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Abstract

Thermal diffusivity of snow is an important thermodynamic property as-

sociated with key hydrological phenomena such as snow melt and heat and

water vapor exchange with the atmosphere. Direct determination of snow

thermal diffusivity requires coupled point measurements of thermal conduc-

tivity and density, which are nonstationary due to snow metamorphism. Tra-

ditional methods for determining these two quantities are generally limited

by temporal resolution. In this study we present a method to determine the

thermal diffusivity of snow with high temporal resolution using snow tem-

perature profile measurements. High resolution (between 2.5 and 10 cm at 1

minute) temperature measurements from the seasonal snow pack at Plaine-

Morte glacier in Switzerland are used as initial conditions and Neumann

(heat flux) boundary conditions to numerically solve the one-dimensional

heat equation and iteratively optimize for thermal diffusivity. The imple-

mentation of Neumann boundary conditions and a t-test, ensuring statistical

significance between solutions of varied thermal diffusivity, are important to

help constrain thermal diffusivity such that spurious high and low values
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as seen with Dirichlet (temperature) boundary conditions are reduced. The

results show that time resolved thermal diffusivity can be determined from

easily implemented and inexpensive temperature measurements of seasonal

snow with good agreement to density-based empirical parameterizations for

thermal conductivity.

Keywords: heat diffusion, porous media, snow temperature measurements,

thermal conductivity, thermal diffusivity

1. Introduction

Snow thermal diffusivity is an important thermodynamic property in

snow hydrology because it regulates heat diffusion in the snow as defined by

the heat equation [1]. Hence, it is an important parameter for understand-

ing heat transfer and predicting snowmelt [2], and is therefore applicable to

water resources management activities such as agriculture, hydropower and

municipal water usages [3]. Furthermore, thermal diffusivity can be useful

in improved prediction of snowmelt timing and streamfiow discharge because

typical snowmelt models are tuned to air temperature, and therefore, lack a

full physical basis [4]. Heat transfer in snow occurs by conduction through

the ice matrix, by conduction through air-filled pore spaces, by latent heat

exchanges of water vapor (condensation and sublimation) [3] and by radiative

heating [5, 3, 6]. In addition, convection [7, 8, 9], and wind pumping [10, 11]

can also play a role. However, these mechanisms are less well understood.

Better temporal resolution in heat transfer studies may allow for improved

understanding of these mechanisms because they occur at relatively short

time scales.
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Snow is a nonstationary porous medium and therefore, can be difficult to

study. It often undergoes morphological changes in grain size and shape, den-

sity, and bonding due to metamorphism, all of which affect the snow thermal

properties [3]. Thermal conductivity of snow is also anisotropic, having differ-

ent values in horizontal and vertical directions [12]. A better understanding

of heat transfer processes in snow and their natural impacts requires a better

understanding of how thermophysical properties vary in time [13]. Due to

the labor intensity of some measurement techniques, such as the excavation

of snow pits, the potential temporal and spatial resolution of snow property

measurements is limited. Furthermore, some measurement techniques might

actually alter the snow properties being measured by disrupting its structure

[14].

Direct determination of thermal diffusivity requires measurements (either

in-situ or in extracted samples) of two quantities: thermal conductivity and

snow density. Generally, density measurements are labor intensive because

they require snow pit excavation and gravimetric analysis of individual sam-

ples from varying depths. Therefore, snow density measurements with high

temporal resolution are difficult to obtain. For thermal conductivity, several

techniques exist which vary greatly in cost, ease of implementation, accuracy

and spatial and temporal resolution. Some of these methods are described

in Section 2, and a more rigorous summary and critique of several of the

techniques was presented by Sturm et al. [15]. Often these methods require

specialized, relatively expensive equipment in addition to requiring substan-

tial effort to obtain measurements at high spatial and temporal resolution.

An alternative approach is to measure snow temperatures and invert the
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heat equation to obtain the thermal conductivity or thermal diffusivity of

snow. The major advantages of this approach are that temperature is rela-

tively inexpensive to measure and can provide many more options for spatial

and temporal resolution. As an example of the inversion approach, Brandt

and Warren [16] successfully used a one-dimensional vertical finite difference

scheme with Dirichlet boundary conditions (specifying temperature in time

and a stationary density profile to optimize for thermal conductivity of snow

at the South Pole. However, the Brandt and Warren [16] study is not rep-

resentative of ephemeral, seasonal snow packs of hydrological importance

because the diurnal solar forcing was atypical (polar night for 6 months) and

snow temperatures were extremely low (< 40°C). In relatively warm snow-

packs latent heat transfer can account for a significant portion of the overall

heat transfer [15]. Due to these complications, it was unclear that the method

used by Brandt and Warren [16] could be successful for relatively warm snow-

packs with the strong diurnal forcing experienced by seasonal snow.

For the present study the inversion approach of Brandt and Warren [16]

was extended to determine thermal diffusivity for seasonal snow with the

addition of two key steps. First, Neumann boundary conditions (specifying

heat flux in time, as determined by the temperature measurements) must

be used for the simulation so the predicted temperatures are not artificially

constrained, and second, a statistical test is integrated into the analysis to de-

termine when there is sufficient information within the temperature profiles

to converge to a unique solution. In this paper the new method was used to

find the thermal diffusivity for seasonal snow on the Plaine-Morte glacier, an

important water reservoir in the Bernese Alps of Switzerland. High resolution
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(between 2.5 and 10 cm at 1 minute) temperature measurements were used

as initial and boundary conditions to numerically solve the one-dimensional

heat equation, and iteratively optimize for thermal diffusivity. The temper-

ature measurement probe used in this study is relatively inexpensive, easy

to install and allows for monitoring throughout a season. Section 2 of this

paper discuses and compares some of the existing techniques for obtaining

thermal diffusivity of snow. In Section 3, the experiment site and tempera-

ture measurement techniques are described. The proposed method used to

determine time-resolved thermal diffusivity of seasonal snow is presented in

Section 4. Finally, the results and error analyses are presented and discussed

along with recommendations for subsequent uses of the new measurement

probe and methods for determining thermal diffusivity.

2. Thermal Diffusivity and Measurement Techniques

Thermal diffusivity is a combination of the thermal properties of a medium

which govern the heat diffusion rate through that medium according to the

heat equation
0T 02T
at a 3z2 (1)

where a is the thermal diffusivity, T is temperature, z is distance (in our

case vertical depth) and t is time [1]. The thermal diffusivity is defined as

Ka =
pCi,'

(2)

where i is the thermal conductivity, p is the density and G is the specific heat

capacity. Since snow is a porous media comprised of ice matrices and air-filled

pores, its thermal properties are generally described as being effective values

5



at averaged macro scales [17, 3]. Throughout this paper thermal properties

are to be considered their effective values, and considering snow's anisotropy,

in the vertical component. Heat conduction through the solid ice matrix

is the dominant heat transfer mechanism because the thermal conductivity

of ice is approximately two orders of magnitude greater than that of air

[3]. Accordingly, snow microstructure, grain size, shape and intergranular

bonding, strongly influence the thermal conductivity [13]. In addition, latent

heat transfer can also play a significant role in relatively warm snow [3].

However, latent heat transfer is also a diffusive mechanism which occurs

along a temperature gradient, so its effects can be naturally lumped into an

effective thermal diffusivity [18, 15, 17, 3].

Several techniques exist for measuring thermal conductivity. One such

method is to use a heated plate to study the steady-state heat flow across

an extracted block of snow [19]. Once at equilibrium, the temperature gra-

dient across the sample block is used to calculate the thermal conductivity.

Since the snow sample is heated from one end, care must be taken to insulate

the edges such that the heat transfer occurs only across the sample [19, 15].

In addition, the imposed temperature gradient may cause the snow sample

to undergo metamorphism [15]. Another highly technical approach for de-

termining thermal conductivity is based on microstructure tomography (e.g.

Kaempfer et al. [20] and Calonne et al. [12]). This methodology uses tomo-

graphic 3D images of snow microstructure and the steady-state heat trans-

port equation to determine the effective thermal conductivity by separating

the heat transfer over the ice matrix and pore spaces for a volumetric snow

sample [12]). Beyond the specialized equipment necessary for these types of
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analyses, the methods are relatively labor intensive and require careful ex-

traction and storage of snow samples. Hence, obtaining measurements with

high spatial and temporal resolution is impractical.

A more practical approach for measuring thermal conductivity uses the

transient heat transfer resulting from an unsteady heat input (and often the

subsequent cooling) [21, 22]. Sturm et al. [15] describe some of the various in-

strument configurations that have been used with the transient heat transfer

approach, and mention that needle probe or point heat source configurations

are ideal because they are less likely to disturb the snow. Generally, the nee-

dle probe consists of a thin needle of which one end is heated and the other

end monitors the temperature change between the two sections. In concept,

the analytical solution for heat diffusion in an infinite wire predicts that the

temperature change over the needle is linearly related to the natural log of

time, an the thermal conductivity is proportional to the slope of this line

[23]. These heat probes have been used in cold chambers [24, 25], inserted

into walls of snow pits [24, 22, 15], and naturally covered by snow fall [23].

The transient heat probe method for determining thermal conductivity pro-

vides more flexibility in terms of spatial and temporal resolution than the

steady-state method. However, it requires relatively expensive equipment,

and significant effort is still required to obtain high spatial and temporal res-

olution in the measurements. Furthermore, the needle probes, though small,

may still significantly alter the snow structure [14], and Calonne et al. [12]

show that thermal conductivities determined by the needle probe methods

are systematically lower than those determined by other methods.

Empirical parameterizations, which estimate the thermal conductivity
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given the snow density, also exist. Sturm et al. [15] proposed a parameter-

ization based on a comprehensive compilation of snow density and thermal

conductivity measurements from several techniques and studies. Other em-

pirical, density-based parameterizations have also been proposed by Calonne

et al. [12] (determined from tomographical, heated plate, and the needle

probe techniques), Aggarwal et al. [26] (determined by the needle probe

technique), and Yen [27] (determined from a compilation of unnumbered in-

vestigations). All of these parameterizations have a wide range of scatter,

usually attributed to the differences in snow microstructure and bonding that

can occur for a given snow density. Furthermore, these parameterizations re-

quire knowledge of the snow densities which, as mentioned previously, are

dynamic and difficult to monitor with high temporal resolution. Often these

types of parameterizations are used in various heat and mass transfer models

for snow. Some examples are a catchment-scale snowmelt model [2], a glacier

mass balance model [29], a climatological atmospheric warming study using

englacial temperatures [30], in a near-surface model to be used by backcoun-

try avalanche forecasters [31], and for comparison with a micro-structure

based snow cover model [32].

Other methods that use snow temperature profiles to determine thermal

diffusivity include spectral or analytical techniques. The spectral method

tracks the amplitude ratio and phase shift of the diurnal temperature signal

as it propagates into the snowpack [33]. This method is ideally applied over

several diurnal cycles in a stationary medium and hence, is not well suited to

snow because it cannot account for the transient features of the snowpack.

Another inversion approach might be to use the existing analytical solutions
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to the initial boundary value problem that can be found in chapter 3 of

Carlslaw and Jaeger [1]. This was the initial approach used in the present

study, but it was found that the analytical solution was more computation-

ally expensive to evaluate and numerically unstable (Gibb's ringing near the

boundaries) than numerical solutions to the heat equation. We do not repeat

that analysis here.

The best method obtained for determining thermal diffusivity with high

temporal resolution is a numerical inversion of the heat equation. As men-

tioned previously, Brandt and Warren [16] successfully used a one-dimensional

vertical finite difference scheme with Dirichlet boundary conditions to opti-

mize for effective thermal conductivity from temperature measurements ob-

tained at the South Pole. They used a stationary density profile determined

from a linear fit of densities measured in two snow pits separated in time

by nearly one year (January 1992 and December 1992). Brandt and Warren

[16] calculate thermal conductivity on 15 minutes intervals, and report 9-

day averages with error bars representing conductivities with ± 10% relative

error.

Although Brandt and Warren [16] have shown that on average, this type

of method can successfully determine thermal conductivity for relatively cold

snowpacks with little diurnal forcing, it is unclear that the method would

be successful for typical seasonal snow packs. Reusser and Zehe [34] used

the same method as Brandt and Warren [16], and applied it to temperature

measurements of seasonal snow in the eastern Ore Mountains near the Czech-

German boarder. They used a constant snow density and assumed thermal

diffusivity to be constant over periods of 1 day or 5 days. In this case, al-
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though the snow itself and the environmental conditions were seasonal, the

application of the method was not representative of the morphological vari-

ations associated with seasonal snow. Furthermore, Reusser and Zehe [34]

present only one result for thermal diffusivity, a = 5x 10-7 1112S-1 and re-

ported that 71% of the thermal diffusivity values were above an upper limit

of a = 1x 10-6 m2s-1, the approximate thermal diffusivity of ice. Zhang and

Osterkamp [35] determined a method which addresses this seemingly com-

mon artifact of spuriously high thermal diffusivities resulting from inversion

methods. They proposed a finite difference method that retains higher order

terms and thus requires at least five vertically aligned temperature measure-

ments. Using this method as well as the standard finite difference method

(neglecting higher order terms) both with Dirichlet boundary conditions,

they determined thermal diffusivity from synthetic temperature profiles for

permafrost and the soil active layer. Their comparison of these two meth-

ods showed that retaining higher order terms eliminated the spurious values

that arose from the standard finite difference method. However, they also

concluded that if higher order terms are retained, the temperature measure-

ments used in the inversion must be much more accurate (as high as two

orders of magnitude more depending on the spatial and temporal discretiza-

tion). Hence, this method may be impractical for use with field measure-

ments. The present study proposes a similar heat equation inversion method

for determining the thermal diffusivity of seasonal snow. However, we pro-

pose a method that naturally constrains the model such the spurious values

of unrealistically high thermal diffusivity (as seen by Reusser and Zehe [34])

are reduced through the use of Neumann (heat flux) boundary conditions.
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3. Experimental Set-up

A winter field experiment was performed at the Plaine-Morte glacier,

located in the Bernese Alps of Switzerland (7.5178° E, 46.3863° N, 2750 m

elevation) from 29 January to 4 March 2008. The glacier is approximately 2

km wide, 5 km long and essentially flat, providing a relatively horizontally

homogeneous snow field and atmospheric fetch.

To obtain vertical profiles of temperature within the seasonal snow on

the glacier, a 2 m long, white (to reduce radiative effects) Polyamide 6 (PA6)

pole was equipped with type-T (±1°C) thermocouples at 25 mm spacing

prior to deployment. Thin groves were machined into the pole so that when

mounted, the thermocouples were flush with the surface of the pole (see the

detail photo in Figure 1). This pole will be referred to as the TCT probe

for the remainder of the paper. The TCT probe was connected to a data

logger (Campbell Scientific CR10X) by means of a 25 channel, solid-state

multiplexer (Campbell Scientific AM25T). Since the number of thermocou-

ples sampled was limited by the number of multiplexer channels, sampled

thermocouple spacing varied between 40 cm and 2.5 cm, and selection was

made with the intent of having higher resolution temperature measurements

near the snow surface throughout the season (maximum spacing for those

used in the analysis was 5 cm). The positive horizontal grid lines in Figures

1 and 2 show the locations of the sampled thermocouples. Initially, the TCT

probe was inserted vertically with the bottom 1 m in the snow, leaving 1

m above to measure subsequent snow accumulation. To maximize contact

between the TCT probe and the snow, the TCT probe was firmly inserted

with one smooth motion. Thermocouple temperatures were sampled every 1
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minute.

In addition, a meteorological measurement station was erected at the site.

Among the instruments sampled at 1 min were air temperature and relative

humidity (Rotronic MP100A), snow height (Campbell Scientific SR50, acous-

tic range finder) and snow surface temperature (Apogee Instruments IRTS-P,

infrared thermocouple sensor). On six occasions throughout the experiment,

snow pits were dug and density profiles were measured by weighing samples

of a known volume (100 cm3) with a standard SLF-Davos snow density kit.

The vertical extent of the snow volume sampler is 3 cm and the snow density

was sampled every 5 cm in depth. Figure 2 shows the density evolution for

the upper snowpack as well as snow height relative to the TCT probe. For

all analyses we imposed the coordinate system of the TCT probe. Hence,

the matter below the vertical zero is the lower portion of the snowpack that

the TCT probe does not reach, but where density measurements were made

during the first snow pit excavation.

The acoustic range finder was located a few meters from the TCT probe

and hence, could have reported slightly different snow height than what ex-

isted at the TCT probe location. Therefore, the snow height was also de-

termined by inspection of the snow temperature profiles in a manner similar

to the methods of Reusser and Zehe [34]. Figure 1 presents an example of a

24-hour period of snow temperature profiles. Profiles are used to determine

the level of the snow surface by visual inspections over a 12 or 24-hour cy-

cle for periods of no or minor precipitation. Snow has an insulating effect

such that the temperature signals in the snow lag the thermal forcing at the

surface and temperatures in the air are much more rapidly mixed. The sur-
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face is located near the sensor point where the ensemble of profiles over the

considered period shows the most pronounced changes in gradient (kinks).

Since this study required an approximate estimate of snow height (we only

use thermocouples at least 10 cm below the snow surface), this snow height

estimation method was sufficient.

TCT Probe Schematic
Sampled TC:
Not sampled TC:

---- 1.9

E 1.5

Snow temperature profiles
12/2 8:00 to 13/2 8:00

O 1.1 -atmosph

CD 1 snow

0.9
o 0.80
E 0.7
1c5 0.6
_c
F-

0.4

_so

2.5cm

TCT Probe Detail

25 20 15 10
Temperature (°C)

Colored by time:

06:30

02:45

23:00

19:15

15:30

11:45

Figure 1: An example of a 24-hour period of snow temperature measurements for the 12th

and 13th of February 2008. The horizontal grid lines indicate the relative locations of the

sampled thermocouples, which are also indicated in the TCT probe schematic. The inset

figure shows a detail photo of the TCT probe.
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Figure 2: Density evolution and snow height throughout the experiment. Gravimetric

density was measured every 5 cm in depth. Since the snow depth changes over the season,

a convenient coordinate system is that of the TCT probe with z=0m at bottom of the

probe. The horizontal grid lines indicate the relative locations of the thermocouples which

were sampled throughout the experiment, with the exception of z = -0.5 m that was

included for spatial referencing of the first snow pit.
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4. Methodology

This study used the measured temperature profiles to determine ther-

mal diffusivity of snow by inverting the heat equation (Equation 1). More

specifically, the heat equation was numerically solved in time and space given

measured initial and boundary conditions for a range of thermal diffusivities.

This was done iteratively, narrowing the range of effective thermal diffusivi-

ties until the RMS error between the measured and predicted temperatures

was minimized. A flow chart describing the optimization routine is presented

in Figure 3.

The spatial domain, or specific thermocouple locations used for the mod-

eled temperature predictions, was chosen with some competing considera-

tions. This method determines a bulk thermal diffusivity over the domain

simulated and so in principle, the extent of the domain should be minimized.

However, having a larger number of temperature measurements in the do-

main allows for a better description of the physics (especially where large

gradients and high degrees of curvature exist), and it provides more test

points for comparing the respective RMS errors when optimizing for thermal

diffusivity. The results presented herein were determined for a domain of

seven internal measurement points between the top and bottom boundaries

of the domain. On average the internal domain size was 25 cm and the

changes in snow density over this depth range were small. The top boundary

was chosen such that it is at least 10 cm below the snow surface to avoid

regions where solar radiation may introduce non-linear effects to the heat

transfer [5, 6].

The temporal domain used to simulate temperatures was 30 minutes.
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Hence for each time step (every one minute) where thermal diffusivity is as-

signed, the RMS error is computed from the difference between the measured

and predicted temperatures from 15 minutes into the past and future. It can

be said then, that even though the results are obtained for each one minute

time step, the temporal resolution of the results is 30 minutes. It is worth

noting that increasing the temporal domain naturally reduces the variation

in the results, but it also reduces the temporal resolution. In short, we solve

for the bulk thermal diffusivity in the layer defined by the spatial domain as

a function of time.

To test the robustness of the method, the search range for thermal diffu-

sivity on the first iteration was wide and coarse, testing 30 values between

1 x10-9 1112S-1 and 1x 10-4 m2s-1. For each subsequent iteration, the search

range was narrowed to test 20 values between 2 points on both sides of the

value of thermal diffusivity with the lowest RMS error from the previous

iteration. Iterations continued until the RMS error was changed by no more

than 1 x10-4 and the value of effective thermal diffusivity that best repre-

sents the physical processes described by the heat equation was subsequently

assigned. Figure 3 contains an example of the final iteration for a single

time step showing a clear, sharp RMS minimum associated with a particular

thermal diffusivity.

The numerical predictions of temperature, or modeled temperatures, were

determined by using MATLAB's partial differential equation (PDE) solver,

pdepe, to solve the heat equation. This function solves a system of ordinary

differential equations (ODES), integrated in time, that result from the spatial

discretization of the original PDE [36].
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Neumann (heat flux) boundary conditions were used at the top and bot-

tom of the domain. The measurement points on the boundaries (top and

bottom) of the internal points were combined with the first, adjacent exter-

nal measurement points (top plus one and bottom minus one to calculate

the Neumann (heat flux) boundary conditions, as shown in Figure 4. All

temperatures used are snow temperatures, not air or surface temperatures.

Neumann boundary conditions are critical to this method because they in-

crease the model's sensitivity to thermal diffusivity, constraining it such that

spurious spikes of unrealistically high thermal diffusivity are reduced. This is

achieved naturally since the simulated temperature profiles are not artificially

constrained at the endpoints as is in the case of Dirichlet type boundary con-

ditions. Since the solution is unconstrained, the trivial, steady state solution

of the heat equation is excluded and consequently, the spuriously high val-

ues of diffusivity reported in other studies are avoided. The use of Neumann

boundary conditions requires at least three measurements in the temperature

profiles.

A further constraint on the model was applied for each time step by im-

plementing a t-test on the initial search range for effective thermal diffusivity

(the first optimization iteration). The t-test ensures that the RMS error as-

sociated with the minimum is statistically different from at least three of

the four surrounding points (for example, when plotting RMS error versus

thermal diffusivity), or in other words, the optimizing thermal diffusivity is

unique. This step tends to eliminate spurious points of unrealistically low

diffusivity by eliminating scenarios when optimization is attempted over a

"flat" searching range, where no statistically clear minimum exists. Figure
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3 contains an example of a time step when the t-test indicated statistical

insignificance, and thermal diffusivity was indeterminate.

Example el TMest -Store

Three or m re pants
surroundng the minimum RMS

erroMall the t-test for
statistical smetmance

10' 10' 10' 10'
Thermal Diffusivity (m's)

a is
indeterminate

Perform a t-test between
the "best a" and the
surrounding 4 points

Select domain:
space and time

(See text for more detail)

Numerically solve the
heat equation for each a

in the search range
(see Figure 5)

'Jr
Calculate the RMS error
between measured and
predicted temperatures

for each a

1
Find the current "best
a" (has the minimum

RMS error)

Example el anal herahon

Op-Sneed
Thermal lattommty

2.5 3.5 4 45
Thermal Diffusivity (m's) x 10

Compare RMS error of
"best a" to that of
previous iteration

Are 3 of 4
points

statistically
significant ?

Focus the a search range to two points
around the "best a"

Assign
optimized a

Figure 3: Flow chart of the method to determine thermal diffusivity, a, from temperature

measurements. Inset figures include an example of a time step when the optimization fails

the t-test, and a time step with successful optimization.

5. Results and Discussion

Time-resolved thermal diffusivities of seasonal snow determined from

methods described in Section 4 are presented in Figure 5 along with a line in-

dicating the overall median value (a =2.5 x10-7) of thermal diffusivity. The
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Figure 4: Schematic of the initial-boundary value problem used to predict temperature in

space and time for the time step shown. It shows the 7 internal thermocouples used for the

time step and the the two thermocouples at each edge of the domain used to determine the

Neumann (heat flux) boundary conditions. The inset figure shows a two-day time series

of the 7 internal thermocouples used for this period.
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overall mean value of thermal diffusivity (a =3.9x10-7) is slightly higher.

The results are shown with the density-based, empirical parameterizations

for thermal conductivity [W TT1- K-1] of Sturm et al. [15],

Keffstr, = 0.138 1.01p + 3.233p2 {0.156 g cm-3 < p < 0.6 g cm-3}

Keffstr, = 0.023 + 0.234p

Calonne et al. [12],

{p < 0.156g cm-3} ,

(3)

Keffcal = 2.5 x 10-6p2 1.23 x 10-4p + 0.024 {p [kg m-3]}, (4)

Aggarwal et al. [26]

KeffAgg = 0.00395 + 0.00084p 1.7756e-6p2 + 3.80635e-9p3 {p [kg m-3]},

(5)

and Yen [27]

Keffyen = 2.22362p1.885 {p [Mg m-3]}. (6)

The densities that were measured during the six snow pit excavations and

the specific heat of ice, G = 2090 J kg-1K-1, were used to calculate the

parameterized thermal diffusivities according to the above equations. In

addition, indicators of the approximate 95% confidence interval from the

Sturm et al. [15] density-based parameterization are also shown.

There is a high degree of variability in the thermal diffusivity time se-

ries. Despite the variability, the majority of the results are comparable to

the density-based empirical parameterizations, and are within the bounds

of the 95% confidence interval reported in the Sturm et al. [15] parameteri-

zations. Furthermore, only 3.8% of the thermal diffusivities are above a =

1 x10-6 m2s-1, the approximate thermal diffusivity of ice used as a theo-

retical upper limit by Reusser and Zehe [34]. Recall Reusser and Zehe [34]
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used a similar inversion technique, but with Dirichlet boundary conditions,

and reported 71% of their thermal diffusivities above this limit. To quan-

tify the improvement that imposing Neumann boundary conditions brought

to the results, we also performed an inversion imposing Dirichlet boundary

conditions. In the Dirichlet case explored for this study, 17% were above

a = 1x 10-6 m2s-1, and the diffusivity values were spread over a range of 10

orders of magnitude. Hence using Neumann boundary conditions provides

a significant improvement to numerical inversion techniques for determining

thermal diffusivity from temperature measurements with no extra computa-

tional expense.

The extreme values of thermal diffusivity in Figure 5 and the rapid rate of

change toward these extremities are not likely representative physical changes

in the thermal properties of the snow. To better understand this variability,

additional analyzes were undertaken for a segment of the temperature data

between 22 and 28 February 2008. The first such analysis explores the spatial

domain to determine if it was too large to be characterized by a single value

of thermal diffusivity for each time step. To address question of domain size,

we use the same methodology to determine thermal diffusivity, but in a tri-

layered scheme by dividing the original domain into three smaller domains

of three temperature measurements each: top, middle and bottom. Recall

that the thermal diffusivities reported in Figure 5 were determined using an

internal domain of 7 consecutive thermocouples (starting from 10 cm below

the surface and increasing in depth). Figure 6 show how the thermal dif-

fusivities from the tri-layered scheme compare to those determined over the

larger domain. The correlation plots (Figures 6(b), (c) and (d)) show that
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the temperature signal in the top portion of the domain strongly influences

the thermal diffusivity determined over the full domain because tempera-

tures closer to the surface experience more change in time and exhibit higher

gradients. All subdomains also show high degrees of variability and hence,

the size of the spatial domain has little influence on the variations in the

results. The tri-layer analysis also shows a trend of increasing thermal diffu-

sivity with snow depth, which may be expected since thermal conductivity

generally increases with snow density and density generally increases with

snow depth.

The second analysis explores the possibility that uncertainty in the tem-

perature measurements (type-T thermocouples: ± 1° C) contributes to the

high variability of the determined thermal diffusivities. Since this method

depends on the relative accuracy between temperature measurements (e.g.

OT/Ot and 02T/Oz2 in the heat equation), it makes sense to assess the effects

of noise in the temperature measurements. This was done using the same

method and domain used to obtain the results in Figure 5, but by adding

three different levels of Gaussian noise to the temperature measurements, in-

dicated by the standard deviation of the noise, a: a = 0.25°C (ATerror,max

1°C), a = 0.33°C and a = 0.70°C. Figure 7 shows that noise in the temper-

ature signal has little change in the degree of variability of the results, even

adding noise as high as with a = 0.70°C. However, this analysis shows that

noise in the temperature signal tends to cause an increase in the resulting

thermal diffusivity. This is likely due to the need for increased diffusion to

smooth out the noise in the temperature signal.

The third analysis explores the method's sensitivity to spatial discretiza-
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tion (or spatial resolution of temperature measurements) by using the same

spatial domain size, but solving with half of the thermocouples used in the

original results. Figure 8 shows that decreasing the spatial discretization of

the temperature measurements greatly increases the resulting thermal dif-

fusivity, by almost two orders of magnitude in this case. This increase in

thermal diffusivity makes sense because decreasing the discretization will

decrease the curvature in the temperature profiles. Since the curvature is

described mathematically by the 02T /0z2 term in the heat equation (1),

the thermal diffusivity must increase to balance the equation. Decreasing

the spatial resolution also increases the chances of excluding the peak in

the temperature profile (refer to Figure 1). This analysis also shows that

decreasing the spatial resolution also tends to slightly increase the range of

variability of the results, but not to the degree to explain the variability in

Figure 5.

The final analysis explores the temporal domain used to generated the

modeled temperatures. First, spectral analysis was performed on the time se-

ries of thermal diffusivity presented in Figure 5. It showed timescales smaller

than 30 minutes exhibit characteristics that are typically attributed to noise,

thus larger time domains should tend to smooth variations. Sharp spectral

filtering at the 30 minute time scale made almost no difference in the ther-

mal diffusivity time series. We also performed some test cases of 2, 3, 6 and

12-hour temporal domains for which the variations in the resulting thermal

diffusivities progressively decreased. However, the large, extreme spikes and

dips that rapidly shoot toward ,--,1 x 10-6 and ,--,1 x 10-8 persisted. By re-

ducing the small-scale temporal variability in these test cases, we were able
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to match the persistent extremes to times when the curvature in the tem-

perature profiles switch concavity. Over a typical diurnal cycle, this occurs

twice as the uppermost thermocouples, which show greater daily tempera-

ture change than those below it, switch from colder than those below to a

warmer than those below, or visa versa (refer to Figure 1 and inset of Figure

4). This method appears incapable of solving for thermal diffusivities during

these time periods, at least for temporal domains up to 12 hours.

Excluding the extreme values of thermal diffusivity produced when the

temperature profiles switch concavity, the small scale temporal variations in

thermal diffusivity could not be attributed (to the ability that the available

information affords) to error in the temperature measurements, discretization

error or to bulk layer approximations. This level of variability on 30 minute

time scales is not likely representative of time scales associated with the

nonstationarity of snow microstructure. The possibilities that this type of

variability can be explained by non-diffusive forms of heat transfer such as

wind pumping, convection, or radiation, remain open questions for future

research. Since this method allows for high temporal resolution, it may prove

useful in such studies, as well as studies regarding the expected stationarity

of thermal properties of snow.

A key outcome of these analyses is that the spatial resolution of the tem-

perature measurements (or model discretization) has a greater effect on the

resulting thermal diffusivities than noise in the temperature measurements.

Hence, for future use of inversion-type techniques researchers should maxi-

mize the spatial resolution of the temperature measurements, as it will aid in

adequately describing the curvature in the temperature profile and in captur-
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ing the peaks in the temperature profiles. In addition, high spatial resolution

in the temperature measurements will provide more options for determining

thermal diffusivity in various layers of the snowpack.

In addition, due to the inexpensive nature of this methodology, it could

be useful for studying the spatial variability of thermal diffusivity in large

scale settings (for example, on the hydrologic catchment scale). The pro-

posed measurement technique, the TCT probe, was suitable, but not with-

out flaws. For example, a snow temperature measurement technique which

can guarantee no disruption to the surrounding snow, no additional heat

conduction (through the poles or wires) and that the measurements remain

at a fixed location, could potentially improve this type of technique, as well

as other studies where snow temperatures are measured. However, since

our results compare well to widely-used, density-based parameterizations we

believe these factors had little effect on our results.

6. Conclusions

Thermal diffusivity is an important thermophysical property that gov-

erns the heat transfer in snow. We have proposed an inexpensive, easily

implemented technique to obtain thermal diffusivity with high spatial and

temporal resolution. The method uses temperature measurements for the

initial condition and Neumann (heat flux) boundary conditions, and numer-

ically solves the heat equation to iteratively optimize for thermal diffusivity.

We found that using Neumann boundary conditions reduces the seemingly

common problem of spurious, unrealistically high values of thermal diffu-

sivity that arise when Dirichlet boundary conditions are used. Since the
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Neumann boundary conditions impose a flux instead of a temperature (as

in Dirichlet boundary conditions), the modeled temperatures are not artifi-

cially constrained at the boundaries. This provided a significant improvement

over the results using Dirichlet boundary conditions, where the total spread

was over 10 orders of magnitude. In addition, the new method imposes a

statistical t-test ensuring the measured temperature profiles contain enough

information such that the optimal thermal diffusivity is unique. An added

consequence of including the t-test is that spuriously low values of thermal

diffusivity are reduced.

The majority of the resulting thermal diffusivities compare well to pub-

lished density-based empirical parameterizations. However, during time pe-

riods where the temperature profiles switch concavity this method behaves

poorly and produces un reasonably high/low results. With the exception

these spikes/dips, variability at 30 minute time scales may indicate the pres-

ence of non-diffusive heat transfer processes such as wind pumping or convec-

tion. This method could assist in future studies of these phenomena. Using

longer time intervals for the predicted temperatures naturally smooths out

some of the variation in the results. However, heat transfer mechanisms and

effects due to changes in the snow structure that occur on shorter time scales

will be dampened out.

An important result of this study is that high spatial resolution in the

temperature measurements (leading to denser discretization in the model)

appears to be the most significant parameter in using this method (and most

likely other inversion methods) to estimate thermal diffusivity. Lower spatial

resolution will tend to result in an erroneously higher thermal diffusivity to
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compensate for the reduced curvature in the temperature profiles. In general,

researchers should be aware of this sensitivity for future uses of inversion

techniques.
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