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Analyzing systems during the conceptual stages of design for characteristics 

essential to the ease of fault diagnosis is important in today's mechanical systems 

because consumers and manufacturers are becoming increasingly concerned with cost 

incurred over the life cycle of the system. The increase in complexity of modem 

mechanical systems can often lead to systems that are difficult to diagnose, and 

therefore require a great deal of time and money to return the system to working 

condition. Mechanical systems optimized in the area of diagnosability can lead to a 

reduction of life cycle costs for both consumers and manufacturers and increase the 

useable life of the system. 

A methodology for completing diagnostic analysis of mechanical systems is 

presented. First, a diagnostic model, based on components and system indications, is 

constructed. Bayes formula is used in conjunction with information extracted from the 

Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FT A), component 
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reliability, and prior system knowledge to construct the diagnostic model. The 

diagnostic model, when presented in matrix form, is denoted as the Component-

Indication Joint Probability Matrix. The Component-Indication Joint Probability 

Matrix presents the joint probabilities of all possible mutually exclusive diagnostic 

events in the system. 

Next, methods are developed to mathematically manipulate the Component-

Indication Joint Probability Matrix into two matrices, (1) the Replacement Matrix and 

(2) the Replacement Probability Matrix. These matrices are used to compute a set of 

diagnosability metrics. The metrics are useful for comparing alternative designs and 

addressing diagnostic problems to the system, component and indication level, during 

the conceptual stages of design. Additionally, the metrics can be used to predict cost 

associated with fault isolation over the life cycle of the system. 

The methodology is applied to a hypothetical example problem for illustration, 

and applied to a physical system, an icemaker, for validation. 
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Incorporating Uncertainty in Diagnostic Analysis of Mechanical Systems 

1 Introduction 

Henry Ford, one of the most famous designers and engineers of all time, had 

perfected the techniques of concurrent engineering and design for X long before these 

terms were officially coined. In his book, My Life and Work, his objectives and goals 

in design and production of the Model T are presented. Ford designed for simplicity 

in operation, for absolute reliability, and for high qUality. In addition, Henry Ford also 

desired to create an end product that could be easily serviced. Ford states, 

The important feature of the new modeL .. was its simplicity. All 
[components] were easily accessible so that no skill would be 
required for their repair or replacement. .. it ought to be possible to 
have parts so simple and so inexpensive that the menace of 
expensive hand repair work would be entirely eliminated ... it was 
up to me, the designer, to make the car so completely simple ... the 
less complex the article, the easier it is to make, the cheaper it may 
be sold ... the simplest designs that modem engineering can 
devise .... Standardization, then, is the final stage of the process. We 
start with the consumer, work back through the design, and finally 
arrive at manufacturing [Bralla 1996]. 

As described in the previous quotation, characteristics vital to the ease of service 

and maintenance were designed into the Model T from the conceptual stages. 

Unfortunately, many of the design philosophies that Henry Ford perfected in his 

designs have been lost in today's mechanical systems. 
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Without question, the mechanical systems of today have evolved into complex 

systems since the Model T. Consumer's desire for a greater number of functions and 

higher performance can lead to an increase in system complexity. The increase in 

complexity can often lead to designs that are not easily manufactured, serviced, 

maintained, or assembled. 

Over the past decade an effort has been put forth on many issues pertaining to the 

concurrent design of products. Extensive research has been devoted to areas of 

assembly and manufacturing in design. As a result, formal methodologies have been 

developed to optimize systems in the area of assembly and manufacturing. These 

design tools provide an efficient and precise technique to optimize the design and 

design process of mechanical systems. Design for assembly (DFA), perhaps the most 

mature of these formal methodologies, has proven to bring a significant cost savings in 

production. DFA can, but not always, lead to an increase in reliability, but also may 

lead to designs that are more difficult to service. Despite the increase in system 

reliability, costs associated with service over the life cycle may offset the reliability 

benefit [Gerhenson 1991]. Less effort has been focused on design characteristics 

associated with the service and maintenance of mechanical systems. As a result, the 

development of formal methodologies in the areas of service and maintenance has 

lagged significantly behind. 

1.1 Motivation for Diagnosability Analysis 

Diagnosis of failures in electromechanical systems is costly in both time and 

money. Therefore, designing products with diagnosability optimized is becoming 
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increasingly important in today's mechanical systems. Consumers and manufacturers 

are becoming increasingly concerned with costs associated with the entire life cycle of 

the product. Products with lower life cycle costs benefit consumers and 

manufacturers. Customers will incur fewer costs throughout the product life cycle, 

resulting in increased customer satisfaction, increased customer loyalty, and in tum an 

increase in revenue to the manufacturer. Additionally, manufacturers will incur fewer 

costs during warranty periods, resulting in longer warranty periods; a benefit to the 

customer. 

The ability to isolate diagnosability difficulties and recommend areas of 

improvement during the conceptual stages of mechanical systems design will lead to a 

more efficient fault isolation process, and thereby reduce the total life cycle costs to 

the consumers and manufacturers, increase safety, and reduce system downtime. The 

inefficiency of fault isolation in mechanical systems serves as the primary motivation 

for exploring diagnosability improvement in mechanical systems. 

1.2 Research Goals 

Design for diagnosability is the area of design that focuses on decisions made 

throughout the design process, and how they affect the diagnosability of a system. 

Systems can be analyzed during the conceptual stages of design, and in tum decisions 

can be made to optimize the design in the areas of diagnosability. Design for 

diagnosability can be approached from two different perspectives. The first method, 

known as achieved diagnosability, improves diagnosis and maintenance procedures 

and incorporates electronic diagnostics into systems all ready in use. Achieved 
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diagnosability, as defined by Simpson and Sheppard [1994] is the ability to observe 

system behavior under the observation of testing stimuli. This is a passive approach to 

the diagnosability optimization, requiring engineers to manage the errors designed into 

the system. 

The second approach is to optimize the inherent diagnosability of a system from 

the conceptual stages of design. Inherent diagnosability is based on changes in the 

architecture, and their affect on the overall diagnosability of the system. Our efforts, 

in this research, are focused on the inherent diagnosability of mechanical systems. 

This research investigates the effect of indication uncertainty on accurate failure 

diagnosis. The goal of this research is the development and refinement of 

methodologies for measuring and predicting inherent diagnosability. Specifically, 

methodologies are developed to analyze the distinguishability (observation phase) of 

mechanical systems during the conceptual stages of design and to systems all ready in 

use. The diagnostic methodologies developed will ultimately predict the probability 

of correctly diagnosing failures in mechanical systems. These methodologies will 

enable designers to predict life cycle costs, areas that cause problems in the diagnostic 

process, and possible improvements to be made to the system. 

1.3 Overview of Research 

In section 2 of this paper, we will briefly present the fault diagnostic process of 

mechanical systems. An overview of the observation phase is presented to develop a 

better understanding of the analysis methods developed. 
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Figure 1.1 is an overview of the diagnostic analysis methodology developed in 

th is research. Three matrices are developed to complete diagnostic anal ysis of 

mechanical systems. 

Replacement
FMEAlFTA 

Criterion '" ~(I)~/ 
Reliabil ity ___-41Com"oncnl. lluJiclIti()1I I{crlaccml' nt 
Analysis Joint I'robability Matrix Mulri.'( (II) 

"" Matrix /Bayes' Theory: Manipu llll ion 
Prior system  
knowledge  - + Il.cpla ccmcllt (III)  

~ 
Diagnosability 

Melrics 

Figure 1.1. Overview of Diagnostic Analysis Methodology. 

The first matrix that is formed is the Componell/- Indicatio" 10im Probability 

Matrix (I). The matrix represents a diagnostic model of the system. In section 3 the 

information used for constructing the diagnostic model is presented. The Failure 

Modes and Effects Analysis (FMEA), Fault Tree Analysis (FrA), component 

reliabi lity, and indications certainty are used to construct the Component-Indication 

Joint Probability Matrix. The modeling and underlying mathematics for incorporating 

uncertainty into the diagnostic model are developed. Bayes' theory and truth tables 
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are presented to incorporate uncertainty into the diagnostic model of a physically 

embodied system. The diagnostic modeling methodology is applied to a hypothetical 

illustrative example. 

Next, the Replacement Matrix (II) is constructed by applying replacement 

criterion to the Component-Indication Joint Probability Matrix. The Replacement 

Matrix represents the component that will be replaced during the diagnostic process 

(see section 4.1). 

Finally, the Replacement Probability Matrix (III) is computed by matrix 

multiplication of the Component-Indication Joint Probability Matrix and the 

Replacement Matrix. The diagnosability metrics are extracted directly from this 

matrix. Diagnosability metrics are introduced in section 4. The illustrative example is 

again utilized to verify the analysis method and the diagnosability metrics. The 

diagnosability analysis results of the illustration example and a discussion of those 

results are provided in section 5. 

In section 6, the diagnosability methodologies and metrics are applied to the 

icemaker validation example. The analysis is completed for varying indication 

certainties. The diagnosability results for the icemaker validation example are 

discussed (see section 6.2). 

This research builds upon previous research conducted in the area of system 

diagnosability. Methodologies are refined and new research topics are introduced and 

explored to benefit the areas of predicting system diagnosability. 
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1.4 Background Research 

[Gerhenson 1991] presents a systematic methodology to balance serviceability, 

reliability, and modularity during the conceptual stages of design. Serviceability 

design is used in conjunction with DFA to create a design that has enhanced life-cycle 

qualities and production benefits. A methodology is developed to analyze mechanical 

system serviceability in both quantitative and qualitative ways. Finally, Gerhenson 

examines the tradeoffs between service costs and other life-cycle costs. 

Ruff [1995] presents the method of mapping a system's performance 

measurements to system parameters. Performance measurements are the visible 

indications that monitor whether the intended function of the component is or is not 

being performed. Performance measures can be indications from lights, gauges, 

human observations, etc. Parameters refer to the system components that are 

measured. The parameters can be valves, controllers, ducting, or actuators. The 

diagnosability of the system is directly related to the interdependencies between 

measurements and parameters. 

Clark [1996] extends Ruff s distinguishability metric to evaluate competing 

design alternatives. Clark presents metrics to compute the probability of failure for 

the components. This, in tum, is used to predict how difficult the system is to 

diagnose. The total diagnosability is computed using the average number of 

candidates for a given failure and the diagnosability of each component. The 

diagnosability of the system is a function of the total number of failure indications, the 

number of components, and the number of component candidates for each indication 

set. Clark develops Weighted Distinguishability (WD) to represent the 
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interdependencies between components and indication sets. Clark extends the 

example of the BACS to determine how diagnosability varies in competing designs. 

Wong [1994] presents a diagnosability analysis method that minimizes both time 

and cost during the conceptual stages of design. The analysis emphasizes the expected 

time to diagnose an indication and the expected time to diagnose a system. The 

method is used to select competing designs in order to optimize the design. The 

results from Wong's method show that the system diagnosability can be improved by 

changing the LRU-function relationships. Wong develops a checking order index to 

determine the order of checking of each system component. The index is calculated 

by dividing the probability of failure by the average time to check that specific 

component. Wong applies the method to an existing and redesigned bleed air control 

system (BACS). 

Murphy [1997] developed prediction methods for a system's Mean Time Between 

Unscheduled Removals (Unjustified) (MTBURunj). The MTBURunj metric is a 

significant component attribute in doing diagnosability analysis. This present research 

will broaden the methodology that Murphy began in predicting MTBURunj . The 

methods developed emphasize the ambiguity associated with system components and 

indications. The metrics are applied to the BACS using historical data. Multiple 

design changes are made to the BACS to determine the effect on system 

diagnosability. 

Fitzpatrick [1999] develops an analytical model to determine the reliability and 

maintainability costs over the life cycle of the product. The goal of the research is to 

determine the effects that design changes may have on the total life-cycle cost of 
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competing designs. Fitzpatrick develops methods for predicting Mean Time Between 

Failures (MTBF) and Mean Time Between Maintenance Actions (MTBMA) in addition 

to MTBURunj• The metrics can be used to determine cost for each component and the 

total expected cost of the system. The metrics are applied to the BACS to verify the 

metrics. 

Henning [2000] develops matrix methods with which the probability of justified 

and unjustified removals is computed. A diagnosability model is constructed using the 

information gained from the FMEA. Matrix notation is used to describe the 

diagnosability model mathematically. Failure rate and replacement matrices are 

formed from component-indication mapping and replacement criterion, and 

mathematically manipulated to form the replacement rate matrix. The diagnosability 

metrics are computed from the replacement rate matrix. Diagnostic fault isolation is 

based solely on observation, not on diagnostic testing. 

Simpson and Sheppard [1994] devote System Test and Diagnosis to the study of 

diagnosis and test in electronic systems. They introduce background and motivation 

to the development of the discipline. A historical perspective is provided about the 

formal methods all ready developed and research areas to come. Strategies for 

analyzing diagnosability are presented. They introduce bottoms up and top down 

strategies for system modeling. Advanced topic in the area of diagnosis where inexact 

diagnosis, fuzzy logic, and neural networks are presented. Case studies are provided 

throughout the book to present the topics, tools, and methods introduced. Simpson 

and Sheppard introduce highly mathematical and theoretical analysis of diagnosis to 

electronic applications. 
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Simpson and Sheppard [1998] organize a collection of technical papers written by 

researchers and scientists in the area of diagnosability and testability. The papers 

discuss subjects in the area of theoretical diagnosability from many different 

perspectives. 

In both Simpson and Sheppard books the area of diagnosis is applied to complex 

electronic systems. Although much of the same terminology can be interchanged 

between mechanical and software diagnostic analysis, they are very different 

processes. Simpson presents a series of tests to be conducted on an electronic system. 

The tests have a known input signature and a known output signature for components 

that are good. However, when a component is faulty, the signature changes. A set of 

comprehensive tests is conducted on the electronics to verify their condition. These 

tests require little time to complete, thereby resulting in a large number of tests. 

However, the observation phase is of little help to fault isolation in electronic systems. 

In mechanical systems, however, observations provide a great deal of information 

on the status of the system. Components are larger and the observations of indications 

and components allow conclusions to be drawn about the state of a mechanical 

system. For this reason, new methodologies of fault diagnosis in mechanical systems 

are presented focusing on the observation phase. 

1.5 Conventions 

In this research the conventions for analysis are the following: 

• 	 Use the single failure assumption; one and only one component is 
assumed to be the cause of the system failure. 

• 	 Indications are binary events; the indication is either pass or fail. 
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2 Diagnosis of Failures in Mechanical Systems 

The underlying goal of mechanical system diagnosis is to identify possible causes 

of failure, narrow down the possible causes of failure to one component, replace the 

particular component that causes failure, and return the system to normal operating 

condition. However, because of system architecture, indication uncertainty, time 

constraints, or cost constraints it is not always possible to isolate the cause of failure to 

one particular component. Once the fault is isolated to the fewest possible causes of 

failure, the maintenance technician must decide whether to replace a component or 

not. 

In this research, we will focus on the observation phase associated with failure 

diagnosis. The observation phase involves noting failure indications and conducting 

maintenance tasks based on the observed indications. The indications can be in the 

form of lights and gages or observable abnormalities noticeable to the performance of 

the system (i.e. lower performance of engine, loud noise) [Henning 2000]. 

Weare led to conclusions and possible causes of failure based on the 

observations. An example of this is the warning lights and gages located on the 

dashboards of modem automobiles. Operators can monitor the state of the vehicle and 

diagnose a problem without conducting diagnostic tests on the vehicle. A check 

engine light on a car infers a specific set of components that may cause the indication 

light to appear. All possible causes of failure in the system for each failure indication 

are defined as an ambiguity group [Simpson 1994]. 
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Modern airplane systems have many sensors and Built-In Test Equipment (BITE) 

to locate and isolate system failures to a smaller subset of components in the system. 

Upon initial analysis of a Boeing air supply system it was determined that there is an 

average of one component failure mode per indication. In the fault diagnosis process 

of the Boeing system, the observation phase provides information needed to isolate the 

faults to only a few components with a high level of accuracy [Boeing 2000]. 

We will discuss the idea of justified and unjustified maintenance actions as it 

relates to diagnosis of failures in mechanical systems. The maintenance actions are 

presented for a simplified example when indications are perfect and for an example 

when there is some error associated with each indication. If a system indication infers 

fail, the maintenance technician may decide to replace or leave a component that could 

have caused the failure indication. Perfect indications infer good when all components 

mapped to the particular indication are good and infer fail when at least one 

component is bad. If the technician replaces the component that caused the indication 

to infer fail, it is defined as ajustified removal. If the component that is replaced is 

good, and therefore did not cause system indication to infer fail, then it is an 

unjustified removal. Unjustified removals, for perfect indications, are a result of the 

ambiguity associated with each indication. 

However, the assumption that indications are perfect is not realistic. The fact is 

that indications are not 100 percent perfect, resulting in indications that infer fail when 

all components mapped to the indication are good. Therefore, unjustified removals of 

good components can be attributed to both ambiguity for each indications and 

indication certainty. Indication error can result from a variety of sources, including 



13 

human error, experience of the technician, faulty equipment, environmental 

abnormalities, and ambiguous readings [Bukowski 1993]. The method for computing 

and predicting the uncertainty of indications is beyond the scope of this research. 

For example, if an imperfect indication infers fail the technician may decide to 

replace a component. However, since the indications are imperfect there is a chance 

that one component in the ambiguity group is bad or all components in the ambiguity 

group are good. Therefore, the probability of completing an unjustified removal is 

related to the ambiguity and the uncertainty of each indication. Most indications have 

a high degree of certainty. However, as small as the error may be, the probability of 

completing an unjustified removal increases with an increase in indication uncertainty. 

Conversely, imperfect indications can infer pass when one component in the 

ambiguity group is bad. Misdiagnosis of this type results in leaving bad components 

in the system. If all system indications infer pass, the technician will probably decide 

not to replace any components. However, unjustified leaves result if no component is 

replaced, when in actuality a bad component is present in the system. Additionally, 

the normal operation of the system is when all indications infer pass and when all 

components in the system are actually good. Justified leaves correspond to normal 

system operation, and are defined as leaving good components in the system when 

indications infer pass. Therefore, justified and unjustified leaves of components are a 

result of indication certainty. 
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3 Constructing the Diagnostic Model 

The first step in diagnostic analysis is to construct a diagnostic model of the 

system. The diagnostic model is constructed based on information extracted from the 

FMEA and FTA, component reliability analysis, indication certainty, and prior 

knowledge about the component-indication relationship. The methodology for 

constructing the diagnostic model based on the system information is shown in Figure 

3.1. 

FMEA 

FTA 

Componcnt-Indication Component 
Reliability 

Component-Indication 
Failurc Rate Matrix Joint Probability Matrix 

(A) (B) (C) (D) 

Figure 3.1. Procedure for constructing a diagnostic model. 

The diagnostic model is constructed by first extracting failure rate and indication 

information from the FMEA and FTA (Figure 3.1A). The information is arranged in 

graphical and matrix form (see Figure 3.2 and Figure 3.3). The Component-Indication 

Failure Rate Matrix is constructed based on the information extracted from the FMEA 
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and FT A. Next, the component reliability model and exposure times are used to 

compute the probability that each component is good or bad for each failure mode 

(Figure 3.1B). Finally, using Bayes' formula the joint probabilities of each of the 

mutually exclusive events are computed (Figure 3.1C). The diagnostic model, when 

presented in matrix form, is denoted as the Component-Indication Joint Probability 

Matrix (Figure 3.1D). 

This section describes the use of the component reliability model, prior 

knowledge about component-indication relationships, Bayes' theory, and truth tables 

to incorporate indication uncertainty into the diagnostic model. To explain the method 

for constructing the diagnostic model, we will use a simple illustrative example. The 

illustrative example does not represent an actual system; the failure rates, exposure 

times, and component-indication relationships are hypothetical. The illustrative 

example is used throughout the construction of the diagnostic model, and again 

presented in the diagnostic analysis methodology and diagnosability metrics sections. 

3.1 Extracting data from the FMEA and FTA 

First, the diagnostic model is constructed utilizing information obtained from the 

failure modes and effects analysis (FMEA) and fault tree analysis (FT A). The FMEA 

contains the functions of the components, the failure modes and failure rates for each 

component, the effects of the failures, and the failure indications associated with each 

component failure. Additional information about component failures and failure 

indications is obtained from the FT A. The FT A focuses on particular failures and 

failure indication, whereas the FMEA focuses on specific components. The 
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information extracted from the FMEA and the FfA is combined to embody all failure 

rates and indications associated with the system [Henning 2000]. 

Based on the relationship between failure rates and failure indications, the 

component-indication mapping is constructed. The system components are placed 

along the top of the figure, and failure indications to which they are mapped are placed 

along the bottom. The lines connecting the components to the indications represent 

the hypothetical rates of indication occurrences to component failures. The 

component-indication mapping is presented in graphical format (see Figure 3.2). 

Figure 3.2. Construction of diagnostic model. 

The component failure rate-indication mapping is reorganized into matrix format. 

The components are placed along the top of the matrix and the indications along the 

side of the matrix. The failure rates of the components are entered into the 

appropriated cells for each component (see Figure 3.3). 
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l.OxlO-7 Cl C2 C3 C4 CS 
11 
12 
13 
14 
15 
16 

2 0 4 0 3 
0 0 0 2 15 
3 2 0 0 0 
0 0 17 0 25 
10 12 0 0 3 
0 0 8 0 0 

Figure 3.3. Component Indication failure rate matrix. 

In the next section we will discuss the computation of component reliability based 

on the failure rates in Figure 3.3. 

3.2 Component Reliability Computation 

Next, a reliability prediction model is utilized in conjunction with the failure rates 

to determine the probability that each component is good and the probability that each 

component is bad. Reliability is defined as the probability that a system or component 

will perform properly for a specified period of time under a given set of operating 

conditions [Bentley 1993]. The reliability of a component gives rise to the important 

correlation of failure rate. A bathtub curve is used to describe the failure rates of 

components in the system. The failure rate is dependent on the time that the 

component is in use. The initial portion of the bathtub curve is referred to as infant 

mortality. The failure rates of the components in the infant mortality portion are 

caused by defective equipment and do not accurately represent the actual failure rate 

of the component. Large failure rates at the beginning of the component use can be 

minimized by a wearin period or strict quality control of the components. The middle 
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section of the bathtub curve contains a nearly constant failure rate. This section is 

referred to as the nonnal life of the component. The failure rates in the normal life 

portion are generally caused by random failures. The right hand portion of the bathtub 

curve indicates an increasing failure rate. This period is referred to as the end-oj-life 

period. The rapid increase in failure rates is used to determine the life of the 

component. The end-oj-life failure period can be avoided by specifying the 

components expected life (see Figure 3.4). 

Nonnal  
Life  

High ......--~---------~I..,.----I-

Low ~____~__________________~_________ 

• .. 
Operating Ufe 

Figure 3.4. Bathtub reliability curve. 

Figure 3.4 represents the general form of failure rates for many different types of 

components and systems. However, the failure rate curve is substantially different for 

electronic and mechanical equipment. Failure rate curves for electronic and 

mechanical equipment are presented in Figure 3.5. 
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ACt) ,,~______~) ACt) 

(a) Electronic hardware (b) Mechanical equipment 

Figure 3.5. Failure rates for different types of systems [Lewis 1996]. 

In this research we will assume a constant failure rate for mechanical components. 

A constant failure rate assumption is often used to describe the reliability of the 

component, with the operating life of the component the period of interest. The 

constant failure rate assumption is valid because infant mortality can be eliminated 

through strict quality control and a wearin period. In addition, if mechanical 

components are replaced as they fail, the failure rate of the components is 

approximately constant. Finally, the time domain of interest can be limited to the 

normal life period, so that it only envelops the constant failure rate portion of the 

operating life. 

The constant failure rate model for continuously operating systems results in an 

exponential probability density function distribution. The derivation of the probability 

density function (PDF) and the cumulative density function (CDF) for a constant 

failure rate assumption are presented in [Lewis 1996]. Additionally, the component 

reliability is presented in equation 3.1. 
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R(t) = e-A.t (3.1) 

Where A is failure rate and t is exposure time. 

Plots of reliability and failure rates as functions of time are shown in figure (see 

Figure 3.6). 

RCt) ACt) 

L-____________________ tL--------------==----t 
Ca) Reliability (b) Failure rate 

Figure 3.6. Exponential Distribution [Lewis 1996]. 

The reliability for every failure mode of each component is computed based on 

the failure rate extracted from the FMEA and FT A and the exposure time of each 

component. Exposure time is defined as the length of time the component has been in 

use. For example, if a component is operated continuously for the entire system life, 

the exposure time is the expected life of the system. If a component is operated 

intermittently over the life of the component, the exposure time is the total length of 

time the component is operated. For the illustrative example, hypothetical exposure 

times, for an expected life of 10,000 hours, are given in Table 3.1. 
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Table 3.1. Exposure times of illustrative example. 

Component Exposure lme (h)f r 
Cl 5000 
C2 3700 
C3 1750 
C4 7200 
C5 10000 

The probabilities that each component is either good or bad are computed for the 

illustrative example based on the failure rates in Figure 3.3 and the exposure times 

from Table 3.1 (see Table 3.2). 

Table 3.2. Reliability computation values. 

- f lme (h) j=good) j=ComponentId·n lca Ion Exposure r Pr (C Pr (C bad) 
C1,II 5000 0.999 0.001 
C1, I3 - 0.999 0.001 
C1,15 - 0.995 0.005 
C2, I3 3700 0.999 0.001 
C2,15 - 0.996 0.004 
C3,II 1750 0.999 0.001 
C3,14 - 0.997 0.003 
C3,16 - 0.999 0.001 
C4,12 7200 0.999 0.001 
C5,II 10000 0.997 0.003 
C5,12 - 0.985 0.015 
C5,14 - 0.975 0.025 
C5,15 - 0.997 0.003 

In the next section we will discuss how the component reliabilities are utilized in 

conjunction with Bayes formula and known indication certainties to compute the joint 
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probabilities of all mutually exclusive events in the system and further develop the 

diagnostic model. 

3.3 Incorporating Bayes' Formula into Diagnostic Analysis 

Bayes' theorem is used to determine the truth of an event based on prior 

knowledge and current observation [D' Ambrosio 1999]. If an event becomes more or 

less likely to occur based on the occurrence of another event, then the first event is 

said to be a condition of the second event. The conditional probability of event A 

given that event B has occurred is written as Pr(AIB). If events A and B are 

independent of each other, then the conditional probability is simply the same as the 

probability of the individual events, that is Pr(BIA) =Pr (B). 

Bayes' theorem is concerned with deducing the probability of B given A from the 

knowledge of Pr(A), Pr(B), and Pr(AIB). Pr(A) is called the prior probability. 

Pr(AIB) is the posterior probability. Bayes' theorem is used in diagnostic modeling 

based on inference drawn from prior probabilities of component failure and 

conditional probabilities of component-indication relationships. Based on the current 

observation of system indications, the joint probabilities are computed. 

Mechanical systems most often are composed of many components and 

indications and their associated interdependencies. The diagnostic model must 

incorporate each mutually exclusive event for all components and indications in 

mechanicals systems. For example, more than one component can be mapped to a 

particular indication. The joint probability of an exclusive event must take into 

account all relevant components and indications. 
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Four mutually exclusive events are developed based on the single failure 

assumptions during the fault diagnosis process. Anyone component in the system can 

be bad while all other components are good or all components in the system can be 

good. Additionally, system indications can either infer pass or fail (see Table 3.3). 

Table 3.3. Definition of events in the diagnostic truth table. 

Event Joint Occurrence 
HIT One Indication=fail, ONE Component=bad 
False Alarm One Indication=fail, ALL Component = good 
Miss All Indication=pass, ONE Component=bad 
OK All Indication=pass, ALL Component=good 

In our system, the HIT event occurs when one component is bad and one 

indication infers fail. False Alarms occur when one indication infers fail but all 

components are good. Miss's occur when all indications infer pass but one component 

is bad. The False Alarm and the Miss events are referred to as Type I and Type II 

errors, and are undesirable in any diagnosis. Finally, OK's occur when all indications 

infer pass and all components are good (see Figure 3.7). 
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C1=bad C1i=bad C;}=bad C~bad CfF-bad Cl=good C1i=good C;}=good C~good CfF-good 
Il=fai/ 
12=fai/ 
l3=fai/ 
l4=fail 
l5=fail 
l6=fail 
Il=pass 
12=pass 
13=pass 
l4=pass 
l5=pass 
l6=pass 

HIT 

Pr (One Indication=fail, ONE Component=bad) 

False Alarm 
Pr (One Indication=fail, ALL Component = good) 

Miss 

Pr (All Indication=pass, ONE Component=bad) 

OK 
Pr (All Indication=pass, ALL Component=good) 

Figure 3.7. Diagnostic truth table for fault diagnosis. 

The truth table presented in Figure 3.7, is further simplified according to each 

event defined in Table 3.3. The False Alarm columns are combined together to 

symbolize the event that one indication infers fail and all components are good. 

Similarly, the Miss rows are combined together to symbolize the event that all 

indications infer pass and any component in the system is bad. The OK events are 

combined into one cell to symbolize the event that all indications infer pass and all 

components are good (see Figure 3.8). 

Cl=bad C1i=bad C3=bad C4=bad C'!Fbad All Components=good 
I1=fail  
I2=fail  
I3=fail  

HIT False Alarm I4=fail  
I5=fai/  
I6=fail  

~--------------~~---------------+------~~--~All Indications=pass Miss OK 
~----------------------------~------------~ 

Figure 3.8. Combined diagnostic truth table. 
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The equations used to compute the joint probabilities of all mutually exclusive 

events are derived from Bayes' formula. The general form of Bayes formula is 

presented for greater than two possible conditions (see Eq. 3.4). 

Pr(AIB,C,D...)= Pr(A,B,C,D... ) (3.4)Pr(B,C,D... ) 

Equation 3.4 is rearranged to compute the joint probability of an event based on 

prior and conditional probabilities (see Eq. 3.5). 

Pr (A,B, C, D ... ) =Pr (AlB, C, D ... ) x Pr (B, C, D ... ) (3.5) 

The joint probabilities of each event are computed based on prior probabilities 

and posterior probabilities. The prior probabilities for the diagnostic process are 

computed from the component reliability model (see section 3.2). The prior 

probabilities are the probability that the component is either good or bad. Posterior 

probability is also needed to compute the joint probabilities. The posterior probability 

is referred to as indication certainty. Indication certainty is the probability that the 

indications will infer fail when one component mapped to it is bad or the probability 

that the indication will infer pass when all components mapped to it are good (see 

Table 3.4). 
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Table 3.4. Indi~ation certainty, Posterior Probability. 

Pr(Indication =faill One Com onent=bad) 
Pr(Indication =faill All Com onents=good) 

Indication certainty must be known to compute the joint probability of events in 

the diagnostic process to ultimately construct the diagnostic model. However, during 

the conceptual stages of design, these values may not always be known. The 

uncertainty of the indications can be estimated for conceptual designs based on similar 

systems or can be approximated based prior design experience. As more knowledge is 

gained about the system, the indication uncertainty values can be refined. 

The equations used for computing the joint probabilities of all mutually exclusive 

events in the system are presented. The nomenclature presented in Table 3.5 is used in 

the joint probability equations. 

Table 3.5. Nomenclature used in joint probability equations. 

Nomenclature Definition 
B Bad 
C Component 
F Fail 
G Good 
I Indication 
i ith Component 
j jth Indication 
P Pass 
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HIT Joint Probability: 

The HIT joint probability is computed for all component-indication events. Each 

time a component is bad and an indication infers fail is a mutually exclusive event for 

all indications and components. The joint probability of each of these mutually 

exclusive events cannot be combined. Equation 3.6 computes the HIT joint 

probabilities. 

Pr(lj =F,C1=B,···,C j =G)=Pr(lj =FIC1=B,···,Cj =G)xPr(CI =B,···,Cj =G) (3.6) 

The Pr(C1=B, ... , Cj=G) is the probability of independent events occurring at the 

same time, and can therefore be modified into the product of the probabilities of each 

event occurring. The joint probability for each hit event is computed using the 

appropriate component reliability data. For example, only those components that are 

mapped to the indication are used in the computation of the joint probability. 

Pr(lj = F,C I = B,···,C j = G) = Pr(I j = F I OneC = B)xPr(C I = B)x ",xPr(C j = G) (3.7) 

False Alarm Joint Probability: 

The False Alarm joint probability is computed for each system indication 

separately. For example, in the illustrative example problem, six false alarm joint 

probabilities are computed corresponding to the six independent system indications. 

The False Alarm assumes every component mapped to a single indication is good. 

Equation 3.8 computes the False Alarm joint probabilities for all indications. 
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Pr(I j =F,C1 =G,···,Ci =G)=Pr(I j =FIC1 =G,···,Ci =G)XPr(C I =G,···,Ci =G) (3.8) 

The conditional probabilities in equation 3.8 are replaced with the known 

indication uncertainties to yield equation 3.9. 

Pr(I j =F,C1 =G,···,ci =G)=Pr(I j =FIAllC's=G)xPr(C I =G)x···xPr(Ci =G) (3.9) 

Miss Joint Probability: 

The Miss joint probability is computed for each component in the system. The 

Miss event occurs when one component is bad and all indications mapped to the 

component infer pass. The Miss joint probability is computed assuming that only one 

component has failed in any of the failure modes and that all indications mapped to the 

component, regardless of failure mode infer pass. In the illustrative example, five 

Miss joint probability values are computed, corresponding to the five components in 

the system. Equation 3.10 computes the Miss joint probability values. 

Pr(ll = p, ... ,1j = P,c1 = B) = Pr(II = PI Cll = B)x Pr(Cll = B) ...OR 
(3.10)... Pr(Ij = P I c 1j = B)x Pr(C1j = B) 

Since the indications are collectively exhaustive, the probabilities in Eq. 3.10 can 

be summed for each component: 
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Pr(l1 = P,···,I j = P,C1 = B) = Pr(I1 = P I Cl1 = B)x Pr(C l1 = B) ...+ 
(3.11)... Pr(lj = P I C1j = B)x Pr(C1j = B) 

The certainties for all indications in the system are substituted into Eq. 3.11 to 

yield Eq. 3.12. 

Pr(l1 =P, ... ,I j =P,C1 =B)=Pr(I1 =PIOneC=B)xPr(C l1 =B) ...+ 
(3.12) ... Pr(lj =PIOneC=B)xPr(C1j =B) 

OK Joint Probability: 

The OK joint probability is computed based on the previously computed joint 

probabilities. The total probability of all mutually exclusive events must sum to 1.0 to 

represent a collectively exhaustive system analysis. The joint probability of the OK 

event is computed by subtracting the total sum of the HIT, False Alarm, and Miss 

probabilities from unity. The OK event assumes all components are good and all 

indications infer pass, thereby resulting in a single value for the system. Equation 

3.13 computes the OKjoint probability for the system. 

n,m m n 
Pr(AllI's=P,AllC's=G)=l.O- I)HIT Ci,IJ-I~alseAlannIJ- I [Miss cd (3.13) 

i,j=l j=1 i=l 

Equations 3.7, 3.9, 3.12, and 3.13 are used to compute the joint probability of all 

mutually exclusive events associated with mechanical fault diagnosis. The equations 
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are used in conjunction with the component reliability and indication uncertainty (see 

Table 3.2 and Table 3.6). 

Table 3.6. Indication uncertainty for illustrative example. 

Pr (I1=fail 
Pr (I1=fail 

Anyone Component = fail) 
All Component = good) 

99.99% 
0.01% 

Pr (12=fail 
Pr (12=fail 

Anyone Component = fail) 
All Component = good) 

99.99% 
0.01% 

Pr (I3=fail 
Pr (I3=fail 

Anyone Component = fail) 
All Component = good) 

99.99% 
0.01% 

Pr (14=fail 
Pr (14=fail 

Anyone Component = fail) 
All Component = good) 

99.99% 
0.01% 

Pr (15=fail 
Pr (15=fail 

Anyone Component = fail) 
All Component = good) 

99.99% 
0.01% 

Pr (16=fail 
Pr (16=fail 

Anyone Component = fail) 
All Component = good) 

99.99% 
0.01% 

3.4 Formation of Component-Indication Joint Probability Matrix, PR 

The Component-Indication Joint Probability Matrix, denoted by PR, is composed 

of the joint probabilities for all events in the system. Based on the data and equations 

presented in the previous section, the joint probabilities are computed are arranged in 

matrix form. The cells in the Component-Indication Joint Probability Matrix that have 

a value of zero indicate that the particular indication is not directly related to the state 

of the corresponding component. For example, the failure of component one (C1) is 

not mapped directly to indication two (12). Therefore the probability that C1 is bad 

and 12 infers fail is negligible or never occurs. Additionally, the probabilities of the 
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indications are computed by summing each of the rows in the matrix. The 

probabilities of the components are computed by summing each of the columns in the 

matrix (see Figure 3.9). 

Indication 
Cl C2 C3 C4 CS All Good Prob 

11 0.000996 0.000000 0.000697 0.000000 0.002990 0.000100 0.0048 
12 0.000000 0.000000 0.000000 0.001417 0.014865 0.000098 0.0164 
13 0.001498 0.000739 0.000000 0.000000 0.000000 0.000100 0.0023 
14 0.000000 0.000000 0.002897 0.000000 0.024614 0.000097 0.0276 
15 0.004950 0.004394 0.000000 0.000000 0.002967 0.000099 0.0124 
16 0.000000 0.000000 0.001399 0.000000 0.000000 0.000100 0.0015 

All Pass 0.000001 0.000001 0.000001 0.000000 0.000005 0.934977 0.9350 
CompProb 0.0074 0.0051 0.0050 0.0014 0.0454 0.9356 

Figure 3.9. Component-Indication Joint Probability Matrix. 

In the next section, we will discuss how the Component-Indication Joint 

Probability Matrix is utilized to complete diagnostic analysis. 
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4 Diagnosability Analysis 

In order to complete diagnostic analysis, as illustrated in Figure 1.1, two 

additional matrices are formed based on the Component-Indication Joint Probability 

Matrix. First, the Replacement Matrix is constructed by applying replacement 

criterion to the Component-Indication Joint Probability Matrix. Next, the 

Replacement Probability Matrix is computed by multiplying the transpose of the 

Replacement Matrix by the Component-Indication Joint Probability Matrix. Finally, 

diagnosability metrics are extracted from the Replacement Probability Matrix. 

The hypothetical example problem is again utilized to illustrate and verify the 

diagnostic analysis methodologies. An indication certainty of 99.99 percent is used 

for the analysis. 

4.1 Replacement Matrix, R 

The replacement matrix, denoted by R, is a binary matrix. The replacement 

criterion determines which component is replaced for each indication in the system. 

The replacement criterion is determined before the diagnostic analysis begins. The 

criterion could be component cost, replacement time, probability of occurrence, or a 

combination of these factors. For the illustrative example, the chosen replacement 

criterion is probability of occurrence. 
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To form the replacement matrix, each row (indication) of the Component-

Indication Joint Probability Matrix is examined individually. For the illustrative 

example, a one is entered in the cell of the component with the largest probability of 

occurrence for each indication. Zeroes are entered into the remaining cells of each 

row. This process is repeated for all indications. Figure 4.1 is the replacement matrix 

for the illustration example. 

Cl C2 C3 C4 C5 All Good 
11 0 0 0 0 1 0 
12 0 0 0 0 1 0 
13 1 0 0 0 0 0 
14 0 0 0 0 1 0 
15 1 0 0 0 0 0 
16 0 0 1 0 0 0 

All Pass 0 0 0 0 0 1 

Figure 4.1. Replacement Matrix, R. 

The newly formed Replacement Matrix is used in conjunction with the 

Component-Indication Joint Probability Matrix in the next section to construct the 

Replacement Probability Matrix. 

4.2 Computation of the Replacement Probability Matrix, RpR 

The Replacement Probability Matrix, denoted by RpR, is computed by multiplying 

the transpose of the Replacement Matrix by the Component-Indication Joint 

Probability Matrix (see Eq. 4.1). 
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(4.1)  

The Replacement Probability Matrix for the illustrative example is presented in 

Figure 4.2. 

Failed ~ 
Replaced J- Cl C2 C3 C4 C5 All Good 

Cl 0.00645 0.00513 0.00000 0.00000 0.00297 0.00020 
C2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
C3 0.00000 0.00000 0.00140 0.00000 0.00000 0.00010 
C4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
C5 0.00100 0.00000 0.00359 0.00142 0.04247 0.00030 

None replaced 0.00000 0.00000 0.00000 0.00000 0.00000 0.93498 
Pr (Just removal) 0.00645 0.00000 0.00140 0.00000 0.04247 0.05032 
Pr(Unjust removal) 0.00100 0.00513 0.00359 0.00142 0.00297 0.00059 0.01470 
Pr(Just leave) 0.93498 
Pr(Unjust leave) 0.00001 
Pr(Just Action) 0.00645 0.00000 0.00140 0.00000 0.04247 0.93498 0.98529 

Figure 4.2. Replacement Probability Matrix, RpR• 

The Replacement Probability Matrix is a square matrix. The columns represent 

the actual condition of each component in the system and the rows represent the action 

completed on each component in the system. An action is defined as either replacing 

or leaving a component in the system. The values along the diagonal represent the 

justified action probabilities. The values in the off-diagonals represent the unjustified 

action probabilities. For example, the justified probability that all components are 

good and none are replaced is 0.93498. 
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The diagnosability metrics are computed based on the unjustified and justified 

probabilities extracted from the Replacement Probability Matrix. The metrics are 

developed and discussed in the next section. 

4.3 Distinguishability Metrics 

Distinguishability (D) is the metric that measures the efficiency of fault isolation 

after completion of the observation phase. As presented in Henning [2000], 

distinguishability is defined as the probability of correctly replacing a bad component 

given an indication infers fail. In this research the definition of distinguishability is 

expanded to include all possible courses of action during the diagnostic process. It is 

possible for components to either be replaced or left in the system during the fault 

diagnosis process. As previously defined, a justified action is replacing those 

components that are bad and leaving those components that are good in the system. 

As the distinguishability of the system increases, the probability of completing a 

justified action is maximized. By maximizing the chance of completing justified 

actions, and thereby minimizing the completion of unjustified actions during the 

diagnostic process, cost and time are minimized. The distinguishability metric is 

presented in several forms. Distinguishability metrics are computed to the system, 

indication, and component level (Dsys, D1ND, DLRu). Additionally, the system level 

distinguishability value comes in many forms. System distinguishability is computed 

for all actions and for replacements completed during the diagnostic process. Table 

4.1 presents the distinguishability metrics definitions. 
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Table 4.1. Definitions of distinguishability metrics. 

M etnc P babTt fro lItyo : 
DIND . Justified removal, givenjth failure indication 
DLRU ' Justified removal, given ith component failed 
D SYS Justified removal, given some failure indication (or some component failed). 

n m 

Computed as: LPr(Just.removaICJ or LPr(JustremovalIj ) 
i=! j=! 

The metric value is just for the replaced components 
D SYS, TOTAL Computed as: 

nLPr(Just. removal CJ + Pr(Just.leaveCi ) 
i=! 
or 
m 

LPr(Just.removalIj ) + Pr(Just.1eaveIj ) 
j=! 

Computed for both justified removals and justified "leaves" 
D SYS, JUST REMOVAL Computed as: 

nL Pr(Just.Re moval Ci ) 
i=! 

n n 

LPr(Just.RemovaICi)+ LPr(Unjust.RemovaICJ 
i=! i=! 

The system distinguishability [Dsys], defined as probability of completing 

justified removals, is computed by summing the probability of completing a justified 

removal for all components in the system. The total distinguishability of the system 

[Dsys,TOTAd, defined as probability of completing all justified actions during the 

diagnostic process, is computed by summing the probability of all justified actions 

from the Replacement Probability Matrix. The distinguishability of the system 

normalized for justified removals [Dsys, JUSTREMOVAd is computed for justified 

removals of system components (see Figure 4.2). 
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In addition to diagnostic analysis of entire systems, it is important to isolate 

problems associated with specific components or indications in the architecture of the 

system. In order to locate and alleviate diagnosability problems with the overall 

mechanical system, the system must be analyzed to an indication and/or component 

level. The component distinguishability is extracted from each column in the 

Replacement Probability Matrix. For example, the probability of completing a 

justified removal of component one (Cl) is 0.00645. 

The indication distinguishability is computed by multiplying the Component-

Indication Joint Probability [PRJ by the Replacement Matrix [R]. The indication 

distinguishability [DIND] is extracted from each row of the matrix (see Figure 4.3). 

II 0.000996 0.0 0.000697 0.0 0.002990 0.000100 
12 0.0 0.0 0.0 0.001417 0.014865 0.000098 
13 0.001498 0.000739 0.0 0.0 0.0 0.000100 
14 0.0 0.0 0.002897 0.0 0.024614 0.000097 
15 0.004950 0.004394 0.0 0.0 0.002967 0.000099 
16 0.0 0.0 0.001399 0.0 0.0 0.000100 

AllGood 0.000001 0.000001 0.000001 0.0 0.000005 0.934977 

. 

0 0 0 0 1 0 0.00299 
0 0 0 0 1 0 0.01487 
1 0 0 0 0 0 0.00150 
0 0 0 0 1 o = 0.02461 
1 0 0 0 0 0 0.00495 
0 0 1 0 0 0 0.00140 
0 0 o ·0 0 1 0.93498 

Figure 4.3. Computation of indication distinguishability metrics. 

In the next section, the diagnosability analysis is completed for varied indication 

certainty and for hypothetical design changes of the system architecture of the 

illustration example. 
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5 Results 

The distinguishability analysis results for the illustrative example problem are 

presented. The distinguishability of the system, D sys,JUST REMOVAL, decreases from 

0.781 when the indications are perfect (100% certain), to a minimum value of 0.6212 

when the all indications are 99 percent certain. Additionally, the probability of 

completing a justified action after the observation phase, DSYS,TOTAL, decreases from 

0.98589 for perfect indications to 0.95509 for indications that have a certainty of 99 

percent (see Table 5.1). 

Table 5.1. Distinguishability analysis for various indication certainties. 

Pr (I=faill One C=fail) Pr (I=faill All C=good) Dsys,TOTAL Dsys,JUST REMOVAL 

100.00% 0.00% 0.98589 0.78103 
99.999% 0.001% 0.98583 0.78031 
99.99% 0.01% 0.98529 0.77390 
99.00% 1.00% 0.95509 0.62123 

The component distinguishability [DLRu] values are summarized in Table 5.2. 
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Table 5.2. Component distinguishability for illustrative example. 

Component DLRU 
C1 0.00645 
C2 0.00000 
C3 0.00140 
C4 0.00000 
C5 0.04247 

All Good 0.93498 

The indication distinguishability [DIND] values are summarized in Table 5.3. 

Table 5.3. Indication Distinguishability metrics. 

Indication DIND 
11 0.00299 
12 0.01487 
I3 0.00150 
14 0.02461 
15 0.00495 
16 0.00140 

All pass 0.93498 

In addition to completing diagnostic analysis on the illustrative example for 

varied indication certainties, hypothetical design changes were implemented to 

analyze how distinguishability is affected for changes in system architecture. The 

illustrative system is modified into three hypothetical alternative designs and 

diagnostic analysis is completed. The first alternative system, maps all component 

failure rates to one indication. The second alternative system maps the failure rates of 

all components to separate indications, resulting in 13 indications. Finally, the third 
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alternative design uses the same number of indications, as in the original system. 

However, the component-indication mapping is altered (see Table 5.4). 

Table 5.4. Alternative designs of illustrative example. 

Alternative 
D . D· t·eSlgns eSCrIpllOn 

- Original system, illustrative example system 
1 All component failures mapped to one indication 
2 All component failures mapped to different indications, 13 indications 
3 System is modified from System 1, 6 failure indications 

The distinguishability results of the original illustrative example and the three 

alternative designs are summarized in Table 5.5. A uniform indication uncertainty of 

99.99 percent is assumed. The worksheets for completing the diagnostic analysis are 

included in Appendix A. 

Table 5.5. Distinguishability results for alternative designs. 

Alternative 
D'eSlgn # P r (I=fal'1 I C = ba d) Pr (I=fal'11 C = good) DSYS JUST REMOVAL DSYS TOTAL 

- 99.99% 0.01% 0.98529 0.77390 
1 99.99% 0.01% 0.98138 0.70869 
2 99.99% 0.01% 0.99870 0.98041 
3 99.99% 0.01% 0.99059 0.85581 

The architecture of the system clearl y affects the distinguishability of the system. 

For example, the maximum distinguishability (Dsys, JUST REMOVALS) results when each 



41 

component failure is mapped to a separate indication. Conversely, the minimum 

distinguishability results when all component failures are mapped to one indication. 

System three uses the same number of indications as in the original system. 

However, the component failures are mapped to different indications, essentially 

reducing the average ambiguity group size for each indication. A decrease in the 

average ambiguity group size results in an increase in system distinguishability (see 

Table 5.6). 

Table 5.6. Average size of ambiguity group for hypothetical design alternatives. 

Alternative Average size of 
D· amb·IgUlly group eSI~n # ·t 

- 2.16  
1 5  
2 1  
3 1.83  

The diagnostic analysis is applied to an icemaker validation system in the next 

section. 
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6 Validation Example: Icemaker 

A common home ice maker is used for validation of the diagnostic modeling 

methods and distinguishability metrics. The icemaker example was originally used by 

[Eubanks 1997] to illustrate an advance FMEA method for use during conceptual 

design. This same example was used by [Henning 2000] for development of 

diagnostic analysis methodologies. The icemaker provides an example of a physically 

embodied system of moderate complexity. 

6.1 Icemaker Diagnostic Model 

The information needed to complete the diagnostic model of the ice maker 

example is presented. Indication certainty and exposure times for each component are 

estimated for constructing the diagnostic model. Additionally, the indications are 

assumed to have a uniform certainty of 99 percent (see Table 6.1). 

Table 6.1. Icemaker indication certainty. 

fr (Any indication=faill Anyone Component = fail) 99% 
:Pr (Any Indication=fail I All Components = good) 1% 

Examples of the exposure times for icemaker components are given in Table 6.2. 
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Table 6.2. Component exposure times. 

IExpected life of icemaker 15 years 
~cemaker cycles/day 3 

Component Exposure Time (hrs) Exposure Time Assumptions 
~ 1: Feeler arm 5475 (20 min/cycle) 
C2: Switch Linkage 2737.5 (10 min/cycle) 
C3: Switch 2737.5 (10 min/cycle) 
C4: Mold 32850 (2 hours/cycle 
C5: Freezer 131400 (Life of freezer) 
C6: Water Delivery 4106.25 (15 min/cycle) 
C7: Mold Heater 1095 (4 min/cycle) 
C8: Ice Harvester 547.5 (2 min/cycle) 
C9: Ice Timer 32850 (25% of life of refrigerator) 
E: External Factor 657 (Intermittent, happen .5% over lifetime) 

Failure indications for the ice maker example originally derived in [Henning 2000] are 

given in Table 6.4. 

Table 6.3. Failure indications [Henning 2000]. 

il No ice in the bucket 
i2 Ice overflowing 
i3 Low ice level in the bucket 
i4 Ice layer in bucket and/or fused ice cubes 
i5 No water in the mold (not observable) 
i6 Small or irregular ice cubes 
i7 Ice stuck in the mold (not observable) 
i8 Icemaker not running 
i9 Feeler arm in the bucket 
ilO Large or partially liquid ice cubes 
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Indication sets are formed from the individual indications. The indication sets are 

used to develop the component-indication mapping (see Table 6.4). 

Table 6.4. Indication sets [Henning 2000]. 

11 No ice + ice layer (il + i4) 
12 No ice (il) 
13 Ice overflow (i2) 
14 Low ice level (i3) 
IS Small ice size + ice layer (i6 + i4) 
16 No ice + feeler arm in bucket (il +i9) 
17 Small ice size (i6) 

The relationship between components and indication in the icemaker system are 

shown in Table 6.S. 

Table 6.5. Component-indication set relationships [Henning 2000]. 

Component I d· Ica Ion S ts n f e 
C 1: Feeler Arm 1216 
C2: Switch Linkage 121314 
C3: Switch 1213 
C4: Mold 11 15 
CS: Freezer 11 12 
C6: Water Delivery 12 IS 
C7: Mold Heater 11 12 
C8: Ice Harvest 11 12 
C9: Ice Timer 12 IS 
E: External Factor IS 17 

Using Table 6.1, Table 6.2, Table 6.3, Table 6.4, Table 6.S, and the FMEA, a 

diagnostic model for the icemaker is constructed (see Figure 6.1). 
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All 
Cl C2 C3 C4 C5 C6 C7 C8 C9 E Good 

11 0.000 0.000 0.000 0.003 0.120 0.000 0.007 0.001 0.000 0.000 0.009 
12 0.000 0.014 0.009 0.000 0.l91 0.007 0.001 0.000 0.089 0.000 0.006 
13 0.000 0.029 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 
14 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 
15 0.000 0.000 0.000 0.024 0.000 0.017 0.000 0.000 0.045 0.002 0.009 
16 0.00 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.Ql0 0.010 

All Pass 0.000 0.00 1 0.000 0.000 0.004 0.000 0.000 0.000 0.002 0.000 0.327 

Figure 6.1. Icemaker Component-Indication Joint Probability Matrix. 

In the next section we will complete the diagnosability analysis based on the 

model constructed of the icemaker system. 

6.2 Icemaker Diagnostic Analysis 

Table 6.6 summarizes the distinguishability values of the icemaker. The 

worksheets for calculating the ice maker distinguishability metrics are presented in 

Appendix D. 

Table 6.6. Icemaker diagnosability analysis for imperfect indications. 

P (I= al f ·1 I 0 ne C= al ·1) P (I= al f ·1 I All C =good) DSYS TOTAL r f r DSYS JUST REMOVAL 
100.00 % 0.00% 0.8109 0.6893 
99.999 % 0.001 % 0.8108 0.6892 
99.99 % 0.01 % 0.8102 0.6886 
99.00 % 1.00 % 0.7514 0.6368 

The distinguishability of the icemaker system decreases as indication uncertainty 

is increased. For example, the probability of correctly replacing a bad component in 
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the system decreases from a probability of 0.6893 for perfect indication to 0.6368 for 

indications that are 99 percent certain. 

Table 6.7 and Table 6.9 summarize the distinguishability results for individual 

indications and components in the ice maker system. Component and indication 

results are computed based on 99 percent indication certainty. 

Table 6.7. Icemaker indication distinguishability. 

nIND  
I d· n f Pr (Just) r (U· lca Ion P DJUSt) 

11 0.1204 0.0190 
12 0.1910 0.1271 
I3 0.0290 0.0226 
14 0.0188 0.0098 
15 0.0454 0.0521 
16 0.0100 0.0011 
17 0.0099 0.0097 

All pass 0.3269 0.0071 

Indication two (12), indication three (I3), and indication seven (17) contain values 

of unjustified removals close to the probability of completing a justified removal. For 

Indication five (15), the probability of completing an unjustified removal is greater 

than completing a justified removal. In order to increase the distinguishability of the 

system, these indications should be examined. Upon further investigation of the 

Component-Indication mapping it is determined the indications with large ambiguity 

groups are the main areas of concern with distinguishability of the system (see Table 
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6.8). For example, indication two (12) has an ambiguity group of eight components 

and a high probability of completing an unjustified removal. 

Table 6.8. Number of components in ambiguity group. 

No. of components in  
I d· f b· ·t n Ica Ion am 19uuy group 

11 4 
12 8 
13 2 
14 I 
15 4 
16 1 
17 1 

In order to improve the distinguishability of the system, the architecture should be 

changed to decrease the size of the ambiguity groups for each indication. This can be 

achieved by either increasing the number of indications in the system or by altering 

the component-indication mapping of the current system. 

The distinguishability results of icemaker components enable specific diagnostic 

problems to be located (see Table 6.9). 
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Table 6.9. Icemaker component distinguishability. 

DLRU 
component Pr (Just removaI) Pr (U'nJust removaI) Pr (U'nJust Ieave) 
C1: Feeler Arm 0.0000 0.0000 0.0436 
C2: Switch Linkage 0.0478 0.0141 0.0007 
C3: Switch 0.0000 0.0218 0.0003 
C4: Mold 0.0000 0.0268 0.0003 
C5: Freezer 0.3114 0.0000 0.0035 
C6: Water Delivery 0.0000 0.0233 0.0003 
C7: Mold Heater 0.0000 0.0080 0.0001 
C8: Ice harvesting 0.0000 0.0013 0.0000 
C9: Ice timer 0.0454 0.0892 0.0017 
E: External factors 0.0000 0.0024 0.0098 

The probability of completing an unjustified removal can be significantly 

increased based on problems associated with only a few components in the system. 

Conversely, if these problems are alleviated, the system distinguishability can be 

greatly improved. For example, component three (C3), component four (C4) and 

component six (C6) are subject to a relatively high probability of unjustified removals. 

Additionally, component nine (C9) has the greatest chance of being removed unjustly. 

To increase the distinguishability of the system, the problems with these specific 

components should be addressed. To alleviate the diagnostic problems, the exposure 

time of the components can be reduced, the reliability of the components can be 

increased, or the architecture of the system can be altered. 
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7 Summary and Conclusions 

The objective in this research was to create a diagnostic model that incorporated 

uncertainty caused from imperfect indications. Bayes' formula is used to construct an 

accurate diagnostic model of a physically embodied system based on information 

extracted from the FMEA, FfA, component reliability, and known indication 

uncertainty. 

A new method for computing the diagnosability of systems is presented. The 

method uses a series of matrices that are mathematically manipulated to form the 

Replacement Probability Matrix. This matrix represents the joint probabilities of 

mutually exclusive diagnostic events. The distinguishability metrics are extracted 

from the Replacement Probability Matrix. Distinguishability metrics are developed 

for analysis to the system, component, and indication levels. The methodologies have 

been applied to an illustrative example problem and the icemaker system initially 

described in Eubanks [1997]. The methodology can be used to analyze systems at the 

conceptual stages of design or to improve systems already in use. Areas of concern in 

the architecture of the system can be identified and addressed to eliminate problems 

with fault isolation that may be encountered. The metrics have a mathematical 

foundation and produce an objective evaluation, thereby minimizing subjective 

analysis of conceptual designs. 

Additionally, the methodologies are evolutionary. During the initial stages of 

design, concise and comprehensive information may not be readily available to 
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completely analyze the system. However, as the design evolves and abstractness is 

reduced, the diagnostic analysis is based on more refined information, thereby 

resulting in greater accuracy. 

Diagnostic analysis results of the illustrative example and the icemaker show that 

an increase in indication uncertainty has a detrimental effect on the completion of 

justified actions during the diagnostic process. As indication uncertainty is increased, 

the probability of completing an unjustified removal or unjustified leave also 

increases. In addition, the architecture of the system also affects the system 

diagnosability. As the architecture of the system is altered to decrease the average size 

of the ambiguity group, the diagnosability of the system increases. 



51 

8 Future Work 

There is opportunity for future work in several areas. Utility theory and Bayesian 

networks should be utilized to further research the optimal replacement criterion to 

maximize the knowledge gained about the state of the components in the system and 

minimize the costs associated with the fault diagnosis. In addition to the observation 

phase, an additional phase of the diagnostic process involving the completion of 

diagnostic tests must be further researched. Diagnostic testing provides additional 

knowledge about the state of the components in the system, and thereby increases the 

probability of replacing a component that has caused the failure indication to occur. 

Similar methodologies and metrics related to the test phase should be further 

researched and developed. With the inclusion of the diagnostic testing phases, utility 

theory and Bayesian networks should be utilized to predict the optimal testing order of 

components. The allocation of maintenance time is another area of research in the 

diagnosis of mechanical systems that should be studied. Decision networks and utility 

theory should be applied to allocate maintenance time between the diagnostic testing 

tasks, component access tasks, and component replace/repair tasks. 

Additionally, the use of the methodologies, not only as a design prediction tool, 

but also as a maintenance and service tool that can aid technicians during fault 

isolation procedures should be explored. Finally, the long-term goal is the creation of 

a computer program for diagnostic analysis using the developed methodologies as the 

underlying mathematics. 
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Appendix A. Distinguishability Analysis of Alternative System Designs 
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The worksheets for completing the diagnostic analysis of the illustrative example 

are presented. The included analysis assumes a uniform indication certainty of 99.99 

percent. Additionally, the exposure times of the components remain the same for all 

of the alternative designs (see Table A.l). 

Table A.t. Component exposure times. 

Component Exposure fIme (b)r 
Cl 5000 
C2 3700 
C3 1750 
C4 7200 
C5 10000 
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Alternative Design 1, One Failure Indication: 

Table A.2. Failure rate matrix, Alternative Design 1. 

1.0xlO-7 Cl C2 C3 C4 C5 
15 14 29 2 4611 

Table A.3. Component reliability computation, Alternative Design 1. 

Component I di n f Exposure T" r r j=good) r a- ca Ion Ime (h) P (C P (Cj= b d) 

C1, II 5000 0.993 0.007 
C2, II 3700 0.995 0.005 
C3, II 1750 0.995 0.005 
C4, II 7200 0.999 0.001 
C5, II 10000 0.955 0.045 

Table A.4. Component-indication joint probability matrix, Alternative Design 1. 

Indication 
Cl C2 C3 C4 C5 All Good Prob. 

11 0.0071 0.0049 0.0048 0.0013 0.0441 0.0001 0.0622 
All Pass 0.0001 0.0001 0.0001 0.0001 0.0001 0.9373 0.9378 

CompProb 0.0072 0.0050 0.0049 0.0014 0.0442 0.9374 1.00oQ 
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Table A.S. Replacement matrix, Alternative Design 1.  

Cl C2 C3 C4 C5 All Good  

11 o o o o o 
All Pass o o o o o 

Table A.6. Replacement probability matrix, Alternative Design 1. 

Replaced J, 
Cl 
C2 
C3 
C4 

C5 
None replaced 

Pr(Just removal) 

Pr(Unjust removal) 

Pr(Just leave) 

Pr(Unjust leave) 

Pr(Just Action) 

Failed ~  

Cl C2 C3 C4 C5 All Good  

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00705 0.00487 0.00477 0.00135 0.04410 0.00009 
0.00010 0.00010 0.00010 0.00010 0.00010 0.93728 

0.00000 0.00000 0.00000 0.00000 0.04410 0.04410 

0.00705 0.00487 0.00477 0.00135 0.00000 0.00009 0.01813 

0.93728 

0.00049 
0.00000 0.00000 0.04410 0.93728 0.98138 
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11 

Alternative Design 2,13 Failure Indications: 

Table A.7. Failure rate matrix, Alternative Design 2. 

10.7 hour'! C1 C2 C3 C4 CS 

2 0 0 0 0  

12  0 0 4 0 0  

13  0 0 0 0 3  

14  0 0 0 2 0  

15  0 0 0 0 15  

16  3 0 0 0 0  

17  0 2 0 0 0  

18  0 0 17 0 0  

19  0 0 0 0 25  

110  10 0 0 0 0  

III  0 12 0 0 0  

112  0 0 0 0 3  

113  0 0 8 0 0 

Table A.S. Component reliability computation, Alternative Design 2. 

C I Icabon Exposure T"Ime r P(C;=200d) P j= b d) omponent- n d' (h) r r (C a 

CI,11 5000 0.999 0.001 
C1,16 - 0.999 0.001 
CI,110 - 0.995 0.005 

C2, I7 3700 0.999 0.001 
C2,111 - 0.996 0.004 

C3,12 1750 0.999 0.001 
C3,18 - 0.997 0.003 
C3,113 - 0.999 0.001 

C4,14 7200 0.999 0.001 

C5,I3 10000 0.997 0.003 
C5,15 - 0.985 0.015 

C5,19 - 0.975 0.025 

C5,112 - 0.997 0.003 
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Table A.9. Component. indication joint probability matrix, Alternative Design 2. 

Indication 
C1 C2 C3 C4 C5 All Good Prob 

11  0.0010 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 
12  0.0000 0.0000 0.0007 0.0000 0.0000 0.0001 0.0008 

0.0000 0.0000 0.0000 0.0000 0.0030 0.000113  0.0031 
14  0.0000 0.0000 0.0000 0.0014 0.0000 0.0001 0.0015 
15  0.0000 0.0000 0.0000 0.0000 0.0149 0.0001 0.0150 
16  0.0015 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 
17  0.0000 0.0007 0.0000 0.0000 0.0000 0.0001 0.0008 
18  0.0000 0.0000 0.0030 0.0000 0.0000 0.0001 0.0031 
19  0.0000 0.0000 0.0000 0.0000 0.0247 0.0001 0.0248 

110  0.0050 0.0000 0.0000 0.0000 0.0000 0.0001 0.0051 
III  0.0000 0.0044 0.0000 0.0000 0.0000 0.0001 0.0045 
112  0.0000 0.0000 0.0000 0.0000 0.0030 0.0001 0.0031 
113  0.0000 0.0000 0.0014 0.0000 0.0000 0.0001 0.0015 

All Pass 0.0000 0.0000 0.0000 0.0000 0.0000 0.9340 0.9340 
CompProb 0.0075 0.0052 0.0051 0.0014 0.0456 0.9353 1.0QQQ 

Table A.tO. Replacement matrix, Alternative Design 2. 

11  

12  
13  

14  
15  
16  
17  
18  
19  

110  
III  
112  
113  

All Pass  

C1 
1  
0  
0  

0  
0  
1  
0  
0  
0  
1  

0  
0  

0  
0  

C2 
0  
0  
0  

0  
0  
0  
1  
0  

0  
0  
1  
0  

0  

0  

C3 
0  
1  
0  

0  
0  
0  
0  
1  

0  
0  
0  

0  
1  

0  

C4 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

C5 
0 
0 
1  

0  
1  
0  
0  
0  
1  

0  
0  
1  

0  

0  

All Good  
0  
0  
0  

0  
0  
0  
0  
0  
0  
0  
0  

0  

0  
1  
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Table A.H. Replacement probability matrix, Alternative Design 2. 

Failed ~ 

Replaced J.. Cl C2 C3 C4 C5 All Good 

Cl 0.00749 0.00000 0.00000 0.00000 0.00000 0.00030 
C2 0.00000 0.00517 0.00000 0.00000 0.00000 0.00020 
C3 0.00000 0.00000 0.00507 0.00000 0.00000 0.00030 
C4 0.00000 0.00000 0.00000 0.00144 0.00000 0.00010 
C5 0.00000 0.00000 0.00000 0.00000 0.04556 0.00040 

None replaced 0.00000 0.00000 0.00000 0.00000 0.00000 0.93397 
Pr(Just removal) 0.00507 0.06473 
Pr(Unjust 0.00129 
Pr(Just leave) 0.93397 
Pr(Unjust leave) 0.00001 
Pr(Just Action) 0.00749 0.00517 0.00507 0.00144 0.04556 0.93397 0.99870 
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Alternative Design 3, Original system failure rate-indication mapping modified: 

Table A.12. Failure rate matrix, Alternative Design 4.  

1.0xlO-7 Cl C2 C3 C4 C5  

It 
12 

13 
14 

15 
16 

12 
0 
3 

0 
0 
0 

0 

0 
2 
0 
12 

0 

4 
0 
0 

0 
0 
25 

0 

2 
0 
0 
0 

0 

3 
15 
0 

25 
3 
0 

Table A.13. Component reliability computation, Alternative Design 4. 

Component-
I ndicafIOn Exposure Ime r p r (Cj=good) Pr (Cj= aT" (h ) b d) 

C1,II 5000 0.994 0.006 
C1, I3 5000 0.999 0.001 

C2, I3 3700 0.999 0.001 
C2,15 3700 0.996 0.004 

C3,II 1750 0.999 0.001 
C3,16 1750 0.996 0.004 

C4,12 7200 0.999 0.001 

C5,11 10000 0.997 0.003 
C5,12 10000 0.985 0.015 
C5,14 10000 0.975 0.025 
C5,15 10000 0.997 0.003 
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Table A.14. Component-indication joint probability matrix, Alternative Design 4. 

Indication 
Cl C2 C3 C4 C5 All Good Prob 

11 0.0060 0.0000 0.0007 0.0000 0.0030 

12 0.0000 0.0000 0.0000 0.0014 0.0149 

13 0.0015 0.0007 0.0000 0.0000 0.0000 

14 0.0000 0.0000 0.0000 0.0000 0.0247 

15 0.0000 0.0044 0.0000 0.0000 0.0030 

16 0.0000 0.0000 0.0044 0.0000 0.0000 

All Pass 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0001 
0.0001 
0.0001 
0.0001 

0.0001 
0.0001 
0.9348 

0.0097 
0.0164 
0.0023 
0.0248 

0.0075 
0.0045 
0.9348 

Comp Prob 0.0075 0.0052 0.0051 0.0014 0.0455 0.9354 1.0~ 

Table A.IS. Replacement matrix, Alternative Design 4. 

Cl C2 C3 C4 C5 All Good 
11 1 0 0 0 0 0 

12 0 0 0 0 1 0 

13 1 0 0 0 0 0 

14 0 0 0 0 1 0 

15 0 1 0 0 0 0 

16 0 0 1 0 0 0 

All Pass 0 0 0 0 0 
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Table A.16. Replacement probability matrix, Alternative Design 4. 

Replaced J, 
Cl 
C2 
C3 
C4 
C5 

None replaced 
Pr (Just removal) 
Pr (Unjust removal) 

Pr (Just leave) 
Pr (Unjust leave) 

Pr (Just Action) 

Failed ~  

Cl C2 C3 C4 C5 All Good  

0.00746 0.00074 0.00069 0.00000 0.00298 0.00020 
0.00000 0.00442 0.00000 0.00000 0.00298 0.00010 
0.00000 0.00000 0.00437 0.00000 0.00000 0.00010 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00142 0.03955 0.00020 
0.00000 0.00000 0.00000 0.00000 0.00000 0.93480 
0.00746 0.00442 0.00437 0.00000 0.03955 0.05579 
0.00000 0.00074 0.00069 0.00142 0.00596 0.00059 0.00940 

0.93480 

0.00001 
0.00746 0.00442 0.00437 0.00000 0.03955 0.93480 0.99059 
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Appendix B. Schematics of icemaker example 
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Figure B.I. Schematic of assembled icemaker. 

-1 CI: Feeler Arm 
E: External Factor 
C5: Freezer 

Figure B.2. Exploded view of icemaker. 
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Appendix C. Icemaker FMEA Document 



Table C. l. Icemaker FMEA Document [Henning 2000]. 

ailure ailure Rate [per ys Erred ndication Code ( ) ndieation1',,,, lmillion evcles~i "rrecl observable)ComDOn~nt Function Failure Mode somelimes Sol 
!,!o ice, fcelcr arm in 

21,(6)I , Feeler arm I , (9)ense icc le\'e! in bucket roken off Full ucket at times 
eeler arm - Switch 

, Switch linkage ce overflow onncction tuck closed Full 3) ~ 
ee overflow 2)tuck closed ntermittent 0 3) 

2)tuck open 'ull 0 I~oice 
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Appendix D. Distinguishability analysis of icemaker validation example 



Table D.I. Icemaker failure rate matrix. 

LOx 10-7 Cl C2 C3 C4 C5 C6 C7 C8 C9 E 
11 0_00 0_00 0.00 0.99 9.90 0.00 69.30 19.80 0.00 0.00 
12 0.99 79.20 49.50 0.00 19.80 24_75 19.80 9.90 39.60 0.00 
13 0.00 108.90 49.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
14 0.00 69.30 0.00 0.00 0.00 0.00 0.00 0.00 0_00 0.00 
15 0.00 0.00 0.00 7.92 0.00 44.55 0.00 0.00 14.85 39.60 
16 1.98 0_00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 148.50 

All good 0.03 2.60 1.00 0.09 0.30 0.70 0.90 0.30 0.55 1.90 

Table D.2. Exposure times for icemaker components. 

Ice maker cycles/day 3 
Ice maker expected life 15 years 
Component Exposure time (hrs) Exposure time approximations 
Cl: Feeler arm 5475 20 min/cycle 
C2: Switch Linkage 2737.5 10 min/cycle 
C3: Switch 2737.5 10 min/cycle 
C4: Mold 32850 2 hours/cycle 
C5: Freezer 131400 Life of freezer 
C6: Water Delivery 4106.25 15 min/cycle 
C7: Mold Heater 1095 4 min/cycle 
C8: Ice Harvester 547.5 2 min/cycle 
C9: Ice Timer 32850 25% of life ofrefrigerator, continuous operation 
E: External Factor 657 Intermittent, happen .5% over lifetime 

......:J o 



Table D.3. Component reliability computation. 

Component-I ndicatIon Exposure T'Ime (h) Pr(C' Pr (C b d) . r 1=200d) j= a 
Cl,I2 5475 0.999 0.001 
Cl,I6 5475 0.999 0.001 
C2,I2 2737.5 0.978 0.022 
C2,I3 2737.5 0.970 0.030 
C2,I4 2737.5 0.981 0.019 
C3,I2 2737.5 0.986 0.014 
C3,I3 2737.5 0.986 0.014 
C4,11 32850 0.997 0.003 
C4,I5 32850 0.974 0.026 
C5,11 131400 0.877 0.123 
C5,I2 131400 0.769 0.231 
C6,I2 4106.25 0.990 0.010 
C6,I5 4106.25 0.982 0.018 
C7,11 1095 0.992 0.008 
C7,I2 1095 0.998 0.002 
C8,Il 547.5 0.999 0.001 
C8,I2 547.5 0.999 0.001 
C9,I2 32850 0.877 0.123 
C9,I5 32850 0.952 0.048 
E,I5 657 0.997 0.003 
E,I7 657 0.990 0.010 



Table D.4. Prior knowledge about component· indication relationship. 

Pr(I1=faill Anyone Component = fail) 
Pr(I1=faill All Component = good) 

99% 
1% 

Pr(l2=fail I Anyone Component = fail) 
Pr(I2=fail I All Component = good) 

99% 
1% 

Pr(I3=fail I Anyone Component = fail) 
Pr(I3=fail I All Component = good) 

99% 
1% 

Pr(I4=fail I Anyone Component = fail) 
Pr(I4=fail I All Component = good) 

99% 
1% 

Pr(I5=fail I Anyone Component = fail) 
IPr(l5=fail I All Component = good) 

99% 
1% 

Pr(I6=fail I Anyone Component = fail) 
IPr(I6=fail I All Component = good) 

99% 
1% 

~r(I7=fail I Anyone Component = fail) 
~r(I7=fail I All Component = good) 

99% 
1% 

-.....) 
N 



Table D.S. Component-indication joint probability matrix. 

Indication 
Cl C2 C3 C4 C5 C6 C7 C8 C9 E All good Prob 

11 0.00 0.00 0.00 0.00 0.12 0.00 0.01 0.00 0.00 0.00 0.01 0.14 
12 0.00 O.oI 0.01 0.00 0.19 0.01 0.00 0.00 0.09 0.00 O.oI 0.32 
13 0.00 0.03 O.oI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 
14 0.030.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
15 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.05 0.00 0.01 0.10 
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 O.oI 
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.oI O.oI 0.02 

All good 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33  
Comp Prob 0.00 0.06 0.02 0.03 0.31 0.02 0.01 0.00 0.14 O.oI 0.39  1.00 I 

Table D.6. Icemaker replacement matrix. 

Cl C2 C3 C4 C5 C6 C7 C8 C9 E All good 
11 0 0 0 0 1 0 0 0 0 0 0 
12 0 0 0 0 1 0 0 0 0 0 0  
13  0 I 0 0 0 0 0 0 0 0 0 
14 0 1 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 1 0 0 
16 0 0 0 0 0 0 0 0 0 0 1 
17 0 0 0 0 0 0 0 0 0 0 1 

All pass 0 0 0 0 0 0 0 0 0 0 1 



Table D. 7. Icemaker replacement probability matrix. 

Failed ~ 

Replaced ,J... Cl C2 C3 C4 C5 C6 C7 C8 C9 E All 
Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C2 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 
C3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C5 0.00 0.01 0.01 0.00 0.31 0.01 0.01 0.00 0.09 0.00 0.02 
C6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C9 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.05 0.00 0.01 

E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 




