andean derived genes. This prediction is supported by an unpublished phylogenetic study conducted by the OSU snap bean breeding program that shows OSU5446 to be intermediate between the Andean and Mesoamerican snap bean pools. The extreme root rot susceptibility of OSU5446 is perhaps derived from its Andean heritage.

Lack of significance observed among genotypes in the RI population for root rot resistance in OR 2010 was likely due to inexperience with root rot evaluations at the time the data was collected. Although heritability was low for *F. solani* resistance, Oregon data was significantly correlated in 2010, 2011, and 2012. Oregon 2011 and 2012 trials produced more robust data, with statistically significant mean squares for model, genotype but non-significant mean squares for replication. Non-significant replications in OR suggest consistency throughout the field and experimental repeatability. Heritability variation in OR for root rot resistance from year to year illustrates the point that heritability for this trait is influenced by environmental interactions.

There was a significant effect of blocking in all WI evaluations, which suggest a lack of field uniformity for root infection. A 2012 drought event likely contributed to variation in the 2012 WI data. Although heritability was higher for *A. euteiches* than *F. solani* resistance, there was a lack of correlation in the *A. euteiches* data, suggesting that repeatability of this experiment will be difficult. This lack of correlation in WI could likely be improved with

increased replication. The VRF is on the Willamette River bottom and soils are highly variable, a more robust experimental design (e.g. lattice) could help account for this variation.

Pod suture strings were taken as a qualitative, presence or absence trait. The segregation ratio for this trait was highly distorted, with 85% of progeny showing strings. This distortion could be due to the misclassification of quantitative data collected on a qualitative scale. Another possibility to explain the segregation distortion is lack of fitness associated with stringlessness; if stringless plants were weaker they may have been selected against in the inbreeding process. In order to increase phenotyping accuracy, string data needs to be taken as a quantitative trait to account for phenotypic variation in the "degree" of stringiness. Pulling strings from ten pods per line and measuring the string pulled could accomplish characterization of stringiness. All pod trait mean squares were highly significant for model and genotype. Replicate mean squares were generally non significant with pod length being the only exception. However, pod length should be consistent across pods because this RI population was in the F₆ generation and traits should have been fixed.

It is common to conduct QTL analysis separately by environment due to the high genotype-by-environment interaction obtained when combining data for quantitative traits from year to year (Román-Avilés and Kelly, 2005). In this study we initially conducted QTL analysis across study location, year, and rep. Then, we chose to report QTL that showed consistency when averages across reps but variable by location. QTL showing consistency across replications and years are less influenced by large environmental factors, and are therefore more useful to breeding programs.

Two QTL associated with *F. solani* root rot resistance found on Pv03 and Pv07 are consistent with previous findings published by Schneider et al., (1997) and Román-Avilés and Kelly, (2005). *F. solani* QTL located on chromosome 7 accounted for 20% of the genetic variation, which could be of value for MAS. Previous *A. enteiches* QTL were found on Pv06 by Navarro et al. 2008, which corroborates one of the QTL we found. There are no published QTL for taproot diameter, deep basal root angle or shallow root angle in beans. QTL discovered from Oregon data for *F. solani* resistance do not cluster with QTL discovered from Wisconsin for *A. enteiches* root rot resistance, suggesting different genes control resistance to the different pathogens.

One QTL for pod height was found on Pv06 with a R^2 of 0.06, and this finding is consistent with another pod height QTL reported by Davis et al. (2006). Pod length QTL was reported on Pv02 by Davis (2006), which is not consistent with our findings. Pod strings were reported on Pv06 by Davis (2006), which is not consistent with our findings. Pod width QTL was reported on Pv06, Pv08 and Pv10 by Davis (2006); we found one pod width QTL on Pv06 with an R^2 of 0.14. We also found a QTL for brown seed color, which is consistent with the location of B but not V on Pv02.

Morphological characteristics correlated with resistance may provide insight into the actual mechanism of resistance – whether or not resistance is a function of architecture, morphology, or another mechanism. Characteristics associated with root rot resistance are important for breeders to consider when selecting for root rot resistance. Taproot diameter clustered with overlapping two LOD error bars with *A. euteiches* resistance on Pv02.

Most promising QTL identified from this study include, three A. euteiches QTL consistent from year to year in WI on Pv02, Pv04, and Pv06. Association of taproot

diameter with *A. euteiches* resistance QTL on Pv02 is of particular interest. Although QTL for *F. solani*, have a larger R² than A. *euteiches*, QTL for *F. solani* were less environmentally robust because they were not consistent year to year. This inconsistency of QTL from year to year could likely be improved with field technique, consistent evaluation protocols from year to year, and or a more robust experimental design. Also the development of markers associated with resistance from this study will help to eliminate field and environmental related issues with phenotyping.

The gene for determinant or indeterminate growth habit (*fin*) is located on the short arm of Pv01. All families determined to be homozygous for *Fin* (viny habit) were eliminated from the population in the F₂ generation. It is possible that fixing this locus accounted for one or more of the gaps on Pv01. Selection that occurs during the breeding process, such as eliminating *Fin*, fixes loci in certain regions of the chromosome. Fixed loci lead to monomorphism, which is un-mappable. Monomorphic regions on Pv01 could also be due to inherent monomorphism in the parents, caused by the Mesoamerican x Mesoamerican background. The Illumina Beadchip was not developed for RR138 specifically; therefore it is possible (but unlikely) that the chip did not have any markers in these regions of the RR138 population. The first SNP based map of common bean was developed using the Redhawk x Stampede population (n=245, F₂ generation) on the same Beadchip as our population. The Redhawk x Stampede linkage map does not have any gaps larger than 30cM with low recombination stretches (Cregan, 2011; McClean, 2011). Therefore we can conclude the gaps in the RR138 linkage map are most likely due to monomorphism on Pv01 and Pv11.

The Illumina SNP data generated from the 10K Beadchip was of much higher quality than INDEL markers run in-house. INDEL makers were not added to our linkage

map because they had more than 10% missing data. Missing INDEL data is likely due to higher percent error in PCR based data stemming from suboptimal thermocycler conditions, inaccurate pipetting, reagent quality, and other error inherit with working in small (15ul total reaction) volumes.

Precise and accurate phenotypic data are critical when assessing root rot resistance in common bean. More extensive measures will be taken in future trials to use standardized evaluation protocols across both years and locations. Quantitative traits are controlled by many genes and are greatly influenced by environmental factors; therefore it was necessary to account for the large genotype x environment interaction in these data. A greenhouse screen of *F. solani* and *A. euteiches* could be valuable to minimize environmental variation.

Future Studies

Although many QTL were found for the RR138 RI population, these QTL should be verified. QTL verification confirms the "portability" of QTL from one population to the next, and also may provide insight into the mechanism of inheritance. QTL could be verified by crossing the RR6950 parent with other processing beans such as bush blue lake types or other snap beans involved in the BeanCAP project to create a new RI population. Also, blue lake types could be crossed with other resistant lines in the RR138 population. The new population should be grown at both the OR and WI sites, following the same procedures for root rot evaluation. The new RI population should be analyzed with the BeanCAP 10K Beadchip to see if the same QTL exist from population to population. If the same QTL are present on this validation population, then candidate genes for root rot resistance can be evaluated.

To evaluate possible maternally inherited or cytoplasmically inherited differences in root rot resistance, it could be useful to screen the reciprocal RR137 (RR6950/OSU5446) population. This population was created but not evaluated or genotyped because of a lack of resources.

Final thoughts

QTL discovered from this study will hopefully provide useful markers for bean improvement, and the linkage map from this study can serve as a template for other breeders working with Illumina markers from the BeanCAP project. Linkage map assembly and QTL discovery for desired traits are important steps toward varietal improvement in common bean. "SNP0928_7" is a marker highly associated with *F. solani* resistance and "SNP0508_2" is a marker highly associated with *A. euteiches*. QTL and markers associated with QTL from this study will be of value to snap bean breeders developing root rot resistant lines with processing traits, and provide more information about targeting the mechanism of resistance.

References

- Abawi, G.S., and M.A.. Corrales. 1990. Root rots of beans in Latin America and Africa: Diagnosis, research methodologies, and management strategies. Ciat.
- Abawi, G., D. Crosier, and A. Cobb. 1985. Root rot of snap beans in New York. Available at http://ecommons.library.cornell.edu/handle/1813/5141 (verified 4 December 2012).
- Baggett, J.R. 1973. Seasonal patterns of *Fusarium* root rot development in resistant vs. susceptible cultivars of *Phaseolus vulgaris* L.1.: 214–216.
- Baggett, J.R., W.A. Frazier, and G.K. Vaughn. 1965. Tests of Phaseolus species for resistance to *Fusarium* root rot. Plant Disease 49: 630–633.
- Bassett, M.J. 1991. A revised linkage map of common bean. HortScience 26: 834–836.
- Beaver, J.S., and J.M. Osorno. 2009. Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168: 145–175.
- Beebe, S.E., F.A. Bliss, and H.F. Schwartz. 1981. Root rot resistance in common bean germplasm of Latin American origin. Plant Disease 65: 485–489.
- Bilgi, V.N., C.A. Bradley, S.D. Khot, K.F. Grafton, and J.B. Rasmussen. 2008. Response of dry bean genotypes to Fusarium root rot, caused by *Fusarium solani*, under field and controlled conditions. Plant Disease 92: 1197–1200.
- Boomstra, A.G., and F.A. Bliss. 1977. Inheritance of resistance to Fusarium solani f. sp. phaseoli in beans (*Phaseolus vulgaris L.*) and breeding strategy to transfer resistance. Journal of American Society for Horticultural Science 102: 186–188.
- Boomstra, A.G., F.A. Bliss, and S.E. Beebe. 1977. New sources of *Fusarium* root rot resistance. Journal of American Society for Horticultural Science 102: 182–185.
- Bravo, A., D.H. Wallace, and R.E. Wilkinson. 1969. Inheritance of resistance to *Fusarium* root rot of beans. Phytopathology 59: 1930–1933.
- Broughton, W.J., G. Hernandez, M. Blair, S. Beebe, P. Gepts, and J. Vanderleyden. 2003. Beans (*Phaseolus* spp.)—model food legumes. Plant and Soil 252: 55–128.
- Burke, D.W., and A.W. Barker. 1966. Importance of lateral roots in *Fusarium* root rot of beans. Phytopathology 56: 292–294.
- Burke, D.W., and D.E. Miller. 1983. Control of *Fusarium* root rot with resistant beans and cultural management. Plant Disease 67: 1312–1317.

- Burkholder, W.H. 1919. The dry root-rot of the bean. Cornell University.
- Chowdhury, M.A., K. Yu, and S.J. Park. 2002. Molecular mapping of root rot resistance in common beans. Bean Improvement Cooperative 45: 96–97.
- Cichy, K.A., S.S. Snapp, and W.W. Kirk. 2007. *Fusarium* root rot incidence and root system architecture in grafted common bean lines. Plant Soil 300: 233–244.
- Cregan, P. 2011. BeanCAP-2011-Cregan-Beltsville ARS -SNP markers. Available at http://www.beancap.org/Meetings.cfm (verified 26 February 2013).
- Cuesta-Marcos, A. 2012. PBG 620, 621, 622. Oregon State University. Available at http://barleyworld.org/molecular-breeding (verified 7 January 2013).
- J.W. Davis, D. Kean, B. Yorgey, D. Fourie, P.N. Miklas, & J.R. Myers 2006. A molecular marker linkage map of snap bean (*Phaseolus vulgaris*) Bean Improvement Cooperative 49: 73-74.
- Davis, J. 2009. DNA extraction protocol for *Phaseolus*.
- Falconer, D.S. 1989. Introduction to quantitative genetics. Longman, Scientific & Technical.
- Freyre, R., P.W. Skroch, V. Geffroy, A.F. Adam-Blondon, A. Shirmohamadali, W.C. Johnson, V. Llaca, R.O. Nodari, P.A. Pereira, and S.M. Tsai. 1998. Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theoretical and Applied Genetics 97: 847–856.
- Gaulin, E., C. Jacquet, A. Bottin, and B. Dumas. 2007. Root rot disease of legumes caused by *Aphanomyces euteiches*. Molecular Plant Pathology 8: 539–548.
- Hagedorn, D.J., and R.E. Rand. 1978. Developing beans resistant to Wisconsin's root rot complex and bacterial brown spot. Bean Improvement Cooperative 21: 59–60.
- Hall, R., H.F. Schwartz, J. Steadman, and R. Forster. 2005. Compendium of bean diseases. Second. American Phytopathological Society Press.
- Hallauer, A.R., M.J. Carena, and J.B.M. Filho. 2010. Quantitative genetics in maize breeding. Springer.
- Hassan, A.A., D.H. Wallace, and R.E. Wilkinson. 1971. Genetics and heritability of resistance to *Fusarium solani f. sp. phaseol*i in beans. Journal of the American Society for HortScience 96: 623–627.
- Heffer, V., M. Powelson, and K. Johnson. 2011. Plant Pathology Laboratory Manual. Available at http://bpp.oregonstate.edu/bot550-syllabus (verified 3 January 2013).

- Hoch, H.C., and D.J. Hagedorn. 1974. Studies on chemical control of bean root rot and hypocotyl rot in Wisconsin. Plant Disease 58: 941–944.
- De Jensen, C.E., R. Meronuck, and J.A. Percich. 1998. Etiology and control of kidney bean root rot in Minnesota. Bean Improvement Cooperative 41: 55.
- Kobriger, K.M., and D.J. Hagedorn. 1983. Determination of bean root rot potential in vegetable production fields of Wisconsin's central sands. Plant Disease 67: 177–178.
- Lamprecht, H. 1961. Weitere Kopplungsstudien an *Phaseolus vulgaris* mit einer Übersicht über die Koppelungsgruppen. Agr. Hort. Genet. 21: 319–332.
- Leon, M.C.C., A. Stone, and R.P. Dick. 2006. Organic soil amendments: Impacts on snap bean common root rot (*Aphanomyes euteiches*) and soil quality. Applied Soil Ecology 31: 199–210.
- Lynch, J., and K. Brown. 2013. Common Bean Shovelomics Roots Lab (Penn State University). Roots Lab (Penn State University)Available at http://plantscience.psu.edu/research/labs/roots/methods/field/shovelomics/intensive-bean-crown-phenotyping (verified 15 January 2013).
- McClean, P.E. 2011. BeanCAP-2011-McClean-NDSU-PAG-Talk. Available at http://www.beancap.org/Meetings.cfm (verified 11 February 2013).
- McClean, P.E., R.K. Lee, C. Otto, P. Gepts, and M.J. Bassett. 2002. Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (*Phaseolus vulgaris L.*). Journal of Heredity 93: 148–152.
- Miklas, P.N., J.D. Kelly, S.E. Beebe, and M.W. Blair. 2006. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147: 105–131.
- Mohan, M., S. Nair, A. Bhagwat, T.G. Krishna, M. Yano, C.R. Bhatia, and T. Sasaki. 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding 3: 87–103.
- Mukankusi, C., J. Derera, R. Melis, P.T. Gibson, and R. Buruchara. 2011. Genetic analysis of resistance to *Fusarium* root rot in common bean. Euphytica: 11–23.
- Mukankusi, C., and J. Obala. 2012. Development of *Fusarium* rot rot resistant ideotypes in common bean. CIAT: 171–177.
- Myers, J.R., and J.R. Baggett. 1999. Improvement of Snap Bean. Common bean improvement in the twenty-first century 7: 289–329.

- NASS Statistics_by_State. 2012. Available at http://www.nass.usda.gov/Statistics_by_State/index.asp (verified 3 January 2013).
- Navarro, F., M.E. Sass, and J. Nienhuis. 2008. Identification and confirmation of quantitative trait loci for root rot resistance in snap bean. Crop Science 48: 962–972.
- Navarro, F.M., M.E. Sass, and J. Nienhuis. 2009. Marker-facilitated selection for a major QTL associated with root rot resistance in snap bean. Crop Science 49: 850–856.
- Ocamb, C. 2002a. PCNB Agar Protocol.
- Ocamb, C. 2002b. Single Spore Method.
- Ocamb, C. 2009. Carnation Leaf Agar Protocol. Available at http://bpp.oregonstate.edu/ocamb (verified 17 January 2013).
- Parke, J.L., and R.E. Rand. 1989. Incorporation of crucifer green manures to reduce *Aphanomyces* root rot of snap beans. Bean Improvement Cooperative: 105–111.
- Pfender, W.F., and D.J. Hagedorn. 1982. *Aphanomyces euteiches f. sp. phaseoli*, a causal agent of bean root and hypocotyl rot. Phytopathology 72: 306–310.
- Pike, D., L. Jess, and K. Delahaut. 2003. Pest management strategic plan for succulent edible legumes in the North Central region.
- Román-Avilés, B., and J.D. Kelly. 2005. Identification of quantitative trait loci conditioning resistance to *Fusarium* root rot in common bean. Crop Science 45: 1881–1890.
- Schneider, K.A., K.F. Grafton, and J.D. Kelly. 1997. QTL analysis of resistance to *Fusarium* root rot in bean. Plant Disease 81: 107–110.
- Schneider, K.A., and J.D. Kelly. 2000. A greenhouse screening protocol for *Fusarium* root rot in bean. HortScience 35: 1095–1098.
- Silbernagel, M.J. 1987. Fusarium root rot-resistant snap bean breeding line FR-266. HortScience (USA): 5–6.
- Silbernagel, M.J., and R.M. Hannan. 1992. Use of plant introductions to develop US. bean cultivars. Use of Plant Introductions in Cultivar Development Part 2: 1–8.
- Singh, S.P., and H.F. Schwartz. 2010. Breeding Common Bean for Resistance to Diseases: A Review. Crop Science 50: 2199–2223.
- Smith, F.L., and B.R. Houston. 1960. Root rot resistance in common beans sought in plant breeding program. California Agriculture 14: 8.

- Wallace, D.H., and R.E. Wilkinson. 1965. Breeding for *Fusarium* root rot resistance in beans. Phytopathology 55: 1227–1231.
- Wallace, D.H., and R. Wilkinson. 1973. Cornell's fifty-year search for root rot resistant dry beans. NY Food Life Science 6: 18–19.
- Yang, S., and D.J. Hagedorn. 1966. Root rot of processing bean in Wisconsin. Plant Disease 50: 578–580.

Appendix 1

Pathogen verification

To verify that we were working with Fusarium solani, we collected isolates from the field and instigated Koch's postulates (Heffer et al., 2011). Susceptible check OR91G was grown in the greenhouse in F. solani contaminated soil obtained from the VRF by shoveling a quantity of soil from the center of the root rot plot. Soil was collected in early spring 2011 in wet conditions. Soil was dried for one day in the greenhouse and then one part clean potting mix was added for three parts soil from the field. After 3 weeks, the OR91G beans began to show characteristic root rot disease expression on roots and hypocotyls. The roots were washed thoroughly with water. Lesions on the roots and hypocotyls were biopsied at the border of healthy tissue and diseased tissue in ~3 mm x 3mm segments; segments were taken from the lower taproots, upper taproots, and hypocotyl regions. The roots were dipped briefly in a dilute bleach solution to eradicate external opportunistic saprophytes and then transferred to PCNB Agar (amended Nash Snyder medium) (Ocamb, 2002a):

Lesion material was allowed to incubate for one week on the Nash Snyder media at room temperature on a lab bench under 24 hour florescent lights. All colonies identified as potentially *Fusarium* were transferred to Carnation Leaf water Agar (Ocamb, 2009) to be grown in pure culture. The CLA plates were then single-spore cultured using the Single-Spore Method (Ocamb, 2002b) to obtain a bacteria-free culture. Single-spore culturing also insures one genotype of the pathogen is in the culture; therefore different isolates can be tested for pathogenicity and virulence.

Over 300 single spore CLA plates were allowed to incubate for one week. Of the 300+ plates, six were identified as pure, contaminant-free *F. solani* under a compound microscope by Dr. Cynthia Ocamb. These six *F. solani* isolates were used to make inoculum according to the procedure of Bilgi (2008; Bilgi et al., 2008). Six, 5-mm half-moons of the single spore *F. solani* culture (cut with scalpel) were placed in 125-ml conical flasks containing a presterilized sand and cornmeal mixture (45 g of regular play sand, 5 g of cornmeal, and 10 ml of distilled water). Flasks were kept at room temperature for one week and were shaken daily by hand to allow the fungus to grow throughout the contents of the flask.

In 100 ml greenhouse transplant tubes with holes in the bottom for drainage, 6g of premium grade medium-coarse vermiculite was added and compressed, followed by doses of 2g, 4g, 6g, and 8g of cornmeal – sand inoculum mix, which was then covered with 2 g of vermiculite. Two seeds of the OR91G genotype were placed on the vermiculite layer, followed by another 2g layer of vermiculite to cover the seeds. Of the six isolates, two induced *F. solani* disease symptoms on the roots and hypocotyl (Fig.16). Lesions from the inoculated 91G were biopsied identically to above procedures and then transferred to amended Nash Snyder medium. After one week, isolates were transferred to CLA and reidentified as *F. solani*, and Koch's postulates were complete.

<u>Figure 16.</u> Fusarium solani lesions and root discoloration visible on common bean susceptible check 91G. Greenhouse screen, OSU, spring 2011.

Appendix 2

SNP IDs

Position

Marker (cM) Illumina chip SNP ID

Chromosome 1 (linkage group A)

```
0.0 sc00379ln275660 94647 T C 200786316
SNP1649
SNP1617
               1.0 sc00379ln275660_34162_A_G_200725831
SNP1616
                   sc00379ln275660 25702 G A 200717371
                    sc00379ln275660_114825_G_T_200806494
SNP1632
               13
SNP1631
                    sc00379ln275660 75135 G A 200766804
SNP1636
               2.0
                    sc00893ln132397_24286_T_C_297539269
SNP1637
                    sc06660ln3300 462 G A 461765749
SNP1655
                    sc00363ln286867 100597 G A 196308151
               91
SNP1664
                    sc00363ln286867_33221_T_G_196240775
                    sc00363ln286867_45636_G_A_196253190
sc00363ln286867_149740_T_C_196357294
SNP1665
               9.6
SNP1654
              10.2
                    sc09737ln2051 933 A G 469467397
SNP1656
              11.9
SNP1660
              12.2
                    sc00010ln1529725_567896_A_G_17607486
                    sc00010ln1529725_580040_G_A_17619630
sc00010ln1529725_480586_C_A_17520176
SNP1661
              12.2
SNP1666
              12.6
                    sc00363ln286867_54211_G_A_196261765
SNP1677
              13.9
SNP1680
              15.9
                    sc00094ln619886_11162_G_A_87018335
SNP1681
              15.9
                    sc00365ln282708_48923_G_T_196829112
SNP1687
              18.3
                    sc00429ln249479_177248_G_T_213974161
SNP1686
                    sc00429ln249479 88921 A G 213885834
              18.3
                    sc00391ln267883_246781_T_C_204198795
SNP1684
              18.3
                    sc00429ln249479_1171_C_T_213798084
sc00429ln249479_234278_G_A_214031191
SNP1685
              18.3
SNP1691
              18.8
SNP1693
                    sc00072ln680079 543498 A G 73147805
              18.8
                    sc00429ln249479_244334_C_T_214041247
SNP1692
              18.8
                    sc00072ln680079_671480_T_C_73275787
sc00072ln680079_634483_G_T_73238790
SNP1689
              18.8
SNP1696
              19.1
SNP1690
                    sc00072ln680079 679349 A G 73283656
                    sc00072ln680079 \underline{\hspace{0.1cm}} 216586 \underline{\hspace{0.1cm}} A \underline{\hspace{0.1cm}} G \underline{\hspace{0.1cm}} 72820893
SNP1688
              19.4
SNP1694
                    sc00072ln680079_70031_G_A_72674338
              19.9
                    sc00317ln312743_91313_C_T_182564726
SNP1708
              20.5
SNP1742
                    sc00317ln312743 281430 C A 182754843
                    sc00317ln312743_180840_T_G_182654253
SNP1707
              21.1
SNP1715
              21.7
                    sc02874ln28148 13523 T G 420631724
SNP1706
                    sc00210ln405377_72738_T_C_144889718
              21.8
SNP1724
              21.9
                    sc00210ln405377 17561 A G 144834541
SNP1741
             22.0
                    sc01575ln68483_54623_C_T_362842915
                    sc00530ln211364_119025_T_C_237205959
sc00530ln211364_134168_C_T_237221102
SNP1736
SNP1737
              22.0
SNP1738
                    sc00530ln211364 34067 A G 237121001
                    sc00210ln405377_52596_A_G_144869576
sc00210ln405377_256460_G_T_145073440
SNP1734
              22.0
SNP1733
              22.0
SNP1739
              22.0
                    sc00742ln156216_76160_G_A_275839323
SNP1740
              22.0
                    sc00742ln156216 87880 A G 275851043
                    sc00530ln211364_111067_C_T_237198001
SNP1735
              22.0
                    sc00210ln405377_105689_G_A_144922669
SNP1732
              22.0
SNP1767
                    sc00990ln119628 114258 G T 309810438
              22.3
SNP1758
              22.3
                    sc02651ln32711 5624 T C 413830360
                    sc01319ln86860_80802_C_T_343133421
sc03956ln14587_4051_A_G_442747684
SNP1771
              22.3
SNP1748
              22.3
              22.3 sc00371ln279911 26103 G A 198498876
SNP1755
```

	D:4:	
Marker	Position (cM)	Illumina chip SNP ID
SNP1757	22.3	sc02624ln33319 31515 C T 412963802
SNP1750	22.3	sc02087ln46638_16475_T_C_391786388
SNP1753	22.3	sc01683ln62390_11080_A_G_369874921
SNP1759	22.3	sc00135ln517288_367425_T_C_110507008
SNP1761	22.3	sc00210ln405377_389248_C_T_145206228
SNP1754 SNP1743	22.3 22.3	sc02453ln36962_13800_C_T_406926569 sc00210ln405377_305019_T_G_145121999
SNP1745	22.3	sc08804ln2256 1287 A G 467462414
SNP1749	22.3	sc02021ln48846 13242 T C 388630817
SNP1762	22.3	sc00622ln185314 46140 C T 255477717
SNP1747	22.3	sc00774ln150674_27324_A_G_280712299
SNP1765	22.3	sc00936ln125574_60191_C_T_303125634
SNP1746	22.3	sc00531ln210781_203614_T_C_237501912 sc00990ln119628_108603_C_T_309804783
SNP1766 SNP1764	22.3 22.3	sc00990ln119628_108603_C_1_309804783 sc00767ln152180_62719_C_T_279688374
SNP1763	22.3	sc00622ln185314 63531 T C 255495108
SNP1760	22.3	sc00210ln405377_311020_T_C_145128000
SNP1770	22.3	sc01173ln99022_34412_T_G_329577300
SNP1769	22.3	sc00990ln119628_71145_C_T_309767325
SNP1756	22.3	sc00713ln161727_20218_C_T_271162720
SNP1779	22.7	sc02677ln32171_30459_C_T_414698568
SNP1825 SNP1813	23.5 23.6	sc02869ln28216_27693_T_C_420504969 sc00668ln172344_170438_A_G_263802911
SNP1858	23.0	sc04083ln13522 9316 G A 444539981
SNP1856	23.7	sc04527ln9990 8990 C T 449751333
SNP1816	23.7	sc00668ln172344_81179_T_C_263713652
SNP1854	23.7	sc01864ln54910_35444_T_C_380504227
SNP1847	23.7	sc00123ln535111_452464_A_C_104255549
SNP1794	24.2	sc00178ln451961_188256_T_C_131348579
SNP1851 SNP1815	24.6 24.6	sc01579ln68389_31354_G_A_363093345 sc00584ln198323 4904 A G 248154946
SNP1852	24.6	sc01779ln58355_39505_C_T_375698860
SNP1846	25.2	sc00123ln535111 348700 G T 104151785
SNP1855	25.2	sc01978ln50754_6016_C_T_386475735
SNP1817	25.2	sc01736ln60221 59053 C A 373171958
SNP1850	25.2	sc05917ln4639_3281_G_T_458914350
SNP1853 SNP1857	25.2 25.2	sc01864ln54910_28043_A_G_380496826 sc01547ln69753_53213_C_T_360906303
SNP1837 SNP1845	25.2	sc01347ll09733_33213_C_1_300900303 sc04213ln12456_3042_C_T_446224201
SNP1811	25.2	sc00446ln244493_3778_C_T_218000739
SNP1844	25.2	sc02398ln38028_20153_C_A_404870475
SNP1849	25.2	sc04914ln7320 4408 G A 453068986
SNP1843	25.2	sc01708ln61237_52775_C_A_371463695
SNP1787	25.4	sc01500ln72793_2924_T_C_357506226
SNP1783 SNP1777	25.7 25.7	sc00214ln401384_5109_G_T_146438348 sc01621ln65923_38706_A_C_365915951
SNP1777	25.7	sc00350ln291553_206330_C_T_192648007
SNP1788	26.0	sc00121ln539167 238476 G A 102965823
SNP1789	26.0	sc00178ln451961_15803_G_A_131176126
SNP1812	26.0	sc00495ln223124_87847_T_C_229587011
SNP1810	26.1	sc00388ln268967_32912_C_T_203178793
SNP1808	26.1	sc01616ln66119_64631_G_T_365611509
SNP1848 SNP1818	26.2 26.2	sc02806ln29361_27571_C_A_418686455 sc02931ln27155_8331_A_G_422207145
SNP1814	26.2	sc03914ln14899_9422_T_G_442135082
SNP1859	26.2	sc05300ln6059_3421_T_C_455627339
SNP1809	26.2	sc03527ln18713_4553_A_C_435665232
SNP1807	26.2	sc00510ln217172_93156_T_G_232889041
SNP1821	26.3	sc00214ln401384_222018_G_A_146655257
SNP1824	26.3	sc01377ln82078_49376_A_G_348004867
SNP1823 SNP1822	26.3 26.3	sc00710ln162950_119760_G_A_270773691 sc01510ln72066_66381_A_G_358293541
SNP1822 SNP1826	26.3	sc00710ln162950 3773 T G 270657704
SNP1827	26.3	sc04921ln7305_2124_G_A_453117899
51.11027	-0.5	2.2.1,2.1.1,000_2.120_11_1001111001

```
Position
Marker
           (cM)
                 Illumina chip SNP ID
SNP1820
            26.3
                  sc00214ln401384 116641 A G 146549880
                  sc01382ln81759_79975_G_A_348445183
SNP1778
            269
SNP1774
            26.9
                  sc04696ln8718 6307 T C 451330607
                 sc05505ln5547_2763_T_C 456816552
SNP1780
            26.9
SNP1768
                  sc00990ln119628_2661_T_C_309698841
SNP1744
                  sc02453ln36962_14780_G_A_406927549
            27.2
SNP1731
                  sc02389ln38347 29068 T C 404535106
SNP1713
            27.5
                 sc00210ln405377 342300 A G 145159280
SNP1714
            27.5
                  sc01823ln56500_45498_C_T_378228763
                 sc01799ln57363_49675_T_C_376865857
SNP1711
            27.5
                  sc01319ln86860_85950_T_G_343138569
SNP1695
            28.6
SNP1701
            297
                  sc01512ln72020 61284 T G 358432543
SNP1775
            31.2
                  sc01617ln66138_59915_T_C_365672912
SNP1860
            32.8
                  sc00330ln305589_252010_C_A_186735295
                  sc00152ln495391_346891_T_C_119054018
SNP1863
            32.9
                 sc06619ln3354 2437 T C 461631322
SNP1792
            33.9
                  sc00092ln621893_447451_T_C_86212041
SNP1785
            34.3
                 sc01085ln107359_20398_T_C_320496416
sc01076ln108355_54087_A_G_319559980
SNP1786
            34.3
SNP1793
            34.4
                 sc04047ln13819 2332 C T 444040854
SNP1796
            34.5
                  sc01470ln75174_59309_C_T_355337873
SNP1806
            34.5
                 sc01890ln53708_17568_G_A_381901634
sc01890ln53708_33930_G_A_381917996
SNP1828
            35.1
SNP1819
            35.1
SNP1829
                 sc02017ln49160 11477 G A 388432848
            35.1
SNP1830
            35.1
                  sc00104ln591303_297141_A_G_93359956
                  sc00839ln140109_14624_T_C_290158297
SNP1864
            35.5
                  sc03216ln22383_19721_A_G_429298664
SNP1831
            35.7
SNP1799
            35.9
                  sc00092ln621893 504022 C T 86268612
            35.9
                  sc00092ln621893\_118261\_G\_A\_85882851
SNP1797
SNP1795
                  sc01298ln88093 21486 A C 341235868
            35.9
SNP1802
            35.9
                  sc01085ln107359_64222_A_G_320540240
SNP1800
                  sc01085ln107359 16387 T C 320492405
            35.9
                  sc04444ln10591_9365_T_C_448897154
SNP1805
            35.9
SNP1798
            35.9
                  sc00092ln621893 430247 G A 86194837
                  sc04443ln10597 7676 G A 448884868
SNP1804
            359
SNP1801
            35.9
                  sc01085ln107359_22435_T_C_320498453
                  sc01085ln107359_93959_C_T_320569977
SNP1803
            359
SNP1871
            36.8
                  sc00588ln197715 123821 A G 249065716
SNP1870
                 sc00588ln197715_19380_C_T_248961275
            36.8
SNP1874
                  sc00330ln305589_178600_T_G_186661885
                 sc01254ln91704_88964_C_T_337358925
SNP1916
            38.4
SNP1925
            38.5
                  sc00149ln497276_15864_T_C_117234000
                 sc00149ln497276_467432_G_A_117685568
SNP1918
            38.8
SNP1921
                  sc01666ln63409 35570 G T 368827821
SNP1920
            38.8
                  sc00318ln310605_306510_G_A_183092666
SNP1919
            38.8
                  sc00318ln310605_278387_A_G_183064543
                 sc00318ln310605 164899 G T 182951055
SNP1914
            39.1
SNP1935
            39.9
                  sc00609ln188650_35585_T_G_253032782
SNP1950
                 sc00107ln581505_10055_C_T_94840016
Chromosome 1 (linkage group B)
SNP0883
             0.0 sc01409ln79819 3642 A C 350551440
                  sc00618ln186586_8943_T_C_254696478
SNP1104
             0.2
SNP1103
                 sc01409ln79819 37823 T G 350585621
SNP0890
                  sc00003ln2130026_78039_T_C_4402739
             6.6
                  sc00003ln2130026_86682_T_G_4411382
SNP0886
             6.6
SNP1790
                  sc00003ln2130026_1665755_G_T_5990455
            38.6
SNP1791
            38.6
                  sc00003ln2130026 1685328 C T 6010028
                  sc00003ln2130026_1913844_C_A_6238544
SNP1839
            39.0
                  sc00003ln2130026 1727598 G T 6052298
SNP1841
            390
                  sc00003ln2130026_1850170_T_C_6174870
SNP1837
            39.0
SNP1842
                 sc00003ln2130026 1836273 G A 6160973
SNP1840
            39.0
                 sc00003ln2130026_1706192_A_C_6030892
```

Maulan	Position	Illumina akin CNID ID
Marker	(cM)	Illumina chip SNP ID
SNP1836 SNP1832	39.0 39.0	sc00003ln2130026_1827265_G_A_6151965 sc00003ln2130026_1923031_T_G_6247731
SNF1832 SNP1833	39.0	sc00003ln2130026_1923031_1_G_0247731 sc00003ln2130026_1773813_T_C_6098513
SNP1838	39.0	sc00003ln2130026_1773613_1_e_0076313 sc00003ln2130026_1877471_G_A_6202171
SNP1834	39.0	sc00003ln2130026_1791042_A_G_6115742
SNP1835	39.0	sc00003ln2130026_1796976_T_C_6121676
SNP1868	40.0	sc00003ln2130026_1939422_C_T_6264122
SNP1867	40.0	sc00003ln2130026_1952717_T_G_6277417
SNP1869 SNP1872	40.0 40.9	sc00003ln2130026_1945679_A_G_6270379 sc00003ln2130026_2022040_G_A_6346740
SNP1872 SNP1873	40.9	sc00003ln2130026_2022040_G_A_6346740 sc00003ln2130026_2037421_C_A_6362121
SNP1878	41.2	sc00003ln2130026_2057421_C_A_6382551
SNP1879	41.2	sc00003ln2130026_2105132_A_G_6429832
SNP1900	41.5	sc00003ln2130026_2113635_G_A_6438335
SNP1888	41.5	sc00022ln1003704_222754_T_C_32724626
SNP1894	41.5	sc00022ln1003704_88768_G_A_32590640
SNP1892 SNP1899	41.5 41.5	sc00022ln1003704_150441_G_A_32652313 sc00022ln1003704_49856_T_G_32551728
SNP1899 SNP1897	41.5	sc00022ln1003704_49836_1_G_32331728 sc00022ln1003704_14515_T_C_32516387
SNP1889	41.5	sc00022ln1003704_14313_1_C_32310387 sc00022ln1003704_229675_G_A_32731547
SNP1895	41.5	sc00022ln1003704 96352 G A 32598224
SNP1896	41.5	sc00022ln1003704_72603_G_A_32574475
SNP1901	41.5	sc00022ln1003704_161378_T_C_32663250
SNP1890	41.5	sc00022ln1003704_109623_C_T_32611495
SNP1898 SNP1891	41.5 41.5	sc00022ln1003704_22533_G_A_32524405 sc00022ln1003704_129339_C_A_32631211
SNP1891 SNP1893	41.5	sc00022ln1003704_129339_C_A_32631211 sc00022ln1003704_178718_A_G_32680590
SNP1908	41.7	sc00022ln1003704_178718_A_G_32080390 sc00022ln1003704_280981_C_T_32782853
SNP1909	41.7	sc00022ln1003704 288203 G A 32790075
SNP1906	41.7	sc00022ln1003704_250823_C_T_32752695
SNP1907	41.7	sc00022ln1003704_257773_T_C_32759645
SNP1905	41.7	sc00022ln1003704_237144_G_A_32739016
SNP1910	41.7	sc00022ln1003704_298549_T_C_32800421 sc00022ln1003704_358073_T_C_32859945
SNP1913 SNP1923	42.0 42.6	sc00022ln1003704_338073_1_C_32839943 sc00022ln1003704_368659_C_T_32870531
SNP1929	42.9	sc00022ln1003704_508037_C_1_52870351 sc00022ln1003704_443242_G_A_32945114
SNP1927	42.9	sc00022ln1003704_436883_T_C_32938755
SNP1928	42.9	sc00022ln1003704_392437_G_T_32894309
SNP1926	42.9	sc00022ln1003704_402626_A_C_32904498
SNP1922	43.2	sc00022ln1003704_456344_C_T_32958216
SNP1924 SNP1936	43.2 43.8	sc00022ln1003704_463708_T_C_32965580 sc00022ln1003704_506857_G_A_33008729
SNP1937	43.8	sc00022ln1003704_500837_G_A_53008729 sc00022ln1003704_496801_T_C_32998673
SNP1934	44.0	sc00022ln1003704 573193 G A 33075065
SNP1930	44.0	sc00022ln1003704_584531_T_C_33086403
SNP1933	44.0	sc00022ln1003704_564322_G_A_33066194
SNP1932	44.0	sc00022ln1003704_549400_T_G_33051272
SNP1931	44.0	sc00022ln1003704_537208_A_C_33039080 sc00022ln1003704_766093_T_C_33267965
SNP1943 SNP1941	44.3 44.3	sc00022ln1003704_/66093_1_C_3326/965
SNP1941 SNP1948	44.3	sc00022ln1003704_728987_T_G_33230859 sc00022ln1003704_642816_C_T_33144688
SNP1944	44.3	sc00022ln1003704_774761_G_A_33276633
SNP1939	44.3	sc00022ln1003704 664493 T C 33166365
SNP1945	44.3	sc00022ln1003704_683637_G_A_33185509
SNP1946	44.3	sc00022ln1003704_653691_C_A_33155563
SNP1947	44.3	sc00022ln1003704_672209_C_T_33174081
SNP1942 SNP1940	44.3 44.3	sc00022ln1003704_757321_C_T_33259193 sc00022ln1003704_796405_C_T_33298277
Chromoso	ome 1 (lir	nkage group C)
SNP1584	0.0	sc06773ln3195_2432_C_T_462133906
SNP1530	0.9	sc00174ln464616_197313_T_C_129518777
SNP1593	1.1	sc00174ln464616_423588_A_C_129745052

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP1592	1.1	sc00174ln464616_398452_T_C_129719916
SNP1635	1.2	sc00174ln464616_364371_A_G_129685835
SNP1109	2.7	sc00174ln464616_164843_C_T_129486307
Chromoso	ome 2	
SNP1644	0.0	sc00329ln305942_295481_C_T_186472824
SNP1651	0.0	sc00329ln305942_288962_A_G_186466305
SNP1634 SNP1638	0.2 0.2	sc00445ln245016_240603_A_G_217992548 sc00445ln245016_215631_T_C_217967576
SNP1623	0.2	sc00445ln245016_215051_1_C_217907576 sc00445ln245016_132522_T_G_217884467
SNP1590	0.8	sc00445ln245016_138723_C_T_217890668
SNP1606	0.8	sc00445ln245016_151650_G_A_217903595
SNP1591	1.4	sc00445ln245016_77514_C_T_217829459
SNP1587	2.2	sc00445ln245016_5502_G_T_217757447
SNP1608 SNP1625	4.1 4.1	sc03853ln15364_4319_T_C_441207033 sc01349ln84482_12750_C_A_345639403
SNP1607	4.1	sc01349ln84482_14096_G_A_345640749
SNP1630	4.6	sc00027ln946161_833887_C_A_38214491
SNP1615	4.8	sc00027ln946161_851660_A_G_38232264
SNP1629	4.8	sc00027ln946161_860645_G_T_38241249
SNP1657 SNP1648	6.1 8.1	sc00027ln946161_730836_A_C_38111440 sc00027ln946161_635442_C_T_38016046
SNP1431	24.1	sc00113ln562714 309950 G A 98598294
SNP1485	24.3	sc00113ln562714_289656_G_A_98578000
SNP1582	25.9	sc00038ln842375_668515_C_T_47920855
SNP1598	26.5	sc00038ln842375_617118_G_A_47869458
SNP1524	28.1	sc00038ln842375_417772_A_G_47670112
SNP1528 SNP1541	29.2 29.4	sc00038ln842375_26658_T_C_47278998 sc00038ln842375_129949_C_A_47382289
SNP1536	29.4	sc00038ln842375_169626_C_T_47421966
SNP1545	29.6	sc00038ln842375_95997_C_T_47348337
SNP1459	30.3	sc00038ln842375_11154_C_T_47263494
SNP1453	35.6	sc00025ln963649_550384_G_A_36008586
SNP1549 SNP1552	37.2 37.9	sc00025ln963649_165119_T_G_35623321 sc00025ln963649_43866 G A 35502068
SNP1604	38.6	sc00160ln486724 431436 G A 123074367
SNP1588	38.9	sc00160ln486724_338720_T_C_122981651
SNP1547	40.5	sc00160ln486724_33885_G_T_122676816
SNP1461	40.7	sc00246ln359617_47392_A_G_158562518
SNP1546 SNP1015	42.1 46.7	sc00140ln505616_322821_C_A_113026901 sc00675ln170111_135617_A_G_264966309
SNP 1015	47.3	sc01393ln80958 79989 A G 349341321
SNP1090	47.6	sc00096ln611995_472043_C_T_88711293
SNP0491	49.1	sc00315ln315270_1674_T_G_181845816
SNP0646	49.1	sc00315ln315270_155814_T_C_181999956
SNP0650 SNP0626	49.8 50.1	sc00529ln211768_24087_G_A_236899253 sc01833ln56229_15291_G_T_378762097
SNP1069	51.1	sc02071ln47170_1093_C_T_391019662
SNP1020	51.7	sc07622ln2660 2025 G T 464583521
SNP1068	52.3	sc02282ln40743_38518_C_T_400315510
SNP0925	53.3	sc00709ln162995_50593_C_T_270541529
SNP0606	53.4 53.9	sc08562ln2324_910_A_G_466908661 sc00203ln411639 125212 C A 142083545
SNP1040 SNP0821	54.1	sc00203lll411039_123212_C_A_142083343 sc00268ln345453_135128_C_T_166424412
SNP1011	54.3	sc00268ln345453_135128_C_T_166424412 sc00268ln345453_800_A_C_166290084
SNP0924	54.5	sc00472ln234359 114102 C T 224340219
SNP0802	54.5	sc00295ln327474_63362_T_C_175470364
SNP0638	54.7	sc00472ln234359_129824_G_T_224355941
SNP0652 SNP1018	55.0 55.1	sc00472ln234359_154527_C_T_224380644 sc00295ln327474_42925_C_T_175449927
SNP1018 SNP0843	56.2	sc00066ln694643 383064 A G 68853679
SNP1216	56.2	sc00066ln694643_390859_G_A_68861474
SNP1039	56.2	sc00066ln694643_337424_G_A_68808039

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0508	57.9	sc00292ln329955_200442_A_G_174620018
SNP0357	60.5	sc00647ln176898_54685_T_C_260012255
SNP0479	60.5	sc00046ln768108_719242_G_A_54515406
SNP0226	60.7 60.9	sc00046ln768108_737400_C_T_54533564 sc00046ln768108_726883_T_C_54523047
SNP0653 SNP0856	62.1	sc00142ln502928_184253_C_T_113898827
SNP0507	63.5	sc00173ln465281 51222 G A 128907405
SNP0628	64.8	sc00272ln341852_83082_T_C_167751054
SNP0265	69.7	sc00116ln556045 416299 A G 100384378
SNP0362	69.7	sc00116ln556045_550252_C_T_100518331
SNP0219	70.3	sc07321ln2788_2298_T_C_463763859
SNP0120	72.9	sc01189ln97637_25738_A_G_331144848
SNP0212	73.6	sc02610ln33537_19618_A_C_412483698
SNP0208	73.7	sc00485ln227615_200282_T_C_227438285
SNP0166 SNP0139	74.0 74.1	sc01301ln87877_11222_G_A_341489752 sc00137ln512899 393148 C A 111565432
SNP0139 SNP0229	74.1	sc00137ln312899_393148_C_A_111363432 sc00137ln512899_287286_T_G_111459570
SNP0184	74.3	sc00137ln512899_287280_1_G_111437370 sc00137ln512899_418822_T_G_111591106
SNP0142	74.9	sc00137ln512899 172990 C T 111345274
SNP0214	75.1	sc00137ln512899 206565 C T 111378849
SNP0351	75.7	sc01189ln97637_65076_C_A_331184186
SNP0301	76.3	sc00020ln1038212 64047 G A 30502273
SNP0123	76.3	sc00020ln1038212_234982_G_T_30673208
SNP0200	76.5	sc00500ln220624_64815_G_A_230674737
SNP0127	76.5	sc00131ln526208_249719_A_G_108303723
SNP0143 SNP0097	76.6	sc00458ln240490_137293_T_C_221046632
SNP0097 SNP0058	76.6 76.9	sc00458ln240490_31333_C_A_220940672 sc00458ln240490_37605_G_A_220946944
SNP0063	76.9	sc00020ln1038212 293965 A G 30732191
SNP0003	80.3	sc01914ln52793 14253 A G 383172833
SNP0001	80.5	sc01125ln103214 7864 T G 324704424
SNP0002	80.6	sc00544ln207944_169909_A_G_240186778
SNP0064	82.6	sc03074ln24947_18318_G_A_425946782
SNP0197	83.6	sc01532ln70832_44217_A_G_359842789
SNP0314	83.6	sc00948ln124443_99266_G_A_304665710
SNP0217 SNP0467	83.9 84.0	sc02059ln47430_832_C_T_390451831 sc01586ln68037_13977_C_T_363553596
SNP0462	84.0	sc01083ln107478_60058_G_A_320321242
SNP0632	84.2	sc01083ln107478_45354_T_C_320306538
SNP0358	84.5	sc02952ln26930_23478_C_A_422790034
SNP0267	84.5	sc03418ln19919_18910_T_C_433575771
SNP0076	100.0	sc00240ln364462_310691_G_A_156651751
SNP0087	100.3	sc00168ln474152_409725_C_T_126905401
SNP0066	100.8	sc00168ln474152_388057_G_A_126883733
SNP0062	101.4	sc00168ln474152_338335_T_G_126834011 sc01444ln76938_23133_A_G_353323104
SNP0225 SNP0196	103.0 103.5	sc0168ln474152_238768_C_T_126734444
SNP1007	103.5	sc00159ln488287_81998_A_G_122236642
SNP1198	109.0	sc00159ln488287_193256_T_C_122347900
SNP0994	109.1	sc00159ln488287 235299 T C 122389943
SNP1006	109.2	sc00159ln488287_146919_C_T_122301563 sc00159ln488287_357456_C_T_122512100
SNP0733	111.0	sc00159ln488287_357456_C_T_122512100
SNP0747	111.0	sc00159ln488287_406701_C_A_122561345
SNP0932	111.1	sc00159ln488287_337399_G_A_122492043
SNP1035	157.7	sc00831ln140879_2432_T_C_289020324
SNP0640 SNP0869	157.9 158.5	sc01246ln92400_43679_T_G_336576698 sc01246ln92400_90888_A_G_336623907
Chromoso		5001240II/2400_/0000_A_G_550025707
SNP0211	0.0	sc00532ln210456 569 T G 237509648
SNP0211 SNP0360	0.0	sc00532ln210456_2355_T_C_237511434
SNP0231	1.6	sc00396ln266220 58074 T G 205344344
SNP0195	2.3	sc00845ln139097_23992_T_C_291006353

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0119	4.4	sc00768ln151650_119734_T_C_279897569
SNP0121	4.7	sc00230ln376030_189804_T_C_152829668
SNP0138	5.6	sc00321ln309586_5299_T_C_183721855
SNP0124 SNP0106	5.8 5.8	sc00230ln376030_312925_A_G_152952789 sc00230ln376030_304345_C_T_152944209
SNP0122	5.8	sc00230ln376030_504545_C_1_152544207 sc00230ln376030_253730_T_C_152893594
SNP0111	7.2	sc01257ln91055_6471_C_A_337550610
SNP0107	7.8	sc00073ln679937_158510_G_A_73442896
SNP0113	8.1	sc06842ln3135_2358_A_G_462352164
SNP0071 SNP0041	8.1 8.6	sc00335ln300518_236671_C_T_188233617 sc00335ln300518_78923_C_T_188075869
SNP0041 SNP0215	8.0 9.4	sc05252ln6198 2781 A G 455332402
SNP0059	9.5	sc00708ln163415 83910 C A 270411431
SNP0035	9.7	sc03119ln23990 22247 C A 427053300
SNP0029	10.0	sc01285ln88992 24573 G A 340088984
SNP0014	10.0	sc01712ln61145_1792_G_A_371657556
SNP0052 SNP0050	10.1 10.1	sc00248ln358236_1343_A_C_159234990 sc00490ln226044_15155_G_A_228388162
SNP0030	10.1	sc00204ln409266 275401 T G 142645373
SNP0054	10.6	sc00204ln409266_254317_T_C_142624289
SNP0021	10.6	sc06375ln3614 3124 C T 460784476
SNP0012	11.0	sc00204ln409266_146040_T_C_142516012
SNP0049	11.2	sc00204ln409266_26970_C_T_142396942
SNP0053	11.8	sc00204ln409266_90541_C_T_142460513 sc00999ln117802_80543_A_G_310845404
SNP0015 SNP0036	11.8 12.1	sc00349ln291732_158198_A_C_192308143
SNP0040	12.1	sc00204ln409266 362090 G T 142732062
SNP0061	12.1	sc00236ln366267_289928_C_T_155168008
SNP0081	13.1	sc00204ln409266_62538_G_A_142432510
SNP0022	15.3	sc02000ln49890_47807_C_T_387627479
SNP0067	15.3	sc00269ln345234_127356_C_T_166762093
SNP0150 SNP0082	15.5 15.9	sc01921ln52616_39047_G_A_383566454
SNP0082 SNP0034	15.9	sc00735ln157759_40996_T_C_274705914 sc01874ln54718_39802_A_G_381056747
SNP0077	15.9	sc00735ln157759_32278_G_A_274697196
SNP0072	16.2	sc01098ln106069_3035_C_T_321866176
SNP0023	19.1	sc00646ln177464_11464_G_A_259791570
SNP0242	19.6	sc01195ln97166_10656_G_A_331714567
SNP0761	23.0	sc01686ln62348_42028_C_A_370092974
SNP0250 SNP0169	24.5 25.0	sc00200ln416439_403086_G_A_141118889 sc00231ln375672_331271_A_G_153347165
SNP0094	25.0	sc00291ln375072_551271_A_G_155547105 sc00291ln330179_252411_G_A_174341808
SNP0259	25.0	sc00231ln375672 293612 G T 153309506
SNP0240	26.6	sc01569ln68655_2400_T_C_362379133 sc00414ln257081_122947_C_T_210113151
SNP0239	27.2	sc00414ln257081_122947_C_T_210113151
SNP0157	27.2	sc00414ln257081_16174_A_G_210006378
SNP0156 SNP0341	27.5 30.5	sc00409ln258567_54502_C_T_208753856 sc00332ln302123_47103_A_C_187139819
SNP0295	30.5	sc00167ln474376 473968 T C 126495268
SNP0424	30.6	sc08527ln2329_1328_G_T_466827734
SNP0400	30.9	sc00250ln357264_59902_G_A_160009852
SNP0335	31.7	sc00250ln357264_239806_G_A_160189756
SNP0182	32.0	sc00079ln659676_521790_T_C_77859353
SNP0232 SNP0327	32.1 32.8	sc00079ln659676_348912_C_T_77686475 sc01252ln91868_11478_T_C_337097850
SNP0327 SNP0473	33.2	sc0117ln554132_12204_G_A_100536328
SNP0494	33.5	sc00117ln554132_12204_G_A_100550528 sc00117ln554132_92134_C_T_100616258
SNP0346	34.0	sc00117ln554132_183455_T_G_100707579
SNP0367	36.3	sc00134ln519503_433298_C_T_110053378
SNP0452	37.4	sc00877ln134903_12210_T_C_295387377
SNP0321	38.3	sc01155ln100314_99435_A_C_327851019
SNP0324 SNP0364	38.8 38.8	sc00023ln985577_158578_T_C_33664154
SNP0326	39.9	sc00023ln985577_223935_C_T_33729511 sc00433ln248396_110791_C_T_214904680

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0294	39.9	sc00433ln248396 110951 C T 214904840
SNP0503	40.6	sc00061ln715360 360246 T G 65299771
SNP0342	41.7	sc00019ln1150109_436076_T_C_29724193
SNP0347	42.2	sc06425ln3550_2313_G_A_460962991
SNP0463	42.3	sc00019ln1150109_1018006_G_T_30306123
SNP0474	42.3	sc00019ln1150109_1003173_C_T_30291290
SNP0293	44.6	sc01323ln86817_42066_C_T_343442066
SNP0158	46.0	sc00026ln958753_542033_A_G_36963884
SNP0209	46.6	sc00026ln958753_19127_G_A_36440978 sc00062ln709754_644310_C_T_66299195
SNP0194	47.3	sc00062ln709754_644310_C_T_66299195
SNP0253 SNP0453	47.6 48.4	sc00062ln709754_351627_A_G_66006512 sc00062ln709754_352767_T_G_66007652
SNP0435 SNP0435	56.9	sc00062li1/09/34_332/67_1_G_6000/632 sc09018ln2201_1342_A_G_467939381
SNP0639	58.6	sc00171ln471265_319856_C_T_128236646
Chromoso		5000171111771200_517000_611_120250010
SNP0867	0.0	sc02339ln39441_21095_A_C_402582553 sc00175ln461633_6654_C_T_129792734
SNP1279	1.3	sc00175ln461633_6654_C_1_129792734 sc00175ln461633_42284_G_A_129828364
SNP1181 SNP1182	1.4 1.4	sc00175ln461633_42284_G_A_129828364 sc00175ln461633_31081_A_G_129817161
SNP1182 SNP1280	1.4	sc00175ln461633_51081_A_G_129817161 sc00175ln461633_51085_G_A_129837165
SNP1278	1.6	sc00175ln401035_51085_G_A_125837103 sc00175ln461633_18831_G_T_129804911
SNP1261	2.0	sc00175ln461633_91931_A_G_129878011
SNP1180	2.3	sc00175ln461633 102018 G T 129888098
SNP1032	2.7	sc00175ln461633 143940 G A 129930020
SNP0988	3.7	sc00175ln461633 226118 T C 130012198
SNP1102	4.4	sc00175ln461633 325691 A G 130111771
SNP1096	4.4	sc00175ln461633_356025_A_G_130142105
SNP1095	4.4	sc00175ln461633_333799_C_T_130119879
SNP1061	5.1	sc00175ln461633_410545_C_A_130196625
SNP0898	5.9	sc00018ln1167623_30331_G_T_28150825
SNP0984	5.9	sc01035ln113702_42942_G_A_314983663
SNP0897 SNP0850	5.9 6.3	sc00018ln1167623_83336_G_A_28203830 sc00018ln1167623_141251_T_C_28261745
SNP1100	6.5	sc00018ln1167623_141231_1_C_28261743 sc00018ln1167623_213036_C_T_28333530
SNP1047	6.5	sc00018ln1167623_268834_G_T_28389328
SNP1101	6.5	sc00018ln1167623 223161 C T 28343655
SNP1448	14.0	sc00018ln1167623_1083196_T_G_29203690
SNP1449	14.0	sc00779ln149779_32811_C_T_281468855
SNP1513	14.6	sc00779ln149779 105659 A G 281541703
SNP1544	15.4	sc00548ln206833_167425_G_A_241014023
SNP1543	15.4	sc00548ln206833_175299_A_G_241021897
SNP1457	16.5	sc00716ln161188_107618_T_C_271735200
SNP1262	25.2	sc00036ln871953_623598_A_C_46140548
SNP0721	29.1	sc00736ln157270_32680_T_C_274855357
SNP0657	29.4	sc00736ln157270_63786_G_A_274886463 sc00736ln157270_80147_T_C_274902824
SNP0659 SNP0186	29.9 69.8	sc01968ln51015_29741_G_A_385990492
SNP0193	69.8	sc00753ln154720_69224_G_A_277543607
SNP0260	70.2	sc00410ln258431_243288_C_T_209201209
SNP0172	70.4	sc00410ln258431_233931_T_C_209191852
SNP0181	71.0	sc00410ln258431 228138 G T 209186059
SNP0180	71.0	sc00410ln258431_216659_C_A_209174580
SNP0204	72.3	sc00410ln258431_128757_T_C_209086678
SNP0206	72.3	sc00410ln258431_63258_A_G_209021179
SNP0201	72.3	sc00410ln258431_75965_A_G_209033886
SNP0205	72.3	sc00410ln258431_28118_G_A_208986039
SNP0202	72.3	sc00410ln258431_154985_T_C_209112906
SNP0044	72.7	sc00222ln388011_358044_G_A_149946226
SNP0047 SNP0312	72.7 73.3	sc00222ln388011_356418_C_A_149944600 sc00222ln388011_310662_A_G_149898844
SNP0312 SNP0311	73.3	sc00222ln388011_310602_A_G_149898844 sc00222ln388011_205737_A_G_149793919
SNP0311	73.6	sc00410ln258431_4260_C_A_208962181
5111 0515	, 5.0	5555.15111256.51_1265_6_11_266762161

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0644	75.9	sc00222ln388011_107253_G_A_149695435
SNP0583	77.2	sc00222ln388011_3381_C_T_149591563
SNP0582 SNP0778	77.2 77.3	sc00222ln388011_16620_A_G_149604802 sc00354ln290230_87842_C_T_193693737
SNP0778	77.3	sc00896ln131961 92995 A C 298004972
SNP0616	77.4	sc00354ln290230_40845_G_T_193646740
SNP0584	77.5	sc00354ln290230_127635_A_C_193733530
SNP0300	77.8	sc00896ln131961 20868 T C 297932845
SNP0408	78.2	sc00354ln290230_8637_C_T_193614532
SNP0600	78.4	sc00896ln131961_665_A_C_297912642
SNP0599 SNP0619	78.4	sc00354ln290230_104392_A_G_193710287 sc00354ln290230_142626_A_G_193748521
SNP0619 SNP0801	78.7 78.9	sc00354ln290230_142626_A_G_193748321 sc00354ln290230_156996_C_T_193762891
SNP0959	81.9	sc00097ln606768 262172 C T 89113417
SNP0732	82.1	sc00097ln606768 285808 G A 89137053
SNP0731	82.1	sc00097ln606768_269002_A_G_89120247
SNP0776	83.0	sc00097ln606768_318773_A_G_89170018
SNP0615	83.0	sc00097ln606768_482199_A_G_89333444
SNP0777	83.0	sc00097ln606768_338168_C_T_89189413
SNP0792 SNP0618	83.2 83.3	sc00097ln606768_422949_T_C_89274194 sc00097ln606768_466692_G_A_89317937
SNP0018 SNP0793	83.4	sc00097ln606768_460692_G_A_89317937 sc00097ln606768_452217_T_C_89303462
SNP1003	83.5	sc00097ln606768 530560 T G 89381805
SNP1027	83.5	sc00097ln606768_520387_G_T_89371632
SNP0794	83.5	sc00097ln606768 507883 G A 89359128
SNP0651	85.0	sc02250ln41799_35656_G_A_398992134
SNP0654	85.0	sc00097ln606768_597764_T_C_89449009
SNP0848	85.5	sc01414ln79445_6789_G_A_350953068 sc01414ln79445_23107_T_C_350969386
SNP0847 SNP0841	85.5 85.8	sc01414ln79445_23107_1_C_350969386 sc01414ln79445_55111_G_A_351001390
SNP0460	87.3	sc0167ln47443_53111_G_A_531001390 sc00167ln474376_64310_A_C_126085610
SNP0643	88.1	sc00167ln474376_51740_A_C_126073040
SNP0416	90.5	sc00043ln806145 27550 A G 51458481
SNP0498	90.5	sc00043ln806145_20911_T_C_51451842
SNP0680	90.5	sc00043ln806145_4045_C_T_51434976
SNP0655	90.5	sc00043ln806145_13119_G_T_51444050
SNP0490 SNP0492	90.8 90.9	sc00043ln806145_53501_T_C_51484432 sc00043ln806145_45553_G_T_51476484
SNP0227	91.5	sc00043ln806145_13535_G_T_51549427
SNP0458	91.5	sc00043ln806145_86811_A_C_51517742
SNP0630	91.7	sc00043ln806145_192546_G_A_51623477
SNP0800	92.2	sc00043ln806145_233914_C_T_51664845
SNP0437	92.4	sc00043ln806145_291740_A_G_51722671
SNP0478	93.1	sc00043ln806145_355263_C_T_51786194
SNP0457 SNP0436	93.8 94.7	sc00043ln806145_239482_A_C_51670413 sc00043ln806145_263430_T_G_51694361
SNP0430 SNP0042	94.7 97.1	sc00043ln806145_263430_1_G_31694361 sc00043ln806145_717587_A_G_52148518
SNP0057	97.3	sc00043ln806145 676201 G A 52107132
SNP0190	97.8	sc00043ln806145_768829_C_A_52199760
SNP0309	97.9	sc00043ln806145 775104 A G 52206035
SNP0465	98.4	sc00043ln806145_631627_T_C_52062558
SNP0308	98.9	sc00043ln806145_757496_A_G_52188427
SNP0262	99.5	sc01149ln100495_79144_T_C_327228320
SNP0261 SNP0374	99.5 99.7	sc01149ln100495_71740_G_A_327220916 sc01149ln100495_66215_T_C_327215391
SNP0713	100.0	sc01149ln100495_00215_1_C_327213391 sc01149ln100495_48819_A_G_327197995
SNP0712	100.3	sc01149ln100495_48817_A_G_327197995
SNP0708	100.3	sc01149ln100495_32702_T_C_327181878
SNP0699	100.8	sc01149ln100495_6599_A_G_327155775
SNP1120	101.2	sc00283ln338214_293493_T_C_171701647
SNP0625	102.9	sc00283ln338214_166029_A_G_171574183
SNP0572 SNP0461	103.1 103.6	sc00283ln338214_200067_G_T_171608221 sc00283ln338214_54091_G_A_171462245
SNP0461 SNP0620	103.6	sc00283ln338214_34091_G_A_1/1462245 sc00283ln338214_136440_C_T_171544594
5111 0020	105.0	000020311130211_130440_0_1_1/13443/4

```
Position
Marker
           (cM)
                  Illumina chip SNP ID
SNP0798
            103.9
                  sc01131ln102720 24466 A G 325339116
SNP0797
                   sc01131ln102720_17005_C_T_325331655
            103 9
SNP0795
            103.9
                  sc00283ln338214 62016 G T 171470170
SNP0999
                  sc01131ln102720 84539 A G 325399189
            103.9
SNP0998
                  sc00112ln569344_519499_T_C_98238499
                  sc00518ln214431_55133_G_A_234580800
SNP1199
            105.0
SNP0991
                  sc00112ln569344 96989 A G 97815989
SNP0997
                  sc01018ln115966_70654_C_T_313060605
            105.1
SNP0990
                  sc00518ln214431_147554_A_G_234673221
SNP1196
                  sc00112ln569344_147843_G_A_97866843
            105.3
SNP1197
            105.3
                  sc00112ln569344 46934 T C 97765934
SNP1214
            105.3
                  sc00112ln569344 67586 C T 97786586
SNP0996
            105.4
                  sc00518ln214431_198345_A_G_234724012
                  sc00835ln140787_107033_T_C_289688340
sc00835ln140787_33631_T_C_289614938
SNP0967
            105.4
SNP0949
            105.4
                  sc00835ln140787 95095 C T 289676402
SNP0950
                  sc00518ln214431_146536_C_T_234672203
SNP0964
            105.4
SNP0965
            105.4
                  sc00518ln214431_174414_G_A_234700081
                  sc00518ln214431_27922_T_C_234553589
SNP0966
            105.4
                  sc00835ln140787 101089 C A 289682396
SNP0765
SNP0947
            105.4
                  sc00112ln569344_270381_C_T_97989381
SNP0970
                  sc01018ln115966_13816_G_T_313003767
                  sc00112ln569344_44859_T_C_97763859
SNP0948
            105.4
SNP0595
                  sc00112ln569344 292205 A G 98011205
                  sc01018ln115966_92064_G_A_313082015
SNP0781
            105.6
                  sc01018ln115966_84234_C_T_313074185
sc00518ln214431_114746_C_T_234640413
SNP0771
            105.6
SNP0611
            105.7
Chromosome 5
SNP0271
              0.0 sc03264ln21843_9156_T_G_430348142
SNP0286
                  sc00825ln142196 36203 C T 288202943
SNP0283
                  sc00825ln142196_77066_T_G_288243806
SNP0258
                  sc00825ln142196 15000 T G 288181740
SNP1037
                  sc00285ln337269_84632_T_G_172168540
SNP1038
                  sc00285ln337269_91799_G_A_172175707
                  sc00285ln337269_108850_C_T_172192758
SNP1030
              22
SNP1029
              2.3
                   sc00285ln337269 178482 T C 172262390
SNP1215
                  sc00285ln337269_149198_A_G_172233106
              2.3
SNP1028
              2.3
                   sc00285ln337269_158932_A_G_172242840
                  sc00235ln366505_87018_G_T_154598593
SNP0601
              5.9
                  sc00516ln215718_103432_C_T_234198547
sc01161ln99639_57196_A_C_328408931
SNP0256
SNP0372
SNP0216
                  sc02995ln26285 839 A G 423910252
                  sc01207ln95809_62223_A_G_332923536
SNP0010
             35.3
SNP0245
             36.1
                  sc00386ln270379_10526_T_C_202616027
                  sc00386ln270379 143590 T G 202749091
SNP0079
SNP0080
             36.4 sc00386ln270379_152605_G_A_202758106
SNP0091
             36.8
                  sc00386ln270379_208821_T_C_202814322
SNP0144
                  sc00637ln180702 42686 G T 258212364
SNP0489
                  sc00637ln180702 14334 G A 258184012
SNP0440
                  sc00169ln473620_351744_G_A_127321572
                  sc00169ln473620_337087_C_A_127306915
sc00169ln473620_320974_G_A_127290802
SNP0348
SNP0356
             51.1
SNP0328
                  sc00169ln473620 288950 G A 127258778
SNP0317
             51.4 sc00169ln473620 282648 A C 127252476
SNP1083
                  sc02233ln42137_17145_A_G_398259808
                  sc00683ln167572_132304_G_A_266313647
SNP1288
             57.6
                  sc00505ln218075_57305_T_C_231764984
sc00505ln218075_95592_C_T_231803271
SNP1286
             57.6
SNP1287
             57.6
                  sc00505ln218075_188822_C_A_231896501
sc01287ln88842_69989_G_A_340312307
SNP1084
             57.6
SNP0822
             58.1
SNP0665
                  sc00211ln404231 267604 T C 145489961
SNP1044
             62.3 sc00211ln404231_254799_G_A_145477156
```

M I	Position	All . T. CAID ID
Marker	(cM)	Illumina chip SNP ID
SNP1222	62.4	sc00211ln404231_317008_A_G_145539365
SNP1054	62.6	sc00211ln404231_261454_C_T_145483811
SNP0637 SNP0862	76.6 76.8	sc00434ln247722_192159_C_A_215234444 sc00434ln247722_210795_A_G_215253080
SNP0802 SNP0330	81.3	sc00004ln1947458 401960 A G 6856686
SNP0331	81.3	sc00004ln1947458_401900_A_G_0850080 sc00004ln1947458_395321_A_G_6850047
SNP0332	81.3	sc00004ln1947458 465063 A G 6919789
SNP0336	81.3	sc00004ln1947458 456231 C A 6910957
SNP0337	81.3	sc00004ln1947458_421159_C_T_6875885
SNP0401	82.4	sc00004ln1947458_504141_G_A_6958867
SNP0527	82.9	sc00004ln1947458_533877_C_A_6988603
SNP0523	82.9	sc00004ln1947458_666119_G_A_7120845
SNP0528	82.9	sc00004ln1947458_573701_C_A_7028427
SNP0522 SNP0524	82.9 82.9	sc00004ln1947458_659971_G_A_7114697
SNP0524 SNP0519	82.9 82.9	sc00004ln1947458_673538_A_G_7128264 sc00004ln1947458_594212_C_T_7048938
SNP0518	82.9	sc00004ln1947458_594212_C_1_7048938 sc00004ln1947458_558278_C_T_7013004
SNP0521	82.9	sc00004ln1947458 651581 A G 7106307
SNP0520	82.9	sc00004ln1947458 601598 C T 7056324
SNP0373	83.3	sc00004ln1947458 704961 G A 7159687
SNP0369	83.6	sc00004ln1947458_746108_G_T_7200834
SNP0248	83.6	sc00004ln1947458_718718_G_T_7173444
SNP0368	83.6	sc00004ln1947458_725273_T_G_7179999
SNP0402	84.4	sc00004ln1947458_765897_G_A_7220623
SNP0546	85.0	sc00004ln1947458_883632_C_T_7338358
SNP0390 SNP0545	85.0 85.0	sc00004ln1947458_923695_A_C_7378421 sc00004ln1947458_833614_G_A_7288340
SNP0565	85.1	sc00004ln1947458_853014_G_A_7288540 sc00004ln1947458_959887_A_G_7414613
SNP0710	85.2	sc00004ln1947458 863387 T C 7318113
SNP0711	85.2	sc00004ln1947458 933395 T G 7388121
SNP0709	85.2	sc00004ln1947458_846652_A_G_7301378
SNP0692	85.5	sc00004ln1947458_807552_T_C_7262278
SNP0534	85.5	sc00004ln1947458_895141_T_G_7349867
SNP0538	85.5	sc00004ln1947458_855559_G_A_7310285
SNP0533 SNP0535	85.5 85.5	sc00004ln1947458_801601_T_C_7256327 sc00004ln1947458_901631_G_A_7356357
SNP0268	85.9	sc00004ln1947458 968323 T C 7423049
SNP0544	86.3	sc00004ln1947458_J00325_T_C/425047
SNP1002	86.9	sc00004ln1947458 1011321 C T 7466047
SNP0772	87.3	sc00004ln1947458_1047835_C_A_7502561
SNP0579	87.5	sc00004ln1947458_1101740_A_C_7556466
SNP0425	87.6	sc00004ln1947458_1077993_A_C_7532719
SNP0578	87.8	sc00004ln1947458_1090757_C_T_7545483
SNP0011 SNP0220	89.7 90.2	sc00004ln1947458_1208123_C_A_7662849 sc00004ln1947458_1211738_C_T_7666464
SNP0220 SNP0167	90.2	sc00004ln1947458_1211738_C_1_7000404 sc00004ln1947458_1154630_T_C_7609356
SNP0730	92.7	sc00004ln1947458_1283790_G_A_7738516
SNP0575	92.7	sc00004ln1947458 1301465 T C 7756191
SNP0729	92.7	sc00004ln1947458_1266963_A_G_7721689
SNP0911	93.8	sc00004ln1947458_1320715_T_C_7775441
SNP0758	94.8	sc00004ln1947458_1457721_G_A_7912447
SNP0593	94.8	sc00004ln1947458_1425073_G_A_7879799
SNP0715	94.8	sc00004ln1947458_1451461_A_C_7906187
SNP0562 SNP0530	95.3 96.6	sc00004ln1947458_1477819_T_C_7932545 sc00004ln1947458_1506364_C_A_7961090
SNP0536	96.9	sc00004ln1947458_1506364_C_A_7961090 sc00004ln1947458_1559138_G_A_8013864
SNP0716	97.1	sc00004ln1947458_1539158_G_A_8015804 sc00004ln1947458_1515472_G_A_7970198
SNP0748	97.2	sc00004ln1947458 1570402 T C 8025128
SNP0759	97.2	sc00004ln1947458_1534966_T_C_7989692
SNP0916	97.8	sc00004ln1947458_1590601_G_A_8045327
SNP0941	98.7	sc00004ln1947458_1696489_G_A_8151215
SNP0700	98.9	sc00004ln1947458_1678611_C_T_8133337
SNP0917	99.1 99.5	sc00004ln1947458_1646991_A_G_8101717
SNP1131	99.3	sc00004ln1947458_1733897_T_C_8188623

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP1130	99.5	sc00004ln1947458 1721881 G T 8176607
SNP1129	99.5	sc00004ln1947458_1716049_A_G_8170775
SNP1202	101.1	sc00004ln1947458_1770289_A_G_8225015
SNP1012	101.1	sc00004ln1947458_1801316_T_C_8256042
SNP1203	101.2	sc00004ln1947458_1795572_G_A_8250298
SNP1207	101.5	sc00004ln1947458_1840329_T_G_8295055
SNP1209 SNP1208	101.5 101.6	sc00004ln1947458_1852902_A_G_8307628 sc00004ln1947458_1861332_A_G_8316058
SNP0389	102.2	sc00004ln1947458_1912676_T_C_8367402
SNP0388	102.2	sc00004ln1947458 1905113 G A 8359839
SNP0590	102.4	sc00004ln1947458_1886476_T_C_8341202
SNP0934	102.7	sc00004ln1947458_1899191_G_A_8353917
SNP1125	102.7	sc00004ln1947458_1876381_G_A_8331107
SNP0718	103.6	sc00004ln1947458_1922339_G_A_8377065
SNP0414	103.6	sc00004ln1947458_1946635_A_G_8401361 sc01822ln56586_5051_G_A_378131730
SNP0719 SNP0704	103.6 105.7	sc00623ln184448 88167 G A 255705058
SNP0901	105.7	sc00623ln184448 46905 C T 255663796
SNP0563	105.9	sc00623ln184448_130969_C_T_255747860
SNP0370	106.0	sc00623ln184448 75846 A G 255692737
SNP0385	106.0	sc00623ln184448_40776_T_C_255657667
SNP0705	106.1	sc00623ln184448_96335_T_G_255713226
SNP0703	106.1	sc00623ln184448_59197_T_G_255676088
SNP0702	106.8	sc00090ln635406_15265_G_T_84521083
SNP1494 SNP1480	107.5 108.2	sc00090ln635406_41026_G_T_84546844 sc00090ln635406_104940_T_C_84610758
SNP1169	108.2	sc00090ln635406_55784_C_T_84561602
SNP1139	108.9	sc00090ln635406_178710_C_A_84684528
SNP0940	109.0	sc00090ln635406 285885 T C 84791703
SNP1165	109.0	sc00090ln635406_206238_G_A_84712056
SNP1164	109.0	sc00090ln635406_191352_T_C_84697170
SNP1411	109.2	sc00090ln635406_154887_C_T_84660705
SNP1482	109.2	sc00090ln635406_168660_G_A_84674478
SNP1484 SNP1481	109.2 109.2	sc00090ln635406_227919_G_A_84733737 sc00090ln635406_143454_G_A_84649272
SNP1483	109.2	sc00090ln635406_143434_G_A_84049272 sc00090ln635406_198920_A_C_84704738
SNP1562	109.4	sc00090ln635406 293742 G A 84799560
SNP1558	109.8	sc00090ln635406_350158_T_C_84855976
SNP1395	110.1	sc00090ln635406_313159_G_A_84818977
SNP1502	110.5	sc00090ln635406_305515_T_G_84811333
SNP1594	110.5	sc00090ln635406_343609_C_A_84849427
SNP1389	111.1	sc00090ln635406_393133_G_A_84898951
Chromoso	оте 6	
SNP1876	0.0	sc02391ln38329 13772 T C 404596484
SNP0513	1.6	sc01199ln96479_78009_C_T_332169044
SNP0510	1.6	sc00565ln203032_172503_G_T_244498642 sc00290ln330931_293487_C_T_174051953
SNP0499	1.6	sc00290ln330931_293487_C_T_174051953
SNP0514	1.6	sc01365ln82970_16889_G_T_346982242
SNP0512 SNP0384	1.6 1.8	sc00849ln138837_26680_C_A_291564990 sc01199ln96479_4614_A_G_332095649
SNP0384 SNP0266	2.2	sc00442ln245292 228102 G A 217244598
SNP0441	2.7	sc00442ln245292_102808_G_A_217119304
SNP0502	2.8	sc01340ln85170 1787 A G 344865073
SNP0807	3.3	sc01741ln59970 6914 C T 373420196
SNP0892	3.3	sc01395ln80736 24646 A C 349447862
SNP0894	3.3	sc00442ln245292_129137_T_G_217145633
SNP0896	3.9	sc02391ln38329_2695_G_T_404585407
SNP0784 SNP1091	3.9 3.9	sc00455ln241840_117314_A_C_220303500 sc02104ln46160_26221_C_T_392584183
SNP1091 SNP0666	3.9 4.4	sc01062ln110691 77641 T G 318053418
SNP0500	4.5	sc01062ln110691_62809_C_T_318038586
SNP0895	5.0	sc00837ln140536_122125_A_G_289984992

	Dogition	
Marker	Position (cM)	Illumina chip SNP ID
SNP0607	5.0	sc01375ln82160_53434_A_G_347844629
SNP0451	5.1	sc01365ln82970_1876_T_C_346967229
SNP0450	5.2	sc01265ln90360_22790_A_G_338292867
SNP0433	5.3	sc00455ln241840_106852_C_A_220293038
SNP0434	5.3	sc01520ln71570_52767_A_G_358998234
SNP0515 SNP0511	5.3 5.3	sc02882ln28015_11940_C_A_420854976 sc00849ln138837_133941_T_C_291672251
SNP0311 SNP0380	5.3 5.4	sc00596ln193813_189200_G_A_250696866
SNP0383	5.4	sc00290ln330931 228384 C T 173986850
SNP0340	5.5	sc00290ln330931 271468 T G 174029934
SNP0329	5.6	sc00290ln330931_193924_G_T_173952390
SNP0320	5.7	sc02602ln33755_23803_C_T_412218668
SNP0381	5.8	sc01243ln92509_6848_G_A_336262469
SNP0318	5.8	sc00596ln193813_169323_A_C_250676989
SNP0382 SNP0361	5.8 6.2	sc02045ln48005_44752_A_C_389826744 sc00975ln121695_53254_T_C_307937283
SNP0263	6.2	sc01588ln67875_774_A_C_363676319
SNP0264	6.3	sc02235ln42087_32511_C_T_398359392
SNP0319	6.3	sc01062ln110691_90873_G_T_318066650
SNP0304	7.6	sc01870ln54786_26513_C_T_380824425
SNP0315	7.6	sc01205ln96128_31504_G_A_332700857
SNP0297	7.7	sc01316ln87154_30920_A_G_342822476
SNP0423 SNP0605	7.8 7.9	sc01316ln87154_63632_T_C_342855188 sc01014ln116695_75779_T_G_312600195
SNP0459	8.1	sc00800ln146689 109391 G A 284654939
SNP0472	8.2	sc00777ln150047_141395_G_A_281277550
SNP0818	8.5	sc03268ln21749 16672 G A 430442901
SNP0470	8.7	sc01205ln96128_55684_G_T_332725037
SNP0344	10.1	sc00422ln253621_207997_T_C_212242625
SNP0422	10.6	sc00405ln260703_39856_G_A_207698354
SNP0428	10.6	sc00405ln260703_502_A_C_207659000
SNP0449 SNP0126	10.9 11.5	sc00194ln426988_297732_T_C_138479740 sc00405ln260703_47413_T_C_207705911
SNP0338	12.0	sc00194ln426988_378304_C_T_138560312
SNP0355	12.0	sc00194ln426988 119724 C T 138301732
SNP0471	12.1	sc00475ln233592_199766_G_A_225128270
SNP0839	12.7	sc01300ln87981_33120_G_A_341423669
SNP0820	12.7	sc01300ln87981_40552_T_C_341431101
SNP1062	17.7	sc00771ln151042_37933_G_A_280270225
SNP1308 SNP1454	21.1 21.3	sc00100ln599894_102348_G_T_90771893 sc01288ln88608_17084_A_G_340348244
SNP0623	29.0	sc00358ln289292 244315 A G 195009678
SNP0823	30.5	sc00534ln209932_154675_C_A_238084299
SNP0649	31.0	sc00534ln209932 185602 C T 238115226
SNP0617	31.4	sc00162ln482802_314745_G_T_123927864
SNP0609	31.8	sc00162ln482802_229422_C_A_123842541
SNP0815	33.0	sc00827ln142080_41777_C_A_288492828
SNP0814 SNP0672	33.0 34.6	sc00827ln142080_1193_C_T_288452244 sc00098ln606132_371016_T_C_89829029
SNP0672	34.6	sc07767ln2598 1486 C A 464963648
SNP0671	34.6	sc00098ln606132_327625_C_A_89785638
SNP0667	34.6	sc00098ln606132 288326 T C 89746339
SNP0668	34.6	sc00098ln606132_309061_G_A_89767074
SNP0505	34.9	sc00098ln606132_294789_A_G_89752802
SNP0504	34.9	sc00098ln606132_347712_C_T_89805725
SNP0506	34.9	sc00098ln606132_359680_T_G_89817693 sc00098ln606132_338296_C_T_89796309
SNP0669 SNP0810	35.2 36.3	sc00355ln290049_216453_C_T_104112579
SNP0810	37.3	sc00355ln290049_216453_C_T_194112578 sc01347ln84616_5033_C_T_345462577
SNP0863	39.9	sc00543ln208213_137745_A_G_239946401
SNP0861	39.9	sc05171ln6416_502_G_A_454819773
SNP1217	40.5	sc05304ln6055_2985_C_T_455651128
SNP1023	40.6	sc00057ln729417_310632_G_A_62357441
SNP1022	40.6	sc00057ln729417_290891_T_C_62337700

	D = =:4: =	
Marker	Position (cM)	Illumina chip SNP ID
SNP1118	42.4	sc00058ln727328 355726 T G 63131952
SNP1218	42.7	sc00058ln727328_216635_T_G_62992861
SNP1220	42.7	sc00058ln727328_310081_G_T_63086307
SNP1221	42.7	sc00058ln727328_322185_C_T_63098411
SNP1219	42.7	sc00058ln727328_239756_C_T_63015982
SNP1119	43.0	sc00058ln727328_87916_G_A_62864142
SNP1073	43.6	sc00060ln715437_91421_C_T_64315509
SNP1074	43.6	sc00060ln715437_126918_A_G_64351006
SNP1072 SNP0757	43.6 44.7	sc00060ln715437_102455_T_C_64326543 sc00060ln715437_180323_G_T_64404411
SNP0737 SNP0826	44.7	sc00060ln715437_180323_G_1_64404411 sc00060ln715437_444449_A_G_64668537
SNP0838	46.0	sc00060ln715437_44447_A_G_04008337 sc00060ln715437_388638 G T 64612726
SNP0825	46.0	sc00060ln715437_397321_A_G_64621409
SNP0827	46.0	sc00060ln715437 444767 A G 64668855
SNP0844	46.3	sc00060ln715437_479352_G_A_64703440
SNP0831	46.6	sc00060ln715437_574516_T_G_64798604
SNP0832	46.6	sc00060ln715437_639764_C_T_64863852
SNP0835	46.6	sc00454ln242044_199623_T_C_220143765
SNP0830	46.6	sc00060ln715437_619181_T_G_64843269
SNP0828	46.6	sc00060ln715437_498542_G_A_64722630
SNP0836	46.6	sc00454ln242044_213144_C_T_220157286
SNP1267 SNP0834	46.9 47.2	sc00454ln242044_175624_C_T_220119766 sc00454ln242044_192467_T_C_220136609
SNP0834 SNP0829	47.2	sc00060ln715437_522539_G_T_64746627
SNP0833	47.2	sc00454ln242044 164983 T C 220109125
SNP0812	47.5	sc00454ln242044_115565_G_A_220059707
SNP0418	64.3	sc00012ln1449677 1311873 C T 21377738
SNP0376	64.6	sc00012ln1449677_1384217_G_T_21450082
SNP0569	64.8	sc04354ln11352_820_T_G_447901422
SNP0526	66.2	sc00323ln308174_142636_G_T_184477121
SNP0525	66.2	sc00323ln308174_210355_A_G_184544840
SNP0612	72.2	sc00001ln2172051_1156285_C_T_1156285
SNP0790	72.2	sc00001ln2172051_1155496_G_A_1155496
SNP0365 SNP0366	84.4 84.4	sc00086ln651208_2390_G_T_81929518
SNP1911	85.5	sc00086ln651208_60615_A_G_81987743 sc00086ln651208_29315_A_G_81956443
		3000000m031200_2/313_11_G_01/30113
Chromoso	ome /	
SNP1564	0.0	sc00431ln249067_152199_T_C_214448057
SNP1645	0.2	sc00431ln249067_126302_C_T_214422160
SNP1596	0.3	sc00431ln249067_112976_C_T_214408834
SNP1646 SNP0912	0.5 12.3	sc00431ln249067_160591_T_G_214456449 sc00014ln1397360_594130_G_A_23533046
SNP0912 SNP0717	12.3	sc00014lln1397360_394130_G_A_23333046 sc00014lln1397360_651244_G_A_23590160
SNP1112	13.1	sc00014ln1397360_531244_G_A_23590100 sc00014ln1397360_725586_A_G_23664502
SNP0919	13.1	sc00014ln1397360_719586_C_A_23658502
SNP1107	17.6	sc00014ln1397360_1360362_G_T_24299278
SNP1503	20.8	sc00502ln219883_127438_T_C_231177894
SNP1115	23.0	sc00392ln266992_177631_C_T_204397528
SNP0779	26.3	sc00522ln214121_47150_T_G_235430285
SNP1601	40.7	sc00052ln745181_283027_C_T_58625494
SNP1517	41.4	sc00052ln745181_210054_A_G_58552521
SNP1599	45.2	sc00052ln745181_677548_T_C_59020015 sc00064ln701495_686514_A_G_67755830
SNP1600 SNP1602	45.8 45.8	sc00064ln/01495_686514_A_G_6//55830 sc00741ln156278_82721_T_C_275689606
SNP1602 SNP1568	45.8	sc00064ln701495_583050_C_A_67652366
SNP1213	46.6	sc00064ln701495_585050_C_A_67652506 sc00064ln701495_589180_T_C_67658496
SNP1497	57.0	sc01157ln100120_67897_A_C_328019903
SNP1399	57.3	sc00617ln186839_161637_G_A_254662333
SNP1641	58.0	sc01560ln69056_33253_C_A_361789957
SNP1595	58.5	sc00617ln186839_27701_G_A_254528397
SNP1561	58.5	sc00617ln186839_25749_C_A_254526445
SNP1470	58.8	sc00617ln186839_101816_G_A_254602512

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0697	60.0	sc01033ln113764_43799_A_G_314757064
SNP0550	60.5	sc01033ln113764_112539_C_T_314825804
SNP0095	61.0	sc01947ln51708_17520_C_T_384900770
SNP0750 SNP1128	62.0 62.8	sc00153ln494563_355575_A_C_119558093 sc00881ln134408_87878_A_G_296002117
SNP1127	62.8	sc00881ln134408_68898 G A 295983137
SNP0251	63.9	sc00158ln489092_296843_C_T_121962395
SNP1121	64.4	sc00158ln489092_253333_G_A_121918885
SNP0928	64.8	sc00182ln441273_204110_A_G_133163786
SNP0929 SNP0930	65.4 65.4	sc00260ln351626_143354_A_C_163639550 sc00260ln351626_191699_T_G_163687895
SNP0696	65.9	sc00260ln351626_151695_1_G_163687655 sc00260ln351626_25579_G_A_163521775
SNP0379	66.1	sc00497ln222651_26372_C_T_229971240
SNP0540	66.2	sc00260ln351626_31611_G_A_163527807
SNP0687	66.5	sc00242ln362770_32027_C_T_157101713
SNP0695 SNP1132	66.8 67.3	sc00242ln362770_188120_A_G_157257806 sc00636ln180776_137025_A_G_258125927
SNP1141	67.6	sc01534ln70589 20645 G A 359960642
SNP1406	68.2	sc00662ln174157_132780_T_C_262726436
SNP1478	68.4	sc00662ln174157_141125_C_T_262734781
SNP1153	69.0	sc00327ln306820_246895_C_T_185811031 sc00555ln205282_74219_C_T_242362884
SNP1154 SNP0762	69.0 69.2	sc00555ln205282_/4219_C_1_242362884 sc00327ln306820_257821_C_T_185821957
SNP0604	70.2	sc00945ln124719_57421_G_A_304249976
SNP1201	71.1	sc00939ln125294_16518_G_A_303458680
SNP0942	71.8	sc00945ln124719_113114_G_A_304305669
SNP1385	72.7	sc00769ln151663_84698_A_G_280014183
SNP1108 SNP1424	73.6 74.4	sc01425ln78757_51477_C_T_351868643 sc01141ln101933_24610_A_C_326362719
SNP1174	74.4	sc00208ln407319_332031_T_C_144334729
SNP1175	74.4	sc00649ln176709_93348_T_C_260404641
SNP1495	74.9	sc00577ln200943_189393_C_T_246939642
SNP1397	74.9	sc00867ln136613_35818_G_T_294053368
SNP1398 SNP1487	74.9 74.9	sc01466ln75362_73566_G_A_355050881 sc00819ln143731_19757_T_C_287329469
SNP1396	74.9	sc00867ln136613_35286_G_A_294052836
SNP1475	74.9	sc01417ln79310_53269_G_A_351237701
SNP1371	75.0	sc00310ln319923_174533_C_T_180432809
SNP1471	75.2	sc00819ln143731_86703_G_A_287396415 sc00762ln153408_45201_C_T_278906900
SNP1384 SNP1407	75.3 75.3	sc00208ln407319_37651_C_T_144040349
SNP1144	75.5	sc00569ln202096_120909_A_G_245257483
SNP0923	75.5	sc08824ln2250 134 C A 467506324
SNP0724	75.5	sc00688ln167248_34336_C_T_267052875
SNP0921	75.5	sc01984ln50577_19369_G_A_386793269
SNP0726 SNP0252	75.5 76.1	sc03075ln24943_6489_C_T_425959900 sc00986ln119952_60215_C_T_309277337
SNP0164	76.1	sc01735ln60246 55453 C T 373108112
SNP0707	76.4	sc02050ln47911_44538_A_G_390066372
SNP0720	76.4	sc02941ln26997_7905_T_C_422477724
SNP0570	76.5	sc03336ln20994_17304_T_G_431896356
SNP0413 SNP0281	77.0 77.1	sc02186ln43426_2369_C_T_396232088 sc02258ln41488_4071_C_T_399293533
SNP0104	77.2	sc02795ln29760 28438 T C 418361590
SNP0280	77.2	sc01690ln62092_60435_T_C_370360330
SNP0287	77.2	sc01593ln67385_29397_G_A_364043295
SNP0432	77.3	sc05226ln6266_1017_A_C_455168687 sc02713ln31494_20148_T_G_415834188
SNP0431 SNP0430	77.3 77.3	sc02/13in31494_20148_1_G_415834188 sc00962ln122864_112842_C_T_306406882
SNP0420	77.5	sc03029ln25609 22923 A C 424813255
SNP0737	77.7	sc03029ln25609_22923_A_C_424813255 sc00752ln154782_84846_C_T_277404447
SNP0968	77.8	sc00920ln127592_36302_T_C_301072380
SNP0769	77.9	sc02498ln35994_11115_G_A_408566925
SNP0782	78.0	sc01297ln88117_13355_T_C_341139620

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0439	78.1	sc00287ln334996_76546_A_G_172833194
SNP0419	78.6	sc02557ln34908_16192_G_A_410665027
SNP0415	78.8	sc03885ln15107_4366_G_A_441694460
SNP0592	78.8 79.0	sc00942ln125018_32373_C_T_303850117 sc02765ln30584_10935_G_T_417440016
SNP0398 SNP0417	79.0 79.2	sc03952ln14595_3325_A_G_442688567
SNP0567	79.3	sc01851ln55374 22395 G A 379773766
SNP0410	79.6	sc00986ln119952_31785_C_A_309248907
SNP0282	79.6	sc02521ln35555_35366_G_A_409413945
SNP0270	79.6	sc03906ln14972_6738_A_G_442012876
SNP0557	79.8	sc03641ln17490_15585_G_A_437736136
SNP0403 SNP0409	80.5 80.5	sc01284ln88974_7504_G_T_339982941 sc00690ln167027_46511_A_G_267399531
SNP0274	80.5	sc09279ln2147 722 G A 468506260
SNP0272	80.6	
SNP0170	80.6	sc01865ln54877_24075_C_A_380547768 sc01379ln81982_61729_C_T_348181320
SNP0273	80.7	sc01865ln54877_32766_T_C_380556459
SNP0411	80.8	sc01609ln66308_1583_C_T_365084674
SNP0559	81.3	sc03917ln14895_13189_C_T_442183542
SNP0552 SNP0549	81.3 81.3	sc01412ln79731_33088_A_G_350820242 sc00986ln119952_61632_A_G_309278754
SNP0396	81.3	sc02148ln44683 12174 T C 394568724
SNP0391	81.3	sc00351ln291171_135502_A_G_192868732
SNP0547	81.3	sc00493ln225021_31742_T_C_229082144
SNP0399	81.3	sc05233ln6237_5722_A_C_455217181
SNP0558	81.3	sc03846ln15411_10078_C_T_441105028
SNP0393 SNP0555	81.3 81.3	sc01174ln99004_31220_A_G_329673130 sc02775ln30232_18169_T_G_417751841
SNP0568	81.3	sc02231ln42237_9472_C_T_398167720
SNP0392	81.3	sc00605ln190820_3893_C_T_252242946
SNP0394	81.3	sc01326ln86419 35308 A C 343695268
SNP0554	81.3	sc02072ln47108_19079_C_A_391084818
SNP0397	81.3	sc02672ln32257_29487_G_A_414536458
SNP0556	81.3	sc03182ln22933_9604_T_C_428517749
SNP0553 SNP0551	81.3 81.3	sc01690ln62092_27889_A_G_370327784 sc01182ln98541_43409_A_C_330476263
SNP0573	81.8	sc06301ln3728 2215 C T 460511752
SNP0904	81.9	sc01758ln59173 25646 G T 374452218
SNP0701	81.9	sc02975ln26533_24060_T_C_423405468
SNP0725	81.9	sc01878ln54460_48959_A_G_381284409
SNP0564	81.9	sc01758ln59173_1588_G_A_374428160
SNP0908 SNP0905	81.9 81.9	sc03576ln18112_11807_G_A_436573518 sc02102ln46163_6352_T_C_392471994
SNP0706	81.9	sc01626ln65659_1703_A_G_366207917
SNP0922	81.9	sc03635ln17549_15563_C_A_437630913
SNP0903	81.9	sc01536ln70467 64605 C T 360145729
SNP0907	81.9	sc03097ln24536_10413_C_T_426507827
SNP0902	81.9	sc01439ln77746_60372_G_A_352973289
SNP0906 SNP0910	81.9 81.9	sc02186ln43426_40372_C_T_396270091 sc04950ln7174_2408_G_A_453328287
SNP0910	81.9	sc01271ln90056 4635 A G 338816134
SNP0909	81.9	sc03719ln16665_4521_G_A_439058138
SNP1116	82.0	sc00398ln265623_265175_C_T_206083589
SNP1383	82.2	sc00684ln167466_158851_T_C_266507766
SNP1146	82.3	sc02331ln39589_9526_G_A_402254745
SNP0983 SNP1191	82.3 82.4	sc00439ln246418_88003_T_C_216366396 sc01656ln64312_4691_C_T_368158455
SNP1191 SNP1145	82.4 82.5	sc00684ln167466 1304 G A 266350219
SNP1143	82.5	sc00439ln246418 227712 G A 216506105
SNP1410	82.5	sc01381ln81795_29223_C_T_348312636 sc01677ln62919_61244_C_T_369548257
SNP1162	82.9	sc01677ln62919_61244_C_T_369548257
SNP1161	82.9	sc01408ln79984_63192_T_C_350531006
SNP1163	82.9 83.0	sc01747ln59753_56337_T_C_373829095 sc01101ln105934_71315_C_A_322252543
SNP0783	83.0	SCUTTUTIII103734_/1313_C_A_322232343

	Dogition	
Marker	Position (cM)	Illumina chip SNP ID
SNP0591	83.2	sc00208ln407319_88056_G_A_144090754
SNP0378	83.4	sc00208ln407319_111381_T_C_144114079
SNP0249	84.3	sc02047ln47964_7058_T_C_389885044
SNP0152	85.4	sc02771ln30398_21223_C_T_417633483
SNP0151	85.4	sc02576ln34454_4629_A_C_411312820
SNP0153	85.4	sc03188ln22887_1054_T_C_428646691 sc03952ln14595_12945_G_T_442698187
SNP0155 SNP0154	85.4 85.4	sc03379ln20403_859_G_A_432771221
SNP0168	85.5	sc01531ln70815 9683 G A 359737440
SNP0395	85.9	sc01806ln57113 34743 C A 377251537
SNP0548	85.9	sc00493ln225021 49918 G T 229100320
SNP0741	86.0	sc01964ln51087_49158_T_C_385805667
SNP0744	86.4	sc05887ln4684_1615_C_A_458772860
SNP0742	86.4	sc02653ln32708_31114_C_A_413921260
SNP0743 SNP0736	86.4 86.4	sc05196ln6338_3344_T_C_454982115 sc00569ln202096_66100_G_A_245202674
SNP0740	86.4	sc01837ln55932_5303_T_G_378976456
SNP0735	86.4	sc00569ln202096 191469 C A 245328043
SNP0971	86.5	sc01021ln115494_72794_C_T_313410113
SNP1157	86.7	sc00601ln192291_106186_C_A_251579599
SNP1159	86.7	sc00840ln140027_58265_G_A_290342047
SNP1156	86.7	sc00577ln200943_24728_A_G_246774977
SNP0980 SNP1151	86.7 86.7	sc00601ln192291_107154_G_A_251580567 sc00287ln334996 49166 T C 172805814
SNP1151 SNP1152	86.8	sc00310ln319923 26013 G A 180284289
SNP0981	86.9	sc01679ln62899_47600_C_A_369660445
SNP1160	87.0	sc00925ln127181_41823_A_G_301715081
SNP1158	87.0	sc00601ln192291 12822 A G 251486235
SNP1155	87.0	sc00577ln200943_140524_C_T_246890773
SNP0972	87.1	sc02268ln41120_19776_G_A_399723350
SNP0764 SNP0767	87.1 87.2	sc00481ln229468_132650_C_T_226454830 sc01291ln88348_17155_C_T_340613748
SNP0805	87.3	sc01455ln76200 15783 G A 354158656
SNP0768	87.4	sc02331ln39589_2360_G_T_402247579
SNP0770	87.4	sc02557ln34908_846_T_C_410649681
SNP0961	87.4	sc00439ln246418_21317_T_C_216299710
SNP0738	87.6	sc00867ln136613_536_G_T_294018086
SNP0739	87.6	sc01804ln57120_17080_T_C_377119626
SNP0577 SNP0588	87.6 87.7	sc02303ln40213_13670_C_T_401140066 sc04564ln9723_6461_G_A_450114101
SNP0412	87.7	sc01988ln50439_43803_C_A_387019817
SNP0183	88.1	sc06031ln4333 3100 T C 459427685
SNP0171	88.2	sc01931ln52280 34931 C T 384086639
SNP0161	88.6	sc00398ln265623_251727_C_T_206070141
SNP0247	88.6	sc01984ln50577_30255_T_G_386804155
SNP0075	88.8	sc00569ln202096_185198_G_A_245321772
SNP0497 SNP0529	90.1 90.7	sc00723ln160278_67155_G_A_272821040 sc00886ln133593_38493_A_G_296622772
SNP0228	91.5	sc01450ln76658_54938_C_A_353815514
SNP0635	93.5	sc00208ln407319 107384 G T 144110082
SNP0098	94.3	sc01284ln88974_9089_T_C_339984526
SNP0386	95.5	sc00095ln612191_604279_A_G_88231338
SNP0404	96.4	sc00691ln166905_22693_T_C_267542740
SNP0275	96.4	sc00667ln172407_43926_G_A_263503992
SNP0173	97.0 97.1	sc00095ln612191_1232_C_T_87628291 sc01522ln71313_49907_C_T_359138275
SNP0102 SNP0099	97.1 97.1	sc01522ln/1313_4990/_C_1_3591382/3 sc00252ln356151_316956_G_A_160981257
SNP0101	97.1	sc00252lil330131_310930_G_A_100981237 sc00659ln174637_158616_C_T_262228940
SNP0100	97.1	sc00252ln356151_332469_A_G_160996770
SNP0118	97.4	sc00659ln174637_29312_T_G_262099636
SNP0085	97.6	sc00403ln261324_221094_C_T_207357062
SNP0086	97.6	sc00403ln261324_29888_T_C_207165856
SNP0084	97.6 97.7	sc00403ln261324_207173_G_A_207343141
SNP0093	97.7	sc00403ln261324_188164_A_G_207324132

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0325	98.1	sc00659ln174637_1647_G_A_262071971
SNP0083	100.7	sc00237ln365843_190958_T_C_155435305
SNP0108	101.0	sc00237ln365843_298094_T_C_155542441
SNP0096	101.6	sc00706ln163930_38021_T_G_270038084
SNP0454	106.4	sc00013ln1423374_637887_G_A_22153429
SNP0496	108.7	sc00262ln351368_226896_C_T_164426117
SNP0664	109.0	sc00262ln351368_192819_A_G_164392040
SNP1014 SNP0561	112.0 112.4	sc00394ln266395_138933_C_T_204892585 sc00394ln266395_117226_A_G_204870878
SNP0561 SNP0662	112.4	sc00394ln266395_206883_A_G_204960535
SNP0945	113.1	sc00394ln266395 229160 G A 2049808312
SNP0946	113.1	sc00394ln266395 169249 G T 204922901
SNP0851	113.4	sc00394ln266395 95537 T C 204849189
SNP0679	113.5	sc00394ln266395 76696 T C 204830348
SNP0755	116.6	sc00077ln670882_200394_T_C_76197535
SNP0842	116.6	sc00077ln670882_199705_T_C_76196846
SNP0673	117.3	sc00077ln670882_113734_C_A_76110875
SNP0658	117.7	sc00077ln670882_592160_T_G_76589301
SNP1578	123.6	sc00021ln1025434_93724_A_G_31570162
SNP1697	131.8	sc00478ln232123_225092_A_G_225853221
SNP1702	132.0	sc09645ln2071_1873_T_C_469278724 sc00655ln175835_148813_T_C_261517713
SNP1722 SNP1723	132.5 132.5	sc00655ln175835_148813_1_C_261517713 sc00655ln175835_157091_T_C_261525991
SNP1720	132.5	sc00655ln175835_137091_1_C_201323991 sc00655ln175835_103343_T_C_261472243
SNP1721	132.5	sc00655ln175835_124295_C_T_261493195
SNP1719	133.1	sc00478ln232123 215674 C A 225843803
SNP1705	133.2	sc00478ln232123 163212 A G 225791341
SNP1700	133.4	sc00478ln232123 61857 G A 225689986
SNP1725	133.7	sc00478ln232123_103680_C_A_225731809
SNP1729	133.7	sc00478ln232123_91668_C_T_225719797
SNP1727	133.7	sc00478ln232123_69232_T_C_225697361
SNP1728	133.7	sc00478ln232123_86141_C_T_225714270
SNP1726	133.7	sc00478ln232123_116450_A_G_225744579
SNP1699	134.0	sc00478ln232123_25807_C_T_225653936 sc00028ln943921_891130_T_C_39217895
SNP1710 SNP1698	134.6 134.6	sc00028ln943921_891130_1_C_39217893 sc00028ln943921_899937_G_A_39226702
SNP1709	134.7	sc00028ln943921_861909_A_C_39188674
SNP1703	134.8	sc00028ln943921_910173_A_G_39236938
SNP1704	134.8	sc00028ln943921 927420 T C 39254185
SNP1717	134.9	sc00028ln943921_821675_G_A_39148440
SNP1716	134.9	sc00028ln943921_813096_C_T_39139861
SNP1718	134.9	sc00028ln943921_834992_C_T_39161757
SNP1752	135.7	sc00028ln943921_701543_C_T_39028308
SNP1773	135.7	sc00028ln943921_784703_C_T_39111468
SNP1751	135.7	sc00028ln943921_691222_A_G_39017987
SNP1776	135.8	sc00028ln943921_642749_C_A_38969514
SNP1782 SNP1781	136.0 136.0	sc00028ln943921_631032_T_C_38957797 sc00028ln943921_589871_C_T_38916636
SNP1781 SNP1861	130.0	sc00028ln943921_389871_C_1_38910030 sc00028ln943921_216312_G_T_38543077
SNP1862	137.4	sc00028ln943921_216312_G_T_38543077 sc00028ln943921_225969_T_C_38552734
SNP1866	137.7	sc00028ln943921_171036_A_C_38497801
SNP1865	137.7	sc00028ln943921_171036_A_C_38497801 sc00028ln943921_151393_A_C_38478158
SNP1875	138.3	sc07115ln2922_647_C_A_463175453
SNP1882	138.7	sc00002ln2152649_43608_C_A_2215659
SNP1938	140.6	sc00002ln2152649_291044_T_C_2463095
SNP1949	141.5	sc00002ln2152649_556403_C_T_2728454
SNP1912	143.3	sc00002ln2152649_1026056_C_T_3198107
SNP1673	152.7	sc00002ln2152649_1689044_C_T_3861095
SNP1668 SNP1667	153.0	sc00002ln2152649_1601290_C_A_3773341
SNP1667 SNP1670	153.0 153.0	sc00002ln2152649_1588035_A_G_3760086 sc00002ln2152649_1663190_G_A_3835241
SNP1670 SNP1669	153.0	sc00002ln2152649_1608760_C_A_3780811
SNP1671	153.0	sc00002ln2152649_1670650_C_T_3842701
SNP1672	153.1	sc00002ln2152649_1627431_A_C_3799482
		- ' ' ' '

Position

Marker (cM) Illumina chip SNP ID

Chromosome 8 SNP0936 sc00089ln640327 33888 A C 83899379 SNP1372 sc00089ln640327_50900_G_A_83916391 sc00089ln640327_255418_C_T_84120909 sc00089ln640327_268606_C_T_84134097 sc00089ln640327_323100_T_C_84188591 SNP1142 SNP1170 3.9 SNP1565 5 5 SNP1416 6.9 sc00089ln640327_348591_T_G_84214082 sc00089ln640327_449361_A_C_84314852 sc00089ln640327_372918_C_T_84238409 sc00109ln578690_269526_C_T_96261769 SNP1373 7.1 SNP1168 SNP0627 27.8 sc00146ln499601 32913 C A 115754809 SNP1085 SNP0935 78.1 sc00523ln213906_191290_G_A_235788546 SNP0975 78.4 sc00382ln273856_175798_A_G_201691537 sc00466ln235663 61853 C T 222876518 SNP0963 78.4 SNP0954 78.4 sc00466ln235663_185244_T_G_222999909 SNP0976 78.4 sc00382ln273856_41934_G_A_201557673 SNP0962 78.4 sc00466ln235663 141103 G T 222955768 SNP0960 78.4 sc00382ln273856 143697 C T 201659436 sc00466ln235663_199702_T_C_223014367 SNP0955 78.4 sc00466ln235663_75628_A_G_222890293 sc00382ln273856_219690_C_T_201735429 SNP0978 78.4 SNP0973 78.4 SNP0952 sc01113ln104845 69779 C A 323516669 sc00466ln235663_101250_T_G_222915915 SNP0977 78.5 SNP1150 78.6 sc00122ln536571 345148 G A 103611662 sc00772ln150852_110893_T_G_280494227 SNP1117 793 SNP0913 sc00772ln150852 63102 A G 280446436 SNP0597 80.9 sc00644ln178259_1106_C_T_259424923 sc00644ln178259_985_C_T_259424802 sc00678ln168824_163688_A_G_265503413 SNP0613 80.9 SNP0574 81.2 SNP0766 82.4 sc00967ln122467 19622 G A 306927635 SNP0979 sc00523ln213906_121077_G_A_235718333 82.6 SNP0995 sc00466ln235663 107380 G A 222922045 SNP0791 sc01113ln104845 24827 T C 323471717 83.2 SNP0763 83.2 sc00382ln273856_134416_T_G_201650155 sc01420ln79187_21456_G_A_351443636 SNP0775 83.2 sc00382ln273856 190119 C T 201705858 SNP0789 83.3 SNP1001 sc01065ln109951 42799 A G 318349917 83 4 SNP1005 83.4 sc00122ln536571_275707_G_A_103542221 SNP1010 sc00382ln273856_243940_G_A_201759679 83.4 SNP0788 sc01113ln104845_45756_G_A_323492646 sc01090ln106752 73736 C T 321085592 SNP0953 83 7 sc01100ln105957 59393 G A 322134664 SNP0109 84.5 sc01100ln105957_40628_C_T_322115899 sc00525ln212916_167829_C_T_236192752 SNP0065 84.5 SNP0387 85.0 sc01090ln106752 27089 T C 321038945 SNP0576 85.2 SNP0377 85.7 sc00614ln187245_140709_A_G_254079936 SNP0375 86.9 sc04051ln13799_11833_C_A_444105603 SNP0693 87.3 sc01011ln116873 24556 T C 312198407 SNP0694 sc01640ln64876 20297 G T 367140501 87.3 SNP0698 sc01640ln64876_24691_G_A_367144895 87.3 SNP0899 sc02607ln33603_22954_C_A_412386320 87.4 sc01283ln89005_3221_T_G_339889653 SNP0684 87.9 SNP0681 87.9 sc01160ln99756 36680 Ā C 328288659 87.9 $sc01160ln99756_29335_G_A_328281314$ SNP0531 SNP0682 87.9 sc01283ln89005 62954 T G 339949386 sc00730ln159195_44096_G_A_273916231 SNP0689 879 SNP0691 87.9 sc01715ln60978 41762 T C 371880709 sc00799ln146716_96652_A_G_284495484 SNP0683 87.9 sc01508ln72195 46371 A G 358129229 SNP0685 87.9 sc00704ln164048_132814_G_A_269804765 87.9 SNP0532 SNP0688 sc00704ln164048 154338 A G 269826289 87.9 sc00730ln159195_50195_A_C_273922330 SNP0690

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0686	87.9	sc01767ln58683_24597_C_A_374981857
SNP0241	89.0	sc00699ln165004_1865_G_A_268850654
SNP0159	89.9	sc04131ln13120_11363_G_A_445182807
SNP0406	90.4	sc00076ln674865_100779_T_C_75423055
SNP0580	90.5	sc00215ln398466_277858_C_T_147112481
SNP0585 SNP0586	90.5 90.5	sc01660ln63925_25264_A_C_368435648 sc03532ln18666_704_T_C_435754845
SNP0580	90.5	sc00215ln398466 303594 A C 147138217
SNP0587	90.5	sc03997ln14266_12473_C_T_443348108
SNP0405	90.7	sc01372ln82520_76721_T_G_347620761
SNP1563	112.7	sc00166ln480543_36456_C_T_125577213
SNP1500	113.1	sc00919ln128466 39287 A G 300946899
SNP1476	113.4	sc00919ln128466_87863_T_C_300995475
SNP1477	113.4	sc02901ln27820_8132_G_A_421382042
SNP1195	117.5	sc00083ln654812_331283_T_C_80299026
SNP1194	117.5	sc00083ln654812_284340_A_G_80252083
SNP1226	118.2	sc00374ln277731_36118_G_A_199345150
SNP1430 SNP1231	118.2 118.3	sc00083ln654812_617268_T_G_80585011 sc00083ln654812_603920_G_A_80571663
SNP1034	118.3	sc00083ln654812_603920_G_A_80371003 sc00083ln654812_489796_C_A_80457539
SNP1234	118.4	sc00083ln654812_43770_C_A_80437337 sc00083ln654812_631182_T_C_80598925
SNP1560	124.6	sc00071ln681296 304691 T C 72227702
SNP1423	125.1	sc00071ln681296 367947 T C 72290958
SNP1506	125.1	sc00071ln681296_379901_G_A_72302912
SNP1382	126.2	sc00071ln681296_466314_A_C_72389325
SNP1173	126.5	sc00071ln681296_480499_T_C_72403510
SNP1193	127.4	sc00068ln689895_606631_T_C_70466160
SNP1149	127.7	sc00068ln689895_502379_G_A_70361908
SNP0006	131.8	sc00035ln877458_174406_A_G_44813898
SNP0008 SNP0007	131.8 131.8	sc00035ln877458_160463_G_T_44799955 sc00035ln877458_148852_C_T_44788344
SNP0007 SNP0025	131.8	sc00035ln877458_148832_C_1_44788344 sc00035ln877458_235773_T_G_44875265
SNP0039	132.5	sc00035ln877458_255775_1_G_44675265 sc00035ln877458_362109_A_G_45001601
SNP0028	132.8	sc00035ln877458 610310 G T 45249802
SNP0026	132.8	sc00035ln877458 387439 G A 45026931
SNP0027	132.8	sc00035ln877458_405353_A_G_45044845
SNP0024	132.8	sc00035ln877458_426212_G_A_45065704
SNP0009	133.3	sc00035ln877458_786749_T_C_45426241
SNP0019	133.6	sc00035ln877458_845685_T_C_45485177
SNP0018	133.6	sc00035ln877458_833438_A_G_45472930
SNP0046 SNP0045	134.2 134.2	sc00035ln877458_862714_T_G_45502206 sc00035ln877458_856965_C_T_45496457
SNP0043 SNP0043	134.4	sc00091ln623366 98902 C T 85240126
SNP0310	135.2	sc00091ln623366_201793_T_C_85343017
SNP0174	135.6	sc00091ln623366 212877 A G 85354101
SNP0175	135.6	sc00091ln623366_267437_T_G_85408661
SNP0179	135.6	sc00091ln623366 244751 A G 85385975
SNP0116	136.1	sc00091ln623366_314892_T_C_85456116
SNP0114	136.1	sc00091ln623366_325463_G_T_85466687
SNP0117	136.1	sc00091ln623366_338903_C_T_85480127
SNP0343	138.6	sc00091ln623366_492344_A_G_85633568
SNP0444	147.6	sc00187ln435150_172862_C_T_135325085
SNP0438 SNP0443	147.6 147.6	sc00187ln435150_232820_T_C_135385043 sc00187ln435150_224424 G A 135376647
SNP0443 SNP0475	147.6	sc00187ln435150_224424_G_A_135376047 sc00187ln435150_178942_C_T_135331165
SNP0473	148.4	sc00187ln435150_178942_C_1_133531103 sc00187ln435150_165316_A_G_135317539
SNP0448	149.2	sc00187ln435150_103510_A_G_135317537
SNP0333	150.0	sc00187ln435150 46434 T C 135198657
SNP0334	150.0	sc00187ln435150 54957 C T 135207180
SNP0222	150.1	sc01730ln60519 17555 C T 372768027
SNP0221	150.1	sc00187ln435150_14671_T_C_135166894
SNP0203	150.4	sc01730ln60519_26825_G_A_372777297

Position

Marker (cM) Illumina chip SNP ID

```
Chromosome 9
SNP0931
                  sc00084ln653026 513579 C T 81136134
SNP1126
                  sc00084ln653026_618609_T_C_81241164
SNP0517
                  sc00084ln653026_343345_G_A_80965900
                  sc00015ln1350335_1191524_C_T_25527800
sc00015ln1350335_1210315_C_T_25546591
SNP0900
SNP0516
              49
                  sc00015ln1350335_1177629_C_T_25513905
SNP0160
              5.2
SNP1518
             33.9
                   sc00032ln883219_1896_C_A_41996834
SNP1571
             34.1
                   sc00032ln883219 41099 A G 42036037
SNP1511
                  sc00154ln494200_461520_C_A_120158601
             34 7
SNP1498
             35.0
                  sc00154ln494200 375072 G A 120072153
                  sc00154ln494200_422515_T_C_120119596
SNP1522
             35.0
SNP1605
             35.9
                   sc00154ln494200_443505_A_G_120140586
SNP1603
             36.3
                  sc00154ln494200 393360 A C 120090441
SNP1659
             37.6
                  sc00154ln494200_340490_T_C_120037571
SNP1642
             38.0
                  sc00154ln494200_258454_T_C_119955535
SNP1597
             38.0
                  sc00154ln494200 307525 T C 120004606
SNP1678
                  sc00154ln494200_199835_G_A_119896916
             39.2
                  sc00154ln494200_249792_C_A_119946873
SNP1467
             40.0
                  sc00154ln494200_200043_T_C_119897124
sc00154ln494200_292522_T_C_119989603
SNP1465
             40.0
SNP1468
             40.0
SNP1466
                  sc00154ln494200 234845 C A 119931926
             43.0
SNP1493
                  sc00154ln494200_7208_C_T_119704289
                  sc00154ln494200_34156_G_A_119731237
SNP1492
             43.0
SNP1491
                  sc00011ln1496550_1478305_G_T_20047620
             43.0
SNP1643
             43 4
                  sc00154ln494200 25108 G A 119722189
                  sc00011ln1496550_462891_C_T_19032206
sc00011ln1496550_440753_C_T_19010068
sc00011ln1496550_131979_A_G_18701294
SNP1557
             48.2
SNP1556
             48.2
SNP1488
             48 8
SNP1473
             49.3
                   sc01103ln105656 75535 T C 322468400
SNP1472
             49.3
                  sc01103ln105656_55621_A_G_322448486
SNP1463
             49.7
                   sc00226ln381215_139368_T_C_151263638
                  sc00226ln381215 598 C T 151124868
SNP1140
             49 9
SNP1135
                  sc00226ln381215_52504_T_C_151176774
SNP1134
             50.0 sc00226ln381215_152427_G_A_151276697
SNP1403
             51.0
                  sc00011ln1496550 152025 A G 18721340
SNP1402
                  sc00011ln1496550_120953_G_T_18690268
             51.0
SNP1404
             51.0
                  sc00011ln1496550 206818 A G 18776133
SNP1111
                  sc00226ln381215_86811_A_G_151211081
             51.8
SNP1025
                  sc00055ln737569_369036_C_T_60944719
                  sc00055ln737569 539995 A G 61115678
SNP0806
             56.6
SNP0811
             56.7
                   sc00055ln737569 396151 G A 60971834
SNP0749
                   sc00074ln679062_181096_T_C_74145419
             58.2
SNP1172
             59.3
                   sc00074ln679062_300164_A_G_74264487
                  sc00074ln679062 380083 G A 74344406
SNP1171
             59.3
SNP1400
             59.3
                   sc00074ln679062_342443_A_G_74306766
                  sc00074ln679062_614575_T_C_74578898
sc00053ln744334_265033_T_C_59352681
SNP1510
             59.7
SNP1566
             61.5
SNP1520
                  sc00227ln381060 290568 T C 151796053
             61.9
                   sc00227ln381060\_227652\_G\_T\_151733137
SNP1428
             61.9
                  sc00225ln381920_204492_T_C_150946842
SNP1426
             62.1
                  sc00227ln381060_64777_G_A_151570262
SNP1016
             62.1
SNP1033
             62.4
                  sc00227ln381060 44263 T G 151549748
SNP1017
                  sc00367ln282611_89909_G_A_197435354
             62.6
                  sc00367ln282611_50662_G_A_197396107
sc00367ln282611_35136_T_C_197380581
SNP1427
             62.8
SNP1432
             62.8
SNP1516
             62.8
                  sc00225ln381920 300339 C T 151042689
SNP1514
                   sc03650ln17395_4655_C_T_437882217
             63.5
                  sc00030ln901868_497471_C_T_40697914
sc00030ln901868_494778_A_G_40695221
SNP1230
             63.6
SNP1229
             63.6
SNP1228
                  sc00030ln901868 494688 G A 40695131
             63.6
SNP1429
             63.6 sc00030ln901868_4611_T_C_40205054
```

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP1527	64.0	sc00030ln901868_498663_A_G_40699106
SNP0816	64.5	sc00266ln347425_2017_G_A_165598341
SNP0269	65.2	sc00030ln901868_678729_T_G_40879172
SNP0602	66.1	sc00030ln901868_901457_T_G_41101900
SNP0796 SNP1434	67.0 67.7	sc00848ln138886_135985_G_A_291535409 sc00031ln892627_48350_G_A_41150661
SNP1227	69.2	sc09284ln2142 1664 T C 468517936
SNP0993	69.7	sc00251ln357087_209656_A_G_160516870
SNP0958	69.7	sc00251ln357087 177100 G T 160484314
SNP0957	69.7	sc00251ln357087_110473_A_G_160417687
SNP0956	69.7	sc00151ln495583_343271_C_T_118554815
SNP1519	71.0	sc00791ln147720_119296_C_T_283339304
SNP1581	71.6	sc00814ln144697_115596_T_C_286704428
SNP1613	72.0	sc00029ln929757_858315_T_C_40129001 sc00814ln144697_131609_C_T_286720441
SNP1580 SNP1526	72.0 72.2	sc00029ln929757 779382 T G 40050068
SNP1520 SNP1579	72.5	sc00029ln929757_779382_1_G_40030008 sc00029ln929757_543882_C_A_39814568
SNP1532	72.5	sc00029ln929757_444645_T_C_39715331
SNP1433	73.1	sc01280ln89367_57315_C_A_339675954
SNP1650	73.7	sc00554ln205480 67675 G A 242150860
SNP1586	74.0	sc00805ln146292_74900_C_T_285352806
SNP1585	74.0	sc01680ln62849_3949_G_T_369679693
SNP1583	74.0	sc00372ln278264_260577_T_C_199013261
SNP1538	74.3	sc00128ln528108_283640_G_A_106753910
SNP1627	74.6	sc00128ln528108_459347_T_C_106929617 sc01719ln60897_56821_A_G_372139570
SNP1622 SNP1533	74.9 75.1	sc01/19lil0089/_30821_A_G_3/21393/0 sc00128ln528108_510215_A_G_106980485
SNP1009	77.3	sc00280ln338904 39465 G A 170431966
SNP1242	78.1	sc00105ln590179_97478_G_A_93751596
SNP1274	78.5	sc00105ln590179 155124 C A 93809242
SNP1270	78.5	sc00105ln590179_161679_T_C_93815797
SNP1240	78.8	sc00147ln499187_198199_C_T_116419696
SNP1239	78.8	sc00147ln499187_184776_G_A_116406273
SNP1241 SNP0642	78.8 79.2	sc00105ln590179_378162_T_G_94032280 sc00147ln499187_142990_C_T_116364487
SNP1446	80.8	sc00123ln535111_91566_T_C_103894651
SNP1539	81.0	sc00123ln535111_11314_A_C_103814399
SNP1535	81.3	sc00123ln535111 110295 C T 103913380
SNP1537	81.8	sc00123ln535111_110295_C_T_103913380 sc00123ln535111_251756_C_T_104054841
SNP1550	82.8	sc00595ln194451_187232_C_T_250500447
SNP1456	83.0	sc00470ln234971_32733_C_T_223789391
SNP1447	84.9	sc00561ln203533_134974_A_G_243647848
SNP1093 SNP1445	85.1 85.6	sc02657ln32633_7734_A_G_414028551 sc00129ln528071_458677_G_A_107457055
SNP1443 SNP1540	85.7	sc00129ln528071_438077_G_A_107437033 sc00129ln528071_515509_A_C_107513887
SNP1283	88.9	sc00080ln658250_499940_G_A_78497179
SNP1441	90.1	sc00080ln658250 317450 G T 78314689
SNP1440	90.1	sc00080ln658250 356347 C T 78353586
SNP1436	90.1	sc00080ln658250_229923_A_C_78227162 sc00080ln658250_301931_A_G_78299170
SNP1437	90.1	sc00080ln658250_301931_A_G_78299170
SNP1435	90.1	sc00080ln658250_137963_T_G_78135202
SNP1233	90.3	sc00080ln658250_160931_G_A_78158170
SNP1266 SNP0864	90.7 91.8	sc00080ln658250_84739_G_T_78081978 sc00324ln307318_196873_A_C_184839532
SNP0804 SNP1309	91.8	sc00324ln307318_190873_A_C_184839332 sc00324ln307318_170127_T_C_184812786
SNP1290	92.3	sc00503ln218773_217226_C_T_231487565
SNP1271	93.3	sc00503ln218773 123693 G A 231394032
SNP1272	95.3	sc00075ln678891 643638 A C 75287023
SNP1269	95.3	sc00787ln148310 146287 A C 282774102
SNP1268	95.3	sc00075ln678891_678179_T_C_75321564
SNP1291	95.6	sc04928ln7271_2596_A_G_453169399
SNP1292	95.6	sc00163ln482844_79490_C_T_124175411
SNP1293 SNP0808	95.6 95.9	sc00787ln148310_90237_T_G_282718052
SINFUSUS	93.9	sc00787ln148310_62034_T_G_282689849

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP1289	96.3	sc04928ln7271_3317_C_T_453170120
SNP1071	96.4	sc00163ln482844_142113_C_T_124238034
SNP0871	96.7	sc00163ln482844_307405_G_A_124403326
SNP1092	96.7	sc00163ln482844_299569_T_C_124395490
SNP0858	97.2	sc02667ln32330_7503_T_C_414353090
SNP0882	97.5	sc01241ln92631_81286_A_G_336151737 sc00044ln783129_44997_G_A_52282073
SNP0852 SNP0854	97.8 97.8	sc00044ln783129_44997_G_A_52282073 sc00044ln783129_27649_G_A_52264725
SNP0872	97.8	sc00044ln783129_27049_G_A_32204723 sc00044ln783129_22034_A_C_52259110
SNP0870	98.4	sc00044ln783129 205752 G A 52442828
SNP1076	99.2	sc04626ln9236 994 A G 450697783
SNP0873	99.2	sc00044ln783129_448490_G_A_52685566
SNP1075	99.2	sc00044ln783129_477931_C_T_52715007
SNP0661	99.5	sc00044ln783129_357531_A_G_52594607
SNP1077	99.9	sc01026ln114811_22123_G_T_313935002
SNP1273	100.4	sc00085ln651547_554069_T_C_81829650
SNP0880 SNP0874	101.5 101.5	sc00042ln819284_553185_A_G_51164832 sc00042ln819284_516699_G_A_51128346
SNP0874 SNP0875	101.5	sc00042ln819284_510099_G_A_51128546 sc00042ln819284_525496_C_T_51137143
SNP0881	101.5	sc00042ln819284 605644 A G 51217291
SNP0876	101.5	sc00042ln819284_573081_G_A_51184728
SNP0676	101.7	sc00042ln819284 506335 G A 51117982
SNP1368	102.1	sc00042ln819284_422864_C_T_51034511
SNP1455	102.3	sc00042ln819284_360338_G_A_50971985
SNP1367	102.4	sc00042ln819284_419579_G_A_51031226
SNP1370	103.4	sc00042ln819284_180429_C_T_50792076
SNP1501 SNP1060	103.7 104.0	sc00164ln481135_317972_G_T_124896737 sc00164ln481135_425120_A_G_125003885
SNP1418	104.0	sc00164ln481135_423120_A_G_123003883 sc00164ln481135_370671_A_G_124949436
SNP1275	105.2	sc01901ln53111_17493_A_G_382488288
SNP1041	105.9	sc08757ln2269 1774 G A 467356554
SNP1534	107.4	sc09675ln2063_1540_C_T_469340379
SNP1575	108.2	sc00016ln1258381_645222_T_G_26331833
SNP1577	108.2	sc00016ln1258381_675448_A_G_26362059
SNP1576 SNP1443	108.2 109.1	sc00016ln1258381_728840_G_A_26415451 sc00016ln1258381_1083240_G_A_26769851
SNP1439	109.1	sc00016ln1258381_1083240_G_A_20709831 sc00016ln1258381_1004243_T_C_26690854
SNP1525	109.1	sc00016ln1258381_1046587_G_A_26733198
SNP1236	109.4	sc00016ln1258381 1018150 T C 26704761
SNP0426	110.2	sc00016ln1258381_1125529_C_T_26812140
SNP0594	113.0	sc00288ln334250_193984_G_A_173285628
SNP0589	113.0	sc04094ln13474_381_T_C_444679493
SNP0992	113.4	sc01643ln64759_8048_C_T_367322790
SNP1200 SNP1414	113.4 113.6	sc00558ln203717_111469_G_A_243013254 sc00312ln316775_188144_G_A_181084554
SNP1414 SNP1192	113.8	sc05878ln4716 1592 T C 458730546
SNP1204	113.8	sc01643ln64759_57246_T_G_367371988
SNP1413	113.9	sc00558ln203717_81111_C_A_242982896
SNP1419	114.1	sc01587ln67889_994_T_C_363608650
SNP1509	114.8	sc02176ln43663 43502 C T 395837638
SNP1508	114.8	sc02176ln43663_14576_C_T_395808712
SNP1559	115.1	sc02468ln36607_14845_T_C_407478973
SNP1421	115.3	sc01370ln82555_39513_C_T_347418482
SNP1386 SNP1569	116.2 119.0	sc00605ln190820_187076_A_C_252426129 sc00681ln167794_82641_T_C_265928558
SNP1507	120.0	sc01337ln85707_84838_T_C_344691617
SNP1662	120.9	sc00681ln167794_25291_C_T_265871208
SNP1675	121.2	sc01315ln87243 80483 C T 342784796
SNP1663	121.2	sc01315ln87243_80483_C_T_342784796 sc01337ln85707_62659_C_T_344669438
SNP1674	121.2	sc01337ln85707_16449_T_G_344623228
SNP1610	123.6	sc00395ln266223_244415_T_C_205264462
SNP1612	124.6	sc00436ln247049_1602_T_C_215539146
SNP1609 SNP1614	124.9	sc00436ln247049_19980_A_C_215557524 sc00436ln247049_139399_G_A_215676943
SNP1014	126.1	SCOU430III24/049_139399_G_A_2130/0943

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP1621	126.4	sc00436ln247049 204235 A G 215741779
SNP1628	126.7	sc00436ln247049_226169_T_C_215763713
SNP1620	127.0	sc01477ln74590 51381 G A 355854774
SNP1619	127.0	sc01477ln74590 29897 G A 355833290
SNP1618	127.0	sc00436ln247049 232635 T C 215770179
SNP1450	127.4	sc01477ln74590_37586_C_T_355840979
SNP1451	128.0	sc00436ln247049_197664_A_G_215735208
Chromos	ome 10	
SNP0624	0.0	sc00006ln1798808_1788247_A_G_12019712
SNP0629	0.0	sc00006ln1798808_1753120_T_G_11984585
SNP0445	20.3	sc00006ln1798808_445427_A_C_10676892
SNP0543	21.0	sc00006ln1798808_472545_A_G_10704010
SNP0727	22.5	sc00006ln1798808_369097_A_G_10600562
SNP1031	23.3	sc00006ln1798808_286665_A_G_10518130
SNP0603	24.2	sc00006ln1798808_212015_C_A_10443480
SNP0598 SNP0483	24.4 27.7	sc00006ln1798808_183339_A_G_10414804 sc01641ln64854_52479_T_C_367237559
SNP0509	28.6	sc00051ln745799_726997_G_T_58323665
SNP0493	28.9	sc00051ln745799_597111_A_C_58193779
SNP1307	44.3	sc00119ln552178_63488_G_A_101694082
SNP1425	44.4	sc00119ln552178 70781 A G 101701375
SNP1099	45.4	sc00119ln552178_356133_C_T_101986727
SNP1210	48.4	sc00299ln324429_235216_A_G_176947369
SNP1188	48.8	sc00311ln318211_301437_A_G_180879636
SNP1189	48.8	sc00307ln320561_297222_A_G_179594469
SNP1185	48.8	sc00795ln147372_19145_C_A_283829514
SNP1187	48.8	sc00311ln318211_103535_T_C_180681734
SNP1064	48.8	sc02174ln43797_5934_T_G_395712602
SNP1186	48.8	sc01142ln101735_6706_G_A_326446748
SNP1184	48.8	sc00078ln669540_46230_G_T_76714253 sc02147ln44740_30057_A_G_394541867
SNP1080 SNP1081	49.9 49.9	sc02147ln44740_30037_A_G_394341867 sc00468ln235576_177085_C_T_223463074
SNP1063	49.9	sc00821ln142778_141109_T_G_287737984
SNP1079	49.9	sc02056ln47509 11194 C T 390319725
SNP1082	49.9	sc00468ln235576_117195_G_A_223403184
SNP1177	50.2	sc00238ln365548_39631_G_A_155649821
SNP1176	50.2	sc00238ln365548_138746_T_C_155748936
SNP1346	50.9	sc00201ln413229_393920_G_A_141526162
SNP1362	50.9	sc01927ln52340_20694_C_T_383863152
SNP1311	50.9	sc00570ln201983_130249_A_G_245468919
SNP1356	50.9	sc02517ln35640_34945_G_A_409271134
SNP1321	50.9	sc01698ln61778_38762_A_G_370834217 sc03236ln22074_16858_C_T_429740908
SNP1254 SNP1348	50.9 50.9	sc03236ln22074_16838_C_1_429740908 sc01079ln107885_4945_C_T_319835376
SNP1348	51.0	sc01168ln99159_94504_A_C_329142017
SNP1294	51.0	sc04998ln6958_2240_A_G_453667058
SNP1320	51.2	sc01642ln64808_3042_T_C_367252976
SNP1452	51.3	sc01857ln55185_12955_G_T_380096039
SNP1322	51.5	sc01765ln58721_39310_T_G_374879154
SNP1349	51.5	sc01168ln99159_50851_C_T_329098364
SNP1328	51.5	sc02870ln28205_24911_A_G_420530403
SNP1347	51.5	sc00773ln150789_141432_G_A_280675618
SNP1255	51.5	sc03856ln15331_8618_G_T_441257392
SNP1329	51.5	sc03089ln24644_2588_T_C_426303410
SNP1318	51.5	sc01456ln76054_17570_A_G_354236643
SNP1364 SNP1312	51.5	sc03355ln20766_15858_G_A_432292463 sc00809ln145667_109436_T_C_285971808
SNP1312 SNP1248	51.5 51.5	sc00809in14566/_109436_1_C_2859/1808 sc01168ln99159_90489_T_C_329138002
SNP1246 SNP1359	51.5	sc00300ln324130_235313_C_T_177271895
SNP1351	51.5	sc01321ln86834 73124 C A 343299461
SNP1324	51.5	sc02114ln45736_27746_T_C_393044719
SNP1377	51.6	sc05490ln5589_4229_C_A_456734457

Marker	Position (cM)	Illumina chip SNP ID
SNP1352	51.8	sc01445ln76830 16430 C A 353393339
SNP1360	51.8	sc00809ln145667 134260 G A 285996632
SNP1246	51.8	sc00903ln131070_55446_T_C_298888863
SNP1319	51.8	sc01456ln76054 51182 A G 354270255
SNP1249	51.8	sc01981ln50697_41887_A_G_386663790
SNP1285 SNP1251	51.9 52.0	sc00570ln201983_108751_T_C_245447421 sc02158ln44261_11616_T_C_395013326
SNP1327	52.1	sc02837ln28932_13106_A_C_419575614
SNP1258	52.1	sc01251ln91983_21758_G_A_337016147
SNP1355	52.1	sc02264ln41425_30849_G_A_399569036
SNP1313 SNP1252	52.1 52.1	sc00857ln137764_52028_A_G_292696245 sc02746ln30961_15643_T_C_416860717
SNP1232 SNP1363	52.1	sc02/46lii30961_13643_1_C_416860/17 sc02012ln49279_19271_C_T_388194597
SNP1224	52.2	sc04836ln7761_5720_C_T_452482732
SNP1361	52.4	sc01348ln84493_2016_G_A_345544176
SNP1358	52.4	sc01936ln52087_10426_G_A_384323187
SNP1334	52.4 52.4	sc04067ln13664_13382_A_G_444326754
SNP1336 SNP1315	52.4 52.4	sc05241ln6223_1583_A_G_455262880 sc00955ln123158 67220 T C 305499847
SNP1323	52.4	sc01863ln54977_843_T_C_380414649
SNP1317	52.4	sc01258ln90974_73663_A_G_337708857
SNP1357	52.4	sc03241ln22023_7641_C_T_429841958
SNP1332	52.4 52.4	sc03330ln21071_4690_T_G_431757524
SNP1343 SNP1247	52.4 52.4	sc03236ln22074_18803_T_C_429742853 sc00970ln121882_58322_A_G_307333268
SNP1314	52.4	sc00955ln123158_15706_T_C_305448333
SNP1326	52.4	sc02755ln30709_20749_T_C_417143291
SNP1316	52.4	sc01188ln97639_24015_A_C_331045486
SNP1325	52.4	sc02136ln45114_28960_A_C_394046811
SNP1350 SNP1353	52.4 52.4	sc01321ln86834_2687_G_A_343229024 sc01456ln76054_48944_G_A_354268017
SNP1263	53.0	sc00809ln145667_72116_T_C_285934488
SNP1235	53.0	sc03161ln23235 20182 C T 428043572
SNP1264	53.0	sc01456ln76054_7617_C_T_354226690
SNP1339 SNP1296	53.3 53.3	sc01473ln75007_52419_A_G_355556346 sc02038ln48308_6171_A_G_389450800
SNP1250 SNP1354	53.3	sc01987ln50455_39718_G_A_386965277
SNP1342	53.3	sc02992ln26296_1557_T_C_423832079
SNP1295	53.3	sc00638ln179753_104381_T_C_258454761
SNP1341	53.3	sc02242ln41987_358_T_C_398621554
SNP1333 SNP1330	53.3 53.3	sc03388ln20278_19551_A_G_432973019 sc03198ln22621_19707_A_C_428893330
SNP1330 SNP1335	53.3	sc04154ln12975 4862 A G 445476342
SNP1260	53.3	sc03202ln22593 17304 T C 428981368
SNP1256	53.3	sc00238ln365548_299667_A_G_155909857
SNP1337	53.3	sc01116ln104525_20142_A_G_323781137
SNP1250 SNP1253	53.3 53.3	sc02134ln45142_8292_C_T_393935857 sc02752ln30791_24631_C_T_417054910
SNP1225	53.6	sc03767ln16228_15756_G_T_439859736
SNP1223	53.8	sc01188ln97639_27503_A_G_331048974
SNP1211	53.9	sc02151ln44660_24990_C_A_394715549
SNP1257	53.9	sc01080ln107797_2325_C_T_319940641
SNP1344 SNP1345	53.9 53.9	sc03667ln17211_7456_T_C_438179458 sc04431ln10730_9524_A_G_448758771
SNP1343 SNP1331	53.9	sc03306ln21316_9557_A_G_431254223
SNP1338	53.9	sc00970ln121882_59427_A_G_307334373
SNP1340	53.9	sc01674ln63025_42557_T_G_369340570
SNP1259	54.0	sc01879ln54418_5706_C_T_381295616
SNP1284 SNP1276	54.1 54.2	sc02914ln27480_26319_T_G_421760096 sc01313ln87237_39069_G_A_342568917
SNP1276 SNP1243	54.2 54.2	sc01927ln52340_897_T_C_383843355
SNP1244	54.3	sc08191ln2431_1621_A_G_466029043
SNP1245	54.3	sc03355ln20766_7577_T_G_432284182
SNP1281	54.4	sc03131ln23796_12557_G_A_427330323

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP1282	54.7	sc04085ln13514 1248 T C 444558952
SNP1300	54.8	sc02714ln31464_10178_C_T_415855712
SNP1305	54.8	sc02189ln43335 32663 A G 396392509
SNP1299	54.8	sc01168ln99159_59186_A_G_329106699
SNP1297	54.8	sc04011ln14153_7741_T_C_443542394
SNP1302	54.8	sc00300ln324130_316288_T_C_177352870
SNP1369	55.0	sc05984ln4477_3468_T_C_459220441 sc02305ln40198_39233_C_T_401246040
SNP1444	55.0	sc02305ln40198_39233_C_1_401246040
SNP1303	55.1	sc01348ln84493 20350 T_C 345562510
SNP1298 SNP1067	55.1 56.1	sc01168ln99159_17576_C_T_329065089 sc02147ln44740_15412_C_T_394527222
SNP1098	56.4	sc00603ln190994 176505 G A 252033814
SNP1304	57.0	sc01574ln68532_10351_T_C_362730111
SNP1277	57.0	sc00300ln324130 235844 C T 177272426
SNP1366	57.0	sc03289ln21479 2759 T C 430883419
SNP1301	57.0	sc03296ln21433 7259 C T 431038114
SNP1306	57.0	sc02947ln26965_6036_G_A_422637787
SNP1110	57.6	sc01424ln78848 75705 G A 351814023
SNP1094	57.8	sc02123ln45577_40042_T_C_393468329
SNP1070	58.3	sc03735ln16527_4060_T_C_439323319
SNP1097	58.5	sc02011ln49336_42661_T_C_388168651
SNP1105	58.5	sc01179ln98857_50086_A_G_330186597
SNP1179	59.1	sc01179ln98857_41708_C_A_330178219
SNP1050 SNP1049	59.8 59.8	sc01197ln96689_18225_C_T_331916027 sc00348ln292032_250324_G_A_192108237
SNP1049 SNP1051	59.8 59.8	sc01208ln95750_2100_T_C_332959222
SNP0989	60.1	sc01507ln72199 5255 A G 358015914
SNP0985	60.1	sc00267ln345535_193228_C_T_166136977
SNP0859	60.1	sc01507ln72199 5139 A C 358015798
SNP0986	60.1	sc01226ln94276 88148 G A 334757418
SNP0860	60.1	sc06053ln4275 1368 G T 459520633
SNP0722	61.0	sc00864ln137200_42399_C_T_293649430
SNP0889	61.2	sc00861ln137449_55673_A_G_293250546
SNP0888	61.2	sc00794ln147497_57984_G_T_283720856
SNP0887	61.2	sc00582ln199364_113235_G_A_247865262
SNP0714	61.9	sc00582ln199364_113091_T_C_247865118
SNP0885	62.2	sc02065ln47275_44079_A_G_390779310
SNP1904 SNP1903	62.5 63.8	sc00114ln558783_341277_T_C_99192335
SNP1903	63.8	sc06869ln3115_1379_A_C_462435454 sc06869ln3115_2701_C_T_462436776
SNP1089	65.2	sc00782ln148876_30695_A_G_281915603
SNP1088	65.2	sc00782ln148876 124090 T C 282008998
SNP1066	66.3	sc00660ln174469_162231_C_T_262407192
SNP1065	66.3	sc00660ln174469 137933 T C 262382894
SNP1057	66.5	sc00660ln174469_95464_A_C_262340425
SNP1056	67.1	sc00807ln146095_83720_A_G_285653993
SNP1055	67.1	sc00807ln146095_108233_C_T_285678506
SNP1232	67.7	sc03148ln23445_11526_A_G_427730973
SNP1087	68.6	sc01023ln115055_87603_C_T_313655623
SNP1086	68.6	sc00593ln194954_56329_G_A_249979873
SNP0804	70.6	sc00337ln299607_293065_A_C_188890524
SNP0485 SNP1880	72.4 72.7	sc00337ln299607_162600_G_A_188760059 sc00535ln209042_100170_G_T_238239726
SNP0868	75.0	sc00437ln247044_177185_A_G_215961778
SNP0674	75.3	sc00963ln122864 44159 C T 306461063
SNP0656	75.5	sc00865ln136685_94928_C_T_293839159
SNP0803	76.8	sc00294ln327912 229781 C T 175308871
SNP0845	81.8	sc01651ln64453_35116_A_G_367866893
SNP0879	81.8	sc02691ln31894 5330 G A 415122009
SNP0878	81.8	sc00996ln118235_98637_T_C_310509092
SNP0877	81.8	sc00996ln118235_22224_A_G_310432679

Chromosome 11 (linkage group A)

	Position	
Marker	(cM)	Illumina chip SNP ID
SNP0926	0.0	sc00007ln1695141_32329_T_C_12062602
SNP1042	0.7	sc00007ln1695141_42722_G_A_12072995
SNP0927	1.2	sc00007ln1695141_55593_T_C_12085866
SNP0141 SNP0140	7.7	sc00007ln1695141_1345595_G_A_13375868 sc00007ln1695141_1326203_T_C_13356476
SNP0140 SNP0105	7.7 8.0	sc00007ln1695141_1326203_1_C_13356476 sc00007ln1695141_1358942_G_A_13389215
SNP0147	8.5	sc00007ln1695141_1336742_G_A_13367213 sc00007ln1695141_1367176_C_A_13397449
SNP0165	8.5	sc00007ln1695141_1378335_A_G_13408608
SNP0115	8.8	sc00007ln1695141_1394703_G_A_13424976
SNP0148	9.1	sc00007ln1695141_1473892_T_C_13504165
SNP0482	17.5	sc00971ln121847_92400_A_G_307489228
SNP0481	17.5	sc00971ln121847_109059_T_G_307505887
SNP0476	17.5	sc00050ln749641_685015_C_T_57532042
SNP0092 SNP0162	20.0 20.7	sc00886ln133593_90250_G_A_296674529 sc01714ln61008_11666_A_G_371789605
SNP0102 SNP0244	20.7	sc01012ln116863 20072 A G 312310796
SNP0177	21.3	sc00440ln246377_245650_G_A_216770461
SNP0176	21.3	sc01478ln74612_39178_C_T_355917161
SNP0284	21.7	sc00263ln349218_310737_A_G_164861326
SNP0285	21.7	sc00263ln349218_29371_T_C_164579960
SNP0278	21.8	sc00263ln349218_130837_A_G_164681426
SNP0407	21.9	sc00143ln502412_370710_C_T_114588212
SNP0279	21.9	sc00263ln349218_56199_G_A_164606788
SNP0277	22.0	sc00143ln502412_342080_T_C_114559582
SNP0276 SNP0299	22.0 22.1	sc00143ln502412_394031_C_T_114611533 sc00276ln340231_137883_G_A_169171930
SNP0299 SNP0466	22.1	sc00276lli340231_137883_G_A_169171930 sc00050ln749641_743345_A_G_57590372
SNP0223	26.5	sc00331ln303842_107220_C_A_186896094
SNP0192	27.1	sc00380ln274275_102940_T_C_201070269
SNP0189	27.1	sc00380ln274275 144671 G A 201112000
SNP0188	27.1	sc00380ln274275 137079 T G 201104408
SNP0187	27.1	sc00380ln274275_130818_G_A_201098147
SNP0723	32.5	sc02675ln32214_28039_T_C_414631730
SNP1387	35.0	sc00213ln403120_398770_C_T_146428889
SNP1469	35.0	sc00213ln403120_361114_A_G_146391233 sc00213ln403120_156262_T_C_146186381
SNP1136 SNP1375	35.1 35.1	sc00213ln403120_136262_1_C_146186381 sc00213ln403120_257943_T_C_146288062
SNP1138	35.6	sc00213ln403120_237943_1_C_140288002 sc00213ln403120_43722_C_T_146073841
SNP1137	35.6	sc00209ln406963 104237 G A 144514254
SNP0937	35.6	sc00209ln406963_120028_C_T_144530045
SNP0938	35.7	sc00209ln406963_63982_T_G_144473999
SNP0939	35.7	sc00213ln403120_27895_A_G_146058014
SNP0915	35.8	sc00213ln403120_85475_C_T_146115594
SNP1393	47.1	sc00345ln293515_40993_T_C_191019084
SNP1412 SNP1114	47.3 49.1	sc00345ln293515_847_C_T_190978938 sc00345ln293515_248038_A_C_191226129
SNP1114 SNP1113	49.1	sc00345ln293515_248038_A_C_191220129 sc00345ln293515_211253_T_C_191189344
SNP1394	49.4	sc00206ln407767_400194_T_G_143587659
SNP1376	51.6	sc00206ln407767_168453_G_A_143355918
SNP1388	51.7	sc00273ln341540_27479_A_G_168037303
SNP1496	54.5	sc00733ln158243_112892_C_T_274461500
SNP1499	55.5	sc01089ln106922_89228_T_C_320994162
SNP1504	55.5	sc01089ln106922_30683_A_G_320935617
SNP1148	55.8	sc00346ln293441_42418_T_C_191314024
SNP0943 SNP0944	56.2 56.5	sc00346ln293441_239954_T_C_191511560 sc00346ln293441_31888_G_A_191303494
SNP0944 SNP0596	56.7	sc00346ln293441_31888_G_A_191303494 sc00346ln293441_2597_G_A_191274203
SNP1052	60.6	sc00287ln334996 4990 T C 172761638
SNP1053	60.6	sc01832ln56221 41998 T C 378732583
SNP0837	61.0	sc00804ln146336_19621_A_C_285151191 sc00804ln146336_13752_A_C_285145322
SNP0621	61.5	sc00804ln146336_13752_A_C_285145322
SNP0813	61.9	sc01832ln56221 30739 G A 378721324
SNP0447	64.5	sc01374ln82235_12861_T_C_347721821
SNP0446	64.5	sc00804ln146336_137822_C_T_285269392

	Position			
Marker	(cM)	Illumina chip SNP ID		
SNP0477	65.2	sc00890ln132762_102878_T_C_297219892		
SNP0501	65.5	sc00725ln159840_17168_T_C_273091173		
SNP0853	67.1	sc01043ln112687_102121_T_C_315950090		
SNP0288	67.8	sc01043ln112687_8368_G_A_315856337		
SNP0339	68.1	sc00931ln126385_111832_C_A_302546484		
SNP0678	68.3	sc01043ln112687_54410_G_T_315902379		
SNP0660	69.3	sc00931ln126385_89610_T_C_302524262		
SNP0641	69.9	sc00931ln126385_17297_G_T_302451949		
SNP0631	69.9	sc00931ln126385_39506_C_T_302474158		
Chromosome 11 (linkage group B)				
SNP0323	0.0	sc01428ln78433 2268 G T 352055282		
SNP0633	0.5	sc01428ln78433 18077 T C 352071091		
SNP0495	6.1	sc00005ln1829281_292907_T_C_8695091		
	6			