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We investigate several aspects of the numerical solution of the radiative transfer

equation in the context of coal combustion: the parallel efficiency of two commonly-

used opacity models, the sensitivity of turbulent radiation interaction (TRI) effects

to the presence of coal particulate, and an improvement of the order of temporal

convergence using the coarse mesh finite difference (CMFD) method.

There are four opacity models commonly employed to evaluate the radiative

transfer equation in combustion applications; line-by-line (LBL), multigroup, band,

and global. Most of these models have been rigorously evaluated for serial com-

putations of a spectrum of problem types [1]. Studies of these models for parallel

computations [2] are limited. We assessed the performance of the Spectral-Line-

Based weighted sum of gray gasses (SLW) model, a global method related to K-

distribution methods [1], and the LBL model. The LBL model directly interpolates

opacity information from large data tables. The LBL model outperforms the SLW

model in almost all cases, as suggested by Wang et al. [3]. The SLW model, how-

ever, shows superior parallel scaling performance and a decreased sensitivity to

load imbalancing, suggesting that for some problems, global methods such as the

SLW model, could outperform the LBL model.



Turbulent radiation interaction (TRI) effects are associated with the differences

in the time scales of the fluid dynamic equations and the radiative transfer equa-

tions. Solving on the fluid dynamic time step size produces large changes in the

radiation field over the time step. We have modified the statistically homogeneous,

non-premixed flame problem of Deshmukh et al. [4] to include coal-type particu-

late. The addition of low mass loadings of particulate minimally impacts the TRI

effects. Observed differences in the TRI effects from variations in the packing frac-

tions and Stokes numbers are difficult to analyze because of the significant effect

of variations in problem initialization. The TRI effects are very sensitive to the

initialization of the turbulence in the system. The TRI parameters are somewhat

sensitive to the treatment of particulate temperature and the particulate optical

thickness, and this effect are amplified by increased particulate loading.

Monte Carlo radiative heat transfer simulations of time-dependent combustion

processes generally involve an explicit evaluation of emission source because of

the expense of the transport solver. Recently, Park et al. [5] have applied quasi-

diffusion with Monte Carlo in high energy density radiative transfer applications.

We employ a Crank-Nicholson temporal integration scheme in conjunction with the

coarse mesh finite difference (CMFD) method, in an effort to improve the temporal

accuracy of the Monte Carlo solver. Our results show that this CMFD-CN method

is an improvement over Monte Carlo with CMFD time-differenced via Backward

Euler, and Implicit Monte Carlo [6] (IMC). The increase in accuracy involves very

little increase in computational cost, and the figure of merit for the CMFD-CN

scheme is greater than IMC.
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Radiative Heat Transfer in Combustion Applications: Parallel
Efficiencies of Two Gas Models, Turbulent Radiation Interactions in

Particulate Laden Flows, and Coarse Mesh Finite Difference
Acceleration for Improved Temporal Accuracy

1 Introduction

With growing concerns over global warming, industries have been called upon

by their federal and local governments to significantly reduce waste and environ-

mental impact. The coal power industry has come under significant scrutiny be-

cause many attribute global warming to the excessive release of CO2 into the

environment. Coal, which accounts for approximately 51% of the electricity trans-

mitted by the U.S. power grid, releases millions of tons of CO2 into the atmosphere

annually[8]. In an attempt to adapt to the changing market, coal power producers

are turning to “clean coal” technologies to mitigate their environmental impact.

One such clean coal technology is pulverized oxy-coal combustion[9]. This tech-

nology relies on the combustion of pulverized coal in an oxygen-rich environment.

Oxygen is introduced into the system and the flue gas is recycled during the com-

bustion resulting in a more complete combustion of the coal and reduction of the

harmful nitrates in the flue gas. It also increases the carbon dioxide concentration,

which increases the efficiency of carbon sequestering systems.

Changing or building new coal combustion systems will be an expensive and

complicated procedure. There are still many unknown factors when dealing with

combustion systems of this nature, such as flame temperatures and combustion

rates. Some of these factors can be estimated experimentally, but others are either

too expensive or unsafe to determine physically. This leaves computational models
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as the best alternative. These models must account for the wide variety of physical

phenomena which occur in these systems such as fluid flow, heat transfer, and

chemical reactions. This dissertation is concerned with the numerical simulation

of radiative heat transfer in oxy-coal combustors.

Radiative heat transfer (RHT) is the dissipation or transfer of energy via photon

emission and interactions. This is one of the three modes of heat transfer. In

most heated systems, these three heat transfer modes; conduction, convection,

and radiative heat transfer, are all present together. In many cases, however, one

or two heat transfer modes are dominant, such that the others can be neglected.

Numerical approaches to solving the RHT equations in combustion applica-

tions have been available for a long time[10]. For some simple systems, the RHT

equations can be solved analytically; but for most practical applications, this is

not the case. If an analytical solution is not possible, it is necessary to solve the

equations using either deterministic, stochastic, or hybrid numerical methods. De-

terministic methods rely on discretizations of the partial differential equations in

each of the independent variables to generate a linear (or non-linear) system of

algebraic equations, which can be used to solve for the specific intensity or energy

density of the radiation. Stochastic methods rely random sampling of probabilities

distribution functions to evaluate different physical or mathematical systems[11].

The Monte Carlo method is a stochastic method that can be used to evaluate

particle transport[11]. In this method, discrete energy packets are sampled from

the probability distribution of source emission, and these energy packets are then

“transported” using a random walk algorithm. In a random walk, (pseudo) ran-

dom numbers are used to sample from probability distributions which describe the

possible interactions of energy packets in the problem domain. In most stochas-
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tic methods, the exact solution to the original partial differential equations will

be preserved if an infinite number of energy packets are created and transported

through the system using the defined probabilities.

There are advantages and disadvantages to solving these equations with either

stochastic or deterministic methods. Stochastic methods are inherently paralleliz-

able, because the random walk of one energy packet is independent of all the

others. Therefore, if the volume in which the random walk takes place can be

represented explicitly on a single processor, the processor can independently cal-

culate the history of that energy packet. Deterministic methods are generally not

considered to be as easy to parallelize as stochastic methods. This is because the

solution of the linear (or non-linear) system is strongly dependent on the entirety

of the matrix. This is particularly true for dense or ill-conditioned matrices. On

serial computers, however, deterministic solvers are generally faster than stochas-

tic solvers. Another drawback of stochastic methods is that solutions suffer from

statistical noise, whereas deterministic solutions do not. Deterministic methods

generate results throughout the problem domain, whereas stochastic methods are

often used to generate solutions in user-specified subdomains of the problem. Most

deterministic methods suffer from truncation errors that arise from spatial, angu-

lar, energy and/or temporal approximations. These can also be found in some

stochastic methods when the material and geometric representations must be ap-

proximated.

Radiative heat transfer problems can be parallelized in two ways; domain rep-

etition and domain decomposition. Domain repetition creates identical physical

domains that are translated onto multiple processors. In the case of deterministic

methods, this can be useful in solving multifrequency problems where each proces-
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sor will solve a matrix for a different frequency. In problems where frequencies are

dependent on one another (i.e. problems with scattering), intermittent communi-

cation between processors would be necessary. Stochastic methods can replicate

the domain on every processor and allow each processor to transport discrete en-

ergy packets on the entirety of the mesh. At the end of the simulation, the results

on each individual processor can be combined to obtain the final solutions.

Domain decomposition is when the problem domain is divided into multiple

volumes and each is placed on its own processor. Domain decomposition can be

further divided into overlapping (Schwarz) methods and iterative substructuring

(non-overlapping) methods[12]. Deterministic methods will generally require an

outer iteration on the solution of the shared boundaries of the domains. Stochastic

methods can also be used in this way, but more commonly, stochastic packets

are communicated between domains during the calculation. Both parallelization

techniques can be used together, creating a simulation with both domain repetition

and domain decomposition.

Domain repetition for stochastic methods appears to be the most attractive

parallelization technique because each processor can run completely independent

of the others. Most real problems of interest, however, are far too large to fit the

entire domain in the memory of a single processor. This limits both deterministic

and stochastic methods to domain decomposition with the optional addition of

domain repetition. Domain decomposed simulations have the additional cost of

interprocessor communication, and suffer (potentially) from load balancing issues.

The load balance of a system is how well the computational work is distributed over

the number of processors. In a perfectly balanced parallel system, all processors

share the computational load equally.
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The selection of opacities models, which approximates the fundamental opacity

data that describes photon interactions with materials, is very important with

regards to computational efficiency and parallel performance. Gas opacities wildly

vary in magnitude as a function of frequency. This is because the material emit

and absorb photons that match discrete quantum changes of their associated gas

molecules[13]. This makes developing multifrequency models very difficult. Most

frequency integration methods are independent of the solution method (stochastic

or deterministic); however, their implementation, efficiency, and accuracy may vary

with transport solver being used. For the purpose of this work, the focus will be

on frequency integration methods as they relate to radiative heat transfer solved

via stochastic methods. Multifrequency methods can be broken down into five

primary types; line-by-line(LBL), multigroup, narrow band, wide band, and global

models[1]. The first attempt to solve a frequency dependent radiative transfer

problem via Monte Carlo, as noted by Wang et al.[14], was Modest in 1992 with

a statistical narrow band model. The narrow band model is now only one of the

many models that have been employed to solve the radiative transfer equation with

a Monte Carlo scheme.

Heterogeneous transport has been extensively studied, particularly in the field

of neutron transport, since the 1940’s[15]. Pulverized coal combustion encounters

many material heterogeneities such as flue gas, coal particles, fly ash, and char.

These heterogeneities can best be described as stochastic mixtures. A stochastic

mixture is a combination of two or more materials that can be defined by a statisti-

cal distribution. Work by Marakis et al. showed that wall heat fluxes are strongly

affected by the presence of each of these materials [16]. Particle interactions in

radiative heat transfer account for four different phenomena [1]; diffraction, refrac-
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tion, reflection, and absorption. Diffraction is the scattering of photons from one

direction to another when they pass near a particle. Refraction is when a particle

enters a material and then leaves at a different angle. Reflection is when a photon

is immediately redirected off the surface of a particle. Absorption is when the

energy of a photon is fully deposited into a particle. There are a variety of ways to

predict and account for these different phenomena, including Lorenz-Mie theory,

Rayleigh theory, and geometric optics. The accuracy of each method is greatly

dependent on the frequency of the photon, the particle size, and particle material

properties [1].

The growing availability of computational resources allows researchers to solve

increasingly complex systems of equations. For combustion modeling, these re-

sources are used to evaluate a coupled system of equations; conservation of mass,

conservation of momentum, conservation of energy, speciation, rate kinetics, and

the radiative transfer equation. Coupling radiation with fluid flow presents number

of difficulties including significant time scale differences, the existence of turbulent

radiation interaction effects (TRI), errors associated with operator splitting, and

difficulties resolving the non-linearities between the equations.

Turbulent radiation interaction effects (TRI) occur because of the difference in

time scale of the radiative transfer equation and the fluid dynamic equations[1].

The time scale of the radiative transfer equation is on the order of the speed of

light, whereas the time scale of the fluid dynamic equations is on the order of the

speed of sound. This implies that if the radiative transfer equations are solved over

typical time scales of the fluid dynamics equations, the radiative transfer solution

will appear to be steady state. This has little effect for problems that are fully

developed and laminar because there is little variation in the material properties
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over a time step. However, if the flow is not fully developed, or turbulent, then

strong fluctuations of the material properties can occur over a fluid time step.

Since the radiative transfer equation is near steady state for these large time steps,

the fluctuations in the material state are felt instantaneously for both local and

global quantities of the radiative transfer equations. Neglecting these effects creates

overestimates of mean material temperatures and underestimates of the mean heat

fluxes at the boundaries[1].

One of the non-linearities that occurs in these coupled combustion systems

is the feedback between the radiation and fluid fields[1]. These equations are

generally solved independently and coupled through the conservation of energy

equation. This equation evaluates changes in the material properties that drive

both equations. Converging the non-linearities between the fluid and radiation

generally requires that both fields be evaluated multiple times for every time step.

This can be very expensive, even in very parallelized systems. High-order/low-order

solvers are advantageous in improving the efficiency of these types of problems.

High-order solvers, such as Monte Carlo, can resolve a larger amount of detail

(such as angular, spatial, and frequency dependence) than low-order problems.

This comes at the cost of increased computation time. These high-order/low-order

schemes attempt to reduce the computational cost by using multiple iterations

of the low-order problem, and only space iterations of the high-order scheme, to

converge non-linearities in the equations. This results in a similar amount of detail

and accuracy, as compared to the high-order scheme, at a reduced computational

cost.

To decrease the computational cost of solving the radiative transfer equation

multiple times, a low-order scheme could be used for the majority of these iter-
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ations, during a time step. Course Mesh Finite Difference (CMFD) is one such

high-order/low-order scheme. Course Mesh Finite Difference (CMFD) has been

successfully applied as an acceleration technique in which a coarsened solution is

used to approximate the fine solution. This course solution is coupled to the fine

solution in such a way that cell currents are preserved, using a correction term

which is applied to the mean opacity at the cell faces [17]. CMFD has been shown

to be advantageous in acceleration k-eigenvalue problems[18, 19]. A similar high-

order/low-order scheme known as the quasi-diffusion[20] has also been used as an

acceleration technique. Park and Knoll[5] have implemented quasi-diffusion to the

thermal radiation transport equations, using the zeroth and first order angular

moments as the low-order solver and Monte Carlo as the high-order solver. They

successfully accounted for the non-linearities in the source emission term, however,

they did encounter an amplification in Monte Carlo noise.

1.1 Research Questions

The following research questions are addressed in this work;

1. How do different opacity models compare in scalability and computational

efficiencies on parallel architectures?

2. How does the presence of coal particulate affect turbulence radiation inter-

action effects?

3. How does the temporal truncation error in the low-order solution of a CMFD

scheme affect the convergence of the high-order solution?
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1.2 Literature Review

This section contains a review of the literature on frequency dependent radiative

heat transfer methods, turbulence radiation interactions, and temporal integration

schemes for numerical solution of the radiative heat transfer equation.

1.2.1 Frequency Dependent Radiative Heat Transfer

The line-by-line (LBL) method is considered the most accurate way to account

for frequency dependence; however, the extraordinary cost of implementing LBL

methods makes them unattractive for some applications [13, 1]. The line-by-line

method constructs opacities based on spectral line databases, such as HITRAN,

and solves the radiative transfer equation for several hundred thousand wavenum-

bers [1]. Some improvements have been made to the efficiency of line-by-line meth-

ods. Wang et al. [14] developed a line-by-line Photon Monte Carlo method which,

as expected, is very accurate. Surprisingly, this method is also predicted to be

faster than a global method for problems with significant time dependence.

Narrow band models make approximations about the overlapping characteris-

tics of discrete lines, increasing the efficiency of the opacity calculation. Two of

the most common models are the Elsasser model (which assumes a constant line

intensity and shape) and statistical models (which assume a random distribution

of intensity and shape). These methods are much faster and can be as accurate as

the line-by-line method for homogeneous systems that are dominated by the black

body emission spectrum [1]. However, this situation is rare in real problems of in-

terest and significant errors occur when these criteria are not met [1, 13]. Narrow

band models have also been integrated with global models with some success [1].

For these reasons, multifrequency development for radiative heat transfer to date
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has been dominated by global methods.

Wide band models develop approximate opacity values and/or distributions of

opacities associated with the primary absorbance bands for a given material. Ab-

sorbance bands are discrete ranges of frequencies that cover a particular vibrational-

rotational absorbance and emission range. Correlations are then used to approx-

imate how the opacity of each band is affected as a function of temperature and

pressure. These methods have been explored in a great deal of detail by Edwards

et al. [21, 22] It is common to find errors in excess of 30% for these methods [1].

Difficulties in these models include the selection of the band locations and the

accuracy of their associated correlations.

A method of note that has been applied in combination with narrow band and

wide band models is the K-distribution method [23, 1]. This method develops an

opacity set where the opacities associated with different frequencies are reorganized

to create a smooth function in opacity. Distribution functions are developed to ac-

company each new opacity function so they can appropriately account for emission

strength. This method also has difficulties accounting for heterogeneities.

Global opacity integration methods create differential opacity intervals, known

as gray gases, that are integrated over the entire frequency range. These methods

are known to suffer significant errors when applied to heterogeneous problems. One

example is the weighted sum of gray gases method which develops a variety of gray

gases and their associated weights to account for emission strength. These weights

are similar to the distribution functions used by the K-distribution method. Several

variations of these methods have been developed to make them better suited for

problems with heterogeneities [24]. Among these variations is the Spectral-Line-

Based weighted sum of gray gases (SLW) [13] method, which has been shown to



11

be a coarse representation of the FSK model [1]. This method relies on either

the correlated-K or scaled-K approximations [1]. The correlated-K approximation

assumes that the reorganized opacity distributions at different material states can

be connected via a correlation function [1]. The scaled-K approximation assumes

that only the magnitude of the reorganized opacity distribution is changed between

material states and therefore a scaling value can be applied to account for this shift.

A multigroup approach has been demonstrated both by Rodolphe [25] and

Zhang et al. [23]. The approach taken by Zhang et al. generates multigroup opac-

ities where opacites are grouped according to the absorption opacity dependency

on partial pressure and temperature [23]. All wavenumbers that are found to have

the same dependence on these quantities are placed in a group. They also applied

the K-distribution method within the opacity groups.

Computational resources continue to rapidly grow, increasing the availability

of hardware for solving larger and more complicated numerical systems. This, as

of late, can be correlated with the heavy expansion of parallel systems ranging

from heterogeneous super computers, such as the LANL Roadrunner machine [?],

to multi-core GPUs and CPUs in personal computers. With the ever-expanding

availability of these resources, it is necessary to analyze the scalability of numerical

methods to help determine expected parallel performance.

Wang and Modest have demonstrated that the spectral LBL model has signifi-

cant performance and accuracy advantages over the full-spectrum k-distribution(FSK)

model in non-gray heterogeneous participating media when run in serial [3]. The

SLW model is expected to have similar performance attributes to those found in

the FSK model. Pal et al. show some parallel efficiency comparisons of the FSK

model and the LBL model. In these comparisons the FSK models were solved
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using P1, P3, and finite volume solvers. They evaluated average CPU times for a

serial calculation and a single 16 processor run. These runs neglect communication

cost and idle processor times because they use average CPU time as the numeric

benchmark. The strong scaling efficiencies of the radiative transfer solvers varied

between 75% for the LBL model and 97% for the FSK model with a P1 solver [2].

1.2.2 Particulate, Radiation, and Turbulence

Four primary methods have been employed to solve stochastic mixture prob-

lems; the brute force method, atomic mixing, chord length sampling, and lattice

structures [26]. A variety of sensitivity studies have been performed by Liu [27, 28]

on particle size and temperature distributions. These studies show that radia-

tive transfer, particularly in high-temperature environments, can be significantly

affected by heterogeneities between particles.

A single realization of a stochastic mixture does not accurately reflect the true

material distribution, but rather it represents a single probable portrait of a ma-

terial. The brute force method relies on generating many different realizations of

a stochastic mixture, solving each of these radiative transfer problems, and aver-

aging their results. This approach has been shown to be very accurate, but its

computational costs are prohibitively expensive for real problems of interest [26].

Atomic mixing methods approximate the optical properties of a stochastic mix-

ture with a single opacity. This single opacity represents a statistical average of

the heterogeneous material properties. Marakis et al.[16] used an atomic mixing

model to account for coal particles, fly ash, and char to determine how mean flame

temperature might be effected by their presence. This model was not used to com-

pare with experimental results, but rather to benchmark heat flux sensitives to the
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presence of different particles and scattering functions [16]. Atomic mixing mod-

els are generally fast and if opacities are appropriately averaged, the models will

produce very accurate results. The difficulty here lies in generating the averaged

opacities. If the true intensity is known throughout a cell that is being averaged,

it is possible to generate an exact average opacity for the cell.

Chord length sampling coupled with a Monte Carlo algorithm has been explored

heavily. The chord length sampling method generates a probability distribution

function (PDF) that describes the distribution of the different materials which

compose the stochastic mixture. This PDF is then used to determine the next

probable location in which a photon might move to another material. If the distance

to the next interaction is longer than the distance to the next material, it is assumed

that the photon entered the new material at the closest location. This method can

be very accurate, and in the case of a purely absorbing media with an infinite

sampling, it will generate the exact solution. This is not the case for problems

with scattering. The chord length sampling method makes the assumption that

every segment of a photon history is uncorrelated [26]. This implies that if a

photon is scattered back toward a sampled material, that material no longer exists

as it was known to the photon on its previous history segment. This can cause

significant errors in problems with appreciable backscattering.

Lattice models can be used to approximate heterogeneous materials. A lat-

tice cell can be constructed such that the volume ratio of a single cell accurately

portrays a designated material mixture. Multiple lattice cells can then be used to

reproduce the heterogeneous material; however, numerical error can accumulate if

the geometric randomness of the material is not accounted for. An example of this

is the universe concept used in the Monte Carlo N-Particle code (MCNP) [29, 26].
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Recently, stochastic lattices have been employed in MCNP with some very promis-

ing results [30, 26]. A stochastic lattice accounts for heterogeneities, similar to

the standard lattice model, using lattice cells that account for statistical material

compositions. These stochastic lattice cells are randomly filled with the stochastic

material. This method suffers from problems similar to those of the chord length

sampling method.

The difference in time scale of the radiative transfer equation and the fluid

dynamic equations presents a unique phenomena. The time scale of the radiative

transfer equation is on the order of the speed of light, whereas the time scale of the

fluid dynamic equations is on the order of the speed of sound. This implies that

if the radiative transfer equations are solved over typical time scales of the fluid

dynamics equations, the radiative transfer solution will appear to be steady state.

This has little effect for problems that are fully developed and laminar because

there is little variation in the material properties over a time step. However, if the

flow is not fully developed or turbulent, then strong fluctuations of the material

properties can occur over a fluid time step. Since the radiative transfer equation

is near steady state for these large time steps, the fluctuations in the material

state are felt instantaneously for both local and global quantities of the radiative

transfer equations. Neglecting these effects creates overestimates of mean material

temperatures and underestimates of the mean heat fluxes at the boundaries.

The effects from Turbulence Radiation Interactions (TRI) in particulate laden

flows can have a significant effect on thermal radiation fields and corresponding

material heating [31]. Radiative heat transfer has been extensively studied in a

variety of stochastic media including combustion problems [32, 33, 14, 31]. Most

combustion problems contain strong heterogeneities which can be treated stochas-
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tically. In pulverized coal combustion, these heterogeneities include particulate

such as coal, fly-ash, and char [31, 16]. These materials are typically accounted for

stochastically using an atomic mix model. TRI effects have been shown to be very

sensitive to the presence of soot in turbulent flames, significantly decreasing mean

flame temperatures [34].

This work expands upon a simplified test case, developed by Deshmukh et

al. [4], to highlight the effects of fuel particulate on TRI phenomena. The code

used in this work is a 3D parallel coupled radiative heat transfer and reacting fluid

flow solver. The radiative heat transfer equation is solved via the Monte Carlo

method. Radiation interactions with particulate can be accounted for either using

Mie theory [35] or geometric optics [1] depending on particulate size. The reacting

fluid flow model solves the continuity equation, the compressible or incompressible

Navier-Stokes equations, the mixture fraction equations, and energy equation. The

compressible Navier-Stokes equations are solved using a Large-eddy simulation

(LES) [36] model, and particle-fluid interactions are accounted for using Discrete

Element Modeling (DEM)[36].

Particulate properties, specifically material temperatures, can be treated in

a variety of ways. Small particulate such as fly-ash, char, and very small coal

particulate are typically chosen to exist at the mean cell temperature. This a

relatively good assumption because these materials are physically very small and

dissipate any excess heat very quickly. The coal particulate on the other hand can

be more difficult because the relatively large size of the particulate means that

it will have heat latency that should not be neglected. It is suggested that coal

particulate likely remains close to the original inlet temperature and the majority

of thermal emission occurs in the soot envelope that forms immediately around the
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particulate during combustion [37].

Flamelet models can be used to determine fluctuations in the material prop-

erties as a function of time. This information can then be used to determine the

approximate mean emission term over the time step. This is typically referred to

as “full TRI” even though the two way coupling with the material energy density

feedback is not iterated to convergence. Full TRI also assumes the mean absorp-

tion rate is equal to the mean opacity over the time step multiplied by the mean

intensity. This is known as the optically thin eddy approximation and is, to date,

made in every numerical evaluation of TRI effects.

1.2.3 Temporal Integration Schemes for the Radiative Heat Transfer
Equation

Implicit Monte Carlo (IMC) methods were first introduced in computational physics

by Fleck and Cummings in 1971 [6]. IMC was developed as an attempt to solve

highly absorbing and reemitting photon transport problems. Competing Monte

Carlo methods of the time were explicit in the time discretization. These dis-

cretizations were very capable of solving optically thin problems where the radia-

tion and photon energy densities were significantly out of equilibrium. However,

they had difficulties solving highly absorbing and reemitting problems where the

photon energy density was nearly in equilibrium with the material energy density.

For these problems the explicit methods required very small time steps [6].

Fleck and Cummings proposed the development of IMC as a solution method

that would be unconditionally stable. They introduced the concept of “effective

scattering”. When the photon energy density of the system is nearly in equilib-

rium with the material energy density, many photons are absorbed and quickly

re-emitted by the background medium. Explicit methods require very small time
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steps to remain stable in this limit. IMC treats the absorption and quick re-

emission of these photons as a single “effective scattering” event.

IMC has been shown to be very robust and stable for problems ranging from

very thin to very thick. Though IMC is capable of producing accurate results

in thick diffusive regions, it reaches this solution very slowly. This is because in

thick diffusive regions the photon interactions are dominated by effective scattering

events. As the probability of scattering increases, the length of time for a random

walk increases. This makes IMC problems unacceptably slow. A variety of ap-

proaches have been proposed to rectify this problem including Symbolic Implicit

Monte Carlo, Implicit Monte Carlo Diffusion (IMD), and Discrete Diffusion Monte

Carlo (DDMC) [38].

An alternative to this approximate implicit method is to fully resolve the non-

linear source emission term using a non-linear iterative scheme [39]. These non-

linear iteration schemes are generally applied to only deterministic methods be-

cause of the need to perform many iterations. Fully converging the non-linear

source term alleviates the problems with overheating and “teleportation errors”

commonly found in the approximate implicit methods.

Course Mesh Finite Difference (CMFD), as outlined by Downer et al.[17], is

an acceleration technique that uses a coarse solution, which is coupled to a fine

solution, in such a way that cell currents are preserved using a correction term

which is applied at the cell faces [17]. CMFD has been shown to be advantages

in acceleration k-eigenvalue problems[18, 19]. Typically these methods rely on

deterministic solutions for both the high-order and low-order problems limiting

angular and frequency representations of the solutions.

Recently, Lee et al. [40] have shown that CMFD coupled to Monte Carlo can
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significantly reduce the standard deviations in local quantities when applied to k-

eigenvalue problems. This approach relies on a coarsened solution to the diffusion

equation to converge the fission source. Wolters [41] has also demonstrated some

modified CMFD approaches can be used to decrease the sensitivity of standard

CMFD to statistical noise.

Park and Knoll have recently applied quasi-diffusion to the radiative heat trans-

fer equations [5]. This approach uses the zeroth and first order angular moments

as the low-order equations and Monte Carlo transport as the high-order solver.

This implementation only relied on a single iteration of the high-oder solver per

time step, rather than fully converging the differences between the low-order and

high-order problems. This is because the overall cost of the Monte Carlo solve

is prohibitively expensive. Even though the differences between the two were not

fully resolved, they found that a single iteration was satisfactory to resolve the

non-linear emission source term. This had an added drawback in that there is

additional cost to solving the low-order solution along with amplification of Monte

Carlo noise associated with the correction between the high-order and low-order

problems. This work relied on first order temporal discretization.

Second order temporal schemes are difficult to apply to Monte Carlo calcula-

tions because the non-linear relationship of the source terms are costly to deter-

mine. However, they can easily be applied to deterministic methods which can fully

resolve the non-linear source term relatively quickly, as compared to Monte Carlo.

Typically this is done using either a predictor-corrector method or a second-order

differencing in time such as Crank-Nicholson. Park et al. suggest that higher order

temporal integration schemes could be applied to their quasi-diffusion approach to

improve accuracy [5].
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1.3 Dissertation Overview

The remainder of this dissertation is organized as follows:

II. In Chapter 2, the radiative transfer and material energy balance equations

are introduced and the basic Monte Carlo method is outlined.

III. Chapter 3 describes two different opacity treatments; the Spectral-Line-

Based Weighted Sum of gray gases (SLW) model and the Line-By-Line (LBL)

model. This section details the development of the models and the different

parallel metrics that were used to analyze the models.

IV. In Chapter 4, turbulence radiation interaction (TRI) effects are defined along

with different metrics for measuring the effects. This includes the develop-

ment of a three-dimensional test case similar to the one developed by [4] with

the addition of particulate.

V. In Chapter 5, The CMFD scheme is described in the context of a hybrid high-

order/low-order radiative transfer scheme. The Crank-Nicholson temporal

integration scheme is applied to the diffusion equation in the low-order scheme

and the Monte Carlo transport method is used used for the high-order scheme.

VI. Chapter 6 outlines the numerical models used to test the methods which have

been described in this work. This chapter also includes the results obtained

for these numerical models.

VII. Chapter 7 contains a discussion of the results obtained from the numeri-

cal simulations performed for the models. This chapter also highlights the

significance of these results and future work that could be investigated.
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2 Transport Preliminaries

2.1 Introduction

This chapter presents the radiative transfer equations and the solution approaches

used in this work. This includes a detailed outline of the Monte Carlo method as

it applies to radiative transfer. This chapter also outlines the development of the

diffusion equations and the assumptions associated with them. Finally, this section

describes the different temporal and spatial discretizations that will be used in this

work.

2.2 Radiative Transfer Preliminaries

The frequency-dependent thermal photon transport equation,

1

c

∂I

∂t
+ Ω̄ · ∇̄I = −KI +KB, (1)

describes the photon distribution in a physical system. In many problems of in-

terest, the photon distribution is tightly coupled to the material energy balance,

which is represented mathematically by,

∂Em

∂t
=

∫
4π

∞∫
0

dνdΩ̄KI −
∫
4π

∞∫
0

dνdΩ̄KB. (2)

where the independent variables have been left out for brevity. In Equations 1

and 2, c denotes the speed of light [cm/sec], and the independent variables for

these equations are as follows: r̄ is a location in the spatial domain [cm], ν is the

photon frequency, Ω̄ is the solid angle of photon travel [steradians]. The remaining

quantities are, with their appropriate independent variables: the opacity K(ν, r̄, t)
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[1/cm], the photon intensity I(r̄, ν, Ω̄, t) [J/(cm2∗sec∗steradian∗Hz)], the Planck

function B(ν, T (r̄, t)), the material energy density Em(T (r̄, t)) [J/cm3], and the

temperature of the background medium T (r̄, t) [K].

The Planck function (or Planckian),

B(ν, T ) =
2h

c2

ν3

(e
hν
kT − 1)

, (3)

describes the frequency distribution of the photons being emitted from a material

at temperature T (r̄). In this function, h is Planck’s constant [J ∗ sec] and k is

Boltzmann’s constant [J/K].

2.3 Monte Carlo Basics

A Monte Carlo method generates a finite number of photon histories that are

governed by known probability distributions which describe the system. Consider

a frequency independent version of Equations 1 and 2:

1

c∆t
(In+1 − In) + Ω̄ · ∇̄In+1 = −KnIn+1 +KnaT

4
n , (4)

and

Em
n+1 − Em

n =

∫
dΩ̄KIn+1∆t−

∫
dΩ̄KB(ν, Tn)∆t (5)

where Equations 4 and 5 have been integrated over a single time step ∆t using

Euler’s method, and the material properties have been lagged at the previous time

step. The errors in this assumption will be discussed in later chapters.

If N Monte Carlo histories are created, their weight w associated with each

history can be defined as

w =
1

N

(
KnaT

4
n +

1

c∆t
In

)
. (6)
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Note that 1
c∆t

has the same units as the opacity and, in this case, it is considered

as the census opacity. Census is the energy that remains in the photon intensity

field, rather than being absorbed into the material, at the end of the time step.

In this system, there are two possible interactions; census or absorption. To

simulate the various physical processes in the transport of photons, psuedo-random

numbers are used to sample from probability density functions f(x)[42]. Here,

f(x)dx is the probability that x lies between x and x+dx, such that
∞∫
0

f(x)dx = 1.

For example, the probability that a photon will have an interaction between x and

x+ dx can be written as

f(x)dx = e−Ktxdx (7)

where Kt = K + 1
c∆t

is the total opacity. The cumulative probability distribution

function (CPDF) F (x) represents the probability that the random variable x′ takes

on a value between 0 and x:

F (x) =

∫ x

0

f(x′)dx′. (8)

Given the example probability density function in Eq. (7), the CPDF can be ex-

pressed as

F (x) = 1− e−Ktx. (9)

Because the range of the CPDF will always be between zero and one, it is possible

to select a random number, between zero and one to determine the distance x

traveled by the particle before a collision[42]. This is done by setting F (x) equal to

a random number (ζ) and then solving for x. This would be the collision location

in an homogeneous infinite medium where the total opacity is determined from

the material properties. Real problems of interest have finite spatial domains with

material regions considered to be homogeneous. It is necessary in this case to check
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if the randomly selected interaction location exists in the defined geometry. This is

accomplished by checking if the Monte Carlo ray intersects any region boundaries

at a location to the original location of the particle than the next interaction. If

so, the particle is moved to that position on the region boundary a new distance to

collision is determined using the material properties of the new cell. This process

is simple for one dimensional problems, but becomes increasingly more difficult in

complex geometries. In this research, we implement a ray tracing scheme based on

spatial cells with an arbitrary number of planar faces. This procedure is outlined

below (see Figure 1):

1. Select the next random material interaction location. This results in a vector

v from the initial location a to the final location b.

2. Loop over all the faces (fj) that define cell i which contains the original

starting location a. Here, j varies from 1 to Nf,i faces.

• Using simple geometry, it can be determined if vector v crosses the plane

pj which defines face fj (see plane intersection subroutine in Appendix

A.1). This assumes that the face is always planar.

• If the vector crosses the plane pj at point c, it is then determined if the

intersection takes place in the area created by its nodes nk which define

the face fi on the plane. (see facet area diff subroutine in Appendix

A.1)

• If the distance to the face intersection (
√

(c− a)2) is less than the dis-

tance to the next material interaction (
√

(b− a)2), the photon crosses

this face. If it is known that the cell is not convex, it can exit the loop at

this point. If not, it is necessary to continue iterating through all faces,
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and if there are multiple crossing locations the intersection is determined

to be at location closest to the original position of the photon.
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Figure 1: A Monte Carlo ray traveling from point a which intersects plane pi at
location c for face fi defined by the nodes ni before reaching point b



26

After obtaining a collision location within a cell, it is possible to determine the

collision type by constructing another probability density function. For this exam-

ple problem, there are two types of possible interactions; census and absorption.

This creates a histogram that can be used to select a collision type using a random

number (ζ) between zero and one;

k(ζ) =

(
census 0 ≤ ζ ≤

1
c∆t

Kt

absorbed
1
c∆t

Kt
< ζ ≤ 1

)
.

After selecting the collision type, the weight of the particle is “tallied”; adding

the weight to a sum representing interaction events. Tallies are used to estimate

the quantities of interest in the problem. It can be shown that for an infinite

medium, these tallies approximate the intensity and the energy absorption. From

the defined probabilities and Equations 4 and 6, the census tally can be written

as;

Census = PcNw

=
1
c∆t

Kt

N
1

N

(
KnaT

4
n +

1

c∆t
In
)

=
1

c∆t
In+1. (10)

Similarly, the absorption tally can be written as;

Energy absorbed = PaNw

= KIn+1. (11)

2.4 The Diffusion Equation

The diffusion equation can be derived using the zeroth and first angular mo-
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ments of the radiative transfer equation. The zeroth moment can be written as;

1

c

∫ 4π

0

(
1

c

dI

dt
+ Ω̄ · ∇̄I +KI = KB

)
, (12)

where the radiative transfer equation was multiplied by 1
c

to transform the coeffi-

cients into a familiar form. The photon energy density E(r̄, ν, t) [J/cm3−Hz] can

be defined as;

E =
1

c

∫ 4π

0

I dΩ̄, (13)

and the radiative flux F (r̄, ν, t) [J/sec− cm2 −Hz] is defined as;

F =

∫ 4π

0

I Ω̄ dΩ̄. (14)

We make use of the following identities∫ 4π

0

dΩ̄ = 4π (15)

and ∫ 4π

0

Ω̄ dΩ̄ = 0. (16)

These definitions simplify the majority of the integral terms found in the zeroth

angular moment equation,

1

c

dE

dt
+

1

c
Ω̄ · ∇̄F +KE = Kb(ν, T )aT 4, (17)

where a is the radiation constant,

a =
8π5k4

15c3h3
, (18)

and b(ν, T ) is the normalized Planck function

b(ν, T ) =
h

kT

15

π4

(
hν
kT

)3

(e
hν
kT − 1)

. (19)
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The zeroth moment of the material energy density equation becomes

1

c

∫ 4π

0

(
dEm
dt

=

∫ ∞
0

∫ 4π

0

dΩ̄′dνKI −
∫ ∞

0

∫ 4π

0

dΩ̄′dνKB

)
dΩ̄, (20)

or after some simplification

1

c

dEm
dt

=

∫ ∞
0

KEdν −
∫ ∞

0

Kb(ν, T )aT 4dν. (21)

To generate a single partial differential equation for the photon energy den-

sity, we need a relationship between F and E. The first moment of the radiative

transport equation can be used to generate this relationship:

1

c

∫ 4π

0

(
1

c

dI

dt
+ Ω̄ · ∇̄I +KI = KB

)
Ω̄dΩ̄. (22)

The identities ∫ 4π

0

Ω̄Ω̄dΩ̄ =
4π

3
, (23)

and ∫ 4π

0

Ω̄Ω̄Ω̄dΩ̄ = 0, (24)

are useful in simplifying Eq. (22), as is the linearly-anisotropic approximation of

the intensity:

I

c
≈ 1

4π

(
E +

3Ω̄

c
F

)
. (25)

The streaming term in Eq. (22) becomes

1

c

∫ 4π

0

∇̄ · Ω̄Ω̄IdΩ̄ = (26)

∇̄ · E
4π

∫ 4π

0

Ω̄Ω̄dΩ̄ +
3

c
∇̄ · F

∫ 4π

0

Ω̄Ω̄Ω̄dΩ̄ =

1

3
∇̄ · E,
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such that the final form of the first moment of the transport equation is

1

c

dF

dt
+

1

3
∇̄ · E +KF = 0 (27)

If it is assumed that the time dependence of the radiative flux is negligible, Eq. (27)

becomes Fick’s Law

1

c
F = −D∇̄ · E, (28)

where D(ν, r̄)[cm] is the diffusion coefficient defined as 1
3K

.

Using this information, the diffusion equation and the material energy balance

equation can be expressed as;

1

c

dE

dt
− ∇̄ ·D∇̄E +KE =

K

c
B, (29)

and

1

c

dEm
dt

=

∫ ∞
0

KEdν −
∫ ∞

0

K

c
BdΩ̄dν. (30)

2.5 Discretization

This work uses a Cartesian spatial discretization and an equally spaced temporal

discretization for the diffusion equation. A second order Crank-Nicholson scheme

is used for the temporal discretization. The spatial discretization uses a second

order central differencing discretization scheme.

2.5.1 Crank-Nicholson

A Crank-Nicholson algorithm is used for the temporal discretization of the diffusion

equation. The time discretized form of the diffusion equation can be written as;

1

c

En+1 − En
∆t

− 1

2

(
∇̄ ·D∇̄En+1 + ∇̄ ·D∇̄En

) 1

2
(KEn+1 +KEn)

=
Ka

c

1

2
(Bn+1 +Bn)
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and

1

c∆t

(
Emn+1 − Emn

)
=

1

2

∫ ∞
0

(KEn+1 +KEn)dν

−1

2

∫ ∞
0

1

c
(KBn+1 +KBn)dΩ̄dν.

2.5.2 Second-Order Central Differencing in Space

The diffusion operator can be written in three-dimensional Cartesian coordinates

as;

∇̄ ·D∇̄E =
d

dx
D
dE

dx
+

d

dy
D
dE

dy
+

d

dz
D
dE

dz
(31)

Though the discretization is in three dimensions, it is easiest to show the spatial

discretization in one dimension. The other dimensions can be derived similarly.

A second-order central differencing scheme is derived by integrating this operator

over a finite volume, and applying the Gauss divergence theorem:∫
V

d

ds
D
dE

ds
dV =

Ai+ 1
2
Di+ 1

2

∆si+ 1
2

(Ei+1 − Ei)−
Ai− 1

2
Di− 1

2

∆si− 1
2

(Ei − Ei−1) (32)

where i, i− 1, and i+ 1 denote the center cell and its neighbors, respectively. The

remaining subscripts indicate variables (i − 1
2

and i + 1
2
) located on the face that

bound the cell. The variable A denotes the cell face area with a normal in the s

direction.

2.5.3 Boundary Conditions

An albedo boundary condition will be sufficient for all the test cases that will be

used in this work. We approach boundary conditions through the definition values

of the dependent variable in ghost cells, cells outside the physical problem adjacent

to the boundary surface. An albedo boundary condition specifies that the partial

flux entering the problem through the boundary face (F−bf ) is some fraction (α) of
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the partial flux exiting the boundary face (F+
bf ).

Fbf = F+
bf − F

−
bf = −F−bf (1− α) (33)

Using the P1 approximation for the partial flux, the total flux can be written as;

Fbf = −
(

1

4
Ebf −

1

2
Fbf

)
(1− α). (34)

Using Fick’s Law, it is possible to express the total flux in terms of the cell-center

energy density Ei, and the ghost cell energy density Eg

Fbf = −2D
(Ei − Eg)

∆s
. (35)

Combining these equations yields a new expression for the total flux at the bound-

ary face;

Fbf = −
2D

∆sbf

(1−α)
(1+α)

Ei
(1−α)
(1+α)

+ 4D
∆sbf

. (36)

From the equations above, the albedo boundary condition dictates that

−
2AbfDbf

∆sbf

(1−α)
(1+α)

Ei
(1−α)
(1+α)

+ 4D
∆sbf

= 0. (37)

The discretized equation for a cell adjacent to a boundary will be of the form

−AbfDbf

∆sbf
(Ei − Eg) + agEg + anEi − bg = 0, (38)

which means that the appropriate values for the ghost coefficients become

ag = −AbfDbf

∆sbf

bg = 0

an = −
2AbfDbf

∆sbf

(1−α)
(1+α)

(1−α)
(1+α)

+ 4D
∆sbf

+
AbfDbf

∆sbf
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3 Gas Models

3.1 Introduction

This chapter outlines the development of the opacity data and the two different

opacity models used in this work: Line-by-Line (LBL) and Spectral-Line-Based

Weighted Sum of gray gases (SLW). This chapter also includes the definition of

the different parallel metrics that are used to compare the parallel efficiencies of

these two models.

3.2 LBL Model and the Opacity Database

The LBL model development was based on the work performed by Wang and

Modest [3]. The LBL gas model is, to date, the most accurate and robust gas

model available. It directly interprets opacities, given the photon frequency, from

either the line-by-line data or high resolution opacity functions generated from

line-by-line data. This method typically employs the information obtained from

line-by-line databases such as HITRAN and HITEMP. These databases provide

individual line intensities, at a designated temperature and pressure, with their

associated line broadening coefficients. The opacity (or absorption coefficient) can

be constructed using the following equation [13]:

σ(η) =
∑
i

Si
π

γi
(η − ηi)2 + γ2

i

(39)

where σ(η) is the opacity at wave number η, ηi is the wave number of line i, and

γi is the half-width-half-max of line i. The line half-width-half-max is defined as

half the width at half the maximum absorption coefficient of the line [1]. The

shape of these lines is greatly affected by two different types of line broadening;

collision broadening and Doppler broadening. Collision broadening is attributed
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to the frequency of collisions between molecules. Two parameters affect how often

gas molecules collide: temperature - as the temperature of the gas increases the

number of molecular collisions increases, and pressure - as the pressure increases

the number of molecular collisions increases.

A code was developed to create binary files for the opacity data tables from

either the HITRAN or HITEMP databases. This code can take any number of

materials and construct a database that spans any range of material state variations

requested. This includes variations in temperature, pressure, and partial pressure.

A three-dimensional table is created that can be linearly interpolated for material

states between evaluated opacities in the database. The code is also capable of

producing mock opacity tables in an identical format to be read by the transport

code.

The opacity tables were created in a manner similar to the previous work of

Wang et al. [3] in which the opacity of each species and its probability of black

body emission are stored for every wavenumber at the designated pressure and

temperature. The cumulative emissivity is stored along with the opacity for every

wavenumber. This is then used to construct the cumulative probability of emission

(Pη) from 0 to a particular wavenumber (η)

Pη =

∫ η
0
σ(η)B(η, T )dη∫∞

0
σ(η)B(η, T )dη

=

∫ η
0
σ(η)B(η, T )dη

σp(T )
(40)

where σ(η) is the absorption opacity of the medium for wavenumber η, T is the

temperature of the medium, σp(T ) is the Planck opacity of the medium at temper-

ature T , and B(η, T ) is the Planck function at the wavenumber previously defined

(in terms of frequency) in Equation 3. The Planck opacity would also be stored

for every species at its designated pressure and temperature.

It is important to implement a very efficient table look-up algorithm for this
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method. We have used a binomial search routine [3], to determine emission fre-

quencies and linear interpolations between temperature, pressure, partial pressure,

and wavenumber from a designated opacity database. The binomial search sub-

routine was found to take on the order of 20-25 iterations to converge to a discrete

frequency range for 1.5 million opacity data points.

3.3 SLW model

In the SLW model, a quadrature of gray gases with associated weights is gen-

erated that represent the opacity distribution as a function of average opacities

integrated over the entire frequency range [1]. This has been shown to be a coarse

version of the full spectrum K-distribution method [1]. The full spectrum K-

distribution reorganizes the opacity shape into a smooth function varying from the

smallest opacity to the largest. For a purely homogeneous material with an infinite

number of K groups (or gray gases), it will produce the exact answer. Reorganizing

the opacity such that it is a smooth function makes it easy easier to sample, but

it also masks the frequency dependence of the material. In the presence of strong

heterogeneities this can produce significant errors.

The K-distribution equation is an outgrowth of the transformation of the inten-

sity Iν(r̄, ν, Ω̄, t) from a function of frequency to a function of opacity IK(r̄, K, Ω̄, t).

This is accomplished by multiplying the transport equation (Eq. 1) by δ(K ′ −

K(ν,Θ0)) and integrating over the frequency variable ν. Here K ′ denotes some

opacity value in the range 0 ≤ K ′ ≤ ∞, and Θ0 is some reference material state,

generally consisting of volume averaged quantities, which is used to evaluate the

opacity. The material state includes the material total pressure, partial pressure,

and temperature. This operation is straightforward for a homogeneous case in that
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the reference state, which is used to evaluate the opacity delta function, is equal

to the true opacity for the material. This allows the opacity value to be removed

from under the integral anywhere that it is encountered in the transport equation,

because it would be evaluated as zero anywhere that K ′ 6= K(ν,Θ0)). This im-

plies that the K-distribution method would be exact in a truly homogeneous case.

However, most cases of interest are not homogeneous. Therefore, it is necessary to

make one of two assumptions in heterogeneous problems: 1) the individual opacity

values are correlated between the true material state and the reference state or 2)

they can be evaluated via a simple scaling relationship. These are known as the

“Correlated-K” and “Scaled-K” distribution models [1]. In this research, we have

chosen the “Correlated-K” distribution model. The correlation assumption can be

mathematically represented as

g(T,Θ, Kg) =

∫ Kg

0

∫∞
0
B(ν, T )δ(K ′ −K(ν,Θ))dν∫∞

0
B(ν, T )dν

dK ′

≈
∫ K0

0

∫∞
0
B(ν, T )δ(K ′ −K(ν,Θ0))dν∫∞

0
B(ν, T )dν

dK ′

= g(T,Θ0, K0).

Here g(T,Θ, Kg) is the cumulative K-distribution. This states that the two different

opacity values (Kg and K0) are correlated such that they are associated with the

same frequencies. It is useful at this point to define the K-distribution (f(T,Θ, K ′))

and K-intensity (IK(r̄, K,Θ, Ω̄, t)):

f(T,Θ, K ′) =

∫∞
0
B(ν, T )δ(K ′ −K(ν,Θ))dν∫∞

0
B(ν, T )dν

, (41)

and

IK′0 = IK(K′,Θ0) =

∫ ∞
1

Iδ(K ′ −K(ν,Θ0))dν. (42)
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The multiplication of a delta function which uses a reference state opacity (K(ν,Θ0))

that is different than the opacity it is being multiplied by (K(ν,Θ)) creates a new

opacity value,

K(Θ,Θ0, K
′) =

∫ ∞
0

K(ν,Θ)δ(K ′ −K(ν,Θ0))dν (43)

that is dependent of its current material state(Θ), the reference material state(Θ0),

and the reference opacity of interest(K ′). Applying the correlation assumption to

the absorption term and integrating over frequency yields:∫ ∞
0

K(ν,Θ)Iδ(K ′ −K(ν,Θ0))dν

≈ K(Θ,Θ0, K
′)

∫ ∞
0

Iδ(K ′ −K(ν,Θ0))dν = K(Θ,Θ0, K
′)IK′0 (44)

Applying the same assumption to the emission term results in∫ ∞
0

K(ν,Θ)B(ν, T )δ(K ′ −K(ν,Θ0))dν (45)

=

∫∞
0
B(ν, T )dν

∫∞
0
K(ν,Θ)B(ν, T )δ(K ′ −K(ν,Θ0))dν∫∞

0
B(ν, T )dν

≈ K(Θ,Θ0, K
′)

∫ ∞
0

B(ν, T )dνf(T,Θ0, K
′)

The heterogeneous radiative transfer equation can now be written as in terms of

the K-distribution function as, assuming coherent scattering;

1

c

∂IK′0
∂t

+ Ω̄ · ∇̄IK′0 +K(Θ, K ′)IK′0 (46)

= K(Θ,Θ0, K
′))

∫ ∞
0

B(ν, T )dνf(T,Θ0, K
′)

The total frequency integrated intensity I(r̄, Ω̄, t) can now be evaluated as;

I =

∫ ∞
0

Iνdν =

∫ ∞
0

IKdK (47)
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The K-distribution equations derived above are continuous in opacity. The

SLW model simply creates a group structure in opacity space rather than treating

the K-distribution directly as a continuous function. This is done using a change of

variable for the integration of the opacity value. The derivative of the cumulative K-

distribution function with respect to opacity is the original K-distribution function.

∂g(T0,Θ0, K0)

∂K
= f(T0,Θ0, K

′)→ ∂K =
∂g(T0,Θ0, K0)

f(T0,Θ0, K ′)
(48)

This substitution creates an integral over the cumulative K-distribution function

with the bounds 0 ≤ Kg ≤ 1.

I =

∫ ∞
0

IKdK =

∫ 1

0

IK
∂g(T0,Θ0, K0)

f(T0,Θ0, K ′)
=

∫ 1

0

Ig∂g(T0,Θ0, K0) (49)

This integral can then be broken into a group summation of discreet integrations

over cumulative K-distribution space such that the frequency integrated intensity

is defined as;

I =

∫ 1

0

Ig∂g(T0,Θ0, K0) =
N∑
i=0

∫ g(T0,Θ0,Ki
0)

g(T0,Θ0,K
i−1
0 )

Ig∂g(T0,Θ0, K0) =
N∑
i=0

Ii (50)

One final approximation must be made to transform the cumulative K-distribution

integrated transport equation into the SLW equations. That assumption is that

the opacity K(Θ,Θ0, K
′) over cumulative K-distribution integration range can be

represented with some mean value K̃i(Θ,Θ0, T0) that can be treated as a constant

over the individual integration range;

K̃i(Θ,Θ0, T0) =

∫ g(T0,Θ0,Ki
0)

g(T0,Θ0,K
i−1
0 )

K(Θ,Θ0, K0)B(ν, T0)∂g(T0,Θ, K0)∫ g(T0,Θ0,Ki
0)

g(T0,Θ,K
i−1
0 )

B(ν, T0)∂g(T0,Θ, K0)
(51)

Using this assumption, the cumulative K-distribution integration of the emission
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term can be simplified such that;∫ ∞
0

B(ν, T )dν

∫ g(T0,Θ0,Ki
0)

g(T0,Θ0,K
i−1
0 )

K(Θ,Θ0, K0)f(T,Θ0, K
′)∂g(T0,Θ0, K0)

= K̃i(Θ,Θ0, T0)

∫ ∞
0

B(ν, T )dν

∫ g(T0,Θ0,Ki
0)

g(T0,Θ0,K
i−1
0 )

∂g(T,Θ0, K0) (52)

The final SLW equation can be written as;

1

c

dIi
dt

+ Ω̄ · ∇̄Ii + K̃i(Θ,Θ0, T0)Ii

= K̃i(Θ,Θ0, T0)

∫ ∞
0

B(ν, T )dν

∫ g(T0,Θ0,Ki
0)

g(T0,Θ0,K
i−1
0 )

∂g(T,Θ0, K0) (53)

The primary cost associated with the SLW model is the development of the cu-

mulative K-distribution function(g(T,Θ0, K)) and the gray gas mean opacity val-

ues (K̃i(Θ,Θ0, T0)). It is well documented that this approach can be inaccurate

for some heterogeneous materials [1]. The reference Planckian temperature and

the reference material state are determined using volume-averaged quantities, as

described by Modest [1]. These reference states are used to develop correlations

(Eq. 52) between the frequency dependence of opacities for different material states.

Even though a single reference material state is used for the entire problem, it is

still necessary to determine the Planck-function-weighted K-distribution in each

cell for different temperatures.

3.4 Parallel Metrics

Parallel metrics quantify the increase or decrease in computational efficiency as

a function of the number of processors used to generate the solution. This section

discuses the different scaling types used in this work and the information that can

potentially be evaluated from them. This work only considers message passing

parallelism and simple, volume-based domain decomposition.
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3.4.1 Scaling

The strong scaling benchmark measures the scaling of a numerical model as

the total problem domain is subdivided onto processors. Strong scaling is defined

as;

ξs(N) = N
tN
t1

100, (54)

where ξs(N) is the strong scaling efficiency for N processors, tN is the total calcu-

lation time for the solution with N processors, and t1 is the calculation time for a

serial (single processor) solution to the problem.

Weak scaling benchmarks determine the scaling of numerical model as the total

problem domain is increased along with the number of processors used to solve the

problem. This information provides insight as to how a larger problem will perform

with a proportional increase in the number of processors. Weak scaling is defined

as;

ξw(N) =
t1
tN

100 (55)

where ξw(N) is the weak scaling efficiency for N processors.

History scaling is not a typical parallel benchmark, but it is applicable when a

problem is solved via Monte Carlo. In a Monte Carlo simulation, energy packets

(or “Monte Carlo histories“), are tracked through a problem based on physical

interaction probabilities. The number of histories used to resolve the solution

directly correlates with the variance in the solution. Therefore, it is important to

understand how the average calculation time per history will scale as the number

of histories used to resolve the solution is increased. The average computation time

per history (tp) can be defined as;

tp(Nmc) =
t

Nmc

(56)
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Where t is the total computation time and Nmc is the total number of Monte Carlo

histories used to resolve the solution.

3.4.2 Load Imbalance

Load imbalance can significantly effect the solution times of parallel computa-

tions [43]. Therefore, it is necessary to quantify the sensitivity different solution

algorithms are to load balancing issues. Load balance is defined as the ratio of

total processor compute time to total run time. In a perfectly balanced system,

there is zero idle processor time and the load would be 100% balanced. We use

the average deviation in the load to represent the load imbalance, rather than the

load balance described previously. The effective load imbalance is indicated by

deviations in the average CPU time defined by:

tstd[%] =

√
1
N

N∑
i=1

(ti)
2 −

(
1
N

N∑
i=1

ti

)2

1
N

N∑
i=1

ti

× 100, (57)

where tstd[%] is the percent deviation from the average cpu time, ti is the cpu time

for processor i, and N is the number of processors. The average deviation in a

perfectly balanced system would be zero.
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4 Turbulence Radiation Interactions in Particulate-Laden Flow

4.1 Introduction

This chapter derives the time averaged form of the transport equation and how

particulate radiation interactions are accounted for. This includes discussions on

how particulate can either be tracked geometrically through the system or can

be accounted for statistically using the chord length method. This chapter also

outlines the metrics that are used in this work to measure turbulent radiation

interaction effects.

4.2 Governing Equations

Modeling a combustion system requires the solution of a set coupled non-linear,

partial differential equations. These equations include; the continuity equation, the

compressible/incompressible Navier-Stokes equations, mixture fraction equations,

the radiative transfer equation, and the energy equation. Each of these equations

presents its own difficulties; the significant difference in time scales makes these

problems very difficult to solve efficiently and accurately.

The continuity equation (or conservation of mass) can be written as;

dρ

dt
+ ∇̄ · ρŪ = 0, (58)

and the compressible Navier-Stokes equations can be written as;

ρ

(
dŪ

dt
+ Ū · ∇̄Ū

)
= −∇̄p+ ∇̄ · µ∇̄Ū + f. (59)

Independent variables have been left out for brevity. Here ρ(r̄, t) [cm3/sec] is the

material density, U(r̄, Ω̄, t) [cm/s] is the fluid flow velocity, p(r̄, t) is the pressure,
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τ is the stress tensor, and f represents the body forces. The energy equation can

be written as;

ρCp

(
dT

dt
+ Ū · ∇̄T

)
= ∇̄ · k∇̄T − dqR

dt
+ Q̇

′′′

ch (60)

The radiative transfer equation can be written as;

1

c

dI

dt
+ Ω̄ · ∇̄I +KI =

K

4π
B (61)

The material energy balance equation is written as

dqR
dt

=

∫ ∞
0

∫ 4π

0

KaIdΩ̄dν −
∫ ∞

0

∫ 4π

0

Ka

4π
BdΩ̄dν, (62)

where qR is the material energy density. The mixture fraction equation can be

written as;

ρ

(
dYi
dt

+ Ū · ∇̄Yi
)

= ∇̄ · ρD∇̄Yi + ṁ
′′′

i (63)

The mass source (ṁ
′′′
i ) and the heat source (Q̇

′′′
c h) are products of the chemical

reaction;

O + F → P +Q. (64)

In this reaction O, F , and P denote the concentration of oxidizer, fuel, and the

resulting product P . The variable Q represents the amount of energy created

during the reaction.

4.3 Particulate

The inclusion of particulate in the system requires the addition of a model to

account for fluid-particulate interactions. In this research, we use the discrete

element model (DEM) [36] to account for these two-way interactions. An important

parameter to classify the state of the particulate-laden flow is the Stokes number.
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The Stokes number is a ratio of the particulate response time(τp) to the Kolmogorov

time scale(τη) [44];

St =
τp
τη

=
1

18

(
ρp
ρ

)(
dp
η

)2

(65)

The variables ρ and ρp are the fluid and particulate density, respectively. The

remaining variables are the particulate diameter dp and Kolmogorov length scale

η. It is known that when St ≈ 1 “preferential concentrations” occur. This is when

the local vorticity is strong enough to force particulate out of fluid regions causing

particulate clustering [44]. This is important to radiative transfer because it affects

particle dispersal and the chord length method, which makes assumptions about

the distribution of particulate in background media.

It is also necessary to account for particulate-radiation interactions. Particulate-

radiation interactions can either be accounted for using Mei theory or geometric

optics, depending on the particulate size parameter and optical thickness. Our

focus is on larger coal particulate, where geometric optics is valid. All particulate

in this work is considered to be perfect spheres.

4.4 Particulate Radiation Interactions

The complex index of refraction can be expressed as;

c = n+ ki (66)

where n = c0/c is the refraction index which describes the ratio of the speed of light

in a vacuum (c0) to the speed of light in the medium (c). Photons moving from one

material to another with a different refraction index will cause a refraction event.

A refraction event is a change in the polar angle of the photon and can be described

by Snell’s law [1]. In Equation 66, the variable k represents the absorptivity index
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and dictates how rapidly a photon traversing a medium will be absorbed. The

absorption opacity can be calculated from the absorptivity index as [1].

K =
4πkν

c0

. (67)

The interaction of radiation with particulate is very sensitive to the size, shape,

and material composition of the particulate. For large particulate, diffraction can

be neglected allowing for the evaluation of particulate interactions using geometric

optics [1]. Large particulate is quantified as x >> 1, where x is the non-dimensional

size parameter defined by;

x =
πDp

λ
> 2, (68)

and Dp is the diameter of the particulate and λ is the photon wavelength. If x ≈ 1

then diffraction can no longer be neglected and Mie theory is applied to determine

interaction probabilities.

There are four different particulate-radiation interactions that must be consid-

ered: reflection, refraction, diffraction, and absorption. For large thick particulate,

diffraction and refraction can be neglected because for large particles diffraction

generally scatters in the forward direction [1]. For smaller particulate, however,

diffraction can become more isotropic and must be modeled [1]. Diffraction is

generally modeled using Mie theory [1]. If the particulate is reasonably optically

thick (xk >> 1) and all photons that enter the particulate are assumed to be

absorbed, their refraction events can be neglected. However, for optically thin or

relatively small particulate, this assumption cannot be made because photons will

travel though the particulate without being absorbed.

For geometric optics, the probability of a ray intersecting a particulate can be

evaluated one of two ways; stochastically or geometrically using direct tracking.
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Stochastic methods include atomic mixing and the chord length method [45]. Di-

rect tracking simply includes the particulate either directly in the mesh or on a

submesh which is overlaid on the cell mesh. Any of these approaches can be easily

incorporated into the Monte Carlo method which is used in this work.

4.4.1 Geometric Optics

Geometric optics was implemented in the following fashion: particulate is

tracked on a submesh which is overlaid on the cell mesh. This list of particu-

lates contains their sizes, locations, and material properties. The easiest way to

check for Monte Carlo ray intersections with particulate is to iterate through the

particulate list for the entire problem during every surface interaction check. How-

ever, this can be very expensive for even trivial packing fractions. As a result, we

employ a cell-wise linked-list of particulate that can be precomputed at the begin-

ning of the time step and then used on a cell-wise basis to check for particulate

surface interactions. The geometric optics process, illustrated in Figures 2 and

3), begins by choosing a random interaction location using Equation 9, where the

material opacity K is determined according to the current Monte Carlo particle

frequency and the material composition at the current particle location. After a

random interaction location is chose all faces in the current cell are looped over

to check if the particle remains in the cell. This includes the faces which compose

the current cell and the faces of any particulate which has mass that resides in the

domain of the cell. The equation for a point on a sphere can be defined by

(p− c) · (p− c) = r2 (69)

where p is some location of the sphere and c is the center point of the sphere. A

point p on a ray some length l from the starting location p0 in the direction of the
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ray d can be defined as;

p = p0 + ld (70)

putting these equations together yields a second order polynomial.

(d · d)l2 + 2(p0 − c) · dl + (p0 − c) · (p0 − c) = r2 (71)

The roots l of this polynomial, as determined by the quadratic formula are

l =
−B ±

√
B2 + 4AC

2A
, (72)

where

A = d · d, (73)

B = 2(p0 − c) · d, (74)

C = (p0 − c) · (p0 − c), (75)

These roots represent the distance to the two intersections that any ray should

have with the sphere. If the determinant is negative (B2 + 4AC < 0) there is no

interaction with the sphere. If the photon is inside the sphere, the intersection

occurs at the closest positive root. If the particle is inside the particulate the exit

location occurs at the only positive root. If there are no positive roots, there is no

intersection with the sphere.

If a Monte Carlo photon crosses a face which separates materials with different

complex indices of refraction, it is necessary to account for reflection and refraction

events at that surface. The probability of reflecting off of a surface as compared

to being refracted into it can be determined from generalized Snell’s Law [1];

p2 =
1

2

√
(n2

2 − k2
2 − n2

1 sin2(θ1))2 + 4n2
2k

2
2 + (n2

2 − k2
2 − n2

1 sin2(θ1)) (76)

q2 =
1

2

√
(n2

2 − k2
2 − n2

1 sin2(θ1))2 + 4n2
2k

2
2 − (n2

2 − k2
2 − n2

1 sin2(θ1)) (77)
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ρ‖ =
(p− n1 sin(θ1) tan(θ1))2 + q2

(p+ n1 sin(θ1) tan(θ1))2 + q2
ρ⊥ (78)

ρ⊥ =
(n1 ∗ cos(θ1)− p)2 + q2

(n1 cos(θ1) + p)2 + q2
(79)

If Monte Carlo histories are not tracked completely through the particulate,

it is necessary to assure that the particulate is sufficiently optically thick. In our

approach, we fully track particles through the particulate to increase the range of

particulate sizes for which our simulation tool is applicable.

4.5 Chord Length Method

The chord length method accounts for photon-particulate surface interactions

using the same interaction physics described in Section 4.4.1. However, particulate

surface interaction distances are determined with a stochastic approach. This is

done by creating chord length probability distribution functions, where a chord

length is the distance a ray travels before interacting with a new material. To

implement this approach, we must calculate two different chord length probability

distribution functions; one pertaining to the chord lengths through the background

material and one pertaining to the chord lengths traveled in the particulate con-

tained in the background material.

It has been shown by Olson et al. [32] that the chord length distribution in

the background material of a binary stochastic mixture is truly exponential and

Torquato et al. [46] derived the distribution for solid non-overlapping spheres;

pb(z) =
πρn 〈R2〉

1− η
exp

(
−πρnz 〈R2〉

1− η

)
(80)

where pb(z) is the probability of a ray traveling a distance z in the background

before interacting with a sphere, 〈R2〉 is the mean square of the particulate radii

that are in the volume (for constant radii, this is simply the square of the radius),
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ρn is the number density of the spheres, and η is the volume fraction of the spheres.

The cumulative probability density function can then be evaluated by integrating

this equation from zero to some chord length l. Given this CPDF, it is possible

to select a random chord length through the material using a random number

0 ≤ ξ ≤ 1;

l = − log(ξ)
(1− η)

πρn 〈R2〉
(81)

It has also been shown that the chord length probability distribution for the

distance traveled within the particulate is never exponential. Rather, these dis-

tributions are greatly dependent upon the distribution of particulate radii in the

material volume. Olson et al. [32] have shown that for a constant particulate radii

distribution, the chord length probability distribution will have the form;

pp(z) =
z

2R2
(82)

where pp(z) is the probability of a ray traveling some distance z through the par-

ticulate before exiting. Integrating this equation from zero to some chord length l

results in a cumulative probability distribution for the chord lengths through the

particulate. This CPDF can then be used to select a random chord length through

the particulate using a random number 0 ≤ ξ ≤ 1 ;

l =
√

(4R2ξ) (83)

Upon entering a particulate, a new distance to material collision is selected. If the

chord length through the material is greater than this collision distance, a collision

event in the particulate occurs. Otherwise, the Monte Carlo particle exits the

particulate.

This makes the selection of chord lengths very straightforward for particulate

materials with identical complex indices of refraction. It is more complicated,
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however, when it is necessary to account for refractions and reflections. In this

situation, a random collision location is chosen for a Monte Carlo photon that

starts in the background material using Equation 9. Then, a random chord length

is selected for the background material using Equation 81. If the chord length is

less than the distance to the next interaction location, then a photon-particulate

interaction occurs. For this interaction, it is necessary to randomly select a sphere

normal to given the current chord length with the particulate radius. For a distri-

bution of particulate radii, the selection of the random normal becomes increasingly

more complicated because of the coupling between the sphere radius and the chord

length selection. Our algorithm considers only particulate with constant radii. In

this case, it is simple to calculate the angle of intersection for the ray and the

surface normal given the chord length. Consder a ray passing through a projection

of a sphere (i.e. a circle). The chord length traveled through the material will be

directly correlated to the radius on the projection that the ray will pass through.

This determines the polar angle between the normal and the ray intersecting with

the sphere. The azimuthal angle, however, must be randomly sampled because

there is an equal probability that the ray passed through any point on the radius

of the projected circle determined from the chord length. A triangle can be con-

structed using half the chord length l and the particulate radius R in which the

cosine of the intersection angle θ as compared to the normal is determined from

cos(θ) =
l

2R
. (84)

Given that the polar angle is known and that the azimuthal angle can be any ran-

dom angle defined by 0 ≤ φ ≤ 2π, it is possible to generate a random normal that

can be used to calculate any refraction event that might occur at the particulate

face. Given the incident direction and the newly formed random sphere normal, it
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is possible to determine either a refraction or reflection event from the generalized

Snell’s law, (Equation 76 through Equation 79). If a refraction event occurs, it is

possible to determine the true refracted chord length traveled through the sphere

and the change in the ray direction given the refraction angel θr determined from

Snells law and the randomly selected sphere normal. Given that, for a perfect

sphere, the incident angle between the entrance normal and the exit normal is

identical we can then determine the refracted chord length lr

lr = 2R cos(θr), (85)

and the exit normal. The polar angle between the exit and entrance normal, θn,

can be determined from the refraction angle as θn = π − 2θr. The particle is then

moved to the next exit location and Snell’s law is again applied. This procedure

is continuously iterated until the photon either exits the particulate or a material

interaction occurs.
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Figure 2: Flow chart showing the Monte Carlo procedure for geometric tracking
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Figure 3: The intersection of a Monte Carlo particle with a plane
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Figure 4: Flow chart showing the Monte Carlo procedure for the chord length
method
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Tallies are cell-based, rather than particulate-based, as in geometric optics.

This requires an added assumption in the equation of state (Eq. 2): the energy de-

termined from the particulate absorption tallies is distributed according to volume

fractions;

Ea
p = Ea

c

Vp∑Np
p=1 Vp

, (86)

where Ea
p is the energy absorbed in particulate p, Ea

c is the energy absorbed by

all particulate in the cell (or the cell-based particulate absorption tally), Vp is

the volume of particulate p, and Np is the total number of particulate. Similar

assumptions are made for the particulate census tallies.

4.6 Turbulence Radiation Interactions

The significant difference in time scales for the radiative transfer equation and

the turbulent flow equation can create a unique numerical phenomenon known as

Turbulence Radiation Interactions (TRI). The time scale of the flow equations is

on the order of the speed of sound for the working fluid whereas the time scale of

the radiation equation is on the order of the speed of light. Comparing the tempo-

ral operator of the transport equation (Equation 1) to that of the fluid equations

(Equation 58, 59, 60, and 63), we find that unless the time step size is on the order

of the speed of light, the transport equation will quickly approach the steady state

solution. If the equations are evaluated over a conventional fluid time step (some

reasonable fraction of the speed of sound) a certain amount of material fluctuation

will occur in cells that are turbulent or not fully developed. These material fluc-

tuations will be felt instantaneously, locally and globally, by the radiative transfer

equations. Though it is possible to resolve these numerical differences by resolving

the material fluctuations on the order of the radiative transfer equation, for most
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real applications the computational cost of this is prohibitively expensive. To ac-

count for these interactions, the equations are typically rewritten and solved for

time averaged quantities[1].

f(r) =
1

δt

∫
δt

f(r, t)dt (87)

The transport equation is written in the time-averaged form as;

1

cδt
(In+1 − In) + Ω̄ · ∇̄I +KI =

1

4π
KB, (88)

and the equation of state becomes

dqR
dt

=

∫ ∞
0

∫ 4π

0

KIdΩ̄dν −
∫ ∞

0

∫ 4π

0

1

4π
KBdΩ̄dν. (89)

Evaluating these time-averaged quantities requires at least one more assumption,

known as the optically thin eddy approximation. The optically thin eddy approx-

imation assumes that the time averaged opacity multiplied by the time averaged

intensity is equivalent to the time averaged absorption operator (K̄Ī ≈ KI) [1].

This implies that the opacity multiplied by the turbulence length scale is small

(Klt << 1). This condition is typically violated in some frequency regions for gas

opacities. However, this assumption has been made in all TRI work to date [1].

There are commonly four different approaches to deal with TRI effects [1].

Using the time averaged material properties to evaluate the radiation field, referred

to as “no TRI” , implies

Kν = Kν(φ); Kνb(ν, T ) = Kν(φ)b(ν, T ). (90)

The variable φ̄ refers to the time averaged material state. The next approach

attempts to account for the non-linear correlation between the material properties
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and the opacity by using the mean opacity rather than the mean material proper-

ties. This is commonly referred to as “absorption coefficient self-correlation”,

Kν ; Kνb(ν, T ) = Kνb(ν, T ). (91)

It is also possible to account for the non-linearities of the opacity values and the

Planck emission spectrum using “Planck function self-correlation”

Kν ; Kνb(ν, T ) = Kν(φ)b(ν, T ). (92)

Finally, it is possible to combine the absorption coefficient and Planck function

self-correlations. This is referred to as “full TRI”, even though this approach is

still approximate as a result of the optically thin eddy approximation:

Kν ; Kνb(ν, T ). (93)

It is obvious that there is non-linear feedback between the radiation field and

the material properties. This correlation is generally neglected because of the

computational cost of evaluating both the radiative transfer equations and the

turbulent flow. Treating the material fluctuations as a separate uncorrelated event

from the radiative transfer equation allows for the development of material fluctu-

ation probabilities for the individual cells. These material fluctuation models can

be used to directly evaluate the time averaged emission source and cell opacities

(full TRI).

A statistically homogeneous, turbulent, idealized, gas combustion flame is mod-

eled in this work, as described by [4], such that every cell in the domain represents

a single probable state of the material at that instant in time. In this simplified test

case, the radiative transfer equation is not coupled to the material energy balance

equation and all material properties are directly related to the combustion product
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concentration. As a result, the material properties are directly determined from

the gas combustion process, circumventing the need to resolve the non-linearities

between the equations. The radiative properties of the background gas are deter-

mined from an idealized representation of water vapor;

K = Ck(YP − ε)

[
c0 − c1

(
A

T

)
− c2

(
A

T

)2

− c3

(
A

T

)3

− c4

(
A

T

)4

− c5

(
A

T

)5
]
,

where the coefficients are defined as [47];A = 8, c0 = −0.23093, c1 = −1.12390,

c2 = 9.41530, c3 = −2.99880, c4 = 0.51382, and c5 = −1.86840E − 05. The

coefficient YP is the mass fraction of product present in the cell and ε is some small

tolerance that prevents the opacity from being zero when no product is present.

The combustion of the gas is idealized in such a way that the reaction between

product and oxidizer occurs instantaneously:

Yp =

{
ξ
ξst

if ξ ≤ ξst,
1−ξ

1−ξst if ξ > ξst.
(94)

and ξ and ξst are the fuel mixture fraction and the stoichiometric proportions of

the reaction equation

F +O = P (95)

F , O, and P denote the fuel, oxidizer, and product, respectively, making the stoi-

chiometric proportions ξ = 0.5. Rather then directly solving the energy equation,

which would require the solution of the conduction and convection equations, the

process is idealized such that the mass fraction of product directly determines the

material temperature.

T = Tmin + (Tmax − Tmin)Yp (96)

These approximations allow for the creation of system that can approximately

represent a combustion material while still providing insightful quantitative results

to analyze the impact of the TRI phenomenon on the solution.
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The main TRI parameters that will be investigated in this work are the follow-

ing three normalized means;

RT 4 =
T 4

T
4 , (97)

RKIb =
K ′pI

′
b

K̄pĪb
, (98)

and

RKG =
K ′G′

K̄Ḡ
. (99)

These means demonstrate the errors associated with using the mean material prop-

erties, the Planck self-correlation, and the thin eddy approximation (Equations 97,

98, and 99 respectively). The primed coefficients represent the difference in the

true average from the approximate average;

K ′G′ = KG− K̄Ḡ. (100)

and G is the scalar radiative intensity (G =
∫ 4π

0
IdΩ̄).
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5 Approximate Second Order Temporal Integration

5.1 Introduction

This chapter describes the application of the coarse mesh finite difference

(CMFD) method to the radiative transfer equations. This approach provides a

framework for approximately resolving the non-linearities found in the radiative

transfer equations, and a second-order temporal integration scheme for the total

photon energy density and material temperature.

5.2 Coarse Mesh Finite Difference

The coarse mesh finite difference (CMFD) method relies on the solution of a

low-order problem to accelerate the convergence of a high-order problem. The

best way to demonstrate the implementation of this method is to consider the

solution of two separate problems, one a coarse representation of the other. The

exact coarsening does not need to be accounted for immediately to illustrate the

implementation of the method. The coarse and fine representations of the radiative

transfer equation can be written as;

1

c

∂If
∂t

+ Ω̄ · ∇̄If = −KfIf +KfBf (ν, T ), (101)

and ∫
1

c

∂If
∂t

dh+

∫
Ω̄ · ∇̄Ifdh = −

∫
KfIfdh+

∫
KfBf (ν, T )dh, (102)

where the subscript f indicate a fine variable and h is a homogenization parameter.

CMFD is an iterative scheme. As such, it is necessary to indicate the current

iterate l of individual variables. In this work, there is also a non-linear iteration

performed over the coarse mesh solution whose iteration index is j.
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Consider some homogenization parameter h such that

Ic =

∫
Ifdh Jc =

∫
Ω̄Ifdh. (103)

The subscript c indicates a newly defined coarse variable. This parameter repre-

sents any combination of coarsening parameters such as space, angle, or frequency.

The following coarse mesh transport quantities are computed such that reaction

rates are preserved:

Kc =

∫
KfIfdh∫
Ifdh

, (104)

Bc =

∫
KfBfdh∫
Kfdh

. (105)

Typically in CMFD, the coarse mesh and fine mesh models are coupled using the

leakage operator [17] such that∫
Ω̄I

l+ 1
2

f dh =

∫
Ω̄I

l+ 1
2

f dh− αl+
1
2

∫
Ĩ
l+ 1

2
f dh, (106)

and

J
l+ 1

2
c = J

l+ 1
2

c − αl+
1
2 Ĩ

l+ 1
2

c , (107)

where Ĩc is the average face photon intensity evaluated from the cell centers as-

sociated with the cells on either side of the face. The correlation parameter, α,

is evaluated from the fine mesh half step correlation equation (Eq. 106). The

standard implementation of the CMFD would first require the solution of the fine

mesh solution at the half step.

1

c

∂If
∂t

l+ 1
2

+ Ω̄ · ∇̄I l+
1
2

f = −K l+ 1
2

f I
l+ 1

2
f +K

l+ 1
2

f Bl
c(ν, T ), (108)

The energy densities and material temperatures between the coarse and fine prob-

lems are then correlated as; ∫
I l+1
f dh =

∫
I
l+ 1

2
f dh

I
l+ 1

2
c

I l+1
c (109)
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∫
T l+1
f dh =

∫
T
l+ 1

2
f dh

T
l+ 1

2
c

T l+1
c (110)

Using the cell face fluxes and the cell energy densities from the fine mesh, the

correlation parameter at the half step is evaluated.

αl+
1
2 =

∫
Ω̄I

l+ 1
2

f dh−
∫

Ω̄I
l+ 1

2
f dh∫

Ĩ
l+ 1

2
f dh

(111)

The correlation parameter at the half step αl+
1
2 is then added to the coarse mesh

equations and the non-linear emission source is converged.

1

c

∂Ic
∂t

j+1

+ ∇̄J j+1
c − ∇̄ · αl+

1
2 Ĩj+1
c = −KcI

j+1
c +KcB

j
c(ν, T ) (112)

∫
∂Em

∂t

l+1

dh =

∫ ∫
dνdΩ̄KcI

j+1
c −

∫ ∫
dνdΩ̄KcB

j
c(ν, T ). (113)

The material energy density is then used to update the material temperature and

therefore the emission source term Bj+1(ν, T ). This iteration is performed until

the material temperature converges. Upon temperature convergence the coarsened

values are translated back to the fine mesh using Equations 109 and 110. The

CMFD iteration is performed until the homogenized parameters converge. This is a

true acceleration scheme, in that the CMFD method converges to the unaccelerated

solution, assuming the same non-linear iteration was also performed on the fine

mesh problem.

5.3 Approximate Second Order Temporal Integration via CMFD

Coarse mesh finite differencing, applied as outlined in the previous section, is only

a true acceleration method if the CMFD iteration is converged and the final iter-

ation consists of a converged non-linear fine mesh result. In the application of a

Monte Carlo method, this is generally too expensive. However, Park et al. have
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shown that CMFD can accurately resolve the non-linear emission source associated

with the RHT equations[5]. In this research, we propose a second order temporal

integration scheme applied only to the coarse mesh equations, with the objective

of obtaining better than first-order time integration of the radiative heat transfer

equation. The time-integration of the derivative of the function f can be expressed

as ∫ tn+1

tn

f ′(x, t)dt = f(x, tn+1)− f(x, tn) ≈ ∆t

2
(f ′(x, tn+1) + f ′(x, tn)). (114)

Using the Taylor expansion of (f(x, tn+1)) about tn where the second time deriva-

tive (ftt(x, tn)) is approximated by its Taylor expansion about the point tn+1, it is

possible to write;

f(x, tn+1) = f(x, tn) +
∆t

2
(f ′(x, tn+1) + f ′(x, tn)) +O(∆t3) (115)

The approximate time integration in Eq. (114) matches the newly defined Taylor

series expansion up to O(∆t3) which makes this locally a second-order method. We

define the approximate integral for the temporal integration scheme more generally

as ∫ tn+1

tn

f ′(x, t)dt = ξf ′(x, tn+1)∆t+ (1− ξ)f ′(x, tn)∆t. (116)

This equation is such that the integration parameter can be defined ξ = 0.5 or

ξ = 1 and return Crank-Nicholson or Backward Euler integration schemes. The

Backward Euler integration is first order accurate locally, which can easily be shown

using the Taylor expansion of (f(x, tn)) about tn+1.

We consider a multigroup transport problem that is coarsened in both angle and

frequency (dh = dΩ̄dν
c

) creating a grey diffusion equation for the coarsened prob-

lem. Using the newly-defined integration parameters and the frequency integrated
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energy density E

E = Ic =

∫
Ifdh =

1

c

∫ ∞
0

∫ 4π

0

IdΩ̄dν (117)

yields the following form for the correlation parameter

αl+
1
2 =

F
l+ 1

2
f +D∇̄El+ 1

2
f

Ẽ
l+ 1

2
f

. (118)

Local thermodynamic equilibrium is assumed at the start of the initial time step.

This makes the initial correction value equal to zero (α0 = 0) for any problem

in global equilibrium (or with a spatially constant photon energy density). If the

initial material state is not in global thermodynamic equilibrium, it is necessary to

perform a steady state coarse mesh calculation to determine the initial correction

coefficient α0.

From the Crank-Nicholson temporal discretized diffusion equation (Eq. 31), it

is possible to write a corrected coarse step as;

1

c

Ej+1 − En

∆t
− 1

2
∇̄ · (Dj+1∇̄Ej+1 +Dn∇̄En) +

1

2
(∇̄αl+

1
2 Ẽj+1

c + ∇̄αnẼn
c )

+
1

2

(
KaE

j+1 +KaE
n
)

=
Ka

c

1

2
(Bj +Bn), (119)

and

1

c∆t

(
Ej+1
m − En

m

)
=

1

2

∫ ∞
0

(KaE
j+1 +KaE

n)dν

−1

2

∫ ∞
0

1

c
(KaB

j +KaB
n)dΩ̄dν. (120)

These equations are iterated until the equation of state converges: T j ≈ T j+1.

Upon convergence the final material properties (at j+1) are set to the CMFD half

step material properties (l + 1
2
). For the grey case presented in this work, this is

only the material temperature. Then, the fine mesh solution is generated via the

Monte Carlo method;

1

c

∂If
∂t

l+ 1
2

+ Ω̄ · ∇̄I l+
1
2

f = −KfI
l+ 1

2
f +KfB

l+ 1
2

f (ν, T ), (121)
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The Monte Carlo method in this work is only approximately first order accurate

in time because the non-linear relationship between the photon intensity and the

emission source term (in the equation of state) is not fully resolved.

The correction coefficient is then evaluated using Equation 118. Using the new

coefficient, Equation 112 is used to converge the non-linear emission source;

1

c

Ej+1 − En

∆t
− 1

2
(∇̄ ·D∇̄Ej+1 + ∇̄ ·D∇̄En) +

1

2
(∇̄αlẼj+1

c + ∇̄αnẼn
c )

+
1

2

(
KaE

j+1 +KaE
n
)

=
1

2

[
1

c
(KaB

j +KaB
n)

]
, (122)

and

1

c∆t
(Ej+1

m − En
m) =

1

2

∫ ∞
0

(KaE
j+1 +KaE

n)dν

− 1

2

∫ ∞
0

1

c
(KaB

j +KaB
n)dΩ̄dν. (123)

Upon convergence, the final coarsened material properties (at j + 1) are adjusted

using Equation 110 and set as the material properties for the next fine solution

(l+1). The final coarse mesh radiation properties Ej+1
c are then used to adjust the

coarse radiation properties of the fine result (Ej+1
f ) using Equation 109. At this

point, the iteration would continue until the corrected coefficients converge. This

would would fully resolve the non-linearities. However, in this work the iteration

will stop at a fixed number of CMFD iterations and continue to the next time step.

Figure 5 shows how the CMFD iteration process generally works.
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Figure 5: CMFD flow chart
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6 Results

6.1 Introduction

This chapter contains the results obtained from numerical simulations support-

ing the three avenues of research investigated in this dissertation: the parallel

performance of gas opacity models, the turbulent radiation interaction effects in

particulate laden flows, and the coarse mesh finite difference acceleration of the

radiative heat transfer equations.

6.2 Parallel Performance of Gas Opacity Models

The Su and Olson test problem [48] is a frequency-dependent, one-dimensional,

semi-infinite benchmark with a semi-analytic solution. The opacity has a “picket

fence” distribution involving two different values, each with a given probability of

existing anywhere in the frequency domain. The temperature and radiation field

are driven with a volumetric radiation source applied near the reflecting boundary.

This problem was chosen specifically because the opacities are homogeneous over

the entire physical domain, avoiding any errors associated with the correlation

assumption of the SLW model. This problem was also chosen because it has a semi-

analytic solution providing a basis for comparison with numerical results. Also, the

opacity model can be modified to be representative of realistic gas opacities. This

allows problems to be compared primarily on the calculation efficiency without

being concerned with changes in the accuracy of the solution.
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6.2.1 Numerical Test Case

A mock opacity database was developed with 1.5 million microscopic opacity

values (ki [cm2]) in the wavenumber range between 0 and 30000 [1/cm]. The

opacities alternate between two values (K1 = 2
11

[1/cm] and K2 = 20
11

[1/cm]) as

necessary for the semi-analytic solution created by Su and Olson [48]. The working

material is assumed to be an ideal gas to make the database more realistic. This

makes it possible to express the opacity as a function of pressure and temperature

using the ideal gas equation;

ki = Ki

(
RT

P

)
. (124)

The total pressure P is constant throughout the problem and R is the ideal gas

constant. This microscopic opacity database is used in both opacity models. The

specific heat has been set to aT 3, where a denotes the radiation constant [48].

One advantage of the Su and Olson problem is that the spectral resolution

using the SLW opacity model is equivalent to that of the line-by-line model. This

implies that all other errors associated with the solution are related to spatial

resolution, temporal resolution, and other underlying assumptions independent of

the opacity models. Figure 6 shows the non-dimensionalized numerical results for

the material temperature (lines) compared to the semi-analytic results published

by Su and Olson (points) [48]. The initial temperature was specified as 10 [K] and

the external radiation source, defined in the region 0 < x < 0.5× 10−2 [m], has an

emission temperature of 2000 [K]. The y and z boundary faces are periodic and

the x boundary faces are perfectly reflecting. The excessive heating at the front

of the wave (approximately 20% greater than the analytic solution) and under

heating at the tail is related to large time steps with an explicit discretization[6].
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All problems are solved using an explicit time discretization with 10 time steps

and the material temperature lagged from the previous time step.

Three different scaling studies are performed in this work; strong scaling, weak

scaling, and history scaling. Each variant of the problem was solved three times and

the results presented are the mean solutions. The simulations were all performed

on the Oregon State University High Performance Computing (HPC) Cluster. All

nodes used in this work are dual processor 3.0 GHz Intel Xeons with 1024 KB

cache and 2GB SDRAM.
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Total Run Time

# of CPUs LBL SLW

1 8.019e-1 ± 2.6e-2 [h] 49.33 ± 3.8e-2 [h]
2 8.047e-1 ± 2.0e-2 [h] 26.19 ± 1.1e-1 [h]
4 4.975e-1 ± 4.2e-2 [h] 13.13 ± 7.6e-2 [h]
8 4.158e-1 ± 1.2e-2 [h] 6.781 ± 4.4e-2 [h]
16 2.664e-1 ± 2.1e-2 [h] 3.483 ± 1.4e-2 [h]

Table 1: Strong scaling total run time evaluations for each opacity model

Avg. CPU Time

# of CPUs LBL SLW

1 8.014e-1 ± 3.4e-3 [s] 119.3 ± 4.0e-1 [s]
2 3.954e-1 ± 6.6e-4 [s] 48.42 ± 1.5e-1 [s]
4 1.994e-1 ± 1.9e-3 [s] 24.47 ± 6.7e-2 [s]
8 9.943e-2 ± 5.5e-4 [s] 12.39 ± 1.1e-2 [s]
16 4.970e-2 ± 2.3e-4 [s] 6.235 ± 1.6e-2 [s]

Table 2: Strong scaling average CPU run time for each opacity model

6.2.2 Strong Scaling

All simulations in the strong scaling study used the same mesh (20× 8× 8) to

discretize the physical domain 0.02×0.08×0.0 [m]. We have employed a volumetric

domain decomposition in which every processor receives approximately the same

number of cells. The number of processors varied from 1 to 16 by multiples of

2 to perform the scaling study. The solver used 10 time steps reach the non-

dimensionalized final time (τ = cK̄t) of 0.1.

Tables 1 and 2 show the computational costs of the two different opacity models

in the strong scaling study. In Table 2, “Avg. CPU Time” refers to the average

CPU time used per processor. Figure 7 shows the strong scaling efficiencies for

both the SLW and LBL opacity models. The scaling efficiency is determined using
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Avg. Load Imbalance

# of CPUs LBL SLW

1 0.0 ± 0.0 [%] 0.0 ± 0.0 [%]
2 87.28 ± 5.1e-2 [%] 61.89 ± 9.7e-2 [%]
4 87.61 ± 1.1e-1 [%] 59.40 ± 3.1e-1 [%]
8 104.4 ± 9.9e-2 [%] 59.30 ± 2.4e-1 [%]
16 120.1 ± 9.4e-2 [%] 59.91 ± 2.0e-1 [%]

Table 3: Strong scaling average average load imbalance for each opacity model

Equation 54.
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Weak Scaling Run Parameters

# of CPUs mesh dimensions problem size [m] # of MC particles

1 20× 2× 2 0.02× 0.02× 0.02 10,000
4 20× 4× 4 0.02× 0.04× 0.04 40,000
15 20× 8× 8 0.02× 0.08× 0.08 160,000

Table 4: Parameters used for run cases in the weak scaling study

Total Run Time

# of CPUs LBL SLW

1 4.972e-2 ± 2.3e-3 [h] 3.153 ± 3.9e-2 [h]
4 1.614e-2 ± 7.2e-3 [h] 3.389 ± 3.6e-3 [h]
16 2.600e-1 ± 2.1e-2 [h] 3.483 ± 1.4e-2 [h]

Table 5: Weak scaling total run time evaluations for each opacity model

6.2.3 Weak Scaling

The weak scaling study was composed of three variants of the Su and Olson

benchmark. The parameters in these variants are listed in Table 4. The problem

size was only increased in the direction of the periodic boundaries because the

solution varies only in the x direction. This helps ensure that the resolution of the

problem is increased in a meaningful way. It is also necessary to scale the number

of particle histories as the size of the problem is increased to achieve an accuracy

and statistical error comparable to that of the serial calculations.

Tables 5 and 6 show the average run times and the average CPU times of the

weak scaling study, respectively. Figure 8 shows the weak scaling efficiencies for

each opacity model. The weak scaling efficiencies were calculated using Equa-

tion 55. The error bars on the plot show the standard deviation from the averaged

results.
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Avg. CPU Time

# of CPUs LBL SLW

1 4.532e-2 ± 3.7e-4 [s] 7.384 ± 9.4e-2 [s]
4 4.532e-2 ± 1.0e-4 [s] 7.025 ± 6.5e-3 [s]
16 4.970e-2 ± 2.3e-4 [s] 6.235 ± 1.6e-2 [s]

Table 6: Weak scaling average CPU run time for each opacity model

Avg. Load Imbalance

# of CPUs LBL SLW

1 0.0 ± 0.0 [%] 0.0 ± 0.0 [%]
4 139.5 ± 1.5e-1 [%] 50.73 ± 3.1e-2 [%]
16 120.1 ± 9.4e-2 [%] 59.91 ± 2.0e-1 [%]

Table 7: Weak scaling average load imbalance for each opacity model
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Figure 8: SLW and LBL opacity strong scaling for the Su and Olson benchmark
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Total Run Time

# pre time step LBL SLW
(×40, 000)

1 1.614e-1 ± 7.2e-3 [h] 3.389 ± 3.6e-3 [h]
2 3.397e-1 ± 6.4e-3 [h] 3.486 ± 9.7e-2 [h]
4 6.894e-1 ± 1.4e-2 [h] 3.475 ± 9.2e-3 [h]
8 1.473 ± 1.1e-2 [h] 3.581 ± 2.8e-2 [h]
16 2.889 ± 1.7e-2 [h] 3.844 ± 1.1e-2 [h]

Table 8: History scaling total run time evaluations for each opacity model

Avg. CPU Time

# per time step LBL SLW
(×40, 000)

1 4.532e-2 ± 1.0e-4 [s] 7.035 ± 6.5e-3 [s]
2 9.127e-2 ± 2.0e-4 [s] 7.346 ± 9.1e-2 [s]
4 1.851e-1 ± 1.1e-4 [s] 7.623 ± 7.3e-2 [s]
8 3.921e-1 ± 5.1e-3 [s] 8.149 ± 1.3e-2 [s]
16 8.537e-1 ± 4.2e-3 [s] 8.673 ± 2.2e-2 [s]

Table 9: History scaling average CPU run time for each opacity model

6.2.4 History Scaling

The history scaling study is composed of five different variations of the Su and

Olson problem. The same mesh (20× 4× 4), decomposed onto 4 processors in the

domain 0.02 × 0.04 × 0.0 [m], was used for every variation of the history scaling

problems. The histories increased by factors of two ranging from 40,000 to 640,000

particles per time step.

The total run times and average CPU times are presented in Tables 8 and 9,

respectively. Figure 9 shows how the average history CPU time (Eq. 56) varies as

a function of the number of histories used for both the SLW and LBL models.
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Avg. Load Imbalance

# per time step LBL SLW
(×40, 000)

1 139.5 ± 1.5e-1 [%] 50.73 ± 3.1e-2 [%]
2 139.6 ± 5.6e-2 [%] 48.41 ± 4.9e-1 [%]
4 140.2 ± 6.2e-2 [%] 46.28 ± 1.7e-1 [%]
8 142.0 ± 3.2e-1 [%] 41.15 ± 1.3e-1 [%]
16 143.6 ± 3.8e-1 [%] 40.58 ± 6.5e-2 [%]

Table 10: History scaling average load imbalance for each opacity model
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6.2.5 Load Balance

The load imbalance is represented by the percent deviation (Eq. 57) of the

average CPU times found in Tables 3, 7, and 10. Figures 10 and 11 show how the

load imbalance is affected in all three scaling studies. Note that the x-axis in these

figures is the scaling factor, rather than the number of histories or the number of

processors used.
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6.2.6 Opacity Results Summary

The numerical results for both the SLW and LBL opacity models were compared

to the Su and Olson frequency dependent benchmark [48]. These results show

the performance of these opacity models with respect to three different scaling

approaches; strong scaling, weak scaling, and history scaling. The short CPU

times, as compared to the large total run time, are indicative of the amount of

IO operations and processor communication that occurs in both methods. These

algorithms could be improved by reducing the IO operations for both methods

which would change the magnitude of the results. It can be assumed, however,

that these changes in magnitude should have little effect on the overall trends

associated with the scaling. These trends are primarily a function of the number

of mathematical operations and the problem size. A more in-depth discussion of

this can be found in the conclusions section.

6.3 Turbulence Radiation Interaction Effects

We have modified the test problem developed by Deshmukh et al. [4] to include

particulate in a statistically homogeneous non-premixed system. Two different

particulate tracking procedures were implemented for the coal particulate; the

chord length method and geometric tracking. These test problems illustrate the

changes in the TRI effects associated with different treatments of the particulate

in the system. This includes an investigation of the following phenomena: treating

the particulate temperature as a constant or the mean cell temperature, using

the chord length method versus geometric tracking, variations in the particulate

thickness, and variations in the particulate flow distribution (Stokes number).
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6.3.1 Chord Length vs Geometric Optics

To compare the results of the geometric tracking procedure to the chord length

method, the problem presented by Olson [49] is evaluated using both methods.

This problem does not have an analytic result. This is a frequency-independent

transient problem consisting of a cubic domain which is one mean free path in

optical thickness of the background medium. The spheres that populate the do-

main are equally sized and have an opacity 100 times greater than the background

medium. The specific heat is defined as 4T 3. The x-direction boundary faces are

vacuum with a face source applied to one side of the cube and the exiting heat

flux computed at the at the opposite face. The remaining boundary surfaces are

treated as reflecting boundaries. Figure 12 compares the normalized heat flux at

the exit face (Fexit
F0

) found using the chord length method, geometric tracking, and

a single harmonic mean opacity. The harmonic mean is defined as;

Kh =
1

fp
Kp

+ fb
Kb

(125)

where fp and fb are the volume fractions of the particulate and background media,

respectively. The harmonic mean, rather than the atomic mixing, was suggested

by Olson [49] because of the poor performance of the atomic mix model in light

particle loading.
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6.3.2 Particulate Properties

The material properties for the particulate are chosen to represent properties

that would be expected in pulverized coal combustion systems. There are three

main classifications of coal; anthracite (greater than 86% fixed carbon, less than

14% volatile matter), bituminous (greater than 86% fixed carbon, less than 14%

volatile matter, greater than 10,500 Btu), and lignite (less than 8,300 Btu) [50].

Each of these classifications reflect generalized composition and potential energy

parameters. We have chosen bituminous coal properties in this research.

Manickavasagam et al.[7] found that the refraction index n (see Eq. 66) in a

specific type of bituminous coal, Kentucky coal #9, was relatively insensitive to

photon frequency. This has been previously discussed[7, 1]. Given the definition

of the material opacity, K is proportional to the absorptive index (see Eq. 67)

and the photon frequency. It is possible to develop an approximate opacity that is

independent of frequency by fitting the absorptive index, as a function of frequency,

with a linear function that is inversely proportional to the frequency: k ≈ kf = k0

ν
.

K =
4πkν

c0

=
4πk0

c0

(126)

We have used a least-squares fit of the polynomial representation of the bituminous

coal (Kentucky coal #9) absorptive index provided by Manickavasagam et al.[7].

A graphical representation of the fit can be found in Figure 13. The least-squares

fit was found such that the derivative of the sum of the squares is zero;

R2 =
N∑
i=1

(k(νi)− kf (νi))2 (127)

dR2

dkf
= 0 = 2.0

N∑
i=1

(k(νi)− kf (νi))
1

νi
(128)
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This sum can be directly evaluated and solved for k0;

k0 =
N∑
i=1

k(νi)
νi
1
ν2
i

(129)

using 100 data points in the wavelength range 3 ≤ λ ≤ 19 [µm] results in a fitted

coefficient of k0 = 1.4806e− 2 [ 1
µm

] = 4.4388e12 [1/s].

The Stokes number as defined in Equation 65 indicates the amount of particu-

late clustering in the system. This equation can be used to determine an effective

particulate density that will yield a desired Stokes number, given the particulate

properties, the fluid properties, and the Kolmogorov length scale indicative of the

fluid flow profile:

ρ̃p = 18Stρf

(
η

dp

)2

(130)

Both the fluid field and the radiation field are directly proportional to the

particle diameter as indicated by Equations 65 and 68, respectively. In order to

keep the radiation field insensitive to the fluid flow, (as in the work of Deshmukh

et al.[4]), the radiation properties of the coal are scaled such that they match

properties typically found in pulverized coal systems. The bulk of coal particulate

found in pulverized coal is on the scale of dp = 5.8 [µm] [7]. Note that this is

not the bulk from a mass perspective, but rather from the perspective of the total

number of particles. In this work, all particulate are assumed to be of equal size.

Using this particulate size and the fitted gray opacity value K, it is possible to

determine the effective opacity K̃ such that the diameter in number of mean free

paths is equivalent dp
Mfp

= d̃p
M̃fp

. A mean free path is defined as;

Mfp = 1/K, (131)

and the particle diameter as a function of mean free paths can be defined as;

Nmfp =
dp
Mfp

. (132)
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TRI run cases

Test Case ID Stokes # ρ̃p[kg/m3] Packing fraction

TRI 1 0.0 0.0 0.0
TRI 2 0.2 80 9.6e-2 %
TRI 4 2.3 900 9.6e-2 %
TRI 5 2.3 900 1.9e-1 %

Table 11: Variations of the TRI test problem

Given these definitions the effective opacity can be evaluated as;

K̃p =
Nmfp

d̃p
(133)

6.3.3 TRI test cases

In the test problem developed by Deshmukh et al., a fully periodic three di-

mensional domain is defined. A velocity forcing function [51] initiates statistically

homogeneous turbulence in the system. After the system reaches a statistically

steady state flow regime, as determined from the fluctuations in the turbulent

kinetic energy;

∂ < ū · ū >
∂t

≈ 0. (134)

Seven different variations of the Deshmukh problem were considered: one without

particulate and three different particulate-laden problems. The particulate-laden

problems use various Stokes numbers and different packing fractions. Specific

details of these problems can be found in Tables 11 and 12.

All particulate runs were started from the same initial restart problem. The

turbulent kinetic energy (Eq. 134) was monitored to verify that the problem had

reached a statistically steady state flow pattern (Figure 14). Figures 15, 16, and 17

show particulate distributions in a thin slice (1/64 of the total length) of the domain
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Consistent Run Parameters

Parameter Value Units

Reynolds # 77 N/A
Prandtl # 0.75 N/A
Lewis # 1.0 N/A

Fluid Density 1.0 kg/m3

Particle Diameter 0.012 m
T min 750 K
T max 3000 K

Table 12: Flow solver run parameters used for all test cases

for each of the different Stokes numbers at the initialized turbulent state. In these

figures, the dots indicate the particulate center locations. The variable Npar in the

title of Figure 17 refers to the number of particulate spheres represented by each

point; in this case one point is representative of two particulate spheres. A larger

Npar allows for a reduction in computational resources while still being able to

account for larger packing fractions. After the steady-state flow pattern is achieved,

the simulation is paused and populated randomly with fuel and oxidizer via the

approach described by Eswaran et al. [52]. This initialization relies on the use of a

Fourier transform in which the Fourier amplitudes are randomly selected and then

inversely transformed back to physical space and used to populate the material

properties. This helps smooth the random double-δ distribution in space. [Every

cell is either pure fuel or oxidizer.] This defines the initial material distribution

in a manner consistent with Deshmukh et al. [4]. Our research does not use the

wavenumber filter originally described in the Eswaran paper. This results in a

significantly faster build-up of combustion products. Figures 18 and 19 are example

slices of the fuel concentration after the first time step and the final time step of a

single TRI run. These plots show that after the first time step a significant amount
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of the fuel has reacted with the oxidizer and at the final time step nearly all of the

fuel has reacted.
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fraction used in Figure 16

Figure 18: Fuel concentration after a single time step
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Figure 19: Fuel concentration after the final time step
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6.3.4 TRI test results

The mixture fraction is the driving parameter in these simulations because

it specifies all material properties. This completely drives the radiation solution.

Figure 20 plots the variance of the mixture fraction as a function of non-dimensional

time for the different problem initializations presented in Table 11.

There are two common ways to treat the particulate temperature: constant,

equal to the initial temperature, or equal to the mean cell temperature in which it

resides. Fly ash and char are typically treated at the mean cell temperature because

of their size. Coal particulate on the other hand is considerably larger and therefore

is less sensitive to the cell temperature. The difference in the normalized mean

of the temperature (Equation 97) for the different Stokes numbers and packing

fractions is plotted in Figures 21, 22, and 23.

Figure 24 shows the normalized temperature mean (R4
T ) for all four different

cases. In all the cases shown in this figure, the mean cell temperature was used

for the temperature of the particulate. Variations in these curves are strongly

correlated to the variations in the mixture fraction (Figure 20).

The normalized emission mean (Equation 98) is also strongly driven by varia-

tions in the mixture fraction and particulate opacity. Figures 25, 26, and 27 show

the difference in the means when using a constant particulate temperature versus

the cell mean temperature.

The normalized emission mean (RKIb) depends on not only the temperature

treatment of the particulate, but also the opacity. To determine the sensitivity,

three different opacity values were chosen (Kp = 9.2, Kp = 92, and Kp = 920). Fig-

ure 28 shows the difference in the normalized emission mean for the three different



92

opacities with St=2.3 and Npar=1.

Figure 29 shows all the normalized emission mean values for the various problem

initializations outlined in Table 11. The differences in these curves correlate with

the differences in the material mixture fraction variance, shown in Figure 20.

The normalized absorption mean (Equation 99) is strongly dependent on both

the radiation source term and opacity distribution. The statistical noise in these

results make them difficult to evaluate. Changes can best be illustrated by com-

paring the normalized means of the cases that should have the greatest differences.

The problem is most sensitive to the mixture variance. The second most sensitive

variable is the particulate thickness. Figure 30 shows the normalized absorption

mean (RKG) for the test case without particulate and the test case with St=2.3,

Npar = 1, Kp = 920, and the particulate temperature defined as cell mean tem-

perature. These cases should have the greatest difference because of the sensitivity

to mixture variance and particulate thickness.

To observe the effect of particulate thickness, Figure 31 shows the thin test

problem (Kp = 9.2) and the thick test problem (Kp = 920). Figure 32 shows

the dependence on the particulate temperature definition using the St=2.3 and

Npar = 2 test case.

All results to this point have been evaluated using the chord length method.

Figures 33 and 34 show the normalized absorption means as calculated by geometric

optics versus the chord length method. The solution for problems with Npar > 1

cannot be evaluated using geometric optics because realizations are not created for

all particulate. The geometric optics cases were only evaluated for half the time of

the chord length runs because of memory allocation requirements and computation

time limitations.
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The volume averaged intensity as a function of non-dimensional time is plotted

in Figures 35, 36, and 37. Figures 35 and 36 show the average intensity as deter-

mined from the chord length method as compared to the geometric optics method.

Figure 37 show the results for all simulation parameters outlined in Table 11.
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Figure 33: Normalized absorption means for constant particulate temperature ver-
sus particulate temperatures at the mean cell temperature
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Figure 34: Normalized absorption means for constant particulate temperature ver-
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Figure 35: Mean photon intensity obtained using geometric optics versus the chord
length method for St=0.2
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Figure 36: Mean photon intensity using geometric optics versus the chord length
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6.3.5 TRI conclusions

This section shows the dependence of TRI effects on the addition and treatment

of coal particulate. It should be noted that the pure gas TRI effects shown in this

work do not match the scales shown by Deshmukh et al. [4]. This is related to the

process used to initially populate the domain, and the overall larger spatial domain

(963 vs. 643). This will be discussed in greater detail in the conclusions section.

6.4 Approximate Second Order Temporal Integration

The problem used to test the coarse mesh finite differencing scheme is the same

Su and Olson test problem previously used to compare the parallel efficiencies of the

two different opacity models. This benchmark was chosen because it is a transient

and frequency dependent problem that requires the solution of the equation of

state. This test problem also has a semi-analytic diffusion and transport solution

that can be used to verify both portions of the CMFD scheme separately.

6.4.1 CMFD test case

The test problem is a cube with a non-dimensional length of 10. A reflecting

boundary is placed on the x-coordinate boundary surface nearest the volume emis-

sion source, and a vacuum boundary is placed at opposite x-coordinate boundary

surface. All other faces are treated as periodic boundaries. The mesh (80× 2× 2)

contains 80 equally spaced cells in the x direction and the final results are averaged

over other two dimensions.

The general transport solution was generated at 10 specified grid points (see

Table 13) via a Maple subroutine, originally created and used by Nick Myers [53],

that solves the semi-analytic integral provided by Su and Olson [48].
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Su Olson Benchmark
Non-Dimensional Length Non-Dimensional Material Energy

0.0625 2.0332
1.0625 0.67392
2.0625 0.21326
3.0625 0.08604
4.0625 0.04137
5.0625 0.02094
6.0625 0.01027
7.0625 0.00457
8.0625 0.00165
9.0625 0.00034

Table 13: The semi-analytic non-dimensional material energy (T 4/T 4
0 ) at 10 dif-

ferent grid points at non-dimensional time τ = 10

The order of convergence of the diffusion solver is tested for both temporal

integration schemes - Backward Euler and Crank-Nicholson. A base solution was

generated via the Crank-Nicholson method using 64 time steps. This will be used

as the base case to determine the order of accuracy.
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Diffusion via backward Euler

# of Time Steps L∞ L1 L2

1 5.938e-1 ± 1.71e-6 3.616e-1 ± 1.33e-7 4.497e-2 ± 1.43e-9
2 4.542e-1 ± 1.62e-6 2.563e-1 ± 1.26e-7 3.262e-2 ± 2.62e-9
4 3.097e-1 ± 1.45e-6 1.624e-1 ± 1.16e-7 2.114e-2 ± 5.73e-9
8 1.903e-1 ± 1.19e-6 9.451e-1 ± 9.87e-8 1.251e-2 ± 1.38e-8
16 1.085e-1 ± 9.64e-7 5.224e-1 ± 8.34e-8 6.984e-3 ± 3.65e-8
32 5.815e-2 ± 9.13e-7 2.743e-1 ± 7.92e-8 3.690e-3 ± 1.24e-7

Table 14: The L∞, L1 and L2 norms of the relative error for the diffusion solution
using a backward Euler time discretization

Diffusion via Crank-Nicholson

# of Time Steps L∞ L1 L2

1 1.878e-1 ± 2.33e-7 8.797e-2 ± 9.52e-8 1.161e-2 ± 8.05e-9
2 7.440e-2 ± 9.48e-7 4.248e-2 ± 7.57e-8 4.922e-3 ± 5.87e-8
4 2.766e-2 ± 6.56e-7 1.193e-2 ± 5.62e-8 1.453e-3 ± 5.56e-7
8 6.316e-3 ± 5.05e-7 3.549e-3 ± 4.55e-8 4.273e-4 ± 4.98e-6
16 1.867e-3 ± 4.43e-7 1.244e-3 ± 4.10e-8 1.467e-4 ± 3.69e-5
32 1.124e-3 ± 4.60e-7 8.808e-4 ± 4.03e-8 1.032e-4 ± 7.44e-5

Table 15: The L∞, L1 and L2 norms of the relative error for the diffusion solution
using a Crank-Nicholson time discretization

6.4.2 CMFD test results

Tables 14 and 15 show the different norms associated with the backward Euler

and Crank-Nicholson time discretizations, respectively. The standard deviations

are associated with numerical roundoff errors that occur in the simulation and, in

this case, are well below values of interest.

Figure 38 shows the diffusion solution with 64 time steps (the base case). The

lines represent the solution obtained from the scalar solver and the points represent

the semi-analytic diffusion solution provided by Su et al. [48].

An Implicit Monte Carlo solver was implemented as described by Fleck et al.
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Transport via IMC

# of Time Steps L∞ L1 L2

1 4.443 ± 1.12e-1 1.203 ± 2.68e-2 5.449e-1 ± 3.59e-4
2 2.901 ± 7.98e-2 8.906e-1 ± 2.19e-2 3.669e-1 ± 5.70e-4
4 1.283 ± 7.67e-2 5.833e-1 ± 2.37e-2 2.144e-1 ± 1.52e-3
8 8.951e-1 ± 1.18e-1 4.318e-1 ± 2.85e-2 1.563e-1 ± 3.54e-3
16 8.142e-1 ± 1.33e-1 2.518e-1 ± 2.92e-2 1.103e-1 ± 9.48e-3
32 7.273e-1 ± 1.33e-1 2.295e-1 ± 7.22e-2 9.702e-2 ± 1.82e-2

Table 16: The L∞, L1 and L2 norms of the relative errors for the transport solution
solved via Implicit Monte Carlo

[6]. This solver was implemented to compare the rate of convergence obtained via

the linearized first order approximation of the emission source with that of the new

CMFD approach. Figure 39 shows the results from the IMC solver (lines) using

32 time steps as compared to the results presented by Su et al. [48] (points).

Table 16 shows the norms of the relative errors (evaluated against the points in

Table 13) for various time step sizes. Note the standard deviation is significantly

larger for than that observed from the scalar solver. This is a result the numerical

noise associated with the Monte Carlo method. These runs used 1000 particle

histories per time step with a minimum of 5 Monte Carlo particles per cell source

term.

Table 17 shows the norms of the relative error for various numbers of particle

histories. For all of these runs 32 time steps were used and a minimum of 5 Monte

Carlo particles were assigned per cell source term.

Four outer CMFD iterations were used for all simulations presented in Tables 18

and 21. These simulations also used 1000 histories per time step with a minimum of

five per cell source term. The only exception is the “32 fine” simulation presented

in Table 21 which used 5000 particle histories per time step with a minimum of 10
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Transport via IMC

# MC Histories L∞ L1 L2

1000 7.273e-1 ± 1.33e-1 2.295e-1 ± 7.22e-2 9.702e-2 ± 1.82e-2
5000 7.492e-1 ± 3.27e-1 2.264e-1 ± 5.32e-2 9.950e-2 ± 2.73e-2
10000 6.595e-1 ± 1.64e-1 2.001e-1 ± 5.05e-2 8.785e-2 ± 2.06e-2

Table 17: The L∞, L1 and L2 norms of the relative error for the transport solution
solved via Implicit Monte Carlo with varying number of Monte Carlo histories

Transport via CMFD with Euler

# of Time Steps L∞ L1 L2

1 9.525e-1 ± 2.58e-1 5.591e-1 ± 9.98e-2 1.950e-1 ± 8.98e-3
2 8.981e-1 ± 1.27e-1 4.031e-1 ± 4.00e-2 1.623e-1 ± 5.26e-3
4 8.620e-1 ± 5.41e-2 3.371e-1 ± 3.77e-2 1.389e-1 ± 5.85e-3
8 7.909e-1 ± 7.61e-2 2.516e-1 ± 3.40e-2 1.112e-1 ± 7.18e-3
16 6.995e-1 ± 1.00e-1 1.750e-1 ± 2.66e-2 8.581e-2 ± 1.21e-2
32 6.624e-1 ± 2.17e-1 1.701e-1 ± 6.06e-2 7.751e-2 ± 3.48e-2

Table 18: The L∞, L1 and L2 norms of the relative error for the transport solution
solved via CMFD with a backward Euler discretization

per cell source term. Table 18 shows the results for the CMFD method evaluated

using the backward Euler discretization. Table 21 shows the results for the CMFD

method evaluated with the Crank-Nicholson discretization.

Tables 19 and 22 show the norms for different numbers of histories per time

step. A total of 32 time steps were used for all simulations in these tables with 1

CMFD iteration and a minimum of 5 particle histories per cell source term.

Tables 20 and 23 show the norms for different numbers of CMFD iterations. A

total of 1000 histories per time step were used with 32 time steps and a minimum

of 5 particle histories per cell source term.

Tables 24 and 25 show the figure of merit (one over the total calculation time

multiplied by mean relative error) associated with the Monte Carlo history and
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Transport via CMFD with Euler

# MC Histories L∞ L1 L2

1000 7.834e-1 ± 1.43e-1 2.644e-1 ± 5.98e-2 1.182e-1 ± 1.67e-2
5000 6.687e-1 ± 1.86e-1 1.802e-1 ± 5.39e-2 9.027e-2 ± 3.00e-2
10000 7.503e-1 ± 3.66e-1 2.235e-1 ± 5.08e-2 1.012e-1 ± 2.91e-2

Table 19: The L∞, L1 and L2 norms of the relative error for the transport solution
solved via CMFD and the backward Euler discretization

Transport via CMFD with Euler

# CMFD Iter. L∞ L1 L2

1 7.834e-1 ± 1.43e-1 2.644e-1 ± 5.98e-2 1.182e-1 ± 1.67e-2
2 6.930e-1 ± 1.73e-1 2.039e-1 ± 5.94e-2 9.199e-2 ± 2.40e-2
4 6.624e-1 ± 2.17e-1 1.701e-1 ± 6.06e-2 7.751e-2 ± 3.48e-2
8 7.212e-1 ± 1.96e-1 2.132e-1 ± 5.52e-2 9.396e-2 ± 2.03r-2

Table 20: The L∞, L1 and L2 norms of the relative error for the transport solution
solved via CMFD and the backward Euler discretization

Transport via CMFD with Crank-Nicholson

# of Time Steps L∞ L1 L2

1 7.637e-1 ± 1.61e-1 2.727e-1 ± 4.52e-2 1.098e-1 ± 1.32e-2
2 7.019e-1 ± 2.83e-1 1.746e-1 ± 5.35e-2 8.452e-2 ± 3.53e-2
4 6.543e-1 ± 5.21e-2 1.482e-1 ± 2.80e-2 7.483e-2 ± 1.13e-2
8 4.806e-1 ± 8.32e-2 1.314e-1 ± 2.38e-2 5.771e-2 ± 2.46e-2
16 4.662e-1 ± 1.54e-1 1.454e-1 ± 3.71e-2 6.442e-2 ± 3.35e-2
32 2.823e-1 ± 1.44e-1 1.126e-1 ± 7.59e-2 4.714e-2 ± 1.48e-1

32 fine 2.371e-1 ± 1.44e-1 6.182e-2 ± 3.66e-2 2.877e-2 ± 1.63e-1

Table 21: The L∞, L1 and L2 norms of the relative error for the transport solution
solved via CMFD using the Crank-Nicholson discretization
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Transport via CMFD with Crank-Nicholson

# MC Histories L∞ L1 L2

1000 3.039e-1 ± 3.90e-1 9.877e-2 ± 9.06e-2 4.14e-2 ± 2.12e-1
5000 3.749e-1 ± 3.53e-1 1.187e-1 ± 5.12e-2 4.91e-2 ± 1.17e-1
10000 3.731e-1 ± 2.07e-1 9.633e-2 ± 4.33e-2 4.74e-2 ± 8.58e-2

Table 22: The L∞, L1 and L2 norms of the relative errors for the transport solution
solved via CMFD using the Crank-Nicholson discretization

Transport via CMFD with Crank-Nicholson

# CMFD Iter. L∞ L1 L2

1 3.039e-1 ± 3.90e-1 9.877e-2 ± 9.06e-2 4.144e-2 ± 2.12e-1
2 4.689e-1 ± 1.84e-1 8.666e-2 ± 6.30e-2 5.120e-2 ± 7.57e-2
4 2.823e-1 ± 1.44e-1 1.126e-1 ± 7.59e-2 4.714e-2 ± 1.49e-1
8 2.579e-1 ± 3.51e-1 1.112e-1 ± 6.70e-2 4.521e-2 ± 1.28e-1

Table 23: TheL∞, L1 and L2 norms of the relative errors for the transport solution
solved via CMFD with the Crank-Nicholson discretization

CMFD iteration refinements, respectively.

Figure 40 shows the 32 time step CMFD solution and the Su and Olson results.

This includes both the analytic values determined at the grid points shown in Table

13 and the original data presented by Su et al. [48].

Figures 41 and 42 show the refinement cases for the diffusion solver using the

backward Euler and the Crank-Nicholson discretizations, respectively. Figure 43

Figure of Merit for CMFD Iterations

# CMFD Iter. Crank Euler

1 4.0e-3 1.5e-3
2 2.3e-3 9.4e-4
4 9.0e-4 5.7e-4
8 4.5e-4 2.3e-4

Table 24: Figure of merit for CMFD iteration refinement
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Figure of Merit for MC Histories

# MC Histories CMFD-CN CMFD-Euler IMC

1000 4.0e-3 1.5e-3 1.8e-3
5000 1.5e-3 9.7e-4 7.9e-4
10000 9.9e-4 4.3e-4 4.8e-4

Table 25: Figure of merit for number of Monte Carlo History refinement

shows the temporal refinement cases for the IMC transport solver. Figures 44

and 45 show the temporal refinement results for the CMFD solver using the back-

ward Euler and Crank-Nicholson discretizations, respectively. Each figure plots

the normalized material energy ( T 4/T 4
0 ) evaluated by the respective solvers (lines)

compared to the analytic results (points). The base time step used in these re-

finements is dt = 10. The time step sizes in the refinement study are indicated by

dt/N where N is some integer value defining the number of time steps used during

the simulation.
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Figure 38: Scalar diffusion solver compared to Su and Olson’s semi-analytic result.
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Figure 39: IMC solution using 32 time steps compared to Su and Olson’s semi-
analytic result.
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Figure 40: Normalized material energy (T 4/T 4
0 ) evaluated using 32 time steps with

the CMFD solver compared against the Su and Olson analytic data
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Figure 41: Normalized material energy (T 4/T 4
0 ) evaluated using different time steps

with the diffusion solver using the backward Euler temporal integration scheme
compared against the Su and Olson analytic data
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Figure 42: Normalized material energy (T 4/T 4
0 ) evaluated using different time steps

with the diffusion solver using the Crank-Nicholson temporal integration scheme
compared against the Su and Olson analytic data
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Figure 43: Normalized material energy (T 4/T 4
0 ) evaluated using different time steps

with the IMC solver compared against the Su and Olson analytic data
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Figure 44: Normalized material energy (T 4/T 4
0 ) evaluated using different time

steps with the CMFD solver using the backward Euler temporal integration scheme
compared against the Su and Olson analytic data
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Figure 45: Normalized material energy (T 4/T 4
0 ) evaluated using different time steps

with the CMFD solver using the Crank-Nicholson temporal integration scheme
compared against the Su and Olson analytic data
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Figure 46 is a log-log plot of the infinity norms of the relative errors (|ε(x)|∞)associated

with the different temporal refinements. The log-log plot shown in Figure 47 shows

the L1 norms (|ε(x)|1) of the relative errors for the different temporal refinement

methods. The L2 norms (|ε(x)|2), Figure 48, are shown on a log-log plot for the

different methods.

Figure 49, 50, and 51 show the standard deviations associated with the means

listed in the tables of norms.



116

 0.001

 0.01

 0.1

 1

 10

 1  10  100

E
rr

o
r

# time steps

Infinity Norm Convergence

IMC
CMFD Euler

CMFD Crank
Scalar Euler

Scalar Crank

Figure 46: The L∞ norms at different numbers of time steps for the different
temporal integration approaches
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Figure 47: The L1 norms at different numbers of time steps for the different tem-
poral integration approaches



117

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1  10  100

E
rr

o
r

# time steps

L2 Norm Convergence

IMC
CMFD Euler

CMFD Crank
Scalar Euler

Scalar Crank

Figure 48: The L2 norms at different numbers of time steps for the different tem-
poral integration approaches
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Figure 49: Standard deviations of the L∞ norms
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Figure 51: Standard deviations of the L2 norms



119

6.4.3 CMFD results summary

This section shows the convergence rates, as measured in three different norms,

for the different approaches to evaluating the non-linear emission source term. The

standard deviation associated with the norms of the error is also calculated. These

norms and their associated standard deviations will be used to draw conclusions

about the accuracy and convergence of the CMFD approach, with both the back-

ward Euler and the Crank-Nicholson temporal discretizations, as compared to the

standard Implicit Monte Carlo approach.
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7 Conclusions

7.1 Gas Opacity Model Comparisons

We have investigated the solution of the frequency dependent Su and Olson

problem using two different opacity models. The two chosen in this work are the

Spectral-Line-Based weight sum of grey gasses and the Line-by-Line opacity mod-

els. These models were chosen because the Line-by-Line model is the most accurate

and robust model available to date and the SLW model is a coarse representation

of a broad spectrum of K-distribution methods commonly used in combustion ap-

plications. Figure 6 shows good agreement between the SLW and LBL models.

The overheating is most likely associated with the large explicit time steps.

The parallel efficiency of these models was determined using the Su and Olson

frequency dependent test problem [48]. This test problem was chosen because it

can be modified to be representative of a realistic gas system, while still providing

an analytic solution to verify the results. This test problem is also advantageous

because the SLW model will be just as accurate as the LBL model. This is be-

cause the mock picket fence opacity employed can be represented exactly with two

opacities and the correlated K-distribution assumption is exact. The correlated

K-distribution assumption specifies that the frequencies associated with the opac-

ities in one cell can be correlated to frequencies associated with a different opacity

in all the other cells. This assumption is true for this test problem because the

opacity associated with a particular frequency is the same in all cells. As a result,

all remaining differences between the methods are likely associated with numerical

differences and roundoff errors.
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The first and most obvious conclusion that can be drawn from the comparison

of the two opacity models is that the overall speed of the LBL opacity model is

faster than the SLW model in all cases. This has been documented and evaluated

by Wang and others [14, 2]. The work of Pal et al. even shows that the LBL model

out-performs the K-distribution method in evaluation time for a single parallel

run [2].

Scaling studies are important because they provide information about how a

method is expected to perform as it is used in an increasingly parallel computing

environment. A good example of this is the results of the history scaling study. All

cases in the history study use the same number of processors. For the 1x run (4.0e4

particle histories), the LBL model is 5̃3% faster than the SLW model, as compared

to the 16x run (6.4e5 particle histories) which is only 25% faster. In fact, because

the computational time associated with a particle history should be shorter for the

SLW model than the LBL model, the SLW model will eventually overtake the LBL

model in overall computational efficiency. The calculation time of a particle history

for the LBL model is longer than the SLW model because of the need to interpolate

the opacity tables each time a particle enters a new cell. The SLW model, on

the other hand, reduces this evaluation time during the particle history by pre-

computing the gray-gas opacity tables, which can easily be stored in memory for

quicker access. This is evident in Figure 9, which shows the total run time divided

by the total number of histories per time step. As the number of histories increases,

the associated cost per history of the SLW model rapidly decreases. This is not the

case for the LBL method, which stays relatively constant. This pre-computation

step is very expensive and its cost can be directly correlated to the number of cells

in the system. The SLW model, and other global models like it, are often used in



122

conjunction with a deterministic solver. In this research, we used a Monte Carlo

solver to avoid the need to evaluate the differences in numerical accuracy between

the two approaches. Other potential tradeoffs could may exist between these two

opacity methods with the use of deterministic solvers. Deterministic solvers are less

sensitive to parallel load imbalance, and are generally considered to be faster than

Monte Carlo solvers. This would require a more rigorous comparison of accuracy

to determine the overall figure of merit.

Weak scaling efficiency demonstrates the effect on computational cost of a nu-

merical method as the number of processors is scaled with the size of the problem.

We expect that the SLW model should perform better with this scaling than the

LBL model. This is because it is less sensitive to load imbalance, as the majority

of calculation time occurs during the preprocessing step and scales as the number

of cells in the problem. The LBL method, where the majority of computational

cost is history-based, is more sensitive to load balancing issues which drive down

the weak scaling efficiency. Figure 8 shows how weak scaling efficiency of the LBL

model rapidly declines as compared to the SLW model which stays relatively flat.

Strong scaling efficiency shows how the computational cost is affected as more

processors are added to the same problem size. It would be expected that the

SLW model will out perform the LBL model again, because changing the number

of processors does not change where the majority of the computational time will be

performed. The SLW model, however, should scale very well because the associated

cost is based on the number of cells, not where the particle histories take place.

This is verified in Figure 7 which shows that the strong scaling efficiency of the

SLW model is relatively flat compared to the LBL model.

The relative load imbalance, shown in Figures 10 and 11, is the driving factor
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which affects the scaling efficiency for these methods. The imbalance shown in this

work is sensitively dependent on the physics of the chosen test problem. In the

Su and Olson picket fence problem, the majority of the heating occurs in a small

portion of the problem. The Monte Carlo solver randomly selects particles based

on the relative weight of the source in each cell. This results in many particle

histories in the hot region of the problem and only a few in the cold. This non-

uniform heating is commonly found in coal furnaces that can have large gradients

in temperature between the combusting flame and the burner wall. Domain repli-

cation can greatly improve the scaling performance of the LBL method. Because

of memory limitations, however, some domain decomposition must be performed

in almost all problems of interest. Beyond domain replication, there are other load

balancing approaches that could be applied to help improve the parallel scaling of

the LBL model. Any of these approaches could also be applied to the SLW model

to help increase performance. Domain replication for the SLW model could poten-

tially assign individual processors to compute only a portion of the domain, which

is shared amongst them. A more efficient table lookup procedure could greatly im-

prove the performance of the LBL model. A more efficient method of computing

the gray gas properties during the preprocessing step could also be investigated for

the SLW model.

7.2 Turbulent Radiation Interactions in Particulate Laden Flows

Deshmukh et al. [4] developed a numerical test case that could be used to

evaluate the sensitivity of turbulent radiation interactions to a variety of parame-

ters. We have expanded upon this test case to determine the sensitivity of TRI to

the addition of coal-type particulate. Other particulate, such as fly ash and char,
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have been extensively studied and have been shown to strongly affect mean flame

temperatures and radiative heat fluxes [16, 34].

Coal particulate is more sensitive to flow regimes than smaller particulate,

such as fly ash and char, because of its relative size and momentum. To evaluate

the effect of the presence of coal particulate on overall TRI, two simulations with

different Stokes numbers were performed (St=2.3 and St=0.2). Because the partic-

ulate density will also vary in combustion applications, two packing fractions were

considered (9.6e-2% and 1.9e-1%). The initial particle clustering in each of these

simuations is evident in Figures 15, 16, and 17. These figures show thin slices

of the spatial domain, and every dot represents a single particle location, with

the exception of Figure 17, where every dot represents two particulate spheres.

At low Stokes numbers, clustering begins to occur and as the Stokes number is

increased beyond 1, collisions begin to push the particulate back into the eddies

which originally pushed them out.

Because the smoothing filter was not applied to the initialization of the ma-

terial distribution, the rate of product build-up is much faster than in the work

of Deshmukh et al. [4]. This is evident from a plot of the fuel distribution after

one time step (Figure 18). In fact, the fuel is almost completely combusted af-

ter the non-dimensional time of 0.05 (see Figure 19). The mixture fraction is the

driving parameter for the radiative transfer equations in this problem. Figure 20

shows a slightly different progression of the mixture variance as a function of time

for each of the initializations. This likely relates directly to the initial kinetic en-

ergy in the system before it is populated with fuel, and before the turbulence is

allowed to decay. The differences in the decay rates of the mixture variance are

observed in two of the normalized TRI means (Figures 24 and 29). This is by far
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the most influential parameter in the system. Therefore, any variations associated

with varying Stokes numbers and packing fractions are difficult to discern from a

direct comparison.

To illustrate the influence of the definition of the particulate temperature, each

simulation was performed once using a constant particulate temperature (of 750[K])

and once assuming the particulate temperature is equal to the mean background

medium cell temperature. Figures 21, 22, and 23 compare the normalized temper-

ature mean (RT 4) for the two different definitions of the particulate temperature.

These figures show that the TRI normalized temperature mean is relatively in-

sensitive to the particulate temperature definition. The evolution of the packing

fraction is most sensitive to the definition of the particulate temperature. It is

expected that as the number density and/or size of the particulate is increased,

the problem will become increasingly more sensitive to the definition of particulate

temperature. This is because larger and/or more clustered particulate will likely

maintain lower temperatures, increasing TRI effects. Figures 25, 26, and 27 show

the normalized emission mean (RKIb) for all three particulate initializations with

both the constant particulate temperature and mean cell particulate temperatures.

This mean is even less sensitive to the definition of the particulate temperature.

Figure 28 shows the dependence of the normalized emission mean on the par-

ticulate optical thickness. This figure shows that as the particulate becomes more

optically thick, the TRI effects associated with the emission term decrease. As

the influence of the particulate becomes more prominent, its smoother (in this

case constant) opacity means that the emission source distribution will be more

consistent throughout the problem.

Statistical variance in the normalized absorption mean (RKG) makes it very
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difficult to quantify the effect of parameter variations. Therefore, only the simu-

lations which should have the most significant differences (as determined by the

differences in the other means) are plotted. The two most significant differences

associated with the other means are the rate of reduction in mixture variance and

particulate optical thickness. Figure 30 compares the normalized absorption means

for the two cases that are the most different in opacity and mixture variance. Even

in these cases, it is difficult to make any conclusions about the differences in the

results because of the significant statistical noise in the solutions. Figures 31 and

32, comparing the differences associated with particulate thickness and tempera-

ture treatment, show some discernible differences. Making the problem thicker or

treating the particulate as a constant temperature appears to reduce the statistical

noise. This does show that the influence of the particulate on the optically thin

eddy approximation is relatively mild. Even for the thickest particulate, the overall

maxima and minima of the curves remain relatively unaffected.

Figures 33, 34, 35, and 36 compare the results using the chord length method

versus geometric tracking. These show that the chord length method can repro-

duce the normalized means within the accuracy of the statistical noise associated

with the solutions. These results also show that the chord length method slightly

over-predicts the mean intensity as compared to geometric tracking. The results

for geometric tracking were computed for half the number of iterations of those

using the chord length method because of the increased memory requirements and

computational time associated with geometric tracking.

This work shows that TRI effects are relatively insensitive to non-combusting

coal-type particulate for low mass loadings. The least sensitive TRI parameter

is the normalized absorption mean (or optically thin eddy approximation). As
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mass loading increases and coal combustion processes are included, the TRI effects

will likely be amplified. This is because the source term in the radiative transfer

equation will be tightly coupled to the location and density of the particulate.

7.3 Increasing Monte Carlo Temporal Convergence Using CMFD

CMFD has been shown to be an effective source convergence acceleration tech-

nique for deterministic methods[19] and a variance reduction tool for Monte Carlo

solvers [41] applied the k-eigenvalue neutron transport equations. We investigate

the use of Coarse Mesh Finite Difference (CMFD) with Monte Carlo as the high-

order solver applied to the radiative heat transfer equations. Our interest is in

assessing the temporal order of convergence using standard IMC, CMFD using

a backward Euler temporal discretization, and CMFD using a Crank-Nicholson

temporal discretization.

To verify the Monte Carlo and diffusion solvers, the Su and Olson diffusion

and transport solutions were generated with the appropriate solver independently.

Figure 38 shows the diffusion solution with 64 time steps using Crank-Nicholson.

The variation between the numerical solution and the analytic diffusion solution at

the point x = 10 occurs because the domain is not large enough in the x direction

to fully capture the semi-infinite assumption made in the analytic derivation. The

domain is large enough, however, to capture the full transport solution as shown in

Figure 39 with the IMC solver using 32 time steps. Both agree within the specified

convergence tolerance.

The solutions from each of the transport solvers (IMC, CMFD-Euler, CMFD-

CN) as a function of temporal refinement are compared against ten reference points

that were evaluated with the semi-analytic integral given by Su and Olson [48]. The
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temporal refinement of the diffusion solver is simply compared to a highly resolved

numerical evaluation using the diffusion solver (64 time steps). The diffusion solver

was evaluated using both backward Euler and Crank-Nicholson temporal integra-

tion schemes. Figures 41 and 42 compare the numerical results for the diffusion

equations using different time step sizes (points represent the analytic solutio [48])

for the two different integration schemes. As expected, the second order Crank-

Nicholson scheme approaches the analytic solution more rapidly than the first order

backward Euler scheme. Figure 43 shows the temporal refinement of the transport

solution using the IMC solver. This figure shows that the IMC approach performs

very poorly at large time steps. The refinement of the CMFD approach is shown in

Figures 44 and 45 for both Backward Euler and Crank-Nicholson discretizations,

respectively. These plots show that while both the CMFD-Euler and IMC solver

are first order accurate, the CMFD-Euler is initially more accurate. The CMFD-

CN is initially more accurate than both CMFD-Euler and the IMC solvers. The

rate of convergence for the CMFD methods is difficult to assess from these figures

because of the statistical noise.

Typically the L∞ norm (which is the maximum value in a vector) of the relative

error is plotted on a log-log plot to numerically verify the order of accuracy of

any given method. Figure 46 is the log-log plot of the infinity norm for each

method. The rate of convergence, as determined by the slope of this curve, for the

diffusion solver using both Crank-Nicholson (“Scalar Crank”) and Backward Euler

(“Scalar Euler”) show convergence rates of second and first order, respectively. The

refinement of the IMC solver initially shows a convergence order of less than one,

which quickly flattens out for refinements beyond 8 time steps. This degradation

of the convergence rate is likely related to statistical noise which becomes greater
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than the numerical error associated with the temporal discretization. The slope

of the L∞ norm for the CMFD method with the Backward Euler discretization

is very flat. The overall accuracy of the method is better than the IMC method

for all refinements, and at 16 time steps it is more accurate than 32 time steps

using IMC. The slow convergence rate of this method is also limited by numerical

noise and the number of CMFD iterations used to converge the streaming operator.

The CMFD method with the Crank-Nicholson discretization is more accurate than

both IMC and the Backward Euler discretized CMFD method for all refinements.

In fact, with only two time steps it is more accurate than the 32 time steps IMC

solution and the 8 times step solution using the Backward Euler method. The

CMFD-CN shows a better rate of convergence than the CMFD-Euler discretization.

This indicates that the Crank-Nicholson discretization might be less limited by the

statistical noise and/or the number of CMFD iterations used.

The L1 norm relative error results are displayed on a log-log plot in Figure 47.

The slopes of the mean error for the IMC and scalar Euler problems match very

well, as they should, both being first-order accurate in time. The scalar Crank-

Nicholson mean has a slope matching a second order accurate problem. The CMFD

models show slopes that are flatter than would be expected for the known dis-

cretization error of the transport and diffusion methods. All three Monte Carlo

solvers show degraded convergence behavior with decreasing time step size, which

is likely related to the statistical errors associated with these methods. Figure 48

shows the L2 norms of the relative error. This error norm helps illustrate how con-

sistent the solution is across the spatial domain and is analogous to the standard

deviation. The L2 error norms decrease at a rate very similar to that of the L1

norm for the scalar solvers.
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The standard deviations of the original values are evaluated by averaging the

results in the x-direction. These standard deviations are carried through the eval-

uation of the norms to illustrate the confidence in the results.

The reduced rate of convergence that was observed for small time in the CMFD

and IMC methods prompted a sensitivity study. The goal was to establish the

influence of the number of CMFD iterations and number of Monte Carlo histories

on the accuracy of each method. Both the number of CMFD iterations and number

of histories were refined independently for the 32 time step case. The results for

the number of Monte Carlo histories, shown in Tables 17, 19, and 22, used 1

CMFD iteration in each simulation. These tables show that as the number of

particle histories are increased for the IMC method, the norms and their standard

deviations are reduced. The norms for the CMFD methods are reduced, but not

consistently. The standard deviations of all the norms are reduced, as expected,

because increasing the number of histories reduces statistical noise. This indicates

that the accuracy of the CMFD method for is likely being limited by the accuracy

of the non-converged CMFD iterations.

The sensitivity of the CMFD method to the number of CMFD iterations was

tested with simulations using 32 time steps and 1000 histories per time step. This

study shows an inconsistent improvement in accuracy and in standard deviation

for both methods. The accuracy of the solutions in these simulations is likely being

hampered by the statistical errors in the solution after each time step.

To show that as both the number of particle histories and the number of CMFD

iterations are increased the accuracy of the methods improve, a refined simulation

was performed. This is the ”32 fine” date shown in Table 21. In this simulation,

four CMFD iterations were used with 5000 histories per time step and 10 minimum
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particles per cell source term for 32 time steps. This shows a small reduction in

the maximum relative error and a large reduction in the mean relative error (L1

norm).

The total figure of merit (Tables 24 and 25), as determined by the inverse of

the calculation time multiplied by the mean relative error, is used to compare the

methods because it helps account for the increase in computation time associated

with the CMFD method. From this data, it is evident that largest figure of merit

is achieved with the coarsest representation of the CMFD method at 32 time steps.

Furthermore, using two CMFD iterations out-performs all other methods. To find

the maximum figure of merit, a full three dimensional refinement study of time step

size, number of CMFD iterations, and number of particle histories is necessary.

The goal of this study is simply to highlight that such a maximum exists and that

CMFD with a Crank-Nicholson discretization can out-perform IMC for these type

of problems. This method would likely perform best in thick transient problems.

In these problems, IMC would require many effective scattering events and small

cells to reduce teleportation errors. The CMFD method will likely perform poorly

in optically thin and/or strongly scattering media where the streaming operator is

difficult to evaluate.

Even though this research does not show that CMFD with Crank-Nicholson is

second-order accurate in time, it does show that it is more accurate and compu-

tationally efficient than the IMC method for the problem in question. A better

assessment of the order of convergence may be possible with an adaptive conver-

gence criteria for the CMFD method. Statistical noise, however, makes determining

convergence difficult.



132

7.4 Overall Conclusions and Future Work

We have investigated three different aspects of the numerical solution of radia-

tive heat transfer equation in application to coal combustion problems. The first is

the parallel performance of two different opacity models; the Line-by-Line (LBL)

model and the spectral-line-based weighted sum of grey gases (SLW) model. The

second is the sensitivity of turbulent radiation interaction effects to the addition

of coal-type particulate. The third is increasing the temporal order of conver-

gence for a Monte Carlo solver using CMFD with a second order Crank-Nicholson

discretization.

We have shown that the SLW model, and likely other similar global models,

scale more efficiently for load imbalanced problems on parallel systems that are

domain decomposed. Load balancing plays a strong role in the scaling efficiency

of these models. The SLW model proved to be significantly less sensitive to the

load imbalance associated with the Su Olson test problem we considered. Even

though the SLW model showed scaling advantages, the overall computational time

for the LBL model was smaller. This will not be true for all cases; problems that

are more homogeneous and problems evaluated using deterministic methods may

exhibit different scaling behavior. A more in depth study of different solvers and

more advanced K-distribution methods is warranted. This requires the evaluation

of a figure of merit because the accuracy of the solvers would be different.

Our research determined that for the relatively low mass fraction considered,

the TRI effects are very insensitive to the addition of coal-type particulate. The

primary differences observed are associated with differences in the turbulence ini-

tialization. This affects the temporal dependence of the mixture fraction variance,

which drives the source terms associated with the radiation field. The treatment
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of the particulate temperature has little effect at low mass loadings and becomes

more dominant as the loading is increased. For large mass loadings, the treatment

of the particulate temperature will effect the TRI parameters and the accuracy of

the solution. The TRI effects associated with the emission source are reduced by

the addition of optically thick, constant-temperature particulate. This will likely

be reflective of real coal particulate opacities, which are relatively constant and

thick compared to gas opacities. More simulations of the same problem should be

performed different random initial states of the kinetic energy. This would help

evaluate if the differences in the mixture variances are related to the initialization

of the turbulence or the presence of the particulate. The addition of a simulation

that is driven by the combustion of particulate would be very advantageous to

evaluate changes in TRI effects when particulate fully drives the radiation source.

We have shown that a coarse mesh finite difference approach, with a high order

integration scheme, can improve the temporal accuracy of a standard Monte Carlo

approach as compared to Implicit Monte Carlo (IMC). We have been unable to

directly evaluate the order of temporal convergence for the CMFD method with

different temporal integration schemes because of statistical errors associated with

the Monte Carlo solver. However, we did observe that CMFD with a Crank-

Nicholson discretization is more accurate than either CMFD with a Backward

Euler discretization or standard IMC. The development of dynamic statistical and

numerical convergence criteria would greatly improve this approach.
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A APPENDIX
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A.1 Code

function g e t p l a n e i n t e r s e c t ( i n t e r s e c t i o n ,
plane normal , p lane po int , v e c t o r po in t 1 ,
v e c t o r p o i n t 2 ) result ( i n t e r s e c t )

implicit none
logical , intent ( inout ) : : i n t e r s e c t i o n
real (WP) : : i n t e r s e c t (3 )
real (WP) , intent ( in ) , target : :

p lane normal (3 ) , p l ane po in t (3 ) ,
v e c t o r p o i n t 1 (3 ) , v e c t o r p o i n t 2 (3 )

real (WP) , pointer : : a ( : ) , p0 ( : ) , p1 ( : ) ,
p2 ( : )

real (WP) : : lambda , x (3 )

a => plane normal
p0 => p lane po in t
p1 => v e c t o r p o i n t 1
p2 => v e c t o r p o i n t 2

lambda = ( a (1 ) ∗( p0 (1 )−p1 (1 ) ) + a (2) ∗( p0 (2 )−
p1 (2 ) ) + a (3) ∗( p0 (3 )−p1 (3 ) ) ) &

/( a (1 ) ∗( p2 (1 )−p1 (1 ) ) + a (2) ∗( p2 (2 )−p1 (2 ) ) +
a (3) ∗( p2 (3 )−p1 (3 ) ) )

! p r i n t ∗ , ” [” , myrank , ” ] lambda ” , lambda ,
p l a n e p o i n t

! i f ( myrank==6) p r i n t ∗ , ” lambda = ” , lambda
, ( a (1) ∗( p0 (1)−p1 (1) ) + a (2) ∗( p0 (2)−p1
(2) ) + a (3) ∗( p0 (3)−p1 (3) ) ) , &

! ( a (1) ∗( p2 (1)−p1 (1) ) + a (2) ∗( p2 (2)−
p1 (2) ) + a (3) ∗( p2 (3)−p1 (3) ) )

i f ( lambda < 1 . and . lambda > 0 ) then !
i f lambda i s one then i t s t o p s at the
f a c e e x a c t l y so we d e f a u l t to s t a y in
the c e l l

i n t e r s e c t i o n = . t rue .
x (1 ) = p1 (1) + lambda ∗ ( p2 (1 )−p1

(1 ) )
x (2 ) = p1 (2) + lambda ∗ ( p2 (2 )−p1

(2 ) )
x (3 ) = p1 (3) + lambda ∗ ( p2 (3 )−p1
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(3 ) )
i n t e r s e c t = x

else ! i f lambda i s g r e a t e r then one i t
doesn ’ t i n t e r s e c t the p lane and i f
lambda i s zero then i t s t a r t e d from the
curren t f a c e or i t i s p a r a l l e l to the
p lane

i n t e r s e c t i o n = . f a l s e .
!FIXME: shou ld check i f sourced on

f a c e . In t h i s case Lambda w i l l
be zero but p2 w i l l not be
i n s i d e the current c e l l .

end i f

nul l i fy ( a )
nul l i fy ( p0 )
nul l i fy ( p1 )
nul l i fy ( p2 )

end function g e t p l a n e i n t e r s e c t

function f a c e t a r e a d i f f ( a , v )

implicit none

real (WP) , intent ( in ) : : v ( : , : ) , a ( : )
real (WP) : : f a c e t a r e a d i f f
real (WP) : : f a c e t a r e a
real (WP) : : pa r t i a l a r e a s u m

integer : : vs (2 ) , nd , nv , i v

vs = shape ( v )

nd = vs (1 )
nv = vs (2 )
i f (nd == 2) then ! check i f a i s on the l i n e

i f ( nv > 2) then
write (∗ ,∗ ) ’ Error in f a c e t a r e a d i f f s ’
stop

end i f
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f a c e t a r e a = s q r t (sum ( ( v ( : , 2 )−v ( : , 1 ) ) ∗∗2) )
f a c e t a r e a d i f f = abs ( s q r t (sum ( ( v ( : , 1 )−a ( : ) ) ∗∗2) ) &

+ s q r t (sum ( ( v ( : , 2 )−a ( : ) ) ∗∗2) ) − f a c e t a r e a ) /
f a c e t a r e a

else i f (nd == 3) then

f a c e t a r e a = 0 .0 WP
do i v = 2 , nv−1

f a c e t a r e a = f a c e t a r e a &
+ 0.5 WP ∗ cross mag ( v ( : , i v )−v ( : , 1 ) , v ( : , i v

+1)−v ( : , 1 ) )
enddo

p a r t i a l a r e a s u m = 0.0 WP
do i v = 1 , nv−1

p a r t i a l a r e a s u m = p ar t i a l a r e a s u m &
+ 0.5 WP ∗ cross mag ( v ( : , i v )−a ( : ) , v ( : , i v

+1)−a ( : ) )
end do
p a r t i a l a r e a s u m = p ar t i a l a r e a s um &

+ 0.5 WP ∗ cross mag ( v ( : , nv )−a ( : ) , v ( : , 1 )−a ( : )
)

f a c e t a r e a d i f f = abs ( pa r t i a l a r e a s u m − f a c e t a r e a )
&

/ f a c e t a r e a
endif

return

end function f a c e t a r e a d i f f


